1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #ifndef _SYS_IB_IBTL_IBTI_COMMON_H 26 #define _SYS_IB_IBTL_IBTI_COMMON_H 27 28 /* 29 * ibti_common.h 30 * 31 * This file contains the shared/common transport data types and function 32 * prototypes. 33 */ 34 #include <sys/types.h> 35 #include <sys/ib/ib_types.h> 36 #include <sys/ib/ibtl/ibtl_status.h> 37 #include <sys/ib/ibtl/ibtl_types.h> 38 #include <sys/ib/ibtl/ibti_cm.h> 39 #include <sys/isa_defs.h> 40 #include <sys/byteorder.h> 41 42 #ifdef __cplusplus 43 extern "C" { 44 #endif 45 46 /* 47 * Max number of paths that can be requested in an ibt_get_paths() call, 48 * if IBT_PATH_PERF or IBT_PATH_AVAIL flag (ibt_path_flags_t) is set. 49 */ 50 #define IBT_MAX_SPECIAL_PATHS 2 51 52 /* 53 * The name of DDI Event, generated when the properties of IOC device 54 * node properties were modified. 55 */ 56 #define IB_PROP_UPDATE_EVENT "SUNW,IB:IB_PROP_UPDATE" 57 58 59 /* Transport Interface version */ 60 typedef enum ibt_version_e { 61 IBTI_V1 = 1, 62 IBTI_V2 = 2, /* FMR Support */ 63 IBTI_V3 = 3, 64 IBTI_V_CURR = IBTI_V3 65 } ibt_version_t; 66 67 /* 68 * Driver class type. Identifies a type of client driver so that 69 * "IBTF Policy" decisions can be made on a driver class basis. 70 * The last class should always be IBT_CLNT_NUM, and any new classes added 71 * must be defined before IBT_CLNT_NUM. The class values must be above 0. 72 * Any class values below or equal to 0 shall be invalid 73 */ 74 typedef enum ibt_clnt_class_e { 75 IBT_STORAGE_DEV = 0x1, /* SCSI, FC, etc.. */ 76 IBT_NETWORK_DEV, /* Network driver with associated client H/W */ 77 IBT_GENERIC_DEV, /* Generic client H/W device driver */ 78 IBT_NETWORK, /* Network driver with no associated */ 79 /* client H/W, e.g., IPoIB */ 80 IBT_GENERIC, /* A generic IB driver not */ 81 /* associated with client H/W */ 82 IBT_USER, /* A user application IBT interface driver */ 83 IBT_IBMA, /* The IBMA Module */ 84 IBT_CM, /* The CM Module */ 85 IBT_DM, /* The DM Module */ 86 IBT_DM_AGENT, /* DM Agent Module */ 87 IBT_GENERIC_MISC, /* Generic Misc Module */ 88 IBT_CLASS_NUM /* Place holder for class count */ 89 } ibt_clnt_class_t; 90 91 #define IBT_TEST_DEV 999 /* Place holder for modules that test IBTL */ 92 93 #define IBT_CLNT_DEVICE_CLASS(class) ((class) == IBT_STORAGE_DEV || \ 94 (class) == IBT_NETWORK_DEV || \ 95 (class) == IBT_GENERIC_DEV) 96 97 #define IBT_CLNT_GENERAL_CLASS(class) ((class) == IBT_NETWORK || \ 98 (class) == IBT_GENERIC || \ 99 (class) == IBT_DM_AGENT || \ 100 (class) == IBT_TEST_DEV || \ 101 (class) == IBT_GENERIC_MISC || \ 102 (class) == IBT_USER) 103 104 #define IBT_CLNT_MGMT_CLASS(class) ((class) == IBT_IBMA || \ 105 (class) == IBT_CM || \ 106 (class) == IBT_DM) 107 108 /* 109 * These are some special client classes which don't have a 'dip' hence have 110 * to be handled specially in ibt_attach, where we bypass the check for a valid 111 * dip if the client belongs to the class below. 112 */ 113 #define IBT_MISCMOD_CLIENTS(class) ((class) == IBT_IBMA || \ 114 (class) == IBT_CM || \ 115 (class) == IBT_DM || \ 116 (class) == IBT_DM_AGENT || \ 117 (class) == IBT_GENERIC_MISC || \ 118 (class) == IBT_TEST_DEV) 119 120 /* 121 * Event record & status returns for asynchronous events and errors. 122 */ 123 typedef struct ibt_async_event_s { 124 uint64_t ev_fma_ena; /* FMA Error data */ 125 ibt_channel_hdl_t ev_chan_hdl; /* Channel handle */ 126 ibt_cq_hdl_t ev_cq_hdl; /* CQ handle */ 127 ib_guid_t ev_hca_guid; /* HCA node GUID */ 128 ibt_srq_hdl_t ev_srq_hdl; /* SRQ handle */ 129 ibt_port_change_t ev_port_flags; /* Port Change flags */ 130 uint8_t ev_port; /* HCA port */ 131 } ibt_async_event_t; 132 133 /* 134 * IBT Client Callback function typedefs. 135 * 136 * ibt_async_handler_t 137 * Pointer to an async event/error handler function. This function is 138 * called when an async event/error is detected on a HCA that is being 139 * used by the IBT client driver that registered the function. 140 */ 141 typedef void (*ibt_async_handler_t)(void *clnt_private, 142 ibt_hca_hdl_t hca_hdl, ibt_async_code_t code, ibt_async_event_t *event); 143 144 /* 145 * IBT Client Memory Error Callback function typedefs. 146 * 147 * ibt_memory_handler_t 148 * Pointer to an memory event/error handler function. 149 */ 150 typedef void (*ibt_memory_handler_t)(void *clnt_private, 151 ibt_hca_hdl_t hca_hdl, ibt_mem_code_t code, ibt_mem_data_t *data); 152 153 /* 154 * Define a client module information structure. All clients MUST 155 * define a global of type ibt_clnt_modinfo_t. A pointer to this global 156 * is passed into the IBTF by a client when calling ibt_attach(). 157 * This struct must persist during the life of the client. 158 * 159 * The client's mi_async_handler is called when an async event/error is 160 * detected on a HCA that is being used by this client. 161 */ 162 typedef struct ibt_clnt_modinfo_s { 163 ibt_version_t mi_ibt_version; /* TI version */ 164 ibt_clnt_class_t mi_clnt_class; /* Type of client */ 165 ibt_async_handler_t mi_async_handler; /* Async Handler */ 166 ibt_memory_handler_t mi_reserved; /* Memory handler */ 167 char *mi_clnt_name; /* Client Name. */ 168 } ibt_clnt_modinfo_t; 169 170 171 /* 172 * Definitions for use with ibt_register_subnet_notices() 173 */ 174 typedef enum ibt_subnet_event_code_e { 175 IBT_SM_EVENT_MCG_CREATED = 1, 176 IBT_SM_EVENT_MCG_DELETED = 2, 177 IBT_SM_EVENT_AVAILABLE = 3, 178 IBT_SM_EVENT_UNAVAILABLE = 4, 179 IBT_SM_EVENT_GID_AVAIL = 5, 180 IBT_SM_EVENT_GID_UNAVAIL = 6 181 } ibt_subnet_event_code_t; 182 183 typedef struct ibt_subnet_event_s { 184 ib_gid_t sm_notice_gid; 185 } ibt_subnet_event_t; 186 187 typedef void (*ibt_sm_notice_handler_t)(void *private, ib_gid_t gid, 188 ibt_subnet_event_code_t code, ibt_subnet_event_t *event); 189 190 191 /* 192 * MTU Request type. 193 */ 194 typedef struct ibt_mtu_req_s { 195 ib_mtu_t r_mtu; /* Requested MTU */ 196 ibt_selector_t r_selector; /* Qualifier for r_mtu */ 197 } ibt_mtu_req_t; 198 199 200 /* 201 * Qflags, used by ibt_resize_queues(). 202 */ 203 typedef enum ibt_qflags_e { 204 IBT_SEND_Q = 1 << 0, /* Op applies to the Send Q */ 205 IBT_RECV_Q = 1 << 1 /* Op applies to the Recv Q */ 206 } ibt_qflags_t; 207 208 /* 209 * CQ priorities 210 * The IBTF will attempt to implement a coarse 3 level priority scheme 211 * (IBT_CQ_LOW, IBT_CQ_MEDIUM, IBT_CQ_HIGH) based on the class of client 212 * driver. The requested priority is not guaranteed. If a CI implementation 213 * has the ability to implement priority CQs, then the IBTF will take advantage 214 * of that when calling the CI to create a CQ by passing a priority indicator 215 * to the CI. 216 */ 217 typedef enum ibt_cq_priority_e { 218 IBT_CQ_DEFAULT = 0x0, 219 IBT_CQ_LOW = 0x1, 220 IBT_CQ_MEDIUM = 0x2, 221 IBT_CQ_HIGH = 0x3, 222 IBT_CQ_OPAQUE_1 = 0x4, 223 IBT_CQ_OPAQUE_2 = 0x5, 224 IBT_CQ_OPAQUE_3 = 0x6, 225 IBT_CQ_OPAQUE_4 = 0x7, 226 IBT_CQ_OPAQUE_5 = 0x8, 227 IBT_CQ_OPAQUE_6 = 0x9, 228 IBT_CQ_OPAQUE_7 = 0xA, 229 IBT_CQ_OPAQUE_8 = 0xB, 230 IBT_CQ_OPAQUE_9 = 0xC, 231 IBT_CQ_OPAQUE_10 = 0xD, 232 IBT_CQ_OPAQUE_11 = 0xE, 233 IBT_CQ_OPAQUE_12 = 0xF, 234 IBT_CQ_OPAQUE_13 = 0x10, 235 IBT_CQ_OPAQUE_14 = 0x11, 236 IBT_CQ_OPAQUE_15 = 0x12, 237 IBT_CQ_OPAQUE_16 = 0x13 238 } ibt_cq_priority_t; 239 240 /* 241 * Attributes when creating a Completion Queue Scheduling Handle. 242 */ 243 typedef struct ibt_cq_sched_attr_s { 244 ibt_cq_sched_flags_t cqs_flags; 245 ibt_cq_priority_t cqs_priority; 246 uint_t cqs_load; 247 ibt_sched_hdl_t cqs_affinity_hdl; 248 } ibt_cq_sched_attr_t; 249 250 251 /* 252 * ibt_cq_handler_t 253 * Pointer to a work request completion handler function. This function 254 * is called when a WR completes on a CQ that is being used by the IBTF 255 * client driver that registered the function. 256 */ 257 typedef void (*ibt_cq_handler_t)(ibt_cq_hdl_t ibt_cq, void *arg); 258 259 /* default CQ handler ID */ 260 #define IBT_CQ_HID_DEFAULT (1) 261 262 /* 263 * Service Data and flags. 264 * (IBTA Spec Release 1.1, Vol-1 Ref: 15.2.5.14.4) 265 * 266 * The ServiceData8.1 (sb_data8[0]) through ServiceData64.2 (sb_data64[1]) 267 * components together constitutes a 64-byte area in which any data may be 268 * placed. It is intended to be a convenient way for a service to provide its 269 * clients with some initial data. 270 * 271 * In addition, this 64-byte area is formally divided into a total of 30 272 * components, 16 8-bit (uint8_t) components, then 8 16-bit (uint16_t) 273 * components, then 6 32-bit (uint32_t) components, then 2 64-bit (uint64_t) 274 * components, thereby assigning ComponentMask bits (ibt_srv_data_flags_t) to 275 * variously-sized segments of the data. All data are in host endian format. 276 * This allows query operations (ibt_get_paths()) to be used which match 277 * parts of the Service Data, making it possible, for example, for 278 * service-specific parts of the ServiceData to serve as a binary-coded 279 * extension to the ServiceName for purposes of lookup. 280 */ 281 typedef enum ibt_srv_data_flags_e { 282 IBT_NO_SDATA = 0, 283 284 IBT_SDATA8_0 = (1 << 0), 285 IBT_SDATA8_1 = (1 << 1), 286 IBT_SDATA8_2 = (1 << 2), 287 IBT_SDATA8_3 = (1 << 3), 288 IBT_SDATA8_4 = (1 << 4), 289 IBT_SDATA8_5 = (1 << 5), 290 IBT_SDATA8_6 = (1 << 6), 291 IBT_SDATA8_7 = (1 << 7), 292 IBT_SDATA8_8 = (1 << 8), 293 IBT_SDATA8_9 = (1 << 9), 294 IBT_SDATA8_10 = (1 << 10), 295 IBT_SDATA8_11 = (1 << 11), 296 IBT_SDATA8_12 = (1 << 12), 297 IBT_SDATA8_13 = (1 << 13), 298 IBT_SDATA8_14 = (1 << 14), 299 IBT_SDATA8_15 = (1 << 15), 300 301 IBT_SDATA16_0 = (1 << 16), 302 IBT_SDATA16_1 = (1 << 17), 303 IBT_SDATA16_2 = (1 << 18), 304 IBT_SDATA16_3 = (1 << 19), 305 IBT_SDATA16_4 = (1 << 20), 306 IBT_SDATA16_5 = (1 << 21), 307 IBT_SDATA16_6 = (1 << 22), 308 IBT_SDATA16_7 = (1 << 23), 309 310 IBT_SDATA32_0 = (1 << 24), 311 IBT_SDATA32_1 = (1 << 25), 312 IBT_SDATA32_2 = (1 << 26), 313 IBT_SDATA32_3 = (1 << 27), 314 315 IBT_SDATA64_0 = (1 << 28), 316 IBT_SDATA64_1 = (1 << 29), 317 318 IBT_SDATA_ALL = 0x3FFFFFFF 319 } ibt_srv_data_flags_t; 320 321 typedef struct ibt_srv_data_s { 322 uint8_t s_data8[16]; /* 8-bit service data fields. */ 323 uint16_t s_data16[8]; /* 16-bit service data fields. */ 324 uint32_t s_data32[4]; /* 32-bit service data fields. */ 325 uint64_t s_data64[2]; /* 64-bit service data fields. */ 326 } ibt_srv_data_t; 327 328 /* 329 * Path flags, used in ibt_get_paths() 330 */ 331 typedef enum ibt_path_flags_e { 332 IBT_PATH_NO_FLAGS = 0, 333 IBT_PATH_APM = 1 << 0, /* APM is desired. */ 334 IBT_PATH_AVAIL = 1 << 2, 335 IBT_PATH_PERF = 1 << 3, 336 IBT_PATH_MULTI_SVC_DEST = 1 << 4, /* Multiple ServiceRecords */ 337 IBT_PATH_HOP = 1 << 5, /* pa_hop is specified. */ 338 IBT_PATH_PKEY = 1 << 6 /* pa_pkey is specified. */ 339 } ibt_path_flags_t; 340 341 /* 342 * Path attributes. 343 * 344 * The ibt_path_attr_t structure is used to specify required attributes in a 345 * path from the requesting (source) node to a specified destination node. 346 * Attributes that are don't care should be set to NULL or '0'. 347 * A destination must be specified, where a destination can be defined as 348 * one of the following: 349 * 350 * o Service Name 351 * o Service ID (SID) 352 * o Array of DGIDs. 353 * o Service Name and Array of DGIDs. 354 */ 355 typedef struct ibt_path_attr_s { 356 ib_gid_t *pa_dgids; /* Array of DGIDs */ 357 ib_gid_t pa_sgid; 358 ib_guid_t pa_hca_guid; 359 char *pa_sname; /* ASCII Service name */ 360 /* NULL Terminated */ 361 ib_svc_id_t pa_sid; /* Service ID */ 362 ibt_srv_data_flags_t pa_sd_flags; /* Service Data flags. */ 363 ibt_srv_data_t pa_sdata; /* Service Data */ 364 uint8_t pa_hca_port_num; 365 uint8_t pa_num_dgids; /* size of pa_dgids array */ 366 uint8_t pa_sl:4; 367 ibt_mtu_req_t pa_mtu; 368 ibt_srate_req_t pa_srate; 369 ibt_pkt_lt_req_t pa_pkt_lt; /* Packet Life Time Request */ 370 uint_t pa_flow:20; 371 uint8_t pa_hop; /* IBT_PATH_HOP */ 372 uint8_t pa_tclass; 373 ib_pkey_t pa_pkey; /* IBT_PATH_PKEY */ 374 } ibt_path_attr_t; 375 376 /* 377 * Path Information. 378 * 379 * The ibt_get_paths() performs SA Path record lookups to select a path(s) to 380 * a given destination(s), details of selected path(s) are returned in this 381 * structure. 382 * 383 * The ibt_path_info_t contains all the attributes of the best path(s), as 384 * as determined by IBTL, to the specified destination(s), including the 385 * local HCA and HCA port to use to access the fabric. 386 * 387 * The Service ID (pi_sid) and Service Data (pi_sdata) are returned only for 388 * lookups based on Service ID or/and Service Name. 389 */ 390 typedef struct ibt_path_info_s { 391 ib_guid_t pi_hca_guid; /* Local HCA GUID; 0 implies */ 392 /* this record is invalid */ 393 ib_svc_id_t pi_sid; /* Service ID */ 394 ibt_srv_data_t pi_sdata; /* Service Data */ 395 396 ibt_cep_path_t pi_prim_cep_path; /* Contains CEP adds info */ 397 ibt_cep_path_t pi_alt_cep_path; /* RC & UC Only, valid if */ 398 /* cep_hca_port_num is not */ 399 /* '0' */ 400 ib_mtu_t pi_path_mtu; /* Common path MTU */ 401 ib_time_t pi_prim_pkt_lt; 402 ib_time_t pi_alt_pkt_lt; 403 } ibt_path_info_t; 404 405 /* 406 * Optional Alternate Path attributes. 407 * 408 * The ibt_alt_path_attr_t structure is used to specify additional optional 409 * attributes when requesting an alternate path for an existing channel. 410 * 411 * Attributes that are don't care should be set to NULL or '0'. 412 */ 413 typedef struct ibt_alt_path_attr_s { 414 ib_gid_t apa_sgid; 415 ib_gid_t apa_dgid; 416 ibt_srate_req_t apa_srate; 417 ibt_pkt_lt_req_t apa_pkt_lt; /* Packet Life Time Request */ 418 uint_t apa_flow:20; 419 uint8_t apa_sl:4; 420 uint8_t apa_hop; 421 uint8_t apa_tclass; 422 } ibt_alt_path_attr_t; 423 424 /* 425 * Path Information for Alternate Path - input to ibt_set_alt_path(). 426 */ 427 typedef struct ibt_alt_path_info_s { 428 ibt_cep_path_t ap_alt_cep_path; /* RC & UC Only, valid if */ 429 /* cep_hca_port_num is not */ 430 /* '0' */ 431 ib_time_t ap_alt_pkt_lt; 432 } ibt_alt_path_info_t; 433 434 /* 435 * Open Channel flags, Used in ibt_open_rc_channel call 436 */ 437 typedef enum ibt_chan_open_flags_e { 438 IBT_OCHAN_NO_FLAGS = 0, 439 IBT_OCHAN_REDIRECTED = 1 << 0, 440 IBT_OCHAN_PORT_REDIRECTED = 1 << 1, 441 IBT_OCHAN_DUP = 1 << 2, 442 IBT_OCHAN_PORT_FIXED = 1 << 3, 443 IBT_OCHAN_OPAQUE1 = 1 << 4, 444 IBT_OCHAN_OPAQUE2 = 1 << 5, 445 IBT_OCHAN_OPAQUE3 = 1 << 6, 446 IBT_OCHAN_OPAQUE4 = 1 << 7, 447 IBT_OCHAN_OPAQUE5 = 1 << 8, 448 IBT_OCHAN_OPAQUE6 = 1 << 9 449 } ibt_chan_open_flags_t; 450 451 /* 452 * Arguments for ibt_open_rc_channel(). 453 * 454 * oc_priv_data should be NULL or point to a buffer allocated by the caller, 455 * the size of which should be in oc_priv_data_len, where oc_priv_data_len <= 456 * IBT_REQ_PRIV_DATA_SZ. 457 * 458 * When ibt_open_rc_channel returns with ibt_cm_reason_t of 459 * IBT_CM_REDIRECT_PORT, the client can re-issue ibt_open_rc_channel setting 460 * new fields as follows: 461 * 462 * Set (ibt_chan_args_t)->oc_cm_cep_path = 463 * original (ibt_chan_open_args_t)->oc_path->pi_prim_cep_path. 464 * Set (ibt_chan_args_t)->oc_cm_pkt_lt = 465 * original (ibt_chan_open_args_t)->oc_prim_pkt_lt. 466 * Update (ibt_chan_args_t)->oc_path based on path information returned 467 * from ibt_get_paths using the gid in the return data below: 468 * (ibt_rc_returns_t)->rc_arej_info.ari_redirect_info.ari_gid. 469 * Set flags to IBT_OCHAN_PORT_REDIRECTED. 470 * 471 * Note : oc_cm_path is not used for any other scenario, and must be set for 472 * IBT_OCHAN_PORT_REDIRECTED. 473 * 474 * When ibt_open_rc_channel returns with ibt_cm_reason_t of 475 * IBT_CM_REDIRECT_CM, the client can re-issue ibt_open_rc_channel setting 476 * new fields as follows: 477 * 478 * Update (ibt_chan_args_t)->oc_path based on path information returned 479 * from ibt_get_paths using the return data in 480 * (ibt_rc_returns_t)->rc_arej_info.ari_redirect_info. 481 * 482 * Set (ibt_chan_args_t)->oc_cm_redirect_info = 483 * Returned (ibt_rc_returns_t)->rc_arej_info.ari_redirect_info. 484 * Set flags to IBT_OCHAN_REDIRECTED. 485 * 486 * Note: 487 * 488 * IBT_OCHAN_PORT_REDIRECTED flag cannot be used to specify a remote CM MAD 489 * address, that is on a different subnet than the RC connection itself. 490 * 491 * Not specified attributes should be set to "NULL" or "0". 492 */ 493 typedef struct ibt_chan_open_args_s { 494 ibt_path_info_t *oc_path; /* Primary & Alternate */ 495 ibt_cm_handler_t oc_cm_handler; /* cm_handler - required */ 496 void *oc_cm_clnt_private; /* First argument to */ 497 /* cm_handler */ 498 ibt_rnr_retry_cnt_t oc_path_rnr_retry_cnt; 499 uint8_t oc_path_retry_cnt:3; 500 uint8_t oc_rdma_ra_out; 501 uint8_t oc_rdma_ra_in; 502 ibt_priv_data_len_t oc_priv_data_len; /* Number of bytes of */ 503 /* REQ Private data */ 504 void *oc_priv_data; /* REQ private data */ 505 ibt_channel_hdl_t oc_dup_channel; /* IBT_OCHAN_DUP */ 506 ibt_redirect_info_t *oc_cm_redirect_info; /* Redirect params */ 507 /* for port and CM */ 508 /* redirection */ 509 ibt_cep_path_t *oc_cm_cep_path; /* Optional Path for */ 510 /* CM MADs on */ 511 /* port redirection */ 512 ib_time_t oc_cm_pkt_lt; /* Pkt life time for */ 513 /* CM MADs */ 514 uint32_t oc_opaque1:4; 515 uint32_t oc_opaque2:24; 516 uint32_t oc_opaque3; 517 uint32_t oc_opaque4; 518 } ibt_chan_open_args_t; 519 520 521 /* 522 * Define an optional RC return arguments structure. This contains return 523 * parameters from ibt_open_rc_channel() when called in BLOCKING mode. 524 * 525 * rc_priv_data should be NULL or point to a buffer allocated by the caller, 526 * the size of which should be in rc_priv_data_len, where rc_priv_data_len <= 527 * IBT_REP_PRIV_DATA_SZ. 528 */ 529 typedef struct ibt_rc_returns_s { 530 uint8_t rc_rdma_ra_in; /* Arbitrated resp resources */ 531 uint8_t rc_rdma_ra_out; /* Arbitrated initiator depth */ 532 ibt_arej_info_t rc_arej_info; 533 ibt_cm_reason_t rc_status; 534 uint8_t rc_failover_status; /* Failover status */ 535 ibt_priv_data_len_t rc_priv_data_len; 536 void *rc_priv_data; 537 } ibt_rc_returns_t; 538 539 /* 540 * Define a callback function that can be used in Non-Blocking calls to 541 * ibt_recycle_rc(). 542 */ 543 544 typedef void (*ibt_recycle_handler_t)(ibt_status_t ibt_status, void *arg); 545 546 /* 547 * Define an optional return arguments structure from ibt_set_alt_path() 548 * This contains return parameters, when called in BLOCKING mode. 549 * 550 * ap_priv_data should be NULL or point to a buffer allocated by the caller, 551 * the size of which should be in ap_priv_data_len, where ap_priv_data_len <= 552 * IBT_APR_PRIV_DATA_SZ. 553 * The private data from APR is returned in ap_priv_data. 554 * The caller specifies amount of APR private data to be returned in 555 * ap_priv_data_len. 556 */ 557 typedef struct ibt_ap_returns_s { 558 ibt_ap_status_t ap_status; 559 boolean_t ap_arej_info_valid; 560 ibt_arej_info_t ap_arej_info; /* Only valid if redirect */ 561 ibt_priv_data_len_t ap_priv_data_len; 562 void *ap_priv_data; 563 } ibt_ap_returns_t; 564 565 /* 566 * UD remote destination attributes. 567 * 568 * ud_sid, ud_addr, ud_pkt_lt and ud_pkey_ix must be specified. 569 * These values can be as returned in an ibt_path_info_t struct from an 570 * ibt_get_paths() call. 571 * 572 * ud_priv_data should be NULL or point to a buffer allocated by the caller, 573 * the size of which is in ud_priv_data_len, where ud_priv_data_len <= 574 * IBT_SIDR_REQ_PRIV_DATA_SZ. 575 */ 576 typedef struct ibt_ud_dest_attr_s { 577 ib_svc_id_t ud_sid; /* Service ID */ 578 ibt_adds_vect_t *ud_addr; /* Address Info */ 579 uint16_t ud_pkey_ix; /* Pkey Index */ 580 ib_time_t ud_pkt_lt; 581 ibt_cm_ud_handler_t ud_cm_handler; /* An optional CM UD event */ 582 /* which must be NULL */ 583 /* if not specified. */ 584 void *ud_cm_private; /* First arg to ud_cm_handler */ 585 ibt_priv_data_len_t ud_priv_data_len; 586 void *ud_priv_data; /* SIDR REQ private data */ 587 } ibt_ud_dest_attr_t; 588 589 /* 590 * Define an optional UD return arguments structure. 591 * 592 * ud_priv_data should be NULL or point to a buffer allocated by the caller, 593 * the size of which should be in ud_priv_data_len, where ud_priv_data_len <= 594 * IBT_SIDR_REP_PRIV_DATA_SZ. 595 */ 596 typedef struct ibt_ud_returns_s { 597 ibt_sidr_status_t ud_status; 598 ibt_redirect_info_t ud_redirect; 599 ib_qpn_t ud_dqpn; /* Returned destination QPN */ 600 ib_qkey_t ud_qkey; /* Q_Key for destination QPN */ 601 ibt_priv_data_len_t ud_priv_data_len; 602 void *ud_priv_data; 603 } ibt_ud_returns_t; 604 605 /* 606 * Multicast group attributes 607 * Not specified attributes should be set to "NULL" or "0". 608 * Used by ibt_join_mcg()/ibt_query_mcg(). 609 * 610 * mc_qkey, mc_pkey, mc_flow, mc_tclass, mc_sl, mc_join_state are required for 611 * create - ibt_join_mcg(). 612 */ 613 typedef struct ibt_mcg_attr_s { 614 ib_gid_t mc_mgid; /* MGID */ 615 ib_gid_t mc_pgid; /* SGID of the end port being */ 616 /* added to the MCG. */ 617 ib_qkey_t mc_qkey; /* Q_Key */ 618 ib_pkey_t mc_pkey; /* Partition key for this MCG */ 619 ibt_mtu_req_t mc_mtu_req; /* MTU */ 620 ibt_srate_req_t mc_rate_req; /* Static rate */ 621 ibt_pkt_lt_req_t mc_pkt_lt_req; /* Packet Life Time Request */ 622 uint_t mc_flow:20; /* FlowLabel. */ 623 uint8_t mc_hop; /* HopLimit */ 624 uint8_t mc_tclass; /* Traffic Class. */ 625 uint8_t mc_sl:4; /* Service Level */ 626 uint8_t mc_scope:4, /* Multicast Address Scope */ 627 mc_join_state:4; /* FULL For create */ 628 ib_lid_t mc_opaque1; 629 } ibt_mcg_attr_t; 630 631 /* 632 * Multicast group attributes. 633 * returned by ibt_join_mcg()/ibt_query_mcg(). 634 */ 635 typedef struct ibt_mcg_info_s { 636 ibt_adds_vect_t mc_adds_vect; /* Address information */ 637 ib_mtu_t mc_mtu; /* MTU */ 638 ib_qkey_t mc_qkey; /* Q_Key */ 639 uint16_t mc_pkey_ix; /* Pkey Index */ 640 uint8_t mc_scope:4; /* Multicast Address Scope */ 641 clock_t mc_opaque2; 642 } ibt_mcg_info_t; 643 644 /* 645 * Define a callback function that can be used in Non-Blocking calls to 646 * ibt_join_mcg(). 647 */ 648 typedef void (*ibt_mcg_handler_t)(void *arg, ibt_status_t retval, 649 ibt_mcg_info_t *mcg_info_p); 650 651 652 /* 653 * Service Flags - sd_flags 654 * 655 * IBT_SRV_PEER_TYPE_SID Peer-to-peer Service IDs. 656 */ 657 658 typedef enum ibt_service_flags_e { 659 IBT_SRV_NO_FLAGS = 0x0, 660 IBT_SRV_PEER_TYPE_SID = 0x1 661 } ibt_service_flags_t; 662 663 /* 664 * Define a Service ID Registration structure. 665 */ 666 typedef struct ibt_srv_desc_s { 667 ibt_cm_ud_handler_t sd_ud_handler; /* UD Service Handler */ 668 ibt_cm_handler_t sd_handler; /* Non-UD Service Handler */ 669 ibt_service_flags_t sd_flags; /* Flags */ 670 } ibt_srv_desc_t; 671 672 /* 673 * Flag to indicate ibt_bind_service() to or NOT-to clean-up Stale matching 674 * Local Service Records with SA prior to binding the new request. 675 */ 676 #define IBT_SBIND_NO_FLAGS 0 677 #define IBT_SBIND_NO_CLEANUP 1 678 679 /* 680 * Define a Service ID Binding structure (data for service records). 681 */ 682 typedef struct ibt_srv_bind_s { 683 uint64_t sb_key[2]; /* Service Key */ 684 char *sb_name; /* Service Name (up to 63 chars) */ 685 uint32_t sb_lease; /* Service Lease period (in seconds) */ 686 ib_pkey_t sb_pkey; /* Service P_Key */ 687 ibt_srv_data_t sb_data; /* Service Data */ 688 uint_t sb_flag; /* indicates to/not-to clean-up stale */ 689 /* matching local service records. */ 690 } ibt_srv_bind_t; 691 692 /* 693 * ibt_cm_delay() flags. 694 * 695 * Refer to InfiniBand Architecture Release Volume 1 Rev 1.0a: 696 * Section 12.6.6 MRA 697 */ 698 typedef enum ibt_cmdelay_flags_e { 699 IBT_CM_DELAY_REQ = 0, 700 IBT_CM_DELAY_REP = 1, 701 IBT_CM_DELAY_LAP = 2 702 } ibt_cmdelay_flags_t; 703 704 /* 705 * The payload for DDI events passed on IB_PROP_UPDATE_EVENT. 706 * This is passed as the bus nexus data to event_handler(9e). 707 */ 708 typedef struct ibt_prop_update_payload_s { 709 union { 710 struct { 711 uint32_t srv_updated:1; 712 uint32_t gid_updated:1; 713 } _ib_prop_update_struct; 714 uint32_t prop_updated; 715 } _ib_prop_update_union; 716 ibt_status_t ib_reprobe_status; 717 718 #define ib_srv_prop_updated \ 719 _ib_prop_update_union._ib_prop_update_struct.srv_updated 720 #define ib_gid_prop_updated \ 721 _ib_prop_update_union._ib_prop_update_struct.gid_updated 722 #define ib_prop_updated \ 723 _ib_prop_update_union.prop_updated 724 } ibt_prop_update_payload_t; 725 726 727 /* 728 * FUNCTION PROTOTYPES. 729 */ 730 731 /* 732 * ibt_attach() and ibt_detach(): 733 * These are the calls into IBTF used during client driver attach() and 734 * detach(). 735 * 736 * The IBTF returns an ibt_clnt_hdl_t to the client. This handle is used 737 * to identify this client device in all subsequent calls into the IBTF. 738 * 739 * The ibt_detach() routine is called from a client driver's detach() 740 * routine to deregister itself from the IBTF. 741 */ 742 ibt_status_t ibt_attach(ibt_clnt_modinfo_t *mod_infop, dev_info_t *arg, 743 void *clnt_private, ibt_clnt_hdl_t *ibt_hdl_p); 744 745 ibt_status_t ibt_detach(ibt_clnt_hdl_t ibt_hdl); 746 747 /* 748 * HCA FUNCTIONS 749 */ 750 751 /* 752 * ibt_get_hca_list() 753 * Returns the number of HCAs in a system and their node GUIDS. 754 * 755 * If hca_list_p is not NULL then the memory for the array of GUIDs is 756 * allocated by the IBTF and should be freed by the caller using 757 * ibt_free_hca_list(). If hca_list_p is NULL then no memory is allocated 758 * by ibt_get_hca_list and only the number of HCAs in a system is returned. 759 * 760 * It is assumed that the caller can block in kmem_alloc. 761 * 762 * ibt_free_hca_list() 763 * Free the memory allocated by ibt_get_hca_list(). 764 */ 765 uint_t ibt_get_hca_list(ib_guid_t **hca_list_p); 766 767 void ibt_free_hca_list(ib_guid_t *hca_list, uint_t entries); 768 769 /* 770 * ibt_open_hca() - Open/Close a HCA. HCA can only be opened/closed 771 * ibt_close_hca() once. ibt_open_hca() takes a client's ibt handle 772 * and a GUID and returns a unique IBT client HCA 773 * handle. 774 * 775 * These routines can not be called from interrupt context. 776 */ 777 ibt_status_t ibt_open_hca(ibt_clnt_hdl_t ibt_hdl, ib_guid_t hca_guid, 778 ibt_hca_hdl_t *hca_hdl); 779 780 ibt_status_t ibt_close_hca(ibt_hca_hdl_t hca_hdl); 781 782 783 /* 784 * ibt_query_hca() 785 * ibt_query_hca_byguid() 786 * Returns the static attributes of the specified HCA 787 */ 788 ibt_status_t ibt_query_hca(ibt_hca_hdl_t hca_hdl, ibt_hca_attr_t *hca_attrs); 789 790 ibt_status_t ibt_query_hca_byguid(ib_guid_t hca_guid, 791 ibt_hca_attr_t *hca_attrs); 792 793 794 /* 795 * ibt_query_hca_ports() 796 * ibt_query_hca_ports_byguid() 797 * Returns HCA port/ports attributes for the specified HCA port/ports. 798 * ibt_query_hca_ports() allocates the memory required for the 799 * ibt_hca_portinfo_t struct as well as the memory required for the SGID 800 * and P_Key tables contained within that struct. 801 * 802 * ibt_free_portinfo() 803 * Frees the memory allocated for a specified ibt_hca_portinfo_t struct. 804 */ 805 ibt_status_t ibt_query_hca_ports(ibt_hca_hdl_t hca_hdl, uint8_t port, 806 ibt_hca_portinfo_t **port_info_p, uint_t *ports_p, uint_t *size_p); 807 808 ibt_status_t ibt_query_hca_ports_byguid(ib_guid_t hca_guid, uint8_t port, 809 ibt_hca_portinfo_t **port_info_p, uint_t *ports_p, uint_t *size_p); 810 811 void ibt_free_portinfo(ibt_hca_portinfo_t *port_info, uint_t size); 812 813 /* 814 * ibt_set_hca_private() - Set/get the client private data. 815 * ibt_get_hca_private() 816 */ 817 void ibt_set_hca_private(ibt_hca_hdl_t hca_hdl, void *clnt_private); 818 void *ibt_get_hca_private(ibt_hca_hdl_t hca_hdl); 819 820 /* 821 * ibt_hca_handle_to_guid() 822 * A helper function to retrieve HCA GUID for the specified handle. 823 * Returns HCA GUID on which the specified Channel is allocated. Valid 824 * if it is non-NULL on return. 825 */ 826 ib_guid_t ibt_hca_handle_to_guid(ibt_hca_hdl_t hca); 827 828 /* 829 * ibt_hca_guid_to_handle() 830 * A helper function to retrieve a hca handle from a HCA GUID. 831 */ 832 ibt_status_t ibt_hca_guid_to_handle(ibt_clnt_hdl_t ibt_hdl, ib_guid_t hca_guid, 833 ibt_hca_hdl_t *hca_hdl); 834 835 /* 836 * CONNECTION ESTABLISHMENT/TEAR DOWN FUNCTIONS. 837 */ 838 839 /* 840 * ibt_get_paths 841 * Finds the best path to a specified destination (as determined by the 842 * IBTL) that satisfies the requirements specified in an ibt_path_attr_t 843 * struct. 844 */ 845 ibt_status_t ibt_get_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 846 ibt_path_attr_t *attr, uint8_t max_paths, ibt_path_info_t *paths, 847 uint8_t *num_paths_p); 848 849 850 /* 851 * Callback function that can be used in ibt_aget_paths(), a Non-Blocking 852 * version of ibt_get_paths(). 853 */ 854 typedef void (*ibt_path_handler_t)(void *arg, ibt_status_t retval, 855 ibt_path_info_t *paths, uint8_t num_paths); 856 857 /* 858 * Find path(s) to a given destination or service asynchronously. 859 * ibt_aget_paths() is a Non-Blocking version of ibt_get_paths(). 860 */ 861 ibt_status_t ibt_aget_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 862 ibt_path_attr_t *attr, uint8_t max_paths, ibt_path_handler_t func, 863 void *arg); 864 865 /* 866 * ibt_get_alt_path 867 * Finds the best alternate path to a specified channel (as determined by 868 * the IBTL) that satisfies the requirements specified in an 869 * ibt_alt_path_attr_t struct. The specified channel must have been 870 * previously opened successfully using ibt_open_rc_channel. 871 */ 872 ibt_status_t ibt_get_alt_path(ibt_channel_hdl_t chan, ibt_path_flags_t flags, 873 ibt_alt_path_attr_t *attr, ibt_alt_path_info_t *alt_path); 874 875 /* 876 * ibt_open_rc_channel 877 * ibt_open_rc_channel() opens a previously allocated RC communication 878 * channel. The IBTL initiates the channel establishment protocol. 879 */ 880 ibt_status_t ibt_open_rc_channel(ibt_channel_hdl_t rc_chan, 881 ibt_chan_open_flags_t flags, ibt_execution_mode_t mode, 882 ibt_chan_open_args_t *args, ibt_rc_returns_t *returns); 883 884 /* 885 * ibt_close_rc_channel 886 * Close the specified channel. Outstanding work requests are flushed 887 * so that the client can do the associated clean up. After that, the 888 * client will usually deregister the previously registered memory, 889 * then free the channel by calling ibt_free_rc_channel(). 890 * 891 * This function will reuse CM event Handler provided in 892 * ibt_open_rc_channel(). 893 */ 894 ibt_status_t ibt_close_rc_channel(ibt_channel_hdl_t rc_chan, 895 ibt_execution_mode_t mode, void *priv_data, 896 ibt_priv_data_len_t priv_data_len, uint8_t *ret_status, 897 void *ret_priv_data, ibt_priv_data_len_t *ret_priv_data_len_p); 898 899 /* 900 * ibt_prime_close_rc_channel 901 * 902 * Allocates resources required for a close rc channel operation. 903 * Calling ibt_prime_close_rc_channel() allows a channel to be 904 * subsequently closed in interrupt context. 905 * 906 * A call is first made to ibt_prime_close_rc_channel in non-interrupt 907 * context, followed by ibt_close_rc_channel in non-blocking mode from 908 * interrupt context 909 * 910 * ibt_prime_close_rc_channel() can only be called on a previously opened 911 * channel. 912 */ 913 ibt_status_t ibt_prime_close_rc_channel(ibt_channel_hdl_t rc_chan); 914 915 /* 916 * ibt_recycle_rc 917 * 918 * Recycle a RC channel which has transitioned to Error state. The 919 * ibt_recycle_rc() function transitions the channel from Error 920 * state (IBT_STATE_ERROR) to the state ready for use by 921 * ibt_open_rc_channel. Basically, this function is very similar to 922 * ibt_alloc_rc_channel, but reuses an existing RC channel. 923 * 924 * Clients are allowed to make resource clean up/free calls in the CM handler 925 * 926 * Client(s) must not invoke blocking version (ie., func specified as NULL) of 927 * ibt_recycle_rc from cm callback for IBT_CM_EVENT_CONN_CLOSED 928 * 929 * Clients are strongly advised not to issue blocking calls from func, as this 930 * would block the CM threads, and could delay or block other client connections 931 * and ibtl related API invocations. 932 */ 933 ibt_status_t ibt_recycle_rc(ibt_channel_hdl_t rc_chan, ibt_cep_flags_t control, 934 uint8_t hca_port_num, ibt_recycle_handler_t func, void *arg); 935 936 /* 937 * ibt_recycle_ud 938 * 939 * Recycle a UD channel which has transitioned to Error state. The 940 * ibt_recycle_ud() function transitions the channel from Error 941 * state (IBT_STATE_ERROR) to a usable state (IBT_STATE_RTS). 942 * Basically, this function is very similar to ibt_alloc_ud_channel, 943 * but reuses an existing UD channel. 944 */ 945 ibt_status_t ibt_recycle_ud(ibt_channel_hdl_t ud_chan, uint8_t hca_port_num, 946 uint16_t pkey_ix, ib_qkey_t qkey); 947 948 /* 949 * MODIFY CHANNEL ATTRIBUTE FUNCTIONs. 950 */ 951 952 /* 953 * ibt_pause_sendq 954 * ibt_unpause_sendq 955 * Place the send queue of the specified channel into the send queue 956 * drained state. 957 * Applicable for both RC and UD channels. 958 */ 959 ibt_status_t ibt_pause_sendq(ibt_channel_hdl_t chan, 960 ibt_cep_modify_flags_t modify_flags); 961 962 ibt_status_t ibt_unpause_sendq(ibt_channel_hdl_t chan); 963 964 /* 965 * ibt_resize_queues() 966 * Resize the SendQ/RecvQ sizes of a channel. 967 * 968 * Applicable for both RC and UD channels. 969 */ 970 ibt_status_t ibt_resize_queues(ibt_channel_hdl_t chan, ibt_qflags_t flags, 971 ibt_queue_sizes_t *request_sz, ibt_queue_sizes_t *actual_sz); 972 973 /* 974 * ibt_query_queues() 975 * 976 * Query the SendQ/RecvQ sizes of a channel. 977 * Applicable for both RC and UD channels. 978 */ 979 ibt_status_t ibt_query_queues(ibt_channel_hdl_t chan, 980 ibt_queue_sizes_t *actual_sz); 981 982 /* 983 * ibt_modify_rdma 984 * Enable/disable RDMA operations. 985 * 986 * Applicable for RC channels only. 987 */ 988 ibt_status_t ibt_modify_rdma(ibt_channel_hdl_t rc_chan, 989 ibt_cep_modify_flags_t modify_flags, ibt_cep_flags_t flags); 990 991 992 /* 993 * ibt_set_rdma_resource 994 * Change the number of resources to be used for incoming and outgoing 995 * RDMA reads & Atomics. 996 */ 997 ibt_status_t ibt_set_rdma_resource(ibt_channel_hdl_t rc_chan, 998 ibt_cep_modify_flags_t modify_flags, uint8_t rdma_ra_out, 999 uint8_t rdma_ra_in); 1000 1001 /* 1002 * ibt_change_port 1003 * Change the primary physical port of an RC channel. (This is done only 1004 * if HCA supports this capability). Can only be called on a paused 1005 * channel. 1006 * Applicable for RC channels only. 1007 */ 1008 ibt_status_t ibt_change_port(ibt_channel_hdl_t rc_chan, uint8_t port_num); 1009 1010 1011 /* 1012 * SERVICE REGISTRATION FUNCTIONS 1013 */ 1014 1015 /* 1016 * ibt_register_service() 1017 * ibt_deregister_service() 1018 * Register/deregister a Service (range of Service IDs) with the IBTF. 1019 * 1020 * ibt_bind_service() 1021 * ibt_unbind_service() 1022 * ibt_unbind_all_services() 1023 * Bind a Service to a given port (GID), and optionally create 1024 * service record(s) with the SA for ibt_get_paths() to find. 1025 */ 1026 ibt_status_t ibt_register_service(ibt_clnt_hdl_t ibt_hdl, 1027 ibt_srv_desc_t *service, ib_svc_id_t sid, int num_sids, 1028 ibt_srv_hdl_t *srv_hdl_p, ib_svc_id_t *ret_sid_p); 1029 1030 ibt_status_t ibt_deregister_service(ibt_clnt_hdl_t ibt_hdl, 1031 ibt_srv_hdl_t srv_hdl); 1032 1033 ibt_status_t ibt_bind_service(ibt_srv_hdl_t srv_hdl, ib_gid_t gid, 1034 ibt_srv_bind_t *srv_bind, void *cm_private, ibt_sbind_hdl_t *sb_hdl_p); 1035 1036 ibt_status_t ibt_unbind_service(ibt_srv_hdl_t srv_hdl, ibt_sbind_hdl_t sb_hdl); 1037 ibt_status_t ibt_unbind_all_services(ibt_srv_hdl_t srv_hdl); 1038 1039 /* 1040 * ibt_cm_delay 1041 * A client CM handler/srv_handler function can call this function to 1042 * extend its response time to a CM event. 1043 * Applicable for RC channels only. 1044 */ 1045 ibt_status_t ibt_cm_delay(ibt_cmdelay_flags_t flags, void *cm_session_id, 1046 clock_t service_time, void *priv_data, ibt_priv_data_len_t priv_data_len); 1047 1048 /* 1049 * ibt_cm_proceed 1050 * 1051 * An IBT client calls ibt_cm_proceed() to proceed with a connection that 1052 * previously deferred by the client returning IBT_CM_DEFER on a CM handler 1053 * callback. CM events that can be deferred and continued with ibt_cm_proceed() 1054 * are REQ_RCV, REP_RCV, LAP_RCV, and DREQ_RCV. 1055 * 1056 * NOTE : 1057 * 1058 * Typically CM completes processing of a client's CM handler return, with 1059 * IBT_CM_DEFER status, before processing of the corresponding ibt_cm_proceed() 1060 * is started. However a race exists where by CM may not have completed the 1061 * client's handler return processing when ibt_cm_proceed() is called by a 1062 * client. In this case ibt_cm_proceed() will block until processing of the 1063 * client's CM handler return is complete. 1064 * 1065 * A client that returns IBT_CM_DEFER from the cm handler must 1066 * subsequently make a call to ibt_cm_proceed(). It is illegal to call 1067 * ibt_cm_proceed() on a channel that has not had the connection 1068 * establishment deferred. 1069 * 1070 * Client cannot call ibt_cm_proceed from the cm handler. 1071 */ 1072 ibt_status_t ibt_cm_proceed(ibt_cm_event_type_t event, void *session_id, 1073 ibt_cm_status_t status, ibt_cm_proceed_reply_t *cm_event_data, 1074 void *priv_data, ibt_priv_data_len_t priv_data_len); 1075 1076 /* 1077 * ibt_cm_ud_proceed 1078 * 1079 * An IBT client calls ibt_cm_ud_proceed() to proceed with an 1080 * IBT_CM_UD_EVENT_SIDR_REQ UD event that was previously deferred by the 1081 * client returning IBT_CM_DEFER on a CM UD handler callback. 1082 * NOTE : 1083 * 1084 * Typically CM completes processing of a client's CM handler return, with 1085 * IBT_CM_DEFER status, before processing of the corresponding 1086 * ibt_cm_ud_proceed() is started. However a race exists where by CM may not 1087 * have completed the client's handler return processing when 1088 * ibt_cm_ud_proceed() is called by a client. In this case ibt_cm_ud_proceed() 1089 * will block until processing of the client's CM handler return is complete. 1090 * 1091 * A client that returns IBT_CM_DEFER from the cm handler must 1092 * subsequently make a call to ibt_cm_ud_proceed(). It is illegal to call 1093 * ibt_cm_ud_proceed() on a channel that has not had the connection 1094 * establishment deferred. 1095 * 1096 * Client cannot call ibt_cm_ud_proceed from the cm handler. 1097 */ 1098 ibt_status_t ibt_cm_ud_proceed(void *session_id, ibt_channel_hdl_t ud_channel, 1099 ibt_cm_status_t status, ibt_redirect_info_t *redirect_infop, 1100 void *priv_data, ibt_priv_data_len_t priv_data_len); 1101 1102 1103 /* 1104 * COMPLETION QUEUES. 1105 * 1106 * ibt_alloc_cq_sched() 1107 * Reserve CQ scheduling class resources 1108 * 1109 * ibt_free_cq_sched() 1110 * Free CQ scheduling class resources 1111 */ 1112 ibt_status_t ibt_alloc_cq_sched(ibt_hca_hdl_t hca_hdl, 1113 ibt_cq_sched_attr_t *attr, ibt_sched_hdl_t *sched_hdl_p); 1114 1115 ibt_status_t ibt_free_cq_sched(ibt_hca_hdl_t hca_hdl, 1116 ibt_sched_hdl_t sched_hdl, uint_t load); 1117 1118 /* 1119 * ibt_alloc_cq() 1120 * Allocate a completion queue. 1121 */ 1122 ibt_status_t ibt_alloc_cq(ibt_hca_hdl_t hca_hdl, ibt_cq_attr_t *cq_attr, 1123 ibt_cq_hdl_t *ibt_cq_p, uint_t *real_size); 1124 1125 /* 1126 * ibt_free_cq() 1127 * Free allocated CQ resources. 1128 */ 1129 ibt_status_t ibt_free_cq(ibt_cq_hdl_t ibt_cq); 1130 1131 1132 /* 1133 * ibt_enable_cq_notify() 1134 * Enable notification requests on the specified CQ. 1135 * Applicable for both RC and UD channels. 1136 * 1137 * Completion notifications are disabled by setting the completion 1138 * handler to NULL by calling ibt_set_cq_handler(). 1139 */ 1140 ibt_status_t ibt_enable_cq_notify(ibt_cq_hdl_t ibt_cq, 1141 ibt_cq_notify_flags_t notify_type); 1142 1143 /* 1144 * ibt_set_cq_handler() 1145 * Register a work request completion handler with the IBTF. 1146 * Applicable for both RC and UD channels. 1147 * 1148 * Completion notifications are disabled by setting the completion 1149 * handler to NULL. When setting the handler to NULL, no additional 1150 * calls to the CQ handler will be initiated. 1151 * 1152 * This function does not otherwise change the state of previous 1153 * calls to ibt_enable_cq_notify(). 1154 */ 1155 void ibt_set_cq_handler(ibt_cq_hdl_t ibt_cq, 1156 ibt_cq_handler_t completion_handler, void *arg); 1157 1158 /* 1159 * ibt_poll_cq() 1160 * Poll the specified CQ for the completion of work requests (WRs). 1161 * If the CQ contains completed WRs, up to num_wc of them are returned. 1162 * Applicable for both RC and UD channels. 1163 */ 1164 ibt_status_t ibt_poll_cq(ibt_cq_hdl_t ibt_cq, ibt_wc_t *work_completions, 1165 uint_t num_wc, uint_t *num_polled); 1166 1167 /* 1168 * ibt_query_cq() 1169 * Return the total number of entries in the CQ. 1170 */ 1171 ibt_status_t ibt_query_cq(ibt_cq_hdl_t ibt_cq, uint_t *entries, 1172 uint_t *count_p, uint_t *usec_p, ibt_cq_handler_id_t *hid_p); 1173 1174 /* 1175 * ibt_resize_cq() 1176 * Change the size of a CQ. 1177 */ 1178 ibt_status_t ibt_resize_cq(ibt_cq_hdl_t ibt_cq, uint_t new_sz, uint_t *real_sz); 1179 1180 /* 1181 * ibt_modify_cq() 1182 * Change the interrupt moderation values of a CQ. 1183 * "count" is number of completions before interrupting. 1184 * "usec" is the number of microseconds before interrupting. 1185 */ 1186 ibt_status_t ibt_modify_cq(ibt_cq_hdl_t ibt_cq, uint_t count, uint_t usec, 1187 ibt_cq_handler_id_t hid); 1188 1189 /* 1190 * ibt_set_cq_private() 1191 * ibt_get_cq_private() 1192 * Set/get the client private data. 1193 */ 1194 void ibt_set_cq_private(ibt_cq_hdl_t ibt_cq, void *clnt_private); 1195 void *ibt_get_cq_private(ibt_cq_hdl_t ibt_cq); 1196 1197 1198 /* 1199 * Memory Management Functions. 1200 * Applicable for both RC and UD channels. 1201 * 1202 * ibt_register_mr() 1203 * Prepares a virtually addressed memory region for use by a HCA. A 1204 * description of the registered memory suitable for use in Work Requests 1205 * (WRs) is returned in the ibt_mr_desc_t parameter. 1206 * 1207 * ibt_register_buf() 1208 * Prepares a memory region described by a buf(9S) struct for use by a 1209 * HCA. A description of the registered memory suitable for use in 1210 * Work Requests (WRs) is returned in the ibt_mr_desc_t parameter. 1211 * 1212 * ibt_query_mr() 1213 * Retrieves information about a specified memory region. 1214 * 1215 * ibt_deregister_mr() 1216 * Remove a memory region from a HCA translation table, and free all 1217 * resources associated with the memory region. 1218 * 1219 * ibt_reregister_mr() 1220 * ibt_reregister_buf() 1221 * Modify the attributes of an existing memory region. 1222 * 1223 * ibt_register_shared_mr() 1224 * Given an existing memory region, a new memory region associated with 1225 * the same physical locations is created. 1226 * 1227 * ibt_sync_mr() 1228 * Sync a memory region for either RDMA reads or RDMA writes 1229 * 1230 * ibt_alloc_mw() 1231 * Allocate a memory window. 1232 * 1233 * ibt_query_mw() 1234 * Retrieves information about a specified memory window. 1235 * 1236 * ibt_free_mw() 1237 * De-allocate the Memory Window. 1238 */ 1239 ibt_status_t ibt_register_mr(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1240 ibt_mr_attr_t *mem_attr, ibt_mr_hdl_t *mr_hdl_p, ibt_mr_desc_t *mem_desc); 1241 1242 ibt_status_t ibt_register_buf(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1243 ibt_smr_attr_t *mem_bpattr, struct buf *bp, ibt_mr_hdl_t *mr_hdl_p, 1244 ibt_mr_desc_t *mem_desc); 1245 1246 ibt_status_t ibt_query_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1247 ibt_mr_query_attr_t *attr); 1248 1249 ibt_status_t ibt_deregister_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl); 1250 1251 ibt_status_t ibt_reregister_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1252 ibt_pd_hdl_t pd, ibt_mr_attr_t *mem_attr, ibt_mr_hdl_t *mr_hdl_p, 1253 ibt_mr_desc_t *mem_desc); 1254 1255 ibt_status_t ibt_reregister_buf(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1256 ibt_pd_hdl_t pd, ibt_smr_attr_t *mem_bpattr, struct buf *bp, 1257 ibt_mr_hdl_t *mr_hdl_p, ibt_mr_desc_t *mem_desc); 1258 1259 ibt_status_t ibt_register_shared_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1260 ibt_pd_hdl_t pd, ibt_smr_attr_t *mem_sattr, ibt_mr_hdl_t *mr_hdl_p, 1261 ibt_mr_desc_t *mem_desc); 1262 1263 ibt_status_t ibt_sync_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_sync_t *mr_segments, 1264 size_t num_segments); 1265 1266 ibt_status_t ibt_alloc_mw(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1267 ibt_mw_flags_t flags, ibt_mw_hdl_t *mw_hdl_p, ibt_rkey_t *rkey); 1268 1269 ibt_status_t ibt_query_mw(ibt_hca_hdl_t hca_hdl, ibt_mw_hdl_t mw_hdl, 1270 ibt_mw_query_attr_t *mw_attr_p); 1271 1272 ibt_status_t ibt_free_mw(ibt_hca_hdl_t hca_hdl, ibt_mw_hdl_t mw_hdl); 1273 1274 /* 1275 * ibt_alloc_lkey() 1276 * Allocates physical buffer list resources for use in memory 1277 * registrations. 1278 * 1279 * Applicable for both RC and UD channels. 1280 */ 1281 ibt_status_t ibt_alloc_lkey(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1282 ibt_lkey_flags_t flags, uint_t phys_buf_list_sz, ibt_mr_hdl_t *mr_p, 1283 ibt_pmr_desc_t *mem_desc_p); 1284 1285 1286 /* 1287 * Physical Memory Management Functions. 1288 * Applicable for both RC and UD channels. 1289 * 1290 * ibt_register_phys_mr() 1291 * Prepares a physically addressed memory region for use by a HCA. 1292 * 1293 * ibt_reregister_phys_mr() 1294 * Modify the attributes of an existing memory region. 1295 */ 1296 ibt_status_t ibt_register_phys_mr(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1297 ibt_pmr_attr_t *mem_pattr, ibt_mr_hdl_t *mr_hdl_p, 1298 ibt_pmr_desc_t *mem_desc_p); 1299 1300 ibt_status_t ibt_reregister_phys_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1301 ibt_pd_hdl_t pd, ibt_pmr_attr_t *mem_pattr, ibt_mr_hdl_t *mr_hdl_p, 1302 ibt_pmr_desc_t *mem_desc_p); 1303 1304 1305 /* 1306 * Address Translation. 1307 */ 1308 1309 /* 1310 * ibt_map_mem_area() 1311 * Translate a kernel virtual address range into HCA physical addresses. 1312 * A set of physical addresses, that can be used with "Reserved L_Key", 1313 * register physical, and "Fast Registration Work Request" operations 1314 * is returned. 1315 */ 1316 ibt_status_t ibt_map_mem_area(ibt_hca_hdl_t hca_hdl, ibt_va_attr_t *va_attrs, 1317 uint_t paddr_list_len, ibt_reg_req_t *reg_req, ibt_ma_hdl_t *ma_hdl_p); 1318 1319 /* 1320 * ibt_unmap_mem_area() 1321 * Un pin physical pages pinned during an ibt_map_mem_area() call. 1322 */ 1323 ibt_status_t ibt_unmap_mem_area(ibt_hca_hdl_t hca_hdl, ibt_ma_hdl_t ma_hdl); 1324 1325 /* ibt_map_mem_iov() */ 1326 ibt_status_t ibt_map_mem_iov(ibt_hca_hdl_t hca_hdl, 1327 ibt_iov_attr_t *iov_attr, ibt_all_wr_t *wr, ibt_mi_hdl_t *mi_hdl); 1328 1329 /* ibt_unmap_mem_iov() */ 1330 ibt_status_t ibt_unmap_mem_iov(ibt_hca_hdl_t hca_hdl, ibt_mi_hdl_t mi_hdl); 1331 1332 /* 1333 * Work Request Functions 1334 * Applicable for RC and UD channels. 1335 * 1336 * ibt_post_send() 1337 * Post send work requests to the specified channel. 1338 * 1339 * ibt_post_recv() 1340 * ibt_post_srq() 1341 * Post receive work requests to the specified channel. 1342 */ 1343 ibt_status_t ibt_post_send(ibt_channel_hdl_t chan, ibt_send_wr_t *wr_list, 1344 uint_t num_wr, uint_t *posted); 1345 1346 ibt_status_t ibt_post_recv(ibt_channel_hdl_t chan, ibt_recv_wr_t *wr_list, 1347 uint_t num_wr, uint_t *posted); 1348 1349 ibt_status_t ibt_post_srq(ibt_srq_hdl_t srq, ibt_recv_wr_t *wr_list, 1350 uint_t num_wr, uint_t *posted); 1351 1352 1353 /* 1354 * Alternate Path Migration Functions. 1355 * Applicable for RC channels only. 1356 * 1357 * 1358 * ibt_get_alt_path() 1359 * Finds the best alternate path to a specified channel (as determined by 1360 * the IBTL) that satisfies the requirements specified in an 1361 * ibt_alt_path_attr_t struct. The specified channel must have been 1362 * previously opened successfully using ibt_open_rc_channel. 1363 * This function also ensures that the service being accessed by the 1364 * channel is available at the selected alternate port. 1365 * 1366 * Note: The apa_dgid must be on the same destination channel adapter, 1367 * if specified. 1368 * 1369 * 1370 * ibt_set_alt_path() 1371 * Load the specified alternate path. Causes the CM to send an LAP message 1372 * to the remote node. If successful, the local channel is updated with 1373 * the new alternate path and the channel migration state is set to REARM. 1374 * Can only be called on a previously opened RC channel. The channel must 1375 * be either in RTS or paused state. 1376 * 1377 * 1378 * ibt_migrate_path() 1379 * Force the CI to use the alternate path. The alternate path becomes 1380 * the primary path. A new alternate path should be loaded and enabled. 1381 */ 1382 ibt_status_t ibt_get_alt_path(ibt_channel_hdl_t rc_chan, ibt_path_flags_t flags, 1383 ibt_alt_path_attr_t *attr, ibt_alt_path_info_t *alt_pathp); 1384 1385 ibt_status_t ibt_set_alt_path(ibt_channel_hdl_t rc_chan, 1386 ibt_execution_mode_t mode, ibt_alt_path_info_t *alt_pinfo, void *priv_data, 1387 ibt_priv_data_len_t priv_data_len, ibt_ap_returns_t *ret_args); 1388 1389 ibt_status_t ibt_migrate_path(ibt_channel_hdl_t rc_chan); 1390 1391 1392 /* 1393 * Multicast group Functions. 1394 * Applicable for UD channels only. 1395 */ 1396 1397 /* 1398 * ibt_attach_mcg() 1399 * Attaches a UD channel to the specified multicast group. On successful 1400 * completion, this channel will be provided with a copy of every 1401 * multicast message addressed to the group specified by the MGID 1402 * (mcg_info->mc_adds_vect.av_dgid) and received on the HCA port with 1403 * which the channel is associated. 1404 */ 1405 ibt_status_t ibt_attach_mcg(ibt_channel_hdl_t ud_chan, 1406 ibt_mcg_info_t *mcg_info); 1407 1408 /* 1409 * ibt_detach_mcg() 1410 * Detach the specified UD channel from the specified multicast group. 1411 */ 1412 ibt_status_t ibt_detach_mcg(ibt_channel_hdl_t ud_chan, 1413 ibt_mcg_info_t *mcg_info); 1414 1415 /* 1416 * ibt_join_mcg() 1417 * Join a multicast group. The first full member "join" causes the MCG 1418 * to be created. 1419 */ 1420 ibt_status_t ibt_join_mcg(ib_gid_t rgid, ibt_mcg_attr_t *mcg_attr, 1421 ibt_mcg_info_t *mcg_info_p, ibt_mcg_handler_t func, void *arg); 1422 1423 /* 1424 * ibt_leave_mcg() 1425 * The port associated with the port GID shall be removed from the 1426 * multicast group specified by MGID (mc_gid) or from all the multicast 1427 * groups of which it is a member if the MGID (mc_gid) is not specified 1428 * (i.e. mc_gid.mgid_prefix must have 8-bits of 11111111 at the start of 1429 * the GID to identify this as being a multicast GID). 1430 * 1431 * The last full member to leave causes the destruction of the Multicast 1432 * Group. 1433 */ 1434 ibt_status_t ibt_leave_mcg(ib_gid_t rgid, ib_gid_t mc_gid, ib_gid_t port_gid, 1435 uint8_t mc_join_state); 1436 1437 /* 1438 * ibt_query_mcg() 1439 * Request information on multicast groups that match the parameters 1440 * specified in mcg_attr. Information on each multicast group is returned 1441 * to the caller in the form of an array of ibt_mcg_info_t. 1442 * ibt_query_mcg() allocates the memory for this array and returns a 1443 * pointer to the array (mcgs_p) and the number of entries in the array 1444 * (entries_p). This memory should be freed by the client using 1445 * ibt_free_mcg_info(). 1446 */ 1447 ibt_status_t ibt_query_mcg(ib_gid_t rgid, ibt_mcg_attr_t *mcg_attr, 1448 uint_t mcgs_max_num, ibt_mcg_info_t **mcgs_info_p, uint_t *entries_p); 1449 1450 /* 1451 * ibt_free_mcg_info() 1452 * Free the memory allocated by successful ibt_query_mcg() 1453 */ 1454 void ibt_free_mcg_info(ibt_mcg_info_t *mcgs_info, uint_t entries); 1455 1456 1457 /* 1458 * ibt_register_subnet_notices() 1459 * Register a handler to be called for subnet notifications. 1460 */ 1461 void ibt_register_subnet_notices(ibt_clnt_hdl_t ibt_hdl, 1462 ibt_sm_notice_handler_t sm_notice_handler, void *private); 1463 1464 1465 /* 1466 * Protection Domain Functions. 1467 * 1468 * ibt_alloc_pd() 1469 * ibt_free_pd() 1470 * Allocate/Release a protection domain 1471 */ 1472 ibt_status_t ibt_alloc_pd(ibt_hca_hdl_t hca_hdl, ibt_pd_flags_t flags, 1473 ibt_pd_hdl_t *pd); 1474 ibt_status_t ibt_free_pd(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd); 1475 1476 /* 1477 * P_Key to P_Key Index conversion Functions. 1478 * 1479 * ibt_pkey2index_byguid 1480 * ibt_pkey2index Convert a P_Key into a P_Key index. 1481 * 1482 * ibt_index2pkey_byguid 1483 * ibt_index2pkey Convert a P_Key Index into a P_Key. 1484 */ 1485 ibt_status_t ibt_pkey2index(ibt_hca_hdl_t hca_hdl, uint8_t port_num, 1486 ib_pkey_t pkey, uint16_t *pkey_ix); 1487 1488 ibt_status_t ibt_index2pkey(ibt_hca_hdl_t hca_hdl, uint8_t port_num, 1489 uint16_t pkey_ix, ib_pkey_t *pkey); 1490 1491 ibt_status_t ibt_pkey2index_byguid(ib_guid_t hca_guid, uint8_t port_num, 1492 ib_pkey_t pkey, uint16_t *pkey_ix); 1493 1494 ibt_status_t ibt_index2pkey_byguid(ib_guid_t hca_guid, uint8_t port_num, 1495 uint16_t pkey_ix, ib_pkey_t *pkey); 1496 1497 /* 1498 * ibt_ci_data_in() 1499 * 1500 * Pass CI specific userland data for CI objects to the CI. 1501 */ 1502 ibt_status_t ibt_ci_data_in(ibt_hca_hdl_t hca, ibt_ci_data_flags_t flags, 1503 ibt_object_type_t object, void *ibt_object_handle, void *data_p, 1504 size_t data_sz); 1505 1506 /* 1507 * ibt_ci_data_out() 1508 * 1509 * Obtain CI specific userland data for CI objects. 1510 */ 1511 ibt_status_t ibt_ci_data_out(ibt_hca_hdl_t hca, ibt_ci_data_flags_t flags, 1512 ibt_object_type_t object, void *ibt_object_handle, void *data_p, 1513 size_t data_sz); 1514 1515 1516 /* 1517 * Node Information. 1518 */ 1519 1520 /* Node type : n_node_type */ 1521 #define IBT_NODE_TYPE_CHANNEL_ADAPTER 1 /* HCA or TCA */ 1522 #define IBT_NODE_TYPE_SWITCH 2 1523 #define IBT_NODE_TYPE_ROUTER 3 1524 1525 typedef struct ibt_node_info_s { 1526 ib_guid_t n_sys_img_guid; /* System Image GUID */ 1527 ib_guid_t n_node_guid; /* Node GUID */ 1528 ib_guid_t n_port_guid; /* Port GUID */ 1529 uint16_t n_dev_id; /* Device ID */ 1530 uint32_t n_revision; /* Device Revision */ 1531 uint32_t n_vendor_id:24; /* Device Vendor ID */ 1532 uint8_t n_num_ports; /* Number of ports on this node. */ 1533 uint8_t n_port_num; /* Port number. */ 1534 uint8_t n_node_type; /* Node type */ 1535 char n_description[64]; /* NULL terminated ASCII string */ 1536 } ibt_node_info_t; 1537 1538 1539 /* 1540 * ibt_gid_to_node_info() 1541 * Retrieve node information for the specified GID. 1542 */ 1543 ibt_status_t ibt_gid_to_node_info(ib_gid_t gid, ibt_node_info_t *node_info_p); 1544 1545 /* 1546 * ibt_reprobe_dev 1547 * Reprobe properties for IOC device node. 1548 */ 1549 ibt_status_t ibt_reprobe_dev(dev_info_t *dip); 1550 1551 /* 1552 * ibt_get_companion_port_gids() 1553 * 1554 * Get list of GID's available on a companion port(s) of the specified 1555 * GID or list of GIDs available on a specified Node GUID/System Image 1556 * GUID. 1557 */ 1558 ibt_status_t ibt_get_companion_port_gids(ib_gid_t gid, ib_guid_t hca_guid, 1559 ib_guid_t sysimg_guid, ib_gid_t **gids_p, uint_t *num_gids_p); 1560 1561 /* 1562 * SHARED RECEIVE QUEUE 1563 */ 1564 1565 1566 /* 1567 * ibt_alloc_srq() 1568 * Allocate a shared receive queue. 1569 */ 1570 ibt_status_t ibt_alloc_srq(ibt_hca_hdl_t hca_hdl, ibt_srq_flags_t flags, 1571 ibt_pd_hdl_t pd, ibt_srq_sizes_t *sizes, ibt_srq_hdl_t *ibt_srq_p, 1572 ibt_srq_sizes_t *real_size_p); 1573 1574 /* 1575 * ibt_free_srq() 1576 * Free allocated SRQ resources. 1577 */ 1578 ibt_status_t ibt_free_srq(ibt_srq_hdl_t ibt_srq); 1579 1580 /* 1581 * ibt_query_srq() 1582 * Query a shared receive queue. 1583 */ 1584 ibt_status_t ibt_query_srq(ibt_srq_hdl_t ibt_srq, ibt_pd_hdl_t *pd_p, 1585 ibt_srq_sizes_t *sizes_p, uint_t *limit_p); 1586 1587 /* 1588 * ibt_modify_srq() 1589 * Modify a shared receive queue. 1590 */ 1591 ibt_status_t ibt_modify_srq(ibt_srq_hdl_t ibt_srq, ibt_srq_modify_flags_t flags, 1592 uint_t size, uint_t limit, uint_t *real_size_p); 1593 1594 /* 1595 * ibt_set_srq_private() 1596 * ibt_get_srq_private() 1597 * Set/get the SRQ client private data. 1598 */ 1599 void ibt_set_srq_private(ibt_srq_hdl_t ibt_srq, void *clnt_private); 1600 void *ibt_get_srq_private(ibt_srq_hdl_t ibt_srq); 1601 1602 /* 1603 * ibt_check_failure() 1604 * Function to test for special case failures 1605 */ 1606 ibt_failure_type_t ibt_check_failure(ibt_status_t status, uint64_t *reserved_p); 1607 1608 1609 /* 1610 * ibt_hw_is_present() returns 0 when there is no IB hardware actively 1611 * running. This is primarily useful for modules like rpcmod which needs a 1612 * quick check to decide whether or not it should try to use InfiniBand. 1613 */ 1614 int ibt_hw_is_present(); 1615 1616 /* 1617 * Fast Memory Registration (FMR). 1618 * 1619 * ibt_create_fmr_pool 1620 * Not fast-path. 1621 * ibt_create_fmr_pool() verifies that the HCA supports FMR and allocates 1622 * and initializes an "FMR pool". This pool contains state specific to 1623 * this registration, including the watermark setting to determine when 1624 * to sync, and the total number of FMR regions available within this pool. 1625 * 1626 * ibt_destroy_fmr_pool 1627 * ibt_destroy_fmr_pool() deallocates all of the FMR regions in a specific 1628 * pool. All state and information regarding the pool are destroyed and 1629 * returned as free space once again. No more use of FMR regions in this 1630 * pool are possible without a subsequent call to ibt_create_fmr_pool(). 1631 * 1632 * ibt_flush_fmr_pool 1633 * ibt_flush_fmr_pool forces a flush to occur. At the client's request, 1634 * any unmapped FMR regions (See 'ibt_deregister_mr())') are returned to 1635 * a free state. This function allows for an asynchronous cleanup of 1636 * formerly used FMR regions. Sync operation is also performed internally 1637 * by HCA driver, when 'watermark' settings for the number of free FMR 1638 * regions left in the "pool" is reached. 1639 * 1640 * ibt_register_physical_fmr 1641 * ibt_register_physical_fmr() assigns a "free" entry from the FMR Pool. 1642 * It first consults the "FMR cache" to see if this is a duplicate memory 1643 * registration to something already in use. If not, then a free entry 1644 * in the "pool" is marked used. 1645 * 1646 * ibt_deregister_fmr 1647 * The ibt_deregister_fmr un-maps the resources reserved from the FMR 1648 * pool by ibt_register_physical_fmr(). The ibt_deregister_fmr() will 1649 * mark the region as free in the FMR Pool. 1650 */ 1651 ibt_status_t ibt_create_fmr_pool(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1652 ibt_fmr_pool_attr_t *fmr_params, ibt_fmr_pool_hdl_t *fmr_pool_p); 1653 1654 ibt_status_t ibt_destroy_fmr_pool(ibt_hca_hdl_t hca_hdl, 1655 ibt_fmr_pool_hdl_t fmr_pool); 1656 1657 ibt_status_t ibt_flush_fmr_pool(ibt_hca_hdl_t hca_hdl, 1658 ibt_fmr_pool_hdl_t fmr_pool); 1659 1660 ibt_status_t ibt_register_physical_fmr(ibt_hca_hdl_t hca_hdl, 1661 ibt_fmr_pool_hdl_t fmr_pool, ibt_pmr_attr_t *mem_pattr, 1662 ibt_mr_hdl_t *mr_hdl_p, ibt_pmr_desc_t *mem_desc_p); 1663 1664 ibt_status_t ibt_deregister_fmr(ibt_hca_hdl_t hca, ibt_mr_hdl_t mr_hdl); 1665 1666 /* 1667 * IP SUPPORT 1668 */ 1669 1670 /* 1671 * IP get_paths 1672 * Returns an array (or single) of paths and source IP addresses. In the 1673 * simplest form just the destination IP address is specified, and one path 1674 * is requested, then one ibt_path_info_t struct and one source IP. 1675 * 1676 * More than one path can be requested to a single destination, in which case 1677 * the requested number of ibt_path_info_t's are returned, and the same 1678 * number of SRC IP address, with the first SRC IP address corrosponding 1679 * to the first ibt_path_info_t, etc. 1680 * 1681 * Restrictions on the source end point can be specified, in the form of a 1682 * source IP address (this implicitly defines the HCA, HCA port and Pkey) 1683 * HCA, HCA port, and sgid (implicitly defines HCA and HCA port). 1684 * Combinations are allowed but they must be consistent. 1685 * 1686 * Path attributes can also be specified, these can also affect local HCA 1687 * selection. 1688 * 1689 * ibt_get_ip_paths() internally does (among other things): 1690 * 1691 * o ibt_get_list_of_ibd_ipaddr_and_macaddr( OUT list_ipaddr_macaddr) 1692 * 1693 * o extract_pkey_and_sgid(IN list_ipaddr_macaddr, OUT list_pkey_and_sgid) 1694 * 1695 * o map_dst_ip_addr(IN dst_ip_addr, OUT dst_pkey, OUT dgid) - See Note 1696 * 1697 * o filter_by_pkey(IN list_pkey_and_sgid, IN dst_pkey, OUT list_of_sgid) 1698 * 1699 * o do_multipath_query(IN list_of_sgid, IN dst_pkey, IN dgid, OUT path_list) 1700 * 1701 * o pick_a_good_path(IN path_list, OUT the_path) 1702 * 1703 * o find_matching_src_ip(IN the_path, IN list_ipaddr_macaddr, OUT src_ip) 1704 * 1705 * The ibd instance which got the ARP response is only on one P_Key 1706 * knowing the ibd instance (or which IPonIB MCG) got the ARP response 1707 * determins the P_Key associated with a dgid. If the proposedi "ip2mac()" 1708 * API is used to get an IP to GID translations, then returned 'sockaddr_dl' 1709 * contains the interface name and index. 1710 * 1711 * 1712 * Example: 1713 * ip_path_attr.ipa_dst_ip = dst_ip_addr; 1714 * ip_path_attr.ipa_ndst = 1; 1715 * ip_path_attr.ipa_max_paths = 1; 1716 * 1717 * status = ibt_get_ip_paths(clnt_hdl, flags, &ip_path_attr, &paths, 1718 * &num_paths_p, &src_ip); 1719 * 1720 * sid = ibt_get_ip_sid(protocol_num, dst_port); 1721 * path_info->sid = sid; 1722 * 1723 * ip_cm_info.src_addr = src_ip; 1724 * ip_cm_info.dst_addr = dst_ip_addr; 1725 * ip_cm_info.src_port = src_port 1726 * 1727 * ibt_format_ip_private_data(ip_cm_info, priv_data_len, &priv_data); 1728 * ibt_open_rc_channel(chan, private_data); 1729 */ 1730 typedef struct ibt_ip_path_attr_s { 1731 ibt_ip_addr_t *ipa_dst_ip; /* Required */ 1732 ibt_ip_addr_t ipa_src_ip; /* Optional */ 1733 ib_guid_t ipa_hca_guid; /* Optional */ 1734 uint8_t ipa_hca_port_num; /* Optional */ 1735 uint8_t ipa_max_paths; /* Required */ 1736 uint8_t ipa_ndst; /* Required */ 1737 uint8_t ipa_sl:4; /* Optional */ 1738 ibt_mtu_req_t ipa_mtu; /* Optional */ 1739 ibt_srate_req_t ipa_srate; /* Optional */ 1740 ibt_pkt_lt_req_t ipa_pkt_lt; /* Optional */ 1741 uint_t ipa_flow:20; /* Optional */ 1742 uint8_t ipa_hop; /* Optional */ 1743 uint8_t ipa_tclass; /* Optional */ 1744 } ibt_ip_path_attr_t; 1745 1746 /* 1747 * Path SRC IP addresses 1748 */ 1749 typedef struct ibt_path_ip_src_s { 1750 ibt_ip_addr_t ip_primary; 1751 ibt_ip_addr_t ip_alternate; 1752 } ibt_path_ip_src_t; 1753 1754 1755 ibt_status_t ibt_get_ip_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 1756 ibt_ip_path_attr_t *attr, ibt_path_info_t *paths_p, uint8_t *num_paths_p, 1757 ibt_path_ip_src_t *src_ip_p); 1758 1759 ibt_status_t ibt_get_src_ip(ib_gid_t gid, ib_pkey_t pkey, 1760 ibt_ip_addr_t *src_ip); 1761 1762 /* 1763 * Callback function that can be used in ibt_aget_ip_paths(), a Non-Blocking 1764 * version of ibt_get_ip_paths(). 1765 */ 1766 typedef void (*ibt_ip_path_handler_t)(void *arg, ibt_status_t retval, 1767 ibt_path_info_t *paths_p, uint8_t num_paths, ibt_path_ip_src_t *src_ip_p); 1768 1769 /* 1770 * Find path(s) to a given destination or service asynchronously. 1771 * ibt_aget_ip_paths() is a Non-Blocking version of ibt_get_ip_paths(). 1772 */ 1773 ibt_status_t ibt_aget_ip_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 1774 ibt_ip_path_attr_t *attr, ibt_ip_path_handler_t func, void *arg); 1775 1776 /* 1777 * IP RDMA protocol functions 1778 */ 1779 1780 /* 1781 * IBTF manages the port number space for non well known ports. If a ULP 1782 * is not using TCP/UDP and a well known port, then ibt_get_ip_sid() returns 1783 * an sid based on the IP protocol number '0' (reserved) and an IBTF assigned 1784 * port number. ibt_release_ip_sid() should be used to release the hold 1785 * of SID created by ibt_get_ip_sid(). 1786 */ 1787 ib_svc_id_t ibt_get_ip_sid(uint8_t protocol_num, in_port_t dst_port); 1788 ibt_status_t ibt_release_ip_sid(ib_svc_id_t sid); 1789 1790 uint8_t ibt_get_ip_protocol_num(ib_svc_id_t sid); 1791 in_port_t ibt_get_ip_dst_port(ib_svc_id_t sid); 1792 1793 /* 1794 * Functions to format/extract the RDMA IP CM private data 1795 */ 1796 typedef struct ibt_ip_cm_info_s { 1797 ibt_ip_addr_t src_addr; 1798 ibt_ip_addr_t dst_addr; 1799 in_port_t src_port; 1800 } ibt_ip_cm_info_t; 1801 1802 /* 1803 * If a ULP is using IP addressing as defined by the RDMA IP CM Service IBTA 1804 * Annex 11, then it must always allocate a private data buffer for use in 1805 * the ibt_open_rc_channel(9F) call. The minimum size of the buffer is 1806 * IBT_IP_HDR_PRIV_DATA_SZ, if the ULP has no ULP specific private data. 1807 * This allows ibt_format_ip_private_data() to place the RDMA IP CM service 1808 * hello message in the private data of the REQ. If the ULP has some ULP 1809 * specific private data then it should allocate a buffer big enough to 1810 * contain that data plus an additional IBT_IP_HDR_PRIV_DATA_SZ bytes. 1811 * The ULP should place its ULP specific private data at offset 1812 * IBT_IP_HDR_PRIV_DATA_SZ in the allocated buffer before calling 1813 * ibt_format_ip_private_data(). 1814 */ 1815 ibt_status_t ibt_format_ip_private_data(ibt_ip_cm_info_t *ip_cm_info, 1816 ibt_priv_data_len_t priv_data_len, void *priv_data_p); 1817 ibt_status_t ibt_get_ip_data(ibt_priv_data_len_t priv_data_len, 1818 void *priv_data, ibt_ip_cm_info_t *ip_info_p); 1819 1820 /* 1821 * The ibt_alt_ip_path_attr_t structure is used to specify additional optional 1822 * attributes when requesting an alternate path for an existing channel. 1823 * 1824 * Attributes that are don't care should be set to NULL or '0'. 1825 */ 1826 typedef struct ibt_alt_ip_path_attr_s { 1827 ibt_ip_addr_t apa_dst_ip; 1828 ibt_ip_addr_t apa_src_ip; 1829 ibt_srate_req_t apa_srate; 1830 ibt_pkt_lt_req_t apa_pkt_lt; /* Packet Life Time Request */ 1831 uint_t apa_flow:20; 1832 uint8_t apa_sl:4; 1833 uint8_t apa_hop; 1834 uint8_t apa_tclass; 1835 } ibt_alt_ip_path_attr_t; 1836 1837 ibt_status_t ibt_get_ip_alt_path(ibt_channel_hdl_t rc_chan, 1838 ibt_path_flags_t flags, ibt_alt_ip_path_attr_t *attr, 1839 ibt_alt_path_info_t *alt_path); 1840 1841 /* 1842 * CONTRACT PRIVATE ONLY INTERFACES 1843 * 1844 * DO NOT USE THE FOLLOWING FUNCTIONS WITHOUT SIGNING THE CONTRACT 1845 * WITH IBTF GROUP. 1846 */ 1847 1848 /* Define an Address Record structure (data for ATS service records). */ 1849 typedef struct ibt_ar_s { 1850 ib_gid_t ar_gid; /* GID of local HCA port */ 1851 ib_pkey_t ar_pkey; /* P_Key valid on port of ar_gid */ 1852 uint8_t ar_data[16]; /* Data affiliated with GID/P_Key */ 1853 } ibt_ar_t; 1854 1855 /* 1856 * ibt_register_ar() 1857 * ibt_deregister_ar() 1858 * Register/deregister an Address Record with the SA. 1859 * ibt_query_ar() 1860 * Query the SA for Address Records matching either GID/P_Key or Data. 1861 */ 1862 ibt_status_t ibt_register_ar(ibt_clnt_hdl_t ibt_hdl, ibt_ar_t *arp); 1863 1864 ibt_status_t ibt_deregister_ar(ibt_clnt_hdl_t ibt_hdl, ibt_ar_t *arp); 1865 1866 ibt_status_t ibt_query_ar(ib_gid_t *sgid, ibt_ar_t *queryp, ibt_ar_t *resultp); 1867 1868 1869 /* 1870 * ibt_modify_system_image() 1871 * ibt_modify_system_image_byguid() 1872 * Modify specified HCA's system image GUID. 1873 */ 1874 ibt_status_t ibt_modify_system_image(ibt_hca_hdl_t hca_hdl, ib_guid_t sys_guid); 1875 1876 ibt_status_t ibt_modify_system_image_byguid(ib_guid_t hca_guid, 1877 ib_guid_t sys_guid); 1878 1879 1880 /* 1881 * ibt_modify_port() 1882 * ibt_modify_port_byguid() 1883 * Modify the specified port, or all ports attribute(s). 1884 */ 1885 ibt_status_t ibt_modify_port(ibt_hca_hdl_t hca_hdl, uint8_t port, 1886 ibt_port_modify_flags_t flags, uint8_t init_type); 1887 1888 ibt_status_t ibt_modify_port_byguid(ib_guid_t hca_guid, uint8_t port, 1889 ibt_port_modify_flags_t flags, uint8_t init_type); 1890 1891 1892 /* 1893 * ibt_get_port_state() 1894 * ibt_get_port_state_byguid() 1895 * Return the most commonly requested attributes of an HCA port. 1896 * If the link state is not IBT_PORT_ACTIVE, the other returned values 1897 * are undefined. 1898 */ 1899 ibt_status_t ibt_get_port_state(ibt_hca_hdl_t hca_hdl, uint8_t port, 1900 ib_gid_t *sgid_p, ib_lid_t *base_lid_p); 1901 1902 ibt_status_t ibt_get_port_state_byguid(ib_guid_t hca_guid, uint8_t port, 1903 ib_gid_t *sgid_p, ib_lid_t *base_lid_p); 1904 1905 /* 1906 * ibt_alloc_io_mem() 1907 * ibt_free_io_mem() 1908 * Allocate and deallocate dma-able memory. 1909 */ 1910 ibt_status_t ibt_alloc_io_mem(ibt_hca_hdl_t, size_t, ibt_mr_flags_t, 1911 caddr_t *, ibt_mem_alloc_hdl_t *); 1912 1913 ibt_status_t ibt_free_io_mem(ibt_hca_hdl_t, ibt_mem_alloc_hdl_t); 1914 1915 /* 1916 * Interfaces to get IB partition information. 1917 */ 1918 1919 typedef struct ibt_part_attr_s { 1920 datalink_id_t pa_dlinkid; 1921 datalink_id_t pa_plinkid; 1922 uint8_t pa_port; 1923 ib_guid_t pa_hca_guid; 1924 ib_guid_t pa_port_guid; 1925 ib_pkey_t pa_pkey; 1926 } ibt_part_attr_t; 1927 1928 void ibt_register_part_attr_cb( 1929 ibt_status_t (*)(datalink_id_t, ibt_part_attr_t *), 1930 ibt_status_t (*)(ibt_part_attr_t **, int *)); 1931 void ibt_unregister_part_attr_cb(void); 1932 1933 ibt_status_t ibt_get_part_attr(datalink_id_t, ibt_part_attr_t *); 1934 ibt_status_t ibt_get_all_part_attr(ibt_part_attr_t **, int *); 1935 ibt_status_t ibt_free_part_attr(ibt_part_attr_t *, int); 1936 1937 #ifdef __cplusplus 1938 } 1939 #endif 1940 1941 #endif /* _SYS_IB_IBTL_IBTI_COMMON_H */ 1942