1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #ifndef _SYS_SYSMACROS_H 31 #define _SYS_SYSMACROS_H 32 33 #include <sys/param.h> 34 35 #ifdef __cplusplus 36 extern "C" { 37 #endif 38 39 /* 40 * Some macros for units conversion 41 */ 42 /* 43 * Disk blocks (sectors) and bytes. 44 */ 45 #define dtob(DD) ((DD) << DEV_BSHIFT) 46 #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 47 #define btodt(BB) ((BB) >> DEV_BSHIFT) 48 #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 49 50 /* common macros */ 51 #ifndef MIN 52 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 53 #endif 54 #ifndef MAX 55 #define MAX(a, b) ((a) < (b) ? (b) : (a)) 56 #endif 57 #ifndef ABS 58 #define ABS(a) ((a) < 0 ? -(a) : (a)) 59 #endif 60 61 #ifdef _KERNEL 62 63 /* 64 * Convert a single byte to/from binary-coded decimal (BCD). 65 */ 66 extern unsigned char byte_to_bcd[256]; 67 extern unsigned char bcd_to_byte[256]; 68 69 #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff] 70 #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff] 71 72 #endif /* _KERNEL */ 73 74 /* 75 * WARNING: The device number macros defined here should not be used by device 76 * drivers or user software. Device drivers should use the device functions 77 * defined in the DDI/DKI interface (see also ddi.h). Application software 78 * should make use of the library routines available in makedev(3). A set of 79 * new device macros are provided to operate on the expanded device number 80 * format supported in SVR4. Macro versions of the DDI device functions are 81 * provided for use by kernel proper routines only. Macro routines bmajor(), 82 * major(), minor(), emajor(), eminor(), and makedev() will be removed or 83 * their definitions changed at the next major release following SVR4. 84 */ 85 86 #define O_BITSMAJOR 7 /* # of SVR3 major device bits */ 87 #define O_BITSMINOR 8 /* # of SVR3 minor device bits */ 88 #define O_MAXMAJ 0x7f /* SVR3 max major value */ 89 #define O_MAXMIN 0xff /* SVR3 max minor value */ 90 91 92 #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */ 93 #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */ 94 #define L_MAXMAJ32 0x3fff /* SVR4 max major value */ 95 #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */ 96 /* For 3b2 hardware devices the minor is */ 97 /* restricted to 256 (0-255) */ 98 99 #ifdef _LP64 100 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */ 101 #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */ 102 #define L_MAXMAJ 0xfffffffful /* max major value */ 103 #define L_MAXMIN 0xfffffffful /* max minor value */ 104 #else 105 #define L_BITSMAJOR L_BITSMAJOR32 106 #define L_BITSMINOR L_BITSMINOR32 107 #define L_MAXMAJ L_MAXMAJ32 108 #define L_MAXMIN L_MAXMIN32 109 #endif 110 111 #ifdef _KERNEL 112 113 /* major part of a device internal to the kernel */ 114 115 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 116 #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 117 118 /* get internal major part of expanded device number */ 119 120 #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ) 121 122 /* minor part of a device internal to the kernel */ 123 124 #define minor(x) (minor_t)((x) & O_MAXMIN) 125 126 /* get internal minor part of expanded device number */ 127 128 #define getminor(x) (minor_t)((x) & L_MAXMIN) 129 130 #else 131 132 /* major part of a device external from the kernel (same as emajor below) */ 133 134 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 135 136 /* minor part of a device external from the kernel (same as eminor below) */ 137 138 #define minor(x) (minor_t)((x) & O_MAXMIN) 139 140 #endif /* _KERNEL */ 141 142 /* create old device number */ 143 144 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN)) 145 146 /* make an new device number */ 147 148 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN)) 149 150 151 /* 152 * emajor() allows kernel/driver code to print external major numbers 153 * eminor() allows kernel/driver code to print external minor numbers 154 */ 155 156 #define emajor(x) \ 157 (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \ 158 NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ) 159 160 #define eminor(x) \ 161 (minor_t)((x) & O_MAXMIN) 162 163 /* 164 * get external major and minor device 165 * components from expanded device number 166 */ 167 #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \ 168 NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ)) 169 #define geteminor(x) (minor_t)((x) & L_MAXMIN) 170 171 /* 172 * These are versions of the kernel routines for compressing and 173 * expanding long device numbers that don't return errors. 174 */ 175 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR) 176 177 #define DEVCMPL(x) (x) 178 #define DEVEXPL(x) (x) 179 180 #else 181 182 #define DEVCMPL(x) \ 183 (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \ 184 ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \ 185 ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32))) 186 187 #define DEVEXPL(x) \ 188 (((x) == NODEV32) ? NODEV : \ 189 makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32)) 190 191 #endif /* L_BITSMAJOR32 ... */ 192 193 /* convert to old (SVR3.2) dev format */ 194 195 #define cmpdev(x) \ 196 (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \ 197 ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \ 198 ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN))) 199 200 /* convert to new (SVR4) dev format */ 201 202 #define expdev(x) \ 203 (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \ 204 ((x) & O_MAXMIN)) 205 206 /* 207 * Macro for checking power of 2 address alignment. 208 */ 209 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0) 210 211 /* 212 * Macros for counting and rounding. 213 */ 214 #define howmany(x, y) (((x)+((y)-1))/(y)) 215 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) 216 217 /* 218 * Macro to determine if value is a power of 2 219 */ 220 #define ISP2(x) (((x) & ((x) - 1)) == 0) 221 222 /* 223 * Macros for various sorts of alignment and rounding. The "align" must 224 * be a power of 2. Often times it is a block, sector, or page. 225 */ 226 227 /* 228 * return x rounded down to an align boundary 229 * eg, P2ALIGN(1200, 1024) == 1024 (1*align) 230 * eg, P2ALIGN(1024, 1024) == 1024 (1*align) 231 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) 232 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) 233 */ 234 #define P2ALIGN(x, align) ((x) & -(align)) 235 236 /* 237 * return x % (mod) align 238 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align) 239 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align) 240 */ 241 #define P2PHASE(x, align) ((x) & ((align) - 1)) 242 243 /* 244 * return how much space is left in this block (but if it's perfectly 245 * aligned, return 0). 246 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x) 247 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x) 248 */ 249 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 250 251 /* 252 * return x rounded up to an align boundary 253 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align) 254 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align) 255 */ 256 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 257 258 /* 259 * return the ending address of the block that x is in 260 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1) 261 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1) 262 */ 263 #define P2END(x, align) (-(~(x) & -(align))) 264 265 /* 266 * return x rounded up to the next phase (offset) within align. 267 * phase should be < align. 268 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase) 269 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase) 270 */ 271 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 272 273 /* 274 * return TRUE if adding len to off would cause it to cross an align 275 * boundary. 276 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314) 277 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284) 278 */ 279 #define P2BOUNDARY(off, len, align) \ 280 (((off) ^ ((off) + (len) - 1)) > (align) - 1) 281 282 /* 283 * Return TRUE if they have the same highest bit set. 284 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000) 285 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000) 286 */ 287 #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y))) 288 289 /* 290 * Typed version of the P2* macros. These macros should be used to ensure 291 * that the result is correctly calculated based on the data type of (x), 292 * which is passed in as the last argument, regardless of the data 293 * type of the alignment. For example, if (x) is of type uint64_t, 294 * and we want to round it up to a page boundary using "PAGESIZE" as 295 * the alignment, we can do either 296 * P2ROUNDUP(x, (uint64_t)PAGESIZE) 297 * or 298 * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t) 299 */ 300 #define P2ALIGN_TYPED(x, align, type) \ 301 ((type)(x) & -(type)(align)) 302 #define P2PHASE_TYPED(x, align, type) \ 303 ((type)(x) & ((type)(align) - 1)) 304 #define P2NPHASE_TYPED(x, align, type) \ 305 (-(type)(x) & ((type)(align) - 1)) 306 #define P2ROUNDUP_TYPED(x, align, type) \ 307 (-(-(type)(x) & -(type)(align))) 308 #define P2END_TYPED(x, align, type) \ 309 (-(~(type)(x) & -(type)(align))) 310 #define P2PHASEUP_TYPED(x, align, phase, type) \ 311 ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align))) 312 #define P2CROSS_TYPED(x, y, align, type) \ 313 (((type)(x) ^ (type)(y)) > (type)(align) - 1) 314 #define P2SAMEHIGHBIT_TYPED(x, y, type) \ 315 (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y))) 316 317 /* 318 * Macros to atomically increment/decrement a variable. mutex and var 319 * must be pointers. 320 */ 321 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex) 322 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex) 323 324 /* 325 * Macros to declare bitfields - the order in the parameter list is 326 * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields 327 * because if a field crosses a byte boundary it's not likely to be meaningful 328 * without reassembly in its nonnative endianness. 329 */ 330 #if defined(_BIT_FIELDS_LTOH) 331 #define DECL_BITFIELD2(_a, _b) \ 332 uint8_t _a, _b 333 #define DECL_BITFIELD3(_a, _b, _c) \ 334 uint8_t _a, _b, _c 335 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 336 uint8_t _a, _b, _c, _d 337 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 338 uint8_t _a, _b, _c, _d, _e 339 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 340 uint8_t _a, _b, _c, _d, _e, _f 341 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 342 uint8_t _a, _b, _c, _d, _e, _f, _g 343 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 344 uint8_t _a, _b, _c, _d, _e, _f, _g, _h 345 #elif defined(_BIT_FIELDS_HTOL) 346 #define DECL_BITFIELD2(_a, _b) \ 347 uint8_t _b, _a 348 #define DECL_BITFIELD3(_a, _b, _c) \ 349 uint8_t _c, _b, _a 350 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 351 uint8_t _d, _c, _b, _a 352 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 353 uint8_t _e, _d, _c, _b, _a 354 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 355 uint8_t _f, _e, _d, _c, _b, _a 356 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 357 uint8_t _g, _f, _e, _d, _c, _b, _a 358 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 359 uint8_t _h, _g, _f, _e, _d, _c, _b, _a 360 #else 361 #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined 362 #endif /* _BIT_FIELDS_LTOH */ 363 364 #if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof) 365 366 /* avoid any possibility of clashing with <stddef.h> version */ 367 368 #define offsetof(s, m) ((size_t)(&(((s *)0)->m))) 369 #endif 370 371 #ifdef __cplusplus 372 } 373 #endif 374 375 #endif /* _SYS_SYSMACROS_H */ 376