xref: /illumos-gate/usr/src/uts/common/vm/page_retire.c (revision 7f7322febbcfe774b7270abc3b191c094bfcc517)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Page Retire - Big Theory Statement.
31  *
32  * This file handles removing sections of faulty memory from use when the
33  * user land FMA Diagnosis Engine requests that a page be removed or when
34  * a CE or UE is detected by the hardware.
35  *
36  * In the bad old days, the kernel side of Page Retire did a lot of the work
37  * on its own. Now, with the DE keeping track of errors, the kernel side is
38  * rather simple minded on most platforms.
39  *
40  * Errors are all reflected to the DE, and after digesting the error and
41  * looking at all previously reported errors, the DE decides what should
42  * be done about the current error. If the DE wants a particular page to
43  * be retired, then the kernel page retire code is invoked via an ioctl.
44  * On non-FMA platforms, the ue_drain and ce_drain paths ends up calling
45  * page retire to handle the error. Since page retire is just a simple
46  * mechanism it doesn't need to differentiate between the different callers.
47  *
48  * The p_toxic field in the page_t is used to indicate which errors have
49  * occurred and what action has been taken on a given page. Because errors are
50  * reported without regard to the locked state of a page, no locks are used
51  * to SET the error bits in p_toxic. However, in order to clear the error
52  * bits, the page_t must be held exclusively locked.
53  *
54  * When page_retire() is called, it must be able to acquire locks, sleep, etc.
55  * It must not be called from high-level interrupt context.
56  *
57  * Depending on how the requested page is being used at the time of the retire
58  * request (and on the availability of sufficient system resources), the page
59  * may be retired immediately, or just marked for retirement later. For
60  * example, locked pages are marked, while free pages are retired. Multiple
61  * requests may be made to retire the same page, although there is no need
62  * to: once the p_toxic flags are set, the page will be retired as soon as it
63  * can be exclusively locked.
64  *
65  * The retire mechanism is driven centrally out of page_unlock(). To expedite
66  * the retirement of pages, further requests for SE_SHARED locks are denied
67  * as long as a page retirement is pending. In addition, as long as pages are
68  * pending retirement a background thread runs periodically trying to retire
69  * those pages. Pages which could not be retired while the system is running
70  * are scrubbed prior to rebooting to avoid latent errors on the next boot.
71  *
72  * UE pages without persistent errors are scrubbed and returned to service.
73  * Recidivist pages, as well as FMA-directed requests for retirement, result
74  * in the page being taken out of service. Once the decision is made to take
75  * a page out of service, the page is cleared, hashed onto the retired_pages
76  * vnode, marked as retired, and it is unlocked.  No other requesters (except
77  * for unretire) are allowed to lock retired pages.
78  *
79  * The public routines return (sadly) 0 if they worked and a non-zero error
80  * value if something went wrong. This is done for the ioctl side of the
81  * world to allow errors to be reflected all the way out to user land. The
82  * non-zero values are explained in comments atop each function.
83  */
84 
85 /*
86  * Things to fix:
87  *
88  * 	1. Cleanup SE_EWANTED.  Since we're aggressive about trying to retire
89  *	pages, we can use page_retire_pp() to replace SE_EWANTED and all
90  *	the special delete_memory_thread() code just goes away.
91  *
92  * 	2. Trying to retire non-relocatable kvp pages may result in a
93  *      quagmire. This is because seg_kmem() no longer keeps its pages locked,
94  *      and calls page_lookup() in the free path; since kvp pages are modified
95  *      and don't have a usable backing store, page_retire() can't do anything
96  *      with them, and we'll keep denying the lock to seg_kmem_free() in a
97  *      vicious cycle. To prevent that, we don't deny locks to kvp pages, and
98  *      hence only call page_retire_pp() from page_unlock() in the free path.
99  *      Since most kernel pages are indefinitely held anyway, and don't
100  *      participate in I/O, this is of little consequence.
101  *
102  *      3. Low memory situations will be interesting. If we don't have
103  *      enough memory for page_relocate() to succeed, we won't be able to
104  *      retire dirty pages; nobody will be able to push them out to disk
105  *      either, since we aggressively deny the page lock. We could change
106  *      fsflush so it can recognize this situation, grab the lock, and push
107  *      the page out, where we'll catch it in the free path and retire it.
108  *
109  *	4. Beware of places that have code like this in them:
110  *
111  *		if (! page_tryupgrade(pp)) {
112  *			page_unlock(pp);
113  *			while (! page_lock(pp, SE_EXCL, NULL, P_RECLAIM)) {
114  *				/ *NOTHING* /
115  *			}
116  *		}
117  *		page_free(pp);
118  *
119  *	The problem is that pp can change identity right after the
120  *	page_unlock() call.  In particular, page_retire() can step in
121  *	there, change pp's identity, and hash pp onto the retired_vnode.
122  *
123  *	Of course, other functions besides page_retire() can have the
124  *	same effect. A kmem reader can waltz by, set up a mapping to the
125  *	page, and then unlock the page. Page_free() will then go castors
126  *	up. So if anybody is doing this, it's already a bug.
127  *
128  *      5. mdboot()'s call into page_retire_hunt() should probably be
129  *      moved lower. Where the call is made now, we can get into trouble
130  *      by scrubbing a kernel page that is then accessed later.
131  */
132 
133 #include <sys/types.h>
134 #include <sys/param.h>
135 #include <sys/systm.h>
136 #include <sys/mman.h>
137 #include <sys/vnode.h>
138 #include <sys/cmn_err.h>
139 #include <sys/ksynch.h>
140 #include <sys/thread.h>
141 #include <sys/disp.h>
142 #include <sys/ontrap.h>
143 #include <sys/vmsystm.h>
144 #include <sys/mem_config.h>
145 #include <sys/atomic.h>
146 #include <sys/callb.h>
147 #include <vm/page.h>
148 #include <vm/vm_dep.h>
149 #include <vm/as.h>
150 #include <vm/hat.h>
151 
152 /*
153  * vnode for all pages which are retired from the VM system;
154  */
155 vnode_t *retired_pages;
156 
157 /*
158  * Background thread that wakes up periodically to try to retire pending
159  * pages. This prevents threads from becoming blocked indefinitely in
160  * page_lookup() or some other routine should the page(s) they are waiting
161  * on become eligible for social security.
162  */
163 static void page_retire_thread(void);
164 static kthread_t *pr_thread_id;
165 static kcondvar_t pr_cv;
166 static kmutex_t pr_thread_mutex;
167 static clock_t pr_thread_shortwait;
168 static clock_t pr_thread_longwait;
169 
170 /*
171  * Make a list of all of the pages that have been marked for retirement
172  * but are not yet retired.  At system shutdown, we will scrub all of the
173  * pages in the list in case there are outstanding UEs.  Then, we
174  * cross-check this list against the number of pages that are yet to be
175  * retired, and if we find inconsistencies, we scan every page_t in the
176  * whole system looking for any pages that need to be scrubbed for UEs.
177  * The background thread also uses this queue to determine which pages
178  * it should keep trying to retire.
179  */
180 #ifdef	DEBUG
181 #define	PR_PENDING_QMAX	32
182 #else	/* DEBUG */
183 #define	PR_PENDING_QMAX	256
184 #endif	/* DEBUG */
185 page_t		*pr_pending_q[PR_PENDING_QMAX];
186 kmutex_t	pr_q_mutex;
187 
188 /*
189  * Page retire global kstats
190  */
191 struct page_retire_kstat {
192 	kstat_named_t	pr_retired;
193 	kstat_named_t	pr_requested;
194 	kstat_named_t	pr_requested_free;
195 	kstat_named_t	pr_enqueue_fail;
196 	kstat_named_t	pr_dequeue_fail;
197 	kstat_named_t	pr_pending;
198 	kstat_named_t	pr_failed;
199 	kstat_named_t	pr_failed_kernel;
200 	kstat_named_t	pr_limit;
201 	kstat_named_t	pr_limit_exceeded;
202 	kstat_named_t	pr_fma;
203 	kstat_named_t	pr_mce;
204 	kstat_named_t	pr_ue;
205 	kstat_named_t	pr_ue_cleared_retire;
206 	kstat_named_t	pr_ue_cleared_free;
207 	kstat_named_t	pr_ue_persistent;
208 	kstat_named_t	pr_unretired;
209 };
210 
211 static struct page_retire_kstat page_retire_kstat = {
212 	{ "pages_retired",		KSTAT_DATA_UINT64},
213 	{ "pages_retire_request",	KSTAT_DATA_UINT64},
214 	{ "pages_retire_request_free",	KSTAT_DATA_UINT64},
215 	{ "pages_notenqueued", 		KSTAT_DATA_UINT64},
216 	{ "pages_notdequeued", 		KSTAT_DATA_UINT64},
217 	{ "pages_pending", 		KSTAT_DATA_UINT64},
218 	{ "pages_deferred",		KSTAT_DATA_UINT64},
219 	{ "pages_deferred_kernel",	KSTAT_DATA_UINT64},
220 	{ "pages_limit",		KSTAT_DATA_UINT64},
221 	{ "pages_limit_exceeded",	KSTAT_DATA_UINT64},
222 	{ "pages_fma",			KSTAT_DATA_UINT64},
223 	{ "pages_multiple_ce",		KSTAT_DATA_UINT64},
224 	{ "pages_ue",			KSTAT_DATA_UINT64},
225 	{ "pages_ue_cleared_retired",	KSTAT_DATA_UINT64},
226 	{ "pages_ue_cleared_freed",	KSTAT_DATA_UINT64},
227 	{ "pages_ue_persistent",	KSTAT_DATA_UINT64},
228 	{ "pages_unretired",		KSTAT_DATA_UINT64},
229 };
230 
231 static kstat_t  *page_retire_ksp = NULL;
232 
233 #define	PR_INCR_KSTAT(stat)	\
234 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), 1)
235 #define	PR_DECR_KSTAT(stat)	\
236 	atomic_add_64(&(page_retire_kstat.stat.value.ui64), -1)
237 
238 #define	PR_KSTAT_RETIRED_CE	(page_retire_kstat.pr_mce.value.ui64)
239 #define	PR_KSTAT_RETIRED_FMA	(page_retire_kstat.pr_fma.value.ui64)
240 #define	PR_KSTAT_RETIRED_NOTUE	(PR_KSTAT_RETIRED_CE + PR_KSTAT_RETIRED_FMA)
241 #define	PR_KSTAT_PENDING	(page_retire_kstat.pr_pending.value.ui64)
242 #define	PR_KSTAT_EQFAIL		(page_retire_kstat.pr_enqueue_fail.value.ui64)
243 #define	PR_KSTAT_DQFAIL		(page_retire_kstat.pr_dequeue_fail.value.ui64)
244 
245 /*
246  * Limit the number of multiple CE page retires.
247  * The default is 0.1% of physmem, or 1 in 1000 pages. This is set in
248  * basis points, where 100 basis points equals one percent.
249  */
250 #define	MCE_BPT	10
251 uint64_t	max_pages_retired_bps = MCE_BPT;
252 #define	PAGE_RETIRE_LIMIT	((physmem * max_pages_retired_bps) / 10000)
253 
254 /*
255  * Control over the verbosity of page retirement.
256  *
257  * When set to zero (the default), no messages will be printed.
258  * When set to one, summary messages will be printed.
259  * When set > one, all messages will be printed.
260  *
261  * A value of one will trigger detailed messages for retirement operations,
262  * and is intended as a platform tunable for processors where FMA's DE does
263  * not run (e.g., spitfire). Values > one are intended for debugging only.
264  */
265 int page_retire_messages = 0;
266 
267 /*
268  * Control whether or not we return scrubbed UE pages to service.
269  * By default we do not since FMA wants to run its diagnostics first
270  * and then ask us to unretire the page if it passes. Non-FMA platforms
271  * may set this to zero so we will only retire recidivist pages. It should
272  * not be changed by the user.
273  */
274 int page_retire_first_ue = 1;
275 
276 /*
277  * Master enable for page retire. This prevents a CE or UE early in boot
278  * from trying to retire a page before page_retire_init() has finished
279  * setting things up. This is internal only and is not a tunable!
280  */
281 static int pr_enable = 0;
282 
283 extern struct vnode kvp;
284 
285 #ifdef	DEBUG
286 struct page_retire_debug {
287 	int prd_dup;
288 	int prd_noaction;
289 	int prd_queued;
290 	int prd_notqueued;
291 	int prd_dequeue;
292 	int prd_top;
293 	int prd_locked;
294 	int prd_reloc;
295 	int prd_relocfail;
296 	int prd_mod;
297 	int prd_mod_late;
298 	int prd_kern;
299 	int prd_free;
300 	int prd_noreclaim;
301 	int prd_hashout;
302 	int prd_fma;
303 	int prd_uescrubbed;
304 	int prd_uenotscrubbed;
305 	int prd_mce;
306 	int prd_prlocked;
307 	int prd_prnotlocked;
308 	int prd_prretired;
309 	int prd_ulocked;
310 	int prd_unotretired;
311 	int prd_udestroy;
312 	int prd_uhashout;
313 	int prd_uunretired;
314 	int prd_unotlocked;
315 	int prd_checkhit;
316 	int prd_checkmiss;
317 	int prd_tctop;
318 	int prd_tclocked;
319 	int prd_hunt;
320 	int prd_dohunt;
321 	int prd_earlyhunt;
322 	int prd_latehunt;
323 	int prd_nofreedemote;
324 	int prd_nodemote;
325 	int prd_demoted;
326 } pr_debug;
327 
328 #define	PR_DEBUG(foo)	((pr_debug.foo)++)
329 
330 /*
331  * A type histogram. We record the incidence of the various toxic
332  * flag combinations along with the interesting page attributes. The
333  * goal is to get as many combinations as we can while driving all
334  * pr_debug values nonzero (indicating we've exercised all possible
335  * code paths across all possible page types). Not all combinations
336  * will make sense -- e.g. PRT_MOD|PRT_KERNEL.
337  *
338  * pr_type offset bit encoding (when examining with a debugger):
339  *
340  *    PRT_NAMED  - 0x4
341  *    PRT_KERNEL - 0x8
342  *    PRT_FREE   - 0x10
343  *    PRT_MOD    - 0x20
344  *    PRT_FMA    - 0x0
345  *    PRT_MCE    - 0x40
346  *    PRT_UE     - 0x80
347  */
348 
349 #define	PRT_NAMED	0x01
350 #define	PRT_KERNEL	0x02
351 #define	PRT_FREE	0x04
352 #define	PRT_MOD		0x08
353 #define	PRT_FMA		0x00	/* yes, this is not a mistake */
354 #define	PRT_MCE		0x10
355 #define	PRT_UE		0x20
356 #define	PRT_ALL		0x3F
357 
358 int pr_types[PRT_ALL+1];
359 
360 #define	PR_TYPES(pp)	{			\
361 	int whichtype = 0;			\
362 	if (pp->p_vnode)			\
363 		whichtype |= PRT_NAMED;		\
364 	if (PP_ISKVP(pp))			\
365 		whichtype |= PRT_KERNEL;	\
366 	if (PP_ISFREE(pp))			\
367 		whichtype |= PRT_FREE;		\
368 	if (hat_ismod(pp))			\
369 		whichtype |= PRT_MOD;		\
370 	if (pp->p_toxic & PR_UE)		\
371 		whichtype |= PRT_UE;		\
372 	if (pp->p_toxic & PR_MCE)		\
373 		whichtype |= PRT_MCE;		\
374 	pr_types[whichtype]++;			\
375 }
376 
377 int recl_calls;
378 int recl_mtbf = 3;
379 int reloc_calls;
380 int reloc_mtbf = 7;
381 int pr_calls;
382 int pr_mtbf = 15;
383 
384 #define	MTBF(v, f)	(((++(v)) & (f)) != (f))
385 
386 #else	/* DEBUG */
387 
388 #define	PR_DEBUG(foo)	/* nothing */
389 #define	PR_TYPES(foo)	/* nothing */
390 #define	MTBF(v, f)	(1)
391 
392 #endif	/* DEBUG */
393 
394 /*
395  * page_retire_done() - completion processing
396  *
397  * Used by the page_retire code for common completion processing.
398  * It keeps track of how many times a given result has happened,
399  * and writes out an occasional message.
400  *
401  * May be called with a NULL pp (PRD_INVALID_PA case).
402  */
403 #define	PRD_INVALID_KEY		-1
404 #define	PRD_SUCCESS		0
405 #define	PRD_PENDING		1
406 #define	PRD_FAILED		2
407 #define	PRD_DUPLICATE		3
408 #define	PRD_INVALID_PA		4
409 #define	PRD_LIMIT		5
410 #define	PRD_UE_SCRUBBED		6
411 #define	PRD_UNR_SUCCESS		7
412 #define	PRD_UNR_CANTLOCK	8
413 #define	PRD_UNR_NOT		9
414 
415 typedef struct page_retire_op {
416 	int	pr_key;		/* one of the PRD_* defines from above */
417 	int	pr_count;	/* How many times this has happened */
418 	int	pr_retval;	/* return value */
419 	int	pr_msglvl;	/* message level - when to print */
420 	char	*pr_message;	/* Cryptic message for field service */
421 } page_retire_op_t;
422 
423 static page_retire_op_t page_retire_ops[] = {
424 	/* key			count	retval	msglvl	message */
425 	{PRD_SUCCESS,		0,	0,	1,
426 		"Page 0x%08x.%08x removed from service"},
427 	{PRD_PENDING,		0,	EAGAIN,	2,
428 		"Page 0x%08x.%08x will be retired on free"},
429 	{PRD_FAILED,		0,	EAGAIN,	0, NULL},
430 	{PRD_DUPLICATE,		0,	EBUSY,	2,
431 		"Page 0x%08x.%08x already retired"},
432 	{PRD_INVALID_PA,	0,	EINVAL, 2,
433 		"PA 0x%08x.%08x is not a relocatable page"},
434 	{PRD_LIMIT,		0,	0,	1,
435 		"Page 0x%08x.%08x not retired due to limit exceeded"},
436 	{PRD_UE_SCRUBBED,	0,	0,	1,
437 		"Previously reported error on page 0x%08x.%08x cleared"},
438 	{PRD_UNR_SUCCESS,	0,	0,	1,
439 		"Page 0x%08x.%08x returned to service"},
440 	{PRD_UNR_CANTLOCK,	0,	EAGAIN,	2,
441 		"Page 0x%08x.%08x could not be unretired"},
442 	{PRD_UNR_NOT,		0,	EBADF,	2,
443 		"Page 0x%08x.%08x is not retired"},
444 	{PRD_INVALID_KEY,	0,	0,	0, NULL} /* MUST BE LAST! */
445 };
446 
447 /*
448  * print a message if page_retire_messages is true.
449  */
450 #define	PR_MESSAGE(debuglvl, msglvl, msg, pa)				\
451 {									\
452 	uint64_t p = (uint64_t)pa;					\
453 	if (page_retire_messages >= msglvl && msg != NULL) {		\
454 		cmn_err(debuglvl, msg,					\
455 		    (uint32_t)(p >> 32), (uint32_t)p);			\
456 	}								\
457 }
458 
459 /*
460  * Note that multiple bits may be set in a single settoxic operation.
461  * May be called without the page locked.
462  */
463 void
464 page_settoxic(page_t *pp, uchar_t bits)
465 {
466 	atomic_or_8(&pp->p_toxic, bits);
467 }
468 
469 /*
470  * Note that multiple bits may cleared in a single clrtoxic operation.
471  * Must be called with the page exclusively locked to prevent races which
472  * may attempt to retire a page without any toxic bits set.
473  */
474 void
475 page_clrtoxic(page_t *pp, uchar_t bits)
476 {
477 	ASSERT(PAGE_EXCL(pp));
478 	atomic_and_8(&pp->p_toxic, ~bits);
479 }
480 
481 /*
482  * Prints any page retire messages to the user, and decides what
483  * error code is appropriate for the condition reported.
484  */
485 static int
486 page_retire_done(page_t *pp, int code)
487 {
488 	page_retire_op_t *prop;
489 	uint64_t	pa = 0;
490 	int		i;
491 
492 	if (pp != NULL) {
493 		pa = mmu_ptob((uint64_t)pp->p_pagenum);
494 	}
495 
496 	prop = NULL;
497 	for (i = 0; page_retire_ops[i].pr_key != PRD_INVALID_KEY; i++) {
498 		if (page_retire_ops[i].pr_key == code) {
499 			prop = &page_retire_ops[i];
500 			break;
501 		}
502 	}
503 
504 #ifdef	DEBUG
505 	if (page_retire_ops[i].pr_key == PRD_INVALID_KEY) {
506 		cmn_err(CE_PANIC, "page_retire_done: Invalid opcode %d", code);
507 	}
508 #endif
509 
510 	ASSERT(prop->pr_key == code);
511 
512 	prop->pr_count++;
513 
514 	PR_MESSAGE(CE_NOTE, prop->pr_msglvl, prop->pr_message, pa);
515 	if (pp != NULL) {
516 		page_settoxic(pp, PR_MSG);
517 	}
518 
519 	return (prop->pr_retval);
520 }
521 
522 /*
523  * On a reboot, our friend mdboot() wants to clear up any PP_PR_REQ() pages
524  * that we were not able to retire. On large machines, walking the complete
525  * page_t array and looking at every page_t takes too long. So, as a page is
526  * marked toxic, we track it using a list that can be processed at reboot
527  * time.  page_retire_enqueue() will do its best to try to avoid duplicate
528  * entries, but if we get too many errors at once the queue can overflow,
529  * in which case we will end up walking every page_t as a last resort.
530  * The background thread also makes use of this queue to find which pages
531  * are pending retirement.
532  */
533 static void
534 page_retire_enqueue(page_t *pp)
535 {
536 	int	nslot = -1;
537 	int	i;
538 
539 	mutex_enter(&pr_q_mutex);
540 
541 	/*
542 	 * Check to make sure retire hasn't already dequeued it.
543 	 * In the meantime if the page was cleaned up, no need
544 	 * to enqueue it.
545 	 */
546 	if (PP_RETIRED(pp) || pp->p_toxic == 0) {
547 		mutex_exit(&pr_q_mutex);
548 		PR_DEBUG(prd_noaction);
549 		return;
550 	}
551 
552 	for (i = 0; i < PR_PENDING_QMAX; i++) {
553 		if (pr_pending_q[i] == pp) {
554 			mutex_exit(&pr_q_mutex);
555 			PR_DEBUG(prd_dup);
556 			return;
557 		} else if (nslot == -1 && pr_pending_q[i] == NULL) {
558 			nslot = i;
559 		}
560 	}
561 
562 	PR_INCR_KSTAT(pr_pending);
563 
564 	if (nslot != -1) {
565 		pr_pending_q[nslot] = pp;
566 		PR_DEBUG(prd_queued);
567 	} else {
568 		PR_INCR_KSTAT(pr_enqueue_fail);
569 		PR_DEBUG(prd_notqueued);
570 	}
571 	mutex_exit(&pr_q_mutex);
572 }
573 
574 static void
575 page_retire_dequeue(page_t *pp)
576 {
577 	int i;
578 
579 	mutex_enter(&pr_q_mutex);
580 
581 	for (i = 0; i < PR_PENDING_QMAX; i++) {
582 		if (pr_pending_q[i] == pp) {
583 			pr_pending_q[i] = NULL;
584 			break;
585 		}
586 	}
587 
588 	if (i == PR_PENDING_QMAX) {
589 		PR_INCR_KSTAT(pr_dequeue_fail);
590 	}
591 
592 	PR_DECR_KSTAT(pr_pending);
593 	PR_DEBUG(prd_dequeue);
594 
595 	mutex_exit(&pr_q_mutex);
596 }
597 
598 /*
599  * Act like page_destroy(), but instead of freeing the page, hash it onto
600  * the retired_pages vnode, and mark it retired.
601  *
602  * For fun, we try to scrub the page until it's squeaky clean.
603  * availrmem is adjusted here.
604  */
605 static void
606 page_retire_destroy(page_t *pp)
607 {
608 	u_offset_t off = (u_offset_t)((uintptr_t)pp);
609 
610 	ASSERT(PAGE_EXCL(pp));
611 	ASSERT(!PP_ISFREE(pp));
612 	ASSERT(pp->p_szc == 0);
613 	ASSERT(!hat_page_is_mapped(pp));
614 	ASSERT(!pp->p_vnode);
615 
616 	page_clr_all_props(pp);
617 	pagescrub(pp, 0, MMU_PAGESIZE);
618 
619 	pp->p_next = NULL;
620 	pp->p_prev = NULL;
621 	if (page_hashin(pp, retired_pages, off, NULL) == 0) {
622 		cmn_err(CE_PANIC, "retired page %p hashin failed", (void *)pp);
623 	}
624 
625 	page_settoxic(pp, PR_RETIRED);
626 	page_clrtoxic(pp, PR_BUSY);
627 	page_retire_dequeue(pp);
628 	PR_INCR_KSTAT(pr_retired);
629 
630 	if (pp->p_toxic & PR_FMA) {
631 		PR_INCR_KSTAT(pr_fma);
632 	} else if (pp->p_toxic & PR_UE) {
633 		PR_INCR_KSTAT(pr_ue);
634 	} else {
635 		PR_INCR_KSTAT(pr_mce);
636 	}
637 
638 	mutex_enter(&freemem_lock);
639 	availrmem--;
640 	mutex_exit(&freemem_lock);
641 
642 	page_unlock(pp);
643 }
644 
645 /*
646  * Check whether the number of pages which have been retired already exceeds
647  * the maximum allowable percentage of memory which may be retired.
648  *
649  * Returns 1 if the limit has been exceeded.
650  */
651 static int
652 page_retire_limit(void)
653 {
654 	if (PR_KSTAT_RETIRED_NOTUE >= (uint64_t)PAGE_RETIRE_LIMIT) {
655 		PR_INCR_KSTAT(pr_limit_exceeded);
656 		return (1);
657 	}
658 
659 	return (0);
660 }
661 
662 #define	MSG_DM	"Data Mismatch occurred at PA 0x%08x.%08x"		\
663 	"[ 0x%x != 0x%x ] while attempting to clear previously "	\
664 	"reported error; page removed from service"
665 
666 #define	MSG_UE	"Uncorrectable Error occurred at PA 0x%08x.%08x while "	\
667 	"attempting to clear previously reported error; page removed "	\
668 	"from service"
669 
670 /*
671  * Attempt to clear a UE from a page.
672  * Returns 1 if the error has been successfully cleared.
673  */
674 static int
675 page_clear_transient_ue(page_t *pp)
676 {
677 	caddr_t		kaddr;
678 	uint8_t		rb, wb;
679 	uint64_t	pa;
680 	uint32_t	pa_hi, pa_lo;
681 	on_trap_data_t	otd;
682 	int		errors = 0;
683 	int		i;
684 
685 	ASSERT(PAGE_EXCL(pp));
686 	ASSERT(PP_PR_REQ(pp));
687 	ASSERT(pp->p_szc == 0);
688 	ASSERT(!hat_page_is_mapped(pp));
689 
690 	/*
691 	 * Clear the page and attempt to clear the UE.  If we trap
692 	 * on the next access to the page, we know the UE has recurred.
693 	 */
694 	pagescrub(pp, 0, PAGESIZE);
695 
696 	/*
697 	 * Map the page and write a bunch of bit patterns to compare
698 	 * what we wrote with what we read back.  This isn't a perfect
699 	 * test but it should be good enough to catch most of the
700 	 * recurring UEs. If this fails to catch a recurrent UE, we'll
701 	 * retire the page the next time we see a UE on the page.
702 	 */
703 	kaddr = ppmapin(pp, PROT_READ|PROT_WRITE, (caddr_t)-1);
704 
705 	pa = ptob((uint64_t)page_pptonum(pp));
706 	pa_hi = (uint32_t)(pa >> 32);
707 	pa_lo = (uint32_t)pa;
708 
709 	/*
710 	 * Fill the page with each (0x00 - 0xFF] bit pattern, flushing
711 	 * the cache in between reading and writing.  We do this under
712 	 * on_trap() protection to avoid recursion.
713 	 */
714 	if (on_trap(&otd, OT_DATA_EC)) {
715 		PR_MESSAGE(CE_WARN, 1, MSG_UE, pa);
716 		errors = 1;
717 	} else {
718 		for (wb = 0xff; wb > 0; wb--) {
719 			for (i = 0; i < PAGESIZE; i++) {
720 				kaddr[i] = wb;
721 			}
722 
723 			sync_data_memory(kaddr, PAGESIZE);
724 
725 			for (i = 0; i < PAGESIZE; i++) {
726 				rb = kaddr[i];
727 				if (rb != wb) {
728 					/*
729 					 * We had a mismatch without a trap.
730 					 * Uh-oh. Something is really wrong
731 					 * with this system.
732 					 */
733 					if (page_retire_messages) {
734 						cmn_err(CE_WARN, MSG_DM,
735 						    pa_hi, pa_lo, rb, wb);
736 					}
737 					errors = 1;
738 					goto out;	/* double break */
739 				}
740 			}
741 		}
742 	}
743 out:
744 	no_trap();
745 	ppmapout(kaddr);
746 
747 	return (errors ? 0 : 1);
748 }
749 
750 /*
751  * Try to clear a page_t with a single UE. If the UE was transient, it is
752  * returned to service, and we return 1. Otherwise we return 0 meaning
753  * that further processing is required to retire the page.
754  */
755 static int
756 page_retire_transient_ue(page_t *pp)
757 {
758 	ASSERT(PAGE_EXCL(pp));
759 	ASSERT(!hat_page_is_mapped(pp));
760 
761 	/*
762 	 * If this page is a repeat offender, retire him under the
763 	 * "two strikes and you're out" rule. The caller is responsible
764 	 * for scrubbing the page to try to clear the error.
765 	 */
766 	if (pp->p_toxic & PR_UE_SCRUBBED) {
767 		PR_INCR_KSTAT(pr_ue_persistent);
768 		return (0);
769 	}
770 
771 	if (page_clear_transient_ue(pp)) {
772 		/*
773 		 * We set the PR_SCRUBBED_UE bit; if we ever see this
774 		 * page again, we will retire it, no questions asked.
775 		 */
776 		page_settoxic(pp, PR_UE_SCRUBBED);
777 
778 		if (page_retire_first_ue) {
779 			PR_INCR_KSTAT(pr_ue_cleared_retire);
780 			return (0);
781 		} else {
782 			PR_INCR_KSTAT(pr_ue_cleared_free);
783 
784 			page_clrtoxic(pp, PR_UE | PR_MCE | PR_MSG | PR_BUSY);
785 			page_retire_dequeue(pp);
786 
787 			/* LINTED: CONSTCOND */
788 			VN_DISPOSE(pp, B_FREE, 1, kcred);
789 			return (1);
790 		}
791 	}
792 
793 	PR_INCR_KSTAT(pr_ue_persistent);
794 	return (0);
795 }
796 
797 /*
798  * Update the statistics dynamically when our kstat is read.
799  */
800 static int
801 page_retire_kstat_update(kstat_t *ksp, int rw)
802 {
803 	struct page_retire_kstat *pr;
804 
805 	if (ksp == NULL)
806 	    return (EINVAL);
807 
808 	switch (rw) {
809 
810 	case KSTAT_READ:
811 		pr = (struct page_retire_kstat *)ksp->ks_data;
812 		ASSERT(pr == &page_retire_kstat);
813 		pr->pr_limit.value.ui64 = PAGE_RETIRE_LIMIT;
814 		return (0);
815 
816 	case KSTAT_WRITE:
817 		return (EACCES);
818 
819 	default:
820 		return (EINVAL);
821 	}
822 	/*NOTREACHED*/
823 }
824 
825 /*
826  * Initialize the page retire mechanism:
827  *
828  *   - Establish the correctable error retire limit.
829  *   - Initialize locks.
830  *   - Build the retired_pages vnode.
831  *   - Set up the kstats.
832  *   - Fire off the background thread.
833  *   - Tell page_tryretire() it's OK to start retiring pages.
834  */
835 void
836 page_retire_init(void)
837 {
838 	const fs_operation_def_t retired_vnodeops_template[] = {NULL, NULL};
839 	struct vnodeops *vops;
840 
841 	const uint_t page_retire_ndata =
842 	    sizeof (page_retire_kstat) / sizeof (kstat_named_t);
843 
844 	ASSERT(page_retire_ksp == NULL);
845 
846 	if (max_pages_retired_bps <= 0) {
847 		max_pages_retired_bps = MCE_BPT;
848 	}
849 
850 	mutex_init(&pr_q_mutex, NULL, MUTEX_DEFAULT, NULL);
851 
852 	retired_pages = vn_alloc(KM_SLEEP);
853 	if (vn_make_ops("retired_pages", retired_vnodeops_template, &vops)) {
854 		cmn_err(CE_PANIC,
855 		    "page_retired_init: can't make retired vnodeops");
856 	}
857 	vn_setops(retired_pages, vops);
858 
859 	if ((page_retire_ksp = kstat_create("unix", 0, "page_retire",
860 	    "misc", KSTAT_TYPE_NAMED, page_retire_ndata,
861 	    KSTAT_FLAG_VIRTUAL)) == NULL) {
862 		cmn_err(CE_WARN, "kstat_create for page_retire failed");
863 	} else {
864 		page_retire_ksp->ks_data = (void *)&page_retire_kstat;
865 		page_retire_ksp->ks_update = page_retire_kstat_update;
866 		kstat_install(page_retire_ksp);
867 	}
868 
869 	pr_thread_shortwait = 23 * hz;
870 	pr_thread_longwait = 1201 * hz;
871 	mutex_init(&pr_thread_mutex, NULL, MUTEX_DEFAULT, NULL);
872 	cv_init(&pr_cv, NULL, CV_DEFAULT, NULL);
873 	pr_thread_id = thread_create(NULL, 0, page_retire_thread, NULL, 0, &p0,
874 	    TS_RUN, minclsyspri);
875 
876 	pr_enable = 1;
877 }
878 
879 /*
880  * page_retire_hunt() callback for the retire thread.
881  */
882 static void
883 page_retire_thread_cb(page_t *pp)
884 {
885 	PR_DEBUG(prd_tctop);
886 	if (!PP_ISKVP(pp) && page_trylock(pp, SE_EXCL)) {
887 		PR_DEBUG(prd_tclocked);
888 		page_unlock(pp);
889 	}
890 }
891 
892 /*
893  * page_retire_hunt() callback for mdboot().
894  *
895  * It is necessary to scrub any failing pages prior to reboot in order to
896  * prevent a latent error trap from occurring on the next boot.
897  */
898 void
899 page_retire_mdboot_cb(page_t *pp)
900 {
901 	/*
902 	 * Don't scrub the kernel, since we might still need it, unless
903 	 * we have UEs on the page, in which case we have nothing to lose.
904 	 */
905 	if (!PP_ISKVP(pp) || PP_TOXIC(pp)) {
906 		pp->p_selock = -1;	/* pacify ASSERTs */
907 		PP_CLRFREE(pp);
908 		pagescrub(pp, 0, PAGESIZE);
909 		pp->p_selock = 0;
910 	}
911 	pp->p_toxic = 0;
912 }
913 
914 /*
915  * Hunt down any pages in the system that have not yet been retired, invoking
916  * the provided callback function on each of them.
917  */
918 void
919 page_retire_hunt(void (*callback)(page_t *))
920 {
921 	page_t *pp;
922 	page_t *first;
923 	uint64_t tbr, found;
924 	int i;
925 
926 	PR_DEBUG(prd_hunt);
927 
928 	if (PR_KSTAT_PENDING == 0) {
929 		return;
930 	}
931 
932 	PR_DEBUG(prd_dohunt);
933 
934 	found = 0;
935 	mutex_enter(&pr_q_mutex);
936 
937 	tbr = PR_KSTAT_PENDING;
938 
939 	for (i = 0; i < PR_PENDING_QMAX; i++) {
940 		if ((pp = pr_pending_q[i]) != NULL) {
941 			mutex_exit(&pr_q_mutex);
942 			callback(pp);
943 			mutex_enter(&pr_q_mutex);
944 			found++;
945 		}
946 	}
947 
948 	if (PR_KSTAT_EQFAIL == PR_KSTAT_DQFAIL && found == tbr) {
949 		mutex_exit(&pr_q_mutex);
950 		PR_DEBUG(prd_earlyhunt);
951 		return;
952 	}
953 	mutex_exit(&pr_q_mutex);
954 
955 	PR_DEBUG(prd_latehunt);
956 
957 	/*
958 	 * We've lost track of a page somewhere. Hunt it down.
959 	 */
960 	memsegs_lock(0);
961 	pp = first = page_first();
962 	do {
963 		if (PP_PR_REQ(pp)) {
964 			callback(pp);
965 			if (++found == tbr) {
966 				break;	/* got 'em all */
967 			}
968 		}
969 	} while ((pp = page_next(pp)) != first);
970 	memsegs_unlock(0);
971 }
972 
973 /*
974  * The page_retire_thread loops forever, looking to see if there are
975  * pages still waiting to be retired.
976  */
977 static void
978 page_retire_thread(void)
979 {
980 	callb_cpr_t c;
981 
982 	CALLB_CPR_INIT(&c, &pr_thread_mutex, callb_generic_cpr, "page_retire");
983 
984 	mutex_enter(&pr_thread_mutex);
985 	for (;;) {
986 		if (pr_enable && PR_KSTAT_PENDING) {
987 			/*
988 			 * Sigh. It's SO broken how we have to try to shake
989 			 * loose the holder of the page. Since we have no
990 			 * idea who or what has it locked, we go bang on
991 			 * every door in the city to try to locate it.
992 			 */
993 			kmem_reap();
994 			seg_preap();
995 			page_retire_hunt(page_retire_thread_cb);
996 			CALLB_CPR_SAFE_BEGIN(&c);
997 			(void) cv_timedwait(&pr_cv, &pr_thread_mutex,
998 			    lbolt + pr_thread_shortwait);
999 			CALLB_CPR_SAFE_END(&c, &pr_thread_mutex);
1000 		} else {
1001 			CALLB_CPR_SAFE_BEGIN(&c);
1002 			(void) cv_timedwait(&pr_cv, &pr_thread_mutex,
1003 			    lbolt + pr_thread_longwait);
1004 			CALLB_CPR_SAFE_END(&c, &pr_thread_mutex);
1005 		}
1006 	}
1007 	/*NOTREACHED*/
1008 }
1009 
1010 /*
1011  * page_retire_pp() decides what to do with a failing page.
1012  *
1013  * When we get a free page (e.g. the scrubber or in the free path) life is
1014  * nice because the page is clean and marked free -- those always retire
1015  * nicely. From there we go by order of difficulty. If the page has data,
1016  * we attempt to relocate its contents to a suitable replacement page. If
1017  * that does not succeed, we look to see if it is clean. If after all of
1018  * this we have a clean, unmapped page (which we usually do!), we retire it.
1019  * If the page is not clean, we still process it regardless on a UE; for
1020  * CEs or FMA requests, we fail leaving the page in service. The page will
1021  * eventually be tried again later. We always return with the page unlocked
1022  * since we are called from page_unlock().
1023  *
1024  * We don't call panic or do anything fancy down in here. Our boss the DE
1025  * gets paid handsomely to do his job of figuring out what to do when errors
1026  * occur. We just do what he tells us to do.
1027  */
1028 static int
1029 page_retire_pp(page_t *pp)
1030 {
1031 	int		toxic;
1032 
1033 	ASSERT(PAGE_EXCL(pp));
1034 	ASSERT(pp->p_iolock_state == 0);
1035 	ASSERT(pp->p_szc == 0);
1036 
1037 	PR_DEBUG(prd_top);
1038 	PR_TYPES(pp);
1039 
1040 	toxic = pp->p_toxic;
1041 	ASSERT(toxic & PR_REASONS);
1042 
1043 	if ((toxic & (PR_FMA | PR_MCE)) && !(toxic & PR_UE) &&
1044 	    page_retire_limit()) {
1045 		page_clrtoxic(pp, PR_FMA | PR_MCE | PR_MSG | PR_BUSY);
1046 		page_retire_dequeue(pp);
1047 		page_unlock(pp);
1048 		return (page_retire_done(pp, PRD_LIMIT));
1049 	}
1050 
1051 	if (PP_ISFREE(pp)) {
1052 		int dbgnoreclaim = MTBF(recl_calls, recl_mtbf) == 0;
1053 
1054 		PR_DEBUG(prd_free);
1055 
1056 		if (dbgnoreclaim || !page_reclaim(pp, NULL)) {
1057 			PR_DEBUG(prd_noreclaim);
1058 			PR_INCR_KSTAT(pr_failed);
1059 			/*
1060 			 * page_reclaim() returns with `pp' unlocked when
1061 			 * it fails.
1062 			 */
1063 			if (dbgnoreclaim)
1064 				page_unlock(pp);
1065 			return (page_retire_done(pp, PRD_FAILED));
1066 		}
1067 	}
1068 	ASSERT(!PP_ISFREE(pp));
1069 
1070 	if ((toxic & PR_UE) == 0 && pp->p_vnode && !PP_ISNORELOCKERNEL(pp) &&
1071 	    MTBF(reloc_calls, reloc_mtbf)) {
1072 		page_t *newpp;
1073 		spgcnt_t count;
1074 
1075 		/*
1076 		 * If we can relocate the page, great! newpp will go
1077 		 * on without us, and everything is fine.  Regardless
1078 		 * of whether the relocation succeeds, we are still
1079 		 * going to take `pp' around back and shoot it.
1080 		 */
1081 		newpp = NULL;
1082 		if (page_relocate(&pp, &newpp, 0, 0, &count, NULL) == 0) {
1083 			PR_DEBUG(prd_reloc);
1084 			page_unlock(newpp);
1085 			ASSERT(hat_page_getattr(pp, P_MOD) == 0);
1086 		} else {
1087 			PR_DEBUG(prd_relocfail);
1088 		}
1089 	}
1090 
1091 	if (hat_ismod(pp)) {
1092 		PR_DEBUG(prd_mod);
1093 		PR_INCR_KSTAT(pr_failed);
1094 		page_unlock(pp);
1095 		return (page_retire_done(pp, PRD_FAILED));
1096 	}
1097 
1098 	if (PP_ISKVP(pp)) {
1099 		PR_DEBUG(prd_kern);
1100 		PR_INCR_KSTAT(pr_failed_kernel);
1101 		page_unlock(pp);
1102 		return (page_retire_done(pp, PRD_FAILED));
1103 	}
1104 
1105 	if (pp->p_lckcnt || pp->p_cowcnt) {
1106 		PR_DEBUG(prd_locked);
1107 		PR_INCR_KSTAT(pr_failed);
1108 		page_unlock(pp);
1109 		return (page_retire_done(pp, PRD_FAILED));
1110 	}
1111 
1112 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1113 	ASSERT(!hat_page_is_mapped(pp));
1114 
1115 	/*
1116 	 * If the page is modified, and was not relocated; we can't
1117 	 * retire it without dropping data on the floor. We have to
1118 	 * recheck after unloading since the dirty bit could have been
1119 	 * set since we last checked.
1120 	 */
1121 	if (hat_ismod(pp)) {
1122 		PR_DEBUG(prd_mod_late);
1123 		PR_INCR_KSTAT(pr_failed);
1124 		page_unlock(pp);
1125 		return (page_retire_done(pp, PRD_FAILED));
1126 	}
1127 
1128 	if (pp->p_vnode) {
1129 		PR_DEBUG(prd_hashout);
1130 		page_hashout(pp, NULL);
1131 	}
1132 	ASSERT(!pp->p_vnode);
1133 
1134 	/*
1135 	 * The problem page is locked, demoted, unmapped, not free,
1136 	 * hashed out, and not COW or mlocked (whew!).
1137 	 *
1138 	 * Now we select our ammunition, take it around back, and shoot it.
1139 	 */
1140 	if (toxic & PR_UE) {
1141 		if (page_retire_transient_ue(pp)) {
1142 			PR_DEBUG(prd_uescrubbed);
1143 			return (page_retire_done(pp, PRD_UE_SCRUBBED));
1144 		} else {
1145 			PR_DEBUG(prd_uenotscrubbed);
1146 			page_retire_destroy(pp);
1147 			return (page_retire_done(pp, PRD_SUCCESS));
1148 		}
1149 	} else if (toxic & PR_FMA) {
1150 		PR_DEBUG(prd_fma);
1151 		page_retire_destroy(pp);
1152 		return (page_retire_done(pp, PRD_SUCCESS));
1153 	} else if (toxic & PR_MCE) {
1154 		PR_DEBUG(prd_mce);
1155 		page_retire_destroy(pp);
1156 		return (page_retire_done(pp, PRD_SUCCESS));
1157 	}
1158 	panic("page_retire_pp: bad toxic flags %d", toxic);
1159 	/*NOTREACHED*/
1160 }
1161 
1162 /*
1163  * Try to retire a page when we stumble onto it in the page lock routines.
1164  */
1165 void
1166 page_tryretire(page_t *pp)
1167 {
1168 	ASSERT(PAGE_EXCL(pp));
1169 
1170 	if (!pr_enable) {
1171 		page_unlock(pp);
1172 		return;
1173 	}
1174 
1175 	/*
1176 	 * If the page is a big page, try to break it up.
1177 	 *
1178 	 * If there are other bad pages besides `pp', they will be
1179 	 * recursively retired for us thanks to a bit of magic.
1180 	 * If the page is a small page with errors, try to retire it.
1181 	 */
1182 	if (pp->p_szc > 0) {
1183 		if (PP_ISFREE(pp) && !page_try_demote_free_pages(pp)) {
1184 			page_unlock(pp);
1185 			PR_DEBUG(prd_nofreedemote);
1186 			return;
1187 		} else if (!page_try_demote_pages(pp)) {
1188 			page_unlock(pp);
1189 			PR_DEBUG(prd_nodemote);
1190 			return;
1191 		}
1192 		PR_DEBUG(prd_demoted);
1193 		page_unlock(pp);
1194 	} else {
1195 		(void) page_retire_pp(pp);
1196 	}
1197 }
1198 
1199 /*
1200  * page_retire() - the front door in to retire a page.
1201  *
1202  * Ideally, page_retire() would instantly retire the requested page.
1203  * Unfortunately, some pages are locked or otherwise tied up and cannot be
1204  * retired right away. To deal with that, bits are set in p_toxic of the
1205  * page_t. An attempt is made to lock the page; if the attempt is successful,
1206  * we instantly unlock the page counting on page_unlock() to notice p_toxic
1207  * is nonzero and to call back into page_retire_pp(). Success is determined
1208  * by looking to see whether the page has been retired once it has been
1209  * unlocked.
1210  *
1211  * Returns:
1212  *
1213  *   - 0 on success,
1214  *   - EINVAL when the PA is whacko,
1215  *   - EBUSY if the page is already retired, or
1216  *   - EAGAIN if the page could not be _immediately_ retired.
1217  */
1218 int
1219 page_retire(uint64_t pa, uchar_t reason)
1220 {
1221 	page_t	*pp;
1222 
1223 	ASSERT(reason & PR_REASONS);		/* there must be a reason */
1224 	ASSERT(!(reason & ~PR_REASONS));	/* but no other bits */
1225 
1226 	pp = page_numtopp_nolock(mmu_btop(pa));
1227 	if (pp == NULL) {
1228 		PR_MESSAGE(CE_WARN, 1, "Cannot schedule clearing of error on"
1229 		    " page 0x%08x.%08x; page is not relocatable memory", pa);
1230 		return (page_retire_done(pp, PRD_INVALID_PA));
1231 	}
1232 	if (PP_RETIRED(pp)) {
1233 		return (page_retire_done(pp, PRD_DUPLICATE));
1234 	}
1235 
1236 	if (reason & PR_UE) {
1237 		PR_MESSAGE(CE_NOTE, 1, "Scheduling clearing of error on"
1238 		    " page 0x%08x.%08x", pa);
1239 	} else {
1240 		PR_MESSAGE(CE_NOTE, 1, "Scheduling removal of"
1241 		    " page 0x%08x.%08x", pa);
1242 	}
1243 	page_settoxic(pp, reason);
1244 	page_retire_enqueue(pp);
1245 
1246 	/*
1247 	 * And now for some magic.
1248 	 *
1249 	 * We marked this page toxic up above.  All there is left to do is
1250 	 * to try to lock the page and then unlock it.  The page lock routines
1251 	 * will intercept the page and retire it if they can.  If the page
1252 	 * cannot be locked, 's okay -- page_unlock() will eventually get it,
1253 	 * or the background thread, until then the lock routines will deny
1254 	 * further locks on it.
1255 	 */
1256 	if (MTBF(pr_calls, pr_mtbf) && page_trylock(pp, SE_EXCL)) {
1257 		PR_DEBUG(prd_prlocked);
1258 		page_unlock(pp);
1259 	} else {
1260 		PR_DEBUG(prd_prnotlocked);
1261 	}
1262 
1263 	if (PP_RETIRED(pp)) {
1264 		PR_DEBUG(prd_prretired);
1265 		return (0);
1266 	} else {
1267 		cv_signal(&pr_cv);
1268 		PR_INCR_KSTAT(pr_failed);
1269 
1270 		if (pp->p_toxic & PR_MSG) {
1271 			return (page_retire_done(pp, PRD_FAILED));
1272 		} else {
1273 			return (page_retire_done(pp, PRD_PENDING));
1274 		}
1275 	}
1276 }
1277 
1278 /*
1279  * Take a retired page off the retired-pages vnode and clear the toxic flags.
1280  * If "free" is nonzero, lock it and put it back on the freelist. If "free"
1281  * is zero, the caller already holds SE_EXCL lock so we simply unretire it
1282  * and don't do anything else with it.
1283  *
1284  * Any unretire messages are printed from this routine.
1285  *
1286  * Returns 0 if page pp was unretired; else an error code.
1287  */
1288 int
1289 page_unretire_pp(page_t *pp, int free)
1290 {
1291 	/*
1292 	 * To be retired, a page has to be hashed onto the retired_pages vnode
1293 	 * and have PR_RETIRED set in p_toxic.
1294 	 */
1295 	if (free == 0 || page_try_reclaim_lock(pp, SE_EXCL, SE_RETIRED)) {
1296 		ASSERT(PAGE_EXCL(pp));
1297 		PR_DEBUG(prd_ulocked);
1298 		if (!PP_RETIRED(pp)) {
1299 			PR_DEBUG(prd_unotretired);
1300 			page_unlock(pp);
1301 			return (page_retire_done(pp, PRD_UNR_NOT));
1302 		}
1303 
1304 		PR_MESSAGE(CE_NOTE, 1, "unretiring retired"
1305 		    " page 0x%08x.%08x", mmu_ptob((uint64_t)pp->p_pagenum));
1306 		if (pp->p_toxic & PR_FMA) {
1307 			PR_DECR_KSTAT(pr_fma);
1308 		} else if (pp->p_toxic & PR_UE) {
1309 			PR_DECR_KSTAT(pr_ue);
1310 		} else {
1311 			PR_DECR_KSTAT(pr_mce);
1312 		}
1313 		page_clrtoxic(pp, PR_ALLFLAGS);
1314 
1315 		if (free) {
1316 			PR_DEBUG(prd_udestroy);
1317 			page_destroy(pp, 0);
1318 		} else {
1319 			PR_DEBUG(prd_uhashout);
1320 			page_hashout(pp, NULL);
1321 		}
1322 
1323 		mutex_enter(&freemem_lock);
1324 		availrmem++;
1325 		mutex_exit(&freemem_lock);
1326 
1327 		PR_DEBUG(prd_uunretired);
1328 		PR_DECR_KSTAT(pr_retired);
1329 		PR_INCR_KSTAT(pr_unretired);
1330 		return (page_retire_done(pp, PRD_UNR_SUCCESS));
1331 	}
1332 	PR_DEBUG(prd_unotlocked);
1333 	return (page_retire_done(pp, PRD_UNR_CANTLOCK));
1334 }
1335 
1336 /*
1337  * Return a page to service by moving it from the retired_pages vnode
1338  * onto the freelist.
1339  *
1340  * Called from mmioctl_page_retire() on behalf of the FMA DE.
1341  *
1342  * Returns:
1343  *
1344  *   - 0 if the page is unretired,
1345  *   - EAGAIN if the pp can not be locked,
1346  *   - EINVAL if the PA is whacko, and
1347  *   - EBADF if the pp is not retired.
1348  */
1349 int
1350 page_unretire(uint64_t pa)
1351 {
1352 	page_t	*pp;
1353 
1354 	pp = page_numtopp_nolock(mmu_btop(pa));
1355 	if (pp == NULL) {
1356 		return (page_retire_done(pp, PRD_INVALID_PA));
1357 	}
1358 
1359 	return (page_unretire_pp(pp, 1));
1360 }
1361 
1362 /*
1363  * Test a page to see if it is retired. If errors is non-NULL, the toxic
1364  * bits of the page are returned. Returns 0 on success, error code on failure.
1365  */
1366 int
1367 page_retire_check_pp(page_t *pp, uint64_t *errors)
1368 {
1369 	int rc;
1370 
1371 	if (PP_RETIRED(pp)) {
1372 		PR_DEBUG(prd_checkhit);
1373 		rc = 0;
1374 	} else {
1375 		PR_DEBUG(prd_checkmiss);
1376 		rc = EAGAIN;
1377 	}
1378 
1379 	/*
1380 	 * We have magically arranged the bit values returned to fmd(1M)
1381 	 * to line up with the FMA, MCE, and UE bits of the page_t.
1382 	 */
1383 	if (errors) {
1384 		uint64_t toxic = (uint64_t)(pp->p_toxic & PR_ERRMASK);
1385 		if (toxic & PR_UE_SCRUBBED) {
1386 			toxic &= ~PR_UE_SCRUBBED;
1387 			toxic |= PR_UE;
1388 		}
1389 		*errors = toxic;
1390 	}
1391 
1392 	return (rc);
1393 }
1394 
1395 /*
1396  * Test to see if the page_t for a given PA is retired, and return the
1397  * hardware errors we have seen on the page if requested.
1398  *
1399  * Called from mmioctl_page_retire on behalf of the FMA DE.
1400  *
1401  * Returns:
1402  *
1403  *   - 0 if the page is retired,
1404  *   - EAGAIN if it is not, and
1405  *   - EINVAL if the PA is whacko.
1406  */
1407 int
1408 page_retire_check(uint64_t pa, uint64_t *errors)
1409 {
1410 	page_t	*pp;
1411 
1412 	if (errors) {
1413 		*errors = 0;
1414 	}
1415 
1416 	pp = page_numtopp_nolock(mmu_btop(pa));
1417 	if (pp == NULL) {
1418 		return (page_retire_done(pp, PRD_INVALID_PA));
1419 	}
1420 
1421 	return (page_retire_check_pp(pp, errors));
1422 }
1423 
1424 /*
1425  * Page retire self-test. For now, it always returns 0.
1426  */
1427 int
1428 page_retire_test(void)
1429 {
1430 	page_t *first, *pp, *cpp, *cpp2, *lpp;
1431 
1432 	/*
1433 	 * Tests the corner case where a large page can't be retired
1434 	 * because one of the constituent pages is locked. We mark
1435 	 * one page to be retired and try to retire it, and mark the
1436 	 * other page to be retired but don't try to retire it, so
1437 	 * that page_unlock() in the failure path will recurse and try
1438 	 * to retire THAT page. This is the worst possible situation
1439 	 * we can get ourselves into.
1440 	 */
1441 	memsegs_lock(0);
1442 	pp = first = page_first();
1443 	do {
1444 		if (pp->p_szc && PP_PAGEROOT(pp) == pp) {
1445 			cpp = pp + 1;
1446 			lpp = PP_ISFREE(pp)? pp : pp + 2;
1447 			cpp2 = pp + 3;
1448 			if (!page_trylock(lpp, pp == lpp? SE_EXCL : SE_SHARED))
1449 				continue;
1450 			if (!page_trylock(cpp, SE_EXCL)) {
1451 				page_unlock(lpp);
1452 				continue;
1453 			}
1454 			page_settoxic(cpp, PR_FMA | PR_BUSY);
1455 			page_settoxic(cpp2, PR_FMA);
1456 			page_tryretire(cpp);	/* will fail */
1457 			page_unlock(lpp);
1458 			(void) page_retire(cpp->p_pagenum, PR_FMA);
1459 			(void) page_retire(cpp2->p_pagenum, PR_FMA);
1460 		}
1461 	} while ((pp = page_next(pp)) != first);
1462 	memsegs_unlock(0);
1463 
1464 	return (0);
1465 }
1466