1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 28 /* 29 * Portions of this source code were derived from Berkeley 4.3 BSD 30 * under license from the Regents of the University of California. 31 */ 32 33 /* 34 * segkp is a segment driver that administers the allocation and deallocation 35 * of pageable variable size chunks of kernel virtual address space. Each 36 * allocated resource is page-aligned. 37 * 38 * The user may specify whether the resource should be initialized to 0, 39 * include a redzone, or locked in memory. 40 */ 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/thread.h> 45 #include <sys/param.h> 46 #include <sys/errno.h> 47 #include <sys/sysmacros.h> 48 #include <sys/systm.h> 49 #include <sys/buf.h> 50 #include <sys/mman.h> 51 #include <sys/vnode.h> 52 #include <sys/cmn_err.h> 53 #include <sys/swap.h> 54 #include <sys/tuneable.h> 55 #include <sys/kmem.h> 56 #include <sys/vmem.h> 57 #include <sys/cred.h> 58 #include <sys/dumphdr.h> 59 #include <sys/debug.h> 60 #include <sys/vtrace.h> 61 #include <sys/stack.h> 62 #include <sys/atomic.h> 63 #include <sys/archsystm.h> 64 #include <sys/lgrp.h> 65 66 #include <vm/as.h> 67 #include <vm/seg.h> 68 #include <vm/seg_kp.h> 69 #include <vm/seg_kmem.h> 70 #include <vm/anon.h> 71 #include <vm/page.h> 72 #include <vm/hat.h> 73 #include <sys/bitmap.h> 74 75 /* 76 * Private seg op routines 77 */ 78 static void segkp_badop(void); 79 static void segkp_dump(struct seg *seg); 80 static int segkp_checkprot(struct seg *seg, caddr_t addr, size_t len, 81 uint_t prot); 82 static int segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta); 83 static int segkp_pagelock(struct seg *seg, caddr_t addr, size_t len, 84 struct page ***page, enum lock_type type, 85 enum seg_rw rw); 86 static void segkp_insert(struct seg *seg, struct segkp_data *kpd); 87 static void segkp_delete(struct seg *seg, struct segkp_data *kpd); 88 static caddr_t segkp_get_internal(struct seg *seg, size_t len, uint_t flags, 89 struct segkp_data **tkpd, struct anon_map *amp); 90 static void segkp_release_internal(struct seg *seg, 91 struct segkp_data *kpd, size_t len); 92 static int segkp_unlock(struct hat *hat, struct seg *seg, caddr_t vaddr, 93 size_t len, struct segkp_data *kpd, uint_t flags); 94 static int segkp_load(struct hat *hat, struct seg *seg, caddr_t vaddr, 95 size_t len, struct segkp_data *kpd, uint_t flags); 96 static struct segkp_data *segkp_find(struct seg *seg, caddr_t vaddr); 97 static int segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp); 98 static lgrp_mem_policy_info_t *segkp_getpolicy(struct seg *seg, 99 caddr_t addr); 100 static int segkp_capable(struct seg *seg, segcapability_t capability); 101 102 /* 103 * Lock used to protect the hash table(s) and caches. 104 */ 105 static kmutex_t segkp_lock; 106 107 /* 108 * The segkp caches 109 */ 110 static struct segkp_cache segkp_cache[SEGKP_MAX_CACHE]; 111 112 #define SEGKP_BADOP(t) (t(*)())segkp_badop 113 114 /* 115 * When there are fewer than red_minavail bytes left on the stack, 116 * segkp_map_red() will map in the redzone (if called). 5000 seems 117 * to work reasonably well... 118 */ 119 long red_minavail = 5000; 120 121 /* 122 * will be set to 1 for 32 bit x86 systems only, in startup.c 123 */ 124 int segkp_fromheap = 0; 125 ulong_t *segkp_bitmap; 126 127 /* 128 * If segkp_map_red() is called with the redzone already mapped and 129 * with less than RED_DEEP_THRESHOLD bytes available on the stack, 130 * then the stack situation has become quite serious; if much more stack 131 * is consumed, we have the potential of scrogging the next thread/LWP 132 * structure. To help debug the "can't happen" panics which may 133 * result from this condition, we record hrestime and the calling thread 134 * in red_deep_hires and red_deep_thread respectively. 135 */ 136 #define RED_DEEP_THRESHOLD 2000 137 138 hrtime_t red_deep_hires; 139 kthread_t *red_deep_thread; 140 141 uint32_t red_nmapped; 142 uint32_t red_closest = UINT_MAX; 143 uint32_t red_ndoubles; 144 145 pgcnt_t anon_segkp_pages_locked; /* See vm/anon.h */ 146 pgcnt_t anon_segkp_pages_resv; /* anon reserved by seg_kp */ 147 148 static struct seg_ops segkp_ops = { 149 SEGKP_BADOP(int), /* dup */ 150 SEGKP_BADOP(int), /* unmap */ 151 SEGKP_BADOP(void), /* free */ 152 segkp_fault, 153 SEGKP_BADOP(faultcode_t), /* faulta */ 154 SEGKP_BADOP(int), /* setprot */ 155 segkp_checkprot, 156 segkp_kluster, 157 SEGKP_BADOP(size_t), /* swapout */ 158 SEGKP_BADOP(int), /* sync */ 159 SEGKP_BADOP(size_t), /* incore */ 160 SEGKP_BADOP(int), /* lockop */ 161 SEGKP_BADOP(int), /* getprot */ 162 SEGKP_BADOP(u_offset_t), /* getoffset */ 163 SEGKP_BADOP(int), /* gettype */ 164 SEGKP_BADOP(int), /* getvp */ 165 SEGKP_BADOP(int), /* advise */ 166 segkp_dump, /* dump */ 167 segkp_pagelock, /* pagelock */ 168 SEGKP_BADOP(int), /* setpgsz */ 169 segkp_getmemid, /* getmemid */ 170 segkp_getpolicy, /* getpolicy */ 171 segkp_capable, /* capable */ 172 seg_inherit_notsup /* inherit */ 173 }; 174 175 176 static void 177 segkp_badop(void) 178 { 179 panic("segkp_badop"); 180 /*NOTREACHED*/ 181 } 182 183 static void segkpinit_mem_config(struct seg *); 184 185 static uint32_t segkp_indel; 186 187 /* 188 * Allocate the segment specific private data struct and fill it in 189 * with the per kp segment mutex, anon ptr. array and hash table. 190 */ 191 int 192 segkp_create(struct seg *seg) 193 { 194 struct segkp_segdata *kpsd; 195 size_t np; 196 197 ASSERT(seg != NULL && seg->s_as == &kas); 198 ASSERT(RW_WRITE_HELD(&seg->s_as->a_lock)); 199 200 if (seg->s_size & PAGEOFFSET) { 201 panic("Bad segkp size"); 202 /*NOTREACHED*/ 203 } 204 205 kpsd = kmem_zalloc(sizeof (struct segkp_segdata), KM_SLEEP); 206 207 /* 208 * Allocate the virtual memory for segkp and initialize it 209 */ 210 if (segkp_fromheap) { 211 np = btop(kvseg.s_size); 212 segkp_bitmap = kmem_zalloc(BT_SIZEOFMAP(np), KM_SLEEP); 213 kpsd->kpsd_arena = vmem_create("segkp", NULL, 0, PAGESIZE, 214 vmem_alloc, vmem_free, heap_arena, 5 * PAGESIZE, VM_SLEEP); 215 } else { 216 segkp_bitmap = NULL; 217 np = btop(seg->s_size); 218 kpsd->kpsd_arena = vmem_create("segkp", seg->s_base, 219 seg->s_size, PAGESIZE, NULL, NULL, NULL, 5 * PAGESIZE, 220 VM_SLEEP); 221 } 222 223 kpsd->kpsd_anon = anon_create(np, ANON_SLEEP | ANON_ALLOC_FORCE); 224 225 kpsd->kpsd_hash = kmem_zalloc(SEGKP_HASHSZ * sizeof (struct segkp *), 226 KM_SLEEP); 227 seg->s_data = (void *)kpsd; 228 seg->s_ops = &segkp_ops; 229 segkpinit_mem_config(seg); 230 return (0); 231 } 232 233 234 /* 235 * Find a free 'freelist' and initialize it with the appropriate attributes 236 */ 237 void * 238 segkp_cache_init(struct seg *seg, int maxsize, size_t len, uint_t flags) 239 { 240 int i; 241 242 if ((flags & KPD_NO_ANON) && !(flags & KPD_LOCKED)) 243 return ((void *)-1); 244 245 mutex_enter(&segkp_lock); 246 for (i = 0; i < SEGKP_MAX_CACHE; i++) { 247 if (segkp_cache[i].kpf_inuse) 248 continue; 249 segkp_cache[i].kpf_inuse = 1; 250 segkp_cache[i].kpf_max = maxsize; 251 segkp_cache[i].kpf_flags = flags; 252 segkp_cache[i].kpf_seg = seg; 253 segkp_cache[i].kpf_len = len; 254 mutex_exit(&segkp_lock); 255 return ((void *)(uintptr_t)i); 256 } 257 mutex_exit(&segkp_lock); 258 return ((void *)-1); 259 } 260 261 /* 262 * Free all the cache resources. 263 */ 264 void 265 segkp_cache_free(void) 266 { 267 struct segkp_data *kpd; 268 struct seg *seg; 269 int i; 270 271 mutex_enter(&segkp_lock); 272 for (i = 0; i < SEGKP_MAX_CACHE; i++) { 273 if (!segkp_cache[i].kpf_inuse) 274 continue; 275 /* 276 * Disconnect the freelist and process each element 277 */ 278 kpd = segkp_cache[i].kpf_list; 279 seg = segkp_cache[i].kpf_seg; 280 segkp_cache[i].kpf_list = NULL; 281 segkp_cache[i].kpf_count = 0; 282 mutex_exit(&segkp_lock); 283 284 while (kpd != NULL) { 285 struct segkp_data *next; 286 287 next = kpd->kp_next; 288 segkp_release_internal(seg, kpd, kpd->kp_len); 289 kpd = next; 290 } 291 mutex_enter(&segkp_lock); 292 } 293 mutex_exit(&segkp_lock); 294 } 295 296 /* 297 * There are 2 entries into segkp_get_internal. The first includes a cookie 298 * used to access a pool of cached segkp resources. The second does not 299 * use the cache. 300 */ 301 caddr_t 302 segkp_get(struct seg *seg, size_t len, uint_t flags) 303 { 304 struct segkp_data *kpd = NULL; 305 306 if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) { 307 kpd->kp_cookie = -1; 308 return (stom(kpd->kp_base, flags)); 309 } 310 return (NULL); 311 } 312 313 /* 314 * Return a 'cached' segkp address 315 */ 316 caddr_t 317 segkp_cache_get(void *cookie) 318 { 319 struct segkp_cache *freelist = NULL; 320 struct segkp_data *kpd = NULL; 321 int index = (int)(uintptr_t)cookie; 322 struct seg *seg; 323 size_t len; 324 uint_t flags; 325 326 if (index < 0 || index >= SEGKP_MAX_CACHE) 327 return (NULL); 328 freelist = &segkp_cache[index]; 329 330 mutex_enter(&segkp_lock); 331 seg = freelist->kpf_seg; 332 flags = freelist->kpf_flags; 333 if (freelist->kpf_list != NULL) { 334 kpd = freelist->kpf_list; 335 freelist->kpf_list = kpd->kp_next; 336 freelist->kpf_count--; 337 mutex_exit(&segkp_lock); 338 kpd->kp_next = NULL; 339 segkp_insert(seg, kpd); 340 return (stom(kpd->kp_base, flags)); 341 } 342 len = freelist->kpf_len; 343 mutex_exit(&segkp_lock); 344 if (segkp_get_internal(seg, len, flags, &kpd, NULL) != NULL) { 345 kpd->kp_cookie = index; 346 return (stom(kpd->kp_base, flags)); 347 } 348 return (NULL); 349 } 350 351 caddr_t 352 segkp_get_withanonmap( 353 struct seg *seg, 354 size_t len, 355 uint_t flags, 356 struct anon_map *amp) 357 { 358 struct segkp_data *kpd = NULL; 359 360 ASSERT(amp != NULL); 361 flags |= KPD_HASAMP; 362 if (segkp_get_internal(seg, len, flags, &kpd, amp) != NULL) { 363 kpd->kp_cookie = -1; 364 return (stom(kpd->kp_base, flags)); 365 } 366 return (NULL); 367 } 368 369 /* 370 * This does the real work of segkp allocation. 371 * Return to client base addr. len must be page-aligned. A null value is 372 * returned if there are no more vm resources (e.g. pages, swap). The len 373 * and base recorded in the private data structure include the redzone 374 * and the redzone length (if applicable). If the user requests a redzone 375 * either the first or last page is left unmapped depending whether stacks 376 * grow to low or high memory. 377 * 378 * The client may also specify a no-wait flag. If that is set then the 379 * request will choose a non-blocking path when requesting resources. 380 * The default is make the client wait. 381 */ 382 static caddr_t 383 segkp_get_internal( 384 struct seg *seg, 385 size_t len, 386 uint_t flags, 387 struct segkp_data **tkpd, 388 struct anon_map *amp) 389 { 390 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data; 391 struct segkp_data *kpd; 392 caddr_t vbase = NULL; /* always first virtual, may not be mapped */ 393 pgcnt_t np = 0; /* number of pages in the resource */ 394 pgcnt_t segkpindex; 395 long i; 396 caddr_t va; 397 pgcnt_t pages = 0; 398 ulong_t anon_idx = 0; 399 int kmflag = (flags & KPD_NOWAIT) ? KM_NOSLEEP : KM_SLEEP; 400 caddr_t s_base = (segkp_fromheap) ? kvseg.s_base : seg->s_base; 401 402 if (len & PAGEOFFSET) { 403 panic("segkp_get: len is not page-aligned"); 404 /*NOTREACHED*/ 405 } 406 407 ASSERT(((flags & KPD_HASAMP) == 0) == (amp == NULL)); 408 409 /* Only allow KPD_NO_ANON if we are going to lock it down */ 410 if ((flags & (KPD_LOCKED|KPD_NO_ANON)) == KPD_NO_ANON) 411 return (NULL); 412 413 if ((kpd = kmem_zalloc(sizeof (struct segkp_data), kmflag)) == NULL) 414 return (NULL); 415 /* 416 * Fix up the len to reflect the REDZONE if applicable 417 */ 418 if (flags & KPD_HASREDZONE) 419 len += PAGESIZE; 420 np = btop(len); 421 422 vbase = vmem_alloc(SEGKP_VMEM(seg), len, kmflag | VM_BESTFIT); 423 if (vbase == NULL) { 424 kmem_free(kpd, sizeof (struct segkp_data)); 425 return (NULL); 426 } 427 428 /* If locking, reserve physical memory */ 429 if (flags & KPD_LOCKED) { 430 pages = btop(SEGKP_MAPLEN(len, flags)); 431 if (page_resv(pages, kmflag) == 0) { 432 vmem_free(SEGKP_VMEM(seg), vbase, len); 433 kmem_free(kpd, sizeof (struct segkp_data)); 434 return (NULL); 435 } 436 if ((flags & KPD_NO_ANON) == 0) 437 atomic_add_long(&anon_segkp_pages_locked, pages); 438 } 439 440 /* 441 * Reserve sufficient swap space for this vm resource. We'll 442 * actually allocate it in the loop below, but reserving it 443 * here allows us to back out more gracefully than if we 444 * had an allocation failure in the body of the loop. 445 * 446 * Note that we don't need swap space for the red zone page. 447 */ 448 if (amp != NULL) { 449 /* 450 * The swap reservation has been done, if required, and the 451 * anon_hdr is separate. 452 */ 453 anon_idx = 0; 454 kpd->kp_anon_idx = anon_idx; 455 kpd->kp_anon = amp->ahp; 456 457 TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u", 458 kpd, vbase, len, flags, 1); 459 460 } else if ((flags & KPD_NO_ANON) == 0) { 461 if (anon_resv_zone(SEGKP_MAPLEN(len, flags), NULL) == 0) { 462 if (flags & KPD_LOCKED) { 463 atomic_add_long(&anon_segkp_pages_locked, 464 -pages); 465 page_unresv(pages); 466 } 467 vmem_free(SEGKP_VMEM(seg), vbase, len); 468 kmem_free(kpd, sizeof (struct segkp_data)); 469 return (NULL); 470 } 471 atomic_add_long(&anon_segkp_pages_resv, 472 btop(SEGKP_MAPLEN(len, flags))); 473 anon_idx = ((uintptr_t)(vbase - s_base)) >> PAGESHIFT; 474 kpd->kp_anon_idx = anon_idx; 475 kpd->kp_anon = kpsd->kpsd_anon; 476 477 TRACE_5(TR_FAC_VM, TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u", 478 kpd, vbase, len, flags, 1); 479 } else { 480 kpd->kp_anon = NULL; 481 kpd->kp_anon_idx = 0; 482 } 483 484 /* 485 * Allocate page and anon resources for the virtual address range 486 * except the redzone 487 */ 488 if (segkp_fromheap) 489 segkpindex = btop((uintptr_t)(vbase - kvseg.s_base)); 490 for (i = 0, va = vbase; i < np; i++, va += PAGESIZE) { 491 page_t *pl[2]; 492 struct vnode *vp; 493 anoff_t off; 494 int err; 495 page_t *pp = NULL; 496 497 /* 498 * Mark this page to be a segkp page in the bitmap. 499 */ 500 if (segkp_fromheap) { 501 BT_ATOMIC_SET(segkp_bitmap, segkpindex); 502 segkpindex++; 503 } 504 505 /* 506 * If this page is the red zone page, we don't need swap 507 * space for it. Note that we skip over the code that 508 * establishes MMU mappings, so that the page remains 509 * invalid. 510 */ 511 if ((flags & KPD_HASREDZONE) && KPD_REDZONE(kpd) == i) 512 continue; 513 514 if (kpd->kp_anon != NULL) { 515 struct anon *ap; 516 517 ASSERT(anon_get_ptr(kpd->kp_anon, anon_idx + i) 518 == NULL); 519 /* 520 * Determine the "vp" and "off" of the anon slot. 521 */ 522 ap = anon_alloc(NULL, 0); 523 if (amp != NULL) 524 ANON_LOCK_ENTER(&->a_rwlock, RW_WRITER); 525 (void) anon_set_ptr(kpd->kp_anon, anon_idx + i, 526 ap, ANON_SLEEP); 527 if (amp != NULL) 528 ANON_LOCK_EXIT(&->a_rwlock); 529 swap_xlate(ap, &vp, &off); 530 531 /* 532 * Create a page with the specified identity. The 533 * page is returned with the "shared" lock held. 534 */ 535 err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE, 536 NULL, pl, PAGESIZE, seg, va, S_CREATE, 537 kcred, NULL); 538 if (err) { 539 /* 540 * XXX - This should not fail. 541 */ 542 panic("segkp_get: no pages"); 543 /*NOTREACHED*/ 544 } 545 pp = pl[0]; 546 } else { 547 ASSERT(page_exists(&kvp, 548 (u_offset_t)(uintptr_t)va) == NULL); 549 550 if ((pp = page_create_va(&kvp, 551 (u_offset_t)(uintptr_t)va, PAGESIZE, 552 (flags & KPD_NOWAIT ? 0 : PG_WAIT) | PG_EXCL | 553 PG_NORELOC, seg, va)) == NULL) { 554 /* 555 * Legitimize resource; then destroy it. 556 * Easier than trying to unwind here. 557 */ 558 kpd->kp_flags = flags; 559 kpd->kp_base = vbase; 560 kpd->kp_len = len; 561 segkp_release_internal(seg, kpd, va - vbase); 562 return (NULL); 563 } 564 page_io_unlock(pp); 565 } 566 567 if (flags & KPD_ZERO) 568 pagezero(pp, 0, PAGESIZE); 569 570 /* 571 * Load and lock an MMU translation for the page. 572 */ 573 hat_memload(seg->s_as->a_hat, va, pp, (PROT_READ|PROT_WRITE), 574 ((flags & KPD_LOCKED) ? HAT_LOAD_LOCK : HAT_LOAD)); 575 576 /* 577 * Now, release lock on the page. 578 */ 579 if (flags & KPD_LOCKED) { 580 /* 581 * Indicate to page_retire framework that this 582 * page can only be retired when it is freed. 583 */ 584 PP_SETRAF(pp); 585 page_downgrade(pp); 586 } else 587 page_unlock(pp); 588 } 589 590 kpd->kp_flags = flags; 591 kpd->kp_base = vbase; 592 kpd->kp_len = len; 593 segkp_insert(seg, kpd); 594 *tkpd = kpd; 595 return (stom(kpd->kp_base, flags)); 596 } 597 598 /* 599 * Release the resource to cache if the pool(designate by the cookie) 600 * has less than the maximum allowable. If inserted in cache, 601 * segkp_delete insures element is taken off of active list. 602 */ 603 void 604 segkp_release(struct seg *seg, caddr_t vaddr) 605 { 606 struct segkp_cache *freelist; 607 struct segkp_data *kpd = NULL; 608 609 if ((kpd = segkp_find(seg, vaddr)) == NULL) { 610 panic("segkp_release: null kpd"); 611 /*NOTREACHED*/ 612 } 613 614 if (kpd->kp_cookie != -1) { 615 freelist = &segkp_cache[kpd->kp_cookie]; 616 mutex_enter(&segkp_lock); 617 if (!segkp_indel && freelist->kpf_count < freelist->kpf_max) { 618 segkp_delete(seg, kpd); 619 kpd->kp_next = freelist->kpf_list; 620 freelist->kpf_list = kpd; 621 freelist->kpf_count++; 622 mutex_exit(&segkp_lock); 623 return; 624 } else { 625 mutex_exit(&segkp_lock); 626 kpd->kp_cookie = -1; 627 } 628 } 629 segkp_release_internal(seg, kpd, kpd->kp_len); 630 } 631 632 /* 633 * Free the entire resource. segkp_unlock gets called with the start of the 634 * mapped portion of the resource. The length is the size of the mapped 635 * portion 636 */ 637 static void 638 segkp_release_internal(struct seg *seg, struct segkp_data *kpd, size_t len) 639 { 640 caddr_t va; 641 long i; 642 long redzone; 643 size_t np; 644 page_t *pp; 645 struct vnode *vp; 646 anoff_t off; 647 struct anon *ap; 648 pgcnt_t segkpindex; 649 650 ASSERT(kpd != NULL); 651 ASSERT((kpd->kp_flags & KPD_HASAMP) == 0 || kpd->kp_cookie == -1); 652 np = btop(len); 653 654 /* Remove from active hash list */ 655 if (kpd->kp_cookie == -1) { 656 mutex_enter(&segkp_lock); 657 segkp_delete(seg, kpd); 658 mutex_exit(&segkp_lock); 659 } 660 661 /* 662 * Precompute redzone page index. 663 */ 664 redzone = -1; 665 if (kpd->kp_flags & KPD_HASREDZONE) 666 redzone = KPD_REDZONE(kpd); 667 668 669 va = kpd->kp_base; 670 671 hat_unload(seg->s_as->a_hat, va, (np << PAGESHIFT), 672 ((kpd->kp_flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD)); 673 /* 674 * Free up those anon resources that are quiescent. 675 */ 676 if (segkp_fromheap) 677 segkpindex = btop((uintptr_t)(va - kvseg.s_base)); 678 for (i = 0; i < np; i++, va += PAGESIZE) { 679 680 /* 681 * Clear the bit for this page from the bitmap. 682 */ 683 if (segkp_fromheap) { 684 BT_ATOMIC_CLEAR(segkp_bitmap, segkpindex); 685 segkpindex++; 686 } 687 688 if (i == redzone) 689 continue; 690 if (kpd->kp_anon) { 691 /* 692 * Free up anon resources and destroy the 693 * associated pages. 694 * 695 * Release the lock if there is one. Have to get the 696 * page to do this, unfortunately. 697 */ 698 if (kpd->kp_flags & KPD_LOCKED) { 699 ap = anon_get_ptr(kpd->kp_anon, 700 kpd->kp_anon_idx + i); 701 swap_xlate(ap, &vp, &off); 702 /* Find the shared-locked page. */ 703 pp = page_find(vp, (u_offset_t)off); 704 if (pp == NULL) { 705 panic("segkp_release: " 706 "kp_anon: no page to unlock "); 707 /*NOTREACHED*/ 708 } 709 if (PP_ISRAF(pp)) 710 PP_CLRRAF(pp); 711 712 page_unlock(pp); 713 } 714 if ((kpd->kp_flags & KPD_HASAMP) == 0) { 715 anon_free(kpd->kp_anon, kpd->kp_anon_idx + i, 716 PAGESIZE); 717 anon_unresv_zone(PAGESIZE, NULL); 718 atomic_dec_ulong(&anon_segkp_pages_resv); 719 } 720 TRACE_5(TR_FAC_VM, 721 TR_ANON_SEGKP, "anon segkp:%p %p %lu %u %u", 722 kpd, va, PAGESIZE, 0, 0); 723 } else { 724 if (kpd->kp_flags & KPD_LOCKED) { 725 pp = page_find(&kvp, (u_offset_t)(uintptr_t)va); 726 if (pp == NULL) { 727 panic("segkp_release: " 728 "no page to unlock"); 729 /*NOTREACHED*/ 730 } 731 if (PP_ISRAF(pp)) 732 PP_CLRRAF(pp); 733 /* 734 * We should just upgrade the lock here 735 * but there is no upgrade that waits. 736 */ 737 page_unlock(pp); 738 } 739 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)va, 740 SE_EXCL); 741 if (pp != NULL) 742 page_destroy(pp, 0); 743 } 744 } 745 746 /* If locked, release physical memory reservation */ 747 if (kpd->kp_flags & KPD_LOCKED) { 748 pgcnt_t pages = btop(SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)); 749 if ((kpd->kp_flags & KPD_NO_ANON) == 0) 750 atomic_add_long(&anon_segkp_pages_locked, -pages); 751 page_unresv(pages); 752 } 753 754 vmem_free(SEGKP_VMEM(seg), kpd->kp_base, kpd->kp_len); 755 kmem_free(kpd, sizeof (struct segkp_data)); 756 } 757 758 /* 759 * segkp_map_red() will check the current frame pointer against the 760 * stack base. If the amount of stack remaining is questionable 761 * (less than red_minavail), then segkp_map_red() will map in the redzone 762 * and return 1. Otherwise, it will return 0. segkp_map_red() can 763 * _only_ be called when: 764 * 765 * - it is safe to sleep on page_create_va(). 766 * - the caller is non-swappable. 767 * 768 * It is up to the caller to remember whether segkp_map_red() successfully 769 * mapped the redzone, and, if so, to call segkp_unmap_red() at a later 770 * time. Note that the caller must _remain_ non-swappable until after 771 * calling segkp_unmap_red(). 772 * 773 * Currently, this routine is only called from pagefault() (which necessarily 774 * satisfies the above conditions). 775 */ 776 #if defined(STACK_GROWTH_DOWN) 777 int 778 segkp_map_red(void) 779 { 780 uintptr_t fp = STACK_BIAS + (uintptr_t)getfp(); 781 #ifndef _LP64 782 caddr_t stkbase; 783 #endif 784 785 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 786 787 /* 788 * Optimize for the common case where we simply return. 789 */ 790 if ((curthread->t_red_pp == NULL) && 791 (fp - (uintptr_t)curthread->t_stkbase >= red_minavail)) 792 return (0); 793 794 #if defined(_LP64) 795 /* 796 * XXX We probably need something better than this. 797 */ 798 panic("kernel stack overflow"); 799 /*NOTREACHED*/ 800 #else /* _LP64 */ 801 if (curthread->t_red_pp == NULL) { 802 page_t *red_pp; 803 struct seg kseg; 804 805 caddr_t red_va = (caddr_t) 806 (((uintptr_t)curthread->t_stkbase & (uintptr_t)PAGEMASK) - 807 PAGESIZE); 808 809 ASSERT(page_exists(&kvp, (u_offset_t)(uintptr_t)red_va) == 810 NULL); 811 812 /* 813 * Allocate the physical for the red page. 814 */ 815 /* 816 * No PG_NORELOC here to avoid waits. Unlikely to get 817 * a relocate happening in the short time the page exists 818 * and it will be OK anyway. 819 */ 820 821 kseg.s_as = &kas; 822 red_pp = page_create_va(&kvp, (u_offset_t)(uintptr_t)red_va, 823 PAGESIZE, PG_WAIT | PG_EXCL, &kseg, red_va); 824 ASSERT(red_pp != NULL); 825 826 /* 827 * So we now have a page to jam into the redzone... 828 */ 829 page_io_unlock(red_pp); 830 831 hat_memload(kas.a_hat, red_va, red_pp, 832 (PROT_READ|PROT_WRITE), HAT_LOAD_LOCK); 833 page_downgrade(red_pp); 834 835 /* 836 * The page is left SE_SHARED locked so we can hold on to 837 * the page_t pointer. 838 */ 839 curthread->t_red_pp = red_pp; 840 841 atomic_inc_32(&red_nmapped); 842 while (fp - (uintptr_t)curthread->t_stkbase < red_closest) { 843 (void) atomic_cas_32(&red_closest, red_closest, 844 (uint32_t)(fp - (uintptr_t)curthread->t_stkbase)); 845 } 846 return (1); 847 } 848 849 stkbase = (caddr_t)(((uintptr_t)curthread->t_stkbase & 850 (uintptr_t)PAGEMASK) - PAGESIZE); 851 852 atomic_inc_32(&red_ndoubles); 853 854 if (fp - (uintptr_t)stkbase < RED_DEEP_THRESHOLD) { 855 /* 856 * Oh boy. We're already deep within the mapped-in 857 * redzone page, and the caller is trying to prepare 858 * for a deep stack run. We're running without a 859 * redzone right now: if the caller plows off the 860 * end of the stack, it'll plow another thread or 861 * LWP structure. That situation could result in 862 * a very hard-to-debug panic, so, in the spirit of 863 * recording the name of one's killer in one's own 864 * blood, we're going to record hrestime and the calling 865 * thread. 866 */ 867 red_deep_hires = hrestime.tv_nsec; 868 red_deep_thread = curthread; 869 } 870 871 /* 872 * If this is a DEBUG kernel, and we've run too deep for comfort, toss. 873 */ 874 ASSERT(fp - (uintptr_t)stkbase >= RED_DEEP_THRESHOLD); 875 return (0); 876 #endif /* _LP64 */ 877 } 878 879 void 880 segkp_unmap_red(void) 881 { 882 page_t *pp; 883 caddr_t red_va = (caddr_t)(((uintptr_t)curthread->t_stkbase & 884 (uintptr_t)PAGEMASK) - PAGESIZE); 885 886 ASSERT(curthread->t_red_pp != NULL); 887 ASSERT(curthread->t_schedflag & TS_DONT_SWAP); 888 889 /* 890 * Because we locked the mapping down, we can't simply rely 891 * on page_destroy() to clean everything up; we need to call 892 * hat_unload() to explicitly unlock the mapping resources. 893 */ 894 hat_unload(kas.a_hat, red_va, PAGESIZE, HAT_UNLOAD_UNLOCK); 895 896 pp = curthread->t_red_pp; 897 898 ASSERT(pp == page_find(&kvp, (u_offset_t)(uintptr_t)red_va)); 899 900 /* 901 * Need to upgrade the SE_SHARED lock to SE_EXCL. 902 */ 903 if (!page_tryupgrade(pp)) { 904 /* 905 * As there is now wait for upgrade, release the 906 * SE_SHARED lock and wait for SE_EXCL. 907 */ 908 page_unlock(pp); 909 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)red_va, SE_EXCL); 910 /* pp may be NULL here, hence the test below */ 911 } 912 913 /* 914 * Destroy the page, with dontfree set to zero (i.e. free it). 915 */ 916 if (pp != NULL) 917 page_destroy(pp, 0); 918 curthread->t_red_pp = NULL; 919 } 920 #else 921 #error Red stacks only supported with downwards stack growth. 922 #endif 923 924 /* 925 * Handle a fault on an address corresponding to one of the 926 * resources in the segkp segment. 927 */ 928 faultcode_t 929 segkp_fault( 930 struct hat *hat, 931 struct seg *seg, 932 caddr_t vaddr, 933 size_t len, 934 enum fault_type type, 935 enum seg_rw rw) 936 { 937 struct segkp_data *kpd = NULL; 938 int err; 939 940 ASSERT(seg->s_as == &kas && RW_READ_HELD(&seg->s_as->a_lock)); 941 942 /* 943 * Sanity checks. 944 */ 945 if (type == F_PROT) { 946 panic("segkp_fault: unexpected F_PROT fault"); 947 /*NOTREACHED*/ 948 } 949 950 if ((kpd = segkp_find(seg, vaddr)) == NULL) 951 return (FC_NOMAP); 952 953 mutex_enter(&kpd->kp_lock); 954 955 if (type == F_SOFTLOCK) { 956 ASSERT(!(kpd->kp_flags & KPD_LOCKED)); 957 /* 958 * The F_SOFTLOCK case has more stringent 959 * range requirements: the given range must exactly coincide 960 * with the resource's mapped portion. Note reference to 961 * redzone is handled since vaddr would not equal base 962 */ 963 if (vaddr != stom(kpd->kp_base, kpd->kp_flags) || 964 len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) { 965 mutex_exit(&kpd->kp_lock); 966 return (FC_MAKE_ERR(EFAULT)); 967 } 968 969 if ((err = segkp_load(hat, seg, vaddr, len, kpd, KPD_LOCKED))) { 970 mutex_exit(&kpd->kp_lock); 971 return (FC_MAKE_ERR(err)); 972 } 973 kpd->kp_flags |= KPD_LOCKED; 974 mutex_exit(&kpd->kp_lock); 975 return (0); 976 } 977 978 if (type == F_INVAL) { 979 ASSERT(!(kpd->kp_flags & KPD_NO_ANON)); 980 981 /* 982 * Check if we touched the redzone. Somewhat optimistic 983 * here if we are touching the redzone of our own stack 984 * since we wouldn't have a stack to get this far... 985 */ 986 if ((kpd->kp_flags & KPD_HASREDZONE) && 987 btop((uintptr_t)(vaddr - kpd->kp_base)) == KPD_REDZONE(kpd)) 988 panic("segkp_fault: accessing redzone"); 989 990 /* 991 * This fault may occur while the page is being F_SOFTLOCK'ed. 992 * Return since a 2nd segkp_load is unnecessary and also would 993 * result in the page being locked twice and eventually 994 * hang the thread_reaper thread. 995 */ 996 if (kpd->kp_flags & KPD_LOCKED) { 997 mutex_exit(&kpd->kp_lock); 998 return (0); 999 } 1000 1001 err = segkp_load(hat, seg, vaddr, len, kpd, kpd->kp_flags); 1002 mutex_exit(&kpd->kp_lock); 1003 return (err ? FC_MAKE_ERR(err) : 0); 1004 } 1005 1006 if (type == F_SOFTUNLOCK) { 1007 uint_t flags; 1008 1009 /* 1010 * Make sure the addr is LOCKED and it has anon backing 1011 * before unlocking 1012 */ 1013 if ((kpd->kp_flags & (KPD_LOCKED|KPD_NO_ANON)) != KPD_LOCKED) { 1014 panic("segkp_fault: bad unlock"); 1015 /*NOTREACHED*/ 1016 } 1017 1018 if (vaddr != stom(kpd->kp_base, kpd->kp_flags) || 1019 len != SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)) { 1020 panic("segkp_fault: bad range"); 1021 /*NOTREACHED*/ 1022 } 1023 1024 if (rw == S_WRITE) 1025 flags = kpd->kp_flags | KPD_WRITEDIRTY; 1026 else 1027 flags = kpd->kp_flags; 1028 err = segkp_unlock(hat, seg, vaddr, len, kpd, flags); 1029 kpd->kp_flags &= ~KPD_LOCKED; 1030 mutex_exit(&kpd->kp_lock); 1031 return (err ? FC_MAKE_ERR(err) : 0); 1032 } 1033 mutex_exit(&kpd->kp_lock); 1034 panic("segkp_fault: bogus fault type: %d\n", type); 1035 /*NOTREACHED*/ 1036 } 1037 1038 /* 1039 * Check that the given protections suffice over the range specified by 1040 * vaddr and len. For this segment type, the only issue is whether or 1041 * not the range lies completely within the mapped part of an allocated 1042 * resource. 1043 */ 1044 /* ARGSUSED */ 1045 static int 1046 segkp_checkprot(struct seg *seg, caddr_t vaddr, size_t len, uint_t prot) 1047 { 1048 struct segkp_data *kpd = NULL; 1049 caddr_t mbase; 1050 size_t mlen; 1051 1052 if ((kpd = segkp_find(seg, vaddr)) == NULL) 1053 return (EACCES); 1054 1055 mutex_enter(&kpd->kp_lock); 1056 mbase = stom(kpd->kp_base, kpd->kp_flags); 1057 mlen = SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags); 1058 if (len > mlen || vaddr < mbase || 1059 ((vaddr + len) > (mbase + mlen))) { 1060 mutex_exit(&kpd->kp_lock); 1061 return (EACCES); 1062 } 1063 mutex_exit(&kpd->kp_lock); 1064 return (0); 1065 } 1066 1067 1068 /* 1069 * Check to see if it makes sense to do kluster/read ahead to 1070 * addr + delta relative to the mapping at addr. We assume here 1071 * that delta is a signed PAGESIZE'd multiple (which can be negative). 1072 * 1073 * For seg_u we always "approve" of this action from our standpoint. 1074 */ 1075 /*ARGSUSED*/ 1076 static int 1077 segkp_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 1078 { 1079 return (0); 1080 } 1081 1082 /* 1083 * Load and possibly lock intra-slot resources in the range given by 1084 * vaddr and len. 1085 */ 1086 static int 1087 segkp_load( 1088 struct hat *hat, 1089 struct seg *seg, 1090 caddr_t vaddr, 1091 size_t len, 1092 struct segkp_data *kpd, 1093 uint_t flags) 1094 { 1095 caddr_t va; 1096 caddr_t vlim; 1097 ulong_t i; 1098 uint_t lock; 1099 1100 ASSERT(MUTEX_HELD(&kpd->kp_lock)); 1101 1102 len = P2ROUNDUP(len, PAGESIZE); 1103 1104 /* If locking, reserve physical memory */ 1105 if (flags & KPD_LOCKED) { 1106 pgcnt_t pages = btop(len); 1107 if ((kpd->kp_flags & KPD_NO_ANON) == 0) 1108 atomic_add_long(&anon_segkp_pages_locked, pages); 1109 (void) page_resv(pages, KM_SLEEP); 1110 } 1111 1112 /* 1113 * Loop through the pages in the given range. 1114 */ 1115 va = (caddr_t)((uintptr_t)vaddr & (uintptr_t)PAGEMASK); 1116 vaddr = va; 1117 vlim = va + len; 1118 lock = flags & KPD_LOCKED; 1119 i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT; 1120 for (; va < vlim; va += PAGESIZE, i++) { 1121 page_t *pl[2]; /* second element NULL terminator */ 1122 struct vnode *vp; 1123 anoff_t off; 1124 int err; 1125 struct anon *ap; 1126 1127 /* 1128 * Summon the page. If it's not resident, arrange 1129 * for synchronous i/o to pull it in. 1130 */ 1131 ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i); 1132 swap_xlate(ap, &vp, &off); 1133 1134 /* 1135 * The returned page list will have exactly one entry, 1136 * which is returned to us already kept. 1137 */ 1138 err = VOP_GETPAGE(vp, (offset_t)off, PAGESIZE, NULL, 1139 pl, PAGESIZE, seg, va, S_READ, kcred, NULL); 1140 1141 if (err) { 1142 /* 1143 * Back out of what we've done so far. 1144 */ 1145 (void) segkp_unlock(hat, seg, vaddr, 1146 (va - vaddr), kpd, flags); 1147 return (err); 1148 } 1149 1150 /* 1151 * Load an MMU translation for the page. 1152 */ 1153 hat_memload(hat, va, pl[0], (PROT_READ|PROT_WRITE), 1154 lock ? HAT_LOAD_LOCK : HAT_LOAD); 1155 1156 if (!lock) { 1157 /* 1158 * Now, release "shared" lock on the page. 1159 */ 1160 page_unlock(pl[0]); 1161 } 1162 } 1163 return (0); 1164 } 1165 1166 /* 1167 * At the very least unload the mmu-translations and unlock the range if locked 1168 * Can be called with the following flag value KPD_WRITEDIRTY which specifies 1169 * any dirty pages should be written to disk. 1170 */ 1171 static int 1172 segkp_unlock( 1173 struct hat *hat, 1174 struct seg *seg, 1175 caddr_t vaddr, 1176 size_t len, 1177 struct segkp_data *kpd, 1178 uint_t flags) 1179 { 1180 caddr_t va; 1181 caddr_t vlim; 1182 ulong_t i; 1183 struct page *pp; 1184 struct vnode *vp; 1185 anoff_t off; 1186 struct anon *ap; 1187 1188 #ifdef lint 1189 seg = seg; 1190 #endif /* lint */ 1191 1192 ASSERT(MUTEX_HELD(&kpd->kp_lock)); 1193 1194 /* 1195 * Loop through the pages in the given range. It is assumed 1196 * segkp_unlock is called with page aligned base 1197 */ 1198 va = vaddr; 1199 vlim = va + len; 1200 i = ((uintptr_t)(va - kpd->kp_base)) >> PAGESHIFT; 1201 hat_unload(hat, va, len, 1202 ((flags & KPD_LOCKED) ? HAT_UNLOAD_UNLOCK : HAT_UNLOAD)); 1203 for (; va < vlim; va += PAGESIZE, i++) { 1204 /* 1205 * Find the page associated with this part of the 1206 * slot, tracking it down through its associated swap 1207 * space. 1208 */ 1209 ap = anon_get_ptr(kpd->kp_anon, kpd->kp_anon_idx + i); 1210 swap_xlate(ap, &vp, &off); 1211 1212 if (flags & KPD_LOCKED) { 1213 if ((pp = page_find(vp, off)) == NULL) { 1214 if (flags & KPD_LOCKED) { 1215 panic("segkp_softunlock: missing page"); 1216 /*NOTREACHED*/ 1217 } 1218 } 1219 } else { 1220 /* 1221 * Nothing to do if the slot is not locked and the 1222 * page doesn't exist. 1223 */ 1224 if ((pp = page_lookup(vp, off, SE_SHARED)) == NULL) 1225 continue; 1226 } 1227 1228 /* 1229 * If the page doesn't have any translations, is 1230 * dirty and not being shared, then push it out 1231 * asynchronously and avoid waiting for the 1232 * pageout daemon to do it for us. 1233 * 1234 * XXX - Do we really need to get the "exclusive" 1235 * lock via an upgrade? 1236 */ 1237 if ((flags & KPD_WRITEDIRTY) && !hat_page_is_mapped(pp) && 1238 hat_ismod(pp) && page_tryupgrade(pp)) { 1239 /* 1240 * Hold the vnode before releasing the page lock to 1241 * prevent it from being freed and re-used by some 1242 * other thread. 1243 */ 1244 VN_HOLD(vp); 1245 page_unlock(pp); 1246 1247 /* 1248 * Want most powerful credentials we can get so 1249 * use kcred. 1250 */ 1251 (void) VOP_PUTPAGE(vp, (offset_t)off, PAGESIZE, 1252 B_ASYNC | B_FREE, kcred, NULL); 1253 VN_RELE(vp); 1254 } else { 1255 page_unlock(pp); 1256 } 1257 } 1258 1259 /* If unlocking, release physical memory */ 1260 if (flags & KPD_LOCKED) { 1261 pgcnt_t pages = btopr(len); 1262 if ((kpd->kp_flags & KPD_NO_ANON) == 0) 1263 atomic_add_long(&anon_segkp_pages_locked, -pages); 1264 page_unresv(pages); 1265 } 1266 return (0); 1267 } 1268 1269 /* 1270 * Insert the kpd in the hash table. 1271 */ 1272 static void 1273 segkp_insert(struct seg *seg, struct segkp_data *kpd) 1274 { 1275 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data; 1276 int index; 1277 1278 /* 1279 * Insert the kpd based on the address that will be returned 1280 * via segkp_release. 1281 */ 1282 index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags)); 1283 mutex_enter(&segkp_lock); 1284 kpd->kp_next = kpsd->kpsd_hash[index]; 1285 kpsd->kpsd_hash[index] = kpd; 1286 mutex_exit(&segkp_lock); 1287 } 1288 1289 /* 1290 * Remove kpd from the hash table. 1291 */ 1292 static void 1293 segkp_delete(struct seg *seg, struct segkp_data *kpd) 1294 { 1295 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data; 1296 struct segkp_data **kpp; 1297 int index; 1298 1299 ASSERT(MUTEX_HELD(&segkp_lock)); 1300 1301 index = SEGKP_HASH(stom(kpd->kp_base, kpd->kp_flags)); 1302 for (kpp = &kpsd->kpsd_hash[index]; 1303 *kpp != NULL; kpp = &((*kpp)->kp_next)) { 1304 if (*kpp == kpd) { 1305 *kpp = kpd->kp_next; 1306 return; 1307 } 1308 } 1309 panic("segkp_delete: unable to find element to delete"); 1310 /*NOTREACHED*/ 1311 } 1312 1313 /* 1314 * Find the kpd associated with a vaddr. 1315 * 1316 * Most of the callers of segkp_find will pass the vaddr that 1317 * hashes to the desired index, but there are cases where 1318 * this is not true in which case we have to (potentially) scan 1319 * the whole table looking for it. This should be very rare 1320 * (e.g. a segkp_fault(F_INVAL) on an address somewhere in the 1321 * middle of the segkp_data region). 1322 */ 1323 static struct segkp_data * 1324 segkp_find(struct seg *seg, caddr_t vaddr) 1325 { 1326 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data; 1327 struct segkp_data *kpd; 1328 int i; 1329 int stop; 1330 1331 i = stop = SEGKP_HASH(vaddr); 1332 mutex_enter(&segkp_lock); 1333 do { 1334 for (kpd = kpsd->kpsd_hash[i]; kpd != NULL; 1335 kpd = kpd->kp_next) { 1336 if (vaddr >= kpd->kp_base && 1337 vaddr < kpd->kp_base + kpd->kp_len) { 1338 mutex_exit(&segkp_lock); 1339 return (kpd); 1340 } 1341 } 1342 if (--i < 0) 1343 i = SEGKP_HASHSZ - 1; /* Wrap */ 1344 } while (i != stop); 1345 mutex_exit(&segkp_lock); 1346 return (NULL); /* Not found */ 1347 } 1348 1349 /* 1350 * returns size of swappable area. 1351 */ 1352 size_t 1353 swapsize(caddr_t v) 1354 { 1355 struct segkp_data *kpd; 1356 1357 if ((kpd = segkp_find(segkp, v)) != NULL) 1358 return (SEGKP_MAPLEN(kpd->kp_len, kpd->kp_flags)); 1359 else 1360 return (0); 1361 } 1362 1363 /* 1364 * Dump out all the active segkp pages 1365 */ 1366 static void 1367 segkp_dump(struct seg *seg) 1368 { 1369 int i; 1370 struct segkp_data *kpd; 1371 struct segkp_segdata *kpsd = (struct segkp_segdata *)seg->s_data; 1372 1373 for (i = 0; i < SEGKP_HASHSZ; i++) { 1374 for (kpd = kpsd->kpsd_hash[i]; 1375 kpd != NULL; kpd = kpd->kp_next) { 1376 pfn_t pfn; 1377 caddr_t addr; 1378 caddr_t eaddr; 1379 1380 addr = kpd->kp_base; 1381 eaddr = addr + kpd->kp_len; 1382 while (addr < eaddr) { 1383 ASSERT(seg->s_as == &kas); 1384 pfn = hat_getpfnum(seg->s_as->a_hat, addr); 1385 if (pfn != PFN_INVALID) 1386 dump_addpage(seg->s_as, addr, pfn); 1387 addr += PAGESIZE; 1388 dump_timeleft = dump_timeout; 1389 } 1390 } 1391 } 1392 } 1393 1394 /*ARGSUSED*/ 1395 static int 1396 segkp_pagelock(struct seg *seg, caddr_t addr, size_t len, 1397 struct page ***ppp, enum lock_type type, enum seg_rw rw) 1398 { 1399 return (ENOTSUP); 1400 } 1401 1402 /*ARGSUSED*/ 1403 static int 1404 segkp_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 1405 { 1406 return (ENODEV); 1407 } 1408 1409 /*ARGSUSED*/ 1410 static lgrp_mem_policy_info_t * 1411 segkp_getpolicy(struct seg *seg, caddr_t addr) 1412 { 1413 return (NULL); 1414 } 1415 1416 /*ARGSUSED*/ 1417 static int 1418 segkp_capable(struct seg *seg, segcapability_t capability) 1419 { 1420 return (0); 1421 } 1422 1423 #include <sys/mem_config.h> 1424 1425 /*ARGSUSED*/ 1426 static void 1427 segkp_mem_config_post_add(void *arg, pgcnt_t delta_pages) 1428 {} 1429 1430 /* 1431 * During memory delete, turn off caches so that pages are not held. 1432 * A better solution may be to unlock the pages while they are 1433 * in the cache so that they may be collected naturally. 1434 */ 1435 1436 /*ARGSUSED*/ 1437 static int 1438 segkp_mem_config_pre_del(void *arg, pgcnt_t delta_pages) 1439 { 1440 atomic_inc_32(&segkp_indel); 1441 segkp_cache_free(); 1442 return (0); 1443 } 1444 1445 /*ARGSUSED*/ 1446 static void 1447 segkp_mem_config_post_del(void *arg, pgcnt_t delta_pages, int cancelled) 1448 { 1449 atomic_dec_32(&segkp_indel); 1450 } 1451 1452 static kphysm_setup_vector_t segkp_mem_config_vec = { 1453 KPHYSM_SETUP_VECTOR_VERSION, 1454 segkp_mem_config_post_add, 1455 segkp_mem_config_pre_del, 1456 segkp_mem_config_post_del, 1457 }; 1458 1459 static void 1460 segkpinit_mem_config(struct seg *seg) 1461 { 1462 int ret; 1463 1464 ret = kphysm_setup_func_register(&segkp_mem_config_vec, (void *)seg); 1465 ASSERT(ret == 0); 1466 } 1467