1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #ifndef _SYS_SYSMACROS_H 31 #define _SYS_SYSMACROS_H 32 33 #include <sys/param.h> 34 35 #ifdef __cplusplus 36 extern "C" { 37 #endif 38 39 /* 40 * Some macros for units conversion 41 */ 42 /* 43 * Disk blocks (sectors) and bytes. 44 */ 45 #define dtob(DD) ((DD) << DEV_BSHIFT) 46 #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 47 #define btodt(BB) ((BB) >> DEV_BSHIFT) 48 #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 49 50 /* common macros */ 51 #ifndef MIN 52 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 53 #endif 54 #ifndef MAX 55 #define MAX(a, b) ((a) < (b) ? (b) : (a)) 56 #endif 57 #ifndef ABS 58 #define ABS(a) ((a) < 0 ? -(a) : (a)) 59 #endif 60 #ifndef SIGNOF 61 #define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0) 62 #endif 63 64 #ifdef _KERNEL 65 66 /* 67 * Convert a single byte to/from binary-coded decimal (BCD). 68 */ 69 extern unsigned char byte_to_bcd[256]; 70 extern unsigned char bcd_to_byte[256]; 71 72 #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff] 73 #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff] 74 75 #endif /* _KERNEL */ 76 77 /* 78 * WARNING: The device number macros defined here should not be used by device 79 * drivers or user software. Device drivers should use the device functions 80 * defined in the DDI/DKI interface (see also ddi.h). Application software 81 * should make use of the library routines available in makedev(3). A set of 82 * new device macros are provided to operate on the expanded device number 83 * format supported in SVR4. Macro versions of the DDI device functions are 84 * provided for use by kernel proper routines only. Macro routines bmajor(), 85 * major(), minor(), emajor(), eminor(), and makedev() will be removed or 86 * their definitions changed at the next major release following SVR4. 87 */ 88 89 #define O_BITSMAJOR 7 /* # of SVR3 major device bits */ 90 #define O_BITSMINOR 8 /* # of SVR3 minor device bits */ 91 #define O_MAXMAJ 0x7f /* SVR3 max major value */ 92 #define O_MAXMIN 0xff /* SVR3 max minor value */ 93 94 95 #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */ 96 #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */ 97 #define L_MAXMAJ32 0x3fff /* SVR4 max major value */ 98 #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */ 99 /* For 3b2 hardware devices the minor is */ 100 /* restricted to 256 (0-255) */ 101 102 #ifdef _LP64 103 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */ 104 #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */ 105 #define L_MAXMAJ 0xfffffffful /* max major value */ 106 #define L_MAXMIN 0xfffffffful /* max minor value */ 107 #else 108 #define L_BITSMAJOR L_BITSMAJOR32 109 #define L_BITSMINOR L_BITSMINOR32 110 #define L_MAXMAJ L_MAXMAJ32 111 #define L_MAXMIN L_MAXMIN32 112 #endif 113 114 #ifdef _KERNEL 115 116 /* major part of a device internal to the kernel */ 117 118 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 119 #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 120 121 /* get internal major part of expanded device number */ 122 123 #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ) 124 125 /* minor part of a device internal to the kernel */ 126 127 #define minor(x) (minor_t)((x) & O_MAXMIN) 128 129 /* get internal minor part of expanded device number */ 130 131 #define getminor(x) (minor_t)((x) & L_MAXMIN) 132 133 #else 134 135 /* major part of a device external from the kernel (same as emajor below) */ 136 137 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 138 139 /* minor part of a device external from the kernel (same as eminor below) */ 140 141 #define minor(x) (minor_t)((x) & O_MAXMIN) 142 143 #endif /* _KERNEL */ 144 145 /* create old device number */ 146 147 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN)) 148 149 /* make an new device number */ 150 151 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN)) 152 153 154 /* 155 * emajor() allows kernel/driver code to print external major numbers 156 * eminor() allows kernel/driver code to print external minor numbers 157 */ 158 159 #define emajor(x) \ 160 (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \ 161 NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ) 162 163 #define eminor(x) \ 164 (minor_t)((x) & O_MAXMIN) 165 166 /* 167 * get external major and minor device 168 * components from expanded device number 169 */ 170 #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \ 171 NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ)) 172 #define geteminor(x) (minor_t)((x) & L_MAXMIN) 173 174 /* 175 * These are versions of the kernel routines for compressing and 176 * expanding long device numbers that don't return errors. 177 */ 178 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR) 179 180 #define DEVCMPL(x) (x) 181 #define DEVEXPL(x) (x) 182 183 #else 184 185 #define DEVCMPL(x) \ 186 (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \ 187 ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \ 188 ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32))) 189 190 #define DEVEXPL(x) \ 191 (((x) == NODEV32) ? NODEV : \ 192 makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32)) 193 194 #endif /* L_BITSMAJOR32 ... */ 195 196 /* convert to old (SVR3.2) dev format */ 197 198 #define cmpdev(x) \ 199 (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \ 200 ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \ 201 ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN))) 202 203 /* convert to new (SVR4) dev format */ 204 205 #define expdev(x) \ 206 (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \ 207 ((x) & O_MAXMIN)) 208 209 /* 210 * Macro for checking power of 2 address alignment. 211 */ 212 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0) 213 214 /* 215 * Macros for counting and rounding. 216 */ 217 #define howmany(x, y) (((x)+((y)-1))/(y)) 218 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) 219 220 /* 221 * Macro to determine if value is a power of 2 222 */ 223 #define ISP2(x) (((x) & ((x) - 1)) == 0) 224 225 /* 226 * Macros for various sorts of alignment and rounding. The "align" must 227 * be a power of 2. Often times it is a block, sector, or page. 228 */ 229 230 /* 231 * return x rounded down to an align boundary 232 * eg, P2ALIGN(1200, 1024) == 1024 (1*align) 233 * eg, P2ALIGN(1024, 1024) == 1024 (1*align) 234 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) 235 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) 236 */ 237 #define P2ALIGN(x, align) ((x) & -(align)) 238 239 /* 240 * return x % (mod) align 241 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align) 242 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align) 243 */ 244 #define P2PHASE(x, align) ((x) & ((align) - 1)) 245 246 /* 247 * return how much space is left in this block (but if it's perfectly 248 * aligned, return 0). 249 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x) 250 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x) 251 */ 252 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 253 254 /* 255 * return x rounded up to an align boundary 256 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align) 257 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align) 258 */ 259 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 260 261 /* 262 * return the ending address of the block that x is in 263 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1) 264 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1) 265 */ 266 #define P2END(x, align) (-(~(x) & -(align))) 267 268 /* 269 * return x rounded up to the next phase (offset) within align. 270 * phase should be < align. 271 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase) 272 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase) 273 */ 274 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 275 276 /* 277 * return TRUE if adding len to off would cause it to cross an align 278 * boundary. 279 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314) 280 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284) 281 */ 282 #define P2BOUNDARY(off, len, align) \ 283 (((off) ^ ((off) + (len) - 1)) > (align) - 1) 284 285 /* 286 * Return TRUE if they have the same highest bit set. 287 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000) 288 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000) 289 */ 290 #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y))) 291 292 /* 293 * Typed version of the P2* macros. These macros should be used to ensure 294 * that the result is correctly calculated based on the data type of (x), 295 * which is passed in as the last argument, regardless of the data 296 * type of the alignment. For example, if (x) is of type uint64_t, 297 * and we want to round it up to a page boundary using "PAGESIZE" as 298 * the alignment, we can do either 299 * P2ROUNDUP(x, (uint64_t)PAGESIZE) 300 * or 301 * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t) 302 */ 303 #define P2ALIGN_TYPED(x, align, type) \ 304 ((type)(x) & -(type)(align)) 305 #define P2PHASE_TYPED(x, align, type) \ 306 ((type)(x) & ((type)(align) - 1)) 307 #define P2NPHASE_TYPED(x, align, type) \ 308 (-(type)(x) & ((type)(align) - 1)) 309 #define P2ROUNDUP_TYPED(x, align, type) \ 310 (-(-(type)(x) & -(type)(align))) 311 #define P2END_TYPED(x, align, type) \ 312 (-(~(type)(x) & -(type)(align))) 313 #define P2PHASEUP_TYPED(x, align, phase, type) \ 314 ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align))) 315 #define P2CROSS_TYPED(x, y, align, type) \ 316 (((type)(x) ^ (type)(y)) > (type)(align) - 1) 317 #define P2SAMEHIGHBIT_TYPED(x, y, type) \ 318 (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y))) 319 320 /* 321 * Macros to atomically increment/decrement a variable. mutex and var 322 * must be pointers. 323 */ 324 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex) 325 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex) 326 327 /* 328 * Macros to declare bitfields - the order in the parameter list is 329 * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields 330 * because if a field crosses a byte boundary it's not likely to be meaningful 331 * without reassembly in its nonnative endianness. 332 */ 333 #if defined(_BIT_FIELDS_LTOH) 334 #define DECL_BITFIELD2(_a, _b) \ 335 uint8_t _a, _b 336 #define DECL_BITFIELD3(_a, _b, _c) \ 337 uint8_t _a, _b, _c 338 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 339 uint8_t _a, _b, _c, _d 340 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 341 uint8_t _a, _b, _c, _d, _e 342 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 343 uint8_t _a, _b, _c, _d, _e, _f 344 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 345 uint8_t _a, _b, _c, _d, _e, _f, _g 346 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 347 uint8_t _a, _b, _c, _d, _e, _f, _g, _h 348 #elif defined(_BIT_FIELDS_HTOL) 349 #define DECL_BITFIELD2(_a, _b) \ 350 uint8_t _b, _a 351 #define DECL_BITFIELD3(_a, _b, _c) \ 352 uint8_t _c, _b, _a 353 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 354 uint8_t _d, _c, _b, _a 355 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 356 uint8_t _e, _d, _c, _b, _a 357 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 358 uint8_t _f, _e, _d, _c, _b, _a 359 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 360 uint8_t _g, _f, _e, _d, _c, _b, _a 361 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 362 uint8_t _h, _g, _f, _e, _d, _c, _b, _a 363 #else 364 #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined 365 #endif /* _BIT_FIELDS_LTOH */ 366 367 #if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof) 368 369 /* avoid any possibility of clashing with <stddef.h> version */ 370 371 #define offsetof(s, m) ((size_t)(&(((s *)0)->m))) 372 #endif 373 374 #ifdef __cplusplus 375 } 376 #endif 377 378 #endif /* _SYS_SYSMACROS_H */ 379