1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2019 Joyent, Inc. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/tuneable.h> 31 #include <sys/systm.h> 32 #include <sys/vm.h> 33 #include <sys/kmem.h> 34 #include <sys/vmem.h> 35 #include <sys/mman.h> 36 #include <sys/cmn_err.h> 37 #include <sys/debug.h> 38 #include <sys/dumphdr.h> 39 #include <sys/bootconf.h> 40 #include <sys/lgrp.h> 41 #include <vm/seg_kmem.h> 42 #include <vm/hat.h> 43 #include <vm/page.h> 44 #include <vm/vm_dep.h> 45 #include <vm/faultcode.h> 46 #include <sys/promif.h> 47 #include <vm/seg_kp.h> 48 #include <sys/bitmap.h> 49 #include <sys/mem_cage.h> 50 51 #ifdef __sparc 52 #include <sys/ivintr.h> 53 #include <sys/panic.h> 54 #endif 55 56 /* 57 * seg_kmem is the primary kernel memory segment driver. It 58 * maps the kernel heap [kernelheap, ekernelheap), module text, 59 * and all memory which was allocated before the VM was initialized 60 * into kas. 61 * 62 * Pages which belong to seg_kmem are hashed into &kvp vnode at 63 * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1. 64 * They must never be paged out since segkmem_fault() is a no-op to 65 * prevent recursive faults. 66 * 67 * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on 68 * __x86 and are unlocked (p_sharelock == 0) on __sparc. Once __x86 69 * supports relocation the #ifdef kludges can be removed. 70 * 71 * seg_kmem pages may be subject to relocation by page_relocate(), 72 * provided that the HAT supports it; if this is so, segkmem_reloc 73 * will be set to a nonzero value. All boot time allocated memory as 74 * well as static memory is considered off limits to relocation. 75 * Pages are "relocatable" if p_state does not have P_NORELOC set, so 76 * we request P_NORELOC pages for memory that isn't safe to relocate. 77 * 78 * The kernel heap is logically divided up into four pieces: 79 * 80 * heap32_arena is for allocations that require 32-bit absolute 81 * virtual addresses (e.g. code that uses 32-bit pointers/offsets). 82 * 83 * heap_core is for allocations that require 2GB *relative* 84 * offsets; in other words all memory from heap_core is within 85 * 2GB of all other memory from the same arena. This is a requirement 86 * of the addressing modes of some processors in supervisor code. 87 * 88 * heap_arena is the general heap arena. 89 * 90 * static_arena is the static memory arena. Allocations from it 91 * are not subject to relocation so it is safe to use the memory 92 * physical address as well as the virtual address (e.g. the VA to 93 * PA translations are static). Caches may import from static_arena; 94 * all other static memory allocations should use static_alloc_arena. 95 * 96 * On some platforms which have limited virtual address space, seg_kmem 97 * may share [kernelheap, ekernelheap) with seg_kp; if this is so, 98 * segkp_bitmap is non-NULL, and each bit represents a page of virtual 99 * address space which is actually seg_kp mapped. 100 */ 101 102 extern ulong_t *segkp_bitmap; /* Is set if segkp is from the kernel heap */ 103 104 char *kernelheap; /* start of primary kernel heap */ 105 char *ekernelheap; /* end of primary kernel heap */ 106 struct seg kvseg; /* primary kernel heap segment */ 107 struct seg kvseg_core; /* "core" kernel heap segment */ 108 struct seg kzioseg; /* Segment for zio mappings */ 109 vmem_t *heap_arena; /* primary kernel heap arena */ 110 vmem_t *heap_core_arena; /* core kernel heap arena */ 111 char *heap_core_base; /* start of core kernel heap arena */ 112 char *heap_lp_base; /* start of kernel large page heap arena */ 113 char *heap_lp_end; /* end of kernel large page heap arena */ 114 vmem_t *hat_memload_arena; /* HAT translation data */ 115 struct seg kvseg32; /* 32-bit kernel heap segment */ 116 vmem_t *heap32_arena; /* 32-bit kernel heap arena */ 117 vmem_t *heaptext_arena; /* heaptext arena */ 118 struct as kas; /* kernel address space */ 119 int segkmem_reloc; /* enable/disable relocatable segkmem pages */ 120 vmem_t *static_arena; /* arena for caches to import static memory */ 121 vmem_t *static_alloc_arena; /* arena for allocating static memory */ 122 vmem_t *zio_arena = NULL; /* arena for allocating zio memory */ 123 vmem_t *zio_alloc_arena = NULL; /* arena for allocating zio memory */ 124 125 #if defined(__amd64) 126 vmem_t *kvmm_arena; /* arena for vmm VA */ 127 struct seg kvmmseg; /* Segment for vmm memory */ 128 #endif 129 130 /* 131 * seg_kmem driver can map part of the kernel heap with large pages. 132 * Currently this functionality is implemented for sparc platforms only. 133 * 134 * The large page size "segkmem_lpsize" for kernel heap is selected in the 135 * platform specific code. It can also be modified via /etc/system file. 136 * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large 137 * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to 138 * match segkmem_lpsize. 139 * 140 * At boot time we carve from kernel heap arena a range of virtual addresses 141 * that will be used for large page mappings. This range [heap_lp_base, 142 * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also 143 * create "kmem_lp_arena" that caches memory already backed up by large 144 * pages. kmem_lp_arena imports virtual segments from heap_lp_arena. 145 */ 146 147 size_t segkmem_lpsize; 148 static uint_t segkmem_lpshift = PAGESHIFT; 149 int segkmem_lpszc = 0; 150 151 size_t segkmem_kmemlp_quantum = 0x400000; /* 4MB */ 152 size_t segkmem_heaplp_quantum; 153 vmem_t *heap_lp_arena; 154 static vmem_t *kmem_lp_arena; 155 static vmem_t *segkmem_ppa_arena; 156 static segkmem_lpcb_t segkmem_lpcb; 157 158 /* 159 * We use "segkmem_kmemlp_max" to limit the total amount of physical memory 160 * consumed by the large page heap. By default this parameter is set to 1/8 of 161 * physmem but can be adjusted through /etc/system either directly or 162 * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem 163 * we allow for large page heap. 164 */ 165 size_t segkmem_kmemlp_max; 166 uint_t segkmem_kmemlp_pcnt; 167 168 /* 169 * Getting large pages for kernel heap could be problematic due to 170 * physical memory fragmentation. That's why we allow to preallocate 171 * "segkmem_kmemlp_min" bytes at boot time. 172 */ 173 size_t segkmem_kmemlp_min; 174 175 /* 176 * Throttling is used to avoid expensive tries to allocate large pages 177 * for kernel heap when a lot of succesive attempts to do so fail. 178 */ 179 static ulong_t segkmem_lpthrottle_max = 0x400000; 180 static ulong_t segkmem_lpthrottle_start = 0x40; 181 static ulong_t segkmem_use_lpthrottle = 1; 182 183 /* 184 * Freed pages accumulate on a garbage list until segkmem is ready, 185 * at which point we call segkmem_gc() to free it all. 186 */ 187 typedef struct segkmem_gc_list { 188 struct segkmem_gc_list *gc_next; 189 vmem_t *gc_arena; 190 size_t gc_size; 191 } segkmem_gc_list_t; 192 193 static segkmem_gc_list_t *segkmem_gc_list; 194 195 /* 196 * Allocations from the hat_memload arena add VM_MEMLOAD to their 197 * vmflags so that segkmem_xalloc() can inform the hat layer that it needs 198 * to take steps to prevent infinite recursion. HAT allocations also 199 * must be non-relocatable to prevent recursive page faults. 200 */ 201 static void * 202 hat_memload_alloc(vmem_t *vmp, size_t size, int flags) 203 { 204 flags |= (VM_MEMLOAD | VM_NORELOC); 205 return (segkmem_alloc(vmp, size, flags)); 206 } 207 208 /* 209 * Allocations from static_arena arena (or any other arena that uses 210 * segkmem_alloc_permanent()) require non-relocatable (permanently 211 * wired) memory pages, since these pages are referenced by physical 212 * as well as virtual address. 213 */ 214 void * 215 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags) 216 { 217 return (segkmem_alloc(vmp, size, flags | VM_NORELOC)); 218 } 219 220 /* 221 * Initialize kernel heap boundaries. 222 */ 223 void 224 kernelheap_init( 225 void *heap_start, 226 void *heap_end, 227 char *first_avail, 228 void *core_start, 229 void *core_end) 230 { 231 uintptr_t textbase; 232 size_t core_size; 233 size_t heap_size; 234 vmem_t *heaptext_parent; 235 size_t heap_lp_size = 0; 236 #ifdef __sparc 237 size_t kmem64_sz = kmem64_aligned_end - kmem64_base; 238 #endif /* __sparc */ 239 240 kernelheap = heap_start; 241 ekernelheap = heap_end; 242 243 #ifdef __sparc 244 heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4); 245 /* 246 * Bias heap_lp start address by kmem64_sz to reduce collisions 247 * in 4M kernel TSB between kmem64 area and heap_lp 248 */ 249 kmem64_sz = P2ROUNDUP(kmem64_sz, MMU_PAGESIZE256M); 250 if (kmem64_sz <= heap_lp_size / 2) 251 heap_lp_size -= kmem64_sz; 252 heap_lp_base = ekernelheap - heap_lp_size; 253 heap_lp_end = heap_lp_base + heap_lp_size; 254 #endif /* __sparc */ 255 256 /* 257 * If this platform has a 'core' heap area, then the space for 258 * overflow module text should be carved out of the end of that 259 * heap. Otherwise, it gets carved out of the general purpose 260 * heap. 261 */ 262 core_size = (uintptr_t)core_end - (uintptr_t)core_start; 263 if (core_size > 0) { 264 ASSERT(core_size >= HEAPTEXT_SIZE); 265 textbase = (uintptr_t)core_end - HEAPTEXT_SIZE; 266 core_size -= HEAPTEXT_SIZE; 267 } 268 #ifndef __sparc 269 else { 270 ekernelheap -= HEAPTEXT_SIZE; 271 textbase = (uintptr_t)ekernelheap; 272 } 273 #endif 274 275 heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap; 276 heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE, 277 segkmem_alloc, segkmem_free); 278 279 if (core_size > 0) { 280 heap_core_arena = vmem_create("heap_core", core_start, 281 core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP); 282 heap_core_base = core_start; 283 } else { 284 heap_core_arena = heap_arena; 285 heap_core_base = kernelheap; 286 } 287 288 /* 289 * reserve space for the large page heap. If large pages for kernel 290 * heap is enabled large page heap arean will be created later in the 291 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated 292 * range will be returned back to the heap_arena. 293 */ 294 if (heap_lp_size) { 295 (void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0, 296 heap_lp_base, heap_lp_end, 297 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 298 } 299 300 /* 301 * Remove the already-spoken-for memory range [kernelheap, first_avail). 302 */ 303 (void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE, 304 0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 305 306 #ifdef __sparc 307 heap32_arena = vmem_create("heap32", (void *)SYSBASE32, 308 SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL, 309 NULL, NULL, 0, VM_SLEEP); 310 /* 311 * Prom claims the physical and virtual resources used by panicbuf 312 * and inter_vec_table. So reserve space for panicbuf, intr_vec_table, 313 * reserved interrupt vector data structures from 32-bit heap. 314 */ 315 (void) vmem_xalloc(heap32_arena, PANICBUFSIZE, PAGESIZE, 0, 0, 316 panicbuf, panicbuf + PANICBUFSIZE, 317 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 318 319 (void) vmem_xalloc(heap32_arena, IVSIZE, PAGESIZE, 0, 0, 320 intr_vec_table, (caddr_t)intr_vec_table + IVSIZE, 321 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 322 323 textbase = SYSLIMIT32 - HEAPTEXT_SIZE; 324 heaptext_parent = NULL; 325 #else /* __sparc */ 326 heap32_arena = heap_core_arena; 327 heaptext_parent = heap_core_arena; 328 #endif /* __sparc */ 329 330 heaptext_arena = vmem_create("heaptext", (void *)textbase, 331 HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP); 332 333 /* 334 * Create a set of arenas for memory with static translations 335 * (e.g. VA -> PA translations cannot change). Since using 336 * kernel pages by physical address implies it isn't safe to 337 * walk across page boundaries, the static_arena quantum must 338 * be PAGESIZE. Any kmem caches that require static memory 339 * should source from static_arena, while direct allocations 340 * should only use static_alloc_arena. 341 */ 342 static_arena = vmem_create("static", NULL, 0, PAGESIZE, 343 segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP); 344 static_alloc_arena = vmem_create("static_alloc", NULL, 0, 345 sizeof (uint64_t), vmem_alloc, vmem_free, static_arena, 346 0, VM_SLEEP); 347 348 /* 349 * Create an arena for translation data (ptes, hmes, or hblks). 350 * We need an arena for this because hat_memload() is essential 351 * to vmem_populate() (see comments in common/os/vmem.c). 352 * 353 * Note: any kmem cache that allocates from hat_memload_arena 354 * must be created as a KMC_NOHASH cache (i.e. no external slab 355 * and bufctl structures to allocate) so that slab creation doesn't 356 * require anything more than a single vmem_alloc(). 357 */ 358 hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE, 359 hat_memload_alloc, segkmem_free, heap_arena, 0, 360 VM_SLEEP | VMC_POPULATOR | VMC_DUMPSAFE); 361 } 362 363 void 364 boot_mapin(caddr_t addr, size_t size) 365 { 366 caddr_t eaddr; 367 page_t *pp; 368 pfn_t pfnum; 369 370 if (page_resv(btop(size), KM_NOSLEEP) == 0) 371 panic("boot_mapin: page_resv failed"); 372 373 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 374 pfnum = va_to_pfn(addr); 375 if (pfnum == PFN_INVALID) 376 continue; 377 if ((pp = page_numtopp_nolock(pfnum)) == NULL) 378 panic("boot_mapin(): No pp for pfnum = %lx", pfnum); 379 380 /* 381 * must break up any large pages that may have constituent 382 * pages being utilized for BOP_ALLOC()'s before calling 383 * page_numtopp().The locking code (ie. page_reclaim()) 384 * can't handle them 385 */ 386 if (pp->p_szc != 0) 387 page_boot_demote(pp); 388 389 pp = page_numtopp(pfnum, SE_EXCL); 390 if (pp == NULL || PP_ISFREE(pp)) 391 panic("boot_alloc: pp is NULL or free"); 392 393 /* 394 * If the cage is on but doesn't yet contain this page, 395 * mark it as non-relocatable. 396 */ 397 if (kcage_on && !PP_ISNORELOC(pp)) { 398 PP_SETNORELOC(pp); 399 PLCNT_XFER_NORELOC(pp); 400 } 401 402 (void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL); 403 pp->p_lckcnt = 1; 404 #if defined(__x86) 405 page_downgrade(pp); 406 #else 407 page_unlock(pp); 408 #endif 409 } 410 } 411 412 /* 413 * Get pages from boot and hash them into the kernel's vp. 414 * Used after page structs have been allocated, but before segkmem is ready. 415 */ 416 void * 417 boot_alloc(void *inaddr, size_t size, uint_t align) 418 { 419 caddr_t addr = inaddr; 420 421 if (bootops == NULL) 422 prom_panic("boot_alloc: attempt to allocate memory after " 423 "BOP_GONE"); 424 425 size = ptob(btopr(size)); 426 #ifdef __sparc 427 if (bop_alloc_chunk(addr, size, align) != (caddr_t)addr) 428 panic("boot_alloc: bop_alloc_chunk failed"); 429 #else 430 if (BOP_ALLOC(bootops, addr, size, align) != addr) 431 panic("boot_alloc: BOP_ALLOC failed"); 432 #endif 433 boot_mapin((caddr_t)addr, size); 434 return (addr); 435 } 436 437 static void 438 segkmem_badop() 439 { 440 panic("segkmem_badop"); 441 } 442 443 #define SEGKMEM_BADOP(t) (t(*)())(uintptr_t)segkmem_badop 444 445 /*ARGSUSED*/ 446 static faultcode_t 447 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size, 448 enum fault_type type, enum seg_rw rw) 449 { 450 pgcnt_t npages; 451 spgcnt_t pg; 452 page_t *pp; 453 struct vnode *vp = seg->s_data; 454 455 ASSERT(RW_READ_HELD(&seg->s_as->a_lock)); 456 457 if (seg->s_as != &kas || size > seg->s_size || 458 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 459 panic("segkmem_fault: bad args"); 460 461 /* 462 * If it is one of segkp pages, call segkp_fault. 463 */ 464 if (segkp_bitmap && seg == &kvseg && 465 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 466 return (SEGOP_FAULT(hat, segkp, addr, size, type, rw)); 467 468 if (rw != S_READ && rw != S_WRITE && rw != S_OTHER) 469 return (FC_NOSUPPORT); 470 471 npages = btopr(size); 472 473 switch (type) { 474 case F_SOFTLOCK: /* lock down already-loaded translations */ 475 for (pg = 0; pg < npages; pg++) { 476 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 477 SE_SHARED); 478 if (pp == NULL) { 479 /* 480 * Hmm, no page. Does a kernel mapping 481 * exist for it? 482 */ 483 if (!hat_probe(kas.a_hat, addr)) { 484 addr -= PAGESIZE; 485 while (--pg >= 0) { 486 pp = page_find(vp, (u_offset_t) 487 (uintptr_t)addr); 488 if (pp) 489 page_unlock(pp); 490 addr -= PAGESIZE; 491 } 492 return (FC_NOMAP); 493 } 494 } 495 addr += PAGESIZE; 496 } 497 if (rw == S_OTHER) 498 hat_reserve(seg->s_as, addr, size); 499 return (0); 500 case F_SOFTUNLOCK: 501 while (npages--) { 502 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 503 if (pp) 504 page_unlock(pp); 505 addr += PAGESIZE; 506 } 507 return (0); 508 default: 509 return (FC_NOSUPPORT); 510 } 511 /*NOTREACHED*/ 512 } 513 514 static int 515 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 516 { 517 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 518 519 if (seg->s_as != &kas || size > seg->s_size || 520 addr < seg->s_base || addr + size > seg->s_base + seg->s_size) 521 panic("segkmem_setprot: bad args"); 522 523 /* 524 * If it is one of segkp pages, call segkp. 525 */ 526 if (segkp_bitmap && seg == &kvseg && 527 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 528 return (SEGOP_SETPROT(segkp, addr, size, prot)); 529 530 if (prot == 0) 531 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD); 532 else 533 hat_chgprot(kas.a_hat, addr, size, prot); 534 return (0); 535 } 536 537 /* 538 * This is a dummy segkmem function overloaded to call segkp 539 * when segkp is under the heap. 540 */ 541 /* ARGSUSED */ 542 static int 543 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot) 544 { 545 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 546 547 if (seg->s_as != &kas) 548 segkmem_badop(); 549 550 /* 551 * If it is one of segkp pages, call into segkp. 552 */ 553 if (segkp_bitmap && seg == &kvseg && 554 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 555 return (SEGOP_CHECKPROT(segkp, addr, size, prot)); 556 557 segkmem_badop(); 558 return (0); 559 } 560 561 /* 562 * This is a dummy segkmem function overloaded to call segkp 563 * when segkp is under the heap. 564 */ 565 /* ARGSUSED */ 566 static int 567 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta) 568 { 569 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 570 571 if (seg->s_as != &kas) 572 segkmem_badop(); 573 574 /* 575 * If it is one of segkp pages, call into segkp. 576 */ 577 if (segkp_bitmap && seg == &kvseg && 578 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 579 return (SEGOP_KLUSTER(segkp, addr, delta)); 580 581 segkmem_badop(); 582 return (0); 583 } 584 585 static void 586 segkmem_xdump_range(void *arg, void *start, size_t size) 587 { 588 struct as *as = arg; 589 caddr_t addr = start; 590 caddr_t addr_end = addr + size; 591 592 while (addr < addr_end) { 593 pfn_t pfn = hat_getpfnum(kas.a_hat, addr); 594 if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn)) 595 dump_addpage(as, addr, pfn); 596 addr += PAGESIZE; 597 dump_timeleft = dump_timeout; 598 } 599 } 600 601 static void 602 segkmem_dump_range(void *arg, void *start, size_t size) 603 { 604 caddr_t addr = start; 605 caddr_t addr_end = addr + size; 606 607 /* 608 * If we are about to start dumping the range of addresses we 609 * carved out of the kernel heap for the large page heap walk 610 * heap_lp_arena to find what segments are actually populated 611 */ 612 if (SEGKMEM_USE_LARGEPAGES && 613 addr == heap_lp_base && addr_end == heap_lp_end && 614 vmem_size(heap_lp_arena, VMEM_ALLOC) < size) { 615 vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT, 616 segkmem_xdump_range, arg); 617 } else { 618 segkmem_xdump_range(arg, start, size); 619 } 620 } 621 622 static void 623 segkmem_dump(struct seg *seg) 624 { 625 /* 626 * The kernel's heap_arena (represented by kvseg) is a very large 627 * VA space, most of which is typically unused. To speed up dumping 628 * we use vmem_walk() to quickly find the pieces of heap_arena that 629 * are actually in use. We do the same for heap32_arena and 630 * heap_core. 631 * 632 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage() 633 * may ultimately need to allocate memory. Reentrant walks are 634 * necessarily imperfect snapshots. The kernel heap continues 635 * to change during a live crash dump, for example. For a normal 636 * crash dump, however, we know that there won't be any other threads 637 * messing with the heap. Therefore, at worst, we may fail to dump 638 * the pages that get allocated by the act of dumping; but we will 639 * always dump every page that was allocated when the walk began. 640 * 641 * The other segkmem segments are dense (fully populated), so there's 642 * no need to use this technique when dumping them. 643 * 644 * Note: when adding special dump handling for any new sparsely- 645 * populated segments, be sure to add similar handling to the ::kgrep 646 * code in mdb. 647 */ 648 if (seg == &kvseg) { 649 vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT, 650 segkmem_dump_range, seg->s_as); 651 #ifndef __sparc 652 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 653 segkmem_dump_range, seg->s_as); 654 #endif 655 } else if (seg == &kvseg_core) { 656 vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT, 657 segkmem_dump_range, seg->s_as); 658 } else if (seg == &kvseg32) { 659 vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT, 660 segkmem_dump_range, seg->s_as); 661 vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT, 662 segkmem_dump_range, seg->s_as); 663 /* 664 * We don't want to dump pages attached to kzioseg since they 665 * contain file data from ZFS. If this page's segment is 666 * kzioseg return instead of writing it to the dump device. 667 * 668 * Same applies to VM memory allocations. 669 */ 670 } else if (seg == &kzioseg) { 671 return; 672 #if defined(__amd64) 673 } else if (seg == &kvmmseg) { 674 return; 675 #endif 676 } else { 677 segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size); 678 } 679 } 680 681 /* 682 * lock/unlock kmem pages over a given range [addr, addr+len). 683 * Returns a shadow list of pages in ppp. If there are holes 684 * in the range (e.g. some of the kernel mappings do not have 685 * underlying page_ts) returns ENOTSUP so that as_pagelock() 686 * will handle the range via as_fault(F_SOFTLOCK). 687 */ 688 /*ARGSUSED*/ 689 static int 690 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len, 691 page_t ***ppp, enum lock_type type, enum seg_rw rw) 692 { 693 page_t **pplist, *pp; 694 pgcnt_t npages; 695 spgcnt_t pg; 696 size_t nb; 697 struct vnode *vp = seg->s_data; 698 699 ASSERT(ppp != NULL); 700 701 /* 702 * If it is one of segkp pages, call into segkp. 703 */ 704 if (segkp_bitmap && seg == &kvseg && 705 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 706 return (SEGOP_PAGELOCK(segkp, addr, len, ppp, type, rw)); 707 708 npages = btopr(len); 709 nb = sizeof (page_t *) * npages; 710 711 if (type == L_PAGEUNLOCK) { 712 pplist = *ppp; 713 ASSERT(pplist != NULL); 714 715 for (pg = 0; pg < npages; pg++) { 716 pp = pplist[pg]; 717 page_unlock(pp); 718 } 719 kmem_free(pplist, nb); 720 return (0); 721 } 722 723 ASSERT(type == L_PAGELOCK); 724 725 pplist = kmem_alloc(nb, KM_NOSLEEP); 726 if (pplist == NULL) { 727 *ppp = NULL; 728 return (ENOTSUP); /* take the slow path */ 729 } 730 731 for (pg = 0; pg < npages; pg++) { 732 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_SHARED); 733 if (pp == NULL) { 734 while (--pg >= 0) 735 page_unlock(pplist[pg]); 736 kmem_free(pplist, nb); 737 *ppp = NULL; 738 return (ENOTSUP); 739 } 740 pplist[pg] = pp; 741 addr += PAGESIZE; 742 } 743 744 *ppp = pplist; 745 return (0); 746 } 747 748 /* 749 * This is a dummy segkmem function overloaded to call segkp 750 * when segkp is under the heap. 751 */ 752 /* ARGSUSED */ 753 static int 754 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp) 755 { 756 ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock)); 757 758 if (seg->s_as != &kas) 759 segkmem_badop(); 760 761 /* 762 * If it is one of segkp pages, call into segkp. 763 */ 764 if (segkp_bitmap && seg == &kvseg && 765 BT_TEST(segkp_bitmap, btop((uintptr_t)(addr - seg->s_base)))) 766 return (SEGOP_GETMEMID(segkp, addr, memidp)); 767 768 segkmem_badop(); 769 return (0); 770 } 771 772 /*ARGSUSED*/ 773 static lgrp_mem_policy_info_t * 774 segkmem_getpolicy(struct seg *seg, caddr_t addr) 775 { 776 return (NULL); 777 } 778 779 /*ARGSUSED*/ 780 static int 781 segkmem_capable(struct seg *seg, segcapability_t capability) 782 { 783 if (capability == S_CAPABILITY_NOMINFLT) 784 return (1); 785 return (0); 786 } 787 788 struct seg_ops segkmem_ops = { 789 SEGKMEM_BADOP(int), /* dup */ 790 SEGKMEM_BADOP(int), /* unmap */ 791 SEGKMEM_BADOP(void), /* free */ 792 segkmem_fault, 793 SEGKMEM_BADOP(faultcode_t), /* faulta */ 794 segkmem_setprot, 795 segkmem_checkprot, 796 segkmem_kluster, 797 SEGKMEM_BADOP(size_t), /* swapout */ 798 SEGKMEM_BADOP(int), /* sync */ 799 SEGKMEM_BADOP(size_t), /* incore */ 800 SEGKMEM_BADOP(int), /* lockop */ 801 SEGKMEM_BADOP(int), /* getprot */ 802 SEGKMEM_BADOP(u_offset_t), /* getoffset */ 803 SEGKMEM_BADOP(int), /* gettype */ 804 SEGKMEM_BADOP(int), /* getvp */ 805 SEGKMEM_BADOP(int), /* advise */ 806 segkmem_dump, 807 segkmem_pagelock, 808 SEGKMEM_BADOP(int), /* setpgsz */ 809 segkmem_getmemid, 810 segkmem_getpolicy, /* getpolicy */ 811 segkmem_capable, /* capable */ 812 seg_inherit_notsup /* inherit */ 813 }; 814 815 int 816 segkmem_create(struct seg *seg) 817 { 818 ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock)); 819 seg->s_ops = &segkmem_ops; 820 if (seg == &kzioseg) 821 seg->s_data = &kvps[KV_ZVP]; 822 #if defined(__amd64) 823 else if (seg == &kvmmseg) 824 seg->s_data = &kvps[KV_VVP]; 825 #endif 826 else 827 seg->s_data = &kvps[KV_KVP]; 828 kas.a_size += seg->s_size; 829 return (0); 830 } 831 832 /*ARGSUSED*/ 833 page_t * 834 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg) 835 { 836 struct seg kseg = { 0 }; 837 int pgflags = PG_EXCL; 838 struct vnode *vp = arg; 839 840 if (vp == NULL) 841 vp = &kvp; 842 843 kseg.s_as = &kas; 844 845 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 846 pgflags |= PG_NORELOC; 847 if ((vmflag & VM_NOSLEEP) == 0) 848 pgflags |= PG_WAIT; 849 if (vmflag & VM_PANIC) 850 pgflags |= PG_PANIC; 851 if (vmflag & VM_PUSHPAGE) 852 pgflags |= PG_PUSHPAGE; 853 if (vmflag & VM_NORMALPRI) { 854 ASSERT(vmflag & VM_NOSLEEP); 855 pgflags |= PG_NORMALPRI; 856 } 857 858 return (page_create_va(vp, (u_offset_t)(uintptr_t)addr, size, 859 pgflags, &kseg, addr)); 860 } 861 862 /* 863 * Allocate pages to back the virtual address range [addr, addr + size). 864 * If addr is NULL, allocate the virtual address space as well. 865 */ 866 void * 867 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr, 868 page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg) 869 { 870 page_t *ppl; 871 caddr_t addr = inaddr; 872 pgcnt_t npages = btopr(size); 873 int allocflag; 874 875 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 876 return (NULL); 877 878 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 879 880 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 881 if (inaddr == NULL) 882 vmem_free(vmp, addr, size); 883 return (NULL); 884 } 885 886 ppl = page_create_func(addr, size, vmflag, pcarg); 887 if (ppl == NULL) { 888 if (inaddr == NULL) 889 vmem_free(vmp, addr, size); 890 page_unresv(npages); 891 return (NULL); 892 } 893 894 /* 895 * Under certain conditions, we need to let the HAT layer know 896 * that it cannot safely allocate memory. Allocations from 897 * the hat_memload vmem arena always need this, to prevent 898 * infinite recursion. 899 * 900 * In addition, the x86 hat cannot safely do memory 901 * allocations while in vmem_populate(), because there 902 * is no simple bound on its usage. 903 */ 904 if (vmflag & VM_MEMLOAD) 905 allocflag = HAT_NO_KALLOC; 906 #if defined(__x86) 907 else if (vmem_is_populator()) 908 allocflag = HAT_NO_KALLOC; 909 #endif 910 else 911 allocflag = 0; 912 913 while (ppl != NULL) { 914 page_t *pp = ppl; 915 page_sub(&ppl, pp); 916 ASSERT(page_iolock_assert(pp)); 917 ASSERT(PAGE_EXCL(pp)); 918 page_io_unlock(pp); 919 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp, 920 (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 921 HAT_LOAD_LOCK | allocflag); 922 pp->p_lckcnt = 1; 923 #if defined(__x86) 924 page_downgrade(pp); 925 #else 926 if (vmflag & SEGKMEM_SHARELOCKED) 927 page_downgrade(pp); 928 else 929 page_unlock(pp); 930 #endif 931 } 932 933 return (addr); 934 } 935 936 static void * 937 segkmem_alloc_vn(vmem_t *vmp, size_t size, int vmflag, struct vnode *vp) 938 { 939 void *addr; 940 segkmem_gc_list_t *gcp, **prev_gcpp; 941 942 ASSERT(vp != NULL); 943 944 if (kvseg.s_base == NULL) { 945 #ifndef __sparc 946 if (bootops->bsys_alloc == NULL) 947 halt("Memory allocation between bop_alloc() and " 948 "kmem_alloc().\n"); 949 #endif 950 951 /* 952 * There's not a lot of memory to go around during boot, 953 * so recycle it if we can. 954 */ 955 for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL; 956 prev_gcpp = &gcp->gc_next) { 957 if (gcp->gc_arena == vmp && gcp->gc_size == size) { 958 *prev_gcpp = gcp->gc_next; 959 return (gcp); 960 } 961 } 962 963 addr = vmem_alloc(vmp, size, vmflag | VM_PANIC); 964 if (boot_alloc(addr, size, BO_NO_ALIGN) != addr) 965 panic("segkmem_alloc: boot_alloc failed"); 966 return (addr); 967 } 968 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 969 segkmem_page_create, vp)); 970 } 971 972 void * 973 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag) 974 { 975 return (segkmem_alloc_vn(vmp, size, vmflag, &kvp)); 976 } 977 978 static void * 979 segkmem_zio_alloc(vmem_t *vmp, size_t size, int vmflag) 980 { 981 return (segkmem_alloc_vn(vmp, size, vmflag, &kvps[KV_ZVP])); 982 } 983 984 /* 985 * Any changes to this routine must also be carried over to 986 * devmap_free_pages() in the seg_dev driver. This is because 987 * we currently don't have a special kernel segment for non-paged 988 * kernel memory that is exported by drivers to user space. 989 */ 990 void 991 segkmem_xfree(vmem_t *vmp, void *inaddr, size_t size, struct vnode *vp, 992 void (*func)(page_t *)) 993 { 994 page_t *pp; 995 caddr_t addr = inaddr; 996 caddr_t eaddr; 997 pgcnt_t npages = btopr(size); 998 999 ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0); 1000 ASSERT(vp != NULL); 1001 1002 if (kvseg.s_base == NULL) { 1003 segkmem_gc_list_t *gc = inaddr; 1004 gc->gc_arena = vmp; 1005 gc->gc_size = size; 1006 gc->gc_next = segkmem_gc_list; 1007 segkmem_gc_list = gc; 1008 return; 1009 } 1010 1011 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1012 1013 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 1014 #if defined(__x86) 1015 pp = page_find(vp, (u_offset_t)(uintptr_t)addr); 1016 if (pp == NULL) 1017 panic("segkmem_free: page not found"); 1018 if (!page_tryupgrade(pp)) { 1019 /* 1020 * Some other thread has a sharelock. Wait for 1021 * it to drop the lock so we can free this page. 1022 */ 1023 page_unlock(pp); 1024 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, 1025 SE_EXCL); 1026 } 1027 #else 1028 pp = page_lookup(vp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1029 #endif 1030 if (pp == NULL) 1031 panic("segkmem_free: page not found"); 1032 /* Clear p_lckcnt so page_destroy() doesn't update availrmem */ 1033 pp->p_lckcnt = 0; 1034 if (func) 1035 func(pp); 1036 else 1037 page_destroy(pp, 0); 1038 } 1039 if (func == NULL) 1040 page_unresv(npages); 1041 1042 if (vmp != NULL) 1043 vmem_free(vmp, inaddr, size); 1044 1045 } 1046 1047 void 1048 segkmem_free(vmem_t *vmp, void *inaddr, size_t size) 1049 { 1050 segkmem_xfree(vmp, inaddr, size, &kvp, NULL); 1051 } 1052 1053 static void 1054 segkmem_zio_free(vmem_t *vmp, void *inaddr, size_t size) 1055 { 1056 segkmem_xfree(vmp, inaddr, size, &kvps[KV_ZVP], NULL); 1057 } 1058 1059 void 1060 segkmem_gc(void) 1061 { 1062 ASSERT(kvseg.s_base != NULL); 1063 while (segkmem_gc_list != NULL) { 1064 segkmem_gc_list_t *gc = segkmem_gc_list; 1065 segkmem_gc_list = gc->gc_next; 1066 segkmem_free(gc->gc_arena, gc, gc->gc_size); 1067 } 1068 } 1069 1070 /* 1071 * Legacy entry points from here to end of file. 1072 */ 1073 void 1074 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot, 1075 pfn_t pfn, uint_t flags) 1076 { 1077 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1078 hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot, 1079 flags | HAT_LOAD_LOCK); 1080 } 1081 1082 void 1083 segkmem_mapout(struct seg *seg, void *addr, size_t size) 1084 { 1085 hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1086 } 1087 1088 void * 1089 kmem_getpages(pgcnt_t npages, int kmflag) 1090 { 1091 return (kmem_alloc(ptob(npages), kmflag)); 1092 } 1093 1094 void 1095 kmem_freepages(void *addr, pgcnt_t npages) 1096 { 1097 kmem_free(addr, ptob(npages)); 1098 } 1099 1100 /* 1101 * segkmem_page_create_large() allocates a large page to be used for the kmem 1102 * caches. If kpr is enabled we ask for a relocatable page unless requested 1103 * otherwise. If kpr is disabled we have to ask for a non-reloc page 1104 */ 1105 static page_t * 1106 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg) 1107 { 1108 int pgflags; 1109 1110 pgflags = PG_EXCL; 1111 1112 if (segkmem_reloc == 0 || (vmflag & VM_NORELOC)) 1113 pgflags |= PG_NORELOC; 1114 if (!(vmflag & VM_NOSLEEP)) 1115 pgflags |= PG_WAIT; 1116 if (vmflag & VM_PUSHPAGE) 1117 pgflags |= PG_PUSHPAGE; 1118 if (vmflag & VM_NORMALPRI) 1119 pgflags |= PG_NORMALPRI; 1120 1121 return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 1122 pgflags, &kvseg, addr, arg)); 1123 } 1124 1125 /* 1126 * Allocate a large page to back the virtual address range 1127 * [addr, addr + size). If addr is NULL, allocate the virtual address 1128 * space as well. 1129 */ 1130 static void * 1131 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag, 1132 uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *), 1133 void *pcarg) 1134 { 1135 caddr_t addr = inaddr, pa; 1136 size_t lpsize = segkmem_lpsize; 1137 pgcnt_t npages = btopr(size); 1138 pgcnt_t nbpages = btop(lpsize); 1139 pgcnt_t nlpages = size >> segkmem_lpshift; 1140 size_t ppasize = nbpages * sizeof (page_t *); 1141 page_t *pp, *rootpp, **ppa, *pplist = NULL; 1142 int i; 1143 1144 vmflag |= VM_NOSLEEP; 1145 1146 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 1147 return (NULL); 1148 } 1149 1150 /* 1151 * allocate an array we need for hat_memload_array. 1152 * we use a separate arena to avoid recursion. 1153 * we will not need this array when hat_memload_array learns pp++ 1154 */ 1155 if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) { 1156 goto fail_array_alloc; 1157 } 1158 1159 if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL) 1160 goto fail_vmem_alloc; 1161 1162 ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0); 1163 1164 /* create all the pages */ 1165 for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) { 1166 if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL) 1167 goto fail_page_create; 1168 page_list_concat(&pplist, &pp); 1169 } 1170 1171 /* at this point we have all the resource to complete the request */ 1172 while ((rootpp = pplist) != NULL) { 1173 for (i = 0; i < nbpages; i++) { 1174 ASSERT(pplist != NULL); 1175 pp = pplist; 1176 page_sub(&pplist, pp); 1177 ASSERT(page_iolock_assert(pp)); 1178 page_io_unlock(pp); 1179 ppa[i] = pp; 1180 } 1181 /* 1182 * Load the locked entry. It's OK to preload the entry into the 1183 * TSB since we now support large mappings in the kernel TSB. 1184 */ 1185 hat_memload_array(kas.a_hat, 1186 (caddr_t)(uintptr_t)rootpp->p_offset, lpsize, 1187 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr, 1188 HAT_LOAD_LOCK); 1189 1190 for (--i; i >= 0; --i) { 1191 ppa[i]->p_lckcnt = 1; 1192 page_unlock(ppa[i]); 1193 } 1194 } 1195 1196 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1197 return (addr); 1198 1199 fail_page_create: 1200 while ((rootpp = pplist) != NULL) { 1201 for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) { 1202 ASSERT(pp != NULL); 1203 page_sub(&pplist, pp); 1204 ASSERT(page_iolock_assert(pp)); 1205 page_io_unlock(pp); 1206 } 1207 page_destroy_pages(rootpp); 1208 } 1209 1210 if (inaddr == NULL) 1211 vmem_free(vmp, addr, size); 1212 1213 fail_vmem_alloc: 1214 vmem_free(segkmem_ppa_arena, ppa, ppasize); 1215 1216 fail_array_alloc: 1217 page_unresv(npages); 1218 1219 return (NULL); 1220 } 1221 1222 static void 1223 segkmem_free_one_lp(caddr_t addr, size_t size) 1224 { 1225 page_t *pp, *rootpp = NULL; 1226 pgcnt_t pgs_left = btopr(size); 1227 1228 ASSERT(size == segkmem_lpsize); 1229 1230 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 1231 1232 for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) { 1233 pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL); 1234 if (pp == NULL) 1235 panic("segkmem_free_one_lp: page not found"); 1236 ASSERT(PAGE_EXCL(pp)); 1237 pp->p_lckcnt = 0; 1238 if (rootpp == NULL) 1239 rootpp = pp; 1240 } 1241 ASSERT(rootpp != NULL); 1242 page_destroy_pages(rootpp); 1243 1244 /* page_unresv() is done by the caller */ 1245 } 1246 1247 /* 1248 * This function is called to import new spans into the vmem arenas like 1249 * kmem_default_arena and kmem_oversize_arena. It first tries to import 1250 * spans from large page arena - kmem_lp_arena. In order to do this it might 1251 * have to "upgrade the requested size" to kmem_lp_arena quantum. If 1252 * it was not able to satisfy the upgraded request it then calls regular 1253 * segkmem_alloc() that satisfies the request by importing from "*vmp" arena 1254 */ 1255 /*ARGSUSED*/ 1256 void * 1257 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 1258 { 1259 size_t size; 1260 kthread_t *t = curthread; 1261 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1262 1263 ASSERT(sizep != NULL); 1264 1265 size = *sizep; 1266 1267 if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) && 1268 !(vmflag & SEGKMEM_SHARELOCKED)) { 1269 1270 size_t kmemlp_qnt = segkmem_kmemlp_quantum; 1271 size_t asize = P2ROUNDUP(size, kmemlp_qnt); 1272 void *addr = NULL; 1273 ulong_t *lpthrtp = &lpcb->lp_throttle; 1274 ulong_t lpthrt = *lpthrtp; 1275 int dowakeup = 0; 1276 int doalloc = 1; 1277 1278 ASSERT(kmem_lp_arena != NULL); 1279 ASSERT(asize >= size); 1280 1281 if (lpthrt != 0) { 1282 /* try to update the throttle value */ 1283 lpthrt = atomic_inc_ulong_nv(lpthrtp); 1284 if (lpthrt >= segkmem_lpthrottle_max) { 1285 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1286 segkmem_lpthrottle_max / 4); 1287 } 1288 1289 /* 1290 * when we get above throttle start do an exponential 1291 * backoff at trying large pages and reaping 1292 */ 1293 if (lpthrt > segkmem_lpthrottle_start && 1294 !ISP2(lpthrt)) { 1295 lpcb->allocs_throttled++; 1296 lpthrt--; 1297 if (ISP2(lpthrt)) 1298 kmem_reap(); 1299 return (segkmem_alloc(vmp, size, vmflag)); 1300 } 1301 } 1302 1303 if (!(vmflag & VM_NOSLEEP) && 1304 segkmem_heaplp_quantum >= (8 * kmemlp_qnt) && 1305 vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt && 1306 asize < (segkmem_heaplp_quantum - kmemlp_qnt)) { 1307 1308 /* 1309 * we are low on free memory in kmem_lp_arena 1310 * we let only one guy to allocate heap_lp 1311 * quantum size chunk that everybody is going to 1312 * share 1313 */ 1314 mutex_enter(&lpcb->lp_lock); 1315 1316 if (lpcb->lp_wait) { 1317 1318 /* we are not the first one - wait */ 1319 cv_wait(&lpcb->lp_cv, &lpcb->lp_lock); 1320 if (vmem_size(kmem_lp_arena, VMEM_FREE) < 1321 kmemlp_qnt) { 1322 doalloc = 0; 1323 } 1324 } else if (vmem_size(kmem_lp_arena, VMEM_FREE) <= 1325 kmemlp_qnt) { 1326 1327 /* 1328 * we are the first one, make sure we import 1329 * a large page 1330 */ 1331 if (asize == kmemlp_qnt) 1332 asize += kmemlp_qnt; 1333 dowakeup = 1; 1334 lpcb->lp_wait = 1; 1335 } 1336 1337 mutex_exit(&lpcb->lp_lock); 1338 } 1339 1340 /* 1341 * VM_ABORT flag prevents sleeps in vmem_xalloc when 1342 * large pages are not available. In that case this allocation 1343 * attempt will fail and we will retry allocation with small 1344 * pages. We also do not want to panic if this allocation fails 1345 * because we are going to retry. 1346 */ 1347 if (doalloc) { 1348 addr = vmem_alloc(kmem_lp_arena, asize, 1349 (vmflag | VM_ABORT) & ~VM_PANIC); 1350 1351 if (dowakeup) { 1352 mutex_enter(&lpcb->lp_lock); 1353 ASSERT(lpcb->lp_wait != 0); 1354 lpcb->lp_wait = 0; 1355 cv_broadcast(&lpcb->lp_cv); 1356 mutex_exit(&lpcb->lp_lock); 1357 } 1358 } 1359 1360 if (addr != NULL) { 1361 *sizep = asize; 1362 *lpthrtp = 0; 1363 return (addr); 1364 } 1365 1366 if (vmflag & VM_NOSLEEP) 1367 lpcb->nosleep_allocs_failed++; 1368 else 1369 lpcb->sleep_allocs_failed++; 1370 lpcb->alloc_bytes_failed += size; 1371 1372 /* if large page throttling is not started yet do it */ 1373 if (segkmem_use_lpthrottle && lpthrt == 0) { 1374 lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1); 1375 } 1376 } 1377 return (segkmem_alloc(vmp, size, vmflag)); 1378 } 1379 1380 void 1381 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size) 1382 { 1383 if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) { 1384 segkmem_free(vmp, inaddr, size); 1385 } else { 1386 vmem_free(kmem_lp_arena, inaddr, size); 1387 } 1388 } 1389 1390 /* 1391 * segkmem_alloc_lpi() imports virtual memory from large page heap arena 1392 * into kmem_lp arena. In the process it maps the imported segment with 1393 * large pages 1394 */ 1395 static void * 1396 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag) 1397 { 1398 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1399 void *addr; 1400 1401 ASSERT(size != 0); 1402 ASSERT(vmp == heap_lp_arena); 1403 1404 /* do not allow large page heap grow beyound limits */ 1405 if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) { 1406 lpcb->allocs_limited++; 1407 return (NULL); 1408 } 1409 1410 addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0, 1411 segkmem_page_create_large, NULL); 1412 return (addr); 1413 } 1414 1415 /* 1416 * segkmem_free_lpi() returns virtual memory back into large page heap arena 1417 * from kmem_lp arena. Beore doing this it unmaps the segment and frees 1418 * large pages used to map it. 1419 */ 1420 static void 1421 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size) 1422 { 1423 pgcnt_t nlpages = size >> segkmem_lpshift; 1424 size_t lpsize = segkmem_lpsize; 1425 caddr_t addr = inaddr; 1426 pgcnt_t npages = btopr(size); 1427 int i; 1428 1429 ASSERT(vmp == heap_lp_arena); 1430 ASSERT(IS_KMEM_VA_LARGEPAGE(addr)); 1431 ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0); 1432 1433 for (i = 0; i < nlpages; i++) { 1434 segkmem_free_one_lp(addr, lpsize); 1435 addr += lpsize; 1436 } 1437 1438 page_unresv(npages); 1439 1440 vmem_free(vmp, inaddr, size); 1441 } 1442 1443 /* 1444 * This function is called at system boot time by kmem_init right after 1445 * /etc/system file has been read. It checks based on hardware configuration 1446 * and /etc/system settings if system is going to use large pages. The 1447 * initialiazation necessary to actually start using large pages 1448 * happens later in the process after segkmem_heap_lp_init() is called. 1449 */ 1450 int 1451 segkmem_lpsetup() 1452 { 1453 int use_large_pages = 0; 1454 1455 #ifdef __sparc 1456 1457 size_t memtotal = physmem * PAGESIZE; 1458 1459 if (heap_lp_base == NULL) { 1460 segkmem_lpsize = PAGESIZE; 1461 return (0); 1462 } 1463 1464 /* get a platform dependent value of large page size for kernel heap */ 1465 segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize); 1466 1467 if (segkmem_lpsize <= PAGESIZE) { 1468 /* 1469 * put virtual space reserved for the large page kernel 1470 * back to the regular heap 1471 */ 1472 vmem_xfree(heap_arena, heap_lp_base, 1473 heap_lp_end - heap_lp_base); 1474 heap_lp_base = NULL; 1475 heap_lp_end = NULL; 1476 segkmem_lpsize = PAGESIZE; 1477 return (0); 1478 } 1479 1480 /* set heap_lp quantum if necessary */ 1481 if (segkmem_heaplp_quantum == 0 || !ISP2(segkmem_heaplp_quantum) || 1482 P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) { 1483 segkmem_heaplp_quantum = segkmem_lpsize; 1484 } 1485 1486 /* set kmem_lp quantum if necessary */ 1487 if (segkmem_kmemlp_quantum == 0 || !ISP2(segkmem_kmemlp_quantum) || 1488 segkmem_kmemlp_quantum > segkmem_heaplp_quantum) { 1489 segkmem_kmemlp_quantum = segkmem_heaplp_quantum; 1490 } 1491 1492 /* set total amount of memory allowed for large page kernel heap */ 1493 if (segkmem_kmemlp_max == 0) { 1494 if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100) 1495 segkmem_kmemlp_pcnt = 12; 1496 segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100; 1497 } 1498 segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max, 1499 segkmem_heaplp_quantum); 1500 1501 /* fix lp kmem preallocation request if necesssary */ 1502 if (segkmem_kmemlp_min) { 1503 segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min, 1504 segkmem_heaplp_quantum); 1505 if (segkmem_kmemlp_min > segkmem_kmemlp_max) 1506 segkmem_kmemlp_min = segkmem_kmemlp_max; 1507 } 1508 1509 use_large_pages = 1; 1510 segkmem_lpszc = page_szc(segkmem_lpsize); 1511 segkmem_lpshift = page_get_shift(segkmem_lpszc); 1512 1513 #endif 1514 return (use_large_pages); 1515 } 1516 1517 void 1518 segkmem_zio_init(void *zio_mem_base, size_t zio_mem_size) 1519 { 1520 ASSERT(zio_mem_base != NULL); 1521 ASSERT(zio_mem_size != 0); 1522 1523 /* 1524 * To reduce VA space fragmentation, we set up quantum caches for the 1525 * smaller sizes; we chose 32k because that translates to 128k VA 1526 * slabs, which matches nicely with the common 128k zio_data bufs. 1527 */ 1528 zio_arena = vmem_create("zfs_file_data", zio_mem_base, zio_mem_size, 1529 PAGESIZE, NULL, NULL, NULL, 32 * 1024, VM_SLEEP); 1530 1531 zio_alloc_arena = vmem_create("zfs_file_data_buf", NULL, 0, PAGESIZE, 1532 segkmem_zio_alloc, segkmem_zio_free, zio_arena, 0, VM_SLEEP); 1533 1534 ASSERT(zio_arena != NULL); 1535 ASSERT(zio_alloc_arena != NULL); 1536 } 1537 1538 #if defined(__amd64) 1539 1540 void 1541 segkmem_kvmm_init(void *base, size_t size) 1542 { 1543 ASSERT(base != NULL); 1544 ASSERT(size != 0); 1545 1546 kvmm_arena = vmem_create("kvmm_arena", base, size, 1024 * 1024, 1547 NULL, NULL, NULL, 0, VM_SLEEP); 1548 1549 ASSERT(kvmm_arena != NULL); 1550 } 1551 1552 #elif defined(__sparc) 1553 1554 static void * 1555 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag) 1556 { 1557 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1558 void *addr; 1559 1560 if (ppaquantum <= PAGESIZE) 1561 return (segkmem_alloc(vmp, size, vmflag)); 1562 1563 ASSERT((size & (ppaquantum - 1)) == 0); 1564 1565 addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag); 1566 if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0, 1567 segkmem_page_create, NULL) == NULL) { 1568 vmem_xfree(vmp, addr, size); 1569 addr = NULL; 1570 } 1571 1572 return (addr); 1573 } 1574 1575 static void 1576 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size) 1577 { 1578 size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *); 1579 1580 ASSERT(addr != NULL); 1581 1582 if (ppaquantum <= PAGESIZE) { 1583 segkmem_free(vmp, addr, size); 1584 } else { 1585 segkmem_free(NULL, addr, size); 1586 vmem_xfree(vmp, addr, size); 1587 } 1588 } 1589 1590 void 1591 segkmem_heap_lp_init() 1592 { 1593 segkmem_lpcb_t *lpcb = &segkmem_lpcb; 1594 size_t heap_lp_size = heap_lp_end - heap_lp_base; 1595 size_t lpsize = segkmem_lpsize; 1596 size_t ppaquantum; 1597 void *addr; 1598 1599 if (segkmem_lpsize <= PAGESIZE) { 1600 ASSERT(heap_lp_base == NULL); 1601 ASSERT(heap_lp_end == NULL); 1602 return; 1603 } 1604 1605 ASSERT(segkmem_heaplp_quantum >= lpsize); 1606 ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0); 1607 ASSERT(lpcb->lp_uselp == 0); 1608 ASSERT(heap_lp_base != NULL); 1609 ASSERT(heap_lp_end != NULL); 1610 ASSERT(heap_lp_base < heap_lp_end); 1611 ASSERT(heap_lp_arena == NULL); 1612 ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0); 1613 ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0); 1614 1615 /* create large page heap arena */ 1616 heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size, 1617 segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP); 1618 1619 ASSERT(heap_lp_arena != NULL); 1620 1621 /* This arena caches memory already mapped by large pages */ 1622 kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum, 1623 segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP); 1624 1625 ASSERT(kmem_lp_arena != NULL); 1626 1627 mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL); 1628 cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL); 1629 1630 /* 1631 * this arena is used for the array of page_t pointers necessary 1632 * to call hat_mem_load_array 1633 */ 1634 ppaquantum = btopr(lpsize) * sizeof (page_t *); 1635 segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum, 1636 segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum, 1637 VM_SLEEP); 1638 1639 ASSERT(segkmem_ppa_arena != NULL); 1640 1641 /* prealloacate some memory for the lp kernel heap */ 1642 if (segkmem_kmemlp_min) { 1643 1644 ASSERT(P2PHASE(segkmem_kmemlp_min, 1645 segkmem_heaplp_quantum) == 0); 1646 1647 if ((addr = segkmem_alloc_lpi(heap_lp_arena, 1648 segkmem_kmemlp_min, VM_SLEEP)) != NULL) { 1649 1650 addr = vmem_add(kmem_lp_arena, addr, 1651 segkmem_kmemlp_min, VM_SLEEP); 1652 ASSERT(addr != NULL); 1653 } 1654 } 1655 1656 lpcb->lp_uselp = 1; 1657 } 1658 1659 #endif 1660