1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 * Copyright 2018 Joyent, Inc. 29 */ 30 31 /* 32 * Copyright 2020 OmniOS Community Edition (OmniOSce) Association. 33 */ 34 35 #ifndef _SYS_STRSUBR_H 36 #define _SYS_STRSUBR_H 37 38 /* 39 * WARNING: 40 * Everything in this file is private, belonging to the 41 * STREAMS subsystem. The only guarantee made about the 42 * contents of this file is that if you include it, your 43 * code will not port to the next release. 44 */ 45 #include <sys/stream.h> 46 #include <sys/stropts.h> 47 #include <sys/vnode.h> 48 #include <sys/kstat.h> 49 #include <sys/uio.h> 50 #include <sys/proc.h> 51 #include <sys/netstack.h> 52 #include <sys/modhash.h> 53 54 #ifdef __cplusplus 55 extern "C" { 56 #endif 57 58 /* 59 * In general, the STREAMS locks are disjoint; they are only held 60 * locally, and not simultaneously by a thread. However, module 61 * code, including at the stream head, requires some locks to be 62 * acquired in order for its safety. 63 * 1. Stream level claim. This prevents the value of q_next 64 * from changing while module code is executing. 65 * 2. Queue level claim. This prevents the value of q_ptr 66 * from changing while put or service code is executing. 67 * In addition, it provides for queue single-threading 68 * for QPAIR and PERQ MT-safe modules. 69 * 3. Stream head lock. May be held by the stream head module 70 * to implement a read/write/open/close monitor. 71 * Note: that the only types of twisted stream supported are 72 * the pipe and transports which have read and write service 73 * procedures on both sides of the twist. 74 * 4. Queue lock. May be acquired by utility routines on 75 * behalf of a module. 76 */ 77 78 /* 79 * In general, sd_lock protects the consistency of the stdata 80 * structure. Additionally, it is used with sd_monitor 81 * to implement an open/close monitor. In particular, it protects 82 * the following fields: 83 * sd_iocblk 84 * sd_flag 85 * sd_copyflag 86 * sd_iocid 87 * sd_iocwait 88 * sd_sidp 89 * sd_pgidp 90 * sd_wroff 91 * sd_tail 92 * sd_rerror 93 * sd_werror 94 * sd_pushcnt 95 * sd_sigflags 96 * sd_siglist 97 * sd_pollist 98 * sd_mark 99 * sd_closetime 100 * sd_wakeq 101 * sd_maxblk 102 * 103 * The following fields are modified only by the allocator, which 104 * has exclusive access to them at that time: 105 * sd_wrq 106 * sd_strtab 107 * 108 * The following field is protected by the overlying file system 109 * code, guaranteeing single-threading of opens: 110 * sd_vnode 111 * 112 * Stream-level locks should be acquired before any queue-level locks 113 * are acquired. 114 * 115 * The stream head write queue lock(sd_wrq) is used to protect the 116 * fields qn_maxpsz and qn_minpsz because freezestr() which is 117 * necessary for strqset() only gets the queue lock. 118 */ 119 120 /* 121 * Function types for the parameterized stream head. 122 * The msgfunc_t takes the parameters: 123 * msgfunc(vnode_t *vp, mblk_t *mp, strwakeup_t *wakeups, 124 * strsigset_t *firstmsgsigs, strsigset_t *allmsgsigs, 125 * strpollset_t *pollwakeups); 126 * It returns an optional message to be processed by the stream head. 127 * 128 * The parameters for errfunc_t are: 129 * errfunc(vnode *vp, int ispeek, int *clearerr); 130 * It returns an errno and zero if there was no pending error. 131 */ 132 typedef uint_t strwakeup_t; 133 typedef uint_t strsigset_t; 134 typedef short strpollset_t; 135 typedef uintptr_t callbparams_id_t; 136 typedef mblk_t *(*msgfunc_t)(vnode_t *, mblk_t *, strwakeup_t *, 137 strsigset_t *, strsigset_t *, strpollset_t *); 138 typedef int (*errfunc_t)(vnode_t *, int, int *); 139 140 /* 141 * Per stream sd_lock in putnext may be replaced by per cpu stream_putlocks 142 * each living in a separate cache line. putnext/canputnext grabs only one of 143 * stream_putlocks while strlock() (called on behalf of insertq()/removeq()) 144 * acquires all stream_putlocks. Normally stream_putlocks are only employed 145 * for highly contended streams that have SQ_CIPUT queues in the critical path 146 * (e.g. NFS/UDP stream). 147 * 148 * stream_putlocks are dynamically assigned to stdata structure through 149 * sd_ciputctrl pointer possibly when a stream is already in use. Since 150 * strlock() uses stream_putlocks only under sd_lock acquiring sd_lock when 151 * assigning stream_putlocks to the stream ensures synchronization with 152 * strlock(). 153 * 154 * For lock ordering purposes stream_putlocks are treated as the extension of 155 * sd_lock and are always grabbed right after grabbing sd_lock and released 156 * right before releasing sd_lock except putnext/canputnext where only one of 157 * stream_putlocks locks is used and where it is the first lock to grab. 158 */ 159 160 typedef struct ciputctrl_str { 161 union _ciput_un { 162 uchar_t pad[64]; 163 struct _ciput_str { 164 kmutex_t ciput_lck; 165 ushort_t ciput_cnt; 166 } ciput_str; 167 } ciput_un; 168 } ciputctrl_t; 169 170 #define ciputctrl_lock ciput_un.ciput_str.ciput_lck 171 #define ciputctrl_count ciput_un.ciput_str.ciput_cnt 172 173 /* 174 * Header for a stream: interface to rest of system. 175 * 176 * NOTE: While this is a consolidation-private structure, some unbundled and 177 * third-party products inappropriately make use of some of the fields. 178 * As such, please take care to not gratuitously change any offsets of 179 * existing members. 180 */ 181 typedef struct stdata { 182 struct queue *sd_wrq; /* write queue */ 183 struct msgb *sd_iocblk; /* return block for ioctl */ 184 struct vnode *sd_vnode; /* pointer to associated vnode */ 185 struct streamtab *sd_strtab; /* pointer to streamtab for stream */ 186 uint_t sd_flag; /* state/flags */ 187 uint_t sd_iocid; /* ioctl id */ 188 struct pid *sd_sidp; /* controlling session info */ 189 struct pid *sd_pgidp; /* controlling process group info */ 190 ushort_t sd_tail; /* reserved space in written mblks */ 191 ushort_t sd_wroff; /* write offset */ 192 int sd_rerror; /* error to return on read ops */ 193 int sd_werror; /* error to return on write ops */ 194 int sd_pushcnt; /* number of pushes done on stream */ 195 int sd_sigflags; /* logical OR of all siglist events */ 196 struct strsig *sd_siglist; /* pid linked list to rcv SIGPOLL sig */ 197 struct pollhead sd_pollist; /* list of all pollers to wake up */ 198 struct msgb *sd_mark; /* "marked" message on read queue */ 199 clock_t sd_closetime; /* time to wait to drain q in close */ 200 kmutex_t sd_lock; /* protect head consistency */ 201 kcondvar_t sd_monitor; /* open/close/push/pop monitor */ 202 kcondvar_t sd_iocmonitor; /* ioctl single-threading */ 203 kcondvar_t sd_refmonitor; /* sd_refcnt monitor */ 204 ssize_t sd_qn_minpsz; /* These two fields are a performance */ 205 ssize_t sd_qn_maxpsz; /* enhancements, cache the values in */ 206 /* the stream head so we don't have */ 207 /* to ask the module below the stream */ 208 /* head to get this information. */ 209 struct stdata *sd_mate; /* pointer to twisted stream mate */ 210 kthread_id_t sd_freezer; /* thread that froze stream */ 211 kmutex_t sd_reflock; /* Protects sd_refcnt */ 212 int sd_refcnt; /* number of claimstr */ 213 uint_t sd_wakeq; /* strwakeq()'s copy of sd_flag */ 214 struct queue *sd_struiordq; /* sync barrier struio() read queue */ 215 struct queue *sd_struiowrq; /* sync barrier struio() write queue */ 216 char sd_struiodnak; /* defer NAK of M_IOCTL by rput() */ 217 struct msgb *sd_struionak; /* pointer M_IOCTL mblk(s) to NAK */ 218 caddr_t sd_t_audit_data; /* For audit purposes only */ 219 ssize_t sd_maxblk; /* maximum message block size */ 220 uint_t sd_rput_opt; /* options/flags for strrput */ 221 uint_t sd_wput_opt; /* options/flags for write/putmsg */ 222 uint_t sd_read_opt; /* options/flags for strread */ 223 msgfunc_t sd_rprotofunc; /* rput M_*PROTO routine */ 224 msgfunc_t sd_rputdatafunc; /* read M_DATA routine */ 225 msgfunc_t sd_rmiscfunc; /* rput routine (non-data/proto) */ 226 msgfunc_t sd_wputdatafunc; /* wput M_DATA routine */ 227 errfunc_t sd_rderrfunc; /* read side error callback */ 228 errfunc_t sd_wrerrfunc; /* write side error callback */ 229 /* 230 * support for low contention concurrent putnext. 231 */ 232 ciputctrl_t *sd_ciputctrl; 233 uint_t sd_nciputctrl; 234 235 int sd_anchor; /* position of anchor in stream */ 236 /* 237 * Service scheduling at the stream head. 238 */ 239 kmutex_t sd_qlock; 240 struct queue *sd_qhead; /* Head of queues to be serviced. */ 241 struct queue *sd_qtail; /* Tail of queues to be serviced. */ 242 void *sd_servid; /* Service ID for bckgrnd schedule */ 243 ushort_t sd_svcflags; /* Servicing flags */ 244 short sd_nqueues; /* Number of queues in the list */ 245 kcondvar_t sd_qcv; /* Waiters for qhead to become empty */ 246 kcondvar_t sd_zcopy_wait; 247 uint_t sd_copyflag; /* copy-related flags */ 248 zoneid_t sd_anchorzone; /* Allow removal from same zone only */ 249 struct msgb *sd_cmdblk; /* reply from _I_CMD */ 250 251 /* 252 * When a STREAMS device is cloned, the sd_vnode element of this 253 * structure is replaced by a pointer to a common vnode shared across 254 * all streams that are using the device. In this case, it is no longer 255 * possible to get from the stream head back to the original vnode via 256 * sd_vnode. Therefore, when such a device is cloned, the parent vnode - 257 * i.e. that which was created during the device clone in spec_clone() 258 * - is kept in sd_pvnode. 259 */ 260 struct vnode *sd_pvnode; 261 } stdata_t; 262 263 /* 264 * stdata servicing flags. 265 */ 266 #define STRS_WILLSERVICE 0x01 267 #define STRS_SCHEDULED 0x02 268 269 #define STREAM_NEEDSERVICE(stp) ((stp)->sd_qhead != NULL) 270 271 /* 272 * stdata flag field defines 273 */ 274 #define IOCWAIT 0x00000001 /* Someone is doing an ioctl */ 275 #define RSLEEP 0x00000002 /* Someone wants to read/recv msg */ 276 #define WSLEEP 0x00000004 /* Someone wants to write */ 277 #define STRPRI 0x00000008 /* An M_PCPROTO is at stream head */ 278 #define STRHUP 0x00000010 /* Device has vanished */ 279 #define STWOPEN 0x00000020 /* waiting for 1st open */ 280 #define STPLEX 0x00000040 /* stream is being multiplexed */ 281 #define STRISTTY 0x00000080 /* stream is a terminal */ 282 #define STRGETINPROG 0x00000100 /* (k)strgetmsg is running */ 283 #define IOCWAITNE 0x00000200 /* STR_NOERROR ioctl running */ 284 #define STRDERR 0x00000400 /* fatal read error from M_ERROR */ 285 #define STWRERR 0x00000800 /* fatal write error from M_ERROR */ 286 #define STRDERRNONPERSIST 0x00001000 /* nonpersistent read errors */ 287 #define STWRERRNONPERSIST 0x00002000 /* nonpersistent write errors */ 288 #define STRCLOSE 0x00004000 /* wait for a close to complete */ 289 #define SNDMREAD 0x00008000 /* used for read notification */ 290 #define OLDNDELAY 0x00010000 /* use old TTY semantics for */ 291 /* NDELAY reads and writes */ 292 #define STRXPG4TTY 0x00020000 /* Use XPG4 TTY semantics */ 293 /* 0x00040000 unused */ 294 #define STRTOSTOP 0x00080000 /* block background writes */ 295 #define STRCMDWAIT 0x00100000 /* someone is doing an _I_CMD */ 296 /* 0x00200000 unused */ 297 #define STRMOUNT 0x00400000 /* stream is mounted */ 298 #define STRNOTATMARK 0x00800000 /* Not at mark (when empty read q) */ 299 #define STRDELIM 0x01000000 /* generate delimited messages */ 300 #define STRATMARK 0x02000000 /* At mark (due to MSGMARKNEXT) */ 301 #define STZCNOTIFY 0x04000000 /* wait for zerocopy mblk to be acked */ 302 #define STRPLUMB 0x08000000 /* push/pop pending */ 303 #define STREOF 0x10000000 /* End-of-file indication */ 304 #define STREOPENFAIL 0x20000000 /* indicates if re-open has failed */ 305 #define STRMATE 0x40000000 /* this stream is a mate */ 306 #define STRHASLINKS 0x80000000 /* I_LINKs under this stream */ 307 308 /* 309 * Copy-related flags (sd_copyflag), set by SO_COPYOPT. 310 */ 311 #define STZCVMSAFE 0x00000001 /* safe to borrow file (segmapped) */ 312 /* pages instead of bcopy */ 313 #define STZCVMUNSAFE 0x00000002 /* unsafe to borrow file pages */ 314 #define STRCOPYCACHED 0x00000004 /* copy should NOT bypass cache */ 315 316 /* 317 * Options and flags for strrput (sd_rput_opt) 318 */ 319 #define SR_POLLIN 0x00000001 /* pollwakeup needed for band0 data */ 320 #define SR_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */ 321 #define SR_CONSOL_DATA 0x00000004 /* Consolidate M_DATA onto q_last */ 322 #define SR_IGN_ZEROLEN 0x00000008 /* Ignore zero-length M_DATA */ 323 324 /* 325 * Options and flags for strwrite/strputmsg (sd_wput_opt) 326 */ 327 #define SW_SIGPIPE 0x00000001 /* Send SIGPIPE for write error */ 328 #define SW_RECHECK_ERR 0x00000002 /* Recheck errors in strwrite loop */ 329 #define SW_SNDZERO 0x00000004 /* send 0-length msg down pipe/FIFO */ 330 331 /* 332 * Options and flags for strread (sd_read_opt) 333 */ 334 #define RD_MSGDIS 0x00000001 /* read msg discard */ 335 #define RD_MSGNODIS 0x00000002 /* read msg no discard */ 336 #define RD_PROTDAT 0x00000004 /* read M_[PC]PROTO contents as data */ 337 #define RD_PROTDIS 0x00000008 /* discard M_[PC]PROTO blocks and */ 338 /* retain data blocks */ 339 /* 340 * Flags parameter for strsetrputhooks() and strsetwputhooks(). 341 * These flags define the interface for setting the above internal 342 * flags in sd_rput_opt and sd_wput_opt. 343 */ 344 #define SH_CONSOL_DATA 0x00000001 /* Consolidate M_DATA onto q_last */ 345 #define SH_SIGALLDATA 0x00000002 /* Send SIGPOLL for all M_DATA */ 346 #define SH_IGN_ZEROLEN 0x00000004 /* Drop zero-length M_DATA */ 347 348 #define SH_SIGPIPE 0x00000100 /* Send SIGPIPE for write error */ 349 #define SH_RECHECK_ERR 0x00000200 /* Recheck errors in strwrite loop */ 350 351 /* 352 * Each queue points to a sync queue (the inner perimeter) which keeps 353 * track of the number of threads that are inside a given queue (sq_count) 354 * and also is used to implement the asynchronous putnext 355 * (by queuing messages if the queue can not be entered.) 356 * 357 * Messages are queued on sq_head/sq_tail including deferred qwriter(INNER) 358 * messages. The sq_head/sq_tail list is a singly-linked list with 359 * b_queue recording the queue and b_prev recording the function to 360 * be called (either the put procedure or a qwriter callback function.) 361 * 362 * The sq_count counter tracks the number of threads that are 363 * executing inside the perimeter or (in the case of outer perimeters) 364 * have some work queued for them relating to the perimeter. The sq_rmqcount 365 * counter tracks the subset which are in removeq() (usually invoked from 366 * qprocsoff(9F)). 367 * 368 * In addition a module writer can declare that the module has an outer 369 * perimeter (by setting D_MTOUTPERIM) in which case all inner perimeter 370 * syncq's for the module point (through sq_outer) to an outer perimeter 371 * syncq. The outer perimeter consists of the doubly linked list (sq_onext and 372 * sq_oprev) linking all the inner perimeter syncq's with out outer perimeter 373 * syncq. This is used to implement qwriter(OUTER) (an asynchronous way of 374 * getting exclusive access at the outer perimeter) and outer_enter/exit 375 * which are used by the framework to acquire exclusive access to the outer 376 * perimeter during open and close of modules that have set D_MTOUTPERIM. 377 * 378 * In the inner perimeter case sq_save is available for use by machine 379 * dependent code. sq_head/sq_tail are used to queue deferred messages on 380 * the inner perimeter syncqs and to queue become_writer requests on the 381 * outer perimeter syncqs. 382 * 383 * Note: machine dependent optimized versions of putnext may depend 384 * on the order of sq_flags and sq_count (so that they can e.g. 385 * read these two fields in a single load instruction.) 386 * 387 * Per perimeter SQLOCK/sq_count in putnext/put may be replaced by per cpu 388 * sq_putlocks/sq_putcounts each living in a separate cache line. Obviously 389 * sq_putlock[x] protects sq_putcount[x]. putnext/put routine will grab only 1 390 * of sq_putlocks and update only 1 of sq_putcounts. strlock() and many 391 * other routines in strsubr.c and ddi.c will grab all sq_putlocks (as well as 392 * SQLOCK) and figure out the count value as the sum of sq_count and all of 393 * sq_putcounts. The idea is to make critical fast path -- putnext -- much 394 * faster at the expense of much less often used slower path like 395 * strlock(). One known case where entersq/strlock is executed pretty often is 396 * SpecWeb but since IP is SQ_CIOC and socket TCP/IP stream is nextless 397 * there's no need to grab multiple sq_putlocks and look at sq_putcounts. See 398 * strsubr.c for more comments. 399 * 400 * Note regular SQLOCK and sq_count are still used in many routines 401 * (e.g. entersq(), rwnext()) in the same way as before sq_putlocks were 402 * introduced. 403 * 404 * To understand when all sq_putlocks need to be held and all sq_putcounts 405 * need to be added up one needs to look closely at putnext code. Basically if 406 * a routine like e.g. wait_syncq() needs to be sure that perimeter is empty 407 * all sq_putlocks/sq_putcounts need to be held/added up. On the other hand 408 * there's no need to hold all sq_putlocks and count all sq_putcounts in 409 * routines like leavesq()/dropsq() and etc. since the are usually exit 410 * counterparts of entersq/outer_enter() and etc. which have already either 411 * prevented put entry poins from executing or did not care about put 412 * entrypoints. entersq() doesn't need to care about sq_putlocks/sq_putcounts 413 * if the entry point has a shared access since put has the highest degree of 414 * concurrency and such entersq() does not intend to block out put 415 * entrypoints. 416 * 417 * Before sq_putcounts were introduced the standard way to wait for perimeter 418 * to become empty was: 419 * 420 * mutex_enter(SQLOCK(sq)); 421 * while (sq->sq_count > 0) { 422 * sq->sq_flags |= SQ_WANTWAKEUP; 423 * cv_wait(&sq->sq_wait, SQLOCK(sq)); 424 * } 425 * mutex_exit(SQLOCK(sq)); 426 * 427 * The new way is: 428 * 429 * mutex_enter(SQLOCK(sq)); 430 * count = sq->sq_count; 431 * SQ_PUTLOCKS_ENTER(sq); 432 * SUM_SQ_PUTCOUNTS(sq, count); 433 * while (count != 0) { 434 * sq->sq_flags |= SQ_WANTWAKEUP; 435 * SQ_PUTLOCKS_EXIT(sq); 436 * cv_wait(&sq->sq_wait, SQLOCK(sq)); 437 * count = sq->sq_count; 438 * SQ_PUTLOCKS_ENTER(sq); 439 * SUM_SQ_PUTCOUNTS(sq, count); 440 * } 441 * SQ_PUTLOCKS_EXIT(sq); 442 * mutex_exit(SQLOCK(sq)); 443 * 444 * Note that SQ_WANTWAKEUP is set before dropping SQ_PUTLOCKS. This makes sure 445 * putnext won't skip a wakeup. 446 * 447 * sq_putlocks are treated as the extension of SQLOCK for lock ordering 448 * purposes and are always grabbed right after grabbing SQLOCK and released 449 * right before releasing SQLOCK. This also allows dynamic creation of 450 * sq_putlocks while holding SQLOCK (by making sq_ciputctrl non null even when 451 * the stream is already in use). Only in putnext one of sq_putlocks 452 * is grabbed instead of SQLOCK. putnext return path remembers what counter it 453 * incremented and decrements the right counter on its way out. 454 */ 455 456 struct syncq { 457 kmutex_t sq_lock; /* atomic access to syncq */ 458 uint16_t sq_count; /* # threads inside */ 459 uint16_t sq_flags; /* state and some type info */ 460 /* 461 * Distributed syncq scheduling 462 * The list of queue's is handled by sq_head and 463 * sq_tail fields. 464 * 465 * The list of events is handled by the sq_evhead and sq_evtail 466 * fields. 467 */ 468 queue_t *sq_head; /* queue of deferred messages */ 469 queue_t *sq_tail; /* queue of deferred messages */ 470 mblk_t *sq_evhead; /* Event message on the syncq */ 471 mblk_t *sq_evtail; 472 uint_t sq_nqueues; /* # of queues on this sq */ 473 /* 474 * Concurrency and condition variables 475 */ 476 uint16_t sq_type; /* type (concurrency) of syncq */ 477 uint16_t sq_rmqcount; /* # threads inside removeq() */ 478 kcondvar_t sq_wait; /* block on this sync queue */ 479 kcondvar_t sq_exitwait; /* waiting for thread to leave the */ 480 /* inner perimeter */ 481 /* 482 * Handling synchronous callbacks such as qtimeout and qbufcall 483 */ 484 ushort_t sq_callbflags; /* flags for callback synchronization */ 485 callbparams_id_t sq_cancelid; /* id of callback being cancelled */ 486 struct callbparams *sq_callbpend; /* Pending callbacks */ 487 488 /* 489 * Links forming an outer perimeter from one outer syncq and 490 * a set of inner sync queues. 491 */ 492 struct syncq *sq_outer; /* Pointer to outer perimeter */ 493 struct syncq *sq_onext; /* Linked list of syncq's making */ 494 struct syncq *sq_oprev; /* up the outer perimeter. */ 495 /* 496 * support for low contention concurrent putnext. 497 */ 498 ciputctrl_t *sq_ciputctrl; 499 uint_t sq_nciputctrl; 500 /* 501 * Counter for the number of threads wanting to become exclusive. 502 */ 503 uint_t sq_needexcl; 504 /* 505 * These two fields are used for scheduling a syncq for 506 * background processing. The sq_svcflag is protected by 507 * SQLOCK lock. 508 */ 509 struct syncq *sq_next; /* for syncq scheduling */ 510 void * sq_servid; 511 uint_t sq_servcount; /* # pending background threads */ 512 uint_t sq_svcflags; /* Scheduling flags */ 513 clock_t sq_tstamp; /* Time when was enabled */ 514 /* 515 * Maximum priority of the queues on this syncq. 516 */ 517 pri_t sq_pri; 518 }; 519 typedef struct syncq syncq_t; 520 521 /* 522 * sync queue scheduling flags (for sq_svcflags). 523 */ 524 #define SQ_SERVICE 0x1 /* being serviced */ 525 #define SQ_BGTHREAD 0x2 /* awaiting service by bg thread */ 526 #define SQ_DISABLED 0x4 /* don't put syncq in service list */ 527 528 /* 529 * FASTPUT bit in sd_count/putcount. 530 */ 531 #define SQ_FASTPUT 0x8000 532 #define SQ_FASTMASK 0x7FFF 533 534 /* 535 * sync queue state flags 536 */ 537 #define SQ_EXCL 0x0001 /* exclusive access to inner */ 538 /* perimeter */ 539 #define SQ_BLOCKED 0x0002 /* qprocsoff */ 540 #define SQ_FROZEN 0x0004 /* freezestr */ 541 #define SQ_WRITER 0x0008 /* qwriter(OUTER) pending or running */ 542 #define SQ_MESSAGES 0x0010 /* messages on syncq */ 543 #define SQ_WANTWAKEUP 0x0020 /* do cv_broadcast on sq_wait */ 544 #define SQ_WANTEXWAKEUP 0x0040 /* do cv_broadcast on sq_exitwait */ 545 #define SQ_EVENTS 0x0080 /* Events pending */ 546 #define SQ_QUEUED (SQ_MESSAGES | SQ_EVENTS) 547 #define SQ_FLAGMASK 0x00FF 548 549 /* 550 * Test a queue to see if inner perimeter is exclusive. 551 */ 552 #define PERIM_EXCL(q) ((q)->q_syncq->sq_flags & SQ_EXCL) 553 554 /* 555 * If any of these flags are set it is not possible for a thread to 556 * enter a put or service procedure. Instead it must either block 557 * or put the message on the syncq. 558 */ 559 #define SQ_GOAWAY (SQ_EXCL|SQ_BLOCKED|SQ_FROZEN|SQ_WRITER|\ 560 SQ_QUEUED) 561 /* 562 * If any of these flags are set it not possible to drain the syncq 563 */ 564 #define SQ_STAYAWAY (SQ_BLOCKED|SQ_FROZEN|SQ_WRITER) 565 566 /* 567 * Flags to trigger syncq tail processing. 568 */ 569 #define SQ_TAIL (SQ_QUEUED|SQ_WANTWAKEUP|SQ_WANTEXWAKEUP) 570 571 /* 572 * Syncq types (stored in sq_type) 573 * The SQ_TYPES_IN_FLAGS (ciput) are also stored in sq_flags 574 * for performance reasons. Thus these type values have to be in the low 575 * 16 bits and not conflict with the sq_flags values above. 576 * 577 * Notes: 578 * - putnext() and put() assume that the put procedures have the highest 579 * degree of concurrency. Thus if any of the SQ_CI* are set then SQ_CIPUT 580 * has to be set. This restriction can be lifted by adding code to putnext 581 * and put that check that sq_count == 0 like entersq does. 582 * - putnext() and put() does currently not handle !SQ_COPUT 583 * - In order to implement !SQ_COCB outer_enter has to be fixed so that 584 * the callback can be cancelled while cv_waiting in outer_enter. 585 * - If SQ_CISVC needs to be implemented, qprocsoff() needs to wait 586 * for the currently running services to stop (wait for QINSERVICE 587 * to go off). disable_svc called from qprcosoff disables only 588 * services that will be run in future. 589 * 590 * All the SQ_CO flags are set when there is no outer perimeter. 591 */ 592 #define SQ_CIPUT 0x0100 /* Concurrent inner put proc */ 593 #define SQ_CISVC 0x0200 /* Concurrent inner svc proc */ 594 #define SQ_CIOC 0x0400 /* Concurrent inner open/close */ 595 #define SQ_CICB 0x0800 /* Concurrent inner callback */ 596 #define SQ_COPUT 0x1000 /* Concurrent outer put proc */ 597 #define SQ_COSVC 0x2000 /* Concurrent outer svc proc */ 598 #define SQ_COOC 0x4000 /* Concurrent outer open/close */ 599 #define SQ_COCB 0x8000 /* Concurrent outer callback */ 600 601 /* Types also kept in sq_flags for performance */ 602 #define SQ_TYPES_IN_FLAGS (SQ_CIPUT) 603 604 #define SQ_CI (SQ_CIPUT|SQ_CISVC|SQ_CIOC|SQ_CICB) 605 #define SQ_CO (SQ_COPUT|SQ_COSVC|SQ_COOC|SQ_COCB) 606 #define SQ_TYPEMASK (SQ_CI|SQ_CO) 607 608 /* 609 * Flag combinations passed to entersq and leavesq to specify the type 610 * of entry point. 611 */ 612 #define SQ_PUT (SQ_CIPUT|SQ_COPUT) 613 #define SQ_SVC (SQ_CISVC|SQ_COSVC) 614 #define SQ_OPENCLOSE (SQ_CIOC|SQ_COOC) 615 #define SQ_CALLBACK (SQ_CICB|SQ_COCB) 616 617 /* 618 * Other syncq types which are not copied into flags. 619 */ 620 #define SQ_PERMOD 0x01 /* Syncq is PERMOD */ 621 622 /* 623 * Asynchronous callback qun*** flag. 624 * The mechanism these flags are used in is one where callbacks enter 625 * the perimeter thanks to framework support. To use this mechanism 626 * the q* and qun* flavors of the callback routines must be used. 627 * e.g. qtimeout and quntimeout. The synchronization provided by the flags 628 * avoids deadlocks between blocking qun* routines and the perimeter 629 * lock. 630 */ 631 #define SQ_CALLB_BYPASSED 0x01 /* bypassed callback fn */ 632 633 /* 634 * Cancel callback mask. 635 * The mask expands as the number of cancelable callback types grows 636 * Note - separate callback flag because different callbacks have 637 * overlapping id space. 638 */ 639 #define SQ_CALLB_CANCEL_MASK (SQ_CANCEL_TOUT|SQ_CANCEL_BUFCALL) 640 641 #define SQ_CANCEL_TOUT 0x02 /* cancel timeout request */ 642 #define SQ_CANCEL_BUFCALL 0x04 /* cancel bufcall request */ 643 644 typedef struct callbparams { 645 syncq_t *cbp_sq; 646 void (*cbp_func)(void *); 647 void *cbp_arg; 648 callbparams_id_t cbp_id; 649 uint_t cbp_flags; 650 struct callbparams *cbp_next; 651 size_t cbp_size; 652 } callbparams_t; 653 654 typedef struct strbufcall { 655 void (*bc_func)(void *); 656 void *bc_arg; 657 size_t bc_size; 658 bufcall_id_t bc_id; 659 struct strbufcall *bc_next; 660 kthread_id_t bc_executor; 661 } strbufcall_t; 662 663 /* 664 * Structure of list of processes to be sent SIGPOLL/SIGURG signal 665 * on request. The valid S_* events are defined in stropts.h. 666 */ 667 typedef struct strsig { 668 struct pid *ss_pidp; /* pid/pgrp pointer */ 669 pid_t ss_pid; /* positive pid, negative pgrp */ 670 int ss_events; /* S_* events */ 671 struct strsig *ss_next; 672 } strsig_t; 673 674 /* 675 * bufcall list 676 */ 677 struct bclist { 678 strbufcall_t *bc_head; 679 strbufcall_t *bc_tail; 680 }; 681 682 /* 683 * Structure used to track mux links and unlinks. 684 */ 685 struct mux_node { 686 major_t mn_imaj; /* internal major device number */ 687 uint16_t mn_indegree; /* number of incoming edges */ 688 struct mux_node *mn_originp; /* where we came from during search */ 689 struct mux_edge *mn_startp; /* where search left off in mn_outp */ 690 struct mux_edge *mn_outp; /* list of outgoing edges */ 691 uint_t mn_flags; /* see below */ 692 }; 693 694 /* 695 * Flags for mux_nodes. 696 */ 697 #define VISITED 1 698 699 /* 700 * Edge structure - a list of these is hung off the 701 * mux_node to represent the outgoing edges. 702 */ 703 struct mux_edge { 704 struct mux_node *me_nodep; /* edge leads to this node */ 705 struct mux_edge *me_nextp; /* next edge */ 706 int me_muxid; /* id of link */ 707 dev_t me_dev; /* dev_t - used for kernel PUNLINK */ 708 }; 709 710 /* 711 * Queue info 712 * 713 * The syncq is included here to reduce memory fragmentation 714 * for kernel memory allocators that only allocate in sizes that are 715 * powers of two. If the kernel memory allocator changes this should 716 * be revisited. 717 */ 718 typedef struct queinfo { 719 struct queue qu_rqueue; /* read queue - must be first */ 720 struct queue qu_wqueue; /* write queue - must be second */ 721 struct syncq qu_syncq; /* syncq - must be third */ 722 } queinfo_t; 723 724 /* 725 * Multiplexed streams info 726 */ 727 typedef struct linkinfo { 728 struct linkblk li_lblk; /* must be first */ 729 struct file *li_fpdown; /* file pointer for lower stream */ 730 struct linkinfo *li_next; /* next in list */ 731 struct linkinfo *li_prev; /* previous in list */ 732 } linkinfo_t; 733 734 /* 735 * List of syncq's used by freeezestr/unfreezestr 736 */ 737 typedef struct syncql { 738 struct syncql *sql_next; 739 syncq_t *sql_sq; 740 } syncql_t; 741 742 typedef struct sqlist { 743 syncql_t *sqlist_head; 744 size_t sqlist_size; /* structure size in bytes */ 745 size_t sqlist_index; /* next free entry in array */ 746 syncql_t sqlist_array[4]; /* 4 or more entries */ 747 } sqlist_t; 748 749 typedef struct perdm { 750 struct perdm *dm_next; 751 syncq_t *dm_sq; 752 struct streamtab *dm_str; 753 uint_t dm_ref; 754 } perdm_t; 755 756 #define NEED_DM(dmp, qflag) \ 757 (dmp == NULL && (qflag & (QPERMOD | QMTOUTPERIM))) 758 759 /* 760 * fmodsw_impl_t is used within the kernel. fmodsw is used by 761 * the modules/drivers. The information is copied from fmodsw 762 * defined in the module/driver into the fmodsw_impl_t structure 763 * during the module/driver initialization. 764 */ 765 typedef struct fmodsw_impl fmodsw_impl_t; 766 767 struct fmodsw_impl { 768 fmodsw_impl_t *f_next; 769 char f_name[FMNAMESZ + 1]; 770 struct streamtab *f_str; 771 uint32_t f_qflag; 772 uint32_t f_sqtype; 773 perdm_t *f_dmp; 774 uint32_t f_ref; 775 uint32_t f_hits; 776 }; 777 778 typedef enum { 779 FMODSW_HOLD = 0x00000001, 780 FMODSW_LOAD = 0x00000002 781 } fmodsw_flags_t; 782 783 typedef struct cdevsw_impl { 784 struct streamtab *d_str; 785 uint32_t d_qflag; 786 uint32_t d_sqtype; 787 perdm_t *d_dmp; 788 } cdevsw_impl_t; 789 790 /* 791 * Enumeration of the types of access that can be requested for a 792 * controlling terminal under job control. 793 */ 794 enum jcaccess { 795 JCREAD, /* read data on a ctty */ 796 JCWRITE, /* write data to a ctty */ 797 JCSETP, /* set ctty parameters */ 798 JCGETP /* get ctty parameters */ 799 }; 800 801 struct str_stack { 802 netstack_t *ss_netstack; /* Common netstack */ 803 804 kmutex_t ss_sad_lock; /* autopush lock */ 805 mod_hash_t *ss_sad_hash; 806 size_t ss_sad_hash_nchains; 807 struct saddev *ss_saddev; /* sad device array */ 808 int ss_sadcnt; /* number of sad devices */ 809 810 int ss_devcnt; /* number of mux_nodes */ 811 struct mux_node *ss_mux_nodes; /* mux info for cycle checking */ 812 }; 813 typedef struct str_stack str_stack_t; 814 815 /* 816 * Finding related queues 817 */ 818 #define STREAM(q) ((q)->q_stream) 819 #define SQ(rq) ((syncq_t *)((rq) + 2)) 820 821 /* 822 * Get the module/driver name for a queue. Since some queues don't have 823 * q_info structures (e.g., see log_makeq()), fall back to "?". 824 */ 825 #define Q2NAME(q) \ 826 (((q)->q_qinfo != NULL && (q)->q_qinfo->qi_minfo->mi_idname != NULL) ? \ 827 (q)->q_qinfo->qi_minfo->mi_idname : "?") 828 829 /* 830 * Locking macros 831 */ 832 #define QLOCK(q) (&(q)->q_lock) 833 #define SQLOCK(sq) (&(sq)->sq_lock) 834 835 #define STREAM_PUTLOCKS_ENTER(stp) { \ 836 ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \ 837 if ((stp)->sd_ciputctrl != NULL) { \ 838 int i; \ 839 int nlocks = (stp)->sd_nciputctrl; \ 840 ciputctrl_t *cip = (stp)->sd_ciputctrl; \ 841 for (i = 0; i <= nlocks; i++) { \ 842 mutex_enter(&cip[i].ciputctrl_lock); \ 843 } \ 844 } \ 845 } 846 847 #define STREAM_PUTLOCKS_EXIT(stp) { \ 848 ASSERT(MUTEX_HELD(&(stp)->sd_lock)); \ 849 if ((stp)->sd_ciputctrl != NULL) { \ 850 int i; \ 851 int nlocks = (stp)->sd_nciputctrl; \ 852 ciputctrl_t *cip = (stp)->sd_ciputctrl; \ 853 for (i = 0; i <= nlocks; i++) { \ 854 mutex_exit(&cip[i].ciputctrl_lock); \ 855 } \ 856 } \ 857 } 858 859 #define SQ_PUTLOCKS_ENTER(sq) { \ 860 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 861 if ((sq)->sq_ciputctrl != NULL) { \ 862 int i; \ 863 int nlocks = (sq)->sq_nciputctrl; \ 864 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 865 ASSERT((sq)->sq_type & SQ_CIPUT); \ 866 for (i = 0; i <= nlocks; i++) { \ 867 mutex_enter(&cip[i].ciputctrl_lock); \ 868 } \ 869 } \ 870 } 871 872 #define SQ_PUTLOCKS_EXIT(sq) { \ 873 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 874 if ((sq)->sq_ciputctrl != NULL) { \ 875 int i; \ 876 int nlocks = (sq)->sq_nciputctrl; \ 877 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 878 ASSERT((sq)->sq_type & SQ_CIPUT); \ 879 for (i = 0; i <= nlocks; i++) { \ 880 mutex_exit(&cip[i].ciputctrl_lock); \ 881 } \ 882 } \ 883 } 884 885 #define SQ_PUTCOUNT_SETFAST(sq) { \ 886 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 887 if ((sq)->sq_ciputctrl != NULL) { \ 888 int i; \ 889 int nlocks = (sq)->sq_nciputctrl; \ 890 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 891 ASSERT((sq)->sq_type & SQ_CIPUT); \ 892 for (i = 0; i <= nlocks; i++) { \ 893 mutex_enter(&cip[i].ciputctrl_lock); \ 894 cip[i].ciputctrl_count |= SQ_FASTPUT; \ 895 mutex_exit(&cip[i].ciputctrl_lock); \ 896 } \ 897 } \ 898 } 899 900 #define SQ_PUTCOUNT_CLRFAST(sq) { \ 901 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 902 if ((sq)->sq_ciputctrl != NULL) { \ 903 int i; \ 904 int nlocks = (sq)->sq_nciputctrl; \ 905 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 906 ASSERT((sq)->sq_type & SQ_CIPUT); \ 907 for (i = 0; i <= nlocks; i++) { \ 908 mutex_enter(&cip[i].ciputctrl_lock); \ 909 cip[i].ciputctrl_count &= ~SQ_FASTPUT; \ 910 mutex_exit(&cip[i].ciputctrl_lock); \ 911 } \ 912 } \ 913 } 914 915 916 #ifdef DEBUG 917 918 #define SQ_PUTLOCKS_HELD(sq) { \ 919 ASSERT(MUTEX_HELD(SQLOCK(sq))); \ 920 if ((sq)->sq_ciputctrl != NULL) { \ 921 int i; \ 922 int nlocks = (sq)->sq_nciputctrl; \ 923 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 924 ASSERT((sq)->sq_type & SQ_CIPUT); \ 925 for (i = 0; i <= nlocks; i++) { \ 926 ASSERT(MUTEX_HELD(&cip[i].ciputctrl_lock)); \ 927 } \ 928 } \ 929 } 930 931 #define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck) { \ 932 if ((sq)->sq_ciputctrl != NULL) { \ 933 int i; \ 934 uint_t count = 0; \ 935 int ncounts = (sq)->sq_nciputctrl; \ 936 ASSERT((sq)->sq_type & SQ_CIPUT); \ 937 for (i = 0; i <= ncounts; i++) { \ 938 count += \ 939 (((sq)->sq_ciputctrl[i].ciputctrl_count) & \ 940 SQ_FASTMASK); \ 941 } \ 942 ASSERT(count == (countcheck)); \ 943 } \ 944 } 945 946 #define SUMCHECK_CIPUTCTRL_COUNTS(ciput, nciput, countcheck) { \ 947 int i; \ 948 uint_t count = 0; \ 949 ASSERT((ciput) != NULL); \ 950 for (i = 0; i <= (nciput); i++) { \ 951 count += (((ciput)[i].ciputctrl_count) & \ 952 SQ_FASTMASK); \ 953 } \ 954 ASSERT(count == (countcheck)); \ 955 } 956 957 #else /* DEBUG */ 958 959 #define SQ_PUTLOCKS_HELD(sq) 960 #define SUMCHECK_SQ_PUTCOUNTS(sq, countcheck) 961 #define SUMCHECK_CIPUTCTRL_COUNTS(sq, nciput, countcheck) 962 963 #endif /* DEBUG */ 964 965 #define SUM_SQ_PUTCOUNTS(sq, count) { \ 966 if ((sq)->sq_ciputctrl != NULL) { \ 967 int i; \ 968 int ncounts = (sq)->sq_nciputctrl; \ 969 ciputctrl_t *cip = (sq)->sq_ciputctrl; \ 970 ASSERT((sq)->sq_type & SQ_CIPUT); \ 971 for (i = 0; i <= ncounts; i++) { \ 972 (count) += ((cip[i].ciputctrl_count) & \ 973 SQ_FASTMASK); \ 974 } \ 975 } \ 976 } 977 978 #define CLAIM_QNEXT_LOCK(stp) mutex_enter(&(stp)->sd_lock) 979 #define RELEASE_QNEXT_LOCK(stp) mutex_exit(&(stp)->sd_lock) 980 981 /* 982 * syncq message manipulation macros. 983 */ 984 /* 985 * Put a message on the queue syncq. 986 * Assumes QLOCK held. 987 */ 988 #define SQPUT_MP(qp, mp) \ 989 { \ 990 qp->q_syncqmsgs++; \ 991 if (qp->q_sqhead == NULL) { \ 992 qp->q_sqhead = qp->q_sqtail = mp; \ 993 } else { \ 994 qp->q_sqtail->b_next = mp; \ 995 qp->q_sqtail = mp; \ 996 } \ 997 set_qfull(qp); \ 998 } 999 1000 /* 1001 * Miscellaneous parameters and flags. 1002 */ 1003 1004 /* 1005 * Default timeout in milliseconds for ioctls and close 1006 */ 1007 #define STRTIMOUT 15000 1008 1009 /* 1010 * Flag values for stream io 1011 */ 1012 #define WRITEWAIT 0x1 /* waiting for write event */ 1013 #define READWAIT 0x2 /* waiting for read event */ 1014 #define NOINTR 0x4 /* error is not to be set for signal */ 1015 #define GETWAIT 0x8 /* waiting for getmsg event */ 1016 1017 /* 1018 * These flags need to be unique for stream io name space 1019 * and copy modes name space. These flags allow strwaitq 1020 * and strdoioctl to proceed as if signals or errors on the stream 1021 * head have not occurred; i.e. they will be detected by some other 1022 * means. 1023 * STR_NOSIG does not allow signals to interrupt the call 1024 * STR_NOERROR does not allow stream head read, write or hup errors to 1025 * affect the call. When used with strdoioctl(), if a previous ioctl 1026 * is pending and times out, STR_NOERROR will cause strdoioctl() to not 1027 * return ETIME. If, however, the requested ioctl times out, ETIME 1028 * will be returned (use ic_timout instead) 1029 * STR_PEEK is used to inform strwaitq that the reader is peeking at data 1030 * and that a non-persistent error should not be cleared. 1031 * STR_DELAYERR is used to inform strwaitq that it should not check errors 1032 * after being awoken since, in addition to an error, there might also be 1033 * data queued on the stream head read queue. 1034 */ 1035 #define STR_NOSIG 0x10 /* Ignore signals during strdoioctl/strwaitq */ 1036 #define STR_NOERROR 0x20 /* Ignore errors during strdoioctl/strwaitq */ 1037 #define STR_PEEK 0x40 /* Peeking behavior on non-persistent errors */ 1038 #define STR_DELAYERR 0x80 /* Do not check errors on return */ 1039 1040 /* 1041 * Copy modes for tty and I_STR ioctls 1042 */ 1043 #define U_TO_K 01 /* User to Kernel */ 1044 #define K_TO_K 02 /* Kernel to Kernel */ 1045 1046 /* 1047 * Mux defines. 1048 */ 1049 #define LINKNORMAL 0x01 /* normal mux link */ 1050 #define LINKPERSIST 0x02 /* persistent mux link */ 1051 #define LINKTYPEMASK 0x03 /* bitmask of all link types */ 1052 #define LINKCLOSE 0x04 /* unlink from strclose */ 1053 1054 /* 1055 * Definitions of Streams macros and function interfaces. 1056 */ 1057 1058 /* 1059 * Obsolete queue scheduling macros. They are not used anymore, but still kept 1060 * here for 3-d party modules and drivers who might still use them. 1061 */ 1062 #define setqsched() 1063 #define qready() 1 1064 1065 #ifdef _KERNEL 1066 #define runqueues() 1067 #define queuerun() 1068 #endif 1069 1070 /* compatibility module for style 2 drivers with DR race condition */ 1071 #define DRMODNAME "drcompat" 1072 1073 /* 1074 * Macros dealing with mux_nodes. 1075 */ 1076 #define MUX_VISIT(X) ((X)->mn_flags |= VISITED) 1077 #define MUX_CLEAR(X) ((X)->mn_flags &= (~VISITED)); \ 1078 ((X)->mn_originp = NULL) 1079 #define MUX_DIDVISIT(X) ((X)->mn_flags & VISITED) 1080 1081 1082 /* 1083 * Twisted stream macros 1084 */ 1085 #define STRMATED(X) ((X)->sd_flag & STRMATE) 1086 #define STRLOCKMATES(X) if (&((X)->sd_lock) > &(((X)->sd_mate)->sd_lock)) { \ 1087 mutex_enter(&((X)->sd_lock)); \ 1088 mutex_enter(&(((X)->sd_mate)->sd_lock)); \ 1089 } else { \ 1090 mutex_enter(&(((X)->sd_mate)->sd_lock)); \ 1091 mutex_enter(&((X)->sd_lock)); \ 1092 } 1093 #define STRUNLOCKMATES(X) mutex_exit(&((X)->sd_lock)); \ 1094 mutex_exit(&(((X)->sd_mate)->sd_lock)) 1095 1096 #if defined(_KERNEL) || defined(_FAKE_KERNEL) 1097 1098 extern void strinit(void); 1099 extern int strdoioctl(struct stdata *, struct strioctl *, int, int, 1100 cred_t *, int *); 1101 extern void strsendsig(struct strsig *, int, uchar_t, int); 1102 extern void str_sendsig(vnode_t *, int, uchar_t, int); 1103 extern void strhup(struct stdata *); 1104 extern int qattach(queue_t *, dev_t *, int, cred_t *, fmodsw_impl_t *, 1105 boolean_t); 1106 extern int qreopen(queue_t *, dev_t *, int, cred_t *); 1107 extern void qdetach(queue_t *, int, int, cred_t *, boolean_t); 1108 extern void enterq(queue_t *); 1109 extern void leaveq(queue_t *); 1110 extern int putiocd(mblk_t *, caddr_t, int, cred_t *); 1111 extern int getiocd(mblk_t *, caddr_t, int); 1112 extern struct linkinfo *alloclink(queue_t *, queue_t *, struct file *); 1113 extern void lbfree(struct linkinfo *); 1114 extern int linkcycle(stdata_t *, stdata_t *, str_stack_t *); 1115 extern struct linkinfo *findlinks(stdata_t *, int, int, str_stack_t *); 1116 extern queue_t *getendq(queue_t *); 1117 extern int mlink(vnode_t *, int, int, cred_t *, int *, int); 1118 extern int mlink_file(vnode_t *, int, struct file *, cred_t *, int *, int); 1119 extern int munlink(struct stdata *, struct linkinfo *, int, cred_t *, int *, 1120 str_stack_t *); 1121 extern int munlinkall(struct stdata *, int, cred_t *, int *, str_stack_t *); 1122 extern void mux_addedge(stdata_t *, stdata_t *, int, str_stack_t *); 1123 extern void mux_rmvedge(stdata_t *, int, str_stack_t *); 1124 extern int devflg_to_qflag(struct streamtab *, uint32_t, uint32_t *, 1125 uint32_t *); 1126 extern void setq(queue_t *, struct qinit *, struct qinit *, perdm_t *, 1127 uint32_t, uint32_t, boolean_t); 1128 extern perdm_t *hold_dm(struct streamtab *, uint32_t, uint32_t); 1129 extern void rele_dm(perdm_t *); 1130 extern int strmakectl(struct strbuf *, int32_t, int32_t, mblk_t **); 1131 extern int strmakedata(ssize_t *, struct uio *, stdata_t *, int32_t, mblk_t **); 1132 extern int strmakemsg(struct strbuf *, ssize_t *, struct uio *, 1133 struct stdata *, int32_t, mblk_t **); 1134 extern int strgetmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t *, 1135 int *, int, rval_t *); 1136 extern int strputmsg(vnode_t *, struct strbuf *, struct strbuf *, uchar_t, 1137 int flag, int fmode); 1138 extern int strstartplumb(struct stdata *, int, int); 1139 extern void strendplumb(struct stdata *); 1140 extern int stropen(struct vnode *, dev_t *, int, cred_t *); 1141 extern int strclose(struct vnode *, int, cred_t *); 1142 extern int strpoll(register struct stdata *, short, int, short *, 1143 struct pollhead **); 1144 extern void strclean(struct vnode *); 1145 extern void str_cn_clean(); /* XXX hook for consoles signal cleanup */ 1146 extern int strwrite(struct vnode *, struct uio *, cred_t *); 1147 extern int strwrite_common(struct vnode *, struct uio *, cred_t *, int); 1148 extern int strread(struct vnode *, struct uio *, cred_t *); 1149 extern int strioctl(struct vnode *, int, intptr_t, int, int, cred_t *, int *); 1150 extern int strrput(queue_t *, mblk_t *); 1151 extern int strrput_nondata(queue_t *, mblk_t *); 1152 extern mblk_t *strrput_proto(vnode_t *, mblk_t *, 1153 strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); 1154 extern mblk_t *strrput_misc(vnode_t *, mblk_t *, 1155 strwakeup_t *, strsigset_t *, strsigset_t *, strpollset_t *); 1156 extern int getiocseqno(void); 1157 extern int strwaitbuf(size_t, int); 1158 extern int strwaitq(stdata_t *, int, ssize_t, int, clock_t, int *); 1159 extern struct stdata *shalloc(queue_t *); 1160 extern void shfree(struct stdata *s); 1161 extern queue_t *allocq(void); 1162 extern void freeq(queue_t *); 1163 extern qband_t *allocband(void); 1164 extern void freeband(qband_t *); 1165 extern void freebs_enqueue(mblk_t *, dblk_t *); 1166 extern void setqback(queue_t *, unsigned char); 1167 extern int strcopyin(void *, void *, size_t, int); 1168 extern int strcopyout(void *, void *, size_t, int); 1169 extern void strsignal(struct stdata *, int, int32_t); 1170 extern clock_t str_cv_wait(kcondvar_t *, kmutex_t *, clock_t, int); 1171 extern void disable_svc(queue_t *); 1172 extern void enable_svc(queue_t *); 1173 extern void remove_runlist(queue_t *); 1174 extern void wait_svc(queue_t *); 1175 extern void backenable(queue_t *, uchar_t); 1176 extern void set_qend(queue_t *); 1177 extern int strgeterr(stdata_t *, int32_t, int); 1178 extern void qenable_locked(queue_t *); 1179 extern mblk_t *getq_noenab(queue_t *, ssize_t); 1180 extern void rmvq_noenab(queue_t *, mblk_t *); 1181 extern void qbackenable(queue_t *, uchar_t); 1182 extern void set_qfull(queue_t *); 1183 1184 extern void strblock(queue_t *); 1185 extern void strunblock(queue_t *); 1186 extern int qclaimed(queue_t *); 1187 extern int straccess(struct stdata *, enum jcaccess); 1188 1189 extern void entersq(syncq_t *, int); 1190 extern void leavesq(syncq_t *, int); 1191 extern void claimq(queue_t *); 1192 extern void releaseq(queue_t *); 1193 extern void claimstr(queue_t *); 1194 extern void releasestr(queue_t *); 1195 extern void removeq(queue_t *); 1196 extern void insertq(struct stdata *, queue_t *); 1197 extern void drain_syncq(syncq_t *); 1198 extern void qfill_syncq(syncq_t *, queue_t *, mblk_t *); 1199 extern void qdrain_syncq(syncq_t *, queue_t *); 1200 extern int flush_syncq(syncq_t *, queue_t *); 1201 extern void wait_sq_svc(syncq_t *); 1202 1203 extern void outer_enter(syncq_t *, uint16_t); 1204 extern void outer_exit(syncq_t *); 1205 extern void qwriter_inner(queue_t *, mblk_t *, void (*)()); 1206 extern void qwriter_outer(queue_t *, mblk_t *, void (*)()); 1207 1208 extern callbparams_t *callbparams_alloc(syncq_t *, void (*)(void *), 1209 void *, int); 1210 extern void callbparams_free(syncq_t *, callbparams_t *); 1211 extern void callbparams_free_id(syncq_t *, callbparams_id_t, int32_t); 1212 extern void qcallbwrapper(void *); 1213 1214 extern mblk_t *esballoc_wait(unsigned char *, size_t, uint_t, frtn_t *); 1215 extern mblk_t *esballoca(unsigned char *, size_t, uint_t, frtn_t *); 1216 extern mblk_t *desballoca(unsigned char *, size_t, uint_t, frtn_t *); 1217 extern int do_sendfp(struct stdata *, struct file *, struct cred *); 1218 extern int frozenstr(queue_t *); 1219 extern size_t xmsgsize(mblk_t *); 1220 1221 extern void putnext_tail(syncq_t *, queue_t *, uint32_t); 1222 extern void stream_willservice(stdata_t *); 1223 extern void stream_runservice(stdata_t *); 1224 1225 extern void strmate(vnode_t *, vnode_t *); 1226 extern queue_t *strvp2wq(vnode_t *); 1227 extern vnode_t *strq2vp(queue_t *); 1228 extern mblk_t *allocb_wait(size_t, uint_t, uint_t, int *); 1229 extern mblk_t *allocb_cred(size_t, cred_t *, pid_t); 1230 extern mblk_t *allocb_cred_wait(size_t, uint_t, int *, cred_t *, pid_t); 1231 extern mblk_t *allocb_tmpl(size_t, const mblk_t *); 1232 extern mblk_t *allocb_tryhard(size_t); 1233 extern void mblk_copycred(mblk_t *, const mblk_t *); 1234 extern void mblk_setcred(mblk_t *, cred_t *, pid_t); 1235 extern cred_t *msg_getcred(const mblk_t *, pid_t *); 1236 extern struct ts_label_s *msg_getlabel(const mblk_t *); 1237 extern cred_t *msg_extractcred(mblk_t *, pid_t *); 1238 extern void strpollwakeup(vnode_t *, short); 1239 extern int putnextctl_wait(queue_t *, int); 1240 1241 extern int kstrputmsg(struct vnode *, mblk_t *, struct uio *, ssize_t, 1242 unsigned char, int, int); 1243 extern int kstrgetmsg(struct vnode *, mblk_t **, struct uio *, 1244 unsigned char *, int *, clock_t, rval_t *); 1245 1246 extern void strsetrerror(vnode_t *, int, int, errfunc_t); 1247 extern void strsetwerror(vnode_t *, int, int, errfunc_t); 1248 extern void strseteof(vnode_t *, int); 1249 extern void strflushrq(vnode_t *, int); 1250 extern void strsetrputhooks(vnode_t *, uint_t, msgfunc_t, msgfunc_t); 1251 extern void strsetwputhooks(vnode_t *, uint_t, clock_t); 1252 extern void strsetrwputdatahooks(vnode_t *, msgfunc_t, msgfunc_t); 1253 extern int strwaitmark(vnode_t *); 1254 extern void strsignal_nolock(stdata_t *, int, uchar_t); 1255 1256 struct multidata_s; 1257 struct pdesc_s; 1258 1259 /* 1260 * Now that NIC drivers are expected to deal only with M_DATA mblks, the 1261 * hcksum_assoc and hcksum_retrieve functions are deprecated in favor of their 1262 * respective mac_hcksum_set and mac_hcksum_get counterparts. 1263 */ 1264 extern int hcksum_assoc(mblk_t *, struct multidata_s *, struct pdesc_s *, 1265 uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, int); 1266 extern void hcksum_retrieve(mblk_t *, struct multidata_s *, struct pdesc_s *, 1267 uint32_t *, uint32_t *, uint32_t *, uint32_t *, uint32_t *); 1268 1269 extern void lso_info_set(mblk_t *, uint32_t, uint32_t); 1270 extern void lso_info_cleanup(mblk_t *); 1271 extern unsigned int bcksum(uchar_t *, int, unsigned int); 1272 extern boolean_t is_vmloaned_mblk(mblk_t *, struct multidata_s *, 1273 struct pdesc_s *); 1274 1275 extern int fmodsw_register(const char *, struct streamtab *, int); 1276 extern int fmodsw_unregister(const char *); 1277 extern fmodsw_impl_t *fmodsw_find(const char *, fmodsw_flags_t); 1278 extern void fmodsw_rele(fmodsw_impl_t *); 1279 1280 extern void freemsgchain(mblk_t *); 1281 extern mblk_t *copymsgchain(mblk_t *); 1282 1283 extern mblk_t *mcopyinuio(struct stdata *, uio_t *, ssize_t, ssize_t, int *); 1284 1285 /* 1286 * shared or externally configured data structures 1287 */ 1288 extern ssize_t strmsgsz; /* maximum stream message size */ 1289 extern ssize_t strctlsz; /* maximum size of ctl message */ 1290 extern int nstrpush; /* maximum number of pushes allowed */ 1291 1292 /* 1293 * Bufcalls related variables. 1294 */ 1295 extern struct bclist strbcalls; /* List of bufcalls */ 1296 extern kmutex_t strbcall_lock; /* Protects the list of bufcalls */ 1297 extern kcondvar_t strbcall_cv; /* Signaling when a bufcall is added */ 1298 extern kcondvar_t bcall_cv; /* wait of executing bufcall completes */ 1299 1300 extern frtn_t frnop; 1301 1302 extern struct kmem_cache *ciputctrl_cache; 1303 extern int n_ciputctrl; 1304 extern int max_n_ciputctrl; 1305 extern int min_n_ciputctrl; 1306 1307 extern cdevsw_impl_t *devimpl; 1308 1309 /* 1310 * esballoc queue for throttling 1311 */ 1312 typedef struct esb_queue { 1313 kmutex_t eq_lock; 1314 uint_t eq_len; /* number of queued messages */ 1315 mblk_t *eq_head; /* head of queue */ 1316 mblk_t *eq_tail; /* tail of queue */ 1317 uint_t eq_flags; /* esballoc queue flags */ 1318 } esb_queue_t; 1319 1320 /* 1321 * esballoc flags for queue processing. 1322 */ 1323 #define ESBQ_PROCESSING 0x01 /* queue is being processed */ 1324 #define ESBQ_TIMER 0x02 /* timer is active */ 1325 1326 extern void esballoc_queue_init(void); 1327 1328 #endif /* _KERNEL */ 1329 1330 /* 1331 * Note: Use of these macros are restricted to kernel/unix and 1332 * intended for the STREAMS framework. 1333 * All modules/drivers should include sys/ddi.h. 1334 * 1335 * Finding related queues 1336 */ 1337 #define _OTHERQ(q) ((q)->q_flag&QREADR? (q)+1: (q)-1) 1338 #define _WR(q) ((q)->q_flag&QREADR? (q)+1: (q)) 1339 #define _RD(q) ((q)->q_flag&QREADR? (q): (q)-1) 1340 #define _SAMESTR(q) (!((q)->q_flag & QEND)) 1341 1342 /* 1343 * These are also declared here for modules/drivers that erroneously 1344 * include strsubr.h after ddi.h or fail to include ddi.h at all. 1345 */ 1346 extern struct queue *OTHERQ(queue_t *); /* stream.h */ 1347 extern struct queue *RD(queue_t *); 1348 extern struct queue *WR(queue_t *); 1349 extern int SAMESTR(queue_t *); 1350 1351 /* 1352 * The following hardware checksum related macros are private 1353 * interfaces that are subject to change without notice. 1354 */ 1355 #ifdef _KERNEL 1356 #define DB_CKSUMSTART(mp) ((mp)->b_datap->db_cksumstart) 1357 #define DB_CKSUMEND(mp) ((mp)->b_datap->db_cksumend) 1358 #define DB_CKSUMSTUFF(mp) ((mp)->b_datap->db_cksumstuff) 1359 #define DB_CKSUMFLAGS(mp) ((mp)->b_datap->db_struioun.cksum.flags) 1360 #define DB_CKSUM16(mp) ((mp)->b_datap->db_cksum16) 1361 #define DB_CKSUM32(mp) ((mp)->b_datap->db_cksum32) 1362 #define DB_LSOFLAGS(mp) ((mp)->b_datap->db_struioun.cksum.flags) 1363 #define DB_LSOMSS(mp) ((mp)->b_datap->db_struioun.cksum.pad) 1364 #endif /* _KERNEL */ 1365 1366 #ifdef __cplusplus 1367 } 1368 #endif 1369 1370 1371 #endif /* _SYS_STRSUBR_H */ 1372