xref: /illumos-gate/usr/src/uts/common/sys/usb/hcd/xhci/xhci.h (revision 1ec00b5abd071c76e2dc0cfa7905965b6b7a89a9)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright (c) 2018, Joyent, Inc.
14  */
15 
16 #ifndef _SYS_USB_XHCI_XHCI_H
17 #define	_SYS_USB_XHCI_XHCI_H
18 
19 /*
20  * Extensible Host Controller Interface (xHCI) USB Driver
21  */
22 
23 #include <sys/conf.h>
24 #include <sys/ddi.h>
25 #include <sys/sunddi.h>
26 #include <sys/taskq_impl.h>
27 #include <sys/sysmacros.h>
28 #include <sys/usb/hcd/xhci/xhcireg.h>
29 
30 #include <sys/usb/usba.h>
31 #include <sys/usb/usba/hcdi.h>
32 #include <sys/usb/hubd/hub.h>
33 #include <sys/usb/usba/hubdi.h>
34 #include <sys/usb/hubd/hubdvar.h>
35 
36 
37 #ifdef __cplusplus
38 extern "C" {
39 #endif
40 
41 /*
42  * The base segment for DMA attributes was determined to be 4k based on xHCI 1.1
43  * / table 54: Data Structure Max Size, Boundary, and Alignment Requirement
44  * Summary.  This indicates that the required alignment for most things is
45  * PAGESIZE, which in our current implementation is required to be 4K. We
46  * provide the ring segment value below for the things which need 64K alignment
47  *
48  * Similarly, in the same table, the maximum required alignment is 64 bytes,
49  * hence we use that for everything.
50  *
51  * Next is the scatter/gather lengths. For most of the data structures, we only
52  * want to have a single SGL entry, e.g. just a simple flat mapping. For many of
53  * our transfers, we use the same logic to simplify the implementation of the
54  * driver. However, for bulk transfers, which are the largest by far, we want to
55  * be able to leverage SGLs to give us more DMA flexibility.
56  *
57  * We can transfer up to 64K in one transfer request block (TRB) which
58  * corresponds to a single SGL entry. Each ring we create is a single page in
59  * size and will support at most 256 TRBs. To try and give the operating system
60  * flexibility when allocating DMA transfers, we've opted to allow up to 63
61  * SGLs. Because there isn't a good way to support DMA windows with the xHCI
62  * controller design, if this number is too small then DMA allocations and
63  * binding might fail. If the DMA binding fails, the transfer will fail.
64  *
65  * The reason that we use 63 SGLs and not the expected 64 is that we always need
66  * to allocate an additional TRB for the event data. This leaves us with a
67  * nicely divisible number of entries.
68  *
69  * The final piece of this is the maximum sized transfer that the driver
70  * advertises to the broader framework. This is currently sized at 512 KiB. For
71  * reference the ehci driver sized this value at 640 KiB. It's important to
72  * understand that this isn't reflected in the DMA attribute limitation, because
73  * it's not an attribute of the hardware. Experimentally, this has proven to be
74  * sufficient for most of the drivers that we support today. When considering
75  * increasing this number, please note the impact that might have on the
76  * required number of DMA SGL entries required to satisfy the allocation.
77  *
78  * The value of 512 KiB was originally based on the number of SGLs we supported
79  * multiplied by the maximum transfer size. The original number of
80  * XHCI_TRANSFER_DMA_SGL was 8. The 512 KiB value was based upon taking the
81  * number of SGLs and assuming that each TRB used its maximum transfer size of
82  * 64 KiB.
83  */
84 #define	XHCI_TRB_MAX_TRANSFER	65536	/* 64 KiB */
85 #define	XHCI_DMA_ALIGN		64
86 #define	XHCI_DEF_DMA_SGL	1
87 #define	XHCI_TRANSFER_DMA_SGL	63
88 #define	XHCI_MAX_TRANSFER	524288	/* 512 KiB */
89 
90 /*
91  * Properties and values for rerouting ehci ports to xhci.
92  */
93 #define	XHCI_PROP_REROUTE_DISABLE	0
94 #define	XHCI_PROP_REROUTE_DEFAULT	1
95 
96 /*
97  * This number is a bit made up. Truthfully, the API here isn't the most useful
98  * for what we need to define as it should really be based on the endpoint that
99  * we're interested in rather than the device as a whole.
100  *
101  * We're basically being asked how many TRBs we're willing to schedule in one
102  * go. There's no great way to come up with this number, so we basically are
103  * making up something such that we use up a good portion of a ring, but not too
104  * much of it.
105  */
106 #define	XHCI_ISOC_MAX_TRB	64
107 
108 #ifdef	DEBUG
109 #define	XHCI_DMA_SYNC(dma, flag)	VERIFY0(ddi_dma_sync( \
110 					    (dma).xdb_dma_handle, 0, 0, \
111 					    (flag)))
112 #else
113 #define	XHCI_DMA_SYNC(dma, flag)	((void) ddi_dma_sync( \
114 					    (dma).xdb_dma_handle, 0, 0, \
115 					    (flag)))
116 #endif
117 
118 /*
119  * TRBs need to indicate the number of remaining USB packets in the overall
120  * transfer. This is a 5-bit value, which means that the maximum value we can
121  * store in that TRD field is 31.
122  */
123 #define	XHCI_MAX_TDSIZE		31
124 
125 /*
126  * This defines a time in 2-ms ticks that is required to wait for the controller
127  * to be ready to go. Section 5.4.8 of the XHCI specification in the description
128  * of the PORTSC register indicates that the upper bound is 20 ms. Therefore the
129  * number of ticks is 10.
130  */
131 #define	XHCI_POWER_GOOD	10
132 
133 /*
134  * Definitions to determine the default number of interrupts. Note that we only
135  * bother with a single interrupt at this time, though we've arranged the driver
136  * to make it possible to request more if, for some unlikely reason, it becomes
137  * necessary.
138  */
139 #define	XHCI_NINTR	1
140 
141 /*
142  * Default interrupt modulation value. This enables us to have 4000 interrupts /
143  * second. This is supposed to be the default value of the controller. See xHCI
144  * 1.1 / 4.17.2 for more information.
145  */
146 #define	XHCI_IMOD_DEFAULT	0x000003F8U
147 
148 /*
149  * Definitions that surround the default values used in various contexts. These
150  * come from various parts of the xHCI specification. In general, see xHCI 1.1 /
151  * 4.8.2. Note that the MPS_MASK is used for ISOCH and INTR endpoints which have
152  * different sizes.
153  *
154  * The burst member is a bit more complicated. By default for USB 2 devices, it
155  * only matters for ISOCH and INTR endpoints and so we use the macros below to
156  * pull it out of the endpoint description's max packet field. For USB 3, it
157  * matters for non-control endpoints. However, it comes out of a companion
158  * description.
159  *
160  * By default the mult member is zero for all cases except for super speed
161  * ISOCH endpoints, where it comes from the companion descriptor.
162  */
163 #define	XHCI_CONTEXT_DEF_CERR		3
164 #define	XHCI_CONTEXT_ISOCH_CERR		0
165 #define	XHCI_CONTEXT_MPS_MASK		0x07ff
166 #define	XHCI_CONTEXT_BURST_MASK		0x1800
167 #define	XHCI_CONTEXT_BURST_SHIFT	11
168 #define	XHCI_CONTEXT_DEF_MULT		0
169 #define	XHCI_CONTEXT_DEF_MAX_ESIT	0
170 #define	XHCI_CONTEXT_DEF_CTRL_ATL	8
171 
172 /*
173  * This number represents the number of transfers that we'll set up for a given
174  * interrupt transfer. Note that the idea here is that we'll want to allocate a
175  * certain number of transfers to basically ensure that we'll always be able to
176  * have a transfer available, even if the system is a bit caught up in trying to
177  * process it and for some reason we can't fire the interrupt. As such, we
178  * basically want to have enough available that at the fastest interval (125 us)
179  * that we have enough. So in this case we choose 8, with the assumption that we
180  * should be able to process at least one in a given millisecond. Note that this
181  * is not based in fact and is really just as much a guess and a hope.
182  *
183  * While we could then use less resources for other interrupt transfers that are
184  * slower, starting with uniform resource usage will make things a bit easier.
185  */
186 #define	XHCI_INTR_IN_NTRANSFERS	8
187 
188 /*
189  * This number represents the number of xhci_transfer_t structures that we'll
190  * set up for a given isochronous transfer polling request. A given isochronous
191  * transfer may actually have multiple units of time associated with it. As
192  * such, we basically want to treat this like a case of classic double
193  * buffering. We have one ready to go while the other is being filled up. This
194  * will compensate for additional latency in the system. This is smaller than
195  * the Interrupt IN transfer case above as many callers may ask for multiple
196  * intervals in a single request.
197  */
198 #define	XHCI_ISOC_IN_NTRANSFERS	2
199 
200 #define	XHCI_PERIODIC_IN_NTRANSFERS					\
201 	MAX(XHCI_ISOC_IN_NTRANSFERS, XHCI_INTR_IN_NTRANSFERS)
202 
203 /*
204  * Mask for a route string which is a 20-bit value.
205  */
206 #define	XHCI_ROUTE_MASK(x)	((x) & 0xfffff)
207 
208 /*
209  * This is the default tick that we use for timeouts while endpoints have
210  * outstanding, active, non-periodic transfers. We choose one second as the USBA
211  * specifies timeouts in units of seconds. Note that this is in microseconds, so
212  * it can be fed into drv_usectohz().
213  */
214 #define	XHCI_TICK_TIMEOUT_US	(MICROSEC)
215 
216 /*
217  * Set of bits that we need one of to indicate that this port has something
218  * interesting on it.
219  */
220 #define	XHCI_HUB_INTR_CHANGE_MASK	(XHCI_PS_CSC | XHCI_PS_PEC | \
221     XHCI_PS_WRC | XHCI_PS_OCC | XHCI_PS_PRC | XHCI_PS_PLC | XHCI_PS_CEC)
222 
223 /*
224  * These represent known issues with various xHCI controllers.
225  *
226  *	XHCI_QUIRK_NO_MSI	MSI support on this controller is known to be
227  *				broken.
228  *
229  *	XHCI_QUIRK_32_ONLY	Only use 32-bit DMA addreses with this
230  *				controller.
231  *
232  *	XHCI_QUIRK_INTC_EHCI	This is an Intel platform which supports
233  *				rerouting ports between EHCI and xHCI
234  *				controllers on the platform.
235  */
236 typedef enum xhci_quirk {
237 	XHCI_QUIRK_NO_MSI	= 0x01,
238 	XHCI_QUIRK_32_ONLY	= 0x02,
239 	XHCI_QUIRK_INTC_EHCI	= 0x04
240 } xhci_quirk_t;
241 
242 /*
243  * xHCI capability parameter flags. These are documented in xHCI 1.1 / 5.3.6.
244  */
245 typedef enum xhci_cap_flags {
246 	XCAP_AC64	= 0x001,
247 	XCAP_BNC	= 0x002,
248 	XCAP_CSZ	= 0x004,
249 	XCAP_PPC	= 0x008,
250 	XCAP_PIND	= 0x010,
251 	XCAP_LHRC	= 0x020,
252 	XCAP_LTC	= 0x040,
253 	XCAP_NSS	= 0x080,
254 	XCAP_PAE	= 0x100,
255 	XCAP_SPC	= 0x200,
256 	XCAP_SEC	= 0x400,
257 	XCAP_CFC	= 0x800
258 } xchi_cap_flags_t;
259 
260 /*
261  * Second set of capabilities, these are documented in xHCI 1.1 / 5.3.9.
262  */
263 typedef enum xhci_cap2_flags {
264 	XCAP2_U3C	= 0x01,
265 	XCAP2_CMC	= 0x02,
266 	XCAP2_FMC	= 0x04,
267 	XCAP2_CTC	= 0x08,
268 	XCAP2_LEC	= 0x10,
269 	XCAP2_CIC	= 0x20
270 } xhci_cap2_flags_t;
271 
272 /*
273  * These represent and store the various capability registers that we'll need to
274  * use. In addition, we stash a few other versioning related bits here. Note
275  * that we cache more information than we might need so that we have it for
276  * debugging purposes.
277  */
278 typedef struct xhci_capability {
279 	uint8_t			xcap_usb_vers;
280 	uint16_t		xcap_hci_vers;
281 	uint32_t		xcap_pagesize;
282 	uint8_t			xcap_max_slots;
283 	uint16_t		xcap_max_intrs;
284 	uint8_t			xcap_max_ports;
285 	boolean_t		xcap_ist_micro;
286 	uint8_t			xcap_ist;
287 	uint16_t		xcap_max_esrt;
288 	boolean_t		xcap_scratch_restore;
289 	uint16_t		xcap_max_scratch;
290 	uint8_t			xcap_u1_lat;
291 	uint16_t		xcap_u2_lat;
292 	xchi_cap_flags_t	xcap_flags;
293 	uint8_t			xcap_max_psa;
294 	uint16_t		xcap_xecp_off;
295 	xhci_cap2_flags_t	xcap_flags2;
296 	int			xcap_intr_types;
297 } xhci_capability_t;
298 
299 /*
300  * This represents a single logical DMA allocation. For the vast majority of
301  * non-transfer cases, it only represents a single DMA buffer and not a
302  * scatter-gather list.
303  */
304 typedef struct xhci_dma_buffer {
305 	caddr_t			xdb_va;		/* Buffer VA */
306 	size_t			xdb_len;	/* Buffer logical len */
307 	ddi_acc_handle_t	xdb_acc_handle;	/* Access handle */
308 	ddi_dma_handle_t	xdb_dma_handle;	/* DMA handle */
309 	int			xdb_ncookies;	/* Number of actual cookies */
310 	ddi_dma_cookie_t	xdb_cookies[XHCI_TRANSFER_DMA_SGL];
311 } xhci_dma_buffer_t;
312 
313 /*
314  * This is a single transfer descriptor. It's packed to match the hardware
315  * layout.
316  */
317 #pragma pack(1)
318 typedef struct xhci_trb {
319 	uint64_t	trb_addr;
320 	uint32_t	trb_status;
321 	uint32_t	trb_flags;
322 } xhci_trb_t;
323 #pragma pack()
324 
325 /*
326  * This represents a single transfer that we want to allocate and perform.
327  */
328 typedef struct xhci_transfer {
329 	list_node_t		xt_link;
330 	hrtime_t		xt_sched_time;
331 	xhci_dma_buffer_t	xt_buffer;
332 	uint_t			xt_ntrbs;
333 	uint_t			xt_short;
334 	uint_t			xt_timeout;
335 	usb_cr_t		xt_cr;
336 	boolean_t		xt_data_tohost;
337 	xhci_trb_t		*xt_trbs;
338 	uint64_t		*xt_trbs_pa;
339 	usb_isoc_pkt_descr_t	*xt_isoc;
340 	usb_opaque_t		xt_usba_req;
341 } xhci_transfer_t;
342 
343 /*
344  * This represents a ring in xHCI, upon which event, transfer, and command TRBs
345  * are scheduled.
346  */
347 typedef struct xhci_ring {
348 	xhci_dma_buffer_t	xr_dma;
349 	uint_t			xr_ntrb;
350 	xhci_trb_t		*xr_trb;
351 	uint_t			xr_head;
352 	uint_t			xr_tail;
353 	uint8_t			xr_cycle;
354 } xhci_ring_t;
355 
356 /*
357  * This structure is used to represent the xHCI Device Context Base Address
358  * Array. It's defined in section 6.1 of the specification and is required for
359  * the controller to start.
360  *
361  * The maximum number of slots supported is always 256, therefore we size this
362  * structure at its maximum.
363  */
364 #define	XHCI_MAX_SLOTS	256
365 #define	XHCI_DCBAA_SCRATCHPAD_INDEX	0
366 
367 typedef struct xhci_dcbaa {
368 	uint64_t		*xdc_base_addrs;
369 	xhci_dma_buffer_t	xdc_dma;
370 } xhci_dcbaa_t;
371 
372 typedef struct xhci_scratchpad {
373 	uint64_t		*xsp_addrs;
374 	xhci_dma_buffer_t	xsp_addr_dma;
375 	xhci_dma_buffer_t	*xsp_scratch_dma;
376 } xhci_scratchpad_t;
377 
378 /*
379  * Contexts. These structures are inserted into the DCBAA above and are used for
380  * describing the state of the system. Note, that while many of these are
381  * 32-bytes in size, the xHCI specification defines that they'll be extended to
382  * 64-bytes with all the extra bytes as zeros if the CSZ flag is set in the
383  * HCCPARAMS1 register, e.g. we have the flag XCAP_CSZ set.
384  *
385  * The device context covers the slot context and 31 endpoints.
386  */
387 #define	XHCI_DEVICE_CONTEXT_32	1024
388 #define	XHCI_DEVICE_CONTEXT_64	2048
389 #define	XHCI_NUM_ENDPOINTS	31
390 #define	XHCI_DEFAULT_ENDPOINT	0
391 
392 #pragma pack(1)
393 typedef struct xhci_slot_context {
394 	uint32_t	xsc_info;
395 	uint32_t	xsc_info2;
396 	uint32_t	xsc_tt;
397 	uint32_t	xsc_state;
398 	uint32_t	xsc_reserved[4];
399 } xhci_slot_context_t;
400 
401 typedef struct xhci_endpoint_context {
402 	uint32_t	xec_info;
403 	uint32_t	xec_info2;
404 	uint64_t	xec_dequeue;
405 	uint32_t	xec_txinfo;
406 	uint32_t	xec_reserved[3];
407 } xhci_endpoint_context_t;
408 
409 typedef struct xhci_input_context {
410 	uint32_t	xic_drop_flags;
411 	uint32_t	xic_add_flags;
412 	uint32_t	xic_reserved[6];
413 } xhci_input_context_t;
414 #pragma pack()
415 
416 /*
417  * Definitions and structures for maintaining the event ring.
418  */
419 #define	XHCI_EVENT_NSEGS	1
420 
421 #pragma pack(1)
422 typedef struct xhci_event_segment {
423 	uint64_t	xes_addr;
424 	uint16_t	xes_size;
425 	uint16_t	xes_rsvd0;
426 	uint32_t	xes_rsvd1;
427 } xhci_event_segment_t;
428 #pragma pack()
429 
430 typedef struct xhci_event_ring {
431 	xhci_event_segment_t	*xev_segs;
432 	xhci_dma_buffer_t	xev_dma;
433 	xhci_ring_t		xev_ring;
434 } xhci_event_ring_t;
435 
436 typedef enum xhci_command_ring_state {
437 	XHCI_COMMAND_RING_IDLE		= 0x00,
438 	XHCI_COMMAND_RING_RUNNING	= 0x01,
439 	XHCI_COMMAND_RING_ABORTING	= 0x02,
440 	XHCI_COMMAND_RING_ABORT_DONE	= 0x03
441 } xhci_command_ring_state_t;
442 
443 typedef struct xhci_command_ring {
444 	xhci_ring_t			xcr_ring;
445 	kmutex_t			xcr_lock;
446 	kcondvar_t			xcr_cv;
447 	list_t				xcr_commands;
448 	timeout_id_t			xcr_timeout;
449 	xhci_command_ring_state_t	xcr_state;
450 } xhci_command_ring_t;
451 
452 /*
453  * Individual command states.
454  *
455  * XHCI_COMMAND_S_INIT		The command has yet to be inserted into the
456  *				command ring.
457  *
458  * XHCI_COMMAND_S_QUEUED	The command is queued in the command ring.
459  *
460  * XHCI_COMMAND_S_RECEIVED	A command completion for this was received.
461  *
462  * XHCI_COMMAND_S_DONE		The command has been executed. Note that it may
463  *				have been aborted.
464  *
465  * XHCI_COMMAND_S_RESET		The ring is being reset due to a fatal error and
466  *				this command has been removed from the ring.
467  *				This means it has been aborted, but it was not
468  *				the cause of the abort.
469  *
470  * Note, when adding states, anything after XHCI_COMMAND_S_DONE implies that
471  * upon reaching this state, it is no longer in the ring.
472  */
473 typedef enum xhci_command_state {
474 	XHCI_COMMAND_S_INIT	= 0x00,
475 	XHCI_COMMAND_S_QUEUED	= 0x01,
476 	XHCI_COMMAND_S_RECEIVED = 0x02,
477 	XHCI_COMMAND_S_DONE	= 0x03,
478 	XHCI_COMMAND_S_RESET	= 0x04
479 } xhci_command_state_t;
480 
481 /*
482  * The TRB contents here are always kept in host byte order and are transformed
483  * to little endian when actually scheduled on the ring.
484  */
485 typedef struct xhci_command {
486 	list_node_t		xco_link;
487 	kcondvar_t		xco_cv;
488 	xhci_trb_t		xco_req;
489 	xhci_trb_t		xco_res;
490 	xhci_command_state_t	xco_state;
491 } xhci_command_t;
492 
493 typedef enum xhci_endpoint_state {
494 	XHCI_ENDPOINT_PERIODIC		= 0x01,
495 	XHCI_ENDPOINT_HALTED		= 0x02,
496 	XHCI_ENDPOINT_QUIESCE		= 0x04,
497 	XHCI_ENDPOINT_TIMED_OUT		= 0x08,
498 	/*
499 	 * This is a composite of states that we need to watch for. We don't
500 	 * want to allow ourselves to set one of these flags while one of them
501 	 * is currently active.
502 	 */
503 	XHCI_ENDPOINT_SERIALIZE		= 0x0c,
504 	/*
505 	 * This is a composite of states that we need to make sure that if set,
506 	 * we do not schedule activity on the ring.
507 	 */
508 	XHCI_ENDPOINT_DONT_SCHEDULE	= 0x0e,
509 	/*
510 	 * This enpdoint is being torn down and should make sure it de-schedules
511 	 * itself.
512 	 */
513 	XHCI_ENDPOINT_TEARDOWN		= 0x10
514 } xhci_endpoint_state_t;
515 
516 /*
517  * Forwards required for the endpoint
518  */
519 struct xhci_device;
520 struct xhci;
521 
522 typedef struct xhci_endpoint {
523 	struct xhci		*xep_xhci;
524 	struct xhci_device	*xep_xd;
525 	uint_t			xep_num;
526 	uint_t			xep_type;
527 	xhci_endpoint_state_t	xep_state;
528 	kcondvar_t		xep_state_cv;
529 	timeout_id_t		xep_timeout;
530 	list_t			xep_transfers;
531 	usba_pipe_handle_data_t	*xep_pipe;
532 	xhci_ring_t		xep_ring;
533 } xhci_endpoint_t;
534 
535 typedef struct xhci_device {
536 	list_node_t		xd_link;
537 	usb_port_t		xd_port;
538 	uint8_t			xd_slot;
539 	boolean_t		xd_addressed;
540 	usba_device_t		*xd_usbdev;
541 	xhci_dma_buffer_t	xd_ictx;
542 	kmutex_t		xd_imtx;	/* Protects input contexts */
543 	xhci_input_context_t	*xd_input;
544 	xhci_slot_context_t	*xd_slotin;
545 	xhci_endpoint_context_t	*xd_endin[XHCI_NUM_ENDPOINTS];
546 	xhci_dma_buffer_t	xd_octx;
547 	xhci_slot_context_t	*xd_slotout;
548 	xhci_endpoint_context_t	*xd_endout[XHCI_NUM_ENDPOINTS];
549 	xhci_endpoint_t		*xd_endpoints[XHCI_NUM_ENDPOINTS];
550 } xhci_device_t;
551 
552 typedef enum xhci_periodic_state {
553 	XHCI_PERIODIC_POLL_IDLE	= 0x0,
554 	XHCI_PERIODIC_POLL_ACTIVE,
555 	XHCI_PERIODIC_POLL_NOMEM,
556 	XHCI_PERIODIC_POLL_STOPPING
557 } xhci_periodic_state_t;
558 
559 typedef struct xhci_periodic_pipe {
560 	xhci_periodic_state_t	xpp_poll_state;
561 	usb_opaque_t		xpp_usb_req;
562 	size_t			xpp_tsize;
563 	uint_t			xpp_ntransfers;
564 	xhci_transfer_t		*xpp_transfers[XHCI_PERIODIC_IN_NTRANSFERS];
565 } xhci_periodic_pipe_t;
566 
567 typedef struct xhci_pipe {
568 	list_node_t		xp_link;
569 	hrtime_t		xp_opentime;
570 	usba_pipe_handle_data_t	*xp_pipe;
571 	xhci_endpoint_t		*xp_ep;
572 	xhci_periodic_pipe_t	xp_periodic;
573 } xhci_pipe_t;
574 
575 typedef struct xhci_usba {
576 	usba_hcdi_ops_t		*xa_ops;
577 	ddi_dma_attr_t		xa_dma_attr;
578 	usb_dev_descr_t		xa_dev_descr;
579 	usb_ss_hub_descr_t	xa_hub_descr;
580 	usba_pipe_handle_data_t	*xa_intr_cb_ph;
581 	usb_intr_req_t		*xa_intr_cb_req;
582 	list_t			xa_devices;
583 	list_t			xa_pipes;
584 } xhci_usba_t;
585 
586 typedef enum xhci_attach_seq {
587 	XHCI_ATTACH_FM		= 0x1 << 0,
588 	XHCI_ATTACH_PCI_CONFIG	= 0x1 << 1,
589 	XHCI_ATTACH_REGS_MAP	= 0x1 << 2,
590 	XHCI_ATTACH_INTR_ALLOC	= 0x1 << 3,
591 	XHCI_ATTACH_INTR_ADD	= 0x1 << 4,
592 	XHCI_ATTACH_SYNCH	= 0x1 << 5,
593 	XHCI_ATTACH_INTR_ENABLE	= 0x1 << 6,
594 	XHCI_ATTACH_STARTED	= 0x1 << 7,
595 	XHCI_ATTACH_USBA	= 0x1 << 8,
596 	XHCI_ATTACH_ROOT_HUB	= 0x1 << 9
597 } xhci_attach_seq_t;
598 
599 typedef enum xhci_state_flags {
600 	XHCI_S_ERROR		= 0x1 << 0
601 } xhci_state_flags_t;
602 
603 typedef struct xhci {
604 	dev_info_t		*xhci_dip;
605 	xhci_attach_seq_t	xhci_seq;
606 	int			xhci_fm_caps;
607 	ddi_acc_handle_t	xhci_cfg_handle;
608 	uint16_t		xhci_vendor_id;
609 	uint16_t		xhci_device_id;
610 	caddr_t			xhci_regs_base;
611 	ddi_acc_handle_t	xhci_regs_handle;
612 	uint_t			xhci_regs_capoff;
613 	uint_t			xhci_regs_operoff;
614 	uint_t			xhci_regs_runoff;
615 	uint_t			xhci_regs_dooroff;
616 	xhci_capability_t	xhci_caps;
617 	xhci_quirk_t		xhci_quirks;
618 	ddi_intr_handle_t	xhci_intr_hdl;
619 	int			xhci_intr_num;
620 	int			xhci_intr_type;
621 	uint_t			xhci_intr_pri;
622 	int			xhci_intr_caps;
623 	xhci_dcbaa_t		xhci_dcbaa;
624 	xhci_scratchpad_t	xhci_scratchpad;
625 	xhci_command_ring_t	xhci_command;
626 	xhci_event_ring_t	xhci_event;
627 	taskq_ent_t		xhci_tqe;
628 	kmutex_t		xhci_lock;
629 	kcondvar_t		xhci_statecv;
630 	xhci_state_flags_t	xhci_state;
631 	xhci_usba_t		xhci_usba;
632 } xhci_t;
633 
634 /*
635  * The xHCI memory mapped registers come in four different categories. The
636  * offset to them is variable. These represent the given register set that we're
637  * after.
638  */
639 typedef enum xhci_reg_type {
640 	XHCI_R_CAP,
641 	XHCI_R_OPER,
642 	XHCI_R_RUN,
643 	XHCI_R_DOOR
644 } xhci_reg_type_t;
645 
646 /*
647  * Quirks related functions
648  */
649 extern void xhci_quirks_populate(xhci_t *);
650 extern void xhci_reroute_intel(xhci_t *);
651 
652 /*
653  * Interrupt related functions
654  */
655 extern uint_t xhci_intr(caddr_t, caddr_t);
656 extern boolean_t xhci_ddi_intr_disable(xhci_t *);
657 extern boolean_t xhci_ddi_intr_enable(xhci_t *);
658 extern int xhci_intr_conf(xhci_t *);
659 
660 /*
661  * DMA related functions
662  */
663 extern int xhci_check_dma_handle(xhci_t *, xhci_dma_buffer_t *);
664 extern void xhci_dma_acc_attr(xhci_t *, ddi_device_acc_attr_t *);
665 extern void xhci_dma_dma_attr(xhci_t *, ddi_dma_attr_t *);
666 extern void xhci_dma_scratchpad_attr(xhci_t *, ddi_dma_attr_t *);
667 extern void xhci_dma_transfer_attr(xhci_t *, ddi_dma_attr_t *, uint_t);
668 extern void xhci_dma_free(xhci_dma_buffer_t *);
669 extern boolean_t xhci_dma_alloc(xhci_t *, xhci_dma_buffer_t *, ddi_dma_attr_t *,
670     ddi_device_acc_attr_t *, boolean_t, size_t, boolean_t);
671 extern uint64_t xhci_dma_pa(xhci_dma_buffer_t *);
672 
673 /*
674  * DMA Transfer Ring functions
675  */
676 extern xhci_transfer_t *xhci_transfer_alloc(xhci_t *, xhci_endpoint_t *, size_t,
677     uint_t, int);
678 extern void xhci_transfer_free(xhci_t *, xhci_transfer_t *);
679 extern void xhci_transfer_copy(xhci_transfer_t *, void *, size_t, boolean_t);
680 extern int xhci_transfer_sync(xhci_t *, xhci_transfer_t *, uint_t);
681 extern void xhci_transfer_trb_fill_data(xhci_endpoint_t *, xhci_transfer_t *,
682     int, boolean_t);
683 extern void xhci_transfer_calculate_isoc(xhci_device_t *, xhci_endpoint_t *,
684     uint_t, uint_t *, uint_t *);
685 
686 /*
687  * Context (DCBAA, Scratchpad, Slot) functions
688  */
689 extern int xhci_context_init(xhci_t *);
690 extern void xhci_context_fini(xhci_t *);
691 extern boolean_t xhci_context_slot_output_init(xhci_t *, xhci_device_t *);
692 extern void xhci_context_slot_output_fini(xhci_t *, xhci_device_t *);
693 
694 /*
695  * Command Ring Functions
696  */
697 extern int xhci_command_ring_init(xhci_t *);
698 extern void xhci_command_ring_fini(xhci_t *);
699 extern boolean_t xhci_command_event_callback(xhci_t *, xhci_trb_t *trb);
700 
701 extern void xhci_command_init(xhci_command_t *);
702 extern void xhci_command_fini(xhci_command_t *);
703 
704 extern int xhci_command_enable_slot(xhci_t *, uint8_t *);
705 extern int xhci_command_disable_slot(xhci_t *, uint8_t);
706 extern int xhci_command_set_address(xhci_t *, xhci_device_t *, boolean_t);
707 extern int xhci_command_configure_endpoint(xhci_t *, xhci_device_t *);
708 extern int xhci_command_evaluate_context(xhci_t *, xhci_device_t *);
709 extern int xhci_command_reset_endpoint(xhci_t *, xhci_device_t *,
710     xhci_endpoint_t *);
711 extern int xhci_command_set_tr_dequeue(xhci_t *, xhci_device_t *,
712     xhci_endpoint_t *);
713 extern int xhci_command_stop_endpoint(xhci_t *, xhci_device_t *,
714     xhci_endpoint_t *);
715 
716 /*
717  * Event Ring Functions
718  */
719 extern int xhci_event_init(xhci_t *);
720 extern void xhci_event_fini(xhci_t *);
721 extern boolean_t xhci_event_process(xhci_t *);
722 
723 /*
724  * General Ring functions
725  */
726 extern void xhci_ring_free(xhci_ring_t *);
727 extern int xhci_ring_reset(xhci_t *, xhci_ring_t *);
728 extern int xhci_ring_alloc(xhci_t *, xhci_ring_t *);
729 
730 /*
731  * Event Ring (Consumer) oriented functions.
732  */
733 extern xhci_trb_t *xhci_ring_event_advance(xhci_ring_t *);
734 
735 
736 /*
737  * Command and Transfer Ring (Producer) oriented functions.
738  */
739 extern boolean_t xhci_ring_trb_tail_valid(xhci_ring_t *, uint64_t);
740 extern int xhci_ring_trb_valid_range(xhci_ring_t *, uint64_t, uint_t);
741 
742 extern boolean_t xhci_ring_trb_space(xhci_ring_t *, uint_t);
743 extern void xhci_ring_trb_fill(xhci_ring_t *, uint_t, xhci_trb_t *, uint64_t *,
744     boolean_t);
745 extern void xhci_ring_trb_produce(xhci_ring_t *, uint_t);
746 extern boolean_t xhci_ring_trb_consumed(xhci_ring_t *, uint64_t);
747 extern void xhci_ring_trb_put(xhci_ring_t *, xhci_trb_t *);
748 extern void xhci_ring_skip(xhci_ring_t *);
749 extern void xhci_ring_skip_transfer(xhci_ring_t *, xhci_transfer_t *);
750 
751 /*
752  * MMIO related functions. Note callers are responsible for checking with FM
753  * after accessing registers.
754  */
755 extern int xhci_check_regs_acc(xhci_t *);
756 
757 extern uint8_t xhci_get8(xhci_t *, xhci_reg_type_t, uintptr_t);
758 extern uint16_t xhci_get16(xhci_t *, xhci_reg_type_t, uintptr_t);
759 extern uint32_t xhci_get32(xhci_t *, xhci_reg_type_t, uintptr_t);
760 extern uint64_t xhci_get64(xhci_t *, xhci_reg_type_t, uintptr_t);
761 
762 extern void xhci_put8(xhci_t *, xhci_reg_type_t, uintptr_t, uint8_t);
763 extern void xhci_put16(xhci_t *, xhci_reg_type_t, uintptr_t, uint16_t);
764 extern void xhci_put32(xhci_t *, xhci_reg_type_t, uintptr_t, uint32_t);
765 extern void xhci_put64(xhci_t *, xhci_reg_type_t, uintptr_t, uint64_t);
766 
767 /*
768  * Runtime FM related functions
769  */
770 extern void xhci_fm_runtime_reset(xhci_t *);
771 
772 /*
773  * Endpoint related functions
774  */
775 extern int xhci_endpoint_init(xhci_t *, xhci_device_t *,
776     usba_pipe_handle_data_t *);
777 extern void xhci_endpoint_fini(xhci_device_t *, int);
778 extern int xhci_endpoint_update_default(xhci_t *, xhci_device_t *,
779     xhci_endpoint_t *);
780 
781 extern int xhci_endpoint_setup_default_context(xhci_t *, xhci_device_t *,
782     xhci_endpoint_t *);
783 
784 extern uint_t xhci_endpoint_pipe_to_epid(usba_pipe_handle_data_t *);
785 extern boolean_t xhci_endpoint_is_periodic_in(xhci_endpoint_t *);
786 
787 extern int xhci_endpoint_quiesce(xhci_t *, xhci_device_t *, xhci_endpoint_t *);
788 extern int xhci_endpoint_schedule(xhci_t *, xhci_device_t *, xhci_endpoint_t *,
789     xhci_transfer_t *, boolean_t);
790 extern int xhci_endpoint_ring(xhci_t *, xhci_device_t *, xhci_endpoint_t *);
791 extern boolean_t xhci_endpoint_transfer_callback(xhci_t *, xhci_trb_t *);
792 
793 /*
794  * USB Framework related functions
795  */
796 extern int xhci_hcd_init(xhci_t *);
797 extern void xhci_hcd_fini(xhci_t *);
798 
799 /*
800  * Root hub related functions
801  */
802 extern int xhci_root_hub_init(xhci_t *);
803 extern int xhci_root_hub_fini(xhci_t *);
804 extern int xhci_root_hub_ctrl_req(xhci_t *, usba_pipe_handle_data_t *,
805     usb_ctrl_req_t *);
806 extern void xhci_root_hub_psc_callback(xhci_t *);
807 extern int xhci_root_hub_intr_root_enable(xhci_t *, usba_pipe_handle_data_t *,
808     usb_intr_req_t *);
809 extern void xhci_root_hub_intr_root_disable(xhci_t *);
810 
811 /*
812  * Logging functions
813  */
814 extern void xhci_log(xhci_t *xhcip, const char *fmt, ...) __KPRINTFLIKE(2);
815 extern void xhci_error(xhci_t *xhcip, const char *fmt, ...) __KPRINTFLIKE(2);
816 
817 /*
818  * Misc. data
819  */
820 extern void *xhci_soft_state;
821 
822 #ifdef __cplusplus
823 }
824 #endif
825 
826 #endif /* _SYS_USB_XHCI_XHCI_H */
827