1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 * Copyright 2018 Joyent, Inc. 29 */ 30 31 /* 32 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 33 * Copyright 2022 Garrett D'Amore 34 */ 35 36 #ifndef _SYS_STRSUBR_H 37 #define _SYS_STRSUBR_H 38 39 /* 40 * WARNING: 41 * Everything in this file is private, belonging to the 42 * STREAMS subsystem. The only guarantee made about the 43 * contents of this file is that if you include it, your 44 * code will not port to the next release. 45 */ 46 #include <sys/stream.h> 47 #include <sys/stropts.h> 48 #include <sys/vnode.h> 49 #include <sys/kstat.h> 50 #include <sys/uio.h> 51 #include <sys/proc.h> 52 #include <sys/netstack.h> 53 #include <sys/modhash.h> 54 55 #ifdef __cplusplus 56 extern "C" { 57 #endif 58 59 /* 60 * In general, the STREAMS locks are disjoint; they are only held 61 * locally, and not simultaneously by a thread. However, module 62 * code, including at the stream head, requires some locks to be 63 * acquired in order for its safety. 64 * 1. Stream level claim. This prevents the value of q_next 65 * from changing while module code is executing. 66 * 2. Queue level claim. This prevents the value of q_ptr 67 * from changing while put or service code is executing. 68 * In addition, it provides for queue single-threading 69 * for QPAIR and PERQ MT-safe modules. 70 * 3. Stream head lock. May be held by the stream head module 71 * to implement a read/write/open/close monitor. 72 * Note: that the only types of twisted stream supported are 73 * the pipe and transports which have read and write service 74 * procedures on both sides of the twist. 75 * 4. Queue lock. May be acquired by utility routines on 76 * behalf of a module. 77 */ 78 79 /* 80 * In general, sd_lock protects the consistency of the stdata 81 * structure. Additionally, it is used with sd_monitor 82 * to implement an open/close monitor. In particular, it protects 83 * the following fields: 84 * sd_iocblk 85 * sd_flag 86 * sd_copyflag 87 * sd_iocid 88 * sd_iocwait 89 * sd_sidp 90 * sd_pgidp 91 * sd_wroff 92 * sd_tail 93 * sd_rerror 94 * sd_werror 95 * sd_pushcnt 96 * sd_sigflags 97 * sd_siglist 98 * sd_pollist 99 * sd_mark 100 * sd_closetime 101 * sd_wakeq 102 * sd_maxblk 103 * 104 * The following fields are modified only by the allocator, which 105 * has exclusive access to them at that time: 106 * sd_wrq 107 * sd_strtab 108 * 109 * The following field is protected by the overlying file system 110 * code, guaranteeing single-threading of opens: 111 * sd_vnode 112 * 113 * Stream-level locks should be acquired before any queue-level locks 114 * are acquired. 115 * 116 * The stream head write queue lock(sd_wrq) is used to protect the 117 * fields qn_maxpsz and qn_minpsz because freezestr() which is 118 * necessary for strqset() only gets the queue lock. 119 */ 120 121 /* 122 * Function types for the parameterized stream head. 123 * The msgfunc_t takes the parameters: 124 * msgfunc(vnode_t *vp, mblk_t *mp, strwakeup_t *wakeups, 125 * strsigset_t *firstmsgsigs, strsigset_t *allmsgsigs, 126 * strpollset_t *pollwakeups); 127 * It returns an optional message to be processed by the stream head. 128 * 129 * The parameters for errfunc_t are: 130 * errfunc(vnode *vp, int ispeek, int *clearerr); 131 * It returns an errno and zero if there was no pending error. 132 */ 133 typedef uint_t strwakeup_t; 134 typedef uint_t strsigset_t; 135 typedef short strpollset_t; 136 typedef uintptr_t callbparams_id_t; 137 typedef mblk_t *(*msgfunc_t)(vnode_t *, mblk_t *, strwakeup_t *, 138 strsigset_t *, strsigset_t *, strpollset_t *); 139 typedef int (*errfunc_t)(vnode_t *, int, int *); 140 141 /* 142 * Per stream sd_lock in putnext may be replaced by per cpu stream_putlocks 143 * each living in a separate cache line. putnext/canputnext grabs only one of 144 * stream_putlocks while strlock() (called on behalf of insertq()/removeq()) 145 * acquires all stream_putlocks. Normally stream_putlocks are only employed 146 * for highly contended streams that have SQ_CIPUT queues in the critical path 147 * (e.g. NFS/UDP stream). 148 * 149 * stream_putlocks are dynamically assigned to stdata structure through 150 * sd_ciputctrl pointer possibly when a stream is already in use. Since 151 * strlock() uses stream_putlocks only under sd_lock acquiring sd_lock when 152 * assigning stream_putlocks to the stream ensures synchronization with 153 * strlock(). 154 * 155 * For lock ordering purposes stream_putlocks are treated as the extension of 156 * sd_lock and are always grabbed right after grabbing sd_lock and released 157 * right before releasing sd_lock except putnext/canputnext where only one of 158 * stream_putlocks locks is used and where it is the first lock to grab. 159 */ 160 161 typedef struct ciputctrl_str { 162 union _ciput_un { 163 uchar_t pad[64]; 164 struct _ciput_str { 165 kmutex_t ciput_lck; 166 ushort_t ciput_cnt; 167 } ciput_str; 168 } ciput_un; 169 } ciputctrl_t; 170 171 #define ciputctrl_lock ciput_un.ciput_str.ciput_lck 172 #define ciputctrl_count ciput_un.ciput_str.ciput_cnt 173 174 /* 175 * Header for a stream: interface to rest of system. 176 * 177 * NOTE: While this is a consolidation-private structure, some unbundled and 178 * third-party products inappropriately make use of some of the fields. 179 * As such, please take care to not gratuitously change any offsets of 180 * existing members. 181 */ 182 typedef struct stdata { 183 struct queue *sd_wrq; /* write queue */ 184 struct msgb *sd_iocblk; /* return block for ioctl */ 185 struct vnode *sd_vnode; /* pointer to associated vnode */ 186 struct streamtab *sd_strtab; /* pointer to streamtab for stream */ 187 uint_t sd_flag; /* state/flags */ 188 uint_t sd_iocid; /* ioctl id */ 189 struct pid *sd_sidp; /* controlling session info */ 190 struct pid *sd_pgidp; /* controlling process group info */ 191 ushort_t sd_tail; /* reserved space in written mblks */ 192 ushort_t sd_wroff; /* write offset */ 193 int sd_rerror; /* error to return on read ops */ 194 int sd_werror; /* error to return on write ops */ 195 int sd_pushcnt; /* number of pushes done on stream */ 196 int sd_sigflags; /* logical OR of all siglist events */ 197 struct strsig *sd_siglist; /* pid linked list to rcv SIGPOLL sig */ 198 struct pollhead sd_pollist; /* list of all pollers to wake up */ 199 struct msgb *sd_mark; /* "marked" message on read queue */ 200 clock_t sd_closetime; /* time to wait to drain q in close */ 201 kmutex_t sd_lock; /* protect head consistency */ 202 kcondvar_t sd_monitor; /* open/close/push/pop monitor */ 203 kcondvar_t sd_iocmonitor; /* ioctl single-threading */ 204 kcondvar_t sd_refmonitor; /* sd_refcnt monitor */ 205 ssize_t sd_qn_minpsz; /* These two fields are a performance */ 206 ssize_t sd_qn_maxpsz; /* enhancements, cache the values in */ 207 /* the stream head so we don't have */ 208 /* to ask the module below the stream */ 209 /* head to get this information. */ 210 struct stdata *sd_mate; /* pointer to twisted stream mate */ 211 kthread_id_t sd_freezer; /* thread that froze stream */ 212 kmutex_t sd_reflock; /* Protects sd_refcnt */ 213 int sd_refcnt; /* number of claimstr */ 214 uint_t sd_wakeq; /* strwakeq()'s copy of sd_flag */ 215 struct queue *sd_struiordq; /* sync barrier struio() read queue */ 216 struct queue *sd_struiowrq; /* sync barrier struio() write queue */ 217 char sd_struiodnak; /* defer NAK of M_IOCTL by rput() */ 218 struct msgb *sd_struionak; /* pointer M_IOCTL mblk(s) to NAK */ 219 caddr_t sd_t_audit_data; /* For audit purposes only */ 220 ssize_t sd_maxblk; /* maximum message block size */ 221 uint_t sd_rput_opt; /* options/flags for strrput */ 222 uint_t sd_wput_opt; /* options/flags for write/putmsg */ 223 uint_t sd_read_opt; /* options/flags for strread */ 224 msgfunc_t sd_rprotofunc; /* rput M_*PROTO routine */ 225 msgfunc_t sd_rputdatafunc; /* read M_DATA routine */ 226 msgfunc_t sd_rmiscfunc; /* rput routine (non-data/proto) */ 227 msgfunc_t sd_wputdatafunc; /* wput M_DATA routine */ 228 errfunc_t sd_rderrfunc; /* read side error callback */ 229 errfunc_t sd_wrerrfunc; /* write side error callback */ 230 /* 231 * support for low contention concurrent putnext. 232 */ 233 ciputctrl_t *sd_ciputctrl; 234 uint_t sd_nciputctrl; 235 236 int sd_anchor; /* position of anchor in stream */ 237 /* 238 * Service scheduling at the stream head. 239 */ 240 kmutex_t sd_qlock; 241 struct queue *sd_qhead; /* Head of queues to be serviced. */ 242 struct queue *sd_qtail; /* Tail of queues to be serviced. */ 243 void *sd_servid; /* Service ID for bckgrnd schedule */ 244 ushort_t sd_svcflags; /* Servicing flags */ 245 short sd_nqueues; /* Number of queues in the list */ 246 kcondvar_t sd_qcv; /* Waiters for qhead to become empty */ 247 kcondvar_t sd_zcopy_wait; 248 uint_t sd_copyflag; /* copy-related flags */ 249 zoneid_t sd_anchorzone; /* Allow removal from same zone only */ 250 struct msgb *sd_cmdblk; /* reply from _I_CMD */ 251 252 /* 253 * When a STREAMS device is cloned, the sd_vnode element of this 254 * structure is replaced by a pointer to a common vnode shared across 255 * all streams that are using the device. In this case, it is no longer 256 * possible to get from the stream head back to the original vnode via 257 * sd_vnode. Therefore, when such a device is cloned, the parent vnode - 258 * i.e. that which was created during the device clone in spec_clone() 259 * - is kept in sd_pvnode. 260 */ 261 struct vnode *sd_pvnode; 262 } stdata_t; 263 264 /* 265 * stdata servicing flags. 266 */ 267 #define STRS_WILLSERVICE 0x01 268 #define STRS_SCHEDULED 0x02 269 270 #define STREAM_NEEDSERVICE(stp) ((stp)->sd_qhead != NULL) 271 272 /* 273 * stdata flag field defines 274 */ 275 #define IOCWAIT 0x00000001 /* Someone is doing an ioctl */ 276 #define RSLEEP 0x00000002 /* Someone wants to read/recv msg */ 277 #define WSLEEP 0x00000004 /* Someone wants to write */ 278 #define STRPRI 0x00000008 /* An M_PCPROTO is at stream head */ 279 #define STRHUP 0x00000010 /* Device has vanished */ 280 #define STWOPEN 0x00000020 /* waiting for 1st open */ 281 #define STPLEX 0x00000040 /* stream is being multiplexed */ 282 #define STRISTTY 0x00000080 /* stream is a terminal */ 283 #define STRGETINPROG 0x00000100 /* (k)strgetmsg is running */ 284 #define IOCWAITNE 0x00000200 /* STR_NOERROR ioctl running */ 285 #define STRDERR 0x00000400 /* fatal read error from M_ERROR */ 286 #define STWRERR 0x00000800 /* fatal write error from M_ERROR */ 287 #define STRDERRNONPERSIST 0x00001000 /* nonpersistent read errors */ 288 #define STWRERRNONPERSIST 0x00002000 /* nonpersistent write errors */ 289 #define STRCLOSE 0x00004000 /* wait for a close to complete */ 290 #define SNDMREAD 0x00008000 /* used for read notification */ 291 #define OLDNDELAY 0x00010000 /* use old TTY semantics for */ 292 /* NDELAY reads and writes */ 293 #define STRXPG4TTY 0x00020000 /* Use XPG4 TTY semantics */ 294 /* 0x00040000 unused */ 295 #define STRTOSTOP 0x00080000 /* block background writes */ 296 #define STRCMDWAIT 0x00100000 /* someone is doing an _I_CMD */ 297 /* 0x00200000 unused */ 298 #define STRMOUNT 0x00400000 /* stream is mounted */ 299 #define STRNOTATMARK 0x00800000 /* Not at mark (when empty read q) */ 300 #define STRDELIM 0x01000000 /* generate delimited messages */ 301 #define STRATMARK 0x02000000 /* At mark (due to MSGMARKNEXT) */ 302 #define STZCNOTIFY 0x04000000 /* wait for zerocopy mblk to be acked */ 303 #define STRPLUMB 0x08000000 /* push/pop pending */ 304 #define STREOF 0x10000000 /* End-of-file indication */ 305 #define STREOPENFAIL 0x20000000 /* indicates if re-open has failed */ 306 #define STRMATE 0x40000000 /* this stream is a mate */ 307 #define STRHASLINKS 0x80000000 /* I_LINKs under this stream */ 308 309 /* 310 * Copy-related flags (sd_copyflag), set by SO_COPYOPT. 311 */ 312 #define STZCVMSAFE 0x00000001 /* safe to borrow file (segmapped) */ 313 /* pages instead of bcopy */ 314 #define STZCVMUNSAFE 0x00000002 /* unsafe to borrow file pages */ 315 #define STRCOPYCACHED 0x00000004 /* copy should NOT bypass cache */ 316 317 /* 318 * Options and flags for strrput (sd_rput_opt) 319 */ 320 #define SR_POLLIN 0x00000001 /* pollwakeup needed for band0 data */ 321 #define SR_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */ 322 #define SR_CONSOL_DATA 0x00000004 /* Consolidate M_DATA onto q_last */ 323 #define SR_IGN_ZEROLEN 0x00000008 /* Ignore zero-length M_DATA */ 324 325 /* 326 * Options and flags for strwrite/strputmsg (sd_wput_opt) 327 */ 328 #define SW_SIGPIPE 0x00000001 /* Send SIGPIPE for write error */ 329 #define SW_RECHECK_ERR 0x00000002 /* Recheck errors in strwrite loop */ 330 #define SW_SNDZERO 0x00000004 /* send 0-length msg down pipe/FIFO */ 331 332 /* 333 * Options and flags for strread (sd_read_opt) 334 */ 335 #define RD_MSGDIS 0x00000001 /* read msg discard */ 336 #define RD_MSGNODIS 0x00000002 /* read msg no discard */ 337 #define RD_PROTDAT 0x00000004 /* read M_[PC]PROTO contents as data */ 338 #define RD_PROTDIS 0x00000008 /* discard M_[PC]PROTO blocks and */ 339 /* retain data blocks */ 340 /* 341 * Flags parameter for strsetrputhooks() and strsetwputhooks(). 342 * These flags define the interface for setting the above internal 343 * flags in sd_rput_opt and sd_wput_opt. 344 */ 345 #define SH_CONSOL_DATA 0x00000001 /* Consolidate M_DATA onto q_last */ 346 #define SH_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */ 347 #define SH_IGN_ZEROLEN 0x00000004 /* Drop zero-length M_DATA */ 348 349 #define SH_SIGPIPE 0x00000100 /* Send SIGPIPE for write error */ 350 #define SH_RECHECK_ERR 0x00000200 /* Recheck errors in strwrite loop */ 351 352 /* 353 * Each queue points to a sync queue (the inner perimeter) which keeps 354 * track of the number of threads that are inside a given queue (sq_count) 355 * and also is used to implement the asynchronous putnext 356 * (by queuing messages if the queue can not be entered.) 357 * 358 * Messages are queued on sq_head/sq_tail including deferred qwriter(INNER) 359 * messages. The sq_head/sq_tail list is a singly-linked list with 360 * b_queue recording the queue and b_prev recording the function to 361 * be called (either the put procedure or a qwriter callback function.) 362 * 363 * The sq_count counter tracks the number of threads that are 364 * executing inside the perimeter or (in the case of outer perimeters) 365 * have some work queued for them relating to the perimeter. The sq_rmqcount 366 * counter tracks the subset which are in removeq() (usually invoked from 367 * qprocsoff(9F)). 368 * 369 * In addition a module writer can declare that the module has an outer 370 * perimeter (by setting D_MTOUTPERIM) in which case all inner perimeter 371 * syncq's for the module point (through sq_outer) to an outer perimeter 372 * syncq. The outer perimeter consists of the doubly linked list (sq_onext and 373 * sq_oprev) linking all the inner perimeter syncq's with out outer perimeter 374 * syncq. This is used to implement qwriter(OUTER) (an asynchronous way of 375 * getting exclusive access at the outer perimeter) and outer_enter/exit 376 * which are used by the framework to acquire exclusive access to the outer 377 * perimeter during open and close of modules that have set D_MTOUTPERIM. 378 * 379 * In the inner perimeter case sq_save is available for use by machine 380 * dependent code. sq_head/sq_tail are used to queue deferred messages on 381 * the inner perimeter syncqs and to queue become_writer requests on the 382 * outer perimeter syncqs. 383 * 384 * Note: machine dependent optimized versions of putnext may depend 385 * on the order of sq_flags and sq_count (so that they can e.g. 386 * read these two fields in a single load instruction.) 387 * 388 * Per perimeter SQLOCK/sq_count in putnext/put may be replaced by per cpu 389 * sq_putlocks/sq_putcounts each living in a separate cache line. Obviously 390 * sq_putlock[x] protects sq_putcount[x]. putnext/put routine will grab only 1 391 * of sq_putlocks and update only 1 of sq_putcounts. strlock() and many 392 * other routines in strsubr.c and ddi.c will grab all sq_putlocks (as well as 393 * SQLOCK) and figure out the count value as the sum of sq_count and all of 394 * sq_putcounts. The idea is to make critical fast path -- putnext -- much 395 * faster at the expense of much less often used slower path like 396 * strlock(). One known case where entersq/strlock is executed pretty often is 397 * SpecWeb but since IP is SQ_CIOC and socket TCP/IP stream is nextless 398 * there's no need to grab multiple sq_putlocks and look at sq_putcounts. See 399 * strsubr.c for more comments. 400 * 401 * Note regular SQLOCK and sq_count are still used in many routines 402 * (e.g. entersq(), rwnext()) in the same way as before sq_putlocks were 403 * introduced. 404 * 405 * To understand when all sq_putlocks need to be held and all sq_putcounts 406 * need to be added up one needs to look closely at putnext code. Basically if 407 * a routine like e.g. wait_syncq() needs to be sure that perimeter is empty 408 * all sq_putlocks/sq_putcounts need to be held/added up. On the other hand 409 * there's no need to hold all sq_putlocks and count all sq_putcounts in 410 * routines like leavesq()/dropsq() and etc. since the are usually exit 411 * counterparts of entersq/outer_enter() and etc. which have already either 412 * prevented put entry poins from executing or did not care about put 413 * entrypoints. entersq() doesn't need to care about sq_putlocks/sq_putcounts 414 * if the entry point has a shared access since put has the highest degree of 415 * concurrency and such entersq() does not intend to block out put 416 * entrypoints. 417 * 418 * Before sq_putcounts were introduced the standard way to wait for perimeter 419 * to become empty was: 420 * 421 * mutex_enter(SQLOCK(sq)); 422 * while (sq->sq_count > 0) { 423 * sq->sq_flags |= SQ_WANTWAKEUP; 424 * cv_wait(&sq->sq_wait, SQLOCK(sq)); 425 * } 426 * mutex_exit(SQLOCK(sq)); 427 * 428 * The new way is: 429 * 430 * mutex_enter(SQLOCK(sq)); 431 * count = sq->sq_count; 432 * SQ_PUTLOCKS_ENTER(sq); 433 * SUM_SQ_PUTCOUNTS(sq, count); 434 * while (count != 0) { 435 * sq->sq_flags |= SQ_WANTWAKEUP; 436 * SQ_PUTLOCKS_EXIT(sq); 437 * cv_wait(&sq->sq_wait, SQLOCK(sq)); 438 * count = sq->sq_count; 439 * SQ_PUTLOCKS_ENTER(sq); 440 * SUM_SQ_PUTCOUNTS(sq, count); 441 * } 442 * SQ_PUTLOCKS_EXIT(sq); 443 * mutex_exit(SQLOCK(sq)); 444 * 445 * Note that SQ_WANTWAKEUP is set before dropping SQ_PUTLOCKS. This makes sure 446 * putnext won't skip a wakeup. 447 * 448 * sq_putlocks are treated as the extension of SQLOCK for lock ordering 449 * purposes and are always grabbed right after grabbing SQLOCK and released 450 * right before releasing SQLOCK. This also allows dynamic creation of 451 * sq_putlocks while holding SQLOCK (by making sq_ciputctrl non null even when 452 * the stream is already in use). Only in putnext one of sq_putlocks 453 * is grabbed instead of SQLOCK. putnext return path remembers what counter it 454 * incremented and decrements the right counter on its way out. 455 */ 456 457 struct syncq { 458 kmutex_t sq_lock; /* atomic access to syncq */ 459 uint16_t sq_count; /* # threads inside */ 460 uint16_t sq_flags; /* state and some type info */ 461 /* 462 * Distributed syncq scheduling 463 * The list of queue's is handled by sq_head and 464 * sq_tail fields. 465 * 466 * The list of events is handled by the sq_evhead and sq_evtail 467 * fields. 468 */ 469 queue_t *sq_head; /* queue of deferred messages */ 470 queue_t *sq_tail; /* queue of deferred messages */ 471 mblk_t *sq_evhead; /* Event message on the syncq */ 472 mblk_t *sq_evtail; 473 uint_t sq_nqueues; /* # of queues on this sq */ 474 /* 475 * Concurrency and condition variables 476 */ 477 uint16_t sq_type; /* type (concurrency) of syncq */ 478 uint16_t sq_rmqcount; /* # threads inside removeq() */ 479 kcondvar_t sq_wait; /* block on this sync queue */ 480 kcondvar_t sq_exitwait; /* waiting for thread to leave the */ 481 /* inner perimeter */ 482 /* 483 * Handling synchronous callbacks such as qtimeout and qbufcall 484 */ 485 ushort_t sq_callbflags; /* flags for callback synchronization */ 486 callbparams_id_t sq_cancelid; /* id of callback being cancelled */ 487 struct callbparams *sq_callbpend; /* Pending callbacks */ 488 489 /* 490 * Links forming an outer perimeter from one outer syncq and 491 * a set of inner sync queues. 492 */ 493 struct syncq *sq_outer; /* Pointer to outer perimeter */ 494 struct syncq *sq_onext; /* Linked list of syncq's making */ 495 struct syncq *sq_oprev; /* up the outer perimeter. */ 496 /* 497 * support for low contention concurrent putnext. 498 */ 499 ciputctrl_t *sq_ciputctrl; 500 uint_t sq_nciputctrl; 501 /* 502 * Counter for the number of threads wanting to become exclusive. 503 */ 504 uint_t sq_needexcl; 505 /* 506 * These two fields are used for scheduling a syncq for 507 * background processing. The sq_svcflag is protected by 508 * SQLOCK lock. 509 */ 510 struct syncq *sq_next; /* for syncq scheduling */ 511 void * sq_servid; 512 uint_t sq_servcount; /* # pending background threads */ 513 uint_t sq_svcflags; /* Scheduling flags */ 514 clock_t sq_tstamp; /* Time when was enabled */ 515 /* 516 * Maximum priority of the queues on this syncq. 517 */ 518 pri_t sq_pri; 519 }; 520 typedef struct syncq syncq_t; 521 522 /* 523 * sync queue scheduling flags (for sq_svcflags). 524 */ 525 #define SQ_SERVICE 0x1 /* being serviced */ 526 #define SQ_BGTHREAD 0x2 /* awaiting service by bg thread */ 527 #define SQ_DISABLED 0x4 /* don't put syncq in service list */ 528 529 /* 530 * FASTPUT bit in sd_count/putcount. 531 */ 532 #define SQ_FASTPUT 0x8000 533 #define SQ_FASTMASK 0x7FFF 534 535 /* 536 * sync queue state flags 537 */ 538 #define SQ_EXCL 0x0001 /* exclusive access to inner */ 539 /* perimeter */ 540 #define SQ_BLOCKED 0x0002 /* qprocsoff */ 541 #define SQ_FROZEN 0x0004 /* freezestr */ 542 #define SQ_WRITER 0x0008 /* qwriter(OUTER) pending or running */ 543 #define SQ_MESSAGES 0x0010 /* messages on syncq */ 544 #define SQ_WANTWAKEUP 0x0020 /* do cv_broadcast on sq_wait */ 545 #define SQ_WANTEXWAKEUP 0x0040 /* do cv_broadcast on sq_exitwait */ 546 #define SQ_EVENTS 0x0080 /* Events pending */ 547 #define SQ_QUEUED (SQ_MESSAGES | SQ_EVENTS) 548 #define SQ_FLAGMASK 0x00FF 549 550 /* 551 * Test a queue to see if inner perimeter is exclusive. 552 */ 553 #define PERIM_EXCL(q) ((q)->q_syncq->sq_flags & SQ_EXCL) 554 555 /* 556 * If any of these flags are set it is not possible for a thread to 557 * enter a put or service procedure. Instead it must either block 558 * or put the message on the syncq. 559 */ 560 #define SQ_GOAWAY (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN|SQ_WRITER|\ 561 SQ_QUEUED) 562 /* 563 * If any of these flags are set it not possible to drain the syncq 564 */ 565 #define SQ_STAYAWAY (SQ_BLOCKED|SQ_FROZEN|SQ_WRITER) 566 567 /* 568 * Flags to trigger syncq tail processing. 569 */ 570 #define SQ_TAIL (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP) 571 572 /* 573 * Syncq types (stored in sq_type) 574 * The SQ_TYPES_IN_FLAGS (ciput) are also stored in sq_flags 575 * for performance reasons. Thus these type values have to be in the low 576 * 16 bits and not conflict with the sq_flags values above. 577 * 578 * Notes: 579 * - putnext() and put() assume that the put procedures have the highest 580 * degree of concurrency. Thus if any of the SQ_CI* are set then SQ_CIPUT 581 * has to be set. This restriction can be lifted by adding code to putnext 582 * and put that check that sq_count == 0 like entersq does. 583 * - putnext() and put() does currently not handle !SQ_COPUT 584 * - In order to implement !SQ_COCB outer_enter has to be fixed so that 585 * the callback can be cancelled while cv_waiting in outer_enter. 586 * - If SQ_CISVC needs to be implemented, qprocsoff() needs to wait 587 * for the currently running services to stop (wait for QINSERVICE 588 * to go off). disable_svc called from qprcosoff disables only 589 * services that will be run in future. 590 * 591 * All the SQ_CO flags are set when there is no outer perimeter. 592 */ 593 #define SQ_CIPUT 0x0100 /* Concurrent inner put proc */ 594 #define SQ_CISVC 0x0200 /* Concurrent inner svc proc */ 595 #define SQ_CIOC 0x0400 /* Concurrent inner open/close */ 596 #define SQ_CICB 0x0800 /* Concurrent inner callback */ 597 #define SQ_COPUT 0x1000 /* Concurrent outer put proc */ 598 #define SQ_COSVC 0x2000 /* Concurrent outer svc proc */ 599 #define SQ_COOC 0x4000 /* Concurrent outer open/close */ 600 #define SQ_COCB 0x8000 /* Concurrent outer callback */ 601 602 /* Types also kept in sq_flags for performance */ 603 #define SQ_TYPES_IN_FLAGS (SQ_CIPUT) 604 605 #define SQ_CI (SQ_CIPUT|SQ_CISVC|SQ_CIOC|SQ_CICB) 606 #define SQ_CO (SQ_COPUT|SQ_COSVC|SQ_COOC|SQ_COCB) 607 #define SQ_TYPEMASK (SQ_CI|SQ_CO) 608 609 /* 610 * Flag combinations passed to entersq and leavesq to specify the type 611 * of entry point. 612 */ 613 #define SQ_PUT (SQ_CIPUT|SQ_COPUT) 614 #define SQ_SVC (SQ_CISVC|SQ_COSVC) 615 #define SQ_OPENCLOSE (SQ_CIOC|SQ_COOC) 616 #define SQ_CALLBACK (SQ_CICB|SQ_COCB) 617 618 /* 619 * Other syncq types which are not copied into flags. 620 */ 621 #define SQ_PERMOD 0x01 /* Syncq is PERMOD */ 622 623 /* 624 * Asynchronous callback qun*** flag. 625 * The mechanism these flags are used in is one where callbacks enter 626 * the perimeter thanks to framework support. To use this mechanism 627 * the q* and qun* flavors of the callback routines must be used. 628 * e.g. qtimeout and quntimeout. The synchronization provided by the flags 629 * avoids deadlocks between blocking qun* routines and the perimeter 630 * lock. 631 */ 632 #define SQ_CALLB_BYPASSED 0x01 /* bypassed callback fn */ 633 634 /* 635 * Cancel callback mask. 636 * The mask expands as the number of cancelable callback types grows 637 * Note - separate callback flag because different callbacks have 638 * overlapping id space. 639 */ 640 #define SQ_CALLB_CANCEL_MASK (SQ_CANCEL_TOUT|SQ_CANCEL_BUFCALL) 641 642 #define SQ_CANCEL_TOUT 0x02 /* cancel timeout request */ 643 #define SQ_CANCEL_BUFCALL 0x04 /* cancel bufcall request */ 644 645 typedef struct callbparams { 646 syncq_t *cbp_sq; 647 void (*cbp_func)(void *); 648 void *cbp_arg; 649 callbparams_id_t cbp_id; 650 uint_t cbp_flags; 651 struct callbparams *cbp_next; 652 size_t cbp_size; 653 } callbparams_t; 654 655 typedef struct strbufcall { 656 void (*bc_func)(void *); 657 void *bc_arg; 658 size_t bc_size; 659 bufcall_id_t bc_id; 660 struct strbufcall *bc_next; 661 kthread_id_t bc_executor; 662 } strbufcall_t; 663 664 /* 665 * Structure of list of processes to be sent SIGPOLL/SIGURG signal 666 * on request. The valid S_* events are defined in stropts.h. 667 */ 668 typedef struct strsig { 669 struct pid *ss_pidp; /* pid/pgrp pointer */ 670 pid_t ss_pid; /* positive pid, negative pgrp */ 671 int ss_events; /* S_* events */ 672 struct strsig *ss_next; 673 } strsig_t; 674 675 /* 676 * bufcall list 677 */ 678 struct bclist { 679 strbufcall_t *bc_head; 680 strbufcall_t *bc_tail; 681 }; 682 683 /* 684 * Structure used to track mux links and unlinks. 685 */ 686 struct mux_node { 687 major_t mn_imaj; /* internal major device number */ 688 uint16_t mn_indegree; /* number of incoming edges */ 689 struct mux_node *mn_originp; /* where we came from during search */ 690 struct mux_edge *mn_startp; /* where search left off in mn_outp */ 691 struct mux_edge *mn_outp; /* list of outgoing edges */ 692 uint_t mn_flags; /* see below */ 693 }; 694 695 /* 696 * Flags for mux_nodes. 697 */ 698 #define VISITED 1 699 700 /* 701 * Edge structure - a list of these is hung off the 702 * mux_node to represent the outgoing edges. 703 */ 704 struct mux_edge { 705 struct mux_node *me_nodep; /* edge leads to this node */ 706 struct mux_edge *me_nextp; /* next edge */ 707 int me_muxid; /* id of link */ 708 dev_t me_dev; /* dev_t - used for kernel PUNLINK */ 709 }; 710 711 /* 712 * Queue info 713 * 714 * The syncq is included here to reduce memory fragmentation 715 * for kernel memory allocators that only allocate in sizes that are 716 * powers of two. If the kernel memory allocator changes this should 717 * be revisited. 718 */ 719 typedef struct queinfo { 720 struct queue qu_rqueue; /* read queue - must be first */ 721 struct queue qu_wqueue; /* write queue - must be second */ 722 struct syncq qu_syncq; /* syncq - must be third */ 723 } queinfo_t; 724 725 /* 726 * Multiplexed streams info 727 */ 728 typedef struct linkinfo { 729 struct linkblk li_lblk; /* must be first */ 730 struct file *li_fpdown; /* file pointer for lower stream */ 731 struct linkinfo *li_next; /* next in list */ 732 struct linkinfo *li_prev; /* previous in list */ 733 } linkinfo_t; 734 735 /* 736 * List of syncq's used by freeezestr/unfreezestr 737 */ 738 typedef struct syncql { 739 struct syncql *sql_next; 740 syncq_t *sql_sq; 741 } syncql_t; 742 743 typedef struct sqlist { 744 syncql_t *sqlist_head; 745 size_t sqlist_size; /* structure size in bytes */ 746 size_t sqlist_index; /* next free entry in array */ 747 syncql_t sqlist_array[4]; /* 4 or more entries */ 748 } sqlist_t; 749 750 typedef struct perdm { 751 struct perdm *dm_next; 752 syncq_t *dm_sq; 753 struct streamtab *dm_str; 754 uint_t dm_ref; 755 } perdm_t; 756 757 #define NEED_DM(dmp, qflag) \ 758 (dmp == NULL && (qflag & (QPERMOD | QMTOUTPERIM))) 759 760 /* 761 * fmodsw_impl_t is used within the kernel. fmodsw is used by 762 * the modules/drivers. The information is copied from fmodsw 763 * defined in the module/driver into the fmodsw_impl_t structure 764 * during the module/driver initialization. 765 */ 766 typedef struct fmodsw_impl fmodsw_impl_t; 767 768 struct fmodsw_impl { 769 fmodsw_impl_t *f_next; 770 char f_name[FMNAMESZ + 1]; 771 struct streamtab *f_str; 772 uint32_t f_qflag; 773 uint32_t f_sqtype; 774 perdm_t *f_dmp; 775 uint32_t f_ref; 776 uint32_t f_hits; 777 }; 778 779 typedef enum { 780 FMODSW_HOLD = 0x00000001, 781 FMODSW_LOAD = 0x00000002 782 } fmodsw_flags_t; 783 784 typedef struct cdevsw_impl { 785 struct streamtab *d_str; 786 uint32_t d_qflag; 787 uint32_t d_sqtype; 788 perdm_t *d_dmp; 789 } cdevsw_impl_t; 790 791 /* 792 * Enumeration of the types of access that can be requested for a 793 * controlling terminal under job control. 794 */ 795 enum jcaccess { 796 JCREAD, /* read data on a ctty */ 797 JCWRITE, /* write data to a ctty */ 798 JCSETP, /* set ctty parameters */ 799 JCGETP /* get ctty parameters */ 800 }; 801 802 struct str_stack { 803 netstack_t *ss_netstack; /* Common netstack */ 804 805 kmutex_t ss_sad_lock; /* autopush lock */ 806 mod_hash_t *ss_sad_hash; 807 size_t ss_sad_hash_nchains; 808 struct saddev *ss_saddev; /* sad device array */ 809 int ss_sadcnt; /* number of sad devices */ 810 811 int ss_devcnt; /* number of mux_nodes */ 812 struct mux_node *ss_mux_nodes; /* mux info for cycle checking */ 813 }; 814 typedef struct str_stack str_stack_t; 815 816 /* 817 * Finding related queues 818 */ 819 #define STREAM(q) ((q)->q_stream) 820 #define SQ(rq) ((syncq_t *)((rq) + 2)) 821 822 /* 823 * Get the module/driver name for a queue. Since some queues don't have 824 * q_info structures (e.g., see log_makeq()), fall back to "?". 825 */ 826 #define Q2NAME(q) \ 827 (((q)->q_qinfo != NULL && (q)->q_qinfo->qi_minfo->mi_idname != NULL) ? \ 828 (q)->q_qinfo->qi_minfo->mi_idname : "?") 829 830 /* 831 * Locking macros 832 */ 833 #define QLOCK(q) (&(q)->q_lock) 834 #define SQLOCK(sq) (&(sq)->sq_lock) 835 836 #define STREAM_PUTLOCKS_ENTER(stp) { \ 837 ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \ 838 if ((stp)->sd_ciputctrl != NULL) { \ 839 int i; \ 840 int nlocks = (stp)->sd_nciputctrl; \ 841 ciputctrl_t *cip = (stp)->sd_ciputctrl; \ 842 for (i = 0; i <= nlocks; i++) { \ 843 mutex_enter(&cip[i].ciputctrl_lock); \ 844 } \ 845 } \ 846 } 847 848 #define STREAM_PUTLOCKS_EXIT(stp) { \ 849 ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \ 850 if ((stp)->sd_ciputctrl != NULL) { \ 851 int i; \ 852 int nlocks = (stp)->sd_nciputctrl; \ 853 ciputctrl_t *cip = (stp)->sd_ciputctrl; \ 854 for (i = 0; i <= nlocks; i++) { \ 855 mutex_exit(&cip[i].ciputctrl_lock); \ 856 } \ 857 } \ 858 } 859 860 #define SQ_PUTLOCKS_ENTER(sq) { \ 861 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 862 if ((sq)->sq_ciputctrl != NULL) { \ 863 int i; \ 864 int nlocks = (sq)->sq_nciputctrl; \ 865 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 866 ASSERT((sq)->sq_type & SQ_CIPUT); \ 867 for (i = 0; i <= nlocks; i++) { \ 868 mutex_enter(&cip[i].ciputctrl_lock); \ 869 } \ 870 } \ 871 } 872 873 #define SQ_PUTLOCKS_EXIT(sq) { \ 874 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 875 if ((sq)->sq_ciputctrl != NULL) { \ 876 int i; \ 877 int nlocks = (sq)->sq_nciputctrl; \ 878 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 879 ASSERT((sq)->sq_type & SQ_CIPUT); \ 880 for (i = 0; i <= nlocks; i++) { \ 881 mutex_exit(&cip[i].ciputctrl_lock); \ 882 } \ 883 } \ 884 } 885 886 #define SQ_PUTCOUNT_SETFAST(sq) { \ 887 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 888 if ((sq)->sq_ciputctrl != NULL) { \ 889 int i; \ 890 int nlocks = (sq)->sq_nciputctrl; \ 891 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 892 ASSERT((sq)->sq_type & SQ_CIPUT); \ 893 for (i = 0; i <= nlocks; i++) { \ 894 mutex_enter(&cip[i].ciputctrl_lock); \ 895 cip[i].ciputctrl_count |= SQ_FASTPUT; \ 896 mutex_exit(&cip[i].ciputctrl_lock); \ 897 } \ 898 } \ 899 } 900 901 #define SQ_PUTCOUNT_CLRFAST(sq) { \ 902 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 903 if ((sq)->sq_ciputctrl != NULL) { \ 904 int i; \ 905 int nlocks = (sq)->sq_nciputctrl; \ 906 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 907 ASSERT((sq)->sq_type & SQ_CIPUT); \ 908 for (i = 0; i <= nlocks; i++) { \ 909 mutex_enter(&cip[i].ciputctrl_lock); \ 910 cip[i].ciputctrl_count &= ~SQ_FASTPUT; \ 911 mutex_exit(&cip[i].ciputctrl_lock); \ 912 } \ 913 } \ 914 } 915 916 917 #ifdef DEBUG 918 919 #define SQ_PUTLOCKS_HELD(sq) { \ 920 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 921 if ((sq)->sq_ciputctrl != NULL) { \ 922 int i; \ 923 int nlocks = (sq)->sq_nciputctrl; \ 924 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 925 ASSERT((sq)->sq_type & SQ_CIPUT); \ 926 for (i = 0; i <= nlocks; i++) { \ 927 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \ 928 } \ 929 } \ 930 } 931 932 #define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck) { \ 933 if ((sq)->sq_ciputctrl != NULL) { \ 934 int i; \ 935 uint_t count = 0; \ 936 int ncounts = (sq)->sq_nciputctrl; \ 937 ASSERT((sq)->sq_type & SQ_CIPUT); \ 938 for (i = 0; i <= ncounts; i++) { \ 939 count += \ 940 (((sq)->sq_ciputctrl[i].ciputctrl_count) & \ 941 SQ_FASTMASK); \ 942 } \ 943 ASSERT(count == (countcheck)); \ 944 } \ 945 } 946 947 #define SUMCHECK_CIPUTCTRL_COUNTS(ciput, nciput, countcheck) { \ 948 int i; \ 949 uint_t count = 0; \ 950 ASSERT((ciput) != NULL); \ 951 for (i = 0; i <= (nciput); i++) { \ 952 count += (((ciput)[i].ciputctrl_count) & \ 953 SQ_FASTMASK); \ 954 } \ 955 ASSERT(count == (countcheck)); \ 956 } 957 958 #else /* DEBUG */ 959 960 #define SQ_PUTLOCKS_HELD(sq) 961 #define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck) 962 #define SUMCHECK_CIPUTCTRL_COUNTS(sq, nciput, countcheck) 963 964 #endif /* DEBUG */ 965 966 #define SUM_SQ_PUTCOUNTS(sq, count) { \ 967 if ((sq)->sq_ciputctrl != NULL) { \ 968 int i; \ 969 int ncounts = (sq)->sq_nciputctrl; \ 970 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 971 ASSERT((sq)->sq_type & SQ_CIPUT); \ 972 for (i = 0; i <= ncounts; i++) { \ 973 (count) += ((cip[i].ciputctrl_count) & \ 974 SQ_FASTMASK); \ 975 } \ 976 } \ 977 } 978 979 #define CLAIM_QNEXT_LOCK(stp) mutex_enter(&(stp)->sd_lock) 980 #define RELEASE_QNEXT_LOCK(stp) mutex_exit(&(stp)->sd_lock) 981 982 /* 983 * syncq message manipulation macros. 984 */ 985 /* 986 * Put a message on the queue syncq. 987 * Assumes QLOCK held. 988 */ 989 #define SQPUT_MP(qp, mp) \ 990 { \ 991 qp->q_syncqmsgs++; \ 992 if (qp->q_sqhead == NULL) { \ 993 qp->q_sqhead = qp->q_sqtail = mp; \ 994 } else { \ 995 qp->q_sqtail->b_next = mp; \ 996 qp->q_sqtail = mp; \ 997 } \ 998 set_qfull(qp); \ 999 } 1000 1001 /* 1002 * Miscellaneous parameters and flags. 1003 */ 1004 1005 /* 1006 * Default timeout in milliseconds for ioctls and close 1007 */ 1008 #define STRTIMOUT 15000 1009 1010 /* 1011 * Flag values for stream io 1012 */ 1013 #define WRITEWAIT 0x1 /* waiting for write event */ 1014 #define READWAIT 0x2 /* waiting for read event */ 1015 #define NOINTR 0x4 /* error is not to be set for signal */ 1016 #define GETWAIT 0x8 /* waiting for getmsg event */ 1017 1018 /* 1019 * These flags need to be unique for stream io name space 1020 * and copy modes name space. These flags allow strwaitq 1021 * and strdoioctl to proceed as if signals or errors on the stream 1022 * head have not occurred; i.e. they will be detected by some other 1023 * means. 1024 * STR_NOSIG does not allow signals to interrupt the call 1025 * STR_NOERROR does not allow stream head read, write or hup errors to 1026 * affect the call. When used with strdoioctl(), if a previous ioctl 1027 * is pending and times out, STR_NOERROR will cause strdoioctl() to not 1028 * return ETIME. If, however, the requested ioctl times out, ETIME 1029 * will be returned (use ic_timout instead) 1030 * STR_PEEK is used to inform strwaitq that the reader is peeking at data 1031 * and that a non-persistent error should not be cleared. 1032 * STR_DELAYERR is used to inform strwaitq that it should not check errors 1033 * after being awoken since, in addition to an error, there might also be 1034 * data queued on the stream head read queue. 1035 */ 1036 #define STR_NOSIG 0x10 /* Ignore signals during strdoioctl/strwaitq */ 1037 #define STR_NOERROR 0x20 /* Ignore errors during strdoioctl/strwaitq */ 1038 #define STR_PEEK 0x40 /* Peeking behavior on non-persistent errors */ 1039 #define STR_DELAYERR 0x80 /* Do not check errors on return */ 1040 1041 /* 1042 * Copy modes for tty and I_STR ioctls 1043 */ 1044 #define U_TO_K 01 /* User to Kernel */ 1045 #define K_TO_K 02 /* Kernel to Kernel */ 1046 1047 /* 1048 * Mux defines. 1049 */ 1050 #define LINKNORMAL 0x01 /* normal mux link */ 1051 #define LINKPERSIST 0x02 /* persistent mux link */ 1052 #define LINKTYPEMASK 0x03 /* bitmask of all link types */ 1053 #define LINKCLOSE 0x04 /* unlink from strclose */ 1054 1055 /* 1056 * Definitions of Streams macros and function interfaces. 1057 */ 1058 1059 /* 1060 * Obsolete queue scheduling macros. They are not used anymore, but still kept 1061 * here for 3-d party modules and drivers who might still use them. 1062 */ 1063 #define setqsched() 1064 #define qready() 1 1065 1066 #ifdef _KERNEL 1067 #define runqueues() 1068 #define queuerun() 1069 #endif 1070 1071 /* compatibility module for style 2 drivers with DR race condition */ 1072 #define DRMODNAME "drcompat" 1073 1074 /* 1075 * Macros dealing with mux_nodes. 1076 */ 1077 #define MUX_VISIT(X) ((X)->mn_flags |= VISITED) 1078 #define MUX_CLEAR(X) ((X)->mn_flags &= (~VISITED)); \ 1079 ((X)->mn_originp = NULL) 1080 #define MUX_DIDVISIT(X) ((X)->mn_flags & VISITED) 1081 1082 1083 /* 1084 * Twisted stream macros 1085 */ 1086 #define STRMATED(X) ((X)->sd_flag & STRMATE) 1087 #define STRLOCKMATES(X) if (&((X)->sd_lock) > &(((X)->sd_mate)->sd_lock)) { \ 1088 mutex_enter(&((X)->sd_lock)); \ 1089 mutex_enter(&(((X)->sd_mate)->sd_lock)); \ 1090 } else { \ 1091 mutex_enter(&(((X)->sd_mate)->sd_lock)); \ 1092 mutex_enter(&((X)->sd_lock)); \ 1093 } 1094 #define STRUNLOCKMATES(X) mutex_exit(&((X)->sd_lock)); \ 1095 mutex_exit(&(((X)->sd_mate)->sd_lock)) 1096 1097 #if defined(_KERNEL) || defined(_FAKE_KERNEL) 1098 1099 extern void strinit(void); 1100 extern int strdoioctl(struct stdata *, struct strioctl *, int, int, 1101 cred_t *, int *); 1102 extern void strsendsig(struct strsig *, int, uchar_t, int); 1103 extern void str_sendsig(vnode_t *, int, uchar_t, int); 1104 extern void strhup(struct stdata *); 1105 extern int qattach(queue_t *, dev_t *, int, cred_t *, fmodsw_impl_t *, 1106 boolean_t); 1107 extern int qreopen(queue_t *, dev_t *, int, cred_t *); 1108 extern void qdetach(queue_t *, int, int, cred_t *, boolean_t); 1109 extern void enterq(queue_t *); 1110 extern void leaveq(queue_t *); 1111 extern int putiocd(mblk_t *, caddr_t, int, cred_t *); 1112 extern int getiocd(mblk_t *, caddr_t, int); 1113 extern struct linkinfo *alloclink(queue_t *, queue_t *, struct file *); 1114 extern void lbfree(struct linkinfo *); 1115 extern int linkcycle(stdata_t *, stdata_t *, str_stack_t *); 1116 extern struct linkinfo *findlinks(stdata_t *, int, int, str_stack_t *); 1117 extern queue_t *getendq(queue_t *); 1118 extern int mlink(vnode_t *, int, int, cred_t *, int *, int); 1119 extern int mlink_file(vnode_t *, int, struct file *, cred_t *, int *, int); 1120 extern int munlink(struct stdata *, struct linkinfo *, int, cred_t *, int *, 1121 str_stack_t *); 1122 extern int munlinkall(struct stdata *, int, cred_t *, int *, str_stack_t *); 1123 extern void mux_addedge(stdata_t *, stdata_t *, int, str_stack_t *); 1124 extern void mux_rmvedge(stdata_t *, int, str_stack_t *); 1125 extern int devflg_to_qflag(struct streamtab *, uint32_t, uint32_t *, 1126 uint32_t *); 1127 extern void setq(queue_t *, struct qinit *, struct qinit *, perdm_t *, 1128 uint32_t, uint32_t, boolean_t); 1129 extern perdm_t *hold_dm(struct streamtab *, uint32_t, uint32_t); 1130 extern void rele_dm(perdm_t *); 1131 extern int strmakectl(struct strbuf *, int32_t, int32_t, mblk_t **); 1132 extern int strmakedata(ssize_t *, struct uio *, stdata_t *, int32_t, mblk_t **); 1133 extern int strmakemsg(struct strbuf *, ssize_t *, struct uio *, 1134 struct stdata *, int32_t, mblk_t **); 1135 extern int strgetmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t *, 1136 int *, int, rval_t *); 1137 extern int strputmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t, 1138 int flag, int fmode); 1139 extern int strstartplumb(struct stdata *, int, int); 1140 extern void strendplumb(struct stdata *); 1141 extern int stropen(struct vnode *, dev_t *, int, cred_t *); 1142 extern int strclose(struct vnode *, int, cred_t *); 1143 extern int strpoll(register struct stdata *, short, int, short *, 1144 struct pollhead **); 1145 extern void strclean(struct vnode *); 1146 extern void str_cn_clean(); /* XXX hook for consoles signal cleanup */ 1147 extern int strwrite(struct vnode *, struct uio *, cred_t *); 1148 extern int strwrite_common(struct vnode *, struct uio *, cred_t *, int); 1149 extern int strread(struct vnode *, struct uio *, cred_t *); 1150 extern int strioctl(struct vnode *, int, intptr_t, int, int, cred_t *, int *); 1151 extern int strrput(queue_t *, mblk_t *); 1152 extern int strrput_nondata(queue_t *, mblk_t *); 1153 extern mblk_t *strrput_proto(vnode_t *, mblk_t *, 1154 strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); 1155 extern mblk_t *strrput_misc(vnode_t *, mblk_t *, 1156 strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); 1157 extern int getiocseqno(void); 1158 extern int strwaitbuf(size_t, int); 1159 extern int strwaitq(stdata_t *, int, ssize_t, int, clock_t, int *); 1160 extern struct stdata *shalloc(queue_t *); 1161 extern void shfree(struct stdata *s); 1162 extern queue_t *allocq(void); 1163 extern void freeq(queue_t *); 1164 extern qband_t *allocband(void); 1165 extern void freeband(qband_t *); 1166 extern void freebs_enqueue(mblk_t *, dblk_t *); 1167 extern void setqback(queue_t *, unsigned char); 1168 extern int strcopyin(void *, void *, size_t, int); 1169 extern int strcopyout(void *, void *, size_t, int); 1170 extern void strsignal(struct stdata *, int, int32_t); 1171 extern clock_t str_cv_wait(kcondvar_t *, kmutex_t *, clock_t, int); 1172 extern void disable_svc(queue_t *); 1173 extern void enable_svc(queue_t *); 1174 extern void remove_runlist(queue_t *); 1175 extern void wait_svc(queue_t *); 1176 extern void backenable(queue_t *, uchar_t); 1177 extern void set_qend(queue_t *); 1178 extern int strgeterr(stdata_t *, int32_t, int); 1179 extern void qenable_locked(queue_t *); 1180 extern mblk_t *getq_noenab(queue_t *, ssize_t); 1181 extern void rmvq_noenab(queue_t *, mblk_t *); 1182 extern void qbackenable(queue_t *, uchar_t); 1183 extern void set_qfull(queue_t *); 1184 1185 extern void strblock(queue_t *); 1186 extern void strunblock(queue_t *); 1187 extern int qclaimed(queue_t *); 1188 extern int straccess(struct stdata *, enum jcaccess); 1189 1190 extern void entersq(syncq_t *, int); 1191 extern void leavesq(syncq_t *, int); 1192 extern void claimq(queue_t *); 1193 extern void releaseq(queue_t *); 1194 extern void claimstr(queue_t *); 1195 extern void releasestr(queue_t *); 1196 extern void removeq(queue_t *); 1197 extern void insertq(struct stdata *, queue_t *); 1198 extern void drain_syncq(syncq_t *); 1199 extern void qfill_syncq(syncq_t *, queue_t *, mblk_t *); 1200 extern void qdrain_syncq(syncq_t *, queue_t *); 1201 extern int flush_syncq(syncq_t *, queue_t *); 1202 extern void wait_sq_svc(syncq_t *); 1203 1204 extern void outer_enter(syncq_t *, uint16_t); 1205 extern void outer_exit(syncq_t *); 1206 extern void qwriter_inner(queue_t *, mblk_t *, void (*)()); 1207 extern void qwriter_outer(queue_t *, mblk_t *, void (*)()); 1208 1209 extern callbparams_t *callbparams_alloc(syncq_t *, void (*)(void *), 1210 void *, int); 1211 extern void callbparams_free(syncq_t *, callbparams_t *); 1212 extern void callbparams_free_id(syncq_t *, callbparams_id_t, int32_t); 1213 extern void qcallbwrapper(void *); 1214 1215 extern mblk_t *esballoc_wait(unsigned char *, size_t, uint_t, frtn_t *); 1216 extern mblk_t *esballoca(unsigned char *, size_t, uint_t, frtn_t *); 1217 extern mblk_t *desballoca(unsigned char *, size_t, uint_t, frtn_t *); 1218 extern int do_sendfp(struct stdata *, struct file *, struct cred *); 1219 extern int frozenstr(queue_t *); 1220 extern size_t xmsgsize(mblk_t *); 1221 1222 extern void putnext_tail(syncq_t *, queue_t *, uint32_t); 1223 extern void stream_willservice(stdata_t *); 1224 extern void stream_runservice(stdata_t *); 1225 1226 extern void strmate(vnode_t *, vnode_t *); 1227 extern queue_t *strvp2wq(vnode_t *); 1228 extern vnode_t *strq2vp(queue_t *); 1229 extern mblk_t *allocb_wait(size_t, uint_t, uint_t, int *); 1230 extern mblk_t *allocb_cred(size_t, cred_t *, pid_t); 1231 extern mblk_t *allocb_cred_wait(size_t, uint_t, int *, cred_t *, pid_t); 1232 extern mblk_t *allocb_tmpl(size_t, const mblk_t *); 1233 extern mblk_t *allocb_tryhard(size_t); 1234 extern void mblk_copycred(mblk_t *, const mblk_t *); 1235 extern void mblk_setcred(mblk_t *, cred_t *, pid_t); 1236 extern cred_t *msg_getcred(const mblk_t *, pid_t *); 1237 extern struct ts_label_s *msg_getlabel(const mblk_t *); 1238 extern cred_t *msg_extractcred(mblk_t *, pid_t *); 1239 extern void strpollwakeup(vnode_t *, short); 1240 extern int putnextctl_wait(queue_t *, int); 1241 1242 extern int kstrputmsg(struct vnode *, mblk_t *, struct uio *, ssize_t, 1243 unsigned char, int, int); 1244 extern int kstrgetmsg(struct vnode *, mblk_t **, struct uio *, 1245 unsigned char *, int *, clock_t, rval_t *); 1246 1247 extern void strsetrerror(vnode_t *, int, int, errfunc_t); 1248 extern void strsetwerror(vnode_t *, int, int, errfunc_t); 1249 extern void strseteof(vnode_t *, int); 1250 extern void strflushrq(vnode_t *, int); 1251 extern void strsetrputhooks(vnode_t *, uint_t, msgfunc_t, msgfunc_t); 1252 extern void strsetwputhooks(vnode_t *, uint_t, clock_t); 1253 extern void strsetrwputdatahooks(vnode_t *, msgfunc_t, msgfunc_t); 1254 extern int strwaitmark(vnode_t *); 1255 extern void strsignal_nolock(stdata_t *, int, uchar_t); 1256 1257 struct pdesc_s; 1258 1259 extern void lso_info_set(mblk_t *, uint32_t, uint32_t); 1260 extern void lso_info_cleanup(mblk_t *); 1261 extern unsigned int bcksum(uchar_t *, int, unsigned int); 1262 1263 extern int fmodsw_register(const char *, struct streamtab *, int); 1264 extern int fmodsw_unregister(const char *); 1265 extern fmodsw_impl_t *fmodsw_find(const char *, fmodsw_flags_t); 1266 extern void fmodsw_rele(fmodsw_impl_t *); 1267 1268 extern void freemsgchain(mblk_t *); 1269 extern mblk_t *copymsgchain(mblk_t *); 1270 1271 extern mblk_t *mcopyinuio(struct stdata *, uio_t *, ssize_t, ssize_t, int *); 1272 1273 /* 1274 * shared or externally configured data structures 1275 */ 1276 extern ssize_t strmsgsz; /* maximum stream message size */ 1277 extern ssize_t strctlsz; /* maximum size of ctl message */ 1278 extern int nstrpush; /* maximum number of pushes allowed */ 1279 1280 /* 1281 * Bufcalls related variables. 1282 */ 1283 extern struct bclist strbcalls; /* List of bufcalls */ 1284 extern kmutex_t strbcall_lock; /* Protects the list of bufcalls */ 1285 extern kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */ 1286 extern kcondvar_t bcall_cv; /* wait of executing bufcall completes */ 1287 1288 extern frtn_t frnop; 1289 1290 extern struct kmem_cache *ciputctrl_cache; 1291 extern int n_ciputctrl; 1292 extern int max_n_ciputctrl; 1293 extern int min_n_ciputctrl; 1294 1295 extern cdevsw_impl_t *devimpl; 1296 1297 /* 1298 * esballoc queue for throttling 1299 */ 1300 typedef struct esb_queue { 1301 kmutex_t eq_lock; 1302 uint_t eq_len; /* number of queued messages */ 1303 mblk_t *eq_head; /* head of queue */ 1304 mblk_t *eq_tail; /* tail of queue */ 1305 uint_t eq_flags; /* esballoc queue flags */ 1306 } esb_queue_t; 1307 1308 /* 1309 * esballoc flags for queue processing. 1310 */ 1311 #define ESBQ_PROCESSING 0x01 /* queue is being processed */ 1312 #define ESBQ_TIMER 0x02 /* timer is active */ 1313 1314 extern void esballoc_queue_init(void); 1315 1316 #endif /* _KERNEL */ 1317 1318 /* 1319 * Note: Use of these macros are restricted to kernel/unix and 1320 * intended for the STREAMS framework. 1321 * All modules/drivers should include sys/ddi.h. 1322 * 1323 * Finding related queues 1324 */ 1325 #define _OTHERQ(q) ((q)->q_flag&QREADR? (q)+1: (q)-1) 1326 #define _WR(q) ((q)->q_flag&QREADR? (q)+1: (q)) 1327 #define _RD(q) ((q)->q_flag&QREADR? (q): (q)-1) 1328 #define _SAMESTR(q) (!((q)->q_flag & QEND)) 1329 1330 /* 1331 * These are also declared here for modules/drivers that erroneously 1332 * include strsubr.h after ddi.h or fail to include ddi.h at all. 1333 */ 1334 extern struct queue *OTHERQ(queue_t *); /* stream.h */ 1335 extern struct queue *RD(queue_t *); 1336 extern struct queue *WR(queue_t *); 1337 extern int SAMESTR(queue_t *); 1338 1339 /* 1340 * The following hardware checksum related macros are private 1341 * interfaces that are subject to change without notice. 1342 */ 1343 #ifdef _KERNEL 1344 #define DB_CKSUMSTART(mp) ((mp)->b_datap->db_cksumstart) 1345 #define DB_CKSUMEND(mp) ((mp)->b_datap->db_cksumend) 1346 #define DB_CKSUMSTUFF(mp) ((mp)->b_datap->db_cksumstuff) 1347 #define DB_CKSUMFLAGS(mp) ((mp)->b_datap->db_struioun.cksum.flags) 1348 #define DB_CKSUM16(mp) ((mp)->b_datap->db_cksum16) 1349 #define DB_CKSUM32(mp) ((mp)->b_datap->db_cksum32) 1350 #define DB_LSOFLAGS(mp) ((mp)->b_datap->db_struioun.cksum.flags) 1351 #define DB_LSOMSS(mp) ((mp)->b_datap->db_struioun.cksum.pad) 1352 #endif /* _KERNEL */ 1353 1354 #ifdef __cplusplus 1355 } 1356 #endif 1357 1358 1359 #endif /* _SYS_STRSUBR_H */ 1360