xref: /illumos-gate/usr/src/uts/common/vm/page_retire.c (revision ef2504f26d1ea5859db9838255bb63f488f1b050)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Page Retire - Big Theory Statement.
28  *
29  * This file handles removing sections of faulty memory from use when the
30  * user land FMA Diagnosis Engine requests that a page be removed or when
31  * a CE or UE is detected by the hardware.
32  *
33  * In the bad old days, the kernel side of Page Retire did a lot of the work
34  * on its own. Now, with the DE keeping track of errors, the kernel side is
35  * rather simple minded on most platforms.
36  *
37  * Errors are all reflected to the DE, and after digesting the error and
38  * looking at all previously reported errors, the DE decides what should
39  * be done about the current error. If the DE wants a particular page to
40  * be retired, then the kernel page retire code is invoked via an ioctl.
41  * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling
42  * page retire to handle the error. Since page retire is just a simple
43  * mechanism it doesn't need to differentiate between the different callers.
44  *
45  * The p_toxic field in the page_t is used to indicate which errors have
46  * occurred and what action has been taken on a given page. Because errors are
47  * reported without regard to the locked state of a page, no locks are used
48  * to SET the error bits in p_toxic. However, in order to clear the error
49  * bits, the page_t must be held exclusively locked.
50  *
51  * When page_retire() is called, it must be able to acquire locks, sleep, etc.
52  * It must not be called from high-level interrupt context.
53  *
54  * Depending on how the requested page is being used at the time of the retire
55  * request (and on the availability of sufficient system resources), the page
56  * may be retired immediately, or just marked for retirement later. For
57  * example, locked pages are marked, while free pages are retired. Multiple
58  * requests may be made to retire the same page, although there is no need
59  * to: once the p_toxic flags are set, the page will be retired as soon as it
60  * can be exclusively locked.
61  *
62  * The retire mechanism is driven centrally out of page_unlock(). To expedite
63  * the retirement of pages, further requests for SE_SHARED locks are denied
64  * as long as a page retirement is pending. In addition, as long as pages are
65  * pending retirement a background thread runs periodically trying to retire
66  * those pages. Pages which could not be retired while the system is running
67  * are scrubbed prior to rebooting to avoid latent errors on the next boot.
68  *
69  * UE pages without persistent errors are scrubbed and returned to service.
70  * Recidivist pages, as well as FMA-directed requests for retirement, result
71  * in the page being taken out of service. Once the decision is made to take
72  * a page out of service, the page is cleared, hashed onto the retired_pages
73  * vnode, marked as retired, and it is unlocked.  No other requesters (except
74  * for unretire) are allowed to lock retired pages.
75  *
76  * The public routines return (sadly) 0 if they worked and a non-zero error
77  * value if something went wrong. This is done for the ioctl side of the
78  * world to allow errors to be reflected all the way out to user land. The
79  * non-zero values are explained in comments atop each function.
80  */
81 
82 /*
83  * Things to fix:
84  *
85  * 	1. Trying to retire non-relocatable kvp pages may result in a
86  *      quagmire. This is because seg_kmem() no longer keeps its pages locked,
87  *      and calls page_lookup() in the free path; since kvp pages are modified
88  *      and don't have a usable backing store, page_retire() can't do anything
89  *      with them, and we'll keep denying the lock to seg_kmem_free() in a
90  *      vicious cycle. To prevent that, we don't deny locks to kvp pages, and
91  *      hence only try to retire a page from page_unlock() in the free path.
92  *      Since most kernel pages are indefinitely held anyway, and don't
93  *      participate in I/O, this is of little consequence.
94  *
95  *      2. Low memory situations will be interesting. If we don't have
96  *      enough memory for page_relocate() to succeed, we won't be able to
97  *      retire dirty pages; nobody will be able to push them out to disk
98  *      either, since we aggressively deny the page lock. We could change
99  *      fsflush so it can recognize this situation, grab the lock, and push
100  *      the page out, where we'll catch it in the free path and retire it.
101  *
102  *	3. Beware of places that have code like this in them:
103  *
104  *		if (! page_tryupgrade(pp)) {
105  *			page_unlock(pp);
106  *			while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) {
107  *				/ *NOTHING* /
108  *			}
109  *		}
110  *		page_free(pp);
111  *
112  *	The problem is that pp can change identity right after the
113  *	page_unlock() call.  In particular, page_retire() can step in
114  *	there, change pp's identity, and hash pp onto the retired_vnode.
115  *
116  *	Of course, other functions besides page_retire() can have the
117  *	same effect. A kmem reader can waltz by, set up a mapping to the
118  *	page, and then unlock the page. Page_free() will then go castors
119  *	up. So if anybody is doing this, it's already a bug.
120  *
121  *      4. mdboot()'s call into page_retire_mdboot() should probably be
122  *      moved lower. Where the call is made now, we can get into trouble
123  *      by scrubbing a kernel page that is then accessed later.
124  */
125 
126 #include <sys/types.h>
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/mman.h>
130 #include <sys/vnode.h>
131 #include <sys/vfs_opreg.h>
132 #include <sys/cmn_err.h>
133 #include <sys/ksynch.h>
134 #include <sys/thread.h>
135 #include <sys/disp.h>
136 #include <sys/ontrap.h>
137 #include <sys/vmsystm.h>
138 #include <sys/mem_config.h>
139 #include <sys/atomic.h>
140 #include <sys/callb.h>
141 #include <vm/page.h>
142 #include <vm/vm_dep.h>
143 #include <vm/as.h>
144 #include <vm/hat.h>
145 
146 /*
147  * vnode for all pages which are retired from the VM system;
148  */
149 vnode_t *retired_pages;
150 
151 static int page_retire_pp_finish(page_t *, void *, uint_t);
152 
153 /*
154  * Make a list of all of the pages that have been marked for retirement
155  * but are not yet retired.  At system shutdown, we will scrub all of the
156  * pages in the list in case there are outstanding UEs.  Then, we
157  * cross-check this list against the number of pages that are yet to be
158  * retired, and if we find inconsistencies, we scan every page_t in the
159  * whole system looking for any pages that need to be scrubbed for UEs.
160  * The background thread also uses this queue to determine which pages
161  * it should keep trying to retire.
162  */
163 #ifdef	DEBUG
164 #define	PR_PENDING_QMAX	32
165 #else	/* DEBUG */
166 #define	PR_PENDING_QMAX	256
167 #endif	/* DEBUG */
168 page_t		*pr_pending_q[PR_PENDING_QMAX];
169 kmutex_t	pr_q_mutex;
170 
171 /*
172  * Page retire global kstats
173  */
174 struct page_retire_kstat {
175 	kstat_named_t	pr_retired;
176 	kstat_named_t	pr_requested;
177 	kstat_named_t	pr_requested_free;
178 	kstat_named_t	pr_enqueue_fail;
179 	kstat_named_t	pr_dequeue_fail;
180 	kstat_named_t	pr_pending;
181 	kstat_named_t	pr_pending_kas;
182 	kstat_named_t	pr_failed;
183 	kstat_named_t	pr_failed_kernel;
184 	kstat_named_t	pr_limit;
185 	kstat_named_t	pr_limit_exceeded;
186 	kstat_named_t	pr_fma;
187 	kstat_named_t	pr_mce;
188 	kstat_named_t	pr_ue;
189 	kstat_named_t	pr_ue_cleared_retire;
190 	kstat_named_t	pr_ue_cleared_free;
191 	kstat_named_t	pr_ue_persistent;
192 	kstat_named_t	pr_unretired;
193 };
194 
195 static struct page_retire_kstat page_retire_kstat = {
196 	{ "pages_retired",		KSTAT_DATA_UINT64},
197 	{ "pages_retire_request",	KSTAT_DATA_UINT64},
198 	{ "pages_retire_request_free",	KSTAT_DATA_UINT64},
199 	{ "pages_notenqueued", 		KSTAT_DATA_UINT64},
200 	{ "pages_notdequeued", 		KSTAT_DATA_UINT64},
201 	{ "pages_pending", 		KSTAT_DATA_UINT64},
202 	{ "pages_pending_kas", 		KSTAT_DATA_UINT64},
203 	{ "pages_deferred",		KSTAT_DATA_UINT64},
204 	{ "pages_deferred_kernel",	KSTAT_DATA_UINT64},
205 	{ "pages_limit",		KSTAT_DATA_UINT64},
206 	{ "pages_limit_exceeded",	KSTAT_DATA_UINT64},
207 	{ "pages_fma",			KSTAT_DATA_UINT64},
208 	{ "pages_multiple_ce",		KSTAT_DATA_UINT64},
209 	{ "pages_ue",			KSTAT_DATA_UINT64},
210 	{ "pages_ue_cleared_retired",	KSTAT_DATA_UINT64},
211 	{ "pages_ue_cleared_freed",	KSTAT_DATA_UINT64},
212 	{ "pages_ue_persistent",	KSTAT_DATA_UINT64},
213 	{ "pages_unretired",		KSTAT_DATA_UINT64},
214 };
215 
216 static kstat_t  *page_retire_ksp = NULL;
217 
218 #define	PR_INCR_KSTAT(stat)	\
219 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1)
220 #define	PR_DECR_KSTAT(stat)	\
221 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1)
222 
223 #define	PR_KSTAT_RETIRED_CE	(page_retire_kstat.pr_mce.value.ui64)
224 #define	PR_KSTAT_RETIRED_FMA	(page_retire_kstat.pr_fma.value.ui64)
225 #define	PR_KSTAT_RETIRED_NOTUE	(PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA)
226 #define	PR_KSTAT_PENDING	(page_retire_kstat.pr_pending.value.ui64)
227 #define	PR_KSTAT_PENDING_KAS	(page_retire_kstat.pr_pending_kas.value.ui64)
228 #define	PR_KSTAT_EQFAIL		(page_retire_kstat.pr_enqueue_fail.value.ui64)
229 #define	PR_KSTAT_DQFAIL		(page_retire_kstat.pr_dequeue_fail.value.ui64)
230 
231 /*
232  * page retire kstats to list all retired pages
233  */
234 static int pr_list_kstat_update(kstat_t *ksp, int rw);
235 static int pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
236 kmutex_t pr_list_kstat_mutex;
237 
238 /*
239  * Limit the number of multiple CE page retires.
240  * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in
241  * basis points, where 100 basis points equals one percent.
242  */
243 #define	MCE_BPT	10
244 uint64_t	max_pages_retired_bps = MCE_BPT;
245 #define	PAGE_RETIRE_LIMIT	((physmem * max_pages_retired_bps) / 10000)
246 
247 /*
248  * Control over the verbosity of page retirement.
249  *
250  * When set to zero (the default), no messages will be printed.
251  * When set to one, summary messages will be printed.
252  * When set > one, all messages will be printed.
253  *
254  * A value of one will trigger detailed messages for retirement operations,
255  * and is intended as a platform tunable for processors where FMA's DE does
256  * not run (e.g., spitfire). Values > one are intended for debugging only.
257  */
258 int page_retire_messages = 0;
259 
260 /*
261  * Control whether or not we return scrubbed UE pages to service.
262  * By default we do not since FMA wants to run its diagnostics first
263  * and then ask us to unretire the page if it passes. Non-FMA platforms
264  * may set this to zero so we will only retire recidivist pages. It should
265  * not be changed by the user.
266  */
267 int page_retire_first_ue = 1;
268 
269 /*
270  * Master enable for page retire. This prevents a CE or UE early in boot
271  * from trying to retire a page before page_retire_init() has finished
272  * setting things up. This is internal only and is not a tunable!
273  */
274 static int pr_enable = 0;
275 
276 extern struct vnode kvp;
277 
278 #ifdef	DEBUG
279 struct page_retire_debug {
280 	int prd_dup1;
281 	int prd_dup2;
282 	int prd_qdup;
283 	int prd_noaction;
284 	int prd_queued;
285 	int prd_notqueued;
286 	int prd_dequeue;
287 	int prd_top;
288 	int prd_locked;
289 	int prd_reloc;
290 	int prd_relocfail;
291 	int prd_mod;
292 	int prd_mod_late;
293 	int prd_kern;
294 	int prd_free;
295 	int prd_noreclaim;
296 	int prd_hashout;
297 	int prd_fma;
298 	int prd_uescrubbed;
299 	int prd_uenotscrubbed;
300 	int prd_mce;
301 	int prd_prlocked;
302 	int prd_prnotlocked;
303 	int prd_prretired;
304 	int prd_ulocked;
305 	int prd_unotretired;
306 	int prd_udestroy;
307 	int prd_uhashout;
308 	int prd_uunretired;
309 	int prd_unotlocked;
310 	int prd_checkhit;
311 	int prd_checkmiss_pend;
312 	int prd_checkmiss_noerr;
313 	int prd_tctop;
314 	int prd_tclocked;
315 	int prd_hunt;
316 	int prd_dohunt;
317 	int prd_earlyhunt;
318 	int prd_latehunt;
319 	int prd_nofreedemote;
320 	int prd_nodemote;
321 	int prd_demoted;
322 } pr_debug;
323 
324 #define	PR_DEBUG(foo)	((pr_debug.foo)++)
325 
326 /*
327  * A type histogram. We record the incidence of the various toxic
328  * flag combinations along with the interesting page attributes. The
329  * goal is to get as many combinations as we can while driving all
330  * pr_debug values nonzero (indicating we've exercised all possible
331  * code paths across all possible page types). Not all combinations
332  * will make sense -- e.g. PRT_MOD|PRT_KERNEL.
333  *
334  * pr_type offset bit encoding (when examining with a debugger):
335  *
336  *    PRT_NAMED  - 0x4
337  *    PRT_KERNEL - 0x8
338  *    PRT_FREE   - 0x10
339  *    PRT_MOD    - 0x20
340  *    PRT_FMA    - 0x0
341  *    PRT_MCE    - 0x40
342  *    PRT_UE     - 0x80
343  */
344 
345 #define	PRT_NAMED	0x01
346 #define	PRT_KERNEL	0x02
347 #define	PRT_FREE	0x04
348 #define	PRT_MOD		0x08
349 #define	PRT_FMA		0x00	/* yes, this is not a mistake */
350 #define	PRT_MCE		0x10
351 #define	PRT_UE		0x20
352 #define	PRT_ALL		0x3F
353 
354 int pr_types[PRT_ALL+1];
355 
356 #define	PR_TYPES(pp)	{			\
357 	int whichtype = 0;			\
358 	if (pp->p_vnode)			\
359 		whichtype |= PRT_NAMED;		\
360 	if (PP_ISKAS(pp))			\
361 		whichtype |= PRT_KERNEL;	\
362 	if (PP_ISFREE(pp))			\
363 		whichtype |= PRT_FREE;		\
364 	if (hat_ismod(pp))			\
365 		whichtype |= PRT_MOD;		\
366 	if (pp->p_toxic & PR_UE)		\
367 		whichtype |= PRT_UE;		\
368 	if (pp->p_toxic & PR_MCE)		\
369 		whichtype |= PRT_MCE;		\
370 	pr_types[whichtype]++;			\
371 }
372 
373 int recl_calls;
374 int recl_mtbf = 3;
375 int reloc_calls;
376 int reloc_mtbf = 7;
377 int pr_calls;
378 int pr_mtbf = 15;
379 
380 #define	MTBF(v, f)	(((++(v)) & (f)) != (f))
381 
382 #else	/* DEBUG */
383 
384 #define	PR_DEBUG(foo)	/* nothing */
385 #define	PR_TYPES(foo)	/* nothing */
386 #define	MTBF(v, f)	(1)
387 
388 #endif	/* DEBUG */
389 
390 /*
391  * page_retire_done() - completion processing
392  *
393  * Used by the page_retire code for common completion processing.
394  * It keeps track of how many times a given result has happened,
395  * and writes out an occasional message.
396  *
397  * May be called with a NULL pp (PRD_INVALID_PA case).
398  */
399 #define	PRD_INVALID_KEY		-1
400 #define	PRD_SUCCESS		0
401 #define	PRD_PENDING		1
402 #define	PRD_FAILED		2
403 #define	PRD_DUPLICATE		3
404 #define	PRD_INVALID_PA		4
405 #define	PRD_LIMIT		5
406 #define	PRD_UE_SCRUBBED		6
407 #define	PRD_UNR_SUCCESS		7
408 #define	PRD_UNR_CANTLOCK	8
409 #define	PRD_UNR_NOT		9
410 
411 typedef struct page_retire_op {
412 	int	pr_key;		/* one of the PRD_* defines from above */
413 	int	pr_count;	/* How many times this has happened */
414 	int	pr_retval;	/* return value */
415 	int	pr_msglvl;	/* message level - when to print */
416 	char	*pr_message;	/* Cryptic message for field service */
417 } page_retire_op_t;
418 
419 static page_retire_op_t page_retire_ops[] = {
420 	/* key			count	retval	msglvl	message */
421 	{PRD_SUCCESS,		0,	0,	1,
422 		"Page 0x%08x.%08x removed from service"},
423 	{PRD_PENDING,		0,	EAGAIN,	2,
424 		"Page 0x%08x.%08x will be retired on free"},
425 	{PRD_FAILED,		0,	EAGAIN,	0, NULL},
426 	{PRD_DUPLICATE,		0,	EIO,	2,
427 		"Page 0x%08x.%08x already retired or pending"},
428 	{PRD_INVALID_PA,	0,	EINVAL, 2,
429 		"PA 0x%08x.%08x is not a relocatable page"},
430 	{PRD_LIMIT,		0,	0,	1,
431 		"Page 0x%08x.%08x not retired due to limit exceeded"},
432 	{PRD_UE_SCRUBBED,	0,	0,	1,
433 		"Previously reported error on page 0x%08x.%08x cleared"},
434 	{PRD_UNR_SUCCESS,	0,	0,	1,
435 		"Page 0x%08x.%08x returned to service"},
436 	{PRD_UNR_CANTLOCK,	0,	EAGAIN,	2,
437 		"Page 0x%08x.%08x could not be unretired"},
438 	{PRD_UNR_NOT,		0,	EIO,	2,
439 		"Page 0x%08x.%08x is not retired"},
440 	{PRD_INVALID_KEY,	0,	0,	0, NULL} /* MUST BE LAST! */
441 };
442 
443 /*
444  * print a message if page_retire_messages is true.
445  */
446 #define	PR_MESSAGE(debuglvl, msglvl, msg, pa)				\
447 {									\
448 	uint64_t p = (uint64_t)pa;					\
449 	if (page_retire_messages >= msglvl && msg != NULL) {		\
450 		cmn_err(debuglvl, msg,					\
451 		    (uint32_t)(p >> 32), (uint32_t)p);			\
452 	}								\
453 }
454 
455 /*
456  * Note that multiple bits may be set in a single settoxic operation.
457  * May be called without the page locked.
458  */
459 void
460 page_settoxic(page_t *pp, uchar_t bits)
461 {
462 	atomic_or_8(&pp->p_toxic, bits);
463 }
464 
465 /*
466  * Note that multiple bits may cleared in a single clrtoxic operation.
467  * Must be called with the page exclusively locked to prevent races which
468  * may attempt to retire a page without any toxic bits set.
469  * Note that the PR_CAPTURE bit can be cleared without the exclusive lock
470  * being held as there is a separate mutex which protects that bit.
471  */
472 void
473 page_clrtoxic(page_t *pp, uchar_t bits)
474 {
475 	ASSERT((bits & PR_CAPTURE) || PAGE_EXCL(pp));
476 	atomic_and_8(&pp->p_toxic, ~bits);
477 }
478 
479 /*
480  * Prints any page retire messages to the user, and decides what
481  * error code is appropriate for the condition reported.
482  */
483 static int
484 page_retire_done(page_t *pp, int code)
485 {
486 	page_retire_op_t *prop;
487 	uint64_t	pa = 0;
488 	int		i;
489 
490 	if (pp != NULL) {
491 		pa = mmu_ptob((uint64_t)pp->p_pagenum);
492 	}
493 
494 	prop = NULL;
495 	for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) {
496 		if (page_retire_ops[i].pr_key == code) {
497 			prop = &page_retire_ops[i];
498 			break;
499 		}
500 	}
501 
502 #ifdef	DEBUG
503 	if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) {
504 		cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code);
505 	}
506 #endif
507 
508 	ASSERT(prop->pr_key == code);
509 
510 	prop->pr_count++;
511 
512 	PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa);
513 	if (pp != NULL) {
514 		page_settoxic(pp, PR_MSG);
515 	}
516 
517 	return (prop->pr_retval);
518 }
519 
520 /*
521  * Act like page_destroy(), but instead of freeing the page, hash it onto
522  * the retired_pages vnode, and mark it retired.
523  *
524  * For fun, we try to scrub the page until it's squeaky clean.
525  * availrmem is adjusted here.
526  */
527 static void
528 page_retire_destroy(page_t *pp)
529 {
530 	u_offset_t off = (u_offset_t)((uintptr_t)pp);
531 
532 	ASSERT(PAGE_EXCL(pp));
533 	ASSERT(!PP_ISFREE(pp));
534 	ASSERT(pp->p_szc == 0);
535 	ASSERT(!hat_page_is_mapped(pp));
536 	ASSERT(!pp->p_vnode);
537 
538 	page_clr_all_props(pp, 0);
539 	pagescrub(pp, 0, MMU_PAGESIZE);
540 
541 	pp->p_next = NULL;
542 	pp->p_prev = NULL;
543 	if (page_hashin(pp, retired_pages, off, NULL) == 0) {
544 		cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp);
545 	}
546 
547 	page_settoxic(pp, PR_RETIRED);
548 	PR_INCR_KSTAT(pr_retired);
549 
550 	if (pp->p_toxic & PR_FMA) {
551 		PR_INCR_KSTAT(pr_fma);
552 	} else if (pp->p_toxic & PR_UE) {
553 		PR_INCR_KSTAT(pr_ue);
554 	} else {
555 		PR_INCR_KSTAT(pr_mce);
556 	}
557 
558 	mutex_enter(&freemem_lock);
559 	availrmem--;
560 	mutex_exit(&freemem_lock);
561 
562 	page_unlock(pp);
563 }
564 
565 /*
566  * Check whether the number of pages which have been retired already exceeds
567  * the maximum allowable percentage of memory which may be retired.
568  *
569  * Returns 1 if the limit has been exceeded.
570  */
571 static int
572 page_retire_limit(void)
573 {
574 	if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) {
575 		PR_INCR_KSTAT(pr_limit_exceeded);
576 		return (1);
577 	}
578 
579 	return (0);
580 }
581 
582 #define	MSG_DM	"Data Mismatch occurred at PA 0x%08x.%08x"		\
583 	"[ 0x%x != 0x%x ] while attempting to clear previously "	\
584 	"reported error; page removed from service"
585 
586 #define	MSG_UE	"Uncorrectable Error occurred at PA 0x%08x.%08x while "	\
587 	"attempting to clear previously reported error; page removed "	\
588 	"from service"
589 
590 /*
591  * Attempt to clear a UE from a page.
592  * Returns 1 if the error has been successfully cleared.
593  */
594 static int
595 page_clear_transient_ue(page_t *pp)
596 {
597 	caddr_t		kaddr;
598 	uint8_t		rb, wb;
599 	uint64_t	pa;
600 	uint32_t	pa_hi, pa_lo;
601 	on_trap_data_t	otd;
602 	int		errors = 0;
603 	int		i;
604 
605 	ASSERT(PAGE_EXCL(pp));
606 	ASSERT(PP_PR_REQ(pp));
607 	ASSERT(pp->p_szc == 0);
608 	ASSERT(!hat_page_is_mapped(pp));
609 
610 	/*
611 	 * Clear the page and attempt to clear the UE.  If we trap
612 	 * on the next access to the page, we know the UE has recurred.
613 	 */
614 	pagescrub(pp, 0, PAGESIZE);
615 
616 	/*
617 	 * Map the page and write a bunch of bit patterns to compare
618 	 * what we wrote with what we read back.  This isn't a perfect
619 	 * test but it should be good enough to catch most of the
620 	 * recurring UEs. If this fails to catch a recurrent UE, we'll
621 	 * retire the page the next time we see a UE on the page.
622 	 */
623 	kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1);
624 
625 	pa = ptob((uint64_t)page_pptonum(pp));
626 	pa_hi = (uint32_t)(pa >> 32);
627 	pa_lo = (uint32_t)pa;
628 
629 	/*
630 	 * Disable preemption to prevent the off chance that
631 	 * we migrate while in the middle of running through
632 	 * the bit pattern and run on a different processor
633 	 * than what we started on.
634 	 */
635 	kpreempt_disable();
636 
637 	/*
638 	 * Fill the page with each (0x00 - 0xFF] bit pattern, flushing
639 	 * the cache in between reading and writing.  We do this under
640 	 * on_trap() protection to avoid recursion.
641 	 */
642 	if (on_trap(&otd, OT_DATA_EC)) {
643 		PR_MESSAGE(CE_WARN, 1, MSG_UE, pa);
644 		errors = 1;
645 	} else {
646 		for (wb = 0xff; wb > 0; wb--) {
647 			for (i = 0; i < PAGESIZE; i++) {
648 				kaddr[i] = wb;
649 			}
650 
651 			sync_data_memory(kaddr, PAGESIZE);
652 
653 			for (i = 0; i < PAGESIZE; i++) {
654 				rb = kaddr[i];
655 				if (rb != wb) {
656 					/*
657 					 * We had a mismatch without a trap.
658 					 * Uh-oh. Something is really wrong
659 					 * with this system.
660 					 */
661 					if (page_retire_messages) {
662 						cmn_err(CE_WARN, MSG_DM,
663 						    pa_hi, pa_lo, rb, wb);
664 					}
665 					errors = 1;
666 					goto out;	/* double break */
667 				}
668 			}
669 		}
670 	}
671 out:
672 	no_trap();
673 	kpreempt_enable();
674 	ppmapout(kaddr);
675 
676 	return (errors ? 0 : 1);
677 }
678 
679 /*
680  * Try to clear a page_t with a single UE. If the UE was transient, it is
681  * returned to service, and we return 1. Otherwise we return 0 meaning
682  * that further processing is required to retire the page.
683  */
684 static int
685 page_retire_transient_ue(page_t *pp)
686 {
687 	ASSERT(PAGE_EXCL(pp));
688 	ASSERT(!hat_page_is_mapped(pp));
689 
690 	/*
691 	 * If this page is a repeat offender, retire him under the
692 	 * "two strikes and you're out" rule. The caller is responsible
693 	 * for scrubbing the page to try to clear the error.
694 	 */
695 	if (pp->p_toxic & PR_UE_SCRUBBED) {
696 		PR_INCR_KSTAT(pr_ue_persistent);
697 		return (0);
698 	}
699 
700 	if (page_clear_transient_ue(pp)) {
701 		/*
702 		 * We set the PR_SCRUBBED_UE bit; if we ever see this
703 		 * page again, we will retire it, no questions asked.
704 		 */
705 		page_settoxic(pp, PR_UE_SCRUBBED);
706 
707 		if (page_retire_first_ue) {
708 			PR_INCR_KSTAT(pr_ue_cleared_retire);
709 			return (0);
710 		} else {
711 			PR_INCR_KSTAT(pr_ue_cleared_free);
712 
713 			page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG);
714 
715 			/* LINTED: CONSTCOND */
716 			VN_DISPOSE(pp, B_FREE, 1, kcred);
717 			return (1);
718 		}
719 	}
720 
721 	PR_INCR_KSTAT(pr_ue_persistent);
722 	return (0);
723 }
724 
725 /*
726  * Update the statistics dynamically when our kstat is read.
727  */
728 static int
729 page_retire_kstat_update(kstat_t *ksp, int rw)
730 {
731 	struct page_retire_kstat *pr;
732 
733 	if (ksp == NULL)
734 		return (EINVAL);
735 
736 	switch (rw) {
737 
738 	case KSTAT_READ:
739 		pr = (struct page_retire_kstat *)ksp->ks_data;
740 		ASSERT(pr == &page_retire_kstat);
741 		pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT;
742 		return (0);
743 
744 	case KSTAT_WRITE:
745 		return (EACCES);
746 
747 	default:
748 		return (EINVAL);
749 	}
750 	/*NOTREACHED*/
751 }
752 
753 static int
754 pr_list_kstat_update(kstat_t *ksp, int rw)
755 {
756 	uint_t count;
757 	page_t *pp;
758 	kmutex_t *vphm;
759 
760 	if (rw == KSTAT_WRITE)
761 		return (EACCES);
762 
763 	vphm = page_vnode_mutex(retired_pages);
764 	mutex_enter(vphm);
765 	/* Needs to be under a lock so that for loop will work right */
766 	if (retired_pages->v_pages == NULL) {
767 		mutex_exit(vphm);
768 		ksp->ks_ndata = 0;
769 		ksp->ks_data_size = 0;
770 		return (0);
771 	}
772 
773 	count = 1;
774 	for (pp = retired_pages->v_pages->p_vpnext;
775 	    pp != retired_pages->v_pages; pp = pp->p_vpnext) {
776 		count++;
777 	}
778 	mutex_exit(vphm);
779 
780 	ksp->ks_ndata = count;
781 	ksp->ks_data_size = count * 2 * sizeof (uint64_t);
782 
783 	return (0);
784 }
785 
786 /*
787  * all spans will be pagesize and no coalescing will be done with the
788  * list produced.
789  */
790 static int
791 pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw)
792 {
793 	kmutex_t *vphm;
794 	page_t *pp;
795 	struct memunit {
796 		uint64_t address;
797 		uint64_t size;
798 	} *kspmem;
799 
800 	if (rw == KSTAT_WRITE)
801 		return (EACCES);
802 
803 	ksp->ks_snaptime = gethrtime();
804 
805 	kspmem = (struct memunit *)buf;
806 
807 	vphm = page_vnode_mutex(retired_pages);
808 	mutex_enter(vphm);
809 	pp = retired_pages->v_pages;
810 	if (((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) ||
811 	    (pp == NULL)) {
812 		mutex_exit(vphm);
813 		return (0);
814 	}
815 	kspmem->address = ptob(pp->p_pagenum);
816 	kspmem->size = PAGESIZE;
817 	kspmem++;
818 	for (pp = pp->p_vpnext; pp != retired_pages->v_pages;
819 	    pp = pp->p_vpnext, kspmem++) {
820 		if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size)
821 			break;
822 		kspmem->address = ptob(pp->p_pagenum);
823 		kspmem->size = PAGESIZE;
824 	}
825 	mutex_exit(vphm);
826 
827 	return (0);
828 }
829 
830 /*
831  * page_retire_pend_count -- helper function for page_capture_thread,
832  * returns the number of pages pending retirement.
833  */
834 uint64_t
835 page_retire_pend_count(void)
836 {
837 	return (PR_KSTAT_PENDING);
838 }
839 
840 uint64_t
841 page_retire_pend_kas_count(void)
842 {
843 	return (PR_KSTAT_PENDING_KAS);
844 }
845 
846 void
847 page_retire_incr_pend_count(void *datap)
848 {
849 	PR_INCR_KSTAT(pr_pending);
850 
851 	if ((datap == &kvp) || (datap == &zvp)) {
852 		PR_INCR_KSTAT(pr_pending_kas);
853 	}
854 }
855 
856 void
857 page_retire_decr_pend_count(void *datap)
858 {
859 	PR_DECR_KSTAT(pr_pending);
860 
861 	if ((datap == &kvp) || (datap == &zvp)) {
862 		PR_DECR_KSTAT(pr_pending_kas);
863 	}
864 }
865 
866 /*
867  * Initialize the page retire mechanism:
868  *
869  *   - Establish the correctable error retire limit.
870  *   - Initialize locks.
871  *   - Build the retired_pages vnode.
872  *   - Set up the kstats.
873  *   - Fire off the background thread.
874  *   - Tell page_retire() it's OK to start retiring pages.
875  */
876 void
877 page_retire_init(void)
878 {
879 	const fs_operation_def_t retired_vnodeops_template[] = {
880 		{ NULL, NULL }
881 	};
882 	struct vnodeops *vops;
883 	kstat_t *ksp;
884 
885 	const uint_t page_retire_ndata =
886 	    sizeof (page_retire_kstat) / sizeof (kstat_named_t);
887 
888 	ASSERT(page_retire_ksp == NULL);
889 
890 	if (max_pages_retired_bps <= 0) {
891 		max_pages_retired_bps = MCE_BPT;
892 	}
893 
894 	mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL);
895 
896 	retired_pages = vn_alloc(KM_SLEEP);
897 	if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) {
898 		cmn_err(CE_PANIC,
899 		    "page_retired_init: can't make retired vnodeops");
900 	}
901 	vn_setops(retired_pages, vops);
902 
903 	if ((page_retire_ksp = kstat_create("unix", 0, "page_retire",
904 	    "misc", KSTAT_TYPE_NAMED, page_retire_ndata,
905 	    KSTAT_FLAG_VIRTUAL)) == NULL) {
906 		cmn_err(CE_WARN, "kstat_create for page_retire failed");
907 	} else {
908 		page_retire_ksp->ks_data = (void *)&page_retire_kstat;
909 		page_retire_ksp->ks_update = page_retire_kstat_update;
910 		kstat_install(page_retire_ksp);
911 	}
912 
913 	mutex_init(&pr_list_kstat_mutex, NULL, MUTEX_DEFAULT, NULL);
914 	ksp = kstat_create("unix", 0, "page_retire_list", "misc",
915 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL);
916 	if (ksp != NULL) {
917 		ksp->ks_update = pr_list_kstat_update;
918 		ksp->ks_snapshot = pr_list_kstat_snapshot;
919 		ksp->ks_lock = &pr_list_kstat_mutex;
920 		kstat_install(ksp);
921 	}
922 
923 	page_capture_register_callback(PC_RETIRE, -1, page_retire_pp_finish);
924 	pr_enable = 1;
925 }
926 
927 /*
928  * page_retire_hunt() callback for the retire thread.
929  */
930 static void
931 page_retire_thread_cb(page_t *pp)
932 {
933 	PR_DEBUG(prd_tctop);
934 	if (!PP_ISKAS(pp) && page_trylock(pp, SE_EXCL)) {
935 		PR_DEBUG(prd_tclocked);
936 		page_unlock(pp);
937 	}
938 }
939 
940 /*
941  * Callback used by page_trycapture() to finish off retiring a page.
942  * The page has already been cleaned and we've been given sole access to
943  * it.
944  * Always returns 0 to indicate that callback succeded as the callback never
945  * fails to finish retiring the given page.
946  */
947 /*ARGSUSED*/
948 static int
949 page_retire_pp_finish(page_t *pp, void *notused, uint_t flags)
950 {
951 	int		toxic;
952 
953 	ASSERT(PAGE_EXCL(pp));
954 	ASSERT(pp->p_iolock_state == 0);
955 	ASSERT(pp->p_szc == 0);
956 
957 	toxic = pp->p_toxic;
958 
959 	/*
960 	 * The problem page is locked, demoted, unmapped, not free,
961 	 * hashed out, and not COW or mlocked (whew!).
962 	 *
963 	 * Now we select our ammunition, take it around back, and shoot it.
964 	 */
965 	if (toxic & PR_UE) {
966 ue_error:
967 		if (page_retire_transient_ue(pp)) {
968 			PR_DEBUG(prd_uescrubbed);
969 			(void) page_retire_done(pp, PRD_UE_SCRUBBED);
970 		} else {
971 			PR_DEBUG(prd_uenotscrubbed);
972 			page_retire_destroy(pp);
973 			(void) page_retire_done(pp, PRD_SUCCESS);
974 		}
975 		return (0);
976 	} else if (toxic & PR_FMA) {
977 		PR_DEBUG(prd_fma);
978 		page_retire_destroy(pp);
979 		(void) page_retire_done(pp, PRD_SUCCESS);
980 		return (0);
981 	} else if (toxic & PR_MCE) {
982 		PR_DEBUG(prd_mce);
983 		page_retire_destroy(pp);
984 		(void) page_retire_done(pp, PRD_SUCCESS);
985 		return (0);
986 	}
987 
988 	/*
989 	 * When page_retire_first_ue is set to zero and a UE occurs which is
990 	 * transient, it's possible that we clear some flags set by a second
991 	 * UE error on the page which occurs while the first is currently being
992 	 * handled and thus we need to handle the case where none of the above
993 	 * are set.  In this instance, PR_UE_SCRUBBED should be set and thus
994 	 * we should execute the UE code above.
995 	 */
996 	if (toxic & PR_UE_SCRUBBED) {
997 		goto ue_error;
998 	}
999 
1000 	/*
1001 	 * It's impossible to get here.
1002 	 */
1003 	panic("bad toxic flags 0x%x in page_retire_pp_finish\n", toxic);
1004 	return (0);
1005 }
1006 
1007 /*
1008  * page_retire() - the front door in to retire a page.
1009  *
1010  * Ideally, page_retire() would instantly retire the requested page.
1011  * Unfortunately, some pages are locked or otherwise tied up and cannot be
1012  * retired right away.  We use the page capture logic to deal with this
1013  * situation as it will continuously try to retire the page in the background
1014  * if the first attempt fails.  Success is determined by looking to see whether
1015  * the page has been retired after the page_trycapture() attempt.
1016  *
1017  * Returns:
1018  *
1019  *   - 0 on success,
1020  *   - EINVAL when the PA is whacko,
1021  *   - EIO if the page is already retired or already pending retirement, or
1022  *   - EAGAIN if the page could not be _immediately_ retired but is pending.
1023  */
1024 int
1025 page_retire(uint64_t pa, uchar_t reason)
1026 {
1027 	page_t	*pp;
1028 
1029 	ASSERT(reason & PR_REASONS);		/* there must be a reason */
1030 	ASSERT(!(reason & ~PR_REASONS));	/* but no other bits */
1031 
1032 	pp = page_numtopp_nolock(mmu_btop(pa));
1033 	if (pp == NULL) {
1034 		PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on"
1035 		    " page 0x%08x.%08x; page is not relocatable memory", pa);
1036 		return (page_retire_done(pp, PRD_INVALID_PA));
1037 	}
1038 	if (PP_RETIRED(pp)) {
1039 		PR_DEBUG(prd_dup1);
1040 		return (page_retire_done(pp, PRD_DUPLICATE));
1041 	}
1042 
1043 	if ((reason & PR_UE) && !PP_TOXIC(pp)) {
1044 		PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on"
1045 		    " page 0x%08x.%08x", pa);
1046 	} else if (PP_PR_REQ(pp)) {
1047 		PR_DEBUG(prd_dup2);
1048 		return (page_retire_done(pp, PRD_DUPLICATE));
1049 	} else {
1050 		PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of"
1051 		    " page 0x%08x.%08x", pa);
1052 	}
1053 
1054 	/* Avoid setting toxic bits in the first place */
1055 	if ((reason & (PR_FMA | PR_MCE)) && !(reason & PR_UE) &&
1056 	    page_retire_limit()) {
1057 		return (page_retire_done(pp, PRD_LIMIT));
1058 	}
1059 
1060 	if (MTBF(pr_calls, pr_mtbf)) {
1061 		page_settoxic(pp, reason);
1062 		if (page_trycapture(pp, 0, CAPTURE_RETIRE, pp->p_vnode) == 0) {
1063 			PR_DEBUG(prd_prlocked);
1064 		} else {
1065 			PR_DEBUG(prd_prnotlocked);
1066 		}
1067 	} else {
1068 		PR_DEBUG(prd_prnotlocked);
1069 	}
1070 
1071 	if (PP_RETIRED(pp)) {
1072 		PR_DEBUG(prd_prretired);
1073 		return (0);
1074 	} else {
1075 		cv_signal(&pc_cv);
1076 		PR_INCR_KSTAT(pr_failed);
1077 
1078 		if (pp->p_toxic & PR_MSG) {
1079 			return (page_retire_done(pp, PRD_FAILED));
1080 		} else {
1081 			return (page_retire_done(pp, PRD_PENDING));
1082 		}
1083 	}
1084 }
1085 
1086 /*
1087  * Take a retired page off the retired-pages vnode and clear the toxic flags.
1088  * If "free" is nonzero, lock it and put it back on the freelist. If "free"
1089  * is zero, the caller already holds SE_EXCL lock so we simply unretire it
1090  * and don't do anything else with it.
1091  *
1092  * Any unretire messages are printed from this routine.
1093  *
1094  * Returns 0 if page pp was unretired; else an error code.
1095  *
1096  * If flags is:
1097  *	PR_UNR_FREE - lock the page, clear the toxic flags and free it
1098  *	    to the freelist.
1099  *	PR_UNR_TEMP - lock the page, unretire it, leave the toxic
1100  *	    bits set as is and return it to the caller.
1101  *	PR_UNR_CLEAN - page is SE_EXCL locked, unretire it, clear the
1102  *	    toxic flags and return it to caller as is.
1103  */
1104 int
1105 page_unretire_pp(page_t *pp, int flags)
1106 {
1107 	/*
1108 	 * To be retired, a page has to be hashed onto the retired_pages vnode
1109 	 * and have PR_RETIRED set in p_toxic.
1110 	 */
1111 	if (flags == PR_UNR_CLEAN ||
1112 	    page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) {
1113 		ASSERT(PAGE_EXCL(pp));
1114 		PR_DEBUG(prd_ulocked);
1115 		if (!PP_RETIRED(pp)) {
1116 			PR_DEBUG(prd_unotretired);
1117 			page_unlock(pp);
1118 			return (page_retire_done(pp, PRD_UNR_NOT));
1119 		}
1120 
1121 		PR_MESSAGE(CE_NOTE, 1, "unretiring retired"
1122 		    " page 0x%08x.%08x", mmu_ptob((uint64_t)pp->p_pagenum));
1123 		if (pp->p_toxic & PR_FMA) {
1124 			PR_DECR_KSTAT(pr_fma);
1125 		} else if (pp->p_toxic & PR_UE) {
1126 			PR_DECR_KSTAT(pr_ue);
1127 		} else {
1128 			PR_DECR_KSTAT(pr_mce);
1129 		}
1130 
1131 		if (flags == PR_UNR_TEMP)
1132 			page_clrtoxic(pp, PR_RETIRED);
1133 		else
1134 			page_clrtoxic(pp, PR_TOXICFLAGS);
1135 
1136 		if (flags == PR_UNR_FREE) {
1137 			PR_DEBUG(prd_udestroy);
1138 			page_destroy(pp, 0);
1139 		} else {
1140 			PR_DEBUG(prd_uhashout);
1141 			page_hashout(pp, NULL);
1142 		}
1143 
1144 		mutex_enter(&freemem_lock);
1145 		availrmem++;
1146 		mutex_exit(&freemem_lock);
1147 
1148 		PR_DEBUG(prd_uunretired);
1149 		PR_DECR_KSTAT(pr_retired);
1150 		PR_INCR_KSTAT(pr_unretired);
1151 		return (page_retire_done(pp, PRD_UNR_SUCCESS));
1152 	}
1153 	PR_DEBUG(prd_unotlocked);
1154 	return (page_retire_done(pp, PRD_UNR_CANTLOCK));
1155 }
1156 
1157 /*
1158  * Return a page to service by moving it from the retired_pages vnode
1159  * onto the freelist.
1160  *
1161  * Called from mmioctl_page_retire() on behalf of the FMA DE.
1162  *
1163  * Returns:
1164  *
1165  *   - 0 if the page is unretired,
1166  *   - EAGAIN if the pp can not be locked,
1167  *   - EINVAL if the PA is whacko, and
1168  *   - EIO if the pp is not retired.
1169  */
1170 int
1171 page_unretire(uint64_t pa)
1172 {
1173 	page_t	*pp;
1174 
1175 	pp = page_numtopp_nolock(mmu_btop(pa));
1176 	if (pp == NULL) {
1177 		return (page_retire_done(pp, PRD_INVALID_PA));
1178 	}
1179 
1180 	return (page_unretire_pp(pp, PR_UNR_FREE));
1181 }
1182 
1183 /*
1184  * Test a page to see if it is retired. If errors is non-NULL, the toxic
1185  * bits of the page are returned. Returns 0 on success, error code on failure.
1186  */
1187 int
1188 page_retire_check_pp(page_t *pp, uint64_t *errors)
1189 {
1190 	int rc;
1191 
1192 	if (PP_RETIRED(pp)) {
1193 		PR_DEBUG(prd_checkhit);
1194 		rc = 0;
1195 	} else if (PP_PR_REQ(pp)) {
1196 		PR_DEBUG(prd_checkmiss_pend);
1197 		rc = EAGAIN;
1198 	} else {
1199 		PR_DEBUG(prd_checkmiss_noerr);
1200 		rc = EIO;
1201 	}
1202 
1203 	/*
1204 	 * We have magically arranged the bit values returned to fmd(1M)
1205 	 * to line up with the FMA, MCE, and UE bits of the page_t.
1206 	 */
1207 	if (errors) {
1208 		uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK);
1209 		if (toxic & PR_UE_SCRUBBED) {
1210 			toxic &= ~PR_UE_SCRUBBED;
1211 			toxic |= PR_UE;
1212 		}
1213 		*errors = toxic;
1214 	}
1215 
1216 	return (rc);
1217 }
1218 
1219 /*
1220  * Test to see if the page_t for a given PA is retired, and return the
1221  * hardware errors we have seen on the page if requested.
1222  *
1223  * Called from mmioctl_page_retire on behalf of the FMA DE.
1224  *
1225  * Returns:
1226  *
1227  *   - 0 if the page is retired,
1228  *   - EIO if the page is not retired and has no errors,
1229  *   - EAGAIN if the page is not retired but is pending; and
1230  *   - EINVAL if the PA is whacko.
1231  */
1232 int
1233 page_retire_check(uint64_t pa, uint64_t *errors)
1234 {
1235 	page_t	*pp;
1236 
1237 	if (errors) {
1238 		*errors = 0;
1239 	}
1240 
1241 	pp = page_numtopp_nolock(mmu_btop(pa));
1242 	if (pp == NULL) {
1243 		return (page_retire_done(pp, PRD_INVALID_PA));
1244 	}
1245 
1246 	return (page_retire_check_pp(pp, errors));
1247 }
1248 
1249 /*
1250  * Page retire self-test. For now, it always returns 0.
1251  */
1252 int
1253 page_retire_test(void)
1254 {
1255 	page_t *first, *pp, *cpp, *cpp2, *lpp;
1256 
1257 	/*
1258 	 * Tests the corner case where a large page can't be retired
1259 	 * because one of the constituent pages is locked. We mark
1260 	 * one page to be retired and try to retire it, and mark the
1261 	 * other page to be retired but don't try to retire it, so
1262 	 * that page_unlock() in the failure path will recurse and try
1263 	 * to retire THAT page. This is the worst possible situation
1264 	 * we can get ourselves into.
1265 	 */
1266 	memsegs_lock(0);
1267 	pp = first = page_first();
1268 	do {
1269 		if (pp->p_szc && PP_PAGEROOT(pp) == pp) {
1270 			cpp = pp + 1;
1271 			lpp = PP_ISFREE(pp)? pp : pp + 2;
1272 			cpp2 = pp + 3;
1273 			if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED))
1274 				continue;
1275 			if (!page_trylock(cpp, SE_EXCL)) {
1276 				page_unlock(lpp);
1277 				continue;
1278 			}
1279 
1280 			/* fails */
1281 			(void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
1282 
1283 			page_unlock(lpp);
1284 			page_unlock(cpp);
1285 			(void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
1286 			(void) page_retire(ptob(cpp2->p_pagenum), PR_FMA);
1287 		}
1288 	} while ((pp = page_next(pp)) != first);
1289 	memsegs_unlock(0);
1290 
1291 	return (0);
1292 }
1293