xref: /illumos-gate/usr/src/uts/common/vm/page_retire.c (revision b07ce584f4e28873b8927d7f83d9d3275a0f3ed2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Page Retire - Big Theory Statement.
28  *
29  * This file handles removing sections of faulty memory from use when the
30  * user land FMA Diagnosis Engine requests that a page be removed or when
31  * a CE or UE is detected by the hardware.
32  *
33  * In the bad old days, the kernel side of Page Retire did a lot of the work
34  * on its own. Now, with the DE keeping track of errors, the kernel side is
35  * rather simple minded on most platforms.
36  *
37  * Errors are all reflected to the DE, and after digesting the error and
38  * looking at all previously reported errors, the DE decides what should
39  * be done about the current error. If the DE wants a particular page to
40  * be retired, then the kernel page retire code is invoked via an ioctl.
41  * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling
42  * page retire to handle the error. Since page retire is just a simple
43  * mechanism it doesn't need to differentiate between the different callers.
44  *
45  * The p_toxic field in the page_t is used to indicate which errors have
46  * occurred and what action has been taken on a given page. Because errors are
47  * reported without regard to the locked state of a page, no locks are used
48  * to SET the error bits in p_toxic. However, in order to clear the error
49  * bits, the page_t must be held exclusively locked.
50  *
51  * When page_retire() is called, it must be able to acquire locks, sleep, etc.
52  * It must not be called from high-level interrupt context.
53  *
54  * Depending on how the requested page is being used at the time of the retire
55  * request (and on the availability of sufficient system resources), the page
56  * may be retired immediately, or just marked for retirement later. For
57  * example, locked pages are marked, while free pages are retired. Multiple
58  * requests may be made to retire the same page, although there is no need
59  * to: once the p_toxic flags are set, the page will be retired as soon as it
60  * can be exclusively locked.
61  *
62  * The retire mechanism is driven centrally out of page_unlock(). To expedite
63  * the retirement of pages, further requests for SE_SHARED locks are denied
64  * as long as a page retirement is pending. In addition, as long as pages are
65  * pending retirement a background thread runs periodically trying to retire
66  * those pages. Pages which could not be retired while the system is running
67  * are scrubbed prior to rebooting to avoid latent errors on the next boot.
68  *
69  * UE pages without persistent errors are scrubbed and returned to service.
70  * Recidivist pages, as well as FMA-directed requests for retirement, result
71  * in the page being taken out of service. Once the decision is made to take
72  * a page out of service, the page is cleared, hashed onto the retired_pages
73  * vnode, marked as retired, and it is unlocked.  No other requesters (except
74  * for unretire) are allowed to lock retired pages.
75  *
76  * The public routines return (sadly) 0 if they worked and a non-zero error
77  * value if something went wrong. This is done for the ioctl side of the
78  * world to allow errors to be reflected all the way out to user land. The
79  * non-zero values are explained in comments atop each function.
80  */
81 
82 /*
83  * Things to fix:
84  *
85  * 	1. Trying to retire non-relocatable kvp pages may result in a
86  *      quagmire. This is because seg_kmem() no longer keeps its pages locked,
87  *      and calls page_lookup() in the free path; since kvp pages are modified
88  *      and don't have a usable backing store, page_retire() can't do anything
89  *      with them, and we'll keep denying the lock to seg_kmem_free() in a
90  *      vicious cycle. To prevent that, we don't deny locks to kvp pages, and
91  *      hence only try to retire a page from page_unlock() in the free path.
92  *      Since most kernel pages are indefinitely held anyway, and don't
93  *      participate in I/O, this is of little consequence.
94  *
95  *      2. Low memory situations will be interesting. If we don't have
96  *      enough memory for page_relocate() to succeed, we won't be able to
97  *      retire dirty pages; nobody will be able to push them out to disk
98  *      either, since we aggressively deny the page lock. We could change
99  *      fsflush so it can recognize this situation, grab the lock, and push
100  *      the page out, where we'll catch it in the free path and retire it.
101  *
102  *	3. Beware of places that have code like this in them:
103  *
104  *		if (! page_tryupgrade(pp)) {
105  *			page_unlock(pp);
106  *			while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) {
107  *				/ *NOTHING* /
108  *			}
109  *		}
110  *		page_free(pp);
111  *
112  *	The problem is that pp can change identity right after the
113  *	page_unlock() call.  In particular, page_retire() can step in
114  *	there, change pp's identity, and hash pp onto the retired_vnode.
115  *
116  *	Of course, other functions besides page_retire() can have the
117  *	same effect. A kmem reader can waltz by, set up a mapping to the
118  *	page, and then unlock the page. Page_free() will then go castors
119  *	up. So if anybody is doing this, it's already a bug.
120  *
121  *      4. mdboot()'s call into page_retire_mdboot() should probably be
122  *      moved lower. Where the call is made now, we can get into trouble
123  *      by scrubbing a kernel page that is then accessed later.
124  */
125 
126 #include <sys/types.h>
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/mman.h>
130 #include <sys/vnode.h>
131 #include <sys/vfs_opreg.h>
132 #include <sys/cmn_err.h>
133 #include <sys/ksynch.h>
134 #include <sys/thread.h>
135 #include <sys/disp.h>
136 #include <sys/ontrap.h>
137 #include <sys/vmsystm.h>
138 #include <sys/mem_config.h>
139 #include <sys/atomic.h>
140 #include <sys/callb.h>
141 #include <vm/page.h>
142 #include <vm/vm_dep.h>
143 #include <vm/as.h>
144 #include <vm/hat.h>
145 
146 /*
147  * vnode for all pages which are retired from the VM system;
148  */
149 vnode_t *retired_pages;
150 
151 static int page_retire_pp_finish(page_t *, void *, uint_t);
152 
153 /*
154  * Make a list of all of the pages that have been marked for retirement
155  * but are not yet retired.  At system shutdown, we will scrub all of the
156  * pages in the list in case there are outstanding UEs.  Then, we
157  * cross-check this list against the number of pages that are yet to be
158  * retired, and if we find inconsistencies, we scan every page_t in the
159  * whole system looking for any pages that need to be scrubbed for UEs.
160  * The background thread also uses this queue to determine which pages
161  * it should keep trying to retire.
162  */
163 #ifdef	DEBUG
164 #define	PR_PENDING_QMAX	32
165 #else	/* DEBUG */
166 #define	PR_PENDING_QMAX	256
167 #endif	/* DEBUG */
168 page_t		*pr_pending_q[PR_PENDING_QMAX];
169 kmutex_t	pr_q_mutex;
170 
171 /*
172  * Page retire global kstats
173  */
174 struct page_retire_kstat {
175 	kstat_named_t	pr_retired;
176 	kstat_named_t	pr_requested;
177 	kstat_named_t	pr_requested_free;
178 	kstat_named_t	pr_enqueue_fail;
179 	kstat_named_t	pr_dequeue_fail;
180 	kstat_named_t	pr_pending;
181 	kstat_named_t	pr_failed;
182 	kstat_named_t	pr_failed_kernel;
183 	kstat_named_t	pr_limit;
184 	kstat_named_t	pr_limit_exceeded;
185 	kstat_named_t	pr_fma;
186 	kstat_named_t	pr_mce;
187 	kstat_named_t	pr_ue;
188 	kstat_named_t	pr_ue_cleared_retire;
189 	kstat_named_t	pr_ue_cleared_free;
190 	kstat_named_t	pr_ue_persistent;
191 	kstat_named_t	pr_unretired;
192 };
193 
194 static struct page_retire_kstat page_retire_kstat = {
195 	{ "pages_retired",		KSTAT_DATA_UINT64},
196 	{ "pages_retire_request",	KSTAT_DATA_UINT64},
197 	{ "pages_retire_request_free",	KSTAT_DATA_UINT64},
198 	{ "pages_notenqueued", 		KSTAT_DATA_UINT64},
199 	{ "pages_notdequeued", 		KSTAT_DATA_UINT64},
200 	{ "pages_pending", 		KSTAT_DATA_UINT64},
201 	{ "pages_deferred",		KSTAT_DATA_UINT64},
202 	{ "pages_deferred_kernel",	KSTAT_DATA_UINT64},
203 	{ "pages_limit",		KSTAT_DATA_UINT64},
204 	{ "pages_limit_exceeded",	KSTAT_DATA_UINT64},
205 	{ "pages_fma",			KSTAT_DATA_UINT64},
206 	{ "pages_multiple_ce",		KSTAT_DATA_UINT64},
207 	{ "pages_ue",			KSTAT_DATA_UINT64},
208 	{ "pages_ue_cleared_retired",	KSTAT_DATA_UINT64},
209 	{ "pages_ue_cleared_freed",	KSTAT_DATA_UINT64},
210 	{ "pages_ue_persistent",	KSTAT_DATA_UINT64},
211 	{ "pages_unretired",		KSTAT_DATA_UINT64},
212 };
213 
214 static kstat_t  *page_retire_ksp = NULL;
215 
216 #define	PR_INCR_KSTAT(stat)	\
217 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1)
218 #define	PR_DECR_KSTAT(stat)	\
219 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1)
220 
221 #define	PR_KSTAT_RETIRED_CE	(page_retire_kstat.pr_mce.value.ui64)
222 #define	PR_KSTAT_RETIRED_FMA	(page_retire_kstat.pr_fma.value.ui64)
223 #define	PR_KSTAT_RETIRED_NOTUE	(PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA)
224 #define	PR_KSTAT_PENDING	(page_retire_kstat.pr_pending.value.ui64)
225 #define	PR_KSTAT_EQFAIL		(page_retire_kstat.pr_enqueue_fail.value.ui64)
226 #define	PR_KSTAT_DQFAIL		(page_retire_kstat.pr_dequeue_fail.value.ui64)
227 
228 /*
229  * page retire kstats to list all retired pages
230  */
231 static int pr_list_kstat_update(kstat_t *ksp, int rw);
232 static int pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw);
233 kmutex_t pr_list_kstat_mutex;
234 
235 /*
236  * Limit the number of multiple CE page retires.
237  * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in
238  * basis points, where 100 basis points equals one percent.
239  */
240 #define	MCE_BPT	10
241 uint64_t	max_pages_retired_bps = MCE_BPT;
242 #define	PAGE_RETIRE_LIMIT	((physmem * max_pages_retired_bps) / 10000)
243 
244 /*
245  * Control over the verbosity of page retirement.
246  *
247  * When set to zero (the default), no messages will be printed.
248  * When set to one, summary messages will be printed.
249  * When set > one, all messages will be printed.
250  *
251  * A value of one will trigger detailed messages for retirement operations,
252  * and is intended as a platform tunable for processors where FMA's DE does
253  * not run (e.g., spitfire). Values > one are intended for debugging only.
254  */
255 int page_retire_messages = 0;
256 
257 /*
258  * Control whether or not we return scrubbed UE pages to service.
259  * By default we do not since FMA wants to run its diagnostics first
260  * and then ask us to unretire the page if it passes. Non-FMA platforms
261  * may set this to zero so we will only retire recidivist pages. It should
262  * not be changed by the user.
263  */
264 int page_retire_first_ue = 1;
265 
266 /*
267  * Master enable for page retire. This prevents a CE or UE early in boot
268  * from trying to retire a page before page_retire_init() has finished
269  * setting things up. This is internal only and is not a tunable!
270  */
271 static int pr_enable = 0;
272 
273 extern struct vnode kvp;
274 
275 #ifdef	DEBUG
276 struct page_retire_debug {
277 	int prd_dup1;
278 	int prd_dup2;
279 	int prd_qdup;
280 	int prd_noaction;
281 	int prd_queued;
282 	int prd_notqueued;
283 	int prd_dequeue;
284 	int prd_top;
285 	int prd_locked;
286 	int prd_reloc;
287 	int prd_relocfail;
288 	int prd_mod;
289 	int prd_mod_late;
290 	int prd_kern;
291 	int prd_free;
292 	int prd_noreclaim;
293 	int prd_hashout;
294 	int prd_fma;
295 	int prd_uescrubbed;
296 	int prd_uenotscrubbed;
297 	int prd_mce;
298 	int prd_prlocked;
299 	int prd_prnotlocked;
300 	int prd_prretired;
301 	int prd_ulocked;
302 	int prd_unotretired;
303 	int prd_udestroy;
304 	int prd_uhashout;
305 	int prd_uunretired;
306 	int prd_unotlocked;
307 	int prd_checkhit;
308 	int prd_checkmiss_pend;
309 	int prd_checkmiss_noerr;
310 	int prd_tctop;
311 	int prd_tclocked;
312 	int prd_hunt;
313 	int prd_dohunt;
314 	int prd_earlyhunt;
315 	int prd_latehunt;
316 	int prd_nofreedemote;
317 	int prd_nodemote;
318 	int prd_demoted;
319 } pr_debug;
320 
321 #define	PR_DEBUG(foo)	((pr_debug.foo)++)
322 
323 /*
324  * A type histogram. We record the incidence of the various toxic
325  * flag combinations along with the interesting page attributes. The
326  * goal is to get as many combinations as we can while driving all
327  * pr_debug values nonzero (indicating we've exercised all possible
328  * code paths across all possible page types). Not all combinations
329  * will make sense -- e.g. PRT_MOD|PRT_KERNEL.
330  *
331  * pr_type offset bit encoding (when examining with a debugger):
332  *
333  *    PRT_NAMED  - 0x4
334  *    PRT_KERNEL - 0x8
335  *    PRT_FREE   - 0x10
336  *    PRT_MOD    - 0x20
337  *    PRT_FMA    - 0x0
338  *    PRT_MCE    - 0x40
339  *    PRT_UE     - 0x80
340  */
341 
342 #define	PRT_NAMED	0x01
343 #define	PRT_KERNEL	0x02
344 #define	PRT_FREE	0x04
345 #define	PRT_MOD		0x08
346 #define	PRT_FMA		0x00	/* yes, this is not a mistake */
347 #define	PRT_MCE		0x10
348 #define	PRT_UE		0x20
349 #define	PRT_ALL		0x3F
350 
351 int pr_types[PRT_ALL+1];
352 
353 #define	PR_TYPES(pp)	{			\
354 	int whichtype = 0;			\
355 	if (pp->p_vnode)			\
356 		whichtype |= PRT_NAMED;		\
357 	if (PP_ISKAS(pp))			\
358 		whichtype |= PRT_KERNEL;	\
359 	if (PP_ISFREE(pp))			\
360 		whichtype |= PRT_FREE;		\
361 	if (hat_ismod(pp))			\
362 		whichtype |= PRT_MOD;		\
363 	if (pp->p_toxic & PR_UE)		\
364 		whichtype |= PRT_UE;		\
365 	if (pp->p_toxic & PR_MCE)		\
366 		whichtype |= PRT_MCE;		\
367 	pr_types[whichtype]++;			\
368 }
369 
370 int recl_calls;
371 int recl_mtbf = 3;
372 int reloc_calls;
373 int reloc_mtbf = 7;
374 int pr_calls;
375 int pr_mtbf = 15;
376 
377 #define	MTBF(v, f)	(((++(v)) & (f)) != (f))
378 
379 #else	/* DEBUG */
380 
381 #define	PR_DEBUG(foo)	/* nothing */
382 #define	PR_TYPES(foo)	/* nothing */
383 #define	MTBF(v, f)	(1)
384 
385 #endif	/* DEBUG */
386 
387 /*
388  * page_retire_done() - completion processing
389  *
390  * Used by the page_retire code for common completion processing.
391  * It keeps track of how many times a given result has happened,
392  * and writes out an occasional message.
393  *
394  * May be called with a NULL pp (PRD_INVALID_PA case).
395  */
396 #define	PRD_INVALID_KEY		-1
397 #define	PRD_SUCCESS		0
398 #define	PRD_PENDING		1
399 #define	PRD_FAILED		2
400 #define	PRD_DUPLICATE		3
401 #define	PRD_INVALID_PA		4
402 #define	PRD_LIMIT		5
403 #define	PRD_UE_SCRUBBED		6
404 #define	PRD_UNR_SUCCESS		7
405 #define	PRD_UNR_CANTLOCK	8
406 #define	PRD_UNR_NOT		9
407 
408 typedef struct page_retire_op {
409 	int	pr_key;		/* one of the PRD_* defines from above */
410 	int	pr_count;	/* How many times this has happened */
411 	int	pr_retval;	/* return value */
412 	int	pr_msglvl;	/* message level - when to print */
413 	char	*pr_message;	/* Cryptic message for field service */
414 } page_retire_op_t;
415 
416 static page_retire_op_t page_retire_ops[] = {
417 	/* key			count	retval	msglvl	message */
418 	{PRD_SUCCESS,		0,	0,	1,
419 		"Page 0x%08x.%08x removed from service"},
420 	{PRD_PENDING,		0,	EAGAIN,	2,
421 		"Page 0x%08x.%08x will be retired on free"},
422 	{PRD_FAILED,		0,	EAGAIN,	0, NULL},
423 	{PRD_DUPLICATE,		0,	EIO,	2,
424 		"Page 0x%08x.%08x already retired or pending"},
425 	{PRD_INVALID_PA,	0,	EINVAL, 2,
426 		"PA 0x%08x.%08x is not a relocatable page"},
427 	{PRD_LIMIT,		0,	0,	1,
428 		"Page 0x%08x.%08x not retired due to limit exceeded"},
429 	{PRD_UE_SCRUBBED,	0,	0,	1,
430 		"Previously reported error on page 0x%08x.%08x cleared"},
431 	{PRD_UNR_SUCCESS,	0,	0,	1,
432 		"Page 0x%08x.%08x returned to service"},
433 	{PRD_UNR_CANTLOCK,	0,	EAGAIN,	2,
434 		"Page 0x%08x.%08x could not be unretired"},
435 	{PRD_UNR_NOT,		0,	EIO,	2,
436 		"Page 0x%08x.%08x is not retired"},
437 	{PRD_INVALID_KEY,	0,	0,	0, NULL} /* MUST BE LAST! */
438 };
439 
440 /*
441  * print a message if page_retire_messages is true.
442  */
443 #define	PR_MESSAGE(debuglvl, msglvl, msg, pa)				\
444 {									\
445 	uint64_t p = (uint64_t)pa;					\
446 	if (page_retire_messages >= msglvl && msg != NULL) {		\
447 		cmn_err(debuglvl, msg,					\
448 		    (uint32_t)(p >> 32), (uint32_t)p);			\
449 	}								\
450 }
451 
452 /*
453  * Note that multiple bits may be set in a single settoxic operation.
454  * May be called without the page locked.
455  */
456 void
457 page_settoxic(page_t *pp, uchar_t bits)
458 {
459 	atomic_or_8(&pp->p_toxic, bits);
460 }
461 
462 /*
463  * Note that multiple bits may cleared in a single clrtoxic operation.
464  * Must be called with the page exclusively locked to prevent races which
465  * may attempt to retire a page without any toxic bits set.
466  * Note that the PR_CAPTURE bit can be cleared without the exclusive lock
467  * being held as there is a separate mutex which protects that bit.
468  */
469 void
470 page_clrtoxic(page_t *pp, uchar_t bits)
471 {
472 	ASSERT((bits & PR_CAPTURE) || PAGE_EXCL(pp));
473 	atomic_and_8(&pp->p_toxic, ~bits);
474 }
475 
476 /*
477  * Prints any page retire messages to the user, and decides what
478  * error code is appropriate for the condition reported.
479  */
480 static int
481 page_retire_done(page_t *pp, int code)
482 {
483 	page_retire_op_t *prop;
484 	uint64_t	pa = 0;
485 	int		i;
486 
487 	if (pp != NULL) {
488 		pa = mmu_ptob((uint64_t)pp->p_pagenum);
489 	}
490 
491 	prop = NULL;
492 	for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) {
493 		if (page_retire_ops[i].pr_key == code) {
494 			prop = &page_retire_ops[i];
495 			break;
496 		}
497 	}
498 
499 #ifdef	DEBUG
500 	if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) {
501 		cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code);
502 	}
503 #endif
504 
505 	ASSERT(prop->pr_key == code);
506 
507 	prop->pr_count++;
508 
509 	PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa);
510 	if (pp != NULL) {
511 		page_settoxic(pp, PR_MSG);
512 	}
513 
514 	return (prop->pr_retval);
515 }
516 
517 /*
518  * Act like page_destroy(), but instead of freeing the page, hash it onto
519  * the retired_pages vnode, and mark it retired.
520  *
521  * For fun, we try to scrub the page until it's squeaky clean.
522  * availrmem is adjusted here.
523  */
524 static void
525 page_retire_destroy(page_t *pp)
526 {
527 	u_offset_t off = (u_offset_t)((uintptr_t)pp);
528 
529 	ASSERT(PAGE_EXCL(pp));
530 	ASSERT(!PP_ISFREE(pp));
531 	ASSERT(pp->p_szc == 0);
532 	ASSERT(!hat_page_is_mapped(pp));
533 	ASSERT(!pp->p_vnode);
534 
535 	page_clr_all_props(pp, 0);
536 	pagescrub(pp, 0, MMU_PAGESIZE);
537 
538 	pp->p_next = NULL;
539 	pp->p_prev = NULL;
540 	if (page_hashin(pp, retired_pages, off, NULL) == 0) {
541 		cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp);
542 	}
543 
544 	page_settoxic(pp, PR_RETIRED);
545 	PR_INCR_KSTAT(pr_retired);
546 
547 	if (pp->p_toxic & PR_FMA) {
548 		PR_INCR_KSTAT(pr_fma);
549 	} else if (pp->p_toxic & PR_UE) {
550 		PR_INCR_KSTAT(pr_ue);
551 	} else {
552 		PR_INCR_KSTAT(pr_mce);
553 	}
554 
555 	mutex_enter(&freemem_lock);
556 	availrmem--;
557 	mutex_exit(&freemem_lock);
558 
559 	page_unlock(pp);
560 }
561 
562 /*
563  * Check whether the number of pages which have been retired already exceeds
564  * the maximum allowable percentage of memory which may be retired.
565  *
566  * Returns 1 if the limit has been exceeded.
567  */
568 static int
569 page_retire_limit(void)
570 {
571 	if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) {
572 		PR_INCR_KSTAT(pr_limit_exceeded);
573 		return (1);
574 	}
575 
576 	return (0);
577 }
578 
579 #define	MSG_DM	"Data Mismatch occurred at PA 0x%08x.%08x"		\
580 	"[ 0x%x != 0x%x ] while attempting to clear previously "	\
581 	"reported error; page removed from service"
582 
583 #define	MSG_UE	"Uncorrectable Error occurred at PA 0x%08x.%08x while "	\
584 	"attempting to clear previously reported error; page removed "	\
585 	"from service"
586 
587 /*
588  * Attempt to clear a UE from a page.
589  * Returns 1 if the error has been successfully cleared.
590  */
591 static int
592 page_clear_transient_ue(page_t *pp)
593 {
594 	caddr_t		kaddr;
595 	uint8_t		rb, wb;
596 	uint64_t	pa;
597 	uint32_t	pa_hi, pa_lo;
598 	on_trap_data_t	otd;
599 	int		errors = 0;
600 	int		i;
601 
602 	ASSERT(PAGE_EXCL(pp));
603 	ASSERT(PP_PR_REQ(pp));
604 	ASSERT(pp->p_szc == 0);
605 	ASSERT(!hat_page_is_mapped(pp));
606 
607 	/*
608 	 * Clear the page and attempt to clear the UE.  If we trap
609 	 * on the next access to the page, we know the UE has recurred.
610 	 */
611 	pagescrub(pp, 0, PAGESIZE);
612 
613 	/*
614 	 * Map the page and write a bunch of bit patterns to compare
615 	 * what we wrote with what we read back.  This isn't a perfect
616 	 * test but it should be good enough to catch most of the
617 	 * recurring UEs. If this fails to catch a recurrent UE, we'll
618 	 * retire the page the next time we see a UE on the page.
619 	 */
620 	kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1);
621 
622 	pa = ptob((uint64_t)page_pptonum(pp));
623 	pa_hi = (uint32_t)(pa >> 32);
624 	pa_lo = (uint32_t)pa;
625 
626 	/*
627 	 * Disable preemption to prevent the off chance that
628 	 * we migrate while in the middle of running through
629 	 * the bit pattern and run on a different processor
630 	 * than what we started on.
631 	 */
632 	kpreempt_disable();
633 
634 	/*
635 	 * Fill the page with each (0x00 - 0xFF] bit pattern, flushing
636 	 * the cache in between reading and writing.  We do this under
637 	 * on_trap() protection to avoid recursion.
638 	 */
639 	if (on_trap(&otd, OT_DATA_EC)) {
640 		PR_MESSAGE(CE_WARN, 1, MSG_UE, pa);
641 		errors = 1;
642 	} else {
643 		for (wb = 0xff; wb > 0; wb--) {
644 			for (i = 0; i < PAGESIZE; i++) {
645 				kaddr[i] = wb;
646 			}
647 
648 			sync_data_memory(kaddr, PAGESIZE);
649 
650 			for (i = 0; i < PAGESIZE; i++) {
651 				rb = kaddr[i];
652 				if (rb != wb) {
653 					/*
654 					 * We had a mismatch without a trap.
655 					 * Uh-oh. Something is really wrong
656 					 * with this system.
657 					 */
658 					if (page_retire_messages) {
659 						cmn_err(CE_WARN, MSG_DM,
660 						    pa_hi, pa_lo, rb, wb);
661 					}
662 					errors = 1;
663 					goto out;	/* double break */
664 				}
665 			}
666 		}
667 	}
668 out:
669 	no_trap();
670 	kpreempt_enable();
671 	ppmapout(kaddr);
672 
673 	return (errors ? 0 : 1);
674 }
675 
676 /*
677  * Try to clear a page_t with a single UE. If the UE was transient, it is
678  * returned to service, and we return 1. Otherwise we return 0 meaning
679  * that further processing is required to retire the page.
680  */
681 static int
682 page_retire_transient_ue(page_t *pp)
683 {
684 	ASSERT(PAGE_EXCL(pp));
685 	ASSERT(!hat_page_is_mapped(pp));
686 
687 	/*
688 	 * If this page is a repeat offender, retire him under the
689 	 * "two strikes and you're out" rule. The caller is responsible
690 	 * for scrubbing the page to try to clear the error.
691 	 */
692 	if (pp->p_toxic & PR_UE_SCRUBBED) {
693 		PR_INCR_KSTAT(pr_ue_persistent);
694 		return (0);
695 	}
696 
697 	if (page_clear_transient_ue(pp)) {
698 		/*
699 		 * We set the PR_SCRUBBED_UE bit; if we ever see this
700 		 * page again, we will retire it, no questions asked.
701 		 */
702 		page_settoxic(pp, PR_UE_SCRUBBED);
703 
704 		if (page_retire_first_ue) {
705 			PR_INCR_KSTAT(pr_ue_cleared_retire);
706 			return (0);
707 		} else {
708 			PR_INCR_KSTAT(pr_ue_cleared_free);
709 
710 			page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG);
711 
712 			/* LINTED: CONSTCOND */
713 			VN_DISPOSE(pp, B_FREE, 1, kcred);
714 			return (1);
715 		}
716 	}
717 
718 	PR_INCR_KSTAT(pr_ue_persistent);
719 	return (0);
720 }
721 
722 /*
723  * Update the statistics dynamically when our kstat is read.
724  */
725 static int
726 page_retire_kstat_update(kstat_t *ksp, int rw)
727 {
728 	struct page_retire_kstat *pr;
729 
730 	if (ksp == NULL)
731 		return (EINVAL);
732 
733 	switch (rw) {
734 
735 	case KSTAT_READ:
736 		pr = (struct page_retire_kstat *)ksp->ks_data;
737 		ASSERT(pr == &page_retire_kstat);
738 		pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT;
739 		return (0);
740 
741 	case KSTAT_WRITE:
742 		return (EACCES);
743 
744 	default:
745 		return (EINVAL);
746 	}
747 	/*NOTREACHED*/
748 }
749 
750 static int
751 pr_list_kstat_update(kstat_t *ksp, int rw)
752 {
753 	uint_t count;
754 	page_t *pp;
755 	kmutex_t *vphm;
756 
757 	if (rw == KSTAT_WRITE)
758 		return (EACCES);
759 
760 	vphm = page_vnode_mutex(retired_pages);
761 	mutex_enter(vphm);
762 	/* Needs to be under a lock so that for loop will work right */
763 	if (retired_pages->v_pages == NULL) {
764 		mutex_exit(vphm);
765 		ksp->ks_ndata = 0;
766 		ksp->ks_data_size = 0;
767 		return (0);
768 	}
769 
770 	count = 1;
771 	for (pp = retired_pages->v_pages->p_vpnext;
772 	    pp != retired_pages->v_pages; pp = pp->p_vpnext) {
773 		count++;
774 	}
775 	mutex_exit(vphm);
776 
777 	ksp->ks_ndata = count;
778 	ksp->ks_data_size = count * 2 * sizeof (uint64_t);
779 
780 	return (0);
781 }
782 
783 /*
784  * all spans will be pagesize and no coalescing will be done with the
785  * list produced.
786  */
787 static int
788 pr_list_kstat_snapshot(kstat_t *ksp, void *buf, int rw)
789 {
790 	kmutex_t *vphm;
791 	page_t *pp;
792 	struct memunit {
793 		uint64_t address;
794 		uint64_t size;
795 	} *kspmem;
796 
797 	if (rw == KSTAT_WRITE)
798 		return (EACCES);
799 
800 	ksp->ks_snaptime = gethrtime();
801 
802 	kspmem = (struct memunit *)buf;
803 
804 	vphm = page_vnode_mutex(retired_pages);
805 	mutex_enter(vphm);
806 	pp = retired_pages->v_pages;
807 	if (((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size) ||
808 	    (pp == NULL)) {
809 		mutex_exit(vphm);
810 		return (0);
811 	}
812 	kspmem->address = ptob(pp->p_pagenum);
813 	kspmem->size = PAGESIZE;
814 	kspmem++;
815 	for (pp = pp->p_vpnext; pp != retired_pages->v_pages;
816 	    pp = pp->p_vpnext, kspmem++) {
817 		if ((caddr_t)kspmem >= (caddr_t)buf + ksp->ks_data_size)
818 			break;
819 		kspmem->address = ptob(pp->p_pagenum);
820 		kspmem->size = PAGESIZE;
821 	}
822 	mutex_exit(vphm);
823 
824 	return (0);
825 }
826 
827 /*
828  * page_retire_pend_count -- helper function for page_capture_thread,
829  * returns the number of pages pending retirement.
830  */
831 uint64_t
832 page_retire_pend_count(void)
833 {
834 	return (PR_KSTAT_PENDING);
835 }
836 
837 void
838 page_retire_incr_pend_count(void)
839 {
840 	PR_INCR_KSTAT(pr_pending);
841 }
842 
843 void
844 page_retire_decr_pend_count(void)
845 {
846 	PR_DECR_KSTAT(pr_pending);
847 }
848 
849 /*
850  * Initialize the page retire mechanism:
851  *
852  *   - Establish the correctable error retire limit.
853  *   - Initialize locks.
854  *   - Build the retired_pages vnode.
855  *   - Set up the kstats.
856  *   - Fire off the background thread.
857  *   - Tell page_retire() it's OK to start retiring pages.
858  */
859 void
860 page_retire_init(void)
861 {
862 	const fs_operation_def_t retired_vnodeops_template[] = {
863 		{ NULL, NULL }
864 	};
865 	struct vnodeops *vops;
866 	kstat_t *ksp;
867 
868 	const uint_t page_retire_ndata =
869 	    sizeof (page_retire_kstat) / sizeof (kstat_named_t);
870 
871 	ASSERT(page_retire_ksp == NULL);
872 
873 	if (max_pages_retired_bps <= 0) {
874 		max_pages_retired_bps = MCE_BPT;
875 	}
876 
877 	mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL);
878 
879 	retired_pages = vn_alloc(KM_SLEEP);
880 	if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) {
881 		cmn_err(CE_PANIC,
882 		    "page_retired_init: can't make retired vnodeops");
883 	}
884 	vn_setops(retired_pages, vops);
885 
886 	if ((page_retire_ksp = kstat_create("unix", 0, "page_retire",
887 	    "misc", KSTAT_TYPE_NAMED, page_retire_ndata,
888 	    KSTAT_FLAG_VIRTUAL)) == NULL) {
889 		cmn_err(CE_WARN, "kstat_create for page_retire failed");
890 	} else {
891 		page_retire_ksp->ks_data = (void *)&page_retire_kstat;
892 		page_retire_ksp->ks_update = page_retire_kstat_update;
893 		kstat_install(page_retire_ksp);
894 	}
895 
896 	mutex_init(&pr_list_kstat_mutex, NULL, MUTEX_DEFAULT, NULL);
897 	ksp = kstat_create("unix", 0, "page_retire_list", "misc",
898 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE | KSTAT_FLAG_VIRTUAL);
899 	if (ksp != NULL) {
900 		ksp->ks_update = pr_list_kstat_update;
901 		ksp->ks_snapshot = pr_list_kstat_snapshot;
902 		ksp->ks_lock = &pr_list_kstat_mutex;
903 		kstat_install(ksp);
904 	}
905 
906 	page_capture_register_callback(PC_RETIRE, -1, page_retire_pp_finish);
907 	pr_enable = 1;
908 }
909 
910 /*
911  * page_retire_hunt() callback for the retire thread.
912  */
913 static void
914 page_retire_thread_cb(page_t *pp)
915 {
916 	PR_DEBUG(prd_tctop);
917 	if (!PP_ISKAS(pp) && page_trylock(pp, SE_EXCL)) {
918 		PR_DEBUG(prd_tclocked);
919 		page_unlock(pp);
920 	}
921 }
922 
923 /*
924  * Callback used by page_trycapture() to finish off retiring a page.
925  * The page has already been cleaned and we've been given sole access to
926  * it.
927  * Always returns 0 to indicate that callback succeded as the callback never
928  * fails to finish retiring the given page.
929  */
930 /*ARGSUSED*/
931 static int
932 page_retire_pp_finish(page_t *pp, void *notused, uint_t flags)
933 {
934 	int		toxic;
935 
936 	ASSERT(PAGE_EXCL(pp));
937 	ASSERT(pp->p_iolock_state == 0);
938 	ASSERT(pp->p_szc == 0);
939 
940 	toxic = pp->p_toxic;
941 
942 	/*
943 	 * The problem page is locked, demoted, unmapped, not free,
944 	 * hashed out, and not COW or mlocked (whew!).
945 	 *
946 	 * Now we select our ammunition, take it around back, and shoot it.
947 	 */
948 	if (toxic & PR_UE) {
949 ue_error:
950 		if (page_retire_transient_ue(pp)) {
951 			PR_DEBUG(prd_uescrubbed);
952 			(void) page_retire_done(pp, PRD_UE_SCRUBBED);
953 		} else {
954 			PR_DEBUG(prd_uenotscrubbed);
955 			page_retire_destroy(pp);
956 			(void) page_retire_done(pp, PRD_SUCCESS);
957 		}
958 		return (0);
959 	} else if (toxic & PR_FMA) {
960 		PR_DEBUG(prd_fma);
961 		page_retire_destroy(pp);
962 		(void) page_retire_done(pp, PRD_SUCCESS);
963 		return (0);
964 	} else if (toxic & PR_MCE) {
965 		PR_DEBUG(prd_mce);
966 		page_retire_destroy(pp);
967 		(void) page_retire_done(pp, PRD_SUCCESS);
968 		return (0);
969 	}
970 
971 	/*
972 	 * When page_retire_first_ue is set to zero and a UE occurs which is
973 	 * transient, it's possible that we clear some flags set by a second
974 	 * UE error on the page which occurs while the first is currently being
975 	 * handled and thus we need to handle the case where none of the above
976 	 * are set.  In this instance, PR_UE_SCRUBBED should be set and thus
977 	 * we should execute the UE code above.
978 	 */
979 	if (toxic & PR_UE_SCRUBBED) {
980 		goto ue_error;
981 	}
982 
983 	/*
984 	 * It's impossible to get here.
985 	 */
986 	panic("bad toxic flags 0x%x in page_retire_pp_finish\n", toxic);
987 	return (0);
988 }
989 
990 /*
991  * page_retire() - the front door in to retire a page.
992  *
993  * Ideally, page_retire() would instantly retire the requested page.
994  * Unfortunately, some pages are locked or otherwise tied up and cannot be
995  * retired right away.  We use the page capture logic to deal with this
996  * situation as it will continuously try to retire the page in the background
997  * if the first attempt fails.  Success is determined by looking to see whether
998  * the page has been retired after the page_trycapture() attempt.
999  *
1000  * Returns:
1001  *
1002  *   - 0 on success,
1003  *   - EINVAL when the PA is whacko,
1004  *   - EIO if the page is already retired or already pending retirement, or
1005  *   - EAGAIN if the page could not be _immediately_ retired but is pending.
1006  */
1007 int
1008 page_retire(uint64_t pa, uchar_t reason)
1009 {
1010 	page_t	*pp;
1011 
1012 	ASSERT(reason & PR_REASONS);		/* there must be a reason */
1013 	ASSERT(!(reason & ~PR_REASONS));	/* but no other bits */
1014 
1015 	pp = page_numtopp_nolock(mmu_btop(pa));
1016 	if (pp == NULL) {
1017 		PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on"
1018 		    " page 0x%08x.%08x; page is not relocatable memory", pa);
1019 		return (page_retire_done(pp, PRD_INVALID_PA));
1020 	}
1021 	if (PP_RETIRED(pp)) {
1022 		PR_DEBUG(prd_dup1);
1023 		return (page_retire_done(pp, PRD_DUPLICATE));
1024 	}
1025 
1026 	if ((reason & PR_UE) && !PP_TOXIC(pp)) {
1027 		PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on"
1028 		    " page 0x%08x.%08x", pa);
1029 	} else if (PP_PR_REQ(pp)) {
1030 		PR_DEBUG(prd_dup2);
1031 		return (page_retire_done(pp, PRD_DUPLICATE));
1032 	} else {
1033 		PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of"
1034 		    " page 0x%08x.%08x", pa);
1035 	}
1036 
1037 	/* Avoid setting toxic bits in the first place */
1038 	if ((reason & (PR_FMA | PR_MCE)) && !(reason & PR_UE) &&
1039 	    page_retire_limit()) {
1040 		return (page_retire_done(pp, PRD_LIMIT));
1041 	}
1042 
1043 	if (MTBF(pr_calls, pr_mtbf)) {
1044 		page_settoxic(pp, reason);
1045 		if (page_trycapture(pp, 0, CAPTURE_RETIRE, NULL) == 0) {
1046 			PR_DEBUG(prd_prlocked);
1047 		} else {
1048 			PR_DEBUG(prd_prnotlocked);
1049 		}
1050 	} else {
1051 		PR_DEBUG(prd_prnotlocked);
1052 	}
1053 
1054 	if (PP_RETIRED(pp)) {
1055 		PR_DEBUG(prd_prretired);
1056 		return (0);
1057 	} else {
1058 		cv_signal(&pc_cv);
1059 		PR_INCR_KSTAT(pr_failed);
1060 
1061 		if (pp->p_toxic & PR_MSG) {
1062 			return (page_retire_done(pp, PRD_FAILED));
1063 		} else {
1064 			return (page_retire_done(pp, PRD_PENDING));
1065 		}
1066 	}
1067 }
1068 
1069 /*
1070  * Take a retired page off the retired-pages vnode and clear the toxic flags.
1071  * If "free" is nonzero, lock it and put it back on the freelist. If "free"
1072  * is zero, the caller already holds SE_EXCL lock so we simply unretire it
1073  * and don't do anything else with it.
1074  *
1075  * Any unretire messages are printed from this routine.
1076  *
1077  * Returns 0 if page pp was unretired; else an error code.
1078  *
1079  * If flags is:
1080  *	PR_UNR_FREE - lock the page, clear the toxic flags and free it
1081  *	    to the freelist.
1082  *	PR_UNR_TEMP - lock the page, unretire it, leave the toxic
1083  *	    bits set as is and return it to the caller.
1084  *	PR_UNR_CLEAN - page is SE_EXCL locked, unretire it, clear the
1085  *	    toxic flags and return it to caller as is.
1086  */
1087 int
1088 page_unretire_pp(page_t *pp, int flags)
1089 {
1090 	/*
1091 	 * To be retired, a page has to be hashed onto the retired_pages vnode
1092 	 * and have PR_RETIRED set in p_toxic.
1093 	 */
1094 	if (flags == PR_UNR_CLEAN ||
1095 	    page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) {
1096 		ASSERT(PAGE_EXCL(pp));
1097 		PR_DEBUG(prd_ulocked);
1098 		if (!PP_RETIRED(pp)) {
1099 			PR_DEBUG(prd_unotretired);
1100 			page_unlock(pp);
1101 			return (page_retire_done(pp, PRD_UNR_NOT));
1102 		}
1103 
1104 		PR_MESSAGE(CE_NOTE, 1, "unretiring retired"
1105 		    " page 0x%08x.%08x", mmu_ptob((uint64_t)pp->p_pagenum));
1106 		if (pp->p_toxic & PR_FMA) {
1107 			PR_DECR_KSTAT(pr_fma);
1108 		} else if (pp->p_toxic & PR_UE) {
1109 			PR_DECR_KSTAT(pr_ue);
1110 		} else {
1111 			PR_DECR_KSTAT(pr_mce);
1112 		}
1113 
1114 		if (flags == PR_UNR_TEMP)
1115 			page_clrtoxic(pp, PR_RETIRED);
1116 		else
1117 			page_clrtoxic(pp, PR_TOXICFLAGS);
1118 
1119 		if (flags == PR_UNR_FREE) {
1120 			PR_DEBUG(prd_udestroy);
1121 			page_destroy(pp, 0);
1122 		} else {
1123 			PR_DEBUG(prd_uhashout);
1124 			page_hashout(pp, NULL);
1125 		}
1126 
1127 		mutex_enter(&freemem_lock);
1128 		availrmem++;
1129 		mutex_exit(&freemem_lock);
1130 
1131 		PR_DEBUG(prd_uunretired);
1132 		PR_DECR_KSTAT(pr_retired);
1133 		PR_INCR_KSTAT(pr_unretired);
1134 		return (page_retire_done(pp, PRD_UNR_SUCCESS));
1135 	}
1136 	PR_DEBUG(prd_unotlocked);
1137 	return (page_retire_done(pp, PRD_UNR_CANTLOCK));
1138 }
1139 
1140 /*
1141  * Return a page to service by moving it from the retired_pages vnode
1142  * onto the freelist.
1143  *
1144  * Called from mmioctl_page_retire() on behalf of the FMA DE.
1145  *
1146  * Returns:
1147  *
1148  *   - 0 if the page is unretired,
1149  *   - EAGAIN if the pp can not be locked,
1150  *   - EINVAL if the PA is whacko, and
1151  *   - EIO if the pp is not retired.
1152  */
1153 int
1154 page_unretire(uint64_t pa)
1155 {
1156 	page_t	*pp;
1157 
1158 	pp = page_numtopp_nolock(mmu_btop(pa));
1159 	if (pp == NULL) {
1160 		return (page_retire_done(pp, PRD_INVALID_PA));
1161 	}
1162 
1163 	return (page_unretire_pp(pp, PR_UNR_FREE));
1164 }
1165 
1166 /*
1167  * Test a page to see if it is retired. If errors is non-NULL, the toxic
1168  * bits of the page are returned. Returns 0 on success, error code on failure.
1169  */
1170 int
1171 page_retire_check_pp(page_t *pp, uint64_t *errors)
1172 {
1173 	int rc;
1174 
1175 	if (PP_RETIRED(pp)) {
1176 		PR_DEBUG(prd_checkhit);
1177 		rc = 0;
1178 	} else if (PP_PR_REQ(pp)) {
1179 		PR_DEBUG(prd_checkmiss_pend);
1180 		rc = EAGAIN;
1181 	} else {
1182 		PR_DEBUG(prd_checkmiss_noerr);
1183 		rc = EIO;
1184 	}
1185 
1186 	/*
1187 	 * We have magically arranged the bit values returned to fmd(1M)
1188 	 * to line up with the FMA, MCE, and UE bits of the page_t.
1189 	 */
1190 	if (errors) {
1191 		uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK);
1192 		if (toxic & PR_UE_SCRUBBED) {
1193 			toxic &= ~PR_UE_SCRUBBED;
1194 			toxic |= PR_UE;
1195 		}
1196 		*errors = toxic;
1197 	}
1198 
1199 	return (rc);
1200 }
1201 
1202 /*
1203  * Test to see if the page_t for a given PA is retired, and return the
1204  * hardware errors we have seen on the page if requested.
1205  *
1206  * Called from mmioctl_page_retire on behalf of the FMA DE.
1207  *
1208  * Returns:
1209  *
1210  *   - 0 if the page is retired,
1211  *   - EIO if the page is not retired and has no errors,
1212  *   - EAGAIN if the page is not retired but is pending; and
1213  *   - EINVAL if the PA is whacko.
1214  */
1215 int
1216 page_retire_check(uint64_t pa, uint64_t *errors)
1217 {
1218 	page_t	*pp;
1219 
1220 	if (errors) {
1221 		*errors = 0;
1222 	}
1223 
1224 	pp = page_numtopp_nolock(mmu_btop(pa));
1225 	if (pp == NULL) {
1226 		return (page_retire_done(pp, PRD_INVALID_PA));
1227 	}
1228 
1229 	return (page_retire_check_pp(pp, errors));
1230 }
1231 
1232 /*
1233  * Page retire self-test. For now, it always returns 0.
1234  */
1235 int
1236 page_retire_test(void)
1237 {
1238 	page_t *first, *pp, *cpp, *cpp2, *lpp;
1239 
1240 	/*
1241 	 * Tests the corner case where a large page can't be retired
1242 	 * because one of the constituent pages is locked. We mark
1243 	 * one page to be retired and try to retire it, and mark the
1244 	 * other page to be retired but don't try to retire it, so
1245 	 * that page_unlock() in the failure path will recurse and try
1246 	 * to retire THAT page. This is the worst possible situation
1247 	 * we can get ourselves into.
1248 	 */
1249 	memsegs_lock(0);
1250 	pp = first = page_first();
1251 	do {
1252 		if (pp->p_szc && PP_PAGEROOT(pp) == pp) {
1253 			cpp = pp + 1;
1254 			lpp = PP_ISFREE(pp)? pp : pp + 2;
1255 			cpp2 = pp + 3;
1256 			if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED))
1257 				continue;
1258 			if (!page_trylock(cpp, SE_EXCL)) {
1259 				page_unlock(lpp);
1260 				continue;
1261 			}
1262 
1263 			/* fails */
1264 			(void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
1265 
1266 			page_unlock(lpp);
1267 			page_unlock(cpp);
1268 			(void) page_retire(ptob(cpp->p_pagenum), PR_FMA);
1269 			(void) page_retire(ptob(cpp2->p_pagenum), PR_FMA);
1270 		}
1271 	} while ((pp = page_next(pp)) != first);
1272 	memsegs_unlock(0);
1273 
1274 	return (0);
1275 }
1276