1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _SYS_IB_IBTL_IBTI_COMMON_H 27 #define _SYS_IB_IBTL_IBTI_COMMON_H 28 29 /* 30 * ibti_common.h 31 * 32 * This file contains the shared/common transport data types and function 33 * prototypes. 34 */ 35 #include <sys/ib/ibtl/ibtl_types.h> 36 #include <sys/ib/ibtl/ibti_cm.h> 37 #include <sys/isa_defs.h> 38 #include <sys/byteorder.h> 39 40 #ifdef __cplusplus 41 extern "C" { 42 #endif 43 44 /* 45 * Max number of paths that can be requested in an ibt_get_paths() call, 46 * if IBT_PATH_PERF or IBT_PATH_AVAIL flag (ibt_path_flags_t) is set. 47 */ 48 #define IBT_MAX_SPECIAL_PATHS 2 49 50 /* 51 * The name of DDI Event, generated when the properties of IOC device 52 * node properties were modified. 53 */ 54 #define IB_PROP_UPDATE_EVENT "SUNW,IB:IB_PROP_UPDATE" 55 56 57 /* Transport Interface version */ 58 typedef enum ibt_version_e { 59 IBTI_V1 = 1, 60 IBTI_V2 = 2, /* FMR Support */ 61 IBTI_V3 = 3, 62 IBTI_V_CURR = IBTI_V3 63 } ibt_version_t; 64 65 /* 66 * Driver class type. Identifies a type of client driver so that 67 * "IBTF Policy" decisions can be made on a driver class basis. 68 * The last class should always be IBT_CLNT_NUM, and any new classes added 69 * must be defined before IBT_CLNT_NUM. The class values must be above 0. 70 * Any class values below or equal to 0 shall be invalid 71 */ 72 typedef enum ibt_clnt_class_e { 73 IBT_STORAGE_DEV = 0x1, /* SCSI, FC, etc.. */ 74 IBT_NETWORK_DEV, /* Network driver with associated client H/W */ 75 IBT_GENERIC_DEV, /* Generic client H/W device driver */ 76 IBT_NETWORK, /* Network driver with no associated */ 77 /* client H/W, e.g., IPoIB */ 78 IBT_GENERIC, /* A generic IB driver not */ 79 /* associated with client H/W */ 80 IBT_USER, /* A user application IBT interface driver */ 81 IBT_IBMA, /* The IBMA Module */ 82 IBT_CM, /* The CM Module */ 83 IBT_DM, /* The DM Module */ 84 IBT_CLASS_NUM /* Place holder for class count */ 85 } ibt_clnt_class_t; 86 87 #define IBT_TEST_DEV 999 /* Place holder for modules that test IBTL */ 88 89 #define IBT_CLNT_DEVICE_CLASS(class) ((class) == IBT_STORAGE_DEV || \ 90 (class) == IBT_NETWORK_DEV || \ 91 (class) == IBT_GENERIC_DEV) 92 93 #define IBT_CLNT_GENERAL_CLASS(class) ((class) == IBT_NETWORK || \ 94 (class) == IBT_GENERIC || \ 95 (class) == IBT_USER) 96 97 #define IBT_CLNT_MGMT_CLASS(class) ((class) == IBT_IBMA || \ 98 (class) == IBT_CM || \ 99 (class) == IBT_DM || \ 100 (class) == IBT_TEST_DEV) 101 /* 102 * Event record & status returns for asynchronous events and errors. 103 */ 104 typedef struct ibt_async_event_s { 105 uint64_t ev_fma_ena; /* FMA Error data */ 106 ibt_channel_hdl_t ev_chan_hdl; /* Channel handle */ 107 ibt_cq_hdl_t ev_cq_hdl; /* CQ handle */ 108 ib_guid_t ev_hca_guid; /* HCA node GUID */ 109 ibt_srq_hdl_t ev_srq_hdl; /* SRQ handle */ 110 ibt_port_change_t ev_port_flags; /* Port Change flags */ 111 uint8_t ev_port; /* HCA port */ 112 } ibt_async_event_t; 113 114 /* 115 * IBT Client Callback function typedefs. 116 * 117 * ibt_async_handler_t 118 * Pointer to an async event/error handler function. This function is 119 * called when an async event/error is detected on a HCA that is being 120 * used by the IBT client driver that registered the function. 121 */ 122 typedef void (*ibt_async_handler_t)(void *clnt_private, 123 ibt_hca_hdl_t hca_hdl, ibt_async_code_t code, ibt_async_event_t *event); 124 125 /* 126 * IBT Client Memory Error Callback function typedefs. 127 * 128 * ibt_memory_handler_t 129 * Pointer to an memory event/error handler function. 130 */ 131 typedef void (*ibt_memory_handler_t)(void *clnt_private, 132 ibt_hca_hdl_t hca_hdl, ibt_mem_code_t code, ibt_mem_data_t *data); 133 134 /* 135 * Define a client module information structure. All clients MUST 136 * define a global of type ibt_clnt_modinfo_t. A pointer to this global 137 * is passed into the IBTF by a client when calling ibt_attach(). 138 * This struct must persist during the life of the client. 139 * 140 * The client's mi_async_handler is called when an async event/error is 141 * detected on a HCA that is being used by this client. 142 */ 143 typedef struct ibt_clnt_modinfo_s { 144 ibt_version_t mi_ibt_version; /* TI version */ 145 ibt_clnt_class_t mi_clnt_class; /* Type of client */ 146 ibt_async_handler_t mi_async_handler; /* Async Handler */ 147 ibt_memory_handler_t mi_reserved; /* Memory handler */ 148 char *mi_clnt_name; /* Client Name. */ 149 } ibt_clnt_modinfo_t; 150 151 152 /* 153 * Definitions for use with ibt_register_subnet_notices() 154 */ 155 typedef enum ibt_subnet_event_code_e { 156 IBT_SM_EVENT_MCG_CREATED = 1, 157 IBT_SM_EVENT_MCG_DELETED = 2, 158 IBT_SM_EVENT_AVAILABLE = 3, 159 IBT_SM_EVENT_UNAVAILABLE = 4, 160 IBT_SM_EVENT_GID_AVAIL = 5, 161 IBT_SM_EVENT_GID_UNAVAIL = 6 162 } ibt_subnet_event_code_t; 163 164 typedef struct ibt_subnet_event_s { 165 ib_gid_t sm_notice_gid; 166 } ibt_subnet_event_t; 167 168 typedef void (*ibt_sm_notice_handler_t)(void *private, ib_gid_t gid, 169 ibt_subnet_event_code_t code, ibt_subnet_event_t *event); 170 171 172 /* 173 * MTU Request type. 174 */ 175 typedef struct ibt_mtu_req_s { 176 ib_mtu_t r_mtu; /* Requested MTU */ 177 ibt_selector_t r_selector; /* Qualifier for r_mtu */ 178 } ibt_mtu_req_t; 179 180 181 /* 182 * Qflags, used by ibt_resize_queues(). 183 */ 184 typedef enum ibt_qflags_e { 185 IBT_SEND_Q = 1 << 0, /* Op applies to the Send Q */ 186 IBT_RECV_Q = 1 << 1 /* Op applies to the Recv Q */ 187 } ibt_qflags_t; 188 189 /* 190 * CQ priorities 191 * The IBTF will attempt to implement a coarse 3 level priority scheme 192 * (IBT_CQ_LOW, IBT_CQ_MEDIUM, IBT_CQ_HIGH) based on the class of client 193 * driver. The requested priority is not guaranteed. If a CI implementation 194 * has the ability to implement priority CQs, then the IBTF will take advantage 195 * of that when calling the CI to create a CQ by passing a priority indicator 196 * to the CI. 197 */ 198 typedef enum ibt_cq_priority_e { 199 IBT_CQ_DEFAULT = 0x0, 200 IBT_CQ_LOW = 0x1, 201 IBT_CQ_MEDIUM = 0x2, 202 IBT_CQ_HIGH = 0x3, 203 IBT_CQ_OPAQUE_1 = 0x4, 204 IBT_CQ_OPAQUE_2 = 0x5, 205 IBT_CQ_OPAQUE_3 = 0x6, 206 IBT_CQ_OPAQUE_4 = 0x7, 207 IBT_CQ_OPAQUE_5 = 0x8, 208 IBT_CQ_OPAQUE_6 = 0x9, 209 IBT_CQ_OPAQUE_7 = 0xA, 210 IBT_CQ_OPAQUE_8 = 0xB, 211 IBT_CQ_OPAQUE_9 = 0xC, 212 IBT_CQ_OPAQUE_10 = 0xD, 213 IBT_CQ_OPAQUE_11 = 0xE, 214 IBT_CQ_OPAQUE_12 = 0xF, 215 IBT_CQ_OPAQUE_13 = 0x10, 216 IBT_CQ_OPAQUE_14 = 0x11, 217 IBT_CQ_OPAQUE_15 = 0x12, 218 IBT_CQ_OPAQUE_16 = 0x13 219 } ibt_cq_priority_t; 220 221 /* 222 * Attributes when creating a Completion Queue Scheduling Handle. 223 */ 224 typedef struct ibt_cq_sched_attr_s { 225 ibt_cq_sched_flags_t cqs_flags; 226 ibt_cq_priority_t cqs_priority; 227 uint_t cqs_load; 228 ibt_sched_hdl_t cqs_affinity_hdl; 229 } ibt_cq_sched_attr_t; 230 231 232 /* 233 * ibt_cq_handler_t 234 * Pointer to a work request completion handler function. This function 235 * is called when a WR completes on a CQ that is being used by the IBTF 236 * client driver that registered the function. 237 */ 238 typedef void (*ibt_cq_handler_t)(ibt_cq_hdl_t ibt_cq, void *arg); 239 240 /* default CQ handler ID */ 241 #define IBT_CQ_HID_DEFAULT (1) 242 243 /* 244 * Service Data and flags. 245 * (IBTA Spec Release 1.1, Vol-1 Ref: 15.2.5.14.4) 246 * 247 * The ServiceData8.1 (sb_data8[0]) through ServiceData64.2 (sb_data64[1]) 248 * components together constitutes a 64-byte area in which any data may be 249 * placed. It is intended to be a convenient way for a service to provide its 250 * clients with some initial data. 251 * 252 * In addition, this 64-byte area is formally divided into a total of 30 253 * components, 16 8-bit (uint8_t) components, then 8 16-bit (uint16_t) 254 * components, then 6 32-bit (uint32_t) components, then 2 64-bit (uint64_t) 255 * components, thereby assigning ComponentMask bits (ibt_srv_data_flags_t) to 256 * variously-sized segments of the data. All data are in host endian format. 257 * This allows query operations (ibt_get_paths()) to be used which match 258 * parts of the Service Data, making it possible, for example, for 259 * service-specific parts of the ServiceData to serve as a binary-coded 260 * extension to the ServiceName for purposes of lookup. 261 */ 262 typedef enum ibt_srv_data_flags_e { 263 IBT_NO_SDATA = 0, 264 265 IBT_SDATA8_0 = (1 << 0), 266 IBT_SDATA8_1 = (1 << 1), 267 IBT_SDATA8_2 = (1 << 2), 268 IBT_SDATA8_3 = (1 << 3), 269 IBT_SDATA8_4 = (1 << 4), 270 IBT_SDATA8_5 = (1 << 5), 271 IBT_SDATA8_6 = (1 << 6), 272 IBT_SDATA8_7 = (1 << 7), 273 IBT_SDATA8_8 = (1 << 8), 274 IBT_SDATA8_9 = (1 << 9), 275 IBT_SDATA8_10 = (1 << 10), 276 IBT_SDATA8_11 = (1 << 11), 277 IBT_SDATA8_12 = (1 << 12), 278 IBT_SDATA8_13 = (1 << 13), 279 IBT_SDATA8_14 = (1 << 14), 280 IBT_SDATA8_15 = (1 << 15), 281 282 IBT_SDATA16_0 = (1 << 16), 283 IBT_SDATA16_1 = (1 << 17), 284 IBT_SDATA16_2 = (1 << 18), 285 IBT_SDATA16_3 = (1 << 19), 286 IBT_SDATA16_4 = (1 << 20), 287 IBT_SDATA16_5 = (1 << 21), 288 IBT_SDATA16_6 = (1 << 22), 289 IBT_SDATA16_7 = (1 << 23), 290 291 IBT_SDATA32_0 = (1 << 24), 292 IBT_SDATA32_1 = (1 << 25), 293 IBT_SDATA32_2 = (1 << 26), 294 IBT_SDATA32_3 = (1 << 27), 295 296 IBT_SDATA64_0 = (1 << 28), 297 IBT_SDATA64_1 = (1 << 29), 298 299 IBT_SDATA_ALL = 0x3FFFFFFF 300 } ibt_srv_data_flags_t; 301 302 typedef struct ibt_srv_data_s { 303 uint8_t s_data8[16]; /* 8-bit service data fields. */ 304 uint16_t s_data16[8]; /* 16-bit service data fields. */ 305 uint32_t s_data32[4]; /* 32-bit service data fields. */ 306 uint64_t s_data64[2]; /* 64-bit service data fields. */ 307 } ibt_srv_data_t; 308 309 /* 310 * Path flags, used in ibt_get_paths() 311 */ 312 typedef enum ibt_path_flags_e { 313 IBT_PATH_NO_FLAGS = 0, 314 IBT_PATH_APM = 1 << 0, /* APM is desired. */ 315 IBT_PATH_AVAIL = 1 << 2, 316 IBT_PATH_PERF = 1 << 3, 317 IBT_PATH_MULTI_SVC_DEST = 1 << 4, /* Multiple ServiceRecords */ 318 IBT_PATH_HOP = 1 << 5, /* pa_hop is specified. */ 319 IBT_PATH_PKEY = 1 << 6 /* pa_pkey is specified. */ 320 } ibt_path_flags_t; 321 322 /* 323 * Path attributes. 324 * 325 * The ibt_path_attr_t structure is used to specify required attributes in a 326 * path from the requesting (source) node to a specified destination node. 327 * Attributes that are don't care should be set to NULL or '0'. 328 * A destination must be specified, where a destination can be defined as 329 * one of the following: 330 * 331 * o Service Name 332 * o Service ID (SID) 333 * o Array of DGIDs. 334 * o Service Name and Array of DGIDs. 335 */ 336 typedef struct ibt_path_attr_s { 337 ib_gid_t *pa_dgids; /* Array of DGIDs */ 338 ib_gid_t pa_sgid; 339 ib_guid_t pa_hca_guid; 340 char *pa_sname; /* ASCII Service name */ 341 /* NULL Terminated */ 342 ib_svc_id_t pa_sid; /* Service ID */ 343 ibt_srv_data_flags_t pa_sd_flags; /* Service Data flags. */ 344 ibt_srv_data_t pa_sdata; /* Service Data */ 345 uint8_t pa_hca_port_num; 346 uint8_t pa_num_dgids; /* size of pa_dgids array */ 347 uint8_t pa_sl:4; 348 ibt_mtu_req_t pa_mtu; 349 ibt_srate_req_t pa_srate; 350 ibt_pkt_lt_req_t pa_pkt_lt; /* Packet Life Time Request */ 351 uint_t pa_flow:20; 352 uint8_t pa_hop; /* IBT_PATH_HOP */ 353 uint8_t pa_tclass; 354 ib_pkey_t pa_pkey; /* IBT_PATH_PKEY */ 355 } ibt_path_attr_t; 356 357 /* 358 * Path Information. 359 * 360 * The ibt_get_paths() performs SA Path record lookups to select a path(s) to 361 * a given destination(s), details of selected path(s) are returned in this 362 * structure. 363 * 364 * The ibt_path_info_t contains all the attributes of the best path(s), as 365 * as determined by IBTL, to the specified destination(s), including the 366 * local HCA and HCA port to use to access the fabric. 367 * 368 * The Service ID (pi_sid) and Service Data (pi_sdata) are returned only for 369 * lookups based on Service ID or/and Service Name. 370 */ 371 typedef struct ibt_path_info_s { 372 ib_guid_t pi_hca_guid; /* Local HCA GUID; 0 implies */ 373 /* this record is invalid */ 374 ib_svc_id_t pi_sid; /* Service ID */ 375 ibt_srv_data_t pi_sdata; /* Service Data */ 376 377 ibt_cep_path_t pi_prim_cep_path; /* Contains CEP adds info */ 378 ibt_cep_path_t pi_alt_cep_path; /* RC & UC Only, valid if */ 379 /* cep_hca_port_num is not */ 380 /* '0' */ 381 ib_mtu_t pi_path_mtu; /* Common path MTU */ 382 ib_time_t pi_prim_pkt_lt; 383 ib_time_t pi_alt_pkt_lt; 384 } ibt_path_info_t; 385 386 /* 387 * Optional Alternate Path attributes. 388 * 389 * The ibt_alt_path_attr_t structure is used to specify additional optional 390 * attributes when requesting an alternate path for an existing channel. 391 * 392 * Attributes that are don't care should be set to NULL or '0'. 393 */ 394 typedef struct ibt_alt_path_attr_s { 395 ib_gid_t apa_sgid; 396 ib_gid_t apa_dgid; 397 ibt_srate_req_t apa_srate; 398 ibt_pkt_lt_req_t apa_pkt_lt; /* Packet Life Time Request */ 399 uint_t apa_flow:20; 400 uint8_t apa_sl:4; 401 uint8_t apa_hop; 402 uint8_t apa_tclass; 403 } ibt_alt_path_attr_t; 404 405 /* 406 * Path Information for Alternate Path - input to ibt_set_alt_path(). 407 */ 408 typedef struct ibt_alt_path_info_s { 409 ibt_cep_path_t ap_alt_cep_path; /* RC & UC Only, valid if */ 410 /* cep_hca_port_num is not */ 411 /* '0' */ 412 ib_time_t ap_alt_pkt_lt; 413 } ibt_alt_path_info_t; 414 415 /* 416 * Open Channel flags, Used in ibt_open_rc_channel call 417 */ 418 typedef enum ibt_chan_open_flags_e { 419 IBT_OCHAN_NO_FLAGS = 0, 420 IBT_OCHAN_REDIRECTED = 1 << 0, 421 IBT_OCHAN_PORT_REDIRECTED = 1 << 1, 422 IBT_OCHAN_DUP = 1 << 2, 423 IBT_OCHAN_PORT_FIXED = 1 << 3, 424 IBT_OCHAN_OPAQUE1 = 1 << 4, 425 IBT_OCHAN_OPAQUE2 = 1 << 5, 426 IBT_OCHAN_OPAQUE3 = 1 << 6, 427 IBT_OCHAN_OPAQUE4 = 1 << 7, 428 IBT_OCHAN_OPAQUE5 = 1 << 8 429 } ibt_chan_open_flags_t; 430 431 /* 432 * Arguments for ibt_open_rc_channel(). 433 * 434 * oc_priv_data should be NULL or point to a buffer allocated by the caller, 435 * the size of which should be in oc_priv_data_len, where oc_priv_data_len <= 436 * IBT_REQ_PRIV_DATA_SZ. 437 * 438 * When ibt_open_rc_channel returns with ibt_cm_reason_t of 439 * IBT_CM_REDIRECT_PORT, the client can re-issue ibt_open_rc_channel setting 440 * new fields as follows: 441 * 442 * Set (ibt_chan_args_t)->oc_cm_cep_path = 443 * original (ibt_chan_open_args_t)->oc_path->pi_prim_cep_path. 444 * Set (ibt_chan_args_t)->oc_cm_pkt_lt = 445 * original (ibt_chan_open_args_t)->oc_prim_pkt_lt. 446 * Update (ibt_chan_args_t)->oc_path based on path information returned 447 * from ibt_get_paths using the gid in the return data below: 448 * (ibt_rc_returns_t)->rc_arej_info.ari_redirect_info.ari_gid. 449 * Set flags to IBT_OCHAN_PORT_REDIRECTED. 450 * 451 * Note : oc_cm_path is not used for any other scenario, and must be set for 452 * IBT_OCHAN_PORT_REDIRECTED. 453 * 454 * When ibt_open_rc_channel returns with ibt_cm_reason_t of 455 * IBT_CM_REDIRECT_CM, the client can re-issue ibt_open_rc_channel setting 456 * new fields as follows: 457 * 458 * Update (ibt_chan_args_t)->oc_path based on path information returned 459 * from ibt_get_paths using the return data in 460 * (ibt_rc_returns_t)->rc_arej_info.ari_redirect_info. 461 * 462 * Set (ibt_chan_args_t)->oc_cm_redirect_info = 463 * Returned (ibt_rc_returns_t)->rc_arej_info.ari_redirect_info. 464 * Set flags to IBT_OCHAN_REDIRECTED. 465 * 466 * Note: 467 * 468 * IBT_OCHAN_PORT_REDIRECTED flag cannot be used to specify a remote CM MAD 469 * address, that is on a different subnet than the RC connection itself. 470 * 471 * Not specified attributes should be set to "NULL" or "0". 472 */ 473 typedef struct ibt_chan_open_args_s { 474 ibt_path_info_t *oc_path; /* Primary & Alternate */ 475 ibt_cm_handler_t oc_cm_handler; /* cm_handler - required */ 476 void *oc_cm_clnt_private; /* First argument to */ 477 /* cm_handler */ 478 ibt_rnr_retry_cnt_t oc_path_rnr_retry_cnt; 479 uint8_t oc_path_retry_cnt:3; 480 uint8_t oc_rdma_ra_out; 481 uint8_t oc_rdma_ra_in; 482 ibt_priv_data_len_t oc_priv_data_len; /* Number of bytes of */ 483 /* REQ Private data */ 484 void *oc_priv_data; /* REQ private data */ 485 ibt_channel_hdl_t oc_dup_channel; /* IBT_OCHAN_DUP */ 486 ibt_redirect_info_t *oc_cm_redirect_info; /* Redirect params */ 487 /* for port and CM */ 488 /* redirection */ 489 ibt_cep_path_t *oc_cm_cep_path; /* Optional Path for */ 490 /* CM MADs on */ 491 /* port redirection */ 492 ib_time_t oc_cm_pkt_lt; /* Pkt life time for */ 493 /* CM MADs */ 494 uint32_t oc_opaque1:4; 495 uint32_t oc_opaque2:24; 496 uint32_t oc_opaque3; 497 uint32_t oc_opaque4; 498 } ibt_chan_open_args_t; 499 500 501 /* 502 * Define an optional RC return arguments structure. This contains return 503 * parameters from ibt_open_rc_channel() when called in BLOCKING mode. 504 * 505 * rc_priv_data should be NULL or point to a buffer allocated by the caller, 506 * the size of which should be in rc_priv_data_len, where rc_priv_data_len <= 507 * IBT_REP_PRIV_DATA_SZ. 508 */ 509 typedef struct ibt_rc_returns_s { 510 uint8_t rc_rdma_ra_in; /* Arbitrated resp resources */ 511 uint8_t rc_rdma_ra_out; /* Arbitrated initiator depth */ 512 ibt_arej_info_t rc_arej_info; 513 ibt_cm_reason_t rc_status; 514 uint8_t rc_failover_status; /* Failover status */ 515 ibt_priv_data_len_t rc_priv_data_len; 516 void *rc_priv_data; 517 } ibt_rc_returns_t; 518 519 /* 520 * Define a callback function that can be used in Non-Blocking calls to 521 * ibt_recycle_rc(). 522 */ 523 524 typedef void (*ibt_recycle_handler_t)(ibt_status_t ibt_status, void *arg); 525 526 /* 527 * Define an optional return arguments structure from ibt_set_alt_path() 528 * This contains return parameters, when called in BLOCKING mode. 529 * 530 * ap_priv_data should be NULL or point to a buffer allocated by the caller, 531 * the size of which should be in ap_priv_data_len, where ap_priv_data_len <= 532 * IBT_APR_PRIV_DATA_SZ. 533 * The private data from APR is returned in ap_priv_data. 534 * The caller specifies amount of APR private data to be returned in 535 * ap_priv_data_len. 536 */ 537 typedef struct ibt_ap_returns_s { 538 ibt_ap_status_t ap_status; 539 boolean_t ap_arej_info_valid; 540 ibt_arej_info_t ap_arej_info; /* Only valid if redirect */ 541 ibt_priv_data_len_t ap_priv_data_len; 542 void *ap_priv_data; 543 } ibt_ap_returns_t; 544 545 /* 546 * UD remote destination attributes. 547 * 548 * ud_sid, ud_addr, ud_pkt_lt and ud_pkey_ix must be specified. 549 * These values can be as returned in an ibt_path_info_t struct from an 550 * ibt_get_paths() call. 551 * 552 * ud_priv_data should be NULL or point to a buffer allocated by the caller, 553 * the size of which is in ud_priv_data_len, where ud_priv_data_len <= 554 * IBT_SIDR_REQ_PRIV_DATA_SZ. 555 */ 556 typedef struct ibt_ud_dest_attr_s { 557 ib_svc_id_t ud_sid; /* Service ID */ 558 ibt_adds_vect_t *ud_addr; /* Address Info */ 559 uint16_t ud_pkey_ix; /* Pkey Index */ 560 ib_time_t ud_pkt_lt; 561 ibt_cm_ud_handler_t ud_cm_handler; /* An optional CM UD event */ 562 /* which must be NULL */ 563 /* if not specified. */ 564 void *ud_cm_private; /* First arg to ud_cm_handler */ 565 ibt_priv_data_len_t ud_priv_data_len; 566 void *ud_priv_data; /* SIDR REQ private data */ 567 } ibt_ud_dest_attr_t; 568 569 /* 570 * Define an optional UD return arguments structure. 571 * 572 * ud_priv_data should be NULL or point to a buffer allocated by the caller, 573 * the size of which should be in ud_priv_data_len, where ud_priv_data_len <= 574 * IBT_SIDR_REP_PRIV_DATA_SZ. 575 */ 576 typedef struct ibt_ud_returns_s { 577 ibt_sidr_status_t ud_status; 578 ibt_redirect_info_t ud_redirect; 579 ib_qpn_t ud_dqpn; /* Returned destination QPN */ 580 ib_qkey_t ud_qkey; /* Q_Key for destination QPN */ 581 ibt_priv_data_len_t ud_priv_data_len; 582 void *ud_priv_data; 583 } ibt_ud_returns_t; 584 585 /* 586 * Multicast group attributes 587 * Not specified attributes should be set to "NULL" or "0". 588 * Used by ibt_join_mcg()/ibt_query_mcg(). 589 * 590 * mc_qkey, mc_pkey, mc_flow, mc_tclass, mc_sl, mc_join_state are required for 591 * create - ibt_join_mcg(). 592 */ 593 typedef struct ibt_mcg_attr_s { 594 ib_gid_t mc_mgid; /* MGID */ 595 ib_gid_t mc_pgid; /* SGID of the end port being */ 596 /* added to the MCG. */ 597 ib_qkey_t mc_qkey; /* Q_Key */ 598 ib_pkey_t mc_pkey; /* Partition key for this MCG */ 599 ibt_mtu_req_t mc_mtu_req; /* MTU */ 600 ibt_srate_req_t mc_rate_req; /* Static rate */ 601 ibt_pkt_lt_req_t mc_pkt_lt_req; /* Packet Life Time Request */ 602 uint_t mc_flow:20; /* FlowLabel. */ 603 uint8_t mc_hop; /* HopLimit */ 604 uint8_t mc_tclass; /* Traffic Class. */ 605 uint8_t mc_sl:4; /* Service Level */ 606 uint8_t mc_scope:4, /* Multicast Address Scope */ 607 mc_join_state:4; /* FULL For create */ 608 ib_lid_t mc_opaque1; 609 } ibt_mcg_attr_t; 610 611 /* 612 * Multicast group attributes. 613 * returned by ibt_join_mcg()/ibt_query_mcg(). 614 */ 615 typedef struct ibt_mcg_info_s { 616 ibt_adds_vect_t mc_adds_vect; /* Address information */ 617 ib_mtu_t mc_mtu; /* MTU */ 618 ib_qkey_t mc_qkey; /* Q_Key */ 619 uint16_t mc_pkey_ix; /* Pkey Index */ 620 uint8_t mc_scope:4; /* Multicast Address Scope */ 621 clock_t mc_opaque2; 622 } ibt_mcg_info_t; 623 624 /* 625 * Define a callback function that can be used in Non-Blocking calls to 626 * ibt_join_mcg(). 627 */ 628 typedef void (*ibt_mcg_handler_t)(void *arg, ibt_status_t retval, 629 ibt_mcg_info_t *mcg_info_p); 630 631 632 /* 633 * Service Flags - sd_flags 634 * 635 * IBT_SRV_PEER_TYPE_SID Peer-to-peer Service IDs. 636 */ 637 638 typedef enum ibt_service_flags_e { 639 IBT_SRV_NO_FLAGS = 0x0, 640 IBT_SRV_PEER_TYPE_SID = 0x1 641 } ibt_service_flags_t; 642 643 /* 644 * Define a Service ID Registration structure. 645 */ 646 typedef struct ibt_srv_desc_s { 647 ibt_cm_ud_handler_t sd_ud_handler; /* UD Service Handler */ 648 ibt_cm_handler_t sd_handler; /* Non-UD Service Handler */ 649 ibt_service_flags_t sd_flags; /* Flags */ 650 } ibt_srv_desc_t; 651 652 /* 653 * Flag to indicate ibt_bind_service() to or NOT-to clean-up Stale matching 654 * Local Service Records with SA prior to binding the new request. 655 */ 656 #define IBT_SBIND_NO_FLAGS 0 657 #define IBT_SBIND_NO_CLEANUP 1 658 659 /* 660 * Define a Service ID Binding structure (data for service records). 661 */ 662 typedef struct ibt_srv_bind_s { 663 uint64_t sb_key[2]; /* Service Key */ 664 char *sb_name; /* Service Name (up to 63 chars) */ 665 uint32_t sb_lease; /* Service Lease period (in seconds) */ 666 ib_pkey_t sb_pkey; /* Service P_Key */ 667 ibt_srv_data_t sb_data; /* Service Data */ 668 uint_t sb_flag; /* indicates to/not-to clean-up stale */ 669 /* matching local service records. */ 670 } ibt_srv_bind_t; 671 672 /* 673 * ibt_cm_delay() flags. 674 * 675 * Refer to InfiniBand Architecture Release Volume 1 Rev 1.0a: 676 * Section 12.6.6 MRA 677 */ 678 typedef enum ibt_cmdelay_flags_e { 679 IBT_CM_DELAY_REQ = 0, 680 IBT_CM_DELAY_REP = 1, 681 IBT_CM_DELAY_LAP = 2 682 } ibt_cmdelay_flags_t; 683 684 /* 685 * The payload for DDI events passed on IB_PROP_UPDATE_EVENT. 686 * This is passed as the bus nexus data to event_handler(9e). 687 */ 688 typedef struct ibt_prop_update_payload_s { 689 union { 690 struct { 691 uint32_t srv_updated:1; 692 uint32_t gid_updated:1; 693 } _ib_prop_update_struct; 694 uint32_t prop_updated; 695 } _ib_prop_update_union; 696 ibt_status_t ib_reprobe_status; 697 698 #define ib_srv_prop_updated \ 699 _ib_prop_update_union._ib_prop_update_struct.srv_updated 700 #define ib_gid_prop_updated \ 701 _ib_prop_update_union._ib_prop_update_struct.gid_updated 702 #define ib_prop_updated \ 703 _ib_prop_update_union.prop_updated 704 } ibt_prop_update_payload_t; 705 706 707 /* 708 * FUNCTION PROTOTYPES. 709 */ 710 711 /* 712 * ibt_attach() and ibt_detach(): 713 * These are the calls into IBTF used during client driver attach() and 714 * detach(). 715 * 716 * The IBTF returns an ibt_clnt_hdl_t to the client. This handle is used 717 * to identify this client device in all subsequent calls into the IBTF. 718 * 719 * The ibt_detach() routine is called from a client driver's detach() 720 * routine to deregister itself from the IBTF. 721 */ 722 ibt_status_t ibt_attach(ibt_clnt_modinfo_t *mod_infop, dev_info_t *arg, 723 void *clnt_private, ibt_clnt_hdl_t *ibt_hdl_p); 724 725 ibt_status_t ibt_detach(ibt_clnt_hdl_t ibt_hdl); 726 727 /* 728 * HCA FUNCTIONS 729 */ 730 731 /* 732 * ibt_get_hca_list() 733 * Returns the number of HCAs in a system and their node GUIDS. 734 * 735 * If hca_list_p is not NULL then the memory for the array of GUIDs is 736 * allocated by the IBTF and should be freed by the caller using 737 * ibt_free_hca_list(). If hca_list_p is NULL then no memory is allocated 738 * by ibt_get_hca_list and only the number of HCAs in a system is returned. 739 * 740 * It is assumed that the caller can block in kmem_alloc. 741 * 742 * ibt_free_hca_list() 743 * Free the memory allocated by ibt_get_hca_list(). 744 */ 745 uint_t ibt_get_hca_list(ib_guid_t **hca_list_p); 746 747 void ibt_free_hca_list(ib_guid_t *hca_list, uint_t entries); 748 749 /* 750 * ibt_open_hca() - Open/Close a HCA. HCA can only be opened/closed 751 * ibt_close_hca() once. ibt_open_hca() takes a client's ibt handle 752 * and a GUID and returns a unique IBT client HCA 753 * handle. 754 * 755 * These routines can not be called from interrupt context. 756 */ 757 ibt_status_t ibt_open_hca(ibt_clnt_hdl_t ibt_hdl, ib_guid_t hca_guid, 758 ibt_hca_hdl_t *hca_hdl); 759 760 ibt_status_t ibt_close_hca(ibt_hca_hdl_t hca_hdl); 761 762 763 /* 764 * ibt_query_hca() 765 * ibt_query_hca_byguid() 766 * Returns the static attributes of the specified HCA 767 */ 768 ibt_status_t ibt_query_hca(ibt_hca_hdl_t hca_hdl, ibt_hca_attr_t *hca_attrs); 769 770 ibt_status_t ibt_query_hca_byguid(ib_guid_t hca_guid, 771 ibt_hca_attr_t *hca_attrs); 772 773 774 /* 775 * ibt_query_hca_ports() 776 * ibt_query_hca_ports_byguid() 777 * Returns HCA port/ports attributes for the specified HCA port/ports. 778 * ibt_query_hca_ports() allocates the memory required for the 779 * ibt_hca_portinfo_t struct as well as the memory required for the SGID 780 * and P_Key tables contained within that struct. 781 * 782 * ibt_free_portinfo() 783 * Frees the memory allocated for a specified ibt_hca_portinfo_t struct. 784 */ 785 ibt_status_t ibt_query_hca_ports(ibt_hca_hdl_t hca_hdl, uint8_t port, 786 ibt_hca_portinfo_t **port_info_p, uint_t *ports_p, uint_t *size_p); 787 788 ibt_status_t ibt_query_hca_ports_byguid(ib_guid_t hca_guid, uint8_t port, 789 ibt_hca_portinfo_t **port_info_p, uint_t *ports_p, uint_t *size_p); 790 791 void ibt_free_portinfo(ibt_hca_portinfo_t *port_info, uint_t size); 792 793 /* 794 * ibt_set_hca_private() - Set/get the client private data. 795 * ibt_get_hca_private() 796 */ 797 void ibt_set_hca_private(ibt_hca_hdl_t hca_hdl, void *clnt_private); 798 void *ibt_get_hca_private(ibt_hca_hdl_t hca_hdl); 799 800 /* 801 * ibt_hca_handle_to_guid() 802 * A helper function to retrieve HCA GUID for the specified handle. 803 * Returns HCA GUID on which the specified Channel is allocated. Valid 804 * if it is non-NULL on return. 805 */ 806 ib_guid_t ibt_hca_handle_to_guid(ibt_hca_hdl_t hca); 807 808 /* 809 * ibt_hca_guid_to_handle() 810 * A helper function to retrieve a hca handle from a HCA GUID. 811 */ 812 ibt_status_t ibt_hca_guid_to_handle(ibt_clnt_hdl_t ibt_hdl, ib_guid_t hca_guid, 813 ibt_hca_hdl_t *hca_hdl); 814 815 /* 816 * CONNECTION ESTABLISHMENT/TEAR DOWN FUNCTIONS. 817 */ 818 819 /* 820 * ibt_get_paths 821 * Finds the best path to a specified destination (as determined by the 822 * IBTL) that satisfies the requirements specified in an ibt_path_attr_t 823 * struct. 824 */ 825 ibt_status_t ibt_get_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 826 ibt_path_attr_t *attr, uint8_t max_paths, ibt_path_info_t *paths, 827 uint8_t *num_paths_p); 828 829 830 /* 831 * Callback function that can be used in ibt_aget_paths(), a Non-Blocking 832 * version of ibt_get_paths(). 833 */ 834 typedef void (*ibt_path_handler_t)(void *arg, ibt_status_t retval, 835 ibt_path_info_t *paths, uint8_t num_paths); 836 837 /* 838 * Find path(s) to a given destination or service asynchronously. 839 * ibt_aget_paths() is a Non-Blocking version of ibt_get_paths(). 840 */ 841 ibt_status_t ibt_aget_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 842 ibt_path_attr_t *attr, uint8_t max_paths, ibt_path_handler_t func, 843 void *arg); 844 845 /* 846 * ibt_get_alt_path 847 * Finds the best alternate path to a specified channel (as determined by 848 * the IBTL) that satisfies the requirements specified in an 849 * ibt_alt_path_attr_t struct. The specified channel must have been 850 * previously opened successfully using ibt_open_rc_channel. 851 */ 852 ibt_status_t ibt_get_alt_path(ibt_channel_hdl_t chan, ibt_path_flags_t flags, 853 ibt_alt_path_attr_t *attr, ibt_alt_path_info_t *alt_path); 854 855 /* 856 * ibt_open_rc_channel 857 * ibt_open_rc_channel() opens a previously allocated RC communication 858 * channel. The IBTL initiates the channel establishment protocol. 859 */ 860 ibt_status_t ibt_open_rc_channel(ibt_channel_hdl_t rc_chan, 861 ibt_chan_open_flags_t flags, ibt_execution_mode_t mode, 862 ibt_chan_open_args_t *args, ibt_rc_returns_t *returns); 863 864 /* 865 * ibt_close_rc_channel 866 * Close the specified channel. Outstanding work requests are flushed 867 * so that the client can do the associated clean up. After that, the 868 * client will usually deregister the previously registered memory, 869 * then free the channel by calling ibt_free_rc_channel(). 870 * 871 * This function will reuse CM event Handler provided in 872 * ibt_open_rc_channel(). 873 */ 874 ibt_status_t ibt_close_rc_channel(ibt_channel_hdl_t rc_chan, 875 ibt_execution_mode_t mode, void *priv_data, 876 ibt_priv_data_len_t priv_data_len, uint8_t *ret_status, 877 void *ret_priv_data, ibt_priv_data_len_t *ret_priv_data_len_p); 878 879 /* 880 * ibt_prime_close_rc_channel 881 * 882 * Allocates resources required for a close rc channel operation. 883 * Calling ibt_prime_close_rc_channel() allows a channel to be 884 * subsequently closed in interrupt context. 885 * 886 * A call is first made to ibt_prime_close_rc_channel in non-interrupt 887 * context, followed by ibt_close_rc_channel in non-blocking mode from 888 * interrupt context 889 * 890 * ibt_prime_close_rc_channel() can only be called on a previously opened 891 * channel. 892 */ 893 ibt_status_t ibt_prime_close_rc_channel(ibt_channel_hdl_t rc_chan); 894 895 /* 896 * ibt_recycle_rc 897 * 898 * Recycle a RC channel which has transitioned to Error state. The 899 * ibt_recycle_rc() function transitions the channel from Error 900 * state (IBT_STATE_ERROR) to the state ready for use by 901 * ibt_open_rc_channel. Basically, this function is very similar to 902 * ibt_alloc_rc_channel, but reuses an existing RC channel. 903 * 904 * Clients are allowed to make resource clean up/free calls in the CM handler 905 * 906 * Client(s) must not invoke blocking version (ie., func specified as NULL) of 907 * ibt_recycle_rc from cm callback for IBT_CM_EVENT_CONN_CLOSED 908 * 909 * Clients are strongly advised not to issue blocking calls from func, as this 910 * would block the CM threads, and could delay or block other client connections 911 * and ibtl related API invocations. 912 */ 913 ibt_status_t ibt_recycle_rc(ibt_channel_hdl_t rc_chan, ibt_cep_flags_t control, 914 uint8_t hca_port_num, ibt_recycle_handler_t func, void *arg); 915 916 /* 917 * ibt_recycle_ud 918 * 919 * Recycle a UD channel which has transitioned to Error state. The 920 * ibt_recycle_ud() function transitions the channel from Error 921 * state (IBT_STATE_ERROR) to a usable state (IBT_STATE_RTS). 922 * Basically, this function is very similar to ibt_alloc_ud_channel, 923 * but reuses an existing UD channel. 924 */ 925 ibt_status_t ibt_recycle_ud(ibt_channel_hdl_t ud_chan, uint8_t hca_port_num, 926 uint16_t pkey_ix, ib_qkey_t qkey); 927 928 /* 929 * MODIFY CHANNEL ATTRIBUTE FUNCTIONs. 930 */ 931 932 /* 933 * ibt_pause_sendq 934 * ibt_unpause_sendq 935 * Place the send queue of the specified channel into the send queue 936 * drained state. 937 * Applicable for both RC and UD channels. 938 */ 939 ibt_status_t ibt_pause_sendq(ibt_channel_hdl_t chan, 940 ibt_cep_modify_flags_t modify_flags); 941 942 ibt_status_t ibt_unpause_sendq(ibt_channel_hdl_t chan); 943 944 /* 945 * ibt_resize_queues() 946 * Resize the SendQ/RecvQ sizes of a channel. 947 * 948 * Applicable for both RC and UD channels. 949 */ 950 ibt_status_t ibt_resize_queues(ibt_channel_hdl_t chan, ibt_qflags_t flags, 951 ibt_queue_sizes_t *request_sz, ibt_queue_sizes_t *actual_sz); 952 953 /* 954 * ibt_query_queues() 955 * 956 * Query the SendQ/RecvQ sizes of a channel. 957 * Applicable for both RC and UD channels. 958 */ 959 ibt_status_t ibt_query_queues(ibt_channel_hdl_t chan, 960 ibt_queue_sizes_t *actual_sz); 961 962 /* 963 * ibt_modify_rdma 964 * Enable/disable RDMA operations. 965 * 966 * Applicable for RC channels only. 967 */ 968 ibt_status_t ibt_modify_rdma(ibt_channel_hdl_t rc_chan, 969 ibt_cep_modify_flags_t modify_flags, ibt_cep_flags_t flags); 970 971 972 /* 973 * ibt_set_rdma_resource 974 * Change the number of resources to be used for incoming and outgoing 975 * RDMA reads & Atomics. 976 */ 977 ibt_status_t ibt_set_rdma_resource(ibt_channel_hdl_t rc_chan, 978 ibt_cep_modify_flags_t modify_flags, uint8_t rdma_ra_out, 979 uint8_t rdma_ra_in); 980 981 /* 982 * ibt_change_port 983 * Change the primary physical port of an RC channel. (This is done only 984 * if HCA supports this capability). Can only be called on a paused 985 * channel. 986 * Applicable for RC channels only. 987 */ 988 ibt_status_t ibt_change_port(ibt_channel_hdl_t rc_chan, uint8_t port_num); 989 990 991 /* 992 * SERVICE REGISTRATION FUNCTIONS 993 */ 994 995 /* 996 * ibt_register_service() 997 * ibt_deregister_service() 998 * Register/deregister a Service (range of Service IDs) with the IBTF. 999 * 1000 * ibt_bind_service() 1001 * ibt_unbind_service() 1002 * ibt_unbind_all_services() 1003 * Bind a Service to a given port (GID), and optionally create 1004 * service record(s) with the SA for ibt_get_paths() to find. 1005 */ 1006 ibt_status_t ibt_register_service(ibt_clnt_hdl_t ibt_hdl, 1007 ibt_srv_desc_t *service, ib_svc_id_t sid, int num_sids, 1008 ibt_srv_hdl_t *srv_hdl_p, ib_svc_id_t *ret_sid_p); 1009 1010 ibt_status_t ibt_deregister_service(ibt_clnt_hdl_t ibt_hdl, 1011 ibt_srv_hdl_t srv_hdl); 1012 1013 ibt_status_t ibt_bind_service(ibt_srv_hdl_t srv_hdl, ib_gid_t gid, 1014 ibt_srv_bind_t *srv_bind, void *cm_private, ibt_sbind_hdl_t *sb_hdl_p); 1015 1016 ibt_status_t ibt_unbind_service(ibt_srv_hdl_t srv_hdl, ibt_sbind_hdl_t sb_hdl); 1017 ibt_status_t ibt_unbind_all_services(ibt_srv_hdl_t srv_hdl); 1018 1019 /* 1020 * ibt_cm_delay 1021 * A client CM handler/srv_handler function can call this function to 1022 * extend its response time to a CM event. 1023 * Applicable for RC channels only. 1024 */ 1025 ibt_status_t ibt_cm_delay(ibt_cmdelay_flags_t flags, void *cm_session_id, 1026 clock_t service_time, void *priv_data, ibt_priv_data_len_t priv_data_len); 1027 1028 /* 1029 * ibt_cm_proceed 1030 * 1031 * An IBT client calls ibt_cm_proceed() to proceed with a connection that 1032 * previously deferred by the client returning IBT_CM_DEFER on a CM handler 1033 * callback. CM events that can be deferred and continued with ibt_cm_proceed() 1034 * are REQ_RCV, REP_RCV, LAP_RCV, and DREQ_RCV. 1035 * 1036 * NOTE : 1037 * 1038 * Typically CM completes processing of a client's CM handler return, with 1039 * IBT_CM_DEFER status, before processing of the corresponding ibt_cm_proceed() 1040 * is started. However a race exists where by CM may not have completed the 1041 * client's handler return processing when ibt_cm_proceed() is called by a 1042 * client. In this case ibt_cm_proceed() will block until processing of the 1043 * client's CM handler return is complete. 1044 * 1045 * A client that returns IBT_CM_DEFER from the cm handler must 1046 * subsequently make a call to ibt_cm_proceed(). It is illegal to call 1047 * ibt_cm_proceed() on a channel that has not had the connection 1048 * establishment deferred. 1049 * 1050 * Client cannot call ibt_cm_proceed from the cm handler. 1051 */ 1052 ibt_status_t ibt_cm_proceed(ibt_cm_event_type_t event, void *session_id, 1053 ibt_cm_status_t status, ibt_cm_proceed_reply_t *cm_event_data, 1054 void *priv_data, ibt_priv_data_len_t priv_data_len); 1055 1056 /* 1057 * ibt_cm_ud_proceed 1058 * 1059 * An IBT client calls ibt_cm_ud_proceed() to proceed with an 1060 * IBT_CM_UD_EVENT_SIDR_REQ UD event that was previously deferred by the 1061 * client returning IBT_CM_DEFER on a CM UD handler callback. 1062 * NOTE : 1063 * 1064 * Typically CM completes processing of a client's CM handler return, with 1065 * IBT_CM_DEFER status, before processing of the corresponding 1066 * ibt_cm_ud_proceed() is started. However a race exists where by CM may not 1067 * have completed the client's handler return processing when 1068 * ibt_cm_ud_proceed() is called by a client. In this case ibt_cm_ud_proceed() 1069 * will block until processing of the client's CM handler return is complete. 1070 * 1071 * A client that returns IBT_CM_DEFER from the cm handler must 1072 * subsequently make a call to ibt_cm_ud_proceed(). It is illegal to call 1073 * ibt_cm_ud_proceed() on a channel that has not had the connection 1074 * establishment deferred. 1075 * 1076 * Client cannot call ibt_cm_ud_proceed from the cm handler. 1077 */ 1078 ibt_status_t ibt_cm_ud_proceed(void *session_id, ibt_channel_hdl_t ud_channel, 1079 ibt_cm_status_t status, ibt_redirect_info_t *redirect_infop, 1080 void *priv_data, ibt_priv_data_len_t priv_data_len); 1081 1082 1083 /* 1084 * COMPLETION QUEUES. 1085 * 1086 * ibt_alloc_cq_sched() 1087 * Reserve CQ scheduling class resources 1088 * 1089 * ibt_free_cq_sched() 1090 * Free CQ scheduling class resources 1091 */ 1092 ibt_status_t ibt_alloc_cq_sched(ibt_hca_hdl_t hca_hdl, 1093 ibt_cq_sched_attr_t *attr, ibt_sched_hdl_t *sched_hdl_p); 1094 1095 ibt_status_t ibt_free_cq_sched(ibt_hca_hdl_t hca_hdl, 1096 ibt_sched_hdl_t sched_hdl, uint_t load); 1097 1098 /* 1099 * ibt_alloc_cq() 1100 * Allocate a completion queue. 1101 */ 1102 ibt_status_t ibt_alloc_cq(ibt_hca_hdl_t hca_hdl, ibt_cq_attr_t *cq_attr, 1103 ibt_cq_hdl_t *ibt_cq_p, uint_t *real_size); 1104 1105 /* 1106 * ibt_free_cq() 1107 * Free allocated CQ resources. 1108 */ 1109 ibt_status_t ibt_free_cq(ibt_cq_hdl_t ibt_cq); 1110 1111 1112 /* 1113 * ibt_enable_cq_notify() 1114 * Enable notification requests on the specified CQ. 1115 * Applicable for both RC and UD channels. 1116 * 1117 * Completion notifications are disabled by setting the completion 1118 * handler to NULL by calling ibt_set_cq_handler(). 1119 */ 1120 ibt_status_t ibt_enable_cq_notify(ibt_cq_hdl_t ibt_cq, 1121 ibt_cq_notify_flags_t notify_type); 1122 1123 /* 1124 * ibt_set_cq_handler() 1125 * Register a work request completion handler with the IBTF. 1126 * Applicable for both RC and UD channels. 1127 * 1128 * Completion notifications are disabled by setting the completion 1129 * handler to NULL. When setting the handler to NULL, no additional 1130 * calls to the CQ handler will be initiated. 1131 * 1132 * This function does not otherwise change the state of previous 1133 * calls to ibt_enable_cq_notify(). 1134 */ 1135 void ibt_set_cq_handler(ibt_cq_hdl_t ibt_cq, 1136 ibt_cq_handler_t completion_handler, void *arg); 1137 1138 /* 1139 * ibt_poll_cq() 1140 * Poll the specified CQ for the completion of work requests (WRs). 1141 * If the CQ contains completed WRs, up to num_wc of them are returned. 1142 * Applicable for both RC and UD channels. 1143 */ 1144 ibt_status_t ibt_poll_cq(ibt_cq_hdl_t ibt_cq, ibt_wc_t *work_completions, 1145 uint_t num_wc, uint_t *num_polled); 1146 1147 /* 1148 * ibt_query_cq() 1149 * Return the total number of entries in the CQ. 1150 */ 1151 ibt_status_t ibt_query_cq(ibt_cq_hdl_t ibt_cq, uint_t *entries, 1152 uint_t *count_p, uint_t *usec_p, ibt_cq_handler_id_t *hid_p); 1153 1154 /* 1155 * ibt_resize_cq() 1156 * Change the size of a CQ. 1157 */ 1158 ibt_status_t ibt_resize_cq(ibt_cq_hdl_t ibt_cq, uint_t new_sz, uint_t *real_sz); 1159 1160 /* 1161 * ibt_modify_cq() 1162 * Change the interrupt moderation values of a CQ. 1163 * "count" is number of completions before interrupting. 1164 * "usec" is the number of microseconds before interrupting. 1165 */ 1166 ibt_status_t ibt_modify_cq(ibt_cq_hdl_t ibt_cq, uint_t count, uint_t usec, 1167 ibt_cq_handler_id_t hid); 1168 1169 /* 1170 * ibt_set_cq_private() 1171 * ibt_get_cq_private() 1172 * Set/get the client private data. 1173 */ 1174 void ibt_set_cq_private(ibt_cq_hdl_t ibt_cq, void *clnt_private); 1175 void *ibt_get_cq_private(ibt_cq_hdl_t ibt_cq); 1176 1177 1178 /* 1179 * Memory Management Functions. 1180 * Applicable for both RC and UD channels. 1181 * 1182 * ibt_register_mr() 1183 * Prepares a virtually addressed memory region for use by a HCA. A 1184 * description of the registered memory suitable for use in Work Requests 1185 * (WRs) is returned in the ibt_mr_desc_t parameter. 1186 * 1187 * ibt_register_buf() 1188 * Prepares a memory region described by a buf(9S) struct for use by a 1189 * HCA. A description of the registered memory suitable for use in 1190 * Work Requests (WRs) is returned in the ibt_mr_desc_t parameter. 1191 * 1192 * ibt_query_mr() 1193 * Retrieves information about a specified memory region. 1194 * 1195 * ibt_deregister_mr() 1196 * Remove a memory region from a HCA translation table, and free all 1197 * resources associated with the memory region. 1198 * 1199 * ibt_reregister_mr() 1200 * ibt_reregister_buf() 1201 * Modify the attributes of an existing memory region. 1202 * 1203 * ibt_register_shared_mr() 1204 * Given an existing memory region, a new memory region associated with 1205 * the same physical locations is created. 1206 * 1207 * ibt_sync_mr() 1208 * Sync a memory region for either RDMA reads or RDMA writes 1209 * 1210 * ibt_alloc_mw() 1211 * Allocate a memory window. 1212 * 1213 * ibt_query_mw() 1214 * Retrieves information about a specified memory window. 1215 * 1216 * ibt_free_mw() 1217 * De-allocate the Memory Window. 1218 */ 1219 ibt_status_t ibt_register_mr(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1220 ibt_mr_attr_t *mem_attr, ibt_mr_hdl_t *mr_hdl_p, ibt_mr_desc_t *mem_desc); 1221 1222 ibt_status_t ibt_register_buf(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1223 ibt_smr_attr_t *mem_bpattr, struct buf *bp, ibt_mr_hdl_t *mr_hdl_p, 1224 ibt_mr_desc_t *mem_desc); 1225 1226 ibt_status_t ibt_query_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1227 ibt_mr_query_attr_t *attr); 1228 1229 ibt_status_t ibt_deregister_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl); 1230 1231 ibt_status_t ibt_reregister_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1232 ibt_pd_hdl_t pd, ibt_mr_attr_t *mem_attr, ibt_mr_hdl_t *mr_hdl_p, 1233 ibt_mr_desc_t *mem_desc); 1234 1235 ibt_status_t ibt_reregister_buf(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1236 ibt_pd_hdl_t pd, ibt_smr_attr_t *mem_bpattr, struct buf *bp, 1237 ibt_mr_hdl_t *mr_hdl_p, ibt_mr_desc_t *mem_desc); 1238 1239 ibt_status_t ibt_register_shared_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1240 ibt_pd_hdl_t pd, ibt_smr_attr_t *mem_sattr, ibt_mr_hdl_t *mr_hdl_p, 1241 ibt_mr_desc_t *mem_desc); 1242 1243 ibt_status_t ibt_sync_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_sync_t *mr_segments, 1244 size_t num_segments); 1245 1246 ibt_status_t ibt_alloc_mw(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1247 ibt_mw_flags_t flags, ibt_mw_hdl_t *mw_hdl_p, ibt_rkey_t *rkey); 1248 1249 ibt_status_t ibt_query_mw(ibt_hca_hdl_t hca_hdl, ibt_mw_hdl_t mw_hdl, 1250 ibt_mw_query_attr_t *mw_attr_p); 1251 1252 ibt_status_t ibt_free_mw(ibt_hca_hdl_t hca_hdl, ibt_mw_hdl_t mw_hdl); 1253 1254 /* 1255 * ibt_alloc_lkey() 1256 * Allocates physical buffer list resources for use in memory 1257 * registrations. 1258 * 1259 * Applicable for both RC and UD channels. 1260 */ 1261 ibt_status_t ibt_alloc_lkey(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1262 ibt_lkey_flags_t flags, uint_t phys_buf_list_sz, ibt_mr_hdl_t *mr_p, 1263 ibt_pmr_desc_t *mem_desc_p); 1264 1265 1266 /* 1267 * Physical Memory Management Functions. 1268 * Applicable for both RC and UD channels. 1269 * 1270 * ibt_register_phys_mr() 1271 * Prepares a physically addressed memory region for use by a HCA. 1272 * 1273 * ibt_reregister_phys_mr() 1274 * Modify the attributes of an existing memory region. 1275 */ 1276 ibt_status_t ibt_register_phys_mr(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1277 ibt_pmr_attr_t *mem_pattr, ibt_mr_hdl_t *mr_hdl_p, 1278 ibt_pmr_desc_t *mem_desc_p); 1279 1280 ibt_status_t ibt_reregister_phys_mr(ibt_hca_hdl_t hca_hdl, ibt_mr_hdl_t mr_hdl, 1281 ibt_pd_hdl_t pd, ibt_pmr_attr_t *mem_pattr, ibt_mr_hdl_t *mr_hdl_p, 1282 ibt_pmr_desc_t *mem_desc_p); 1283 1284 1285 /* 1286 * Address Translation. 1287 */ 1288 1289 /* 1290 * ibt_map_mem_area() 1291 * Translate a kernel virtual address range into HCA physical addresses. 1292 * A set of physical addresses, that can be used with "Reserved L_Key", 1293 * register physical, and "Fast Registration Work Request" operations 1294 * is returned. 1295 */ 1296 ibt_status_t ibt_map_mem_area(ibt_hca_hdl_t hca_hdl, ibt_va_attr_t *va_attrs, 1297 uint_t paddr_list_len, ibt_phys_buf_t *paddr_list_p, uint_t *num_paddr_p, 1298 size_t *paddr_bufsz_p, ib_memlen_t *paddr_offset_p, ibt_ma_hdl_t *ma_hdl_p); 1299 1300 /* 1301 * ibt_unmap_mem_area() 1302 * Un pin physical pages pinned during an ibt_map_mem_area() call. 1303 */ 1304 ibt_status_t ibt_unmap_mem_area(ibt_hca_hdl_t hca_hdl, ibt_ma_hdl_t ma_hdl); 1305 1306 /* ibt_map_mem_iov() */ 1307 ibt_status_t ibt_map_mem_iov(ibt_hca_hdl_t hca_hdl, 1308 ibt_iov_attr_t *iov_attr, ibt_all_wr_t *wr, ibt_mi_hdl_t *mi_hdl); 1309 1310 /* ibt_unmap_mem_iov() */ 1311 ibt_status_t ibt_unmap_mem_iov(ibt_hca_hdl_t hca_hdl, ibt_mi_hdl_t mi_hdl); 1312 1313 /* 1314 * Work Request Functions 1315 * Applicable for RC and UD channels. 1316 * 1317 * ibt_post_send() 1318 * Post send work requests to the specified channel. 1319 * 1320 * ibt_post_recv() 1321 * ibt_post_srq() 1322 * Post receive work requests to the specified channel. 1323 */ 1324 ibt_status_t ibt_post_send(ibt_channel_hdl_t chan, ibt_send_wr_t *wr_list, 1325 uint_t num_wr, uint_t *posted); 1326 1327 ibt_status_t ibt_post_recv(ibt_channel_hdl_t chan, ibt_recv_wr_t *wr_list, 1328 uint_t num_wr, uint_t *posted); 1329 1330 ibt_status_t ibt_post_srq(ibt_srq_hdl_t srq, ibt_recv_wr_t *wr_list, 1331 uint_t num_wr, uint_t *posted); 1332 1333 1334 /* 1335 * Alternate Path Migration Functions. 1336 * Applicable for RC channels only. 1337 * 1338 * 1339 * ibt_get_alt_path() 1340 * Finds the best alternate path to a specified channel (as determined by 1341 * the IBTL) that satisfies the requirements specified in an 1342 * ibt_alt_path_attr_t struct. The specified channel must have been 1343 * previously opened successfully using ibt_open_rc_channel. 1344 * This function also ensures that the service being accessed by the 1345 * channel is available at the selected alternate port. 1346 * 1347 * Note: The apa_dgid must be on the same destination channel adapter, 1348 * if specified. 1349 * 1350 * 1351 * ibt_set_alt_path() 1352 * Load the specified alternate path. Causes the CM to send an LAP message 1353 * to the remote node. If successful, the local channel is updated with 1354 * the new alternate path and the channel migration state is set to REARM. 1355 * Can only be called on a previously opened RC channel. The channel must 1356 * be either in RTS or paused state. 1357 * 1358 * 1359 * ibt_migrate_path() 1360 * Force the CI to use the alternate path. The alternate path becomes 1361 * the primary path. A new alternate path should be loaded and enabled. 1362 */ 1363 ibt_status_t ibt_get_alt_path(ibt_channel_hdl_t rc_chan, ibt_path_flags_t flags, 1364 ibt_alt_path_attr_t *attr, ibt_alt_path_info_t *alt_pathp); 1365 1366 ibt_status_t ibt_set_alt_path(ibt_channel_hdl_t rc_chan, 1367 ibt_execution_mode_t mode, ibt_alt_path_info_t *alt_pinfo, void *priv_data, 1368 ibt_priv_data_len_t priv_data_len, ibt_ap_returns_t *ret_args); 1369 1370 ibt_status_t ibt_migrate_path(ibt_channel_hdl_t rc_chan); 1371 1372 1373 /* 1374 * Multicast group Functions. 1375 * Applicable for UD channels only. 1376 */ 1377 1378 /* 1379 * ibt_attach_mcg() 1380 * Attaches a UD channel to the specified multicast group. On successful 1381 * completion, this channel will be provided with a copy of every 1382 * multicast message addressed to the group specified by the MGID 1383 * (mcg_info->mc_adds_vect.av_dgid) and received on the HCA port with 1384 * which the channel is associated. 1385 */ 1386 ibt_status_t ibt_attach_mcg(ibt_channel_hdl_t ud_chan, 1387 ibt_mcg_info_t *mcg_info); 1388 1389 /* 1390 * ibt_detach_mcg() 1391 * Detach the specified UD channel from the specified multicast group. 1392 */ 1393 ibt_status_t ibt_detach_mcg(ibt_channel_hdl_t ud_chan, 1394 ibt_mcg_info_t *mcg_info); 1395 1396 /* 1397 * ibt_join_mcg() 1398 * Join a multicast group. The first full member "join" causes the MCG 1399 * to be created. 1400 */ 1401 ibt_status_t ibt_join_mcg(ib_gid_t rgid, ibt_mcg_attr_t *mcg_attr, 1402 ibt_mcg_info_t *mcg_info_p, ibt_mcg_handler_t func, void *arg); 1403 1404 /* 1405 * ibt_leave_mcg() 1406 * The port associated with the port GID shall be removed from the 1407 * multicast group specified by MGID (mc_gid) or from all the multicast 1408 * groups of which it is a member if the MGID (mc_gid) is not specified 1409 * (i.e. mc_gid.mgid_prefix must have 8-bits of 11111111 at the start of 1410 * the GID to identify this as being a multicast GID). 1411 * 1412 * The last full member to leave causes the destruction of the Multicast 1413 * Group. 1414 */ 1415 ibt_status_t ibt_leave_mcg(ib_gid_t rgid, ib_gid_t mc_gid, ib_gid_t port_gid, 1416 uint8_t mc_join_state); 1417 1418 /* 1419 * ibt_query_mcg() 1420 * Request information on multicast groups that match the parameters 1421 * specified in mcg_attr. Information on each multicast group is returned 1422 * to the caller in the form of an array of ibt_mcg_info_t. 1423 * ibt_query_mcg() allocates the memory for this array and returns a 1424 * pointer to the array (mcgs_p) and the number of entries in the array 1425 * (entries_p). This memory should be freed by the client using 1426 * ibt_free_mcg_info(). 1427 */ 1428 ibt_status_t ibt_query_mcg(ib_gid_t rgid, ibt_mcg_attr_t *mcg_attr, 1429 uint_t mcgs_max_num, ibt_mcg_info_t **mcgs_info_p, uint_t *entries_p); 1430 1431 /* 1432 * ibt_free_mcg_info() 1433 * Free the memory allocated by successful ibt_query_mcg() 1434 */ 1435 void ibt_free_mcg_info(ibt_mcg_info_t *mcgs_info, uint_t entries); 1436 1437 1438 /* 1439 * ibt_register_subnet_notices() 1440 * Register a handler to be called for subnet notifications. 1441 */ 1442 void ibt_register_subnet_notices(ibt_clnt_hdl_t ibt_hdl, 1443 ibt_sm_notice_handler_t sm_notice_handler, void *private); 1444 1445 1446 /* 1447 * Protection Domain Functions. 1448 * 1449 * ibt_alloc_pd() 1450 * ibt_free_pd() 1451 * Allocate/Release a protection domain 1452 */ 1453 ibt_status_t ibt_alloc_pd(ibt_hca_hdl_t hca_hdl, ibt_pd_flags_t flags, 1454 ibt_pd_hdl_t *pd); 1455 ibt_status_t ibt_free_pd(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd); 1456 1457 /* 1458 * P_Key to P_Key Index conversion Functions. 1459 * 1460 * ibt_pkey2index_byguid 1461 * ibt_pkey2index Convert a P_Key into a P_Key index. 1462 * 1463 * ibt_index2pkey_byguid 1464 * ibt_index2pkey Convert a P_Key Index into a P_Key. 1465 */ 1466 ibt_status_t ibt_pkey2index(ibt_hca_hdl_t hca_hdl, uint8_t port_num, 1467 ib_pkey_t pkey, uint16_t *pkey_ix); 1468 1469 ibt_status_t ibt_index2pkey(ibt_hca_hdl_t hca_hdl, uint8_t port_num, 1470 uint16_t pkey_ix, ib_pkey_t *pkey); 1471 1472 ibt_status_t ibt_pkey2index_byguid(ib_guid_t hca_guid, uint8_t port_num, 1473 ib_pkey_t pkey, uint16_t *pkey_ix); 1474 1475 ibt_status_t ibt_index2pkey_byguid(ib_guid_t hca_guid, uint8_t port_num, 1476 uint16_t pkey_ix, ib_pkey_t *pkey); 1477 1478 /* 1479 * ibt_ci_data_in() 1480 * 1481 * Pass CI specific userland data for CI objects to the CI. 1482 */ 1483 ibt_status_t ibt_ci_data_in(ibt_hca_hdl_t hca, ibt_ci_data_flags_t flags, 1484 ibt_object_type_t object, void *ibt_object_handle, void *data_p, 1485 size_t data_sz); 1486 1487 /* 1488 * ibt_ci_data_out() 1489 * 1490 * Obtain CI specific userland data for CI objects. 1491 */ 1492 ibt_status_t ibt_ci_data_out(ibt_hca_hdl_t hca, ibt_ci_data_flags_t flags, 1493 ibt_object_type_t object, void *ibt_object_handle, void *data_p, 1494 size_t data_sz); 1495 1496 1497 /* 1498 * Node Information. 1499 */ 1500 1501 /* Node type : n_node_type */ 1502 #define IBT_NODE_TYPE_CHANNEL_ADAPTER 1 /* HCA or TCA */ 1503 #define IBT_NODE_TYPE_SWITCH 2 1504 #define IBT_NODE_TYPE_ROUTER 3 1505 1506 typedef struct ibt_node_info_s { 1507 ib_guid_t n_sys_img_guid; /* System Image GUID */ 1508 ib_guid_t n_node_guid; /* Node GUID */ 1509 ib_guid_t n_port_guid; /* Port GUID */ 1510 uint16_t n_dev_id; /* Device ID */ 1511 uint32_t n_revision; /* Device Revision */ 1512 uint32_t n_vendor_id:24; /* Device Vendor ID */ 1513 uint8_t n_num_ports; /* Number of ports on this node. */ 1514 uint8_t n_port_num; /* Port number. */ 1515 uint8_t n_node_type; /* Node type */ 1516 char n_description[64]; /* NULL terminated ASCII string */ 1517 } ibt_node_info_t; 1518 1519 1520 /* 1521 * ibt_gid_to_node_info() 1522 * Retrieve node information for the specified GID. 1523 */ 1524 ibt_status_t ibt_gid_to_node_info(ib_gid_t gid, ibt_node_info_t *node_info_p); 1525 1526 /* 1527 * ibt_reprobe_dev 1528 * Reprobe properties for IOC device node. 1529 */ 1530 ibt_status_t ibt_reprobe_dev(dev_info_t *dip); 1531 1532 /* 1533 * ibt_get_companion_port_gids() 1534 * 1535 * Get list of GID's available on a companion port(s) of the specified 1536 * GID or list of GIDs available on a specified Node GUID/System Image 1537 * GUID. 1538 */ 1539 ibt_status_t ibt_get_companion_port_gids(ib_gid_t gid, ib_guid_t hca_guid, 1540 ib_guid_t sysimg_guid, ib_gid_t **gids_p, uint_t *num_gids_p); 1541 1542 /* 1543 * SHARED RECEIVE QUEUE 1544 */ 1545 1546 1547 /* 1548 * ibt_alloc_srq() 1549 * Allocate a shared receive queue. 1550 */ 1551 ibt_status_t ibt_alloc_srq(ibt_hca_hdl_t hca_hdl, ibt_srq_flags_t flags, 1552 ibt_pd_hdl_t pd, ibt_srq_sizes_t *sizes, ibt_srq_hdl_t *ibt_srq_p, 1553 ibt_srq_sizes_t *real_size_p); 1554 1555 /* 1556 * ibt_free_srq() 1557 * Free allocated SRQ resources. 1558 */ 1559 ibt_status_t ibt_free_srq(ibt_srq_hdl_t ibt_srq); 1560 1561 /* 1562 * ibt_query_srq() 1563 * Query a shared receive queue. 1564 */ 1565 ibt_status_t ibt_query_srq(ibt_srq_hdl_t ibt_srq, ibt_pd_hdl_t *pd_p, 1566 ibt_srq_sizes_t *sizes_p, uint_t *limit_p); 1567 1568 /* 1569 * ibt_modify_srq() 1570 * Modify a shared receive queue. 1571 */ 1572 ibt_status_t ibt_modify_srq(ibt_srq_hdl_t ibt_srq, ibt_srq_modify_flags_t flags, 1573 uint_t size, uint_t limit, uint_t *real_size_p); 1574 1575 /* 1576 * ibt_set_srq_private() 1577 * ibt_get_srq_private() 1578 * Set/get the SRQ client private data. 1579 */ 1580 void ibt_set_srq_private(ibt_srq_hdl_t ibt_srq, void *clnt_private); 1581 void *ibt_get_srq_private(ibt_srq_hdl_t ibt_srq); 1582 1583 /* 1584 * ibt_check_failure() 1585 * Function to test for special case failures 1586 */ 1587 ibt_failure_type_t ibt_check_failure(ibt_status_t status, uint64_t *reserved_p); 1588 1589 1590 /* 1591 * ibt_hw_is_present() returns 0 when there is no IB hardware actively 1592 * running. This is primarily useful for modules like rpcmod which needs a 1593 * quick check to decide whether or not it should try to use InfiniBand. 1594 */ 1595 int ibt_hw_is_present(); 1596 1597 /* 1598 * Fast Memory Registration (FMR). 1599 * 1600 * ibt_create_fmr_pool 1601 * Not fast-path. 1602 * ibt_create_fmr_pool() verifies that the HCA supports FMR and allocates 1603 * and initializes an "FMR pool". This pool contains state specific to 1604 * this registration, including the watermark setting to determine when 1605 * to sync, and the total number of FMR regions available within this pool. 1606 * 1607 * ibt_destroy_fmr_pool 1608 * ibt_destroy_fmr_pool() deallocates all of the FMR regions in a specific 1609 * pool. All state and information regarding the pool are destroyed and 1610 * returned as free space once again. No more use of FMR regions in this 1611 * pool are possible without a subsequent call to ibt_create_fmr_pool(). 1612 * 1613 * ibt_flush_fmr_pool 1614 * ibt_flush_fmr_pool forces a flush to occur. At the client's request, 1615 * any unmapped FMR regions (See 'ibt_deregister_mr())') are returned to 1616 * a free state. This function allows for an asynchronous cleanup of 1617 * formerly used FMR regions. Sync operation is also performed internally 1618 * by HCA driver, when 'watermark' settings for the number of free FMR 1619 * regions left in the "pool" is reached. 1620 * 1621 * ibt_register_physical_fmr 1622 * ibt_register_physical_fmr() assigns a "free" entry from the FMR Pool. 1623 * It first consults the "FMR cache" to see if this is a duplicate memory 1624 * registration to something already in use. If not, then a free entry 1625 * in the "pool" is marked used. 1626 * 1627 * ibt_deregister_fmr 1628 * The ibt_deregister_fmr un-maps the resources reserved from the FMR 1629 * pool by ibt_register_physical_fmr(). The ibt_deregister_fmr() will 1630 * mark the region as free in the FMR Pool. 1631 */ 1632 ibt_status_t ibt_create_fmr_pool(ibt_hca_hdl_t hca_hdl, ibt_pd_hdl_t pd, 1633 ibt_fmr_pool_attr_t *fmr_params, ibt_fmr_pool_hdl_t *fmr_pool_p); 1634 1635 ibt_status_t ibt_destroy_fmr_pool(ibt_hca_hdl_t hca_hdl, 1636 ibt_fmr_pool_hdl_t fmr_pool); 1637 1638 ibt_status_t ibt_flush_fmr_pool(ibt_hca_hdl_t hca_hdl, 1639 ibt_fmr_pool_hdl_t fmr_pool); 1640 1641 ibt_status_t ibt_register_physical_fmr(ibt_hca_hdl_t hca_hdl, 1642 ibt_fmr_pool_hdl_t fmr_pool, ibt_pmr_attr_t *mem_pattr, 1643 ibt_mr_hdl_t *mr_hdl_p, ibt_pmr_desc_t *mem_desc_p); 1644 1645 ibt_status_t ibt_deregister_fmr(ibt_hca_hdl_t hca, ibt_mr_hdl_t mr_hdl); 1646 1647 /* 1648 * IP SUPPORT 1649 */ 1650 1651 /* 1652 * IP get_paths 1653 * Returns an array (or single) of paths and source IP addresses. In the 1654 * simplest form just the destination IP address is specified, and one path 1655 * is requested, then one ibt_path_info_t struct and one source IP. 1656 * 1657 * More than one path can be requested to a single destination, in which case 1658 * the requested number of ibt_path_info_t's are returned, and the same 1659 * number of SRC IP address, with the first SRC IP address corrosponding 1660 * to the first ibt_path_info_t, etc. 1661 * 1662 * Restrictions on the source end point can be specified, in the form of a 1663 * source IP address (this implicitly defines the HCA, HCA port and Pkey) 1664 * HCA, HCA port, and sgid (implicitly defines HCA and HCA port). 1665 * Combinations are allowed but they must be consistent. 1666 * 1667 * Path attributes can also be specified, these can also affect local HCA 1668 * selection. 1669 * 1670 * ibt_get_ip_paths() internally does (among other things): 1671 * 1672 * o ibt_get_list_of_ibd_ipaddr_and_macaddr( OUT list_ipaddr_macaddr) 1673 * 1674 * o extract_pkey_and_sgid(IN list_ipaddr_macaddr, OUT list_pkey_and_sgid) 1675 * 1676 * o map_dst_ip_addr(IN dst_ip_addr, OUT dst_pkey, OUT dgid) - See Note 1677 * 1678 * o filter_by_pkey(IN list_pkey_and_sgid, IN dst_pkey, OUT list_of_sgid) 1679 * 1680 * o do_multipath_query(IN list_of_sgid, IN dst_pkey, IN dgid, OUT path_list) 1681 * 1682 * o pick_a_good_path(IN path_list, OUT the_path) 1683 * 1684 * o find_matching_src_ip(IN the_path, IN list_ipaddr_macaddr, OUT src_ip) 1685 * 1686 * The ibd instance which got the ARP response is only on one P_Key 1687 * knowing the ibd instance (or which IPonIB MCG) got the ARP response 1688 * determins the P_Key associated with a dgid. If the proposedi "ip2mac()" 1689 * API is used to get an IP to GID translations, then returned 'sockaddr_dl' 1690 * contains the interface name and index. 1691 * 1692 * 1693 * Example: 1694 * ip_path_attr.ipa_dst_ip = dst_ip_addr; 1695 * ip_path_attr.ipa_ndst = 1; 1696 * ip_path_attr.ipa_max_paths = 1; 1697 * 1698 * status = ibt_get_ip_paths(clnt_hdl, flags, &ip_path_attr, &paths, 1699 * &num_paths_p, &src_ip); 1700 * 1701 * sid = ibt_get_ip_sid(protocol_num, dst_port); 1702 * path_info->sid = sid; 1703 * 1704 * ip_cm_info.src_addr = src_ip; 1705 * ip_cm_info.dst_addr = dst_ip_addr; 1706 * ip_cm_info.src_port = src_port 1707 * 1708 * ibt_format_ip_private_data(ip_cm_info, priv_data_len, &priv_data); 1709 * ibt_open_rc_channel(chan, private_data); 1710 */ 1711 typedef struct ibt_ip_path_attr_s { 1712 ibt_ip_addr_t *ipa_dst_ip; /* Required */ 1713 ibt_ip_addr_t ipa_src_ip; /* Optional */ 1714 ib_guid_t ipa_hca_guid; /* Optional */ 1715 uint8_t ipa_hca_port_num; /* Optional */ 1716 uint8_t ipa_max_paths; /* Required */ 1717 uint8_t ipa_ndst; /* Required */ 1718 uint8_t ipa_sl:4; /* Optional */ 1719 ibt_mtu_req_t ipa_mtu; /* Optional */ 1720 ibt_srate_req_t ipa_srate; /* Optional */ 1721 ibt_pkt_lt_req_t ipa_pkt_lt; /* Optional */ 1722 uint_t ipa_flow:20; /* Optional */ 1723 uint8_t ipa_hop; /* Optional */ 1724 uint8_t ipa_tclass; /* Optional */ 1725 } ibt_ip_path_attr_t; 1726 1727 /* 1728 * Path SRC IP addresses 1729 */ 1730 typedef struct ibt_path_ip_src_s { 1731 ibt_ip_addr_t ip_primary; 1732 ibt_ip_addr_t ip_alternate; 1733 } ibt_path_ip_src_t; 1734 1735 1736 ibt_status_t ibt_get_ip_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 1737 ibt_ip_path_attr_t *attr, ibt_path_info_t *paths_p, uint8_t *num_paths_p, 1738 ibt_path_ip_src_t *src_ip_p); 1739 1740 ibt_status_t ibt_get_src_ip(ib_gid_t gid, ib_pkey_t pkey, 1741 ibt_ip_addr_t *src_ip); 1742 1743 /* 1744 * Callback function that can be used in ibt_aget_ip_paths(), a Non-Blocking 1745 * version of ibt_get_ip_paths(). 1746 */ 1747 typedef void (*ibt_ip_path_handler_t)(void *arg, ibt_status_t retval, 1748 ibt_path_info_t *paths_p, uint8_t num_paths, ibt_path_ip_src_t *src_ip_p); 1749 1750 /* 1751 * Find path(s) to a given destination or service asynchronously. 1752 * ibt_aget_ip_paths() is a Non-Blocking version of ibt_get_ip_paths(). 1753 */ 1754 ibt_status_t ibt_aget_ip_paths(ibt_clnt_hdl_t ibt_hdl, ibt_path_flags_t flags, 1755 ibt_ip_path_attr_t *attr, ibt_ip_path_handler_t func, void *arg); 1756 1757 /* 1758 * IP RDMA protocol functions 1759 */ 1760 1761 /* 1762 * IBTF manages the port number space for non well known ports. If a ULP 1763 * is not using TCP/UDP and a well known port, then ibt_get_ip_sid() returns 1764 * an sid based on the IP protocol number '0' (reserved) and an IBTF assigned 1765 * port number. ibt_release_ip_sid() should be used to release the hold 1766 * of SID created by ibt_get_ip_sid(). 1767 */ 1768 ib_svc_id_t ibt_get_ip_sid(uint8_t protocol_num, in_port_t dst_port); 1769 ibt_status_t ibt_release_ip_sid(ib_svc_id_t sid); 1770 1771 uint8_t ibt_get_ip_protocol_num(ib_svc_id_t sid); 1772 in_port_t ibt_get_ip_dst_port(ib_svc_id_t sid); 1773 1774 /* 1775 * Functions to format/extract the RDMA IP CM private data 1776 */ 1777 typedef struct ibt_ip_cm_info_s { 1778 ibt_ip_addr_t src_addr; 1779 ibt_ip_addr_t dst_addr; 1780 in_port_t src_port; 1781 } ibt_ip_cm_info_t; 1782 1783 /* 1784 * If a ULP is using IP addressing as defined by the RDMA IP CM Service IBTA 1785 * Annex 11, then it must always allocate a private data buffer for use in 1786 * the ibt_open_rc_channel(9F) call. The minimum size of the buffer is 1787 * IBT_IP_HDR_PRIV_DATA_SZ, if the ULP has no ULP specific private data. 1788 * This allows ibt_format_ip_private_data() to place the RDMA IP CM service 1789 * hello message in the private data of the REQ. If the ULP has some ULP 1790 * specific private data then it should allocate a buffer big enough to 1791 * contain that data plus an additional IBT_IP_HDR_PRIV_DATA_SZ bytes. 1792 * The ULP should place its ULP specific private data at offset 1793 * IBT_IP_HDR_PRIV_DATA_SZ in the allocated buffer before calling 1794 * ibt_format_ip_private_data(). 1795 */ 1796 ibt_status_t ibt_format_ip_private_data(ibt_ip_cm_info_t *ip_cm_info, 1797 ibt_priv_data_len_t priv_data_len, void *priv_data_p); 1798 ibt_status_t ibt_get_ip_data(ibt_priv_data_len_t priv_data_len, 1799 void *priv_data, ibt_ip_cm_info_t *ip_info_p); 1800 1801 /* 1802 * The ibt_alt_ip_path_attr_t structure is used to specify additional optional 1803 * attributes when requesting an alternate path for an existing channel. 1804 * 1805 * Attributes that are don't care should be set to NULL or '0'. 1806 */ 1807 typedef struct ibt_alt_ip_path_attr_s { 1808 ibt_ip_addr_t apa_dst_ip; 1809 ibt_ip_addr_t apa_src_ip; 1810 ibt_srate_req_t apa_srate; 1811 ibt_pkt_lt_req_t apa_pkt_lt; /* Packet Life Time Request */ 1812 uint_t apa_flow:20; 1813 uint8_t apa_sl:4; 1814 uint8_t apa_hop; 1815 uint8_t apa_tclass; 1816 } ibt_alt_ip_path_attr_t; 1817 1818 ibt_status_t ibt_get_ip_alt_path(ibt_channel_hdl_t rc_chan, 1819 ibt_path_flags_t flags, ibt_alt_ip_path_attr_t *attr, 1820 ibt_alt_path_info_t *alt_path); 1821 1822 /* 1823 * CONTRACT PRIVATE ONLY INTERFACES 1824 * 1825 * DO NOT USE THE FOLLOWING FUNCTIONS WITHOUT SIGNING THE CONTRACT 1826 * WITH IBTF GROUP. 1827 */ 1828 1829 /* Define an Address Record structure (data for ATS service records). */ 1830 typedef struct ibt_ar_s { 1831 ib_gid_t ar_gid; /* GID of local HCA port */ 1832 ib_pkey_t ar_pkey; /* P_Key valid on port of ar_gid */ 1833 uint8_t ar_data[16]; /* Data affiliated with GID/P_Key */ 1834 } ibt_ar_t; 1835 1836 /* 1837 * ibt_register_ar() 1838 * ibt_deregister_ar() 1839 * Register/deregister an Address Record with the SA. 1840 * ibt_query_ar() 1841 * Query the SA for Address Records matching either GID/P_Key or Data. 1842 */ 1843 ibt_status_t ibt_register_ar(ibt_clnt_hdl_t ibt_hdl, ibt_ar_t *arp); 1844 1845 ibt_status_t ibt_deregister_ar(ibt_clnt_hdl_t ibt_hdl, ibt_ar_t *arp); 1846 1847 ibt_status_t ibt_query_ar(ib_gid_t *sgid, ibt_ar_t *queryp, ibt_ar_t *resultp); 1848 1849 1850 /* 1851 * ibt_modify_system_image() 1852 * ibt_modify_system_image_byguid() 1853 * Modify specified HCA's system image GUID. 1854 */ 1855 ibt_status_t ibt_modify_system_image(ibt_hca_hdl_t hca_hdl, ib_guid_t sys_guid); 1856 1857 ibt_status_t ibt_modify_system_image_byguid(ib_guid_t hca_guid, 1858 ib_guid_t sys_guid); 1859 1860 1861 /* 1862 * ibt_modify_port() 1863 * ibt_modify_port_byguid() 1864 * Modify the specified port, or all ports attribute(s). 1865 */ 1866 ibt_status_t ibt_modify_port(ibt_hca_hdl_t hca_hdl, uint8_t port, 1867 ibt_port_modify_flags_t flags, uint8_t init_type); 1868 1869 ibt_status_t ibt_modify_port_byguid(ib_guid_t hca_guid, uint8_t port, 1870 ibt_port_modify_flags_t flags, uint8_t init_type); 1871 1872 1873 /* 1874 * ibt_get_port_state() 1875 * ibt_get_port_state_byguid() 1876 * Return the most commonly requested attributes of an HCA port. 1877 * If the link state is not IBT_PORT_ACTIVE, the other returned values 1878 * are undefined. 1879 */ 1880 ibt_status_t ibt_get_port_state(ibt_hca_hdl_t hca_hdl, uint8_t port, 1881 ib_gid_t *sgid_p, ib_lid_t *base_lid_p); 1882 1883 ibt_status_t ibt_get_port_state_byguid(ib_guid_t hca_guid, uint8_t port, 1884 ib_gid_t *sgid_p, ib_lid_t *base_lid_p); 1885 1886 /* 1887 * ibt_alloc_io_mem() 1888 * ibt_free_io_mem() 1889 * Allocate and deallocate dma-able memory. 1890 */ 1891 ibt_status_t ibt_alloc_io_mem(ibt_hca_hdl_t, size_t, ibt_mr_flags_t, 1892 caddr_t *, ibt_mem_alloc_hdl_t *); 1893 1894 ibt_status_t ibt_free_io_mem(ibt_hca_hdl_t, ibt_mem_alloc_hdl_t); 1895 1896 #ifdef __cplusplus 1897 } 1898 #endif 1899 1900 #endif /* _SYS_IB_IBTL_IBTI_COMMON_H */ 1901