1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _SYS_IB_IBTL_IBTI_COMMON_H 27 #define _SYS_IB_IBTL_IBTI_COMMON_H 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * ibti_common.h 33 * 34 * This file contains the shared/common transport data types and function 35 * prototypes. 36 */ 37 #include <sys/ib/ibtl/ibtl_types.h> 38 #include <sys/ib/ibtl/ibti_cm.h> 39 #include <sys/isa_defs.h> 40 #include <sys/byteorder.h> 41 42 #ifdef __cplusplus 43 extern "C" { 44 #endif 45 46 /* 47 * Max number of paths that can be requested in an ibt_get_paths() call, 48 * if IBT_PATH_PERF or IBT_PATH_AVAIL flag (ibt_path_flags_t) is set. 49 */ 50 #define IBT_MAX_SPECIAL_PATHS 2 51 52 /* 53 * The name of DDI Event, generated when the properties of IOC device 54 * node properties were modified. 55 */ 56 #define IB_PROP_UPDATE_EVENT "SUNW,IB:IB_PROP_UPDATE" 57 58 59 /* Transport Interface version */ 60 typedef enum ibt_version_e { 61 IBTI_V1 = 1, 62 IBTI_V2 = 2 /* FMR Support */ 63 } ibt_version_t; 64 65 /* 66 * Driver class type. Identifies a type of client driver so that 67 * "IBTF Policy" decisions can be made on a driver class basis. 68 * The last class should always be IBT_CLNT_NUM, and any new classes added 69 * must be defined before IBT_CLNT_NUM. The class values must be above 0. 70 * Any class values below or equal to 0 shall be invalid 71 */ 72 typedef enum ibt_clnt_class_e { 73 IBT_STORAGE_DEV = 0x1, /* SCSI, FC, etc.. */ 74 IBT_NETWORK_DEV, /* Network driver with associated client H/W */ 75 IBT_GENERIC_DEV, /* Generic client H/W device driver */ 76 IBT_NETWORK, /* Network driver with no associated */ 77 /* client H/W, e.g., IPoIB */ 78 IBT_GENERIC, /* A generic IB driver not */ 79 /* associated with client H/W */ 80 IBT_USER, /* A user application IBT interface driver */ 81 IBT_IBMA, /* The IBMA Module */ 82 IBT_CM, /* The CM Module */ 83 IBT_DM, /* The DM Module */ 84 IBT_CLASS_NUM /* Place holder for class count */ 85 } ibt_clnt_class_t; 86 87 #define IBT_TEST_DEV 999 /* Place holder for modules that test IBTL */ 88 89 #define IBT_CLNT_DEVICE_CLASS(class) ((class) == IBT_STORAGE_DEV || \ 90 (class) == IBT_NETWORK_DEV || \ 91 (class) == IBT_GENERIC_DEV) 92 93 #define IBT_CLNT_GENERAL_CLASS(class) ((class) == IBT_NETWORK || \ 94 (class) == IBT_GENERIC || \ 95 (class) == IBT_USER) 96 97 #define IBT_CLNT_MGMT_CLASS(class) ((class) == IBT_IBMA || \ 98 (class) == IBT_CM || \ 99 (class) == IBT_DM || \ 100 (class) == IBT_TEST_DEV) 101 /* 102 * Event record & status returns for asynchronous events and errors. 103 */ 104 typedef struct ibt_async_event_s { 105 uint64_t ev_fma_ena; /* FMA Error data */ 106 ibt_channel_hdl_t ev_chan_hdl; /* Channel handle */ 107 ibt_cq_hdl_t ev_cq_hdl; /* CQ handle */ 108 ib_guid_t ev_hca_guid; /* HCA node GUID */ 109 uint8_t ev_port; /* HCA port */ 110 ibt_srq_hdl_t ev_srq_hdl; /* SRQ handle */ 111 } ibt_async_event_t; 112 113 /* 114 * IBT Client Callback function typedefs. 115 * 116 * ibt_async_handler_t 117 * Pointer to an async event/error handler function. This function is 118 * called when an async event/error is detected on a HCA that is being 119 * used by the IBT client driver that registered the function. 120 */ 121 typedef void (*ibt_async_handler_t)(void *clnt_private, 122 ibt_hca_hdl_t hca_hdl, ibt_async_code_t code, ibt_async_event_t *event); 123 124 /* 125 * IBT Client Memory Error Callback function typedefs. 126 * 127 * ibt_memory_handler_t 128 * Pointer to an memory event/error handler function. 129 */ 130 typedef void (*ibt_memory_handler_t)(void *clnt_private, 131 ibt_hca_hdl_t hca_hdl, ibt_mem_code_t code, ibt_mem_data_t *data); 132 133 /* 134 * Define a client module information structure. All clients MUST 135 * define a global of type ibt_clnt_modinfo_t. A pointer to this global 136 * is passed into the IBTF by a client when calling ibt_attach(). 137 * This struct must persist during the life of the client. 138 * 139 * The client's mi_async_handler is called when an async event/error is 140 * detected on a HCA that is being used by this client. 141 */ 142 typedef struct ibt_clnt_modinfo_s { 143 ibt_version_t mi_ibt_version; /* TI version */ 144 ibt_clnt_class_t mi_clnt_class; /* Type of client */ 145 ibt_async_handler_t mi_async_handler; /* Async Handler */ 146 ibt_memory_handler_t mi_reserved; /* Memory handler */ 147 char *mi_clnt_name; /* Client Name. */ 148 } ibt_clnt_modinfo_t; 149 150 151 /* 152 * Definitions for use with ibt_register_subnet_notices() 153 */ 154 typedef enum ibt_subnet_event_code_e { 155 IBT_SM_EVENT_MCG_CREATED = 1, 156 IBT_SM_EVENT_MCG_DELETED = 2, 157 IBT_SM_EVENT_AVAILABLE = 3, 158 IBT_SM_EVENT_UNAVAILABLE = 4, 159 IBT_SM_EVENT_GID_AVAIL = 5, 160 IBT_SM_EVENT_GID_UNAVAIL = 6 161 } ibt_subnet_event_code_t; 162 163 typedef struct ibt_subnet_event_s { 164 ib_gid_t sm_notice_gid; 165 } ibt_subnet_event_t; 166 167 typedef void (*ibt_sm_notice_handler_t)(void *private, ib_gid_t gid, 168 ibt_subnet_event_code_t code, ibt_subnet_event_t *event); 169 170 171 /* 172 * MTU Request type. 173 */ 174 typedef struct ibt_mtu_req_s { 175 ib_mtu_t r_mtu; /* Requested MTU */ 176 ibt_selector_t r_selector; /* Qualifier for r_mtu */ 177 } ibt_mtu_req_t; 178 179 180 /* 181 * Qflags, used by ibt_resize_queues(). 182 */ 183 typedef enum ibt_qflags_e { 184 IBT_SEND_Q = 1 << 0, /* Op applies to the Send Q */ 185 IBT_RECV_Q = 1 << 1 /* Op applies to the Recv Q */ 186 } ibt_qflags_t; 187 188 /* 189 * CQ priorities 190 * The IBTF will attempt to implement a coarse 3 level priority scheme 191 * (IBT_CQ_LOW, IBT_CQ_MEDIUM, IBT_CQ_HIGH) based on the class of client 192 * driver. The requested priority is not guaranteed. If a CI implementation 193 * has the ability to implement priority CQs, then the IBTF will take advantage 194 * of that when calling the CI to create a CQ by passing a priority indicator 195 * to the CI. 196 */ 197 typedef enum ibt_cq_priority_e { 198 IBT_CQ_DEFAULT = 0x0, 199 IBT_CQ_LOW = 0x1, 200 IBT_CQ_MEDIUM = 0x2, 201 IBT_CQ_HIGH = 0x3, 202 IBT_CQ_OPAQUE_1 = 0x4, 203 IBT_CQ_OPAQUE_2 = 0x5, 204 IBT_CQ_OPAQUE_3 = 0x6, 205 IBT_CQ_OPAQUE_4 = 0x7, 206 IBT_CQ_OPAQUE_5 = 0x8, 207 IBT_CQ_OPAQUE_6 = 0x9, 208 IBT_CQ_OPAQUE_7 = 0xA, 209 IBT_CQ_OPAQUE_8 = 0xB, 210 IBT_CQ_OPAQUE_9 = 0xC, 211 IBT_CQ_OPAQUE_10 = 0xD, 212 IBT_CQ_OPAQUE_11 = 0xE, 213 IBT_CQ_OPAQUE_12 = 0xF, 214 IBT_CQ_OPAQUE_13 = 0x10, 215 IBT_CQ_OPAQUE_14 = 0x11, 216 IBT_CQ_OPAQUE_15 = 0x12, 217 IBT_CQ_OPAQUE_16 = 0x13 218 } ibt_cq_priority_t; 219 220 /* 221 * Attributes when creating a Completion Queue Scheduling Handle. 222 */ 223 typedef struct ibt_cq_sched_attr_s { 224 ibt_cq_sched_flags_t cqs_flags; 225 ibt_cq_priority_t cqs_priority; 226 uint_t cqs_load; 227 ibt_sched_hdl_t cqs_affinity_hdl; 228 } ibt_cq_sched_attr_t; 229 230 231 /* 232 * ibt_cq_handler_t 233 * Pointer to a work request completion handler function. This function 234 * is called when a WR completes on a CQ that is being used by the IBTF 235 * client driver that registered the function. 236 */ 237 typedef void (*ibt_cq_handler_t)(ibt_cq_hdl_t ibt_cq, void *arg); 238 239 /* 240 * Service Data and flags. 241 * (IBTA Spec Release 1.1, Vol-1 Ref: 15.2.5.14.4) 242 * 243 * The ServiceData8.1 (sb_data8[0]) through ServiceData64.2 (sb_data64[1]) 244 * components together constitutes a 64-byte area in which any data may be 245 * placed. It is intended to be a convenient way for a service to provide its 246 * clients with some initial data. 247 * 248 * In addition, this 64-byte area is formally divided into a total of 30 249 * components, 16 8-bit (uint8_t) components, then 8 16-bit (uint16_t) 250 * components, then 6 32-bit (uint32_t) components, then 2 64-bit (uint64_t) 251 * components, thereby assigning ComponentMask bits (ibt_srv_data_flags_t) to 252 * variously-sized segments of the data. All data are in host endian format. 253 * This allows query operations (ibt_get_paths()) to be used which match 254 * parts of the Service Data, making it possible, for example, for 255 * service-specific parts of the ServiceData to serve as a binary-coded 256 * extension to the ServiceName for purposes of lookup. 257 */ 258 typedef enum ibt_srv_data_flags_e { 259 IBT_NO_SDATA = 0, 260 261 IBT_SDATA8_0 = (1 << 0), 262 IBT_SDATA8_1 = (1 << 1), 263 IBT_SDATA8_2 = (1 << 2), 264 IBT_SDATA8_3 = (1 << 3), 265 IBT_SDATA8_4 = (1 << 4), 266 IBT_SDATA8_5 = (1 << 5), 267 IBT_SDATA8_6 = (1 << 6), 268 IBT_SDATA8_7 = (1 << 7), 269 IBT_SDATA8_8 = (1 << 8), 270 IBT_SDATA8_9 = (1 << 9), 271 IBT_SDATA8_10 = (1 << 10), 272 IBT_SDATA8_11 = (1 << 11), 273 IBT_SDATA8_12 = (1 << 12), 274 IBT_SDATA8_13 = (1 << 13), 275 IBT_SDATA8_14 = (1 << 14), 276 IBT_SDATA8_15 = (1 << 15), 277 278 IBT_SDATA16_0 = (1 << 16), 279 IBT_SDATA16_1 = (1 << 17), 280 IBT_SDATA16_2 = (1 << 18), 281 IBT_SDATA16_3 = (1 << 19), 282 IBT_SDATA16_4 = (1 << 20), 283 IBT_SDATA16_5 = (1 << 21), 284 IBT_SDATA16_6 = (1 << 22), 285 IBT_SDATA16_7 = (1 << 23), 286 287 IBT_SDATA32_0 = (1 << 24), 288 IBT_SDATA32_1 = (1 << 25), 289 IBT_SDATA32_2 = (1 << 26), 290 IBT_SDATA32_3 = (1 << 27), 291 292 IBT_SDATA64_0 = (1 << 28), 293 IBT_SDATA64_1 = (1 << 29), 294 295 IBT_SDATA_ALL = 0x3FFFFFFF 296 } ibt_srv_data_flags_t; 297 298 typedef struct ibt_srv_data_s { 299 uint8_t s_data8[16]; /* 8-bit service data fields. */ 300 uint16_t s_data16[8]; /* 16-bit service data fields. */ 301 uint32_t s_data32[4]; /* 32-bit service data fields. */ 302 uint64_t s_data64[2]; /* 64-bit service data fields. */ 303 } ibt_srv_data_t; 304 305 /* 306 * Path flags, used in ibt_get_paths() 307 */ 308 typedef enum ibt_path_flags_e { 309 IBT_PATH_NO_FLAGS = 0, 310 IBT_PATH_APM = 1 << 0, /* APM is desired. */ 311 IBT_PATH_AVAIL = 1 << 2, 312 IBT_PATH_PERF = 1 << 3, 313 IBT_PATH_MULTI_SVC_DEST = 1 << 4, /* Multiple ServiceRecords */ 314 IBT_PATH_HOP = 1 << 5, /* pa_hop is specified. */ 315 IBT_PATH_PKEY = 1 << 6 /* pa_pkey is specified. */ 316 } ibt_path_flags_t; 317 318 /* 319 * Path attributes. 320 * 321 * The ibt_path_attr_t structure is used to specify required attributes in a 322 * path from the requesting (source) node to a specified destination node. 323 * Attributes that are don't care should be set to NULL or '0'. 324 * A destination must be specified, where a destination can be defined as 325 * one of the following: 326 * 327 * o Service Name 328 * o Service ID (SID) 329 * o Array of DGIDs. 330 * o Service Name and Array of DGIDs. 331 */ 332 typedef struct ibt_path_attr_s { 333 ib_gid_t *pa_dgids; /* Array of DGIDs */ 334 ib_gid_t pa_sgid; 335 ib_guid_t pa_hca_guid; 336 char *pa_sname; /* ASCII Service name */ 337 /* NULL Terminated */ 338 ib_svc_id_t pa_sid; /* Service ID */ 339 ibt_srv_data_flags_t pa_sd_flags; /* Service Data flags. */ 340 ibt_srv_data_t pa_sdata; /* Service Data */ 341 uint8_t pa_hca_port_num; 342 uint8_t pa_num_dgids; /* size of pa_dgids array */ 343 uint8_t pa_sl:4; 344 ibt_mtu_req_t pa_mtu; 345 ibt_srate_req_t pa_srate; 346 ibt_pkt_lt_req_t pa_pkt_lt; /* Packet Life Time Request */ 347 uint_t pa_flow:20; 348 uint8_t pa_hop; /* IBT_PATH_HOP */ 349 uint8_t pa_tclass; 350 ib_pkey_t pa_pkey; /* IBT_PATH_PKEY */ 351 } ibt_path_attr_t; 352 353 /* 354 * Path Information. 355 * 356 * The ibt_get_paths() performs SA Path record lookups to select a path(s) to 357 * a given destination(s), details of selected path(s) are returned in this 358 * structure. 359 * 360 * The ibt_path_info_t contains all the attributes of the best path(s), as 361 * as determined by IBTL, to the specified destination(s), including the 362 * local HCA and HCA port to use to access the fabric. 363 * 364 * The Service ID (pi_sid) and Service Data (pi_sdata) are returned only for 365 * lookups based on Service ID or/and Service Name. 366 */ 367 typedef struct ibt_path_info_s { 368 ib_guid_t pi_hca_guid; /* Local HCA GUID; 0 implies */ 369 /* this record is invalid */ 370 ib_svc_id_t pi_sid; /* Service ID */ 371 ibt_srv_data_t pi_sdata; /* Service Data */ 372 373 ibt_cep_path_t pi_prim_cep_path; /* Contains CEP adds info */ 374 ibt_cep_path_t pi_alt_cep_path; /* RC & UC Only, valid if */ 375 /* cep_hca_port_num is not */ 376 /* '0' */ 377 ib_mtu_t pi_path_mtu; /* Common path MTU */ 378 ib_time_t pi_prim_pkt_lt; 379 ib_time_t pi_alt_pkt_lt; 380 } ibt_path_info_t; 381 382 /* 383 * Optional Alternate Path attributes. 384 * 385 * The ibt_alt_path_attr_t structure is used to specify additional optional 386 * attributes when requesting an alternate path for an existing channel. 387 * 388 * Attributes that are don't care should be set to NULL or '0'. 389 */ 390 typedef struct ibt_alt_path_attr_s { 391 ib_gid_t apa_sgid; 392 ib_gid_t apa_dgid; 393 ibt_srate_req_t apa_srate; 394 ibt_pkt_lt_req_t apa_pkt_lt; /* Packet Life Time Request */ 395 uint_t apa_flow:20; 396 uint8_t apa_sl:4; 397 uint8_t apa_hop; 398 uint8_t apa_tclass; 399 } ibt_alt_path_attr_t; 400 401 /* 402 * Path Information for Alternate Path - input to ibt_set_alt_path(). 403 */ 404 typedef struct ibt_alt_path_info_s { 405 ibt_cep_path_t ap_alt_cep_path; /* RC & UC Only, valid if */ 406 /* cep_hca_port_num is not */ 407 /* '0' */ 408 ib_time_t ap_alt_pkt_lt; 409 } ibt_alt_path_info_t; 410 411 /* 412 * Open Channel flags, Used in ibt_open_rc_channel call 413 */ 414 typedef enum ibt_chan_open_flags_e { 415 IBT_OCHAN_NO_FLAGS = 0, 416 IBT_OCHAN_REDIRECTED = 1 << 0, 417 IBT_OCHAN_PORT_REDIRECTED = 1 << 1, 418 IBT_OCHAN_DUP = 1 << 2, 419 IBT_OCHAN_PORT_FIXED = 1 << 3, 420 IBT_OCHAN_OPAQUE1 = 1 << 4, 421 IBT_OCHAN_OPAQUE2 = 1 << 5, 422 IBT_OCHAN_OPAQUE3 = 1 << 6, 423 IBT_OCHAN_OPAQUE4 = 1 << 7, 424 IBT_OCHAN_OPAQUE5 = 1 << 8 425 } ibt_chan_open_flags_t; 426 427 /* 428 * Arguments for ibt_open_rc_channel(). 429 * 430 * oc_priv_data should be NULL or point to a buffer allocated by the caller, 431 * the size of which should be in oc_priv_data_len, where oc_priv_data_len <= 432 * IBT_REQ_PRIV_DATA_SZ. 433 * 434 * When ibt_open_rc_channel returns with ibt_cm_reason_t of 435 * IBT_CM_REDIRECT_PORT, the client can re-issue ibt_open_rc_channel setting 436 * new fields as follows: 437 * 438 * Set (ibt_chan_args_t)->oc_cm_cep_path = 439 * original (ibt_chan_open_args_t)->oc_path->pi_prim_cep_path. 440 * Set (ibt_chan_args_t)->oc_cm_pkt_lt = 441 * original (ibt_chan_open_args_t)->oc_prim_pkt_lt. 442 * Update (ibt_chan_args_t)->oc_path based on path information returned 443 * from ibt_get_paths using the gid in the return data below: 444 * (ibt_rc_returns_t)->rc_arej_info.ari_redirect_info.ari_gid. 445 * Set flags to IBT_OCHAN_PORT_REDIRECTED. 446 * 447 * Note : oc_cm_path is not used for any other scenario, and must be set for 448 * IBT_OCHAN_PORT_REDIRECTED. 449 * 450 * When ibt_open_rc_channel returns with ibt_cm_reason_t of 451 * IBT_CM_REDIRECT_CM, the client can re-issue ibt_open_rc_channel setting 452 * new fields as follows: 453 * 454 * Update (ibt_chan_args_t)->oc_path based on path information returned 455 * from ibt_get_paths using the return data in 456 * (ibt_rc_returns_t)->rc_arej_info.ari_redirect_info. 457 * 458 * Set (ibt_chan_args_t)->oc_cm_redirect_info = 459 * Returned (ibt_rc_returns_t)->rc_arej_info.ari_redirect_info. 460 * Set flags to IBT_OCHAN_REDIRECTED. 461 * 462 * Note: 463 * 464 * IBT_OCHAN_PORT_REDIRECTED flag cannot be used to specify a remote CM MAD 465 * address, that is on a different subnet than the RC connection itself. 466 * 467 * Not specified attributes should be set to "NULL" or "0". 468 */ 469 typedef struct ibt_chan_open_args_s { 470 ibt_path_info_t *oc_path; /* Primary & Alternate */ 471 ibt_cm_handler_t oc_cm_handler; /* cm_handler - required */ 472 void *oc_cm_clnt_private; /* First argument to */ 473 /* cm_handler */ 474 ibt_rnr_retry_cnt_t oc_path_rnr_retry_cnt; 475 uint8_t oc_path_retry_cnt:3; 476 uint8_t oc_rdma_ra_out; 477 uint8_t oc_rdma_ra_in; 478 ibt_priv_data_len_t oc_priv_data_len; /* Number of bytes of */ 479 /* REQ Private data */ 480 void *oc_priv_data; /* REQ private data */ 481 ibt_channel_hdl_t oc_dup_channel; /* IBT_OCHAN_DUP */ 482 ibt_redirect_info_t *oc_cm_redirect_info; /* Redirect params */ 483 /* for port and CM */ 484 /* redirection */ 485 ibt_cep_path_t *oc_cm_cep_path; /* Optional Path for */ 486 /* CM MADs on */ 487 /* port redirection */ 488 ib_time_t oc_cm_pkt_lt; /* Pkt life time for */ 489 /* CM MADs */ 490 uint32_t oc_opaque1:4; 491 uint32_t oc_opaque2:24; 492 uint32_t oc_opaque3; 493 uint32_t oc_opaque4; 494 } ibt_chan_open_args_t; 495 496 497 /* 498 * Define an optional RC return arguments structure. This contains return 499 * parameters from ibt_open_rc_channel() when called in BLOCKING mode. 500 * 501 * rc_priv_data should be NULL or point to a buffer allocated by the caller, 502 * the size of which should be in rc_priv_data_len, where rc_priv_data_len <= 503 * IBT_REP_PRIV_DATA_SZ. 504 */ 505 typedef struct ibt_rc_returns_s { 506 uint8_t rc_rdma_ra_in; /* Arbitrated resp resources */ 507 uint8_t rc_rdma_ra_out; /* Arbitrated initiator depth */ 508 ibt_arej_info_t rc_arej_info; 509 ibt_cm_reason_t rc_status; 510 uint8_t rc_failover_status; /* Failover status */ 511 ibt_priv_data_len_t rc_priv_data_len; 512 void *rc_priv_data; 513 } ibt_rc_returns_t; 514 515 /* 516 * Define a callback function that can be used in Non-Blocking calls to 517 * ibt_recycle_rc(). 518 */ 519 520 typedef void (*ibt_recycle_handler_t)(ibt_status_t ibt_status, void *arg); 521 522 /* 523 * Define an optional return arguments structure from ibt_set_alt_path() 524 * This contains return parameters, when called in BLOCKING mode. 525 * 526 * ap_priv_data should be NULL or point to a buffer allocated by the caller, 527 * the size of which should be in ap_priv_data_len, where ap_priv_data_len <= 528 * IBT_APR_PRIV_DATA_SZ. 529 * The private data from APR is returned in ap_priv_data. 530 * The caller specifies amount of APR private data to be returned in 531 * ap_priv_data_len. 532 */ 533 typedef struct ibt_ap_returns_s { 534 ibt_ap_status_t ap_status; 535 boolean_t ap_arej_info_valid; 536 ibt_arej_info_t ap_arej_info; /* Only valid if redirect */ 537 ibt_priv_data_len_t ap_priv_data_len; 538 void *ap_priv_data; 539 } ibt_ap_returns_t; 540 541 /* 542 * UD remote destination attributes. 543 * 544 * ud_sid, ud_addr, ud_pkt_lt and ud_pkey_ix must be specified. 545 * These values can be as returned in an ibt_path_info_t struct from an 546 * ibt_get_paths() call. 547 * 548 * ud_priv_data should be NULL or point to a buffer allocated by the caller, 549 * the size of which is in ud_priv_data_len, where ud_priv_data_len <= 550 * IBT_SIDR_REQ_PRIV_DATA_SZ. 551 */ 552 typedef struct ibt_ud_dest_attr_s { 553 ib_svc_id_t ud_sid; /* Service ID */ 554 ibt_adds_vect_t *ud_addr; /* Address Info */ 555 uint16_t ud_pkey_ix; /* Pkey Index */ 556 ib_time_t ud_pkt_lt; 557 ibt_cm_ud_handler_t ud_cm_handler; /* An optional CM UD event */ 558 /* which must be NULL */ 559 /* if not specified. */ 560 void *ud_cm_private; /* First arg to ud_cm_handler */ 561 ibt_priv_data_len_t ud_priv_data_len; 562 void *ud_priv_data; /* SIDR REQ private data */ 563 } ibt_ud_dest_attr_t; 564 565 /* 566 * Define an optional UD return arguments structure. 567 * 568 * ud_priv_data should be NULL or point to a buffer allocated by the caller, 569 * the size of which should be in ud_priv_data_len, where ud_priv_data_len <= 570 * IBT_SIDR_REP_PRIV_DATA_SZ. 571 */ 572 typedef struct ibt_ud_returns_s { 573 ibt_sidr_status_t ud_status; 574 ibt_redirect_info_t ud_redirect; 575 ib_qpn_t ud_dqpn; /* Returned destination QPN */ 576 ib_qkey_t ud_qkey; /* Q_Key for destination QPN */ 577 ibt_priv_data_len_t ud_priv_data_len; 578 void *ud_priv_data; 579 } ibt_ud_returns_t; 580 581 /* 582 * Multicast group attributes 583 * Not specified attributes should be set to "NULL" or "0". 584 * Used by ibt_join_mcg()/ibt_query_mcg(). 585 * 586 * mc_qkey, mc_pkey, mc_flow, mc_tclass, mc_sl, mc_join_state are required for 587 * create - ibt_join_mcg(). 588 */ 589 typedef struct ibt_mcg_attr_s { 590 ib_gid_t mc_mgid; /* MGID */ 591 ib_gid_t mc_pgid; /* SGID of the end port being */ 592 /* added to the MCG. */ 593 ib_qkey_t mc_qkey; /* Q_Key */ 594 ib_pkey_t mc_pkey; /* Partition key for this MCG */ 595 ibt_mtu_req_t mc_mtu_req; /* MTU */ 596 ibt_srate_req_t mc_rate_req; /* Static rate */ 597 ibt_pkt_lt_req_t mc_pkt_lt_req; /* Packet Life Time Request */ 598 uint_t mc_flow:20; /* FlowLabel. */ 599 uint8_t mc_hop; /* HopLimit */ 600 uint8_t mc_tclass; /* Traffic Class. */ 601 uint8_t mc_sl:4; /* Service Level */ 602 uint8_t mc_scope:4, /* Multicast Address Scope */ 603 mc_join_state:4; /* FULL For create */ 604 ib_lid_t mc_opaque1; 605 } ibt_mcg_attr_t; 606 607 /* 608 * Multicast group attributes. 609 * returned by ibt_join_mcg()/ibt_query_mcg(). 610 */ 611 typedef struct ibt_mcg_info_s { 612 ibt_adds_vect_t mc_adds_vect; /* Address information */ 613 ib_mtu_t mc_mtu; /* MTU */ 614 ib_qkey_t mc_qkey; /* Q_Key */ 615 uint16_t mc_pkey_ix; /* Pkey Index */ 616 uint8_t mc_scope:4; /* Multicast Address Scope */ 617 clock_t mc_opaque2; 618 } ibt_mcg_info_t; 619 620 /* 621 * Define a callback function that can be used in Non-Blocking calls to 622 * ibt_join_mcg(). 623 */ 624 typedef void (*ibt_mcg_handler_t)(void *arg, ibt_status_t retval, 625 ibt_mcg_info_t *mcg_info_p); 626 627 628 /* 629 * Service Flags - sd_flags 630 * 631 * IBT_SRV_PEER_TYPE_SID Peer-to-peer Service IDs. 632 */ 633 634 typedef enum ibt_service_flags_e { 635 IBT_SRV_NO_FLAGS = 0x0, 636 IBT_SRV_PEER_TYPE_SID = 0x1 637 } ibt_service_flags_t; 638 639 /* 640 * Define a Service ID Registration structure. 641 */ 642 typedef struct ibt_srv_desc_s { 643 ibt_cm_ud_handler_t sd_ud_handler; /* UD Service Handler */ 644 ibt_cm_handler_t sd_handler; /* Non-UD Service Handler */ 645 ibt_service_flags_t sd_flags; /* Flags */ 646 } ibt_srv_desc_t; 647 648 /* 649 * Flag to indicate ibt_bind_service() to or NOT-to clean-up Stale matching 650 * Local Service Records with SA prior to binding the new request. 651 */ 652 #define IBT_SBIND_NO_FLAGS 0 653 #define IBT_SBIND_NO_CLEANUP 1 654 655 /* 656 * Define a Service ID Binding structure (data for service records). 657 */ 658 typedef struct ibt_srv_bind_s { 659 uint64_t sb_key[2]; /* Service Key */ 660 char *sb_name; /* Service Name (up to 63 chars) */ 661 uint32_t sb_lease; /* Service Lease period (in seconds) */ 662 ib_pkey_t sb_pkey; /* Service P_Key */ 663 ibt_srv_data_t sb_data; /* Service Data */ 664 uint_t sb_flag; /* indicates to/not-to clean-up stale */ 665 /* matching local service records. */ 666 } ibt_srv_bind_t; 667 668 /* 669 * ibt_cm_delay() flags. 670 * 671 * Refer to InfiniBand Architecture Release Volume 1 Rev 1.0a: 672 * Section 12.6.6 MRA 673 */ 674 typedef enum ibt_cmdelay_flags_e { 675 IBT_CM_DELAY_REQ = 0, 676 IBT_CM_DELAY_REP = 1, 677 IBT_CM_DELAY_LAP = 2 678 } ibt_cmdelay_flags_t; 679 680 /* 681 * The payload for DDI events passed on IB_PROP_UPDATE_EVENT. 682 * This is passed as the bus nexus data to event_handler(9e). 683 */ 684 typedef struct ibt_prop_update_payload_s { 685 union { 686 struct { 687 uint32_t srv_updated:1; 688 uint32_t gid_updated:1; 689 } _ib_prop_update_struct; 690 uint32_t prop_updated; 691 } _ib_prop_update_union; 692 ibt_status_t ib_reprobe_status; 693 694 #define ib_srv_prop_updated \ 695 _ib_prop_update_union._ib_prop_update_struct.srv_updated 696 #define ib_gid_prop_updated \ 697 _ib_prop_update_union._ib_prop_update_struct.gid_updated 698 #define ib_prop_updated \ 699 _ib_prop_update_union.prop_updated 700 } ibt_prop_update_payload_t; 701 702 703 /* 704 * FUNCTION PROTOTYPES. 705 */ 706 707 /* 708 * ibt_attach() and ibt_detach(): 709 * These are the calls into IBTF used during client driver attach() and 710 * detach(). 711 * 712 * The IBTF returns an ibt_clnt_hdl_t to the client. This handle is used 713 * to identify this client device in all subsequent calls into the IBTF. 714 * 715 * The ibt_detach() routine is called from a client driver's detach() 716 * routine to deregister itself from the IBTF. 717 */ 718 ibt_status_t ibt_attach(ibt_clnt_modinfo_t *mod_infop, dev_info_t *arg, 719 void *clnt_private, ibt_clnt_hdl_t *ibt_hdl_p); 720 721 ibt_status_t ibt_detach(ibt_clnt_hdl_t ibt_hdl); 722 723 /* 724 * HCA FUNCTIONS 725 */ 726 727 /* 728 * ibt_get_hca_list() 729 * Returns the number of HCAs in a system and their node GUIDS. 730 * 731 * If hca_list_p is not NULL then the memory for the array of GUIDs is 732 * allocated by the IBTF and should be freed by the caller using 733 * ibt_free_hca_list(). If hca_list_p is NULL then no memory is allocated 734 * by ibt_get_hca_list and only the number of HCAs in a system is returned. 735 * 736 * It is assumed that the caller can block in kmem_alloc. 737 * 738 * ibt_free_hca_list() 739 * Free the memory allocated by ibt_get_hca_list(). 740 */ 741 uint_t ibt_get_hca_list(ib_guid_t **hca_list_p); 742 743 void ibt_free_hca_list(ib_guid_t *hca_list, uint_t entries); 744 745 /* 746 * ibt_open_hca() - Open/Close a HCA. HCA can only be opened/closed 747 * ibt_close_hca() once. ibt_open_hca() takes a client's ibt handle 748 * and a GUID and returns a unique IBT client HCA 749 * handle. 750 * 751 * These routines can not be called from interrupt context. 752 */ 753 ibt_status_t ibt_open_hca(ibt_clnt_hdl_t ibt_hdl, ib_guid_t hca_guid, 754 ibt_hca_hdl_t *hca_hdl); 755 756 ibt_status_t ibt_close_hca(ibt_hca_hdl_t hca_hdl); 757 758 759 /* 760 * ibt_query_hca() 761 * ibt_query_hca_byguid() 762 * Returns the static attributes of the specified HCA 763 */ 764 ibt_status_t ibt_query_hca(ibt_hca_hdl_t hca_hdl, ibt_hca_attr_t *hca_attrs); 765 766 ibt_status_t ibt_query_hca_byguid(ib_guid_t hca_guid, 767 ibt_hca_attr_t *hca_attrs); 768 769 770 /* 771 * ibt_query_hca_ports() 772 * ibt_query_hca_ports_byguid() 773 * Returns HCA port/ports attributes for the specified HCA port/ports. 774 * ibt_query_hca_ports() allocates the memory required for the 775 * ibt_hca_portinfo_t struct as well as the memory required for the SGID 776 * and P_Key tables contained within that struct. 777 * 778 * ibt_free_portinfo() 779 * Frees the memory allocated for a specified ibt_hca_portinfo_t struct. 780 */ 781 ibt_status_t ibt_query_hca_ports(ibt_hca_hdl_t hca_hdl, uint8_t port, 782 ibt_hca_portinfo_t **port_info_p, uint_t *ports_p, uint_t *size_p); 783 784 ibt_status_t ibt_query_hca_ports_byguid(ib_guid_t hca_guid, uint8_t port, 785 ibt_hca_portinfo_t **port_info_p, uint_t *ports_p, uint_t *size_p); 786 787 void ibt_free_portinfo(ibt_hca_portinfo_t *port_info, uint_t size); 788 789 /* 790 * ibt_set_hca_private() - Set/get the client private data. 791 * ibt_get_hca_private() 792 */ 793 void ibt_set_hca_private(ibt_hca_hdl_t hca_hdl, void *clnt_private); 794 void *ibt_get_hca_private(ibt_hca_hdl_t hca_hdl); 795 796 /* 797 * ibt_hca_handle_to_guid() 798 * A helper function to retrieve HCA GUID for the specified handle. 799 * Returns HCA GUID on which the specified Channel is allocated. Valid 800 * if it is non-NULL on return. 801 */ 802 ib_guid_t ibt_hca_handle_to_guid(ibt_hca_hdl_t hca); 803 804 /* 805 * ibt_hca_guid_to_handle() 806 * A helper function to retrieve a hca handle from a HCA GUID. 807 */ 808 ibt_status_t ibt_hca_guid_to_handle(ibt_clnt_hdl_t ibt_hdl, ib_guid_t hca_guid, 809 ibt_hca_hdl_t *hca_hdl); 810 811 /* 812 * CONNECTION ESTABLISHMENT/TEAR DOWN FUNCTIONS. 813 */ 814 815 /* 816 * ibt_get_paths 817 * Finds the best path to a specified destination (as determined by the 818 * IBTL) that satisfies the requirements specified in an ibt_path_attr_t 819 * struct. 820 */ 821 ibt_status_t ibt_get_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 822 ibt_path_attr_t *attr, uint8_t max_paths, ibt_path_info_t *paths, 823 uint8_t *num_paths_p); 824 825 826 /* 827 * Callback function that can be used in ibt_aget_paths(), a Non-Blocking 828 * version of ibt_get_paths(). 829 */ 830 typedef void (*ibt_path_handler_t)(void *arg, ibt_status_t retval, 831 ibt_path_info_t *paths, uint8_t num_paths); 832 833 /* 834 * Find path(s) to a given destination or service asynchronously. 835 * ibt_aget_paths() is a Non-Blocking version of ibt_get_paths(). 836 */ 837 ibt_status_t ibt_aget_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 838 ibt_path_attr_t *attr, uint8_t max_paths, ibt_path_handler_t func, 839 void *arg); 840 841 /* 842 * ibt_get_alt_path 843 * Finds the best alternate path to a specified channel (as determined by 844 * the IBTL) that satisfies the requirements specified in an 845 * ibt_alt_path_attr_t struct. The specified channel must have been 846 * previously opened successfully using ibt_open_rc_channel. 847 */ 848 ibt_status_t ibt_get_alt_path(ibt_channel_hdl_t chan, ibt_path_flags_t flags, 849 ibt_alt_path_attr_t *attr, ibt_alt_path_info_t *alt_path); 850 851 /* 852 * ibt_open_rc_channel 853 * ibt_open_rc_channel() opens a previously allocated RC communication 854 * channel. The IBTL initiates the channel establishment protocol. 855 */ 856 ibt_status_t ibt_open_rc_channel(ibt_channel_hdl_t rc_chan, 857 ibt_chan_open_flags_t flags, ibt_execution_mode_t mode, 858 ibt_chan_open_args_t *args, ibt_rc_returns_t *returns); 859 860 /* 861 * ibt_close_rc_channel 862 * Close the specified channel. Outstanding work requests are flushed 863 * so that the client can do the associated clean up. After that, the 864 * client will usually deregister the previously registered memory, 865 * then free the channel by calling ibt_free_rc_channel(). 866 * 867 * This function will reuse CM event Handler provided in 868 * ibt_open_rc_channel(). 869 */ 870 ibt_status_t ibt_close_rc_channel(ibt_channel_hdl_t rc_chan, 871 ibt_execution_mode_t mode, void *priv_data, 872 ibt_priv_data_len_t priv_data_len, uint8_t *ret_status, 873 void *ret_priv_data, ibt_priv_data_len_t *ret_priv_data_len_p); 874 875 /* 876 * ibt_prime_close_rc_channel 877 * 878 * Allocates resources required for a close rc channel operation. 879 * Calling ibt_prime_close_rc_channel() allows a channel to be 880 * subsequently closed in interrupt context. 881 * 882 * A call is first made to ibt_prime_close_rc_channel in non-interrupt 883 * context, followed by ibt_close_rc_channel in non-blocking mode from 884 * interrupt context 885 * 886 * ibt_prime_close_rc_channel() can only be called on a previously opened 887 * channel. 888 */ 889 ibt_status_t ibt_prime_close_rc_channel(ibt_channel_hdl_t rc_chan); 890 891 /* 892 * ibt_recycle_rc 893 * 894 * Recycle a RC channel which has transitioned to Error state. The 895 * ibt_recycle_rc() function transitions the channel from Error 896 * state (IBT_STATE_ERROR) to the state ready for use by 897 * ibt_open_rc_channel. Basically, this function is very similar to 898 * ibt_alloc_rc_channel, but reuses an existing RC channel. 899 * 900 * Clients are allowed to make resource clean up/free calls in the CM handler 901 * 902 * Client(s) must not invoke blocking version (ie., func specified as NULL) of 903 * ibt_recycle_rc from cm callback for IBT_CM_EVENT_CONN_CLOSED 904 * 905 * Clients are strongly advised not to issue blocking calls from func, as this 906 * would block the CM threads, and could delay or block other client connections 907 * and ibtl related API invocations. 908 */ 909 ibt_status_t ibt_recycle_rc(ibt_channel_hdl_t rc_chan, ibt_cep_flags_t control, 910 uint8_t hca_port_num, ibt_recycle_handler_t func, void *arg); 911 912 /* 913 * ibt_recycle_ud 914 * 915 * Recycle a UD channel which has transitioned to Error state. The 916 * ibt_recycle_ud() function transitions the channel from Error 917 * state (IBT_STATE_ERROR) to a usable state (IBT_STATE_RTS). 918 * Basically, this function is very similar to ibt_alloc_ud_channel, 919 * but reuses an existing UD channel. 920 */ 921 ibt_status_t ibt_recycle_ud(ibt_channel_hdl_t ud_chan, uint8_t hca_port_num, 922 uint16_t pkey_ix, ib_qkey_t qkey); 923 924 /* 925 * MODIFY CHANNEL ATTRIBUTE FUNCTIONs. 926 */ 927 928 /* 929 * ibt_pause_sendq 930 * ibt_unpause_sendq 931 * Place the send queue of the specified channel into the send queue 932 * drained state. 933 * Applicable for both RC and UD channels. 934 */ 935 ibt_status_t ibt_pause_sendq(ibt_channel_hdl_t chan, 936 ibt_cep_modify_flags_t modify_flags); 937 938 ibt_status_t ibt_unpause_sendq(ibt_channel_hdl_t chan); 939 940 /* 941 * ibt_resize_queues() 942 * Resize the SendQ/RecvQ sizes of a channel. 943 * 944 * Applicable for both RC and UD channels. 945 */ 946 ibt_status_t ibt_resize_queues(ibt_channel_hdl_t chan, ibt_qflags_t flags, 947 ibt_queue_sizes_t *request_sz, ibt_queue_sizes_t *actual_sz); 948 949 /* 950 * ibt_query_queues() 951 * 952 * Query the SendQ/RecvQ sizes of a channel. 953 * Applicable for both RC and UD channels. 954 */ 955 ibt_status_t ibt_query_queues(ibt_channel_hdl_t chan, 956 ibt_queue_sizes_t *actual_sz); 957 958 /* 959 * ibt_modify_rdma 960 * Enable/disable RDMA operations. 961 * 962 * Applicable for RC channels only. 963 */ 964 ibt_status_t ibt_modify_rdma(ibt_channel_hdl_t rc_chan, 965 ibt_cep_modify_flags_t modify_flags, ibt_cep_flags_t flags); 966 967 968 /* 969 * ibt_set_rdma_resource 970 * Change the number of resources to be used for incoming and outgoing 971 * RDMA reads & Atomics. 972 */ 973 ibt_status_t ibt_set_rdma_resource(ibt_channel_hdl_t rc_chan, 974 ibt_cep_modify_flags_t modify_flags, uint8_t rdma_ra_out, 975 uint8_t rdma_ra_in); 976 977 /* 978 * ibt_change_port 979 * Change the primary physical port of an RC channel. (This is done only 980 * if HCA supports this capability). Can only be called on a paused 981 * channel. 982 * Applicable for RC channels only. 983 */ 984 ibt_status_t ibt_change_port(ibt_channel_hdl_t rc_chan, uint8_t port_num); 985 986 987 /* 988 * SERVICE REGISTRATION FUNCTIONS 989 */ 990 991 /* 992 * ibt_register_service() 993 * ibt_deregister_service() 994 * Register/deregister a Service (range of Service IDs) with the IBTF. 995 * 996 * ibt_bind_service() 997 * ibt_unbind_service() 998 * ibt_unbind_all_services() 999 * Bind a Service to a given port (GID), and optionally create 1000 * service record(s) with the SA for ibt_get_paths() to find. 1001 */ 1002 ibt_status_t ibt_register_service(ibt_clnt_hdl_t ibt_hdl, 1003 ibt_srv_desc_t *service, ib_svc_id_t sid, int num_sids, 1004 ibt_srv_hdl_t *srv_hdl_p, ib_svc_id_t *ret_sid_p); 1005 1006 ibt_status_t ibt_deregister_service(ibt_clnt_hdl_t ibt_hdl, 1007 ibt_srv_hdl_t srv_hdl); 1008 1009 ibt_status_t ibt_bind_service(ibt_srv_hdl_t srv_hdl, ib_gid_t gid, 1010 ibt_srv_bind_t *srv_bind, void *cm_private, ibt_sbind_hdl_t *sb_hdl_p); 1011 1012 ibt_status_t ibt_unbind_service(ibt_srv_hdl_t srv_hdl, ibt_sbind_hdl_t sb_hdl); 1013 ibt_status_t ibt_unbind_all_services(ibt_srv_hdl_t srv_hdl); 1014 1015 /* 1016 * ibt_cm_delay 1017 * A client CM handler/srv_handler function can call this function to 1018 * extend its response time to a CM event. 1019 * Applicable for RC channels only. 1020 */ 1021 ibt_status_t ibt_cm_delay(ibt_cmdelay_flags_t flags, void *cm_session_id, 1022 clock_t service_time, void *priv_data, ibt_priv_data_len_t priv_data_len); 1023 1024 /* 1025 * ibt_cm_proceed 1026 * 1027 * An IBT client calls ibt_cm_proceed() to proceed with a connection that 1028 * previously deferred by the client returning IBT_CM_DEFER on a CM handler 1029 * callback. CM events that can be deferred and continued with ibt_cm_proceed() 1030 * are REQ_RCV, REP_RCV, LAP_RCV, and DREQ_RCV. 1031 * 1032 * NOTE : 1033 * 1034 * Typically CM completes processing of a client's CM handler return, with 1035 * IBT_CM_DEFER status, before processing of the corresponding ibt_cm_proceed() 1036 * is started. However a race exists where by CM may not have completed the 1037 * client's handler return processing when ibt_cm_proceed() is called by a 1038 * client. In this case ibt_cm_proceed() will block until processing of the 1039 * client's CM handler return is complete. 1040 * 1041 * A client that returns IBT_CM_DEFER from the cm handler must 1042 * subsequently make a call to ibt_cm_proceed(). It is illegal to call 1043 * ibt_cm_proceed() on a channel that has not had the connection 1044 * establishment deferred. 1045 * 1046 * Client cannot call ibt_cm_proceed from the cm handler. 1047 */ 1048 ibt_status_t ibt_cm_proceed(ibt_cm_event_type_t event, void *session_id, 1049 ibt_cm_status_t status, ibt_cm_proceed_reply_t *cm_event_data, 1050 void *priv_data, ibt_priv_data_len_t priv_data_len); 1051 1052 /* 1053 * ibt_cm_ud_proceed 1054 * 1055 * An IBT client calls ibt_cm_ud_proceed() to proceed with an 1056 * IBT_CM_UD_EVENT_SIDR_REQ UD event that was previously deferred by the 1057 * client returning IBT_CM_DEFER on a CM UD handler callback. 1058 * NOTE : 1059 * 1060 * Typically CM completes processing of a client's CM handler return, with 1061 * IBT_CM_DEFER status, before processing of the corresponding 1062 * ibt_cm_ud_proceed() is started. However a race exists where by CM may not 1063 * have completed the client's handler return processing when 1064 * ibt_cm_ud_proceed() is called by a client. In this case ibt_cm_ud_proceed() 1065 * will block until processing of the client's CM handler return is complete. 1066 * 1067 * A client that returns IBT_CM_DEFER from the cm handler must 1068 * subsequently make a call to ibt_cm_ud_proceed(). It is illegal to call 1069 * ibt_cm_ud_proceed() on a channel that has not had the connection 1070 * establishment deferred. 1071 * 1072 * Client cannot call ibt_cm_ud_proceed from the cm handler. 1073 */ 1074 ibt_status_t ibt_cm_ud_proceed(void *session_id, ibt_channel_hdl_t ud_channel, 1075 ibt_cm_status_t status, ibt_redirect_info_t *redirect_infop, 1076 void *priv_data, ibt_priv_data_len_t priv_data_len); 1077 1078 1079 /* 1080 * COMPLETION QUEUES. 1081 * 1082 * ibt_alloc_cq_sched() 1083 * Reserve CQ scheduling class resources 1084 * 1085 * ibt_free_cq_sched() 1086 * Free CQ scheduling class resources 1087 */ 1088 ibt_status_t ibt_alloc_cq_sched(ibt_hca_hdl_t hca_hdl, 1089 ibt_cq_sched_attr_t *attr, ibt_sched_hdl_t *sched_hdl_p); 1090 1091 ibt_status_t ibt_free_cq_sched(ibt_hca_hdl_t hca_hdl, 1092 ibt_sched_hdl_t sched_hdl, uint_t load); 1093 1094 /* 1095 * ibt_alloc_cq() 1096 * Allocate a completion queue. 1097 */ 1098 ibt_status_t ibt_alloc_cq(ibt_hca_hdl_t hca_hdl, ibt_cq_attr_t *cq_attr, 1099 ibt_cq_hdl_t *ibt_cq_p, uint_t *real_size); 1100 1101 /* 1102 * ibt_free_cq() 1103 * Free allocated CQ resources. 1104 */ 1105 ibt_status_t ibt_free_cq(ibt_cq_hdl_t ibt_cq); 1106 1107 1108 /* 1109 * ibt_enable_cq_notify() 1110 * Enable notification requests on the specified CQ. 1111 * Applicable for both RC and UD channels. 1112 * 1113 * Completion notifications are disabled by setting the completion 1114 * handler to NULL by calling ibt_set_cq_handler(). 1115 */ 1116 ibt_status_t ibt_enable_cq_notify(ibt_cq_hdl_t ibt_cq, 1117 ibt_cq_notify_flags_t notify_type); 1118 1119 /* 1120 * ibt_set_cq_handler() 1121 * Register a work request completion handler with the IBTF. 1122 * Applicable for both RC and UD channels. 1123 * 1124 * Completion notifications are disabled by setting the completion 1125 * handler to NULL. When setting the handler to NULL, no additional 1126 * calls to the CQ handler will be initiated. 1127 * 1128 * This function does not otherwise change the state of previous 1129 * calls to ibt_enable_cq_notify(). 1130 */ 1131 void ibt_set_cq_handler(ibt_cq_hdl_t ibt_cq, 1132 ibt_cq_handler_t completion_handler, void *arg); 1133 1134 /* 1135 * ibt_poll_cq() 1136 * Poll the specified CQ for the completion of work requests (WRs). 1137 * If the CQ contains completed WRs, up to num_wc of them are returned. 1138 * Applicable for both RC and UD channels. 1139 */ 1140 ibt_status_t ibt_poll_cq(ibt_cq_hdl_t ibt_cq, ibt_wc_t *work_completions, 1141 uint_t num_wc, uint_t *num_polled); 1142 1143 /* 1144 * ibt_query_cq() 1145 * Return the total number of entries in the CQ. 1146 */ 1147 ibt_status_t ibt_query_cq(ibt_cq_hdl_t ibt_cq, uint_t *entries); 1148 1149 /* 1150 * ibt_resize_cq() 1151 * Change the size of a CQ. 1152 */ 1153 ibt_status_t ibt_resize_cq(ibt_cq_hdl_t ibt_cq, uint_t new_sz, uint_t *real_sz); 1154 1155 /* 1156 * ibt_set_cq_private() 1157 * ibt_get_cq_private() 1158 * Set/get the client private data. 1159 */ 1160 void ibt_set_cq_private(ibt_cq_hdl_t ibt_cq, void *clnt_private); 1161 void *ibt_get_cq_private(ibt_cq_hdl_t ibt_cq); 1162 1163 1164 /* 1165 * Memory Management Functions. 1166 * Applicable for both RC and UD channels. 1167 * 1168 * ibt_register_mr() 1169 * Prepares a virtually addressed memory region for use by a HCA. A 1170 * description of the registered memory suitable for use in Work Requests 1171 * (WRs) is returned in the ibt_mr_desc_t parameter. 1172 * 1173 * ibt_register_buf() 1174 * Prepares a memory region described by a buf(9S) struct for use by a 1175 * HCA. A description of the registered memory suitable for use in 1176 * Work Requests (WRs) is returned in the ibt_mr_desc_t parameter. 1177 * 1178 * ibt_query_mr() 1179 * Retrieves information about a specified memory region. 1180 * 1181 * ibt_deregister_mr() 1182 * Remove a memory region from a HCA translation table, and free all 1183 * resources associated with the memory region. 1184 * 1185 * ibt_reregister_mr() 1186 * ibt_reregister_buf() 1187 * Modify the attributes of an existing memory region. 1188 * 1189 * ibt_register_shared_mr() 1190 * Given an existing memory region, a new memory region associated with 1191 * the same physical locations is created. 1192 * 1193 * ibt_sync_mr() 1194 * Sync a memory region for either RDMA reads or RDMA writes 1195 * 1196 * ibt_alloc_mw() 1197 * Allocate a memory window. 1198 * 1199 * ibt_query_mw() 1200 * Retrieves information about a specified memory window. 1201 * 1202 * ibt_free_mw() 1203 * De-allocate the Memory Window. 1204 */ 1205 ibt_status_t ibt_register_mr(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1206 ibt_mr_attr_t *mem_attr, ibt_mr_hdl_t *mr_hdl_p, ibt_mr_desc_t *mem_desc); 1207 1208 ibt_status_t ibt_register_buf(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1209 ibt_smr_attr_t *mem_bpattr, struct buf *bp, ibt_mr_hdl_t *mr_hdl_p, 1210 ibt_mr_desc_t *mem_desc); 1211 1212 ibt_status_t ibt_query_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1213 ibt_mr_query_attr_t *attr); 1214 1215 ibt_status_t ibt_deregister_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl); 1216 1217 ibt_status_t ibt_reregister_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1218 ibt_pd_hdl_t pd, ibt_mr_attr_t *mem_attr, ibt_mr_hdl_t *mr_hdl_p, 1219 ibt_mr_desc_t *mem_desc); 1220 1221 ibt_status_t ibt_reregister_buf(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1222 ibt_pd_hdl_t pd, ibt_smr_attr_t *mem_bpattr, struct buf *bp, 1223 ibt_mr_hdl_t *mr_hdl_p, ibt_mr_desc_t *mem_desc); 1224 1225 ibt_status_t ibt_register_shared_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1226 ibt_pd_hdl_t pd, ibt_smr_attr_t *mem_sattr, ibt_mr_hdl_t *mr_hdl_p, 1227 ibt_mr_desc_t *mem_desc); 1228 1229 ibt_status_t ibt_sync_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_sync_t *mr_segments, 1230 size_t num_segments); 1231 1232 ibt_status_t ibt_alloc_mw(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1233 ibt_mw_flags_t flags, ibt_mw_hdl_t *mw_hdl_p, ibt_rkey_t *rkey); 1234 1235 ibt_status_t ibt_query_mw(ibt_hca_hdl_t hca_hdl, ibt_mw_hdl_t mw_hdl, 1236 ibt_mw_query_attr_t *mw_attr_p); 1237 1238 ibt_status_t ibt_free_mw(ibt_hca_hdl_t hca_hdl, ibt_mw_hdl_t mw_hdl); 1239 1240 /* 1241 * ibt_alloc_lkey() 1242 * Allocates physical buffer list resources for use in memory 1243 * registrations. 1244 * 1245 * Applicable for both RC and UD channels. 1246 */ 1247 ibt_status_t ibt_alloc_lkey(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1248 ibt_lkey_flags_t flags, uint_t phys_buf_list_sz, ibt_mr_hdl_t *mr_p, 1249 ibt_pmr_desc_t *mem_desc_p); 1250 1251 1252 /* 1253 * Physical Memory Management Functions. 1254 * Applicable for both RC and UD channels. 1255 * 1256 * ibt_register_phys_mr() 1257 * Prepares a physically addressed memory region for use by a HCA. 1258 * 1259 * ibt_reregister_phys_mr() 1260 * Modify the attributes of an existing memory region. 1261 */ 1262 ibt_status_t ibt_register_phys_mr(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1263 ibt_pmr_attr_t *mem_pattr, ibt_mr_hdl_t *mr_hdl_p, 1264 ibt_pmr_desc_t *mem_desc_p); 1265 1266 ibt_status_t ibt_reregister_phys_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1267 ibt_pd_hdl_t pd, ibt_pmr_attr_t *mem_pattr, ibt_mr_hdl_t *mr_hdl_p, 1268 ibt_pmr_desc_t *mem_desc_p); 1269 1270 1271 /* 1272 * Address Translation. 1273 */ 1274 1275 /* 1276 * ibt_map_mem_area() 1277 * Translate a kernel virtual address range into HCA physical addresses. 1278 * A set of physical addresses, that can be used with "Reserved L_Key", 1279 * register physical, and "Fast Registration Work Request" operations 1280 * is returned. 1281 */ 1282 ibt_status_t ibt_map_mem_area(ibt_hca_hdl_t hca_hdl, ibt_va_attr_t *va_attrs, 1283 uint_t paddr_list_len, ibt_phys_buf_t *paddr_list_p, uint_t *num_paddr_p, 1284 size_t *paddr_bufsz_p, ib_memlen_t *paddr_offset_p, ibt_ma_hdl_t *ma_hdl_p); 1285 1286 /* 1287 * ibt_unmap_mem_area() 1288 * Un pin physical pages pinned during an ibt_map_mem_area() call. 1289 */ 1290 ibt_status_t ibt_unmap_mem_area(ibt_hca_hdl_t hca_hdl, ibt_ma_hdl_t ma_hdl); 1291 1292 /* 1293 * Work Request Functions 1294 * Applicable for RC and UD channels. 1295 * 1296 * ibt_post_send() 1297 * Post send work requests to the specified channel. 1298 * 1299 * ibt_post_recv() 1300 * ibt_post_srq() 1301 * Post receive work requests to the specified channel. 1302 */ 1303 ibt_status_t ibt_post_send(ibt_channel_hdl_t chan, ibt_send_wr_t *wr_list, 1304 uint_t num_wr, uint_t *posted); 1305 1306 ibt_status_t ibt_post_recv(ibt_channel_hdl_t chan, ibt_recv_wr_t *wr_list, 1307 uint_t num_wr, uint_t *posted); 1308 1309 ibt_status_t ibt_post_srq(ibt_srq_hdl_t srq, ibt_recv_wr_t *wr_list, 1310 uint_t num_wr, uint_t *posted); 1311 1312 1313 /* 1314 * Alternate Path Migration Functions. 1315 * Applicable for RC channels only. 1316 * 1317 * 1318 * ibt_get_alt_path() 1319 * Finds the best alternate path to a specified channel (as determined by 1320 * the IBTL) that satisfies the requirements specified in an 1321 * ibt_alt_path_attr_t struct. The specified channel must have been 1322 * previously opened successfully using ibt_open_rc_channel. 1323 * This function also ensures that the service being accessed by the 1324 * channel is available at the selected alternate port. 1325 * 1326 * Note: The apa_dgid must be on the same destination channel adapter, 1327 * if specified. 1328 * 1329 * 1330 * ibt_set_alt_path() 1331 * Load the specified alternate path. Causes the CM to send an LAP message 1332 * to the remote node. If successful, the local channel is updated with 1333 * the new alternate path and the channel migration state is set to REARM. 1334 * Can only be called on a previously opened RC channel. The channel must 1335 * be either in RTS or paused state. 1336 * 1337 * 1338 * ibt_migrate_path() 1339 * Force the CI to use the alternate path. The alternate path becomes 1340 * the primary path. A new alternate path should be loaded and enabled. 1341 */ 1342 ibt_status_t ibt_get_alt_path(ibt_channel_hdl_t rc_chan, ibt_path_flags_t flags, 1343 ibt_alt_path_attr_t *attr, ibt_alt_path_info_t *alt_pathp); 1344 1345 ibt_status_t ibt_set_alt_path(ibt_channel_hdl_t rc_chan, 1346 ibt_execution_mode_t mode, ibt_alt_path_info_t *alt_pinfo, void *priv_data, 1347 ibt_priv_data_len_t priv_data_len, ibt_ap_returns_t *ret_args); 1348 1349 ibt_status_t ibt_migrate_path(ibt_channel_hdl_t rc_chan); 1350 1351 1352 /* 1353 * Multicast group Functions. 1354 * Applicable for UD channels only. 1355 */ 1356 1357 /* 1358 * ibt_attach_mcg() 1359 * Attaches a UD channel to the specified multicast group. On successful 1360 * completion, this channel will be provided with a copy of every 1361 * multicast message addressed to the group specified by the MGID 1362 * (mcg_info->mc_adds_vect.av_dgid) and received on the HCA port with 1363 * which the channel is associated. 1364 */ 1365 ibt_status_t ibt_attach_mcg(ibt_channel_hdl_t ud_chan, 1366 ibt_mcg_info_t *mcg_info); 1367 1368 /* 1369 * ibt_detach_mcg() 1370 * Detach the specified UD channel from the specified multicast group. 1371 */ 1372 ibt_status_t ibt_detach_mcg(ibt_channel_hdl_t ud_chan, 1373 ibt_mcg_info_t *mcg_info); 1374 1375 /* 1376 * ibt_join_mcg() 1377 * Join a multicast group. The first full member "join" causes the MCG 1378 * to be created. 1379 */ 1380 ibt_status_t ibt_join_mcg(ib_gid_t rgid, ibt_mcg_attr_t *mcg_attr, 1381 ibt_mcg_info_t *mcg_info_p, ibt_mcg_handler_t func, void *arg); 1382 1383 /* 1384 * ibt_leave_mcg() 1385 * The port associated with the port GID shall be removed from the 1386 * multicast group specified by MGID (mc_gid) or from all the multicast 1387 * groups of which it is a member if the MGID (mc_gid) is not specified 1388 * (i.e. mc_gid.mgid_prefix must have 8-bits of 11111111 at the start of 1389 * the GID to identify this as being a multicast GID). 1390 * 1391 * The last full member to leave causes the destruction of the Multicast 1392 * Group. 1393 */ 1394 ibt_status_t ibt_leave_mcg(ib_gid_t rgid, ib_gid_t mc_gid, ib_gid_t port_gid, 1395 uint8_t mc_join_state); 1396 1397 /* 1398 * ibt_query_mcg() 1399 * Request information on multicast groups that match the parameters 1400 * specified in mcg_attr. Information on each multicast group is returned 1401 * to the caller in the form of an array of ibt_mcg_info_t. 1402 * ibt_query_mcg() allocates the memory for this array and returns a 1403 * pointer to the array (mcgs_p) and the number of entries in the array 1404 * (entries_p). This memory should be freed by the client using 1405 * ibt_free_mcg_info(). 1406 */ 1407 ibt_status_t ibt_query_mcg(ib_gid_t rgid, ibt_mcg_attr_t *mcg_attr, 1408 uint_t mcgs_max_num, ibt_mcg_info_t **mcgs_info_p, uint_t *entries_p); 1409 1410 /* 1411 * ibt_free_mcg_info() 1412 * Free the memory allocated by successful ibt_query_mcg() 1413 */ 1414 void ibt_free_mcg_info(ibt_mcg_info_t *mcgs_info, uint_t entries); 1415 1416 1417 /* 1418 * ibt_register_subnet_notices() 1419 * Register a handler to be called for subnet notifications. 1420 */ 1421 void ibt_register_subnet_notices(ibt_clnt_hdl_t ibt_hdl, 1422 ibt_sm_notice_handler_t sm_notice_handler, void *private); 1423 1424 1425 /* 1426 * Protection Domain Functions. 1427 * 1428 * ibt_alloc_pd() 1429 * ibt_free_pd() 1430 * Allocate/Release a protection domain 1431 */ 1432 ibt_status_t ibt_alloc_pd(ibt_hca_hdl_t hca_hdl, ibt_pd_flags_t flags, 1433 ibt_pd_hdl_t *pd); 1434 ibt_status_t ibt_free_pd(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd); 1435 1436 /* 1437 * P_Key to P_Key Index conversion Functions. 1438 * 1439 * ibt_pkey2index_byguid 1440 * ibt_pkey2index Convert a P_Key into a P_Key index. 1441 * 1442 * ibt_index2pkey_byguid 1443 * ibt_index2pkey Convert a P_Key Index into a P_Key. 1444 */ 1445 ibt_status_t ibt_pkey2index(ibt_hca_hdl_t hca_hdl, uint8_t port_num, 1446 ib_pkey_t pkey, uint16_t *pkey_ix); 1447 1448 ibt_status_t ibt_index2pkey(ibt_hca_hdl_t hca_hdl, uint8_t port_num, 1449 uint16_t pkey_ix, ib_pkey_t *pkey); 1450 1451 ibt_status_t ibt_pkey2index_byguid(ib_guid_t hca_guid, uint8_t port_num, 1452 ib_pkey_t pkey, uint16_t *pkey_ix); 1453 1454 ibt_status_t ibt_index2pkey_byguid(ib_guid_t hca_guid, uint8_t port_num, 1455 uint16_t pkey_ix, ib_pkey_t *pkey); 1456 1457 /* 1458 * ibt_ci_data_in() 1459 * 1460 * Pass CI specific userland data for CI objects to the CI. 1461 */ 1462 ibt_status_t ibt_ci_data_in(ibt_hca_hdl_t hca, ibt_ci_data_flags_t flags, 1463 ibt_object_type_t object, void *ibt_object_handle, void *data_p, 1464 size_t data_sz); 1465 1466 /* 1467 * ibt_ci_data_out() 1468 * 1469 * Obtain CI specific userland data for CI objects. 1470 */ 1471 ibt_status_t ibt_ci_data_out(ibt_hca_hdl_t hca, ibt_ci_data_flags_t flags, 1472 ibt_object_type_t object, void *ibt_object_handle, void *data_p, 1473 size_t data_sz); 1474 1475 1476 /* 1477 * Node Information. 1478 */ 1479 1480 /* Node type : n_node_type */ 1481 #define IBT_NODE_TYPE_CHANNEL_ADAPTER 1 /* HCA or TCA */ 1482 #define IBT_NODE_TYPE_SWITCH 2 1483 #define IBT_NODE_TYPE_ROUTER 3 1484 1485 typedef struct ibt_node_info_s { 1486 ib_guid_t n_sys_img_guid; /* System Image GUID */ 1487 ib_guid_t n_node_guid; /* Node GUID */ 1488 ib_guid_t n_port_guid; /* Port GUID */ 1489 uint16_t n_dev_id; /* Device ID */ 1490 uint32_t n_revision; /* Device Revision */ 1491 uint32_t n_vendor_id:24; /* Device Vendor ID */ 1492 uint8_t n_num_ports; /* Number of ports on this node. */ 1493 uint8_t n_port_num; /* Port number. */ 1494 uint8_t n_node_type; /* Node type */ 1495 char n_description[64]; /* NULL terminated ASCII string */ 1496 } ibt_node_info_t; 1497 1498 1499 /* 1500 * ibt_gid_to_node_info() 1501 * Retrieve node information for the specified GID. 1502 */ 1503 ibt_status_t ibt_gid_to_node_info(ib_gid_t gid, ibt_node_info_t *node_info_p); 1504 1505 /* 1506 * ibt_reprobe_dev 1507 * Reprobe properties for IOC device node. 1508 */ 1509 ibt_status_t ibt_reprobe_dev(dev_info_t *dip); 1510 1511 /* 1512 * ibt_get_companion_port_gids() 1513 * 1514 * Get list of GID's available on a companion port(s) of the specified 1515 * GID or list of GIDs available on a specified Node GUID/System Image 1516 * GUID. 1517 */ 1518 ibt_status_t ibt_get_companion_port_gids(ib_gid_t gid, ib_guid_t hca_guid, 1519 ib_guid_t sysimg_guid, ib_gid_t **gids_p, uint_t *num_gids_p); 1520 1521 /* 1522 * SHARED RECEIVE QUEUE 1523 */ 1524 1525 1526 /* 1527 * ibt_alloc_srq() 1528 * Allocate a shared receive queue. 1529 */ 1530 ibt_status_t ibt_alloc_srq(ibt_hca_hdl_t hca_hdl, ibt_srq_flags_t flags, 1531 ibt_pd_hdl_t pd, ibt_srq_sizes_t *sizes, ibt_srq_hdl_t *ibt_srq_p, 1532 ibt_srq_sizes_t *real_size_p); 1533 1534 /* 1535 * ibt_free_srq() 1536 * Free allocated SRQ resources. 1537 */ 1538 ibt_status_t ibt_free_srq(ibt_srq_hdl_t ibt_srq); 1539 1540 /* 1541 * ibt_query_srq() 1542 * Query a shared receive queue. 1543 */ 1544 ibt_status_t ibt_query_srq(ibt_srq_hdl_t ibt_srq, ibt_pd_hdl_t *pd_p, 1545 ibt_srq_sizes_t *sizes_p, uint_t *limit_p); 1546 1547 /* 1548 * ibt_modify_srq() 1549 * Modify a shared receive queue. 1550 */ 1551 ibt_status_t ibt_modify_srq(ibt_srq_hdl_t ibt_srq, ibt_srq_modify_flags_t flags, 1552 uint_t size, uint_t limit, uint_t *real_size_p); 1553 1554 /* 1555 * ibt_set_srq_private() 1556 * ibt_get_srq_private() 1557 * Set/get the SRQ client private data. 1558 */ 1559 void ibt_set_srq_private(ibt_srq_hdl_t ibt_srq, void *clnt_private); 1560 void *ibt_get_srq_private(ibt_srq_hdl_t ibt_srq); 1561 1562 /* 1563 * ibt_check_failure() 1564 * Function to test for special case failures 1565 */ 1566 ibt_failure_type_t ibt_check_failure(ibt_status_t status, uint64_t *reserved_p); 1567 1568 1569 /* 1570 * ibt_hw_is_present() returns 0 when there is no IB hardware actively 1571 * running. This is primarily useful for modules like rpcmod which needs a 1572 * quick check to decide whether or not it should try to use InfiniBand. 1573 */ 1574 int ibt_hw_is_present(); 1575 1576 /* 1577 * Fast Memory Registration (FMR). 1578 * 1579 * ibt_create_fmr_pool 1580 * Not fast-path. 1581 * ibt_create_fmr_pool() verifies that the HCA supports FMR and allocates 1582 * and initializes an "FMR pool". This pool contains state specific to 1583 * this registration, including the watermark setting to determine when 1584 * to sync, and the total number of FMR regions available within this pool. 1585 * 1586 * ibt_destroy_fmr_pool 1587 * ibt_destroy_fmr_pool() deallocates all of the FMR regions in a specific 1588 * pool. All state and information regarding the pool are destroyed and 1589 * returned as free space once again. No more use of FMR regions in this 1590 * pool are possible without a subsequent call to ibt_create_fmr_pool(). 1591 * 1592 * ibt_flush_fmr_pool 1593 * ibt_flush_fmr_pool forces a flush to occur. At the client's request, 1594 * any unmapped FMR regions (See 'ibt_deregister_mr())') are returned to 1595 * a free state. This function allows for an asynchronous cleanup of 1596 * formerly used FMR regions. Sync operation is also performed internally 1597 * by HCA driver, when 'watermark' settings for the number of free FMR 1598 * regions left in the "pool" is reached. 1599 * 1600 * ibt_register_physical_fmr 1601 * ibt_register_physical_fmr() assigns a "free" entry from the FMR Pool. 1602 * It first consults the "FMR cache" to see if this is a duplicate memory 1603 * registration to something already in use. If not, then a free entry 1604 * in the "pool" is marked used. 1605 * 1606 * ibt_deregister_fmr 1607 * The ibt_deregister_fmr un-maps the resources reserved from the FMR 1608 * pool by ibt_register_physical_fmr(). The ibt_deregister_fmr() will 1609 * mark the region as free in the FMR Pool. 1610 */ 1611 ibt_status_t ibt_create_fmr_pool(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1612 ibt_fmr_pool_attr_t *fmr_params, ibt_fmr_pool_hdl_t *fmr_pool_p); 1613 1614 ibt_status_t ibt_destroy_fmr_pool(ibt_hca_hdl_t hca_hdl, 1615 ibt_fmr_pool_hdl_t fmr_pool); 1616 1617 ibt_status_t ibt_flush_fmr_pool(ibt_hca_hdl_t hca_hdl, 1618 ibt_fmr_pool_hdl_t fmr_pool); 1619 1620 ibt_status_t ibt_register_physical_fmr(ibt_hca_hdl_t hca_hdl, 1621 ibt_fmr_pool_hdl_t fmr_pool, ibt_pmr_attr_t *mem_pattr, 1622 ibt_mr_hdl_t *mr_hdl_p, ibt_pmr_desc_t *mem_desc_p); 1623 1624 ibt_status_t ibt_deregister_fmr(ibt_hca_hdl_t hca, ibt_mr_hdl_t mr_hdl); 1625 1626 /* 1627 * IP SUPPORT 1628 */ 1629 1630 /* 1631 * IP get_paths 1632 * Returns an array (or single) of paths and source IP addresses. In the 1633 * simplest form just the destination IP address is specified, and one path 1634 * is requested, then one ibt_path_info_t struct and one source IP. 1635 * 1636 * More than one path can be requested to a single destination, in which case 1637 * the requested number of ibt_path_info_t's are returned, and the same 1638 * number of SRC IP address, with the first SRC IP address corrosponding 1639 * to the first ibt_path_info_t, etc. 1640 * 1641 * Restrictions on the source end point can be specified, in the form of a 1642 * source IP address (this implicitly defines the HCA, HCA port and Pkey) 1643 * HCA, HCA port, and sgid (implicitly defines HCA and HCA port). 1644 * Combinations are allowed but they must be consistent. 1645 * 1646 * Path attributes can also be specified, these can also affect local HCA 1647 * selection. 1648 * 1649 * ibt_get_ip_paths() internally does (among other things): 1650 * 1651 * o ibt_get_list_of_ibd_ipaddr_and_macaddr( OUT list_ipaddr_macaddr) 1652 * 1653 * o extract_pkey_and_sgid(IN list_ipaddr_macaddr, OUT list_pkey_and_sgid) 1654 * 1655 * o map_dst_ip_addr(IN dst_ip_addr, OUT dst_pkey, OUT dgid) - See Note 1656 * 1657 * o filter_by_pkey(IN list_pkey_and_sgid, IN dst_pkey, OUT list_of_sgid) 1658 * 1659 * o do_multipath_query(IN list_of_sgid, IN dst_pkey, IN dgid, OUT path_list) 1660 * 1661 * o pick_a_good_path(IN path_list, OUT the_path) 1662 * 1663 * o find_matching_src_ip(IN the_path, IN list_ipaddr_macaddr, OUT src_ip) 1664 * 1665 * The ibd instance which got the ARP response is only on one P_Key 1666 * knowing the ibd instance (or which IPonIB MCG) got the ARP response 1667 * determins the P_Key associated with a dgid. If the proposedi "ip2mac()" 1668 * API is used to get an IP to GID translations, then returned 'sockaddr_dl' 1669 * contains the interface name and index. 1670 * 1671 * 1672 * Example: 1673 * ip_path_attr.ipa_dst_ip = dst_ip_addr; 1674 * ip_path_attr.ipa_ndst = 1; 1675 * ip_path_attr.ipa_max_paths = 1; 1676 * 1677 * status = ibt_get_ip_paths(clnt_hdl, flags, &ip_path_attr, &paths, 1678 * &num_paths_p, &src_ip); 1679 * 1680 * sid = ibt_get_ip_sid(protocol_num, dst_port); 1681 * path_info->sid = sid; 1682 * 1683 * ip_cm_info.src_addr = src_ip; 1684 * ip_cm_info.dst_addr = dst_ip_addr; 1685 * ip_cm_info.src_port = src_port 1686 * 1687 * ibt_format_ip_private_data(ip_cm_info, priv_data_len, &priv_data); 1688 * ibt_open_rc_channel(chan, private_data); 1689 */ 1690 typedef struct ibt_ip_path_attr_s { 1691 ibt_ip_addr_t *ipa_dst_ip; /* Required */ 1692 ibt_ip_addr_t ipa_src_ip; /* Optional */ 1693 ib_guid_t ipa_hca_guid; /* Optional */ 1694 uint8_t ipa_hca_port_num; /* Optional */ 1695 uint8_t ipa_max_paths; /* Required */ 1696 uint8_t ipa_ndst; /* Required */ 1697 uint8_t ipa_sl:4; /* Optional */ 1698 ibt_mtu_req_t ipa_mtu; /* Optional */ 1699 ibt_srate_req_t ipa_srate; /* Optional */ 1700 ibt_pkt_lt_req_t ipa_pkt_lt; /* Optional */ 1701 uint_t ipa_flow:20; /* Optional */ 1702 uint8_t ipa_hop; /* Optional */ 1703 uint8_t ipa_tclass; /* Optional */ 1704 } ibt_ip_path_attr_t; 1705 1706 /* 1707 * Path SRC IP addresses 1708 */ 1709 typedef struct ibt_path_ip_src_s { 1710 ibt_ip_addr_t ip_primary; 1711 ibt_ip_addr_t ip_alternate; 1712 } ibt_path_ip_src_t; 1713 1714 1715 ibt_status_t ibt_get_ip_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 1716 ibt_ip_path_attr_t *attr, ibt_path_info_t *paths_p, uint8_t *num_paths_p, 1717 ibt_path_ip_src_t *src_ip_p); 1718 1719 ibt_status_t ibt_get_src_ip(ib_gid_t gid, ib_pkey_t pkey, 1720 ibt_ip_addr_t *src_ip); 1721 1722 /* 1723 * Callback function that can be used in ibt_aget_ip_paths(), a Non-Blocking 1724 * version of ibt_get_ip_paths(). 1725 */ 1726 typedef void (*ibt_ip_path_handler_t)(void *arg, ibt_status_t retval, 1727 ibt_path_info_t *paths_p, uint8_t num_paths, ibt_path_ip_src_t *src_ip_p); 1728 1729 /* 1730 * Find path(s) to a given destination or service asynchronously. 1731 * ibt_aget_ip_paths() is a Non-Blocking version of ibt_get_ip_paths(). 1732 */ 1733 ibt_status_t ibt_aget_ip_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 1734 ibt_ip_path_attr_t *attr, ibt_ip_path_handler_t func, void *arg); 1735 1736 /* 1737 * IP RDMA protocol functions 1738 */ 1739 1740 /* 1741 * IBTF manages the port number space for non well known ports. If a ULP 1742 * is not using TCP/UDP and a well known port, then ibt_get_ip_sid() returns 1743 * an sid based on the IP protocol number '0' (reserved) and an IBTF assigned 1744 * port number. ibt_release_ip_sid() should be used to release the hold 1745 * of SID created by ibt_get_ip_sid(). 1746 */ 1747 ib_svc_id_t ibt_get_ip_sid(uint8_t protocol_num, in_port_t dst_port); 1748 ibt_status_t ibt_release_ip_sid(ib_svc_id_t sid); 1749 1750 uint8_t ibt_get_ip_protocol_num(ib_svc_id_t sid); 1751 in_port_t ibt_get_ip_dst_port(ib_svc_id_t sid); 1752 1753 /* 1754 * Functions to format/extract the RDMA IP CM private data 1755 */ 1756 typedef struct ibt_ip_cm_info_s { 1757 ibt_ip_addr_t src_addr; 1758 ibt_ip_addr_t dst_addr; 1759 in_port_t src_port; 1760 } ibt_ip_cm_info_t; 1761 1762 /* 1763 * If a ULP is using IP addressing as defined by the RDMA IP CM Service IBTA 1764 * Annex 11, then it must always allocate a private data buffer for use in 1765 * the ibt_open_rc_channel(9F) call. The minimum size of the buffer is 1766 * IBT_IP_HDR_PRIV_DATA_SZ, if the ULP has no ULP specific private data. 1767 * This allows ibt_format_ip_private_data() to place the RDMA IP CM service 1768 * hello message in the private data of the REQ. If the ULP has some ULP 1769 * specific private data then it should allocate a buffer big enough to 1770 * contain that data plus an additional IBT_IP_HDR_PRIV_DATA_SZ bytes. 1771 * The ULP should place its ULP specific private data at offset 1772 * IBT_IP_HDR_PRIV_DATA_SZ in the allocated buffer before calling 1773 * ibt_format_ip_private_data(). 1774 */ 1775 ibt_status_t ibt_format_ip_private_data(ibt_ip_cm_info_t *ip_cm_info, 1776 ibt_priv_data_len_t priv_data_len, void *priv_data_p); 1777 ibt_status_t ibt_get_ip_data(ibt_priv_data_len_t priv_data_len, 1778 void *priv_data, ibt_ip_cm_info_t *ip_info_p); 1779 1780 /* 1781 * The ibt_alt_ip_path_attr_t structure is used to specify additional optional 1782 * attributes when requesting an alternate path for an existing channel. 1783 * 1784 * Attributes that are don't care should be set to NULL or '0'. 1785 */ 1786 typedef struct ibt_alt_ip_path_attr_s { 1787 ibt_ip_addr_t apa_dst_ip; 1788 ibt_ip_addr_t apa_src_ip; 1789 ibt_srate_req_t apa_srate; 1790 ibt_pkt_lt_req_t apa_pkt_lt; /* Packet Life Time Request */ 1791 uint_t apa_flow:20; 1792 uint8_t apa_sl:4; 1793 uint8_t apa_hop; 1794 uint8_t apa_tclass; 1795 } ibt_alt_ip_path_attr_t; 1796 1797 ibt_status_t ibt_get_ip_alt_path(ibt_channel_hdl_t rc_chan, 1798 ibt_path_flags_t flags, ibt_alt_ip_path_attr_t *attr, 1799 ibt_alt_path_info_t *alt_path); 1800 1801 /* 1802 * CONTRACT PRIVATE ONLY INTERFACES 1803 * 1804 * DO NOT USE THE FOLLOWING FUNCTIONS WITHOUT SIGNING THE CONTRACT 1805 * WITH IBTF GROUP. 1806 */ 1807 1808 /* Define an Address Record structure (data for ATS service records). */ 1809 typedef struct ibt_ar_s { 1810 ib_gid_t ar_gid; /* GID of local HCA port */ 1811 ib_pkey_t ar_pkey; /* P_Key valid on port of ar_gid */ 1812 uint8_t ar_data[16]; /* Data affiliated with GID/P_Key */ 1813 } ibt_ar_t; 1814 1815 /* 1816 * ibt_register_ar() 1817 * ibt_deregister_ar() 1818 * Register/deregister an Address Record with the SA. 1819 * ibt_query_ar() 1820 * Query the SA for Address Records matching either GID/P_Key or Data. 1821 */ 1822 ibt_status_t ibt_register_ar(ibt_clnt_hdl_t ibt_hdl, ibt_ar_t *arp); 1823 1824 ibt_status_t ibt_deregister_ar(ibt_clnt_hdl_t ibt_hdl, ibt_ar_t *arp); 1825 1826 ibt_status_t ibt_query_ar(ib_gid_t *sgid, ibt_ar_t *queryp, ibt_ar_t *resultp); 1827 1828 1829 /* 1830 * ibt_modify_system_image() 1831 * ibt_modify_system_image_byguid() 1832 * Modify specified HCA's system image GUID. 1833 */ 1834 ibt_status_t ibt_modify_system_image(ibt_hca_hdl_t hca_hdl, ib_guid_t sys_guid); 1835 1836 ibt_status_t ibt_modify_system_image_byguid(ib_guid_t hca_guid, 1837 ib_guid_t sys_guid); 1838 1839 1840 /* 1841 * ibt_modify_port() 1842 * ibt_modify_port_byguid() 1843 * Modify the specified port, or all ports attribute(s). 1844 */ 1845 ibt_status_t ibt_modify_port(ibt_hca_hdl_t hca_hdl, uint8_t port, 1846 ibt_port_modify_flags_t flags, uint8_t init_type); 1847 1848 ibt_status_t ibt_modify_port_byguid(ib_guid_t hca_guid, uint8_t port, 1849 ibt_port_modify_flags_t flags, uint8_t init_type); 1850 1851 1852 /* 1853 * ibt_get_port_state() 1854 * ibt_get_port_state_byguid() 1855 * Return the most commonly requested attributes of an HCA port. 1856 * If the link state is not IBT_PORT_ACTIVE, the other returned values 1857 * are undefined. 1858 */ 1859 ibt_status_t ibt_get_port_state(ibt_hca_hdl_t hca_hdl, uint8_t port, 1860 ib_gid_t *sgid_p, ib_lid_t *base_lid_p); 1861 1862 ibt_status_t ibt_get_port_state_byguid(ib_guid_t hca_guid, uint8_t port, 1863 ib_gid_t *sgid_p, ib_lid_t *base_lid_p); 1864 1865 #ifdef __cplusplus 1866 } 1867 #endif 1868 1869 #endif /* _SYS_IB_IBTL_IBTI_COMMON_H */ 1870