xref: /illumos-gate/usr/src/uts/common/vm/seg_kp.c (revision c686756220120076a07be0dcce54be698101a3d1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
26 /*	All Rights Reserved   */
27 
28 /*
29  * Portions of this source code were derived from Berkeley 4.3 BSD
30  * under license from the Regents of the University of California.
31  */
32 
33 /*
34  * segkp is a segment driver that administers the allocation and deallocation
35  * of pageable variable size chunks of kernel virtual address space. Each
36  * allocated resource is page-aligned.
37  *
38  * The user may specify whether the resource should be initialized to 0,
39  * include a redzone, or locked in memory.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/thread.h>
45 #include <sys/param.h>
46 #include <sys/errno.h>
47 #include <sys/sysmacros.h>
48 #include <sys/systm.h>
49 #include <sys/buf.h>
50 #include <sys/mman.h>
51 #include <sys/vnode.h>
52 #include <sys/cmn_err.h>
53 #include <sys/swap.h>
54 #include <sys/tuneable.h>
55 #include <sys/kmem.h>
56 #include <sys/vmem.h>
57 #include <sys/cred.h>
58 #include <sys/dumphdr.h>
59 #include <sys/debug.h>
60 #include <sys/vtrace.h>
61 #include <sys/stack.h>
62 #include <sys/atomic.h>
63 #include <sys/archsystm.h>
64 #include <sys/lgrp.h>
65 
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/seg_kp.h>
69 #include <vm/seg_kmem.h>
70 #include <vm/anon.h>
71 #include <vm/page.h>
72 #include <vm/hat.h>
73 #include <sys/bitmap.h>
74 
75 /*
76  * Private seg op routines
77  */
78 static void	segkp_badop(void);
79 static void	segkp_dump(struct seg *seg);
80 static int	segkp_checkprot(struct seg *seg, caddr_t addr, size_t len,
81 			uint_t prot);
82 static int	segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta);
83 static int	segkp_pagelock(struct seg *seg, caddr_t addr, size_t len,
84 			struct page ***page, enum lock_type type,
85 			enum seg_rw rw);
86 static void	segkp_insert(struct seg *seg, struct segkp_data *kpd);
87 static void	segkp_delete(struct seg *seg, struct segkp_data *kpd);
88 static caddr_t	segkp_get_internal(struct seg *seg, size_t len, uint_t flags,
89 			struct segkp_data **tkpd, struct anon_map *amp);
90 static void	segkp_release_internal(struct seg *seg,
91 			struct segkp_data *kpd, size_t len);
92 static int	segkp_unlock(struct hat *hat, struct seg *seg, caddr_t vaddr,
93 			size_t len, struct segkp_data *kpd, uint_t flags);
94 static int	segkp_load(struct hat *hat, struct seg *seg, caddr_t vaddr,
95 			size_t len, struct segkp_data *kpd, uint_t flags);
96 static struct	segkp_data *segkp_find(struct seg *seg, caddr_t vaddr);
97 static int	segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp);
98 static lgrp_mem_policy_info_t	*segkp_getpolicy(struct seg *seg,
99     caddr_t addr);
100 static int	segkp_capable(struct seg *seg, segcapability_t capability);
101 
102 /*
103  * Lock used to protect the hash table(s) and caches.
104  */
105 static kmutex_t	segkp_lock;
106 
107 /*
108  * The segkp caches
109  */
110 static struct segkp_cache segkp_cache[SEGKP_MAX_CACHE];
111 
112 #define	SEGKP_BADOP(t)	(t(*)())segkp_badop
113 
114 /*
115  * When there are fewer than red_minavail bytes left on the stack,
116  * segkp_map_red() will map in the redzone (if called).  5000 seems
117  * to work reasonably well...
118  */
119 long		red_minavail = 5000;
120 
121 /*
122  * will be set to 1 for 32 bit x86 systems only, in startup.c
123  */
124 int	segkp_fromheap = 0;
125 ulong_t *segkp_bitmap;
126 
127 /*
128  * If segkp_map_red() is called with the redzone already mapped and
129  * with less than RED_DEEP_THRESHOLD bytes available on the stack,
130  * then the stack situation has become quite serious;  if much more stack
131  * is consumed, we have the potential of scrogging the next thread/LWP
132  * structure.  To help debug the "can't happen" panics which may
133  * result from this condition, we record hrestime and the calling thread
134  * in red_deep_hires and red_deep_thread respectively.
135  */
136 #define	RED_DEEP_THRESHOLD	2000
137 
138 hrtime_t	red_deep_hires;
139 kthread_t	*red_deep_thread;
140 
141 uint32_t	red_nmapped;
142 uint32_t	red_closest = UINT_MAX;
143 uint32_t	red_ndoubles;
144 
145 pgcnt_t anon_segkp_pages_locked;	/* See vm/anon.h */
146 pgcnt_t anon_segkp_pages_resv;		/* anon reserved by seg_kp */
147 
148 static struct	seg_ops segkp_ops = {
149 	SEGKP_BADOP(int),		/* dup */
150 	SEGKP_BADOP(int),		/* unmap */
151 	SEGKP_BADOP(void),		/* free */
152 	segkp_fault,
153 	SEGKP_BADOP(faultcode_t),	/* faulta */
154 	SEGKP_BADOP(int),		/* setprot */
155 	segkp_checkprot,
156 	segkp_kluster,
157 	SEGKP_BADOP(size_t),		/* swapout */
158 	SEGKP_BADOP(int),		/* sync */
159 	SEGKP_BADOP(size_t),		/* incore */
160 	SEGKP_BADOP(int),		/* lockop */
161 	SEGKP_BADOP(int),		/* getprot */
162 	SEGKP_BADOP(u_offset_t),		/* getoffset */
163 	SEGKP_BADOP(int),		/* gettype */
164 	SEGKP_BADOP(int),		/* getvp */
165 	SEGKP_BADOP(int),		/* advise */
166 	segkp_dump,			/* dump */
167 	segkp_pagelock,			/* pagelock */
168 	SEGKP_BADOP(int),		/* setpgsz */
169 	segkp_getmemid,			/* getmemid */
170 	segkp_getpolicy,		/* getpolicy */
171 	segkp_capable,			/* capable */
172 	seg_inherit_notsup		/* inherit */
173 };
174 
175 
176 static void
177 segkp_badop(void)
178 {
179 	panic("segkp_badop");
180 	/*NOTREACHED*/
181 }
182 
183 static void segkpinit_mem_config(struct seg *);
184 
185 static uint32_t segkp_indel;
186 
187 /*
188  * Allocate the segment specific private data struct and fill it in
189  * with the per kp segment mutex, anon ptr. array and hash table.
190  */
191 int
192 segkp_create(struct seg *seg)
193 {
194 	struct segkp_segdata *kpsd;
195 	size_t	np;
196 
197 	ASSERT(seg != NULL && seg->s_as == &kas);
198 	ASSERT(RW_WRITE_HELD(&seg->s_as->a_lock));
199 
200 	if (seg->s_size & PAGEOFFSET) {
201 		panic("Bad segkp size");
202 		/*NOTREACHED*/
203 	}
204 
205 	kpsd = kmem_zalloc(sizeof (struct segkp_segdata), KM_SLEEP);
206 
207 	/*
208 	 * Allocate the virtual memory for segkp and initialize it
209 	 */
210 	if (segkp_fromheap) {
211 		np = btop(kvseg.s_size);
212 		segkp_bitmap = kmem_zalloc(BT_SIZEOFMAP(np), KM_SLEEP);
213 		kpsd->kpsd_arena = vmem_create("segkp", NULL, 0, PAGESIZE,
214 		    vmem_alloc, vmem_free, heap_arena, 5 * PAGESIZE, VM_SLEEP);
215 	} else {
216 		segkp_bitmap = NULL;
217 		np = btop(seg->s_size);
218 		kpsd->kpsd_arena = vmem_create("segkp", seg->s_base,
219 		    seg->s_size, PAGESIZE, NULL, NULL, NULL, 5 * PAGESIZE,
220 		    VM_SLEEP);
221 	}
222 
223 	kpsd->kpsd_anon = anon_create(np, ANON_SLEEP | ANON_ALLOC_FORCE);
224 
225 	kpsd->kpsd_hash = kmem_zalloc(SEGKP_HASHSZ * sizeof (struct segkp *),
226 	    KM_SLEEP);
227 	seg->s_data = (void *)kpsd;
228 	seg->s_ops = &segkp_ops;
229 	segkpinit_mem_config(seg);
230 	return (0);
231 }
232 
233 
234 /*
235  * Find a free 'freelist' and initialize it with the appropriate attributes
236  */
237 void *
238 segkp_cache_init(struct seg *seg, int maxsize, size_t len, uint_t flags)
239 {
240 	int i;
241 
242 	if ((flags & KPD_NO_ANON) && !(flags & KPD_LOCKED))
243 		return ((void *)-1);
244 
245 	mutex_enter(&segkp_lock);
246 	for (i = 0; i < SEGKP_MAX_CACHE; i++) {
247 		if (segkp_cache[i].kpf_inuse)
248 			continue;
249 		segkp_cache[i].kpf_inuse = 1;
250 		segkp_cache[i].kpf_max = maxsize;
251 		segkp_cache[i].kpf_flags = flags;
252 		segkp_cache[i].kpf_seg = seg;
253 		segkp_cache[i].kpf_len = len;
254 		mutex_exit(&segkp_lock);
255 		return ((void *)(uintptr_t)i);
256 	}
257 	mutex_exit(&segkp_lock);
258 	return ((void *)-1);
259 }
260 
261 /*
262  * Free all the cache resources.
263  */
264 void
265 segkp_cache_free(void)
266 {
267 	struct segkp_data *kpd;
268 	struct seg *seg;
269 	int i;
270 
271 	mutex_enter(&segkp_lock);
272 	for (i = 0; i < SEGKP_MAX_CACHE; i++) {
273 		if (!segkp_cache[i].kpf_inuse)
274 			continue;
275 		/*
276 		 * Disconnect the freelist and process each element
277 		 */
278 		kpd = segkp_cache[i].kpf_list;
279 		seg = segkp_cache[i].kpf_seg;
280 		segkp_cache[i].kpf_list = NULL;
281 		segkp_cache[i].kpf_count = 0;
282 		mutex_exit(&segkp_lock);
283 
284 		while (kpd != NULL) {
285 			struct segkp_data *next;
286 
287 			next = kpd->kp_next;
288 			segkp_release_internal(seg, kpd, kpd->kp_len);
289 			kpd = next;
290 		}
291 		mutex_enter(&segkp_lock);
292 	}
293 	mutex_exit(&segkp_lock);
294 }
295 
296 /*
297  * There are 2 entries into segkp_get_internal. The first includes a cookie
298  * used to access a pool of cached segkp resources. The second does not
299  * use the cache.
300  */
301 caddr_t
302 segkp_get(struct seg *seg, size_t len, uint_t flags)
303 {
304 	struct segkp_data *kpd = NULL;
305 
306 	if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) {
307 		kpd->kp_cookie = -1;
308 		return (stom(kpd->kp_base, flags));
309 	}
310 	return (NULL);
311 }
312 
313 /*
314  * Return a 'cached' segkp address
315  */
316 caddr_t
317 segkp_cache_get(void *cookie)
318 {
319 	struct segkp_cache *freelist = NULL;
320 	struct segkp_data *kpd = NULL;
321 	int index = (int)(uintptr_t)cookie;
322 	struct seg *seg;
323 	size_t len;
324 	uint_t flags;
325 
326 	if (index < 0 || index >= SEGKP_MAX_CACHE)
327 		return (NULL);
328 	freelist = &segkp_cache[index];
329 
330 	mutex_enter(&segkp_lock);
331 	seg = freelist->kpf_seg;
332 	flags = freelist->kpf_flags;
333 	if (freelist->kpf_list != NULL) {
334 		kpd = freelist->kpf_list;
335 		freelist->kpf_list = kpd->kp_next;
336 		freelist->kpf_count--;
337 		mutex_exit(&segkp_lock);
338 		kpd->kp_next = NULL;
339 		segkp_insert(seg, kpd);
340 		return (stom(kpd->kp_base, flags));
341 	}
342 	len = freelist->kpf_len;
343 	mutex_exit(&segkp_lock);
344 	if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) {
345 		kpd->kp_cookie = index;
346 		return (stom(kpd->kp_base, flags));
347 	}
348 	return (NULL);
349 }
350 
351 caddr_t
352 segkp_get_withanonmap(
353 	struct seg *seg,
354 	size_t len,
355 	uint_t flags,
356 	struct anon_map *amp)
357 {
358 	struct segkp_data *kpd = NULL;
359 
360 	ASSERT(amp != NULL);
361 	flags |= KPD_HASAMP;
362 	if (segkp_get_internal(seg, len, flags, &kpd, amp) != NULL) {
363 		kpd->kp_cookie = -1;
364 		return (stom(kpd->kp_base, flags));
365 	}
366 	return (NULL);
367 }
368 
369 /*
370  * This does the real work of segkp allocation.
371  * Return to client base addr. len must be page-aligned. A null value is
372  * returned if there are no more vm resources (e.g. pages, swap). The len
373  * and base recorded in the private data structure include the redzone
374  * and the redzone length (if applicable). If the user requests a redzone
375  * either the first or last page is left unmapped depending whether stacks
376  * grow to low or high memory.
377  *
378  * The client may also specify a no-wait flag. If that is set then the
379  * request will choose a non-blocking path when requesting resources.
380  * The default is make the client wait.
381  */
382 static caddr_t
383 segkp_get_internal(
384 	struct seg *seg,
385 	size_t len,
386 	uint_t flags,
387 	struct segkp_data **tkpd,
388 	struct anon_map *amp)
389 {
390 	struct segkp_segdata	*kpsd = (struct segkp_segdata *)seg->s_data;
391 	struct segkp_data	*kpd;
392 	caddr_t vbase = NULL;	/* always first virtual, may not be mapped */
393 	pgcnt_t np = 0;		/* number of pages in the resource */
394 	pgcnt_t segkpindex;
395 	long i;
396 	caddr_t va;
397 	pgcnt_t pages = 0;
398 	ulong_t anon_idx = 0;
399 	int kmflag = (flags & KPD_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
400 	caddr_t s_base = (segkp_fromheap) ? kvseg.s_base : seg->s_base;
401 
402 	segkpindex = 0;
403 	if (len & PAGEOFFSET) {
404 		panic("segkp_get: len is not page-aligned");
405 		/*NOTREACHED*/
406 	}
407 
408 	ASSERT(((flags & KPD_HASAMP) == 0) == (amp == NULL));
409 
410 	/* Only allow KPD_NO_ANON if we are going to lock it down */
411 	if ((flags & (KPD_LOCKED|KPD_NO_ANON)) == KPD_NO_ANON)
412 		return (NULL);
413 
414 	if ((kpd = kmem_zalloc(sizeof (struct segkp_data), kmflag)) == NULL)
415 		return (NULL);
416 	/*
417 	 * Fix up the len to reflect the REDZONE if applicable
418 	 */
419 	if (flags & KPD_HASREDZONE)
420 		len += PAGESIZE;
421 	np = btop(len);
422 
423 	vbase = vmem_alloc(SEGKP_VMEM(seg), len, kmflag | VM_BESTFIT);
424 	if (vbase == NULL) {
425 		kmem_free(kpd, sizeof (struct segkp_data));
426 		return (NULL);
427 	}
428 
429 	/* If locking, reserve physical memory */
430 	if (flags & KPD_LOCKED) {
431 		pages = btop(SEGKP_MAPLEN(len, flags));
432 		if (page_resv(pages, kmflag) == 0) {
433 			vmem_free(SEGKP_VMEM(seg), vbase, len);
434 			kmem_free(kpd, sizeof (struct segkp_data));
435 			return (NULL);
436 		}
437 		if ((flags & KPD_NO_ANON) == 0)
438 			atomic_add_long(&anon_segkp_pages_locked, pages);
439 	}
440 
441 	/*
442 	 * Reserve sufficient swap space for this vm resource.  We'll
443 	 * actually allocate it in the loop below, but reserving it
444 	 * here allows us to back out more gracefully than if we
445 	 * had an allocation failure in the body of the loop.
446 	 *
447 	 * Note that we don't need swap space for the red zone page.
448 	 */
449 	if (amp != NULL) {
450 		/*
451 		 * The swap reservation has been done, if required, and the
452 		 * anon_hdr is separate.
453 		 */
454 		anon_idx = 0;
455 		kpd->kp_anon_idx = anon_idx;
456 		kpd->kp_anon = amp->ahp;
457 
458 		TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
459 		    kpd, vbase, len, flags, 1);
460 
461 	} else if ((flags & KPD_NO_ANON) == 0) {
462 		if (anon_resv_zone(SEGKP_MAPLEN(len, flags), NULL) == 0) {
463 			if (flags & KPD_LOCKED) {
464 				atomic_add_long(&anon_segkp_pages_locked,
465 				    -pages);
466 				page_unresv(pages);
467 			}
468 			vmem_free(SEGKP_VMEM(seg), vbase, len);
469 			kmem_free(kpd, sizeof (struct segkp_data));
470 			return (NULL);
471 		}
472 		atomic_add_long(&anon_segkp_pages_resv,
473 		    btop(SEGKP_MAPLEN(len, flags)));
474 		anon_idx = ((uintptr_t)(vbase - s_base)) >> PAGESHIFT;
475 		kpd->kp_anon_idx = anon_idx;
476 		kpd->kp_anon = kpsd->kpsd_anon;
477 
478 		TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
479 		    kpd, vbase, len, flags, 1);
480 	} else {
481 		kpd->kp_anon = NULL;
482 		kpd->kp_anon_idx = 0;
483 	}
484 
485 	/*
486 	 * Allocate page and anon resources for the virtual address range
487 	 * except the redzone
488 	 */
489 	if (segkp_fromheap)
490 		segkpindex = btop((uintptr_t)(vbase - kvseg.s_base));
491 	for (i = 0, va = vbase; i < np; i++, va += PAGESIZE) {
492 		page_t		*pl[2];
493 		struct vnode	*vp;
494 		anoff_t		off;
495 		int		err;
496 		page_t		*pp = NULL;
497 
498 		/*
499 		 * Mark this page to be a segkp page in the bitmap.
500 		 */
501 		if (segkp_fromheap) {
502 			BT_ATOMIC_SET(segkp_bitmap, segkpindex);
503 			segkpindex++;
504 		}
505 
506 		/*
507 		 * If this page is the red zone page, we don't need swap
508 		 * space for it.  Note that we skip over the code that
509 		 * establishes MMU mappings, so that the page remains
510 		 * invalid.
511 		 */
512 		if ((flags & KPD_HASREDZONE) && KPD_REDZONE(kpd) == i)
513 			continue;
514 
515 		if (kpd->kp_anon != NULL) {
516 			struct anon *ap;
517 
518 			ASSERT(anon_get_ptr(kpd->kp_anon, anon_idx + i)
519 			    == NULL);
520 			/*
521 			 * Determine the "vp" and "off" of the anon slot.
522 			 */
523 			ap = anon_alloc(NULL, 0);
524 			if (amp != NULL)
525 				ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
526 			(void) anon_set_ptr(kpd->kp_anon, anon_idx + i,
527 			    ap, ANON_SLEEP);
528 			if (amp != NULL)
529 				ANON_LOCK_EXIT(&amp->a_rwlock);
530 			swap_xlate(ap, &vp, &off);
531 
532 			/*
533 			 * Create a page with the specified identity.  The
534 			 * page is returned with the "shared" lock held.
535 			 */
536 			err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE,
537 			    NULL, pl, PAGESIZE, seg, va, S_CREATE,
538 			    kcred, NULL);
539 			if (err) {
540 				/*
541 				 * XXX - This should not fail.
542 				 */
543 				panic("segkp_get: no pages");
544 				/*NOTREACHED*/
545 			}
546 			pp = pl[0];
547 		} else {
548 			ASSERT(page_exists(&kvp,
549 			    (u_offset_t)(uintptr_t)va) == NULL);
550 
551 			if ((pp = page_create_va(&kvp,
552 			    (u_offset_t)(uintptr_t)va, PAGESIZE,
553 			    (flags & KPD_NOWAIT ? 0 : PG_WAIT) | PG_EXCL |
554 			    PG_NORELOC, seg, va)) == NULL) {
555 				/*
556 				 * Legitimize resource; then destroy it.
557 				 * Easier than trying to unwind here.
558 				 */
559 				kpd->kp_flags = flags;
560 				kpd->kp_base = vbase;
561 				kpd->kp_len = len;
562 				segkp_release_internal(seg, kpd, va - vbase);
563 				return (NULL);
564 			}
565 			page_io_unlock(pp);
566 		}
567 
568 		if (flags & KPD_ZERO)
569 			pagezero(pp, 0, PAGESIZE);
570 
571 		/*
572 		 * Load and lock an MMU translation for the page.
573 		 */
574 		hat_memload(seg->s_as->a_hat, va, pp, (PROT_READ|PROT_WRITE),
575 		    ((flags & KPD_LOCKED) ? HAT_LOAD_LOCK : HAT_LOAD));
576 
577 		/*
578 		 * Now, release lock on the page.
579 		 */
580 		if (flags & KPD_LOCKED) {
581 			/*
582 			 * Indicate to page_retire framework that this
583 			 * page can only be retired when it is freed.
584 			 */
585 			PP_SETRAF(pp);
586 			page_downgrade(pp);
587 		} else
588 			page_unlock(pp);
589 	}
590 
591 	kpd->kp_flags = flags;
592 	kpd->kp_base = vbase;
593 	kpd->kp_len = len;
594 	segkp_insert(seg, kpd);
595 	*tkpd = kpd;
596 	return (stom(kpd->kp_base, flags));
597 }
598 
599 /*
600  * Release the resource to cache if the pool(designate by the cookie)
601  * has less than the maximum allowable. If inserted in cache,
602  * segkp_delete insures element is taken off of active list.
603  */
604 void
605 segkp_release(struct seg *seg, caddr_t vaddr)
606 {
607 	struct segkp_cache *freelist;
608 	struct segkp_data *kpd = NULL;
609 
610 	if ((kpd = segkp_find(seg, vaddr)) == NULL) {
611 		panic("segkp_release: null kpd");
612 		/*NOTREACHED*/
613 	}
614 
615 	if (kpd->kp_cookie != -1) {
616 		freelist = &segkp_cache[kpd->kp_cookie];
617 		mutex_enter(&segkp_lock);
618 		if (!segkp_indel && freelist->kpf_count < freelist->kpf_max) {
619 			segkp_delete(seg, kpd);
620 			kpd->kp_next = freelist->kpf_list;
621 			freelist->kpf_list = kpd;
622 			freelist->kpf_count++;
623 			mutex_exit(&segkp_lock);
624 			return;
625 		} else {
626 			mutex_exit(&segkp_lock);
627 			kpd->kp_cookie = -1;
628 		}
629 	}
630 	segkp_release_internal(seg, kpd, kpd->kp_len);
631 }
632 
633 /*
634  * Free the entire resource. segkp_unlock gets called with the start of the
635  * mapped portion of the resource. The length is the size of the mapped
636  * portion
637  */
638 static void
639 segkp_release_internal(struct seg *seg, struct segkp_data *kpd, size_t len)
640 {
641 	caddr_t		va;
642 	long		i;
643 	long		redzone;
644 	size_t		np;
645 	page_t		*pp;
646 	struct vnode 	*vp;
647 	anoff_t		off;
648 	struct anon	*ap;
649 	pgcnt_t		segkpindex;
650 
651 	segkpindex = 0;
652 	ASSERT(kpd != NULL);
653 	ASSERT((kpd->kp_flags & KPD_HASAMP) == 0 || kpd->kp_cookie == -1);
654 	np = btop(len);
655 
656 	/* Remove from active hash list */
657 	if (kpd->kp_cookie == -1) {
658 		mutex_enter(&segkp_lock);
659 		segkp_delete(seg, kpd);
660 		mutex_exit(&segkp_lock);
661 	}
662 
663 	/*
664 	 * Precompute redzone page index.
665 	 */
666 	redzone = -1;
667 	if (kpd->kp_flags & KPD_HASREDZONE)
668 		redzone = KPD_REDZONE(kpd);
669 
670 
671 	va = kpd->kp_base;
672 
673 	hat_unload(seg->s_as->a_hat, va, (np << PAGESHIFT),
674 	    ((kpd->kp_flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD));
675 	/*
676 	 * Free up those anon resources that are quiescent.
677 	 */
678 	if (segkp_fromheap)
679 		segkpindex = btop((uintptr_t)(va - kvseg.s_base));
680 	for (i = 0; i < np; i++, va += PAGESIZE) {
681 
682 		/*
683 		 * Clear the bit for this page from the bitmap.
684 		 */
685 		if (segkp_fromheap) {
686 			BT_ATOMIC_CLEAR(segkp_bitmap, segkpindex);
687 			segkpindex++;
688 		}
689 
690 		if (i == redzone)
691 			continue;
692 		if (kpd->kp_anon) {
693 			/*
694 			 * Free up anon resources and destroy the
695 			 * associated pages.
696 			 *
697 			 * Release the lock if there is one. Have to get the
698 			 * page to do this, unfortunately.
699 			 */
700 			if (kpd->kp_flags & KPD_LOCKED) {
701 				ap = anon_get_ptr(kpd->kp_anon,
702 				    kpd->kp_anon_idx + i);
703 				swap_xlate(ap, &vp, &off);
704 				/* Find the shared-locked page. */
705 				pp = page_find(vp, (u_offset_t)off);
706 				if (pp == NULL) {
707 					panic("segkp_release: "
708 					    "kp_anon: no page to unlock ");
709 					/*NOTREACHED*/
710 				}
711 				if (PP_ISRAF(pp))
712 					PP_CLRRAF(pp);
713 
714 				page_unlock(pp);
715 			}
716 			if ((kpd->kp_flags & KPD_HASAMP) == 0) {
717 				anon_free(kpd->kp_anon, kpd->kp_anon_idx + i,
718 				    PAGESIZE);
719 				anon_unresv_zone(PAGESIZE, NULL);
720 				atomic_dec_ulong(&anon_segkp_pages_resv);
721 			}
722 			TRACE_5(TR_FAC_VM,
723 			    TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u",
724 			    kpd, va, PAGESIZE, 0, 0);
725 		} else {
726 			if (kpd->kp_flags & KPD_LOCKED) {
727 				pp = page_find(&kvp, (u_offset_t)(uintptr_t)va);
728 				if (pp == NULL) {
729 					panic("segkp_release: "
730 					    "no page to unlock");
731 					/*NOTREACHED*/
732 				}
733 				if (PP_ISRAF(pp))
734 					PP_CLRRAF(pp);
735 				/*
736 				 * We should just upgrade the lock here
737 				 * but there is no upgrade that waits.
738 				 */
739 				page_unlock(pp);
740 			}
741 			pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)va,
742 			    SE_EXCL);
743 			if (pp != NULL)
744 				page_destroy(pp, 0);
745 		}
746 	}
747 
748 	/* If locked, release physical memory reservation */
749 	if (kpd->kp_flags & KPD_LOCKED) {
750 		pgcnt_t pages = btop(SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags));
751 		if ((kpd->kp_flags & KPD_NO_ANON) == 0)
752 			atomic_add_long(&anon_segkp_pages_locked, -pages);
753 		page_unresv(pages);
754 	}
755 
756 	vmem_free(SEGKP_VMEM(seg), kpd->kp_base, kpd->kp_len);
757 	kmem_free(kpd, sizeof (struct segkp_data));
758 }
759 
760 /*
761  * segkp_map_red() will check the current frame pointer against the
762  * stack base.  If the amount of stack remaining is questionable
763  * (less than red_minavail), then segkp_map_red() will map in the redzone
764  * and return 1.  Otherwise, it will return 0.  segkp_map_red() can
765  * _only_ be called when:
766  *
767  *   - it is safe to sleep on page_create_va().
768  *   - the caller is non-swappable.
769  *
770  * It is up to the caller to remember whether segkp_map_red() successfully
771  * mapped the redzone, and, if so, to call segkp_unmap_red() at a later
772  * time.  Note that the caller must _remain_ non-swappable until after
773  * calling segkp_unmap_red().
774  *
775  * Currently, this routine is only called from pagefault() (which necessarily
776  * satisfies the above conditions).
777  */
778 #if defined(STACK_GROWTH_DOWN)
779 int
780 segkp_map_red(void)
781 {
782 	uintptr_t fp = STACK_BIAS + (uintptr_t)getfp();
783 #ifndef _LP64
784 	caddr_t stkbase;
785 #endif
786 
787 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
788 
789 	/*
790 	 * Optimize for the common case where we simply return.
791 	 */
792 	if ((curthread->t_red_pp == NULL) &&
793 	    (fp - (uintptr_t)curthread->t_stkbase >= red_minavail))
794 		return (0);
795 
796 #if defined(_LP64)
797 	/*
798 	 * XXX	We probably need something better than this.
799 	 */
800 	panic("kernel stack overflow");
801 	/*NOTREACHED*/
802 #else /* _LP64 */
803 	if (curthread->t_red_pp == NULL) {
804 		page_t *red_pp;
805 		struct seg kseg;
806 
807 		caddr_t red_va = (caddr_t)
808 		    (((uintptr_t)curthread->t_stkbase & (uintptr_t)PAGEMASK) -
809 		    PAGESIZE);
810 
811 		ASSERT(page_exists(&kvp, (u_offset_t)(uintptr_t)red_va) ==
812 		    NULL);
813 
814 		/*
815 		 * Allocate the physical for the red page.
816 		 */
817 		/*
818 		 * No PG_NORELOC here to avoid waits. Unlikely to get
819 		 * a relocate happening in the short time the page exists
820 		 * and it will be OK anyway.
821 		 */
822 
823 		kseg.s_as = &kas;
824 		red_pp = page_create_va(&kvp, (u_offset_t)(uintptr_t)red_va,
825 		    PAGESIZE, PG_WAIT | PG_EXCL, &kseg, red_va);
826 		ASSERT(red_pp != NULL);
827 
828 		/*
829 		 * So we now have a page to jam into the redzone...
830 		 */
831 		page_io_unlock(red_pp);
832 
833 		hat_memload(kas.a_hat, red_va, red_pp,
834 		    (PROT_READ|PROT_WRITE), HAT_LOAD_LOCK);
835 		page_downgrade(red_pp);
836 
837 		/*
838 		 * The page is left SE_SHARED locked so we can hold on to
839 		 * the page_t pointer.
840 		 */
841 		curthread->t_red_pp = red_pp;
842 
843 		atomic_inc_32(&red_nmapped);
844 		while (fp - (uintptr_t)curthread->t_stkbase < red_closest) {
845 			(void) atomic_cas_32(&red_closest, red_closest,
846 			    (uint32_t)(fp - (uintptr_t)curthread->t_stkbase));
847 		}
848 		return (1);
849 	}
850 
851 	stkbase = (caddr_t)(((uintptr_t)curthread->t_stkbase &
852 	    (uintptr_t)PAGEMASK) - PAGESIZE);
853 
854 	atomic_inc_32(&red_ndoubles);
855 
856 	if (fp - (uintptr_t)stkbase < RED_DEEP_THRESHOLD) {
857 		/*
858 		 * Oh boy.  We're already deep within the mapped-in
859 		 * redzone page, and the caller is trying to prepare
860 		 * for a deep stack run.  We're running without a
861 		 * redzone right now:  if the caller plows off the
862 		 * end of the stack, it'll plow another thread or
863 		 * LWP structure.  That situation could result in
864 		 * a very hard-to-debug panic, so, in the spirit of
865 		 * recording the name of one's killer in one's own
866 		 * blood, we're going to record hrestime and the calling
867 		 * thread.
868 		 */
869 		red_deep_hires = hrestime.tv_nsec;
870 		red_deep_thread = curthread;
871 	}
872 
873 	/*
874 	 * If this is a DEBUG kernel, and we've run too deep for comfort, toss.
875 	 */
876 	ASSERT(fp - (uintptr_t)stkbase >= RED_DEEP_THRESHOLD);
877 	return (0);
878 #endif /* _LP64 */
879 }
880 
881 void
882 segkp_unmap_red(void)
883 {
884 	page_t *pp;
885 	caddr_t red_va = (caddr_t)(((uintptr_t)curthread->t_stkbase &
886 	    (uintptr_t)PAGEMASK) - PAGESIZE);
887 
888 	ASSERT(curthread->t_red_pp != NULL);
889 	ASSERT(curthread->t_schedflag & TS_DONT_SWAP);
890 
891 	/*
892 	 * Because we locked the mapping down, we can't simply rely
893 	 * on page_destroy() to clean everything up;  we need to call
894 	 * hat_unload() to explicitly unlock the mapping resources.
895 	 */
896 	hat_unload(kas.a_hat, red_va, PAGESIZE, HAT_UNLOAD_UNLOCK);
897 
898 	pp = curthread->t_red_pp;
899 
900 	ASSERT(pp == page_find(&kvp, (u_offset_t)(uintptr_t)red_va));
901 
902 	/*
903 	 * Need to upgrade the SE_SHARED lock to SE_EXCL.
904 	 */
905 	if (!page_tryupgrade(pp)) {
906 		/*
907 		 * As there is now wait for upgrade, release the
908 		 * SE_SHARED lock and wait for SE_EXCL.
909 		 */
910 		page_unlock(pp);
911 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)red_va, SE_EXCL);
912 		/* pp may be NULL here, hence the test below */
913 	}
914 
915 	/*
916 	 * Destroy the page, with dontfree set to zero (i.e. free it).
917 	 */
918 	if (pp != NULL)
919 		page_destroy(pp, 0);
920 	curthread->t_red_pp = NULL;
921 }
922 #else
923 #error Red stacks only supported with downwards stack growth.
924 #endif
925 
926 /*
927  * Handle a fault on an address corresponding to one of the
928  * resources in the segkp segment.
929  */
930 faultcode_t
931 segkp_fault(
932 	struct hat	*hat,
933 	struct seg	*seg,
934 	caddr_t		vaddr,
935 	size_t		len,
936 	enum fault_type	type,
937 	enum seg_rw rw)
938 {
939 	struct segkp_data	*kpd = NULL;
940 	int			err;
941 
942 	ASSERT(seg->s_as == &kas && RW_READ_HELD(&seg->s_as->a_lock));
943 
944 	/*
945 	 * Sanity checks.
946 	 */
947 	if (type == F_PROT) {
948 		panic("segkp_fault: unexpected F_PROT fault");
949 		/*NOTREACHED*/
950 	}
951 
952 	if ((kpd = segkp_find(seg, vaddr)) == NULL)
953 		return (FC_NOMAP);
954 
955 	mutex_enter(&kpd->kp_lock);
956 
957 	if (type == F_SOFTLOCK) {
958 		ASSERT(!(kpd->kp_flags & KPD_LOCKED));
959 		/*
960 		 * The F_SOFTLOCK case has more stringent
961 		 * range requirements: the given range must exactly coincide
962 		 * with the resource's mapped portion. Note reference to
963 		 * redzone is handled since vaddr would not equal base
964 		 */
965 		if (vaddr != stom(kpd->kp_base, kpd->kp_flags) ||
966 		    len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) {
967 			mutex_exit(&kpd->kp_lock);
968 			return (FC_MAKE_ERR(EFAULT));
969 		}
970 
971 		if ((err = segkp_load(hat, seg, vaddr, len, kpd, KPD_LOCKED))) {
972 			mutex_exit(&kpd->kp_lock);
973 			return (FC_MAKE_ERR(err));
974 		}
975 		kpd->kp_flags |= KPD_LOCKED;
976 		mutex_exit(&kpd->kp_lock);
977 		return (0);
978 	}
979 
980 	if (type == F_INVAL) {
981 		ASSERT(!(kpd->kp_flags & KPD_NO_ANON));
982 
983 		/*
984 		 * Check if we touched the redzone. Somewhat optimistic
985 		 * here if we are touching the redzone of our own stack
986 		 * since we wouldn't have a stack to get this far...
987 		 */
988 		if ((kpd->kp_flags & KPD_HASREDZONE) &&
989 		    btop((uintptr_t)(vaddr - kpd->kp_base)) == KPD_REDZONE(kpd))
990 			panic("segkp_fault: accessing redzone");
991 
992 		/*
993 		 * This fault may occur while the page is being F_SOFTLOCK'ed.
994 		 * Return since a 2nd segkp_load is unnecessary and also would
995 		 * result in the page being locked twice and eventually
996 		 * hang the thread_reaper thread.
997 		 */
998 		if (kpd->kp_flags & KPD_LOCKED) {
999 			mutex_exit(&kpd->kp_lock);
1000 			return (0);
1001 		}
1002 
1003 		err = segkp_load(hat, seg, vaddr, len, kpd, kpd->kp_flags);
1004 		mutex_exit(&kpd->kp_lock);
1005 		return (err ? FC_MAKE_ERR(err) : 0);
1006 	}
1007 
1008 	if (type == F_SOFTUNLOCK) {
1009 		uint_t	flags;
1010 
1011 		/*
1012 		 * Make sure the addr is LOCKED and it has anon backing
1013 		 * before unlocking
1014 		 */
1015 		if ((kpd->kp_flags & (KPD_LOCKED|KPD_NO_ANON)) != KPD_LOCKED) {
1016 			panic("segkp_fault: bad unlock");
1017 			/*NOTREACHED*/
1018 		}
1019 
1020 		if (vaddr != stom(kpd->kp_base, kpd->kp_flags) ||
1021 		    len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) {
1022 			panic("segkp_fault: bad range");
1023 			/*NOTREACHED*/
1024 		}
1025 
1026 		if (rw == S_WRITE)
1027 			flags = kpd->kp_flags | KPD_WRITEDIRTY;
1028 		else
1029 			flags = kpd->kp_flags;
1030 		err = segkp_unlock(hat, seg, vaddr, len, kpd, flags);
1031 		kpd->kp_flags &= ~KPD_LOCKED;
1032 		mutex_exit(&kpd->kp_lock);
1033 		return (err ? FC_MAKE_ERR(err) : 0);
1034 	}
1035 	mutex_exit(&kpd->kp_lock);
1036 	panic("segkp_fault: bogus fault type: %d\n", type);
1037 	/*NOTREACHED*/
1038 }
1039 
1040 /*
1041  * Check that the given protections suffice over the range specified by
1042  * vaddr and len.  For this segment type, the only issue is whether or
1043  * not the range lies completely within the mapped part of an allocated
1044  * resource.
1045  */
1046 /* ARGSUSED */
1047 static int
1048 segkp_checkprot(struct seg *seg, caddr_t vaddr, size_t len, uint_t prot)
1049 {
1050 	struct segkp_data *kpd = NULL;
1051 	caddr_t mbase;
1052 	size_t mlen;
1053 
1054 	if ((kpd = segkp_find(seg, vaddr)) == NULL)
1055 		return (EACCES);
1056 
1057 	mutex_enter(&kpd->kp_lock);
1058 	mbase = stom(kpd->kp_base, kpd->kp_flags);
1059 	mlen = SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags);
1060 	if (len > mlen || vaddr < mbase ||
1061 	    ((vaddr + len) > (mbase + mlen))) {
1062 		mutex_exit(&kpd->kp_lock);
1063 		return (EACCES);
1064 	}
1065 	mutex_exit(&kpd->kp_lock);
1066 	return (0);
1067 }
1068 
1069 
1070 /*
1071  * Check to see if it makes sense to do kluster/read ahead to
1072  * addr + delta relative to the mapping at addr.  We assume here
1073  * that delta is a signed PAGESIZE'd multiple (which can be negative).
1074  *
1075  * For seg_u we always "approve" of this action from our standpoint.
1076  */
1077 /*ARGSUSED*/
1078 static int
1079 segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
1080 {
1081 	return (0);
1082 }
1083 
1084 /*
1085  * Load and possibly lock intra-slot resources in the range given by
1086  * vaddr and len.
1087  */
1088 static int
1089 segkp_load(
1090 	struct hat *hat,
1091 	struct seg *seg,
1092 	caddr_t vaddr,
1093 	size_t len,
1094 	struct segkp_data *kpd,
1095 	uint_t flags)
1096 {
1097 	caddr_t va;
1098 	caddr_t vlim;
1099 	ulong_t i;
1100 	uint_t lock;
1101 
1102 	ASSERT(MUTEX_HELD(&kpd->kp_lock));
1103 
1104 	len = P2ROUNDUP(len, PAGESIZE);
1105 
1106 	/* If locking, reserve physical memory */
1107 	if (flags & KPD_LOCKED) {
1108 		pgcnt_t pages = btop(len);
1109 		if ((kpd->kp_flags & KPD_NO_ANON) == 0)
1110 			atomic_add_long(&anon_segkp_pages_locked, pages);
1111 		(void) page_resv(pages, KM_SLEEP);
1112 	}
1113 
1114 	/*
1115 	 * Loop through the pages in the given range.
1116 	 */
1117 	va = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK);
1118 	vaddr = va;
1119 	vlim = va + len;
1120 	lock = flags & KPD_LOCKED;
1121 	i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT;
1122 	for (; va < vlim; va += PAGESIZE, i++) {
1123 		page_t		*pl[2];	/* second element NULL terminator */
1124 		struct vnode    *vp;
1125 		anoff_t		off;
1126 		int		err;
1127 		struct anon	*ap;
1128 
1129 		/*
1130 		 * Summon the page.  If it's not resident, arrange
1131 		 * for synchronous i/o to pull it in.
1132 		 */
1133 		ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i);
1134 		swap_xlate(ap, &vp, &off);
1135 
1136 		/*
1137 		 * The returned page list will have exactly one entry,
1138 		 * which is returned to us already kept.
1139 		 */
1140 		err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE, NULL,
1141 		    pl, PAGESIZE, seg, va, S_READ, kcred, NULL);
1142 
1143 		if (err) {
1144 			/*
1145 			 * Back out of what we've done so far.
1146 			 */
1147 			(void) segkp_unlock(hat, seg, vaddr,
1148 			    (va - vaddr), kpd, flags);
1149 			return (err);
1150 		}
1151 
1152 		/*
1153 		 * Load an MMU translation for the page.
1154 		 */
1155 		hat_memload(hat, va, pl[0], (PROT_READ|PROT_WRITE),
1156 		    lock ? HAT_LOAD_LOCK : HAT_LOAD);
1157 
1158 		if (!lock) {
1159 			/*
1160 			 * Now, release "shared" lock on the page.
1161 			 */
1162 			page_unlock(pl[0]);
1163 		}
1164 	}
1165 	return (0);
1166 }
1167 
1168 /*
1169  * At the very least unload the mmu-translations and unlock the range if locked
1170  * Can be called with the following flag value KPD_WRITEDIRTY which specifies
1171  * any dirty pages should be written to disk.
1172  */
1173 static int
1174 segkp_unlock(
1175 	struct hat *hat,
1176 	struct seg *seg,
1177 	caddr_t vaddr,
1178 	size_t len,
1179 	struct segkp_data *kpd,
1180 	uint_t flags)
1181 {
1182 	caddr_t va;
1183 	caddr_t vlim;
1184 	ulong_t i;
1185 	struct page *pp;
1186 	struct vnode *vp;
1187 	anoff_t off;
1188 	struct anon *ap;
1189 
1190 #ifdef lint
1191 	seg = seg;
1192 #endif /* lint */
1193 
1194 	ASSERT(MUTEX_HELD(&kpd->kp_lock));
1195 
1196 	/*
1197 	 * Loop through the pages in the given range. It is assumed
1198 	 * segkp_unlock is called with page aligned base
1199 	 */
1200 	va = vaddr;
1201 	vlim = va + len;
1202 	i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT;
1203 	hat_unload(hat, va, len,
1204 	    ((flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD));
1205 	for (; va < vlim; va += PAGESIZE, i++) {
1206 		/*
1207 		 * Find the page associated with this part of the
1208 		 * slot, tracking it down through its associated swap
1209 		 * space.
1210 		 */
1211 		ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i);
1212 		swap_xlate(ap, &vp, &off);
1213 
1214 		if (flags & KPD_LOCKED) {
1215 			if ((pp = page_find(vp, off)) == NULL) {
1216 				if (flags & KPD_LOCKED) {
1217 					panic("segkp_softunlock: missing page");
1218 					/*NOTREACHED*/
1219 				}
1220 			}
1221 		} else {
1222 			/*
1223 			 * Nothing to do if the slot is not locked and the
1224 			 * page doesn't exist.
1225 			 */
1226 			if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL)
1227 				continue;
1228 		}
1229 
1230 		/*
1231 		 * If the page doesn't have any translations, is
1232 		 * dirty and not being shared, then push it out
1233 		 * asynchronously and avoid waiting for the
1234 		 * pageout daemon to do it for us.
1235 		 *
1236 		 * XXX - Do we really need to get the "exclusive"
1237 		 * lock via an upgrade?
1238 		 */
1239 		if ((flags & KPD_WRITEDIRTY) && !hat_page_is_mapped(pp) &&
1240 		    hat_ismod(pp) && page_tryupgrade(pp)) {
1241 			/*
1242 			 * Hold the vnode before releasing the page lock to
1243 			 * prevent it from being freed and re-used by some
1244 			 * other thread.
1245 			 */
1246 			VN_HOLD(vp);
1247 			page_unlock(pp);
1248 
1249 			/*
1250 			 * Want most powerful credentials we can get so
1251 			 * use kcred.
1252 			 */
1253 			(void) VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE,
1254 			    B_ASYNC | B_FREE, kcred, NULL);
1255 			VN_RELE(vp);
1256 		} else {
1257 			page_unlock(pp);
1258 		}
1259 	}
1260 
1261 	/* If unlocking, release physical memory */
1262 	if (flags & KPD_LOCKED) {
1263 		pgcnt_t pages = btopr(len);
1264 		if ((kpd->kp_flags & KPD_NO_ANON) == 0)
1265 			atomic_add_long(&anon_segkp_pages_locked, -pages);
1266 		page_unresv(pages);
1267 	}
1268 	return (0);
1269 }
1270 
1271 /*
1272  * Insert the kpd in the hash table.
1273  */
1274 static void
1275 segkp_insert(struct seg *seg, struct segkp_data *kpd)
1276 {
1277 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1278 	int index;
1279 
1280 	/*
1281 	 * Insert the kpd based on the address that will be returned
1282 	 * via segkp_release.
1283 	 */
1284 	index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags));
1285 	mutex_enter(&segkp_lock);
1286 	kpd->kp_next = kpsd->kpsd_hash[index];
1287 	kpsd->kpsd_hash[index] = kpd;
1288 	mutex_exit(&segkp_lock);
1289 }
1290 
1291 /*
1292  * Remove kpd from the hash table.
1293  */
1294 static void
1295 segkp_delete(struct seg *seg, struct segkp_data *kpd)
1296 {
1297 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1298 	struct segkp_data **kpp;
1299 	int index;
1300 
1301 	ASSERT(MUTEX_HELD(&segkp_lock));
1302 
1303 	index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags));
1304 	for (kpp = &kpsd->kpsd_hash[index];
1305 	    *kpp != NULL; kpp = &((*kpp)->kp_next)) {
1306 		if (*kpp == kpd) {
1307 			*kpp = kpd->kp_next;
1308 			return;
1309 		}
1310 	}
1311 	panic("segkp_delete: unable to find element to delete");
1312 	/*NOTREACHED*/
1313 }
1314 
1315 /*
1316  * Find the kpd associated with a vaddr.
1317  *
1318  * Most of the callers of segkp_find will pass the vaddr that
1319  * hashes to the desired index, but there are cases where
1320  * this is not true in which case we have to (potentially) scan
1321  * the whole table looking for it. This should be very rare
1322  * (e.g. a segkp_fault(F_INVAL) on an address somewhere in the
1323  * middle of the segkp_data region).
1324  */
1325 static struct segkp_data *
1326 segkp_find(struct seg *seg, caddr_t vaddr)
1327 {
1328 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1329 	struct segkp_data *kpd;
1330 	int	i;
1331 	int	stop;
1332 
1333 	i = stop = SEGKP_HASH(vaddr);
1334 	mutex_enter(&segkp_lock);
1335 	do {
1336 		for (kpd = kpsd->kpsd_hash[i]; kpd != NULL;
1337 		    kpd = kpd->kp_next) {
1338 			if (vaddr >= kpd->kp_base &&
1339 			    vaddr < kpd->kp_base + kpd->kp_len) {
1340 				mutex_exit(&segkp_lock);
1341 				return (kpd);
1342 			}
1343 		}
1344 		if (--i < 0)
1345 			i = SEGKP_HASHSZ - 1;	/* Wrap */
1346 	} while (i != stop);
1347 	mutex_exit(&segkp_lock);
1348 	return (NULL);		/* Not found */
1349 }
1350 
1351 /*
1352  * returns size of swappable area.
1353  */
1354 size_t
1355 swapsize(caddr_t v)
1356 {
1357 	struct segkp_data *kpd;
1358 
1359 	if ((kpd = segkp_find(segkp, v)) != NULL)
1360 		return (SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags));
1361 	else
1362 		return (0);
1363 }
1364 
1365 /*
1366  * Dump out all the active segkp pages
1367  */
1368 static void
1369 segkp_dump(struct seg *seg)
1370 {
1371 	int i;
1372 	struct segkp_data *kpd;
1373 	struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data;
1374 
1375 	for (i = 0; i < SEGKP_HASHSZ; i++) {
1376 		for (kpd = kpsd->kpsd_hash[i];
1377 		    kpd != NULL; kpd = kpd->kp_next) {
1378 			pfn_t pfn;
1379 			caddr_t addr;
1380 			caddr_t eaddr;
1381 
1382 			addr = kpd->kp_base;
1383 			eaddr = addr + kpd->kp_len;
1384 			while (addr < eaddr) {
1385 				ASSERT(seg->s_as == &kas);
1386 				pfn = hat_getpfnum(seg->s_as->a_hat, addr);
1387 				if (pfn != PFN_INVALID)
1388 					dump_addpage(seg->s_as, addr, pfn);
1389 				addr += PAGESIZE;
1390 				dump_timeleft = dump_timeout;
1391 			}
1392 		}
1393 	}
1394 }
1395 
1396 /*ARGSUSED*/
1397 static int
1398 segkp_pagelock(struct seg *seg, caddr_t addr, size_t len,
1399     struct page ***ppp, enum lock_type type, enum seg_rw rw)
1400 {
1401 	return (ENOTSUP);
1402 }
1403 
1404 /*ARGSUSED*/
1405 static int
1406 segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
1407 {
1408 	return (ENODEV);
1409 }
1410 
1411 /*ARGSUSED*/
1412 static lgrp_mem_policy_info_t	*
1413 segkp_getpolicy(struct seg *seg, caddr_t addr)
1414 {
1415 	return (NULL);
1416 }
1417 
1418 /*ARGSUSED*/
1419 static int
1420 segkp_capable(struct seg *seg, segcapability_t capability)
1421 {
1422 	return (0);
1423 }
1424 
1425 #include <sys/mem_config.h>
1426 
1427 /*ARGSUSED*/
1428 static void
1429 segkp_mem_config_post_add(void *arg, pgcnt_t delta_pages)
1430 {}
1431 
1432 /*
1433  * During memory delete, turn off caches so that pages are not held.
1434  * A better solution may be to unlock the pages while they are
1435  * in the cache so that they may be collected naturally.
1436  */
1437 
1438 /*ARGSUSED*/
1439 static int
1440 segkp_mem_config_pre_del(void *arg, pgcnt_t delta_pages)
1441 {
1442 	atomic_inc_32(&segkp_indel);
1443 	segkp_cache_free();
1444 	return (0);
1445 }
1446 
1447 /*ARGSUSED*/
1448 static void
1449 segkp_mem_config_post_del(void *arg, pgcnt_t delta_pages, int cancelled)
1450 {
1451 	atomic_dec_32(&segkp_indel);
1452 }
1453 
1454 static kphysm_setup_vector_t segkp_mem_config_vec = {
1455 	KPHYSM_SETUP_VECTOR_VERSION,
1456 	segkp_mem_config_post_add,
1457 	segkp_mem_config_pre_del,
1458 	segkp_mem_config_post_del,
1459 };
1460 
1461 static void
1462 segkpinit_mem_config(struct seg *seg)
1463 {
1464 	int ret;
1465 
1466 	ret = kphysm_setup_func_register(&segkp_mem_config_vec, (void *)seg);
1467 	ASSERT(ret == 0);
1468 }
1469