xref: /illumos-gate/usr/src/uts/common/vm/seg_kmem.c (revision 6d9a41ff63273acce102bfb2d51423ed920e6dcd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/t_lock.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/tuneable.h>
34 #include <sys/systm.h>
35 #include <sys/vm.h>
36 #include <sys/kmem.h>
37 #include <sys/vmem.h>
38 #include <sys/mman.h>
39 #include <sys/cmn_err.h>
40 #include <sys/debug.h>
41 #include <sys/dumphdr.h>
42 #include <sys/bootconf.h>
43 #include <sys/lgrp.h>
44 #include <vm/seg_kmem.h>
45 #include <vm/hat.h>
46 #include <vm/page.h>
47 #include <vm/vm_dep.h>
48 #include <vm/faultcode.h>
49 #include <sys/promif.h>
50 #include <vm/seg_kp.h>
51 #include <sys/bitmap.h>
52 #include <sys/mem_cage.h>
53 
54 /*
55  * seg_kmem is the primary kernel memory segment driver.  It
56  * maps the kernel heap [kernelheap, ekernelheap), module text,
57  * and all memory which was allocated before the VM was initialized
58  * into kas.
59  *
60  * Pages which belong to seg_kmem are hashed into &kvp vnode at
61  * an offset equal to (u_offset_t)virt_addr, and have p_lckcnt >= 1.
62  * They must never be paged out since segkmem_fault() is a no-op to
63  * prevent recursive faults.
64  *
65  * Currently, seg_kmem pages are sharelocked (p_sharelock == 1) on
66  * __x86 and are unlocked (p_sharelock == 0) on __sparc.  Once __x86
67  * supports relocation the #ifdef kludges can be removed.
68  *
69  * seg_kmem pages may be subject to relocation by page_relocate(),
70  * provided that the HAT supports it; if this is so, segkmem_reloc
71  * will be set to a nonzero value. All boot time allocated memory as
72  * well as static memory is considered off limits to relocation.
73  * Pages are "relocatable" if p_state does not have P_NORELOC set, so
74  * we request P_NORELOC pages for memory that isn't safe to relocate.
75  *
76  * The kernel heap is logically divided up into four pieces:
77  *
78  *   heap32_arena is for allocations that require 32-bit absolute
79  *   virtual addresses (e.g. code that uses 32-bit pointers/offsets).
80  *
81  *   heap_core is for allocations that require 2GB *relative*
82  *   offsets; in other words all memory from heap_core is within
83  *   2GB of all other memory from the same arena. This is a requirement
84  *   of the addressing modes of some processors in supervisor code.
85  *
86  *   heap_arena is the general heap arena.
87  *
88  *   static_arena is the static memory arena.  Allocations from it
89  *   are not subject to relocation so it is safe to use the memory
90  *   physical address as well as the virtual address (e.g. the VA to
91  *   PA translations are static).  Caches may import from static_arena;
92  *   all other static memory allocations should use static_alloc_arena.
93  *
94  * On some platforms which have limited virtual address space, seg_kmem
95  * may share [kernelheap, ekernelheap) with seg_kp; if this is so,
96  * segkp_bitmap is non-NULL, and each bit represents a page of virtual
97  * address space which is actually seg_kp mapped.
98  */
99 
100 extern ulong_t *segkp_bitmap;   /* Is set if segkp is from the kernel heap */
101 
102 char *kernelheap;		/* start of primary kernel heap */
103 char *ekernelheap;		/* end of primary kernel heap */
104 struct seg kvseg;		/* primary kernel heap segment */
105 struct seg kvseg_core;		/* "core" kernel heap segment */
106 vmem_t *heap_arena;		/* primary kernel heap arena */
107 vmem_t *heap_core_arena;	/* core kernel heap arena */
108 char *heap_core_base;		/* start of core kernel heap arena */
109 char *heap_lp_base;		/* start of kernel large page heap arena */
110 char *heap_lp_end;		/* end of kernel large page heap arena */
111 vmem_t *hat_memload_arena;	/* HAT translation data */
112 struct seg kvseg32;		/* 32-bit kernel heap segment */
113 vmem_t *heap32_arena;		/* 32-bit kernel heap arena */
114 vmem_t *heaptext_arena;		/* heaptext arena */
115 struct as kas;			/* kernel address space */
116 struct vnode kvp;		/* vnode for all segkmem pages */
117 int segkmem_reloc;		/* enable/disable relocatable segkmem pages */
118 vmem_t *static_arena;		/* arena for caches to import static memory */
119 vmem_t *static_alloc_arena;	/* arena for allocating static memory */
120 
121 /*
122  * seg_kmem driver can map part of the kernel heap with large pages.
123  * Currently this functionality is implemented for sparc platforms only.
124  *
125  * The large page size "segkmem_lpsize" for kernel heap is selected in the
126  * platform specific code. It can also be modified via /etc/system file.
127  * Setting segkmem_lpsize to PAGESIZE in /etc/system disables usage of large
128  * pages for kernel heap. "segkmem_lpshift" is adjusted appropriately to
129  * match segkmem_lpsize.
130  *
131  * At boot time we carve from kernel heap arena a range of virtual addresses
132  * that will be used for large page mappings. This range [heap_lp_base,
133  * heap_lp_end) is set up as a separate vmem arena - "heap_lp_arena". We also
134  * create "kmem_lp_arena" that caches memory already backed up by large
135  * pages. kmem_lp_arena imports virtual segments from heap_lp_arena.
136  */
137 
138 size_t	segkmem_lpsize;
139 static  uint_t	segkmem_lpshift = PAGESHIFT;
140 
141 size_t  segkmem_kmemlp_quantum = 0x400000;	/* 4MB */
142 size_t  segkmem_heaplp_quantum;
143 vmem_t *heap_lp_arena;
144 static  vmem_t *kmem_lp_arena;
145 static  vmem_t *segkmem_ppa_arena;
146 static	segkmem_lpcb_t segkmem_lpcb;
147 
148 /*
149  * We use "segkmem_kmemlp_max" to limit the total amount of physical memory
150  * consumed by the large page heap. By default this parameter is set to 1/8 of
151  * physmem but can be adjusted through /etc/system either directly or
152  * indirectly by setting "segkmem_kmemlp_pcnt" to the percent of physmem
153  * we allow for large page heap.
154  */
155 size_t  segkmem_kmemlp_max;
156 static  uint_t  segkmem_kmemlp_pcnt;
157 
158 /*
159  * Getting large pages for kernel heap could be problematic due to
160  * physical memory fragmentation. That's why we allow to preallocate
161  * "segkmem_kmemlp_min" bytes at boot time.
162  */
163 static  size_t	segkmem_kmemlp_min;
164 
165 /*
166  * Throttling is used to avoid expensive tries to allocate large pages
167  * for kernel heap when a lot of succesive attempts to do so fail.
168  */
169 static  ulong_t segkmem_lpthrottle_max = 0x400000;
170 static  ulong_t segkmem_lpthrottle_start = 0x40;
171 static  ulong_t segkmem_use_lpthrottle = 1;
172 
173 /*
174  * Freed pages accumulate on a garbage list until segkmem is ready,
175  * at which point we call segkmem_gc() to free it all.
176  */
177 typedef struct segkmem_gc_list {
178 	struct segkmem_gc_list	*gc_next;
179 	vmem_t			*gc_arena;
180 	size_t			gc_size;
181 } segkmem_gc_list_t;
182 
183 static segkmem_gc_list_t *segkmem_gc_list;
184 
185 /*
186  * Allocations from the hat_memload arena add VM_MEMLOAD to their
187  * vmflags so that segkmem_xalloc() can inform the hat layer that it needs
188  * to take steps to prevent infinite recursion.  HAT allocations also
189  * must be non-relocatable to prevent recursive page faults.
190  */
191 static void *
192 hat_memload_alloc(vmem_t *vmp, size_t size, int flags)
193 {
194 	flags |= (VM_MEMLOAD | VM_NORELOC);
195 	return (segkmem_alloc(vmp, size, flags));
196 }
197 
198 /*
199  * Allocations from static_arena arena (or any other arena that uses
200  * segkmem_alloc_permanent()) require non-relocatable (permanently
201  * wired) memory pages, since these pages are referenced by physical
202  * as well as virtual address.
203  */
204 void *
205 segkmem_alloc_permanent(vmem_t *vmp, size_t size, int flags)
206 {
207 	return (segkmem_alloc(vmp, size, flags | VM_NORELOC));
208 }
209 
210 /*
211  * Initialize kernel heap boundaries.
212  */
213 void
214 kernelheap_init(
215 	void *heap_start,
216 	void *heap_end,
217 	char *first_avail,
218 	void *core_start,
219 	void *core_end)
220 {
221 	uintptr_t textbase;
222 	size_t core_size;
223 	size_t heap_size;
224 	vmem_t *heaptext_parent;
225 	size_t	heap_lp_size = 0;
226 
227 	kernelheap = heap_start;
228 	ekernelheap = heap_end;
229 
230 #ifdef __sparc
231 	heap_lp_size = (((uintptr_t)heap_end - (uintptr_t)heap_start) / 4);
232 	heap_lp_base = ekernelheap - heap_lp_size;
233 	heap_lp_end = heap_lp_base + heap_lp_size;
234 #endif	/* __sparc */
235 
236 	/*
237 	 * If this platform has a 'core' heap area, then the space for
238 	 * overflow module text should be carved out of the end of that
239 	 * heap.  Otherwise, it gets carved out of the general purpose
240 	 * heap.
241 	 */
242 	core_size = (uintptr_t)core_end - (uintptr_t)core_start;
243 	if (core_size > 0) {
244 		ASSERT(core_size >= HEAPTEXT_SIZE);
245 		textbase = (uintptr_t)core_end - HEAPTEXT_SIZE;
246 		core_size -= HEAPTEXT_SIZE;
247 	}
248 #ifndef __sparc
249 	else {
250 		ekernelheap -= HEAPTEXT_SIZE;
251 		textbase = (uintptr_t)ekernelheap;
252 	}
253 #endif
254 
255 	heap_size = (uintptr_t)ekernelheap - (uintptr_t)kernelheap;
256 	heap_arena = vmem_init("heap", kernelheap, heap_size, PAGESIZE,
257 	    segkmem_alloc, segkmem_free);
258 
259 	if (core_size > 0) {
260 		heap_core_arena = vmem_create("heap_core", core_start,
261 		    core_size, PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
262 		heap_core_base = core_start;
263 	} else {
264 		heap_core_arena = heap_arena;
265 		heap_core_base = kernelheap;
266 	}
267 
268 	/*
269 	 * reserve space for the large page heap. If large pages for kernel
270 	 * heap is enabled large page heap arean will be created later in the
271 	 * boot sequence in segkmem_heap_lp_init(). Otherwise the allocated
272 	 * range will be returned back to the heap_arena.
273 	 */
274 	if (heap_lp_size) {
275 		(void) vmem_xalloc(heap_arena, heap_lp_size, PAGESIZE, 0, 0,
276 		    heap_lp_base, heap_lp_end,
277 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
278 	}
279 
280 	/*
281 	 * Remove the already-spoken-for memory range [kernelheap, first_avail).
282 	 */
283 	(void) vmem_xalloc(heap_arena, first_avail - kernelheap, PAGESIZE,
284 	    0, 0, kernelheap, first_avail, VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
285 
286 #ifdef __sparc
287 	heap32_arena = vmem_create("heap32", (void *)SYSBASE32,
288 	    SYSLIMIT32 - SYSBASE32 - HEAPTEXT_SIZE, PAGESIZE, NULL,
289 	    NULL, NULL, 0, VM_SLEEP);
290 
291 	textbase = SYSLIMIT32 - HEAPTEXT_SIZE;
292 	heaptext_parent = NULL;
293 #else	/* __sparc */
294 	heap32_arena = heap_core_arena;
295 	heaptext_parent = heap_core_arena;
296 #endif	/* __sparc */
297 
298 	heaptext_arena = vmem_create("heaptext", (void *)textbase,
299 	    HEAPTEXT_SIZE, PAGESIZE, NULL, NULL, heaptext_parent, 0, VM_SLEEP);
300 
301 	/*
302 	 * Create a set of arenas for memory with static translations
303 	 * (e.g. VA -> PA translations cannot change).  Since using
304 	 * kernel pages by physical address implies it isn't safe to
305 	 * walk across page boundaries, the static_arena quantum must
306 	 * be PAGESIZE.  Any kmem caches that require static memory
307 	 * should source from static_arena, while direct allocations
308 	 * should only use static_alloc_arena.
309 	 */
310 	static_arena = vmem_create("static", NULL, 0, PAGESIZE,
311 	    segkmem_alloc_permanent, segkmem_free, heap_arena, 0, VM_SLEEP);
312 	static_alloc_arena = vmem_create("static_alloc", NULL, 0,
313 	    sizeof (uint64_t), vmem_alloc, vmem_free, static_arena,
314 	    0, VM_SLEEP);
315 
316 	/*
317 	 * Create an arena for translation data (ptes, hmes, or hblks).
318 	 * We need an arena for this because hat_memload() is essential
319 	 * to vmem_populate() (see comments in common/os/vmem.c).
320 	 *
321 	 * Note: any kmem cache that allocates from hat_memload_arena
322 	 * must be created as a KMC_NOHASH cache (i.e. no external slab
323 	 * and bufctl structures to allocate) so that slab creation doesn't
324 	 * require anything more than a single vmem_alloc().
325 	 */
326 	hat_memload_arena = vmem_create("hat_memload", NULL, 0, PAGESIZE,
327 	    hat_memload_alloc, segkmem_free, heap_arena, 0,
328 	    VM_SLEEP | VMC_POPULATOR);
329 }
330 
331 /*
332  * Grow kernel heap downward.
333  */
334 void
335 kernelheap_extend(void *range_start, void *range_end)
336 {
337 	size_t len = (uintptr_t)range_end - (uintptr_t)range_start;
338 
339 	ASSERT(range_start < range_end && range_end == kernelheap);
340 
341 	if (vmem_add(heap_arena, range_start, len, VM_NOSLEEP) == NULL) {
342 		cmn_err(CE_WARN, "Could not grow kernel heap below 0x%p",
343 		    (void *)kernelheap);
344 	} else {
345 		kernelheap = range_start;
346 	}
347 }
348 
349 void
350 boot_mapin(caddr_t addr, size_t size)
351 {
352 	caddr_t	 eaddr;
353 	page_t	*pp;
354 	pfn_t	 pfnum;
355 
356 	if (page_resv(btop(size), KM_NOSLEEP) == 0)
357 		panic("boot_mapin: page_resv failed");
358 
359 	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
360 		pfnum = va_to_pfn(addr);
361 		if ((pp = page_numtopp_nolock(pfnum)) == NULL)
362 			panic("boot_mapin(): No pp for pfnum = %lx", pfnum);
363 
364 		/*
365 		 * must break up any large pages that may have constituent
366 		 * pages being utilized for BOP_ALLOC()'s before calling
367 		 * page_numtopp().The locking code (ie. page_reclaim())
368 		 * can't handle them
369 		 */
370 		if (pp->p_szc != 0)
371 			page_boot_demote(pp);
372 
373 		pp = page_numtopp(pfnum, SE_EXCL);
374 		if (pp == NULL || PP_ISFREE(pp))
375 			panic("boot_alloc: pp is NULL or free");
376 
377 		/*
378 		 * If the cage is on but doesn't yet contain this page,
379 		 * mark it as non-relocatable.
380 		 */
381 		if (kcage_on && !PP_ISNORELOC(pp))
382 			PP_SETNORELOC(pp);
383 
384 		(void) page_hashin(pp, &kvp, (u_offset_t)(uintptr_t)addr, NULL);
385 		pp->p_lckcnt = 1;
386 #if defined(__x86)
387 		page_downgrade(pp);
388 #else
389 		page_unlock(pp);
390 #endif
391 	}
392 }
393 
394 /*
395  * Get pages from boot and hash them into the kernel's vp.
396  * Used after page structs have been allocated, but before segkmem is ready.
397  */
398 void *
399 boot_alloc(void *inaddr, size_t size, uint_t align)
400 {
401 	caddr_t addr = inaddr;
402 
403 	if (bootops == NULL)
404 		prom_panic("boot_alloc: attempt to allocate memory after "
405 		    "BOP_GONE");
406 
407 	size = ptob(btopr(size));
408 	if (BOP_ALLOC(bootops, addr, size, align) != addr)
409 		panic("boot_alloc: BOP_ALLOC failed");
410 	boot_mapin((caddr_t)addr, size);
411 	return (addr);
412 }
413 
414 static void
415 segkmem_badop()
416 {
417 	panic("segkmem_badop");
418 }
419 
420 #define	SEGKMEM_BADOP(t)	(t(*)())segkmem_badop
421 
422 /*ARGSUSED*/
423 static faultcode_t
424 segkmem_fault(struct hat *hat, struct seg *seg, caddr_t addr, size_t size,
425 	enum fault_type type, enum seg_rw rw)
426 {
427 	ASSERT(RW_READ_HELD(&seg->s_as->a_lock));
428 
429 	if (seg->s_as != &kas || size > seg->s_size ||
430 	    addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
431 		panic("segkmem_fault: bad args");
432 
433 	if (segkp_bitmap && seg == &kvseg) {
434 
435 		/*
436 		 * If it is one of segkp pages, call segkp_fault.
437 		 */
438 		if (BT_TEST(segkp_bitmap,
439 			btop((uintptr_t)(addr - seg->s_base))))
440 			return (SEGOP_FAULT(hat, segkp, addr, size, type, rw));
441 	}
442 
443 	switch (type) {
444 	case F_SOFTLOCK:	/* lock down already-loaded translations */
445 		if (rw == S_OTHER) {
446 			hat_reserve(seg->s_as, addr, size);
447 			return (0);
448 		}
449 		/*FALLTHROUGH*/
450 	case F_SOFTUNLOCK:
451 		if (rw == S_READ || rw == S_WRITE)
452 			return (0);
453 		/*FALLTHROUGH*/
454 	default:
455 		break;
456 	}
457 	return (FC_NOSUPPORT);
458 }
459 
460 static int
461 segkmem_setprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
462 {
463 	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
464 
465 	if (seg->s_as != &kas || size > seg->s_size ||
466 	    addr < seg->s_base || addr + size > seg->s_base + seg->s_size)
467 		panic("segkmem_setprot: bad args");
468 
469 	if (segkp_bitmap && seg == &kvseg) {
470 
471 		/*
472 		 * If it is one of segkp pages, call segkp.
473 		 */
474 		if (BT_TEST(segkp_bitmap,
475 			btop((uintptr_t)(addr - seg->s_base))))
476 			return (SEGOP_SETPROT(segkp, addr, size, prot));
477 	}
478 
479 	if (prot == 0)
480 		hat_unload(kas.a_hat, addr, size, HAT_UNLOAD);
481 	else
482 		hat_chgprot(kas.a_hat, addr, size, prot);
483 	return (0);
484 }
485 
486 /*
487  * This is a dummy segkmem function overloaded to call segkp
488  * when segkp is under the heap.
489  */
490 /* ARGSUSED */
491 static int
492 segkmem_checkprot(struct seg *seg, caddr_t addr, size_t size, uint_t prot)
493 {
494 	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
495 
496 	if (seg->s_as != &kas)
497 		segkmem_badop();
498 
499 	if (segkp_bitmap && seg == &kvseg) {
500 
501 		/*
502 		 * If it is one of segkp pages, call into segkp.
503 		 */
504 		if (BT_TEST(segkp_bitmap,
505 			btop((uintptr_t)(addr - seg->s_base))))
506 			return (SEGOP_CHECKPROT(segkp, addr, size, prot));
507 	}
508 	segkmem_badop();
509 	return (0);
510 }
511 
512 /*
513  * This is a dummy segkmem function overloaded to call segkp
514  * when segkp is under the heap.
515  */
516 /* ARGSUSED */
517 static int
518 segkmem_kluster(struct seg *seg, caddr_t addr, ssize_t delta)
519 {
520 	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
521 
522 	if (seg->s_as != &kas)
523 		segkmem_badop();
524 
525 	if (segkp_bitmap && seg == &kvseg) {
526 
527 		/*
528 		 * If it is one of segkp pages, call into segkp.
529 		 */
530 		if (BT_TEST(segkp_bitmap,
531 			btop((uintptr_t)(addr - seg->s_base))))
532 			return (SEGOP_KLUSTER(segkp, addr, delta));
533 	}
534 	segkmem_badop();
535 	return (0);
536 }
537 
538 static void
539 segkmem_xdump_range(void *arg, void *start, size_t size)
540 {
541 	struct as *as = arg;
542 	caddr_t addr = start;
543 	caddr_t addr_end = addr + size;
544 
545 	while (addr < addr_end) {
546 		pfn_t pfn = hat_getpfnum(kas.a_hat, addr);
547 		if (pfn != PFN_INVALID && pfn <= physmax && pf_is_memory(pfn))
548 			dump_addpage(as, addr, pfn);
549 		addr += PAGESIZE;
550 		dump_timeleft = dump_timeout;
551 	}
552 }
553 
554 static void
555 segkmem_dump_range(void *arg, void *start, size_t size)
556 {
557 	caddr_t addr = start;
558 	caddr_t addr_end = addr + size;
559 
560 	/*
561 	 * If we are about to start dumping the range of addresses we
562 	 * carved out of the kernel heap for the large page heap walk
563 	 * heap_lp_arena to find what segments are actually populated
564 	 */
565 	if (SEGKMEM_USE_LARGEPAGES &&
566 	    addr == heap_lp_base && addr_end == heap_lp_end &&
567 	    vmem_size(heap_lp_arena, VMEM_ALLOC) < size) {
568 		vmem_walk(heap_lp_arena, VMEM_ALLOC | VMEM_REENTRANT,
569 		    segkmem_xdump_range, arg);
570 	} else {
571 		segkmem_xdump_range(arg, start, size);
572 	}
573 }
574 
575 static void
576 segkmem_dump(struct seg *seg)
577 {
578 	/*
579 	 * The kernel's heap_arena (represented by kvseg) is a very large
580 	 * VA space, most of which is typically unused.  To speed up dumping
581 	 * we use vmem_walk() to quickly find the pieces of heap_arena that
582 	 * are actually in use.  We do the same for heap32_arena and
583 	 * heap_core.
584 	 *
585 	 * We specify VMEM_REENTRANT to vmem_walk() because dump_addpage()
586 	 * may ultimately need to allocate memory.  Reentrant walks are
587 	 * necessarily imperfect snapshots.  The kernel heap continues
588 	 * to change during a live crash dump, for example.  For a normal
589 	 * crash dump, however, we know that there won't be any other threads
590 	 * messing with the heap.  Therefore, at worst, we may fail to dump
591 	 * the pages that get allocated by the act of dumping; but we will
592 	 * always dump every page that was allocated when the walk began.
593 	 *
594 	 * The other segkmem segments are dense (fully populated), so there's
595 	 * no need to use this technique when dumping them.
596 	 *
597 	 * Note: when adding special dump handling for any new sparsely-
598 	 * populated segments, be sure to add similar handling to the ::kgrep
599 	 * code in mdb.
600 	 */
601 	if (seg == &kvseg) {
602 		vmem_walk(heap_arena, VMEM_ALLOC | VMEM_REENTRANT,
603 		    segkmem_dump_range, seg->s_as);
604 #ifndef __sparc
605 		vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
606 		    segkmem_dump_range, seg->s_as);
607 #endif
608 	} else if (seg == &kvseg_core) {
609 		vmem_walk(heap_core_arena, VMEM_ALLOC | VMEM_REENTRANT,
610 		    segkmem_dump_range, seg->s_as);
611 	} else if (seg == &kvseg32) {
612 		vmem_walk(heap32_arena, VMEM_ALLOC | VMEM_REENTRANT,
613 		    segkmem_dump_range, seg->s_as);
614 		vmem_walk(heaptext_arena, VMEM_ALLOC | VMEM_REENTRANT,
615 		    segkmem_dump_range, seg->s_as);
616 	} else {
617 		segkmem_dump_range(seg->s_as, seg->s_base, seg->s_size);
618 	}
619 }
620 
621 /*
622  * lock/unlock kmem pages over a given range [addr, addr+len).
623  * Returns a shadow list of pages in ppp if *ppp is not NULL
624  * and memory can be allocated to hold the shadow list.
625  */
626 /*ARGSUSED*/
627 static int
628 segkmem_pagelock(struct seg *seg, caddr_t addr, size_t len,
629 	page_t ***ppp, enum lock_type type, enum seg_rw rw)
630 {
631 	page_t **pplist, *pp;
632 	pgcnt_t npages;
633 	size_t nb;
634 
635 	if (segkp_bitmap && seg == &kvseg) {
636 		/*
637 		 * If it is one of segkp pages, call into segkp.
638 		 */
639 		if (BT_TEST(segkp_bitmap,
640 			btop((uintptr_t)(addr - seg->s_base))))
641 			return (SEGOP_PAGELOCK(segkp, addr, len, ppp,
642 						type, rw));
643 	}
644 
645 	if (type == L_PAGERECLAIM)
646 		return (ENOTSUP);
647 
648 	npages = btopr(len);
649 	nb = sizeof (page_t *) * npages;
650 
651 	if (type == L_PAGEUNLOCK) {
652 		if ((pplist = *ppp) == NULL) {
653 			/*
654 			 * No shadow list.  Iterate over the range
655 			 * using page_find() and unlock the pages
656 			 * that we encounter.
657 			 */
658 			while (npages--) {
659 				pp = page_find(&kvp,
660 				    (u_offset_t)(uintptr_t)addr);
661 				if (pp)
662 					page_unlock(pp);
663 				addr += PAGESIZE;
664 			}
665 			return (0);
666 		}
667 
668 		while (npages--) {
669 			pp = *pplist++;
670 			if (pp)
671 				page_unlock(pp);
672 		}
673 		kmem_free(*ppp, nb);
674 		return (0);
675 	}
676 
677 	ASSERT(type == L_PAGELOCK);
678 
679 	pplist = NULL;
680 	if (ppp != NULL)
681 		*ppp = pplist = kmem_alloc(nb, KM_NOSLEEP);
682 
683 	while (npages--) {
684 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_SHARED);
685 		/*
686 		 * We'd like to ASSERT(pp != NULL) here, but we can't
687 		 * because there are legitimate cases where the address
688 		 * isn't really mapped -- for instance, attaching a
689 		 * kernel debugger and poking at a non-existent address.
690 		 */
691 		if (pplist)
692 			*pplist++ = pp;
693 		addr += PAGESIZE;
694 	}
695 	return (0);
696 }
697 
698 /*
699  * This is a dummy segkmem function overloaded to call segkp
700  * when segkp is under the heap.
701  */
702 /* ARGSUSED */
703 static int
704 segkmem_getmemid(struct seg *seg, caddr_t addr, memid_t *memidp)
705 {
706 	ASSERT(RW_LOCK_HELD(&seg->s_as->a_lock));
707 
708 	if (seg->s_as != &kas)
709 		segkmem_badop();
710 
711 	if (segkp_bitmap && seg == &kvseg) {
712 
713 		/*
714 		 * If it is one of segkp pages, call into segkp.
715 		 */
716 		if (BT_TEST(segkp_bitmap,
717 			btop((uintptr_t)(addr - seg->s_base))))
718 			return (SEGOP_GETMEMID(segkp, addr, memidp));
719 	}
720 	segkmem_badop();
721 	return (0);
722 }
723 
724 /*ARGSUSED*/
725 static lgrp_mem_policy_info_t *
726 segkmem_getpolicy(struct seg *seg, caddr_t addr)
727 {
728 	return (NULL);
729 }
730 
731 /*ARGSUSED*/
732 static int
733 segkmem_capable(struct seg *seg, segcapability_t capability)
734 {
735 	if (capability == S_CAPABILITY_NOMINFLT)
736 		return (1);
737 	return (0);
738 }
739 
740 static struct seg_ops segkmem_ops = {
741 	SEGKMEM_BADOP(int),		/* dup */
742 	SEGKMEM_BADOP(int),		/* unmap */
743 	SEGKMEM_BADOP(void),		/* free */
744 	segkmem_fault,
745 	SEGKMEM_BADOP(faultcode_t),	/* faulta */
746 	segkmem_setprot,
747 	segkmem_checkprot,
748 	segkmem_kluster,
749 	SEGKMEM_BADOP(size_t),		/* swapout */
750 	SEGKMEM_BADOP(int),		/* sync */
751 	SEGKMEM_BADOP(size_t),		/* incore */
752 	SEGKMEM_BADOP(int),		/* lockop */
753 	SEGKMEM_BADOP(int),		/* getprot */
754 	SEGKMEM_BADOP(u_offset_t),	/* getoffset */
755 	SEGKMEM_BADOP(int),		/* gettype */
756 	SEGKMEM_BADOP(int),		/* getvp */
757 	SEGKMEM_BADOP(int),		/* advise */
758 	segkmem_dump,
759 	segkmem_pagelock,
760 	SEGKMEM_BADOP(int),		/* setpgsz */
761 	segkmem_getmemid,
762 	segkmem_getpolicy,		/* getpolicy */
763 	segkmem_capable,		/* capable */
764 };
765 
766 int
767 segkmem_create(struct seg *seg)
768 {
769 	ASSERT(seg->s_as == &kas && RW_WRITE_HELD(&kas.a_lock));
770 	seg->s_ops = &segkmem_ops;
771 	seg->s_data = NULL;
772 	kas.a_size += seg->s_size;
773 	return (0);
774 }
775 
776 /*ARGSUSED*/
777 page_t *
778 segkmem_page_create(void *addr, size_t size, int vmflag, void *arg)
779 {
780 	struct seg kseg;
781 	int pgflags;
782 
783 	kseg.s_as = &kas;
784 	pgflags = PG_EXCL;
785 
786 	if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
787 		pgflags |= PG_NORELOC;
788 	if ((vmflag & VM_NOSLEEP) == 0)
789 		pgflags |= PG_WAIT;
790 	if (vmflag & VM_PANIC)
791 		pgflags |= PG_PANIC;
792 	if (vmflag & VM_PUSHPAGE)
793 		pgflags |= PG_PUSHPAGE;
794 
795 	return (page_create_va(&kvp, (u_offset_t)(uintptr_t)addr, size,
796 	    pgflags, &kseg, addr));
797 }
798 
799 /*
800  * Allocate pages to back the virtual address range [addr, addr + size).
801  * If addr is NULL, allocate the virtual address space as well.
802  */
803 void *
804 segkmem_xalloc(vmem_t *vmp, void *inaddr, size_t size, int vmflag, uint_t attr,
805 	page_t *(*page_create_func)(void *, size_t, int, void *), void *pcarg)
806 {
807 	page_t *ppl;
808 	caddr_t addr = inaddr;
809 	pgcnt_t npages = btopr(size);
810 	int allocflag;
811 
812 	if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
813 		return (NULL);
814 
815 	ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);
816 
817 	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
818 		if (inaddr == NULL)
819 			vmem_free(vmp, addr, size);
820 		return (NULL);
821 	}
822 
823 	ppl = page_create_func(addr, size, vmflag, pcarg);
824 	if (ppl == NULL) {
825 		if (inaddr == NULL)
826 			vmem_free(vmp, addr, size);
827 		page_unresv(npages);
828 		return (NULL);
829 	}
830 
831 	/*
832 	 * Under certain conditions, we need to let the HAT layer know
833 	 * that it cannot safely allocate memory.  Allocations from
834 	 * the hat_memload vmem arena always need this, to prevent
835 	 * infinite recursion.
836 	 *
837 	 * In addition, the x86 hat cannot safely do memory
838 	 * allocations while in vmem_populate(), because there
839 	 * is no simple bound on its usage.
840 	 */
841 	if (vmflag & VM_MEMLOAD)
842 		allocflag = HAT_NO_KALLOC;
843 #if defined(__x86)
844 	else if (vmem_is_populator())
845 		allocflag = HAT_NO_KALLOC;
846 #endif
847 	else
848 		allocflag = 0;
849 
850 	while (ppl != NULL) {
851 		page_t *pp = ppl;
852 		page_sub(&ppl, pp);
853 		ASSERT(page_iolock_assert(pp));
854 		ASSERT(PAGE_EXCL(pp));
855 		page_io_unlock(pp);
856 		hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, pp,
857 		    (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
858 		    HAT_LOAD_LOCK | allocflag);
859 		pp->p_lckcnt = 1;
860 #if defined(__x86)
861 		page_downgrade(pp);
862 #else
863 		if (vmflag & SEGKMEM_SHARELOCKED)
864 			page_downgrade(pp);
865 		else
866 			page_unlock(pp);
867 #endif
868 	}
869 
870 	return (addr);
871 }
872 
873 void *
874 segkmem_alloc(vmem_t *vmp, size_t size, int vmflag)
875 {
876 	void *addr;
877 	segkmem_gc_list_t *gcp, **prev_gcpp;
878 
879 	if (kvseg.s_base == NULL) {
880 #ifndef __sparc
881 		if (bootops->bsys_alloc == NULL)
882 			halt("Memory allocation between bop_alloc() and "
883 			    "kmem_alloc().\n");
884 #endif
885 
886 		/*
887 		 * There's not a lot of memory to go around during boot,
888 		 * so recycle it if we can.
889 		 */
890 		for (prev_gcpp = &segkmem_gc_list; (gcp = *prev_gcpp) != NULL;
891 		    prev_gcpp = &gcp->gc_next) {
892 			if (gcp->gc_arena == vmp && gcp->gc_size == size) {
893 				*prev_gcpp = gcp->gc_next;
894 				return (gcp);
895 			}
896 		}
897 
898 		addr = vmem_alloc(vmp, size, vmflag | VM_PANIC);
899 		if (boot_alloc(addr, size, BO_NO_ALIGN) != addr)
900 			panic("segkmem_alloc: boot_alloc failed");
901 		return (addr);
902 	}
903 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
904 	    segkmem_page_create, NULL));
905 }
906 
907 /*
908  * Any changes to this routine must also be carried over to
909  * devmap_free_pages() in the seg_dev driver. This is because
910  * we currently don't have a special kernel segment for non-paged
911  * kernel memory that is exported by drivers to user space.
912  */
913 void
914 segkmem_free(vmem_t *vmp, void *inaddr, size_t size)
915 {
916 	page_t *pp;
917 	caddr_t addr = inaddr;
918 	caddr_t eaddr;
919 	pgcnt_t npages = btopr(size);
920 
921 	ASSERT(((uintptr_t)addr & PAGEOFFSET) == 0);
922 
923 	if (kvseg.s_base == NULL) {
924 		segkmem_gc_list_t *gc = inaddr;
925 		gc->gc_arena = vmp;
926 		gc->gc_size = size;
927 		gc->gc_next = segkmem_gc_list;
928 		segkmem_gc_list = gc;
929 		return;
930 	}
931 
932 	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
933 
934 	for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
935 #if defined(__x86)
936 		pp = page_find(&kvp, (u_offset_t)(uintptr_t)addr);
937 		if (pp == NULL)
938 			panic("segkmem_free: page not found");
939 		if (!page_tryupgrade(pp)) {
940 			/*
941 			 * Some other thread has a sharelock. Wait for
942 			 * it to drop the lock so we can free this page.
943 			 */
944 			page_unlock(pp);
945 			pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr,
946 			    SE_EXCL);
947 		}
948 #else
949 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
950 #endif
951 		if (pp == NULL)
952 			panic("segkmem_free: page not found");
953 		/* Clear p_lckcnt so page_destroy() doesn't update availrmem */
954 		pp->p_lckcnt = 0;
955 		page_destroy(pp, 0);
956 	}
957 	page_unresv(npages);
958 
959 	if (vmp != NULL)
960 		vmem_free(vmp, inaddr, size);
961 }
962 
963 void
964 segkmem_gc(void)
965 {
966 	ASSERT(kvseg.s_base != NULL);
967 	while (segkmem_gc_list != NULL) {
968 		segkmem_gc_list_t *gc = segkmem_gc_list;
969 		segkmem_gc_list = gc->gc_next;
970 		segkmem_free(gc->gc_arena, gc, gc->gc_size);
971 	}
972 }
973 
974 /*
975  * Legacy entry points from here to end of file.
976  */
977 void
978 segkmem_mapin(struct seg *seg, void *addr, size_t size, uint_t vprot,
979     pfn_t pfn, uint_t flags)
980 {
981 	hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
982 	hat_devload(seg->s_as->a_hat, addr, size, pfn, vprot,
983 	    flags | HAT_LOAD_LOCK);
984 }
985 
986 void
987 segkmem_mapout(struct seg *seg, void *addr, size_t size)
988 {
989 	hat_unload(seg->s_as->a_hat, addr, size, HAT_UNLOAD_UNLOCK);
990 }
991 
992 void *
993 kmem_getpages(pgcnt_t npages, int kmflag)
994 {
995 	return (kmem_alloc(ptob(npages), kmflag));
996 }
997 
998 void
999 kmem_freepages(void *addr, pgcnt_t npages)
1000 {
1001 	kmem_free(addr, ptob(npages));
1002 }
1003 
1004 /*
1005  * segkmem_page_create_large() allocates a large page to be used for the kmem
1006  * caches. If kpr is enabled we ask for a relocatable page unless requested
1007  * otherwise. If kpr is disabled we have to ask for a non-reloc page
1008  */
1009 static page_t *
1010 segkmem_page_create_large(void *addr, size_t size, int vmflag, void *arg)
1011 {
1012 	int pgflags;
1013 
1014 	pgflags = PG_EXCL;
1015 
1016 	if (segkmem_reloc == 0 || (vmflag & VM_NORELOC))
1017 		pgflags |= PG_NORELOC;
1018 	if (!(vmflag & VM_NOSLEEP))
1019 		pgflags |= PG_WAIT;
1020 	if (vmflag & VM_PUSHPAGE)
1021 		pgflags |= PG_PUSHPAGE;
1022 
1023 	return (page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
1024 	    pgflags, &kvseg, addr, arg));
1025 }
1026 
1027 /*
1028  * Allocate a large page to back the virtual address range
1029  * [addr, addr + size).  If addr is NULL, allocate the virtual address
1030  * space as well.
1031  */
1032 static void *
1033 segkmem_xalloc_lp(vmem_t *vmp, void *inaddr, size_t size, int vmflag,
1034     uint_t attr, page_t *(*page_create_func)(void *, size_t, int, void *),
1035     void *pcarg)
1036 {
1037 	caddr_t addr = inaddr, pa;
1038 	size_t  lpsize = segkmem_lpsize;
1039 	pgcnt_t npages = btopr(size);
1040 	pgcnt_t nbpages = btop(lpsize);
1041 	pgcnt_t nlpages = size >> segkmem_lpshift;
1042 	size_t  ppasize = nbpages * sizeof (page_t *);
1043 	page_t *pp, *rootpp, **ppa, *pplist = NULL;
1044 	int i;
1045 
1046 	if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
1047 		return (NULL);
1048 	}
1049 
1050 	/*
1051 	 * allocate an array we need for hat_memload_array.
1052 	 * we use a separate arena to avoid recursion.
1053 	 * we will not need this array when hat_memload_array learns pp++
1054 	 */
1055 	if ((ppa = vmem_alloc(segkmem_ppa_arena, ppasize, vmflag)) == NULL) {
1056 		goto fail_array_alloc;
1057 	}
1058 
1059 	if (inaddr == NULL && (addr = vmem_alloc(vmp, size, vmflag)) == NULL)
1060 		goto fail_vmem_alloc;
1061 
1062 	ASSERT(((uintptr_t)addr & (lpsize - 1)) == 0);
1063 
1064 	/* create all the pages */
1065 	for (pa = addr, i = 0; i < nlpages; i++, pa += lpsize) {
1066 		if ((pp = page_create_func(pa, lpsize, vmflag, pcarg)) == NULL)
1067 			goto fail_page_create;
1068 		page_list_concat(&pplist, &pp);
1069 	}
1070 
1071 	/* at this point we have all the resource to complete the request */
1072 	while ((rootpp = pplist) != NULL) {
1073 		for (i = 0; i < nbpages; i++) {
1074 			ASSERT(pplist != NULL);
1075 			pp = pplist;
1076 			page_sub(&pplist, pp);
1077 			ASSERT(page_iolock_assert(pp));
1078 			page_io_unlock(pp);
1079 			ppa[i] = pp;
1080 		}
1081 		/*
1082 		 * Load the locked entry. It's OK to preload the entry into the
1083 		 * TSB since we now support large mappings in the kernel TSB.
1084 		 */
1085 		hat_memload_array(kas.a_hat,
1086 		    (caddr_t)(uintptr_t)rootpp->p_offset, lpsize,
1087 		    ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC | attr,
1088 		    HAT_LOAD_LOCK);
1089 
1090 		for (--i; i >= 0; --i) {
1091 			ppa[i]->p_lckcnt = 1;
1092 			page_unlock(ppa[i]);
1093 		}
1094 	}
1095 
1096 	vmem_free(segkmem_ppa_arena, ppa, ppasize);
1097 	return (addr);
1098 
1099 fail_page_create:
1100 	while ((rootpp = pplist) != NULL) {
1101 		for (i = 0, pp = pplist; i < nbpages; i++, pp = pplist) {
1102 			ASSERT(pp != NULL);
1103 			page_sub(&pplist, pp);
1104 			ASSERT(page_iolock_assert(pp));
1105 			page_io_unlock(pp);
1106 		}
1107 		page_destroy_pages(rootpp);
1108 	}
1109 
1110 	if (inaddr == NULL)
1111 		vmem_free(vmp, addr, size);
1112 
1113 fail_vmem_alloc:
1114 	vmem_free(segkmem_ppa_arena, ppa, ppasize);
1115 
1116 fail_array_alloc:
1117 	page_unresv(npages);
1118 
1119 	return (NULL);
1120 }
1121 
1122 static void
1123 segkmem_free_one_lp(caddr_t addr, size_t size)
1124 {
1125 	page_t		*pp, *rootpp = NULL;
1126 	pgcnt_t 	pgs_left = btopr(size);
1127 
1128 	ASSERT(size == segkmem_lpsize);
1129 
1130 	hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
1131 
1132 	for (; pgs_left > 0; addr += PAGESIZE, pgs_left--) {
1133 		pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
1134 		if (pp == NULL)
1135 			panic("segkmem_free_one_lp: page not found");
1136 		ASSERT(PAGE_EXCL(pp));
1137 		pp->p_lckcnt = 0;
1138 		if (rootpp == NULL)
1139 			rootpp = pp;
1140 	}
1141 	ASSERT(rootpp != NULL);
1142 	page_destroy_pages(rootpp);
1143 
1144 	/* page_unresv() is done by the caller */
1145 }
1146 
1147 /*
1148  * This function is called to import new spans into the vmem arenas like
1149  * kmem_default_arena and kmem_oversize_arena. It first tries to import
1150  * spans from large page arena - kmem_lp_arena. In order to do this it might
1151  * have to "upgrade the requested size" to kmem_lp_arena quantum. If
1152  * it was not able to satisfy the upgraded request it then calls regular
1153  * segkmem_alloc() that satisfies the request by importing from "*vmp" arena
1154  */
1155 void *
1156 segkmem_alloc_lp(vmem_t *vmp, size_t *sizep, int vmflag)
1157 {
1158 	size_t size;
1159 	kthread_t *t = curthread;
1160 	segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1161 
1162 	ASSERT(sizep != NULL);
1163 
1164 	size = *sizep;
1165 
1166 	if (lpcb->lp_uselp && !(t->t_flag & T_PANIC) &&
1167 	    !(vmflag & SEGKMEM_SHARELOCKED)) {
1168 
1169 		size_t kmemlp_qnt = segkmem_kmemlp_quantum;
1170 		size_t asize = P2ROUNDUP(size, kmemlp_qnt);
1171 		void  *addr = NULL;
1172 		ulong_t *lpthrtp = &lpcb->lp_throttle;
1173 		ulong_t lpthrt = *lpthrtp;
1174 		int	dowakeup = 0;
1175 		int	doalloc = 1;
1176 
1177 		ASSERT(kmem_lp_arena != NULL);
1178 		ASSERT(asize >= size);
1179 
1180 		if (lpthrt != 0) {
1181 			/* try to update the throttle value */
1182 			lpthrt = atomic_add_long_nv(lpthrtp, 1);
1183 			if (lpthrt >= segkmem_lpthrottle_max) {
1184 				lpthrt = atomic_cas_ulong(lpthrtp, lpthrt,
1185 				    segkmem_lpthrottle_max / 4);
1186 			}
1187 
1188 			/*
1189 			 * when we get above throttle start do an exponential
1190 			 * backoff at trying large pages and reaping
1191 			 */
1192 			if (lpthrt > segkmem_lpthrottle_start &&
1193 			    (lpthrt & (lpthrt - 1))) {
1194 				lpcb->allocs_throttled++;
1195 				lpthrt--;
1196 				if ((lpthrt & (lpthrt - 1)) == 0)
1197 					kmem_reap();
1198 				return (segkmem_alloc(vmp, size, vmflag));
1199 			}
1200 		}
1201 
1202 		if (!(vmflag & VM_NOSLEEP) &&
1203 		    segkmem_heaplp_quantum >= (8 * kmemlp_qnt) &&
1204 		    vmem_size(kmem_lp_arena, VMEM_FREE) <= kmemlp_qnt &&
1205 		    asize < (segkmem_heaplp_quantum - kmemlp_qnt)) {
1206 
1207 			/*
1208 			 * we are low on free memory in kmem_lp_arena
1209 			 * we let only one guy to allocate heap_lp
1210 			 * quantum size chunk that everybody is going to
1211 			 * share
1212 			 */
1213 			mutex_enter(&lpcb->lp_lock);
1214 
1215 			if (lpcb->lp_wait) {
1216 
1217 				/* we are not the first one - wait */
1218 				cv_wait(&lpcb->lp_cv, &lpcb->lp_lock);
1219 				if (vmem_size(kmem_lp_arena, VMEM_FREE) <
1220 				    kmemlp_qnt)  {
1221 					doalloc = 0;
1222 				}
1223 			} else if (vmem_size(kmem_lp_arena, VMEM_FREE) <=
1224 			    kmemlp_qnt) {
1225 
1226 				/*
1227 				 * we are the first one, make sure we import
1228 				 * a large page
1229 				 */
1230 				if (asize == kmemlp_qnt)
1231 					asize += kmemlp_qnt;
1232 				dowakeup = 1;
1233 				lpcb->lp_wait = 1;
1234 			}
1235 
1236 			mutex_exit(&lpcb->lp_lock);
1237 		}
1238 
1239 		/*
1240 		 * VM_ABORT flag prevents sleeps in vmem_xalloc when
1241 		 * large pages are not available. In that case this allocation
1242 		 * attempt will fail and we will retry allocation with small
1243 		 * pages. We also do not want to panic if this allocation fails
1244 		 * because we are going to retry.
1245 		 */
1246 		if (doalloc) {
1247 			addr = vmem_alloc(kmem_lp_arena, asize,
1248 			    (vmflag | VM_ABORT) & ~VM_PANIC);
1249 
1250 			if (dowakeup) {
1251 				mutex_enter(&lpcb->lp_lock);
1252 				ASSERT(lpcb->lp_wait != 0);
1253 				lpcb->lp_wait = 0;
1254 				cv_broadcast(&lpcb->lp_cv);
1255 				mutex_exit(&lpcb->lp_lock);
1256 			}
1257 		}
1258 
1259 		if (addr != NULL) {
1260 			*sizep = asize;
1261 			*lpthrtp = 0;
1262 			return (addr);
1263 		}
1264 
1265 		if (vmflag & VM_NOSLEEP)
1266 			lpcb->nosleep_allocs_failed++;
1267 		else
1268 			lpcb->sleep_allocs_failed++;
1269 		lpcb->alloc_bytes_failed += size;
1270 
1271 		/* if large page throttling is not started yet do it */
1272 		if (segkmem_use_lpthrottle && lpthrt == 0) {
1273 			lpthrt = atomic_cas_ulong(lpthrtp, lpthrt, 1);
1274 		}
1275 	}
1276 	return (segkmem_alloc(vmp, size, vmflag));
1277 }
1278 
1279 void
1280 segkmem_free_lp(vmem_t *vmp, void *inaddr, size_t size)
1281 {
1282 	if (kmem_lp_arena == NULL || !IS_KMEM_VA_LARGEPAGE((caddr_t)inaddr)) {
1283 		segkmem_free(vmp, inaddr, size);
1284 	} else {
1285 		vmem_free(kmem_lp_arena, inaddr, size);
1286 	}
1287 }
1288 
1289 /*
1290  * segkmem_alloc_lpi() imports virtual memory from large page heap arena
1291  * into kmem_lp arena. In the process it maps the imported segment with
1292  * large pages
1293  */
1294 static void *
1295 segkmem_alloc_lpi(vmem_t *vmp, size_t size, int vmflag)
1296 {
1297 	segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1298 	void  *addr;
1299 
1300 	ASSERT(size != 0);
1301 	ASSERT(vmp == heap_lp_arena);
1302 
1303 	/* do not allow large page heap grow beyound limits */
1304 	if (vmem_size(vmp, VMEM_ALLOC) >= segkmem_kmemlp_max) {
1305 		lpcb->allocs_limited++;
1306 		return (NULL);
1307 	}
1308 
1309 	addr = segkmem_xalloc_lp(vmp, NULL, size, vmflag, 0,
1310 	    segkmem_page_create_large, NULL);
1311 	return (addr);
1312 }
1313 
1314 /*
1315  * segkmem_free_lpi() returns virtual memory back into large page heap arena
1316  * from kmem_lp arena. Beore doing this it unmaps the segment and frees
1317  * large pages used to map it.
1318  */
1319 static void
1320 segkmem_free_lpi(vmem_t *vmp, void *inaddr, size_t size)
1321 {
1322 	pgcnt_t		nlpages = size >> segkmem_lpshift;
1323 	size_t		lpsize = segkmem_lpsize;
1324 	caddr_t		addr = inaddr;
1325 	pgcnt_t 	npages = btopr(size);
1326 	int		i;
1327 
1328 	ASSERT(vmp == heap_lp_arena);
1329 	ASSERT(IS_KMEM_VA_LARGEPAGE(addr));
1330 	ASSERT(((uintptr_t)inaddr & (lpsize - 1)) == 0);
1331 
1332 	for (i = 0; i < nlpages; i++) {
1333 		segkmem_free_one_lp(addr, lpsize);
1334 		addr += lpsize;
1335 	}
1336 
1337 	page_unresv(npages);
1338 
1339 	vmem_free(vmp, inaddr, size);
1340 }
1341 
1342 /*
1343  * This function is called at system boot time by kmem_init right after
1344  * /etc/system file has been read. It checks based on hardware configuration
1345  * and /etc/system settings if system is going to use large pages. The
1346  * initialiazation necessary to actually start using large pages
1347  * happens later in the process after segkmem_heap_lp_init() is called.
1348  */
1349 int
1350 segkmem_lpsetup()
1351 {
1352 	int use_large_pages = 0;
1353 
1354 #ifdef __sparc
1355 
1356 	size_t memtotal = physmem * PAGESIZE;
1357 
1358 	if (heap_lp_base == NULL) {
1359 		segkmem_lpsize = PAGESIZE;
1360 		return (0);
1361 	}
1362 
1363 	/* get a platform dependent value of large page size for kernel heap */
1364 	segkmem_lpsize = get_segkmem_lpsize(segkmem_lpsize);
1365 
1366 	if (segkmem_lpsize <= PAGESIZE) {
1367 		/*
1368 		 * put virtual space reserved for the large page kernel
1369 		 * back to the regular heap
1370 		 */
1371 		vmem_xfree(heap_arena, heap_lp_base,
1372 		    heap_lp_end - heap_lp_base);
1373 		heap_lp_base = NULL;
1374 		heap_lp_end = NULL;
1375 		segkmem_lpsize = PAGESIZE;
1376 		return (0);
1377 	}
1378 
1379 	/* set heap_lp quantum if necessary */
1380 	if (segkmem_heaplp_quantum == 0 ||
1381 	    (segkmem_heaplp_quantum & (segkmem_heaplp_quantum - 1)) ||
1382 	    P2PHASE(segkmem_heaplp_quantum, segkmem_lpsize)) {
1383 		segkmem_heaplp_quantum = segkmem_lpsize;
1384 	}
1385 
1386 	/* set kmem_lp quantum if necessary */
1387 	if (segkmem_kmemlp_quantum == 0 ||
1388 	    (segkmem_kmemlp_quantum & (segkmem_kmemlp_quantum - 1)) ||
1389 	    segkmem_kmemlp_quantum > segkmem_heaplp_quantum) {
1390 		segkmem_kmemlp_quantum = segkmem_heaplp_quantum;
1391 	}
1392 
1393 	/* set total amount of memory allowed for large page kernel heap */
1394 	if (segkmem_kmemlp_max == 0) {
1395 		if (segkmem_kmemlp_pcnt == 0 || segkmem_kmemlp_pcnt > 100)
1396 			segkmem_kmemlp_pcnt = 12;
1397 		segkmem_kmemlp_max = (memtotal * segkmem_kmemlp_pcnt) / 100;
1398 	}
1399 	segkmem_kmemlp_max = P2ROUNDUP(segkmem_kmemlp_max,
1400 	    segkmem_heaplp_quantum);
1401 
1402 	/* fix lp kmem preallocation request if necesssary */
1403 	if (segkmem_kmemlp_min) {
1404 		segkmem_kmemlp_min = P2ROUNDUP(segkmem_kmemlp_min,
1405 		    segkmem_heaplp_quantum);
1406 		if (segkmem_kmemlp_min > segkmem_kmemlp_max)
1407 			segkmem_kmemlp_min = segkmem_kmemlp_max;
1408 	}
1409 
1410 	use_large_pages = 1;
1411 	segkmem_lpshift = page_get_shift(page_szc(segkmem_lpsize));
1412 
1413 #endif
1414 	return (use_large_pages);
1415 }
1416 
1417 #ifdef __sparc
1418 
1419 
1420 static void *
1421 segkmem_alloc_ppa(vmem_t *vmp, size_t size, int vmflag)
1422 {
1423 	size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);
1424 	void   *addr;
1425 
1426 	if (ppaquantum <= PAGESIZE)
1427 		return (segkmem_alloc(vmp, size, vmflag));
1428 
1429 	ASSERT((size & (ppaquantum - 1)) == 0);
1430 
1431 	addr = vmem_xalloc(vmp, size, ppaquantum, 0, 0, NULL, NULL, vmflag);
1432 	if (addr != NULL && segkmem_xalloc(vmp, addr, size, vmflag, 0,
1433 		segkmem_page_create, NULL) == NULL) {
1434 		vmem_xfree(vmp, addr, size);
1435 		addr = NULL;
1436 	}
1437 
1438 	return (addr);
1439 }
1440 
1441 static void
1442 segkmem_free_ppa(vmem_t *vmp, void *addr, size_t size)
1443 {
1444 	size_t ppaquantum = btopr(segkmem_lpsize) * sizeof (page_t *);
1445 
1446 	ASSERT(addr != NULL);
1447 
1448 	if (ppaquantum <= PAGESIZE) {
1449 		segkmem_free(vmp, addr, size);
1450 	} else {
1451 		segkmem_free(NULL, addr, size);
1452 		vmem_xfree(vmp, addr, size);
1453 	}
1454 }
1455 
1456 void
1457 segkmem_heap_lp_init()
1458 {
1459 	segkmem_lpcb_t *lpcb = &segkmem_lpcb;
1460 	size_t heap_lp_size = heap_lp_end - heap_lp_base;
1461 	size_t lpsize = segkmem_lpsize;
1462 	size_t ppaquantum;
1463 	void   *addr;
1464 
1465 	if (segkmem_lpsize <= PAGESIZE) {
1466 		ASSERT(heap_lp_base == NULL);
1467 		ASSERT(heap_lp_end == NULL);
1468 		return;
1469 	}
1470 
1471 	ASSERT(segkmem_heaplp_quantum >= lpsize);
1472 	ASSERT((segkmem_heaplp_quantum & (lpsize - 1)) == 0);
1473 	ASSERT(lpcb->lp_uselp == 0);
1474 	ASSERT(heap_lp_base != NULL);
1475 	ASSERT(heap_lp_end != NULL);
1476 	ASSERT(heap_lp_base < heap_lp_end);
1477 	ASSERT(heap_lp_arena == NULL);
1478 	ASSERT(((uintptr_t)heap_lp_base & (lpsize - 1)) == 0);
1479 	ASSERT(((uintptr_t)heap_lp_end & (lpsize - 1)) == 0);
1480 
1481 	/* create large page heap arena */
1482 	heap_lp_arena = vmem_create("heap_lp", heap_lp_base, heap_lp_size,
1483 	    segkmem_heaplp_quantum, NULL, NULL, NULL, 0, VM_SLEEP);
1484 
1485 	ASSERT(heap_lp_arena != NULL);
1486 
1487 	/* This arena caches memory already mapped by large pages */
1488 	kmem_lp_arena = vmem_create("kmem_lp", NULL, 0, segkmem_kmemlp_quantum,
1489 	    segkmem_alloc_lpi, segkmem_free_lpi, heap_lp_arena, 0, VM_SLEEP);
1490 
1491 	ASSERT(kmem_lp_arena != NULL);
1492 
1493 	mutex_init(&lpcb->lp_lock, NULL, MUTEX_DEFAULT, NULL);
1494 	cv_init(&lpcb->lp_cv, NULL, CV_DEFAULT, NULL);
1495 
1496 	/*
1497 	 * this arena is used for the array of page_t pointers necessary
1498 	 * to call hat_mem_load_array
1499 	 */
1500 	ppaquantum = btopr(lpsize) * sizeof (page_t *);
1501 	segkmem_ppa_arena = vmem_create("segkmem_ppa", NULL, 0, ppaquantum,
1502 	    segkmem_alloc_ppa, segkmem_free_ppa, heap_arena, ppaquantum,
1503 	    VM_SLEEP);
1504 
1505 	ASSERT(segkmem_ppa_arena != NULL);
1506 
1507 	/* prealloacate some memory for the lp kernel heap */
1508 	if (segkmem_kmemlp_min) {
1509 
1510 		ASSERT(P2PHASE(segkmem_kmemlp_min,
1511 		    segkmem_heaplp_quantum) == 0);
1512 
1513 		if ((addr = segkmem_alloc_lpi(heap_lp_arena,
1514 		    segkmem_kmemlp_min, VM_SLEEP)) != NULL) {
1515 
1516 			addr = vmem_add(kmem_lp_arena, addr,
1517 			    segkmem_kmemlp_min, VM_SLEEP);
1518 			ASSERT(addr != NULL);
1519 		}
1520 	}
1521 
1522 	lpcb->lp_uselp = 1;
1523 }
1524 
1525 #endif
1526