xref: /illumos-gate/usr/src/uts/common/sys/dtrace.h (revision dd891561fb3e50f856d7d730f22a12cc1db51788)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright 2018 Joyent, Inc.
29  * Copyright (c) 2013 by Delphix. All rights reserved.
30  */
31 
32 #ifndef _SYS_DTRACE_H
33 #define	_SYS_DTRACE_H
34 
35 #ifdef	__cplusplus
36 extern "C" {
37 #endif
38 
39 /*
40  * DTrace Dynamic Tracing Software: Kernel Interfaces
41  *
42  * Note: The contents of this file are private to the implementation of the
43  * Solaris system and DTrace subsystem and are subject to change at any time
44  * without notice.  Applications and drivers using these interfaces will fail
45  * to run on future releases.  These interfaces should not be used for any
46  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48  */
49 
50 #ifndef _ASM
51 
52 #include <sys/types.h>
53 #include <sys/modctl.h>
54 #include <sys/processor.h>
55 #include <sys/systm.h>
56 #include <sys/ctf_api.h>
57 #include <sys/cyclic.h>
58 #include <sys/int_limits.h>
59 
60 /*
61  * DTrace Universal Constants and Typedefs
62  */
63 #define	DTRACE_CPUALL		-1	/* all CPUs */
64 #define	DTRACE_IDNONE		0	/* invalid probe identifier */
65 #define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
66 #define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
67 #define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
68 #define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
69 #define	DTRACE_PROVNONE		0	/* invalid provider identifier */
70 #define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
71 #define	DTRACE_ARGNONE		-1	/* invalid argument index */
72 
73 #define	DTRACE_PROVNAMELEN	64
74 #define	DTRACE_MODNAMELEN	64
75 #define	DTRACE_FUNCNAMELEN	128
76 #define	DTRACE_NAMELEN		64
77 #define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
78 				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
79 #define	DTRACE_ARGTYPELEN	128
80 
81 typedef uint32_t dtrace_id_t;		/* probe identifier */
82 typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
83 typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
84 typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
85 typedef uint16_t dtrace_actkind_t;	/* action kind */
86 typedef int64_t dtrace_optval_t;	/* option value */
87 typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
88 
89 typedef enum dtrace_probespec {
90 	DTRACE_PROBESPEC_NONE = -1,
91 	DTRACE_PROBESPEC_PROVIDER = 0,
92 	DTRACE_PROBESPEC_MOD,
93 	DTRACE_PROBESPEC_FUNC,
94 	DTRACE_PROBESPEC_NAME
95 } dtrace_probespec_t;
96 
97 /*
98  * DTrace Intermediate Format (DIF)
99  *
100  * The following definitions describe the DTrace Intermediate Format (DIF), a
101  * a RISC-like instruction set and program encoding used to represent
102  * predicates and actions that can be bound to DTrace probes.  The constants
103  * below defining the number of available registers are suggested minimums; the
104  * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
105  * registers provided by the current DTrace implementation.
106  */
107 #define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
108 #define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
109 #define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
110 #define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
111 #define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
112 
113 #define	DIF_OP_OR	1		/* or	r1, r2, rd */
114 #define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
115 #define	DIF_OP_AND	3		/* and	r1, r2, rd */
116 #define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
117 #define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
118 #define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
119 #define	DIF_OP_ADD	7		/* add	r1, r2, rd */
120 #define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
121 #define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
122 #define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
123 #define	DIF_OP_SREM	11		/* srem r1, r2, rd */
124 #define	DIF_OP_UREM	12		/* urem r1, r2, rd */
125 #define	DIF_OP_NOT	13		/* not	r1, rd */
126 #define	DIF_OP_MOV	14		/* mov	r1, rd */
127 #define	DIF_OP_CMP	15		/* cmp	r1, r2 */
128 #define	DIF_OP_TST	16		/* tst  r1 */
129 #define	DIF_OP_BA	17		/* ba	label */
130 #define	DIF_OP_BE	18		/* be	label */
131 #define	DIF_OP_BNE	19		/* bne	label */
132 #define	DIF_OP_BG	20		/* bg	label */
133 #define	DIF_OP_BGU	21		/* bgu	label */
134 #define	DIF_OP_BGE	22		/* bge	label */
135 #define	DIF_OP_BGEU	23		/* bgeu	label */
136 #define	DIF_OP_BL	24		/* bl	label */
137 #define	DIF_OP_BLU	25		/* blu	label */
138 #define	DIF_OP_BLE	26		/* ble	label */
139 #define	DIF_OP_BLEU	27		/* bleu	label */
140 #define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
141 #define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
142 #define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
143 #define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
144 #define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
145 #define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
146 #define	DIF_OP_LDX	34		/* ldx	[r1], rd */
147 #define	DIF_OP_RET	35		/* ret	rd */
148 #define	DIF_OP_NOP	36		/* nop */
149 #define	DIF_OP_SETX	37		/* setx	intindex, rd */
150 #define	DIF_OP_SETS	38		/* sets strindex, rd */
151 #define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
152 #define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
153 #define	DIF_OP_LDGS	41		/* ldgs var, rd */
154 #define	DIF_OP_STGS	42		/* stgs var, rs */
155 #define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
156 #define	DIF_OP_LDTS	44		/* ldts var, rd */
157 #define	DIF_OP_STTS	45		/* stts var, rs */
158 #define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
159 #define	DIF_OP_CALL	47		/* call	subr, rd */
160 #define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
161 #define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
162 #define	DIF_OP_POPTS	50		/* popts */
163 #define	DIF_OP_FLUSHTS	51		/* flushts */
164 #define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
165 #define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
166 #define	DIF_OP_STGAA	54		/* stgaa var, rs */
167 #define	DIF_OP_STTAA	55		/* sttaa var, rs */
168 #define	DIF_OP_LDLS	56		/* ldls	var, rd */
169 #define	DIF_OP_STLS	57		/* stls	var, rs */
170 #define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
171 #define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
172 #define	DIF_OP_STB	60		/* stb	r1, [rd] */
173 #define	DIF_OP_STH	61		/* sth	r1, [rd] */
174 #define	DIF_OP_STW	62		/* stw	r1, [rd] */
175 #define	DIF_OP_STX	63		/* stx	r1, [rd] */
176 #define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
177 #define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
178 #define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
179 #define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
180 #define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
181 #define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
182 #define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
183 #define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
184 #define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
185 #define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
186 #define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
187 #define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
188 #define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
189 #define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
190 #define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
191 #define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
192 #define	DIF_OP_STGA	80		/* stga var, ri, rd */
193 
194 #define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
195 #define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
196 #define	DIF_REGISTER_MAX	0xff	/* highest register number */
197 #define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
198 #define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
199 
200 #define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
201 #define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
202 #define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
203 
204 #define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
205 #define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
206 #define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
207 
208 #define	DIF_VAR_ARGS		0x0000	/* arguments array */
209 #define	DIF_VAR_REGS		0x0001	/* registers array */
210 #define	DIF_VAR_UREGS		0x0002	/* user registers array */
211 #define	DIF_VAR_VMREGS		0x0003	/* virtual machine registers array */
212 #define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
213 #define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
214 #define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
215 #define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
216 #define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
217 #define	DIF_VAR_ID		0x0105	/* probe ID */
218 #define	DIF_VAR_ARG0		0x0106	/* first argument */
219 #define	DIF_VAR_ARG1		0x0107	/* second argument */
220 #define	DIF_VAR_ARG2		0x0108	/* third argument */
221 #define	DIF_VAR_ARG3		0x0109	/* fourth argument */
222 #define	DIF_VAR_ARG4		0x010a	/* fifth argument */
223 #define	DIF_VAR_ARG5		0x010b	/* sixth argument */
224 #define	DIF_VAR_ARG6		0x010c	/* seventh argument */
225 #define	DIF_VAR_ARG7		0x010d	/* eighth argument */
226 #define	DIF_VAR_ARG8		0x010e	/* ninth argument */
227 #define	DIF_VAR_ARG9		0x010f	/* tenth argument */
228 #define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
229 #define	DIF_VAR_CALLER		0x0111	/* caller */
230 #define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
231 #define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
232 #define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
233 #define	DIF_VAR_PROBENAME	0x0115	/* probe name */
234 #define	DIF_VAR_PID		0x0116	/* process ID */
235 #define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
236 #define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
237 #define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
238 #define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
239 #define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
240 #define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
241 #define	DIF_VAR_PPID		0x011d	/* parent process ID */
242 #define	DIF_VAR_UID		0x011e	/* process user ID */
243 #define	DIF_VAR_GID		0x011f	/* process group ID */
244 #define	DIF_VAR_ERRNO		0x0120	/* thread errno */
245 #define	DIF_VAR_THREADNAME	0x0121	/* thread name */
246 
247 #define	DIF_SUBR_RAND			0
248 #define	DIF_SUBR_MUTEX_OWNED		1
249 #define	DIF_SUBR_MUTEX_OWNER		2
250 #define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
251 #define	DIF_SUBR_MUTEX_TYPE_SPIN	4
252 #define	DIF_SUBR_RW_READ_HELD		5
253 #define	DIF_SUBR_RW_WRITE_HELD		6
254 #define	DIF_SUBR_RW_ISWRITER		7
255 #define	DIF_SUBR_COPYIN			8
256 #define	DIF_SUBR_COPYINSTR		9
257 #define	DIF_SUBR_SPECULATION		10
258 #define	DIF_SUBR_PROGENYOF		11
259 #define	DIF_SUBR_STRLEN			12
260 #define	DIF_SUBR_COPYOUT		13
261 #define	DIF_SUBR_COPYOUTSTR		14
262 #define	DIF_SUBR_ALLOCA			15
263 #define	DIF_SUBR_BCOPY			16
264 #define	DIF_SUBR_COPYINTO		17
265 #define	DIF_SUBR_MSGDSIZE		18
266 #define	DIF_SUBR_MSGSIZE		19
267 #define	DIF_SUBR_GETMAJOR		20
268 #define	DIF_SUBR_GETMINOR		21
269 #define	DIF_SUBR_DDI_PATHNAME		22
270 #define	DIF_SUBR_STRJOIN		23
271 #define	DIF_SUBR_LLTOSTR		24
272 #define	DIF_SUBR_BASENAME		25
273 #define	DIF_SUBR_DIRNAME		26
274 #define	DIF_SUBR_CLEANPATH		27
275 #define	DIF_SUBR_STRCHR			28
276 #define	DIF_SUBR_STRRCHR		29
277 #define	DIF_SUBR_STRSTR			30
278 #define	DIF_SUBR_STRTOK			31
279 #define	DIF_SUBR_SUBSTR			32
280 #define	DIF_SUBR_INDEX			33
281 #define	DIF_SUBR_RINDEX			34
282 #define	DIF_SUBR_HTONS			35
283 #define	DIF_SUBR_HTONL			36
284 #define	DIF_SUBR_HTONLL			37
285 #define	DIF_SUBR_NTOHS			38
286 #define	DIF_SUBR_NTOHL			39
287 #define	DIF_SUBR_NTOHLL			40
288 #define	DIF_SUBR_INET_NTOP		41
289 #define	DIF_SUBR_INET_NTOA		42
290 #define	DIF_SUBR_INET_NTOA6		43
291 #define	DIF_SUBR_TOUPPER		44
292 #define	DIF_SUBR_TOLOWER		45
293 #define	DIF_SUBR_GETF			46
294 #define	DIF_SUBR_JSON			47
295 #define	DIF_SUBR_STRTOLL		48
296 
297 #define	DIF_SUBR_MAX			48	/* max subroutine value */
298 
299 typedef uint32_t dif_instr_t;
300 
301 #define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
302 #define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
303 #define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
304 #define	DIF_INSTR_RD(i)			((i) & 0xff)
305 #define	DIF_INSTR_RS(i)			((i) & 0xff)
306 #define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
307 #define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
308 #define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
309 #define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
310 #define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
311 #define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
312 #define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
313 
314 #define	DIF_INSTR_FMT(op, r1, r2, d) \
315 	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
316 
317 #define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
318 #define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
319 #define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
320 #define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
321 #define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
322 #define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
323 #define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
324 #define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
325 #define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
326 #define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
327 #define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
328 #define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
329 #define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
330 #define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
331 #define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
332 #define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
333 #define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
334 #define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
335 #define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
336 #define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
337 #define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
338 
339 #define	DIF_REG_R0	0		/* %r0 is always set to zero */
340 
341 /*
342  * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
343  * of variables, function and associative array arguments, and the return type
344  * for each DIF object (shown below).  It contains a description of the type,
345  * its size in bytes, and a module identifier.
346  */
347 typedef struct dtrace_diftype {
348 	uint8_t dtdt_kind;		/* type kind (see below) */
349 	uint8_t dtdt_ckind;		/* type kind in CTF */
350 	uint8_t dtdt_flags;		/* type flags (see below) */
351 	uint8_t dtdt_pad;		/* reserved for future use */
352 	uint32_t dtdt_size;		/* type size in bytes (unless string) */
353 } dtrace_diftype_t;
354 
355 #define	DIF_TYPE_CTF		0	/* type is a CTF type */
356 #define	DIF_TYPE_STRING		1	/* type is a D string */
357 
358 #define	DIF_TF_BYREF		0x1	/* type is passed by reference */
359 #define	DIF_TF_BYUREF		0x2	/* user type is passed by reference */
360 
361 /*
362  * A DTrace Intermediate Format variable record is used to describe each of the
363  * variables referenced by a given DIF object.  It contains an integer variable
364  * identifier along with variable scope and properties, as shown below.  The
365  * size of this structure must be sizeof (int) aligned.
366  */
367 typedef struct dtrace_difv {
368 	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
369 	uint32_t dtdv_id;		/* variable reference identifier */
370 	uint8_t dtdv_kind;		/* variable kind (see below) */
371 	uint8_t dtdv_scope;		/* variable scope (see below) */
372 	uint16_t dtdv_flags;		/* variable flags (see below) */
373 	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
374 } dtrace_difv_t;
375 
376 #define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
377 #define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
378 
379 #define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
380 #define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
381 #define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
382 
383 #define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
384 #define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
385 
386 /*
387  * DTrace Actions
388  *
389  * The upper byte determines the class of the action; the low bytes determines
390  * the specific action within that class.  The classes of actions are as
391  * follows:
392  *
393  *   [ no class ]                  <= May record process- or kernel-related data
394  *   DTRACEACT_PROC                <= Only records process-related data
395  *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
396  *   DTRACEACT_KERNEL              <= Only records kernel-related data
397  *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
398  *   DTRACEACT_SPECULATIVE         <= Speculation-related action
399  *   DTRACEACT_AGGREGATION         <= Aggregating action
400  */
401 #define	DTRACEACT_NONE			0	/* no action */
402 #define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
403 #define	DTRACEACT_EXIT			2	/* exit() action */
404 #define	DTRACEACT_PRINTF		3	/* printf() action */
405 #define	DTRACEACT_PRINTA		4	/* printa() action */
406 #define	DTRACEACT_LIBACT		5	/* library-controlled action */
407 #define	DTRACEACT_TRACEMEM		6	/* tracemem() action */
408 #define	DTRACEACT_TRACEMEM_DYNSIZE	7	/* dynamic tracemem() size */
409 
410 #define	DTRACEACT_PROC			0x0100
411 #define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
412 #define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
413 #define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
414 #define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
415 #define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
416 
417 #define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
418 #define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
419 #define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
420 #define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
421 #define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
422 
423 #define	DTRACEACT_PROC_CONTROL		0x0300
424 
425 #define	DTRACEACT_KERNEL		0x0400
426 #define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
427 #define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
428 #define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
429 
430 #define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
431 #define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
432 #define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
433 #define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
434 
435 #define	DTRACEACT_SPECULATIVE		0x0600
436 #define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
437 #define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
438 #define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
439 
440 #define	DTRACEACT_CLASS(x)		((x) & 0xff00)
441 
442 #define	DTRACEACT_ISDESTRUCTIVE(x)	\
443 	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
444 	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
445 
446 #define	DTRACEACT_ISSPECULATIVE(x)	\
447 	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
448 
449 #define	DTRACEACT_ISPRINTFLIKE(x)	\
450 	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
451 	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
452 
453 /*
454  * DTrace Aggregating Actions
455  *
456  * These are functions f(x) for which the following is true:
457  *
458  *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
459  *
460  * where x_n is a set of arbitrary data.  Aggregating actions are in their own
461  * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
462  * for easier processing of the aggregation argument and data payload for a few
463  * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
464  */
465 #define	DTRACEACT_AGGREGATION		0x0700
466 #define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
467 #define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
468 #define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
469 #define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
470 #define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
471 #define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
472 #define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
473 #define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
474 #define	DTRACEAGG_LLQUANTIZE		(DTRACEACT_AGGREGATION + 9)
475 
476 #define	DTRACEACT_ISAGG(x)		\
477 	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
478 
479 #define	DTRACE_QUANTIZE_NBUCKETS	\
480 	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
481 
482 #define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
483 
484 #define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
485 	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
486 	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
487 	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
488 	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
489 
490 #define	DTRACE_LQUANTIZE_STEPSHIFT		48
491 #define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
492 #define	DTRACE_LQUANTIZE_LEVELSHIFT		32
493 #define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
494 #define	DTRACE_LQUANTIZE_BASESHIFT		0
495 #define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
496 
497 #define	DTRACE_LQUANTIZE_STEP(x)		\
498 	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
499 	DTRACE_LQUANTIZE_STEPSHIFT)
500 
501 #define	DTRACE_LQUANTIZE_LEVELS(x)		\
502 	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
503 	DTRACE_LQUANTIZE_LEVELSHIFT)
504 
505 #define	DTRACE_LQUANTIZE_BASE(x)		\
506 	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
507 	DTRACE_LQUANTIZE_BASESHIFT)
508 
509 #define	DTRACE_LLQUANTIZE_FACTORSHIFT		48
510 #define	DTRACE_LLQUANTIZE_FACTORMASK		((uint64_t)UINT16_MAX << 48)
511 #define	DTRACE_LLQUANTIZE_LOWSHIFT		32
512 #define	DTRACE_LLQUANTIZE_LOWMASK		((uint64_t)UINT16_MAX << 32)
513 #define	DTRACE_LLQUANTIZE_HIGHSHIFT		16
514 #define	DTRACE_LLQUANTIZE_HIGHMASK		((uint64_t)UINT16_MAX << 16)
515 #define	DTRACE_LLQUANTIZE_NSTEPSHIFT		0
516 #define	DTRACE_LLQUANTIZE_NSTEPMASK		UINT16_MAX
517 
518 #define	DTRACE_LLQUANTIZE_FACTOR(x)		\
519 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
520 	DTRACE_LLQUANTIZE_FACTORSHIFT)
521 
522 #define	DTRACE_LLQUANTIZE_LOW(x)		\
523 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
524 	DTRACE_LLQUANTIZE_LOWSHIFT)
525 
526 #define	DTRACE_LLQUANTIZE_HIGH(x)		\
527 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
528 	DTRACE_LLQUANTIZE_HIGHSHIFT)
529 
530 #define	DTRACE_LLQUANTIZE_NSTEP(x)		\
531 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
532 	DTRACE_LLQUANTIZE_NSTEPSHIFT)
533 
534 #define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
535 #define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
536 #define	DTRACE_USTACK_ARG(x, y)		\
537 	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
538 
539 #ifndef _LP64
540 #ifndef _LITTLE_ENDIAN
541 #define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
542 #else
543 #define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
544 #endif
545 #else
546 #define	DTRACE_PTR(type, name)	type *name
547 #endif
548 
549 /*
550  * DTrace Object Format (DOF)
551  *
552  * DTrace programs can be persistently encoded in the DOF format so that they
553  * may be embedded in other programs (for example, in an ELF file) or in the
554  * dtrace driver configuration file for use in anonymous tracing.  The DOF
555  * format is versioned and extensible so that it can be revised and so that
556  * internal data structures can be modified or extended compatibly.  All DOF
557  * structures use fixed-size types, so the 32-bit and 64-bit representations
558  * are identical and consumers can use either data model transparently.
559  *
560  * The file layout is structured as follows:
561  *
562  * +---------------+-------------------+----- ... ----+---- ... ------+
563  * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
564  * | (file header) | (section headers) | section data | section data  |
565  * +---------------+-------------------+----- ... ----+---- ... ------+
566  * |<------------ dof_hdr.dofh_loadsz --------------->|               |
567  * |<------------ dof_hdr.dofh_filesz ------------------------------->|
568  *
569  * The file header stores meta-data including a magic number, data model for
570  * the instrumentation, data encoding, and properties of the DIF code within.
571  * The header describes its own size and the size of the section headers.  By
572  * convention, an array of section headers follows the file header, and then
573  * the data for all loadable sections and unloadable sections.  This permits
574  * consumer code to easily download the headers and all loadable data into the
575  * DTrace driver in one contiguous chunk, omitting other extraneous sections.
576  *
577  * The section headers describe the size, offset, alignment, and section type
578  * for each section.  Sections are described using a set of #defines that tell
579  * the consumer what kind of data is expected.  Sections can contain links to
580  * other sections by storing a dof_secidx_t, an index into the section header
581  * array, inside of the section data structures.  The section header includes
582  * an entry size so that sections with data arrays can grow their structures.
583  *
584  * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
585  * are represented themselves as a collection of related DOF sections.  This
586  * permits us to change the set of sections associated with a DIFO over time,
587  * and also permits us to encode DIFOs that contain different sets of sections.
588  * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
589  * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
590  * dof_secidx_t's which in turn denote the sections associated with this DIFO.
591  *
592  * This loose coupling of the file structure (header and sections) to the
593  * structure of the DTrace program itself (ECB descriptions, action
594  * descriptions, and DIFOs) permits activities such as relocation processing
595  * to occur in a single pass without having to understand D program structure.
596  *
597  * Finally, strings are always stored in ELF-style string tables along with a
598  * string table section index and string table offset.  Therefore strings in
599  * DOF are always arbitrary-length and not bound to the current implementation.
600  */
601 
602 #define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
603 
604 typedef struct dof_hdr {
605 	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
606 	uint32_t dofh_flags;		/* file attribute flags (if any) */
607 	uint32_t dofh_hdrsize;		/* size of file header in bytes */
608 	uint32_t dofh_secsize;		/* size of section header in bytes */
609 	uint32_t dofh_secnum;		/* number of section headers */
610 	uint64_t dofh_secoff;		/* file offset of section headers */
611 	uint64_t dofh_loadsz;		/* file size of loadable portion */
612 	uint64_t dofh_filesz;		/* file size of entire DOF file */
613 	uint64_t dofh_pad;		/* reserved for future use */
614 } dof_hdr_t;
615 
616 #define	DOF_ID_MAG0	0	/* first byte of magic number */
617 #define	DOF_ID_MAG1	1	/* second byte of magic number */
618 #define	DOF_ID_MAG2	2	/* third byte of magic number */
619 #define	DOF_ID_MAG3	3	/* fourth byte of magic number */
620 #define	DOF_ID_MODEL	4	/* DOF data model (see below) */
621 #define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
622 #define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
623 #define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
624 #define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
625 #define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
626 #define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
627 
628 #define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
629 #define	DOF_MAG_MAG1	'D'
630 #define	DOF_MAG_MAG2	'O'
631 #define	DOF_MAG_MAG3	'F'
632 
633 #define	DOF_MAG_STRING	"\177DOF"
634 #define	DOF_MAG_STRLEN	4
635 
636 #define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
637 #define	DOF_MODEL_ILP32	1
638 #define	DOF_MODEL_LP64	2
639 
640 #ifdef _LP64
641 #define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
642 #else
643 #define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
644 #endif
645 
646 #define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
647 #define	DOF_ENCODE_LSB	1
648 #define	DOF_ENCODE_MSB	2
649 
650 #ifdef _BIG_ENDIAN
651 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
652 #else
653 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
654 #endif
655 
656 #define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
657 #define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
658 #define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
659 
660 #define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
661 
662 typedef uint32_t dof_secidx_t;	/* section header table index type */
663 typedef uint32_t dof_stridx_t;	/* string table index type */
664 
665 #define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
666 #define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
667 
668 typedef struct dof_sec {
669 	uint32_t dofs_type;	/* section type (see below) */
670 	uint32_t dofs_align;	/* section data memory alignment */
671 	uint32_t dofs_flags;	/* section flags (if any) */
672 	uint32_t dofs_entsize;	/* size of section entry (if table) */
673 	uint64_t dofs_offset;	/* offset of section data within file */
674 	uint64_t dofs_size;	/* size of section data in bytes */
675 } dof_sec_t;
676 
677 #define	DOF_SECT_NONE		0	/* null section */
678 #define	DOF_SECT_COMMENTS	1	/* compiler comments */
679 #define	DOF_SECT_SOURCE		2	/* D program source code */
680 #define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
681 #define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
682 #define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
683 #define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
684 #define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
685 #define	DOF_SECT_STRTAB		8	/* string table */
686 #define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
687 #define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
688 #define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
689 #define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
690 #define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
691 #define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
692 #define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
693 #define	DOF_SECT_PROBES		16	/* dof_probe_t array */
694 #define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
695 #define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
696 #define	DOF_SECT_INTTAB		19	/* uint64_t array */
697 #define	DOF_SECT_UTSNAME	20	/* struct utsname */
698 #define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
699 #define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
700 #define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
701 #define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
702 #define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
703 #define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
704 
705 #define	DOF_SECF_LOAD		1	/* section should be loaded */
706 
707 #define	DOF_SEC_ISLOADABLE(x)						\
708 	(((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) ||	\
709 	((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) ||	\
710 	((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) ||		\
711 	((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) ||		\
712 	((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) ||	\
713 	((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) ||	\
714 	((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) ||	\
715 	((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) ||		\
716 	((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) ||		\
717 	((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) ||	\
718 	((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) ||	\
719 	((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS))
720 
721 typedef struct dof_ecbdesc {
722 	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
723 	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
724 	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
725 	uint32_t dofe_pad;		/* reserved for future use */
726 	uint64_t dofe_uarg;		/* user-supplied library argument */
727 } dof_ecbdesc_t;
728 
729 typedef struct dof_probedesc {
730 	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
731 	dof_stridx_t dofp_provider;	/* provider string */
732 	dof_stridx_t dofp_mod;		/* module string */
733 	dof_stridx_t dofp_func;		/* function string */
734 	dof_stridx_t dofp_name;		/* name string */
735 	uint32_t dofp_id;		/* probe identifier (or zero) */
736 } dof_probedesc_t;
737 
738 typedef struct dof_actdesc {
739 	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
740 	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
741 	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
742 	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
743 	uint64_t dofa_arg;		/* kind-specific argument */
744 	uint64_t dofa_uarg;		/* user-supplied argument */
745 } dof_actdesc_t;
746 
747 typedef struct dof_difohdr {
748 	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
749 	dof_secidx_t dofd_links[1];	/* variable length array of indices */
750 } dof_difohdr_t;
751 
752 typedef struct dof_relohdr {
753 	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
754 	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
755 	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
756 } dof_relohdr_t;
757 
758 typedef struct dof_relodesc {
759 	dof_stridx_t dofr_name;		/* string name of relocation symbol */
760 	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
761 	uint64_t dofr_offset;		/* byte offset for relocation */
762 	uint64_t dofr_data;		/* additional type-specific data */
763 } dof_relodesc_t;
764 
765 #define	DOF_RELO_NONE	0		/* empty relocation entry */
766 #define	DOF_RELO_SETX	1		/* relocate setx value */
767 
768 typedef struct dof_optdesc {
769 	uint32_t dofo_option;		/* option identifier */
770 	dof_secidx_t dofo_strtab;	/* string table, if string option */
771 	uint64_t dofo_value;		/* option value or string index */
772 } dof_optdesc_t;
773 
774 typedef uint32_t dof_attr_t;		/* encoded stability attributes */
775 
776 #define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
777 #define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
778 #define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
779 #define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
780 
781 typedef struct dof_provider {
782 	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
783 	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
784 	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
785 	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
786 	dof_stridx_t dofpv_name;	/* provider name string */
787 	dof_attr_t dofpv_provattr;	/* provider attributes */
788 	dof_attr_t dofpv_modattr;	/* module attributes */
789 	dof_attr_t dofpv_funcattr;	/* function attributes */
790 	dof_attr_t dofpv_nameattr;	/* name attributes */
791 	dof_attr_t dofpv_argsattr;	/* args attributes */
792 	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
793 } dof_provider_t;
794 
795 typedef struct dof_probe {
796 	uint64_t dofpr_addr;		/* probe base address or offset */
797 	dof_stridx_t dofpr_func;	/* probe function string */
798 	dof_stridx_t dofpr_name;	/* probe name string */
799 	dof_stridx_t dofpr_nargv;	/* native argument type strings */
800 	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
801 	uint32_t dofpr_argidx;		/* index of first argument mapping */
802 	uint32_t dofpr_offidx;		/* index of first offset entry */
803 	uint8_t dofpr_nargc;		/* native argument count */
804 	uint8_t dofpr_xargc;		/* translated argument count */
805 	uint16_t dofpr_noffs;		/* number of offset entries for probe */
806 	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
807 	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
808 	uint16_t dofpr_pad1;		/* reserved for future use */
809 	uint32_t dofpr_pad2;		/* reserved for future use */
810 } dof_probe_t;
811 
812 typedef struct dof_xlator {
813 	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
814 	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
815 	dof_stridx_t dofxl_argv;	/* input parameter type strings */
816 	uint32_t dofxl_argc;		/* input parameter list length */
817 	dof_stridx_t dofxl_type;	/* output type string name */
818 	dof_attr_t dofxl_attr;		/* output stability attributes */
819 } dof_xlator_t;
820 
821 typedef struct dof_xlmember {
822 	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
823 	dof_stridx_t dofxm_name;	/* member name */
824 	dtrace_diftype_t dofxm_type;	/* member type */
825 } dof_xlmember_t;
826 
827 typedef struct dof_xlref {
828 	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
829 	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
830 	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
831 } dof_xlref_t;
832 
833 /*
834  * DTrace Intermediate Format Object (DIFO)
835  *
836  * A DIFO is used to store the compiled DIF for a D expression, its return
837  * type, and its string and variable tables.  The string table is a single
838  * buffer of character data into which sets instructions and variable
839  * references can reference strings using a byte offset.  The variable table
840  * is an array of dtrace_difv_t structures that describe the name and type of
841  * each variable and the id used in the DIF code.  This structure is described
842  * above in the DIF section of this header file.  The DIFO is used at both
843  * user-level (in the library) and in the kernel, but the structure is never
844  * passed between the two: the DOF structures form the only interface.  As a
845  * result, the definition can change depending on the presence of _KERNEL.
846  */
847 typedef struct dtrace_difo {
848 	dif_instr_t *dtdo_buf;		/* instruction buffer */
849 	uint64_t *dtdo_inttab;		/* integer table (optional) */
850 	char *dtdo_strtab;		/* string table (optional) */
851 	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
852 	uint_t dtdo_len;		/* length of instruction buffer */
853 	uint_t dtdo_intlen;		/* length of integer table */
854 	uint_t dtdo_strlen;		/* length of string table */
855 	uint_t dtdo_varlen;		/* length of variable table */
856 	dtrace_diftype_t dtdo_rtype;	/* return type */
857 	uint_t dtdo_refcnt;		/* owner reference count */
858 	uint_t dtdo_destructive;	/* invokes destructive subroutines */
859 #ifndef _KERNEL
860 	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
861 	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
862 	struct dt_node **dtdo_xlmtab;	/* translator references */
863 	uint_t dtdo_krelen;		/* length of krelo table */
864 	uint_t dtdo_urelen;		/* length of urelo table */
865 	uint_t dtdo_xlmlen;		/* length of translator table */
866 #endif
867 } dtrace_difo_t;
868 
869 /*
870  * DTrace Enabling Description Structures
871  *
872  * When DTrace is tracking the description of a DTrace enabling entity (probe,
873  * predicate, action, ECB, record, etc.), it does so in a description
874  * structure.  These structures all end in "desc", and are used at both
875  * user-level and in the kernel -- but (with the exception of
876  * dtrace_probedesc_t) they are never passed between them.  Typically,
877  * user-level will use the description structures when assembling an enabling.
878  * It will then distill those description structures into a DOF object (see
879  * above), and send it into the kernel.  The kernel will again use the
880  * description structures to create a description of the enabling as it reads
881  * the DOF.  When the description is complete, the enabling will be actually
882  * created -- turning it into the structures that represent the enabling
883  * instead of merely describing it.  Not surprisingly, the description
884  * structures bear a strong resemblance to the DOF structures that act as their
885  * conduit.
886  */
887 struct dtrace_predicate;
888 
889 typedef struct dtrace_probedesc {
890 	dtrace_id_t dtpd_id;			/* probe identifier */
891 	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
892 	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
893 	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
894 	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
895 } dtrace_probedesc_t;
896 
897 typedef struct dtrace_repldesc {
898 	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
899 	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
900 } dtrace_repldesc_t;
901 
902 typedef struct dtrace_preddesc {
903 	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
904 	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
905 } dtrace_preddesc_t;
906 
907 typedef struct dtrace_actdesc {
908 	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
909 	struct dtrace_actdesc *dtad_next;	/* next action */
910 	dtrace_actkind_t dtad_kind;		/* kind of action */
911 	uint32_t dtad_ntuple;			/* number in tuple */
912 	uint64_t dtad_arg;			/* action argument */
913 	uint64_t dtad_uarg;			/* user argument */
914 	int dtad_refcnt;			/* reference count */
915 } dtrace_actdesc_t;
916 
917 typedef struct dtrace_ecbdesc {
918 	dtrace_actdesc_t *dted_action;		/* action description(s) */
919 	dtrace_preddesc_t dted_pred;		/* predicate description */
920 	dtrace_probedesc_t dted_probe;		/* probe description */
921 	uint64_t dted_uarg;			/* library argument */
922 	int dted_refcnt;			/* reference count */
923 } dtrace_ecbdesc_t;
924 
925 /*
926  * DTrace Metadata Description Structures
927  *
928  * DTrace separates the trace data stream from the metadata stream.  The only
929  * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
930  * timestamp) or (in the case of aggregations) aggregation identifiers.  To
931  * determine the structure of the data, DTrace consumers pass the token to the
932  * kernel, and receive in return a corresponding description of the enabled
933  * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
934  * dtrace_aggdesc structure).  Both of these structures are expressed in terms
935  * of record descriptions (via the dtrace_recdesc structure) that describe the
936  * exact structure of the data.  Some record descriptions may also contain a
937  * format identifier; this additional bit of metadata can be retrieved from the
938  * kernel, for which a format description is returned via the dtrace_fmtdesc
939  * structure.  Note that all four of these structures must be bitness-neutral
940  * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
941  */
942 typedef struct dtrace_recdesc {
943 	dtrace_actkind_t dtrd_action;		/* kind of action */
944 	uint32_t dtrd_size;			/* size of record */
945 	uint32_t dtrd_offset;			/* offset in ECB's data */
946 	uint16_t dtrd_alignment;		/* required alignment */
947 	uint16_t dtrd_format;			/* format, if any */
948 	uint64_t dtrd_arg;			/* action argument */
949 	uint64_t dtrd_uarg;			/* user argument */
950 } dtrace_recdesc_t;
951 
952 typedef struct dtrace_eprobedesc {
953 	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
954 	dtrace_id_t dtepd_probeid;		/* probe ID */
955 	uint64_t dtepd_uarg;			/* library argument */
956 	uint32_t dtepd_size;			/* total size */
957 	int dtepd_nrecs;			/* number of records */
958 	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
959 } dtrace_eprobedesc_t;
960 
961 typedef struct dtrace_aggdesc {
962 	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
963 	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
964 	int dtagd_flags;			/* not filled in by kernel */
965 	dtrace_aggid_t dtagd_id;		/* aggregation ID */
966 	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
967 	uint32_t dtagd_size;			/* size in bytes */
968 	int dtagd_nrecs;			/* number of records */
969 	uint32_t dtagd_pad;			/* explicit padding */
970 	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
971 } dtrace_aggdesc_t;
972 
973 typedef struct dtrace_fmtdesc {
974 	DTRACE_PTR(char, dtfd_string);		/* format string */
975 	int dtfd_length;			/* length of format string */
976 	uint16_t dtfd_format;			/* format identifier */
977 } dtrace_fmtdesc_t;
978 
979 #define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
980 	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
981 	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
982 
983 #define	DTRACE_SIZEOF_AGGDESC(desc)				\
984 	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
985 	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
986 
987 /*
988  * DTrace Option Interface
989  *
990  * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
991  * in a DOF image.  The dof_optdesc structure contains an option identifier and
992  * an option value.  The valid option identifiers are found below; the mapping
993  * between option identifiers and option identifying strings is maintained at
994  * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
995  * following are potentially valid option values:  all positive integers, zero
996  * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
997  * predefined tokens as their values; these are defined with
998  * DTRACEOPT_{option}_{token}.
999  */
1000 #define	DTRACEOPT_BUFSIZE	0	/* buffer size */
1001 #define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
1002 #define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
1003 #define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
1004 #define	DTRACEOPT_SPECSIZE	4	/* speculation size */
1005 #define	DTRACEOPT_NSPEC		5	/* number of speculations */
1006 #define	DTRACEOPT_STRSIZE	6	/* string size */
1007 #define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
1008 #define	DTRACEOPT_CPU		8	/* CPU to trace */
1009 #define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
1010 #define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
1011 #define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
1012 #define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
1013 #define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
1014 #define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
1015 #define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
1016 #define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
1017 #define	DTRACEOPT_STATUSRATE	17	/* status rate */
1018 #define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
1019 #define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
1020 #define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
1021 #define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
1022 #define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
1023 #define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
1024 #define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
1025 #define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
1026 #define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
1027 #define	DTRACEOPT_TEMPORAL	27	/* temporally ordered output */
1028 #define	DTRACEOPT_AGGHIST	28	/* histogram aggregation output */
1029 #define	DTRACEOPT_AGGPACK	29	/* packed aggregation output */
1030 #define	DTRACEOPT_AGGZOOM	30	/* zoomed aggregation scaling */
1031 #define	DTRACEOPT_ZONE		31	/* zone in which to enable probes */
1032 #define	DTRACEOPT_MAX		32	/* number of options */
1033 
1034 #define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
1035 
1036 #define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
1037 #define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
1038 #define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1039 
1040 #define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1041 #define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1042 
1043 /*
1044  * DTrace Buffer Interface
1045  *
1046  * In order to get a snapshot of the principal or aggregation buffer,
1047  * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1048  * structure.  This describes which CPU user-level is interested in, and
1049  * where user-level wishes the kernel to snapshot the buffer to (the
1050  * dtbd_data field).  The kernel uses the same structure to pass back some
1051  * information regarding the buffer:  the size of data actually copied out, the
1052  * number of drops, the number of errors, the offset of the oldest record,
1053  * and the time of the snapshot.
1054  *
1055  * If the buffer policy is a "switch" policy, taking a snapshot of the
1056  * principal buffer has the additional effect of switching the active and
1057  * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1058  * the additional effect of switching the active and inactive buffers.
1059  */
1060 typedef struct dtrace_bufdesc {
1061 	uint64_t dtbd_size;			/* size of buffer */
1062 	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1063 	uint32_t dtbd_errors;			/* number of errors */
1064 	uint64_t dtbd_drops;			/* number of drops */
1065 	DTRACE_PTR(char, dtbd_data);		/* data */
1066 	uint64_t dtbd_oldest;			/* offset of oldest record */
1067 	uint64_t dtbd_timestamp;		/* hrtime of snapshot */
1068 } dtrace_bufdesc_t;
1069 
1070 /*
1071  * Each record in the buffer (dtbd_data) begins with a header that includes
1072  * the epid and a timestamp.  The timestamp is split into two 4-byte parts
1073  * so that we do not require 8-byte alignment.
1074  */
1075 typedef struct dtrace_rechdr {
1076 	dtrace_epid_t dtrh_epid;		/* enabled probe id */
1077 	uint32_t dtrh_timestamp_hi;		/* high bits of hrtime_t */
1078 	uint32_t dtrh_timestamp_lo;		/* low bits of hrtime_t */
1079 } dtrace_rechdr_t;
1080 
1081 #define	DTRACE_RECORD_LOAD_TIMESTAMP(dtrh)			\
1082 	((dtrh)->dtrh_timestamp_lo +				\
1083 	((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1084 
1085 #define	DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) {		\
1086 	(dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime;		\
1087 	(dtrh)->dtrh_timestamp_hi = hrtime >> 32;		\
1088 }
1089 
1090 /*
1091  * DTrace Status
1092  *
1093  * The status of DTrace is relayed via the dtrace_status structure.  This
1094  * structure contains members to count drops other than the capacity drops
1095  * available via the buffer interface (see above).  This consists of dynamic
1096  * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1097  * speculative drops (including capacity speculative drops, drops due to busy
1098  * speculative buffers and drops due to unavailable speculative buffers).
1099  * Additionally, the status structure contains a field to indicate the number
1100  * of "fill"-policy buffers have been filled and a boolean field to indicate
1101  * that exit() has been called.  If the dtst_exiting field is non-zero, no
1102  * further data will be generated until tracing is stopped (at which time any
1103  * enablings of the END action will be processed); if user-level sees that
1104  * this field is non-zero, tracing should be stopped as soon as possible.
1105  */
1106 typedef struct dtrace_status {
1107 	uint64_t dtst_dyndrops;			/* dynamic drops */
1108 	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1109 	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1110 	uint64_t dtst_specdrops;		/* speculative drops */
1111 	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1112 	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1113 	uint64_t dtst_errors;			/* total errors */
1114 	uint64_t dtst_filled;			/* number of filled bufs */
1115 	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1116 	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1117 	char dtst_killed;			/* non-zero if killed */
1118 	char dtst_exiting;			/* non-zero if exit() called */
1119 	char dtst_pad[6];			/* pad out to 64-bit align */
1120 } dtrace_status_t;
1121 
1122 /*
1123  * DTrace Configuration
1124  *
1125  * User-level may need to understand some elements of the kernel DTrace
1126  * configuration in order to generate correct DIF.  This information is
1127  * conveyed via the dtrace_conf structure.
1128  */
1129 typedef struct dtrace_conf {
1130 	uint_t dtc_difversion;			/* supported DIF version */
1131 	uint_t dtc_difintregs;			/* # of DIF integer registers */
1132 	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1133 	uint_t dtc_ctfmodel;			/* CTF data model */
1134 	uint_t dtc_pad[8];			/* reserved for future use */
1135 } dtrace_conf_t;
1136 
1137 /*
1138  * DTrace Faults
1139  *
1140  * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1141  * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1142  * postprocessing at user-level.  Probe processing faults induce an ERROR
1143  * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1144  * the error condition using thse symbolic labels.
1145  */
1146 #define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1147 #define	DTRACEFLT_BADADDR		1	/* Bad address */
1148 #define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1149 #define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1150 #define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1151 #define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1152 #define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1153 #define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1154 #define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1155 #define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1156 
1157 #define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1158 
1159 /*
1160  * DTrace Argument Types
1161  *
1162  * Because it would waste both space and time, argument types do not reside
1163  * with the probe.  In order to determine argument types for args[X]
1164  * variables, the D compiler queries for argument types on a probe-by-probe
1165  * basis.  (This optimizes for the common case that arguments are either not
1166  * used or used in an untyped fashion.)  Typed arguments are specified with a
1167  * string of the type name in the dtragd_native member of the argument
1168  * description structure.  Typed arguments may be further translated to types
1169  * of greater stability; the provider indicates such a translated argument by
1170  * filling in the dtargd_xlate member with the string of the translated type.
1171  * Finally, the provider may indicate which argument value a given argument
1172  * maps to by setting the dtargd_mapping member -- allowing a single argument
1173  * to map to multiple args[X] variables.
1174  */
1175 typedef struct dtrace_argdesc {
1176 	dtrace_id_t dtargd_id;			/* probe identifier */
1177 	int dtargd_ndx;				/* arg number (-1 iff none) */
1178 	int dtargd_mapping;			/* value mapping */
1179 	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1180 	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1181 } dtrace_argdesc_t;
1182 
1183 /*
1184  * DTrace Stability Attributes
1185  *
1186  * Each DTrace provider advertises the name and data stability of each of its
1187  * probe description components, as well as its architectural dependencies.
1188  * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1189  * order to compute the properties of an input program and report them.
1190  */
1191 typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1192 typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1193 
1194 #define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1195 #define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1196 #define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1197 #define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1198 #define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1199 #define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1200 #define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1201 #define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1202 #define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1203 
1204 #define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1205 #define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1206 #define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1207 #define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1208 #define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1209 #define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1210 #define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1211 
1212 #define	DTRACE_PRIV_NONE	0x0000
1213 #define	DTRACE_PRIV_KERNEL	0x0001
1214 #define	DTRACE_PRIV_USER	0x0002
1215 #define	DTRACE_PRIV_PROC	0x0004
1216 #define	DTRACE_PRIV_OWNER	0x0008
1217 #define	DTRACE_PRIV_ZONEOWNER	0x0010
1218 
1219 #define	DTRACE_PRIV_ALL	\
1220 	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1221 	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1222 
1223 typedef struct dtrace_ppriv {
1224 	uint32_t dtpp_flags;			/* privilege flags */
1225 	uid_t dtpp_uid;				/* user ID */
1226 	zoneid_t dtpp_zoneid;			/* zone ID */
1227 } dtrace_ppriv_t;
1228 
1229 typedef struct dtrace_attribute {
1230 	dtrace_stability_t dtat_name;		/* entity name stability */
1231 	dtrace_stability_t dtat_data;		/* entity data stability */
1232 	dtrace_class_t dtat_class;		/* entity data dependency */
1233 } dtrace_attribute_t;
1234 
1235 typedef struct dtrace_pattr {
1236 	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1237 	dtrace_attribute_t dtpa_mod;		/* module attributes */
1238 	dtrace_attribute_t dtpa_func;		/* function attributes */
1239 	dtrace_attribute_t dtpa_name;		/* name attributes */
1240 	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1241 } dtrace_pattr_t;
1242 
1243 typedef struct dtrace_providerdesc {
1244 	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1245 	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1246 	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1247 } dtrace_providerdesc_t;
1248 
1249 /*
1250  * DTrace Pseudodevice Interface
1251  *
1252  * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1253  * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1254  * DTrace.
1255  */
1256 #define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1257 #define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1258 #define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1259 #define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1260 #define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1261 #define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1262 #define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1263 #define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1264 #define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1265 #define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1266 #define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1267 #define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1268 #define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1269 #define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1270 #define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1271 #define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1272 #define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1273 
1274 /*
1275  * DTrace Helpers
1276  *
1277  * In general, DTrace establishes probes in processes and takes actions on
1278  * processes without knowing their specific user-level structures.  Instead of
1279  * existing in the framework, process-specific knowledge is contained by the
1280  * enabling D program -- which can apply process-specific knowledge by making
1281  * appropriate use of DTrace primitives like copyin() and copyinstr() to
1282  * operate on user-level data.  However, there may exist some specific probes
1283  * of particular semantic relevance that the application developer may wish to
1284  * explicitly export.  For example, an application may wish to export a probe
1285  * at the point that it begins and ends certain well-defined transactions.  In
1286  * addition to providing probes, programs may wish to offer assistance for
1287  * certain actions.  For example, in highly dynamic environments (e.g., Java),
1288  * it may be difficult to obtain a stack trace in terms of meaningful symbol
1289  * names (the translation from instruction addresses to corresponding symbol
1290  * names may only be possible in situ); these environments may wish to define
1291  * a series of actions to be applied in situ to obtain a meaningful stack
1292  * trace.
1293  *
1294  * These two mechanisms -- user-level statically defined tracing and assisting
1295  * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1296  * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1297  * providers, probes and their arguments.  If a helper wishes to provide
1298  * action assistance, probe descriptions and corresponding DIF actions may be
1299  * specified in the helper DOF.  For such helper actions, however, the probe
1300  * description describes the specific helper:  all DTrace helpers have the
1301  * provider name "dtrace" and the module name "helper", and the name of the
1302  * helper is contained in the function name (for example, the ustack() helper
1303  * is named "ustack").  Any helper-specific name may be contained in the name
1304  * (for example, if a helper were to have a constructor, it might be named
1305  * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1306  * action that they are helping is taken.  Helper actions may only return DIF
1307  * expressions, and may only call the following subroutines:
1308  *
1309  *    alloca()      <= Allocates memory out of the consumer's scratch space
1310  *    bcopy()       <= Copies memory to scratch space
1311  *    copyin()      <= Copies memory from user-level into consumer's scratch
1312  *    copyinto()    <= Copies memory into a specific location in scratch
1313  *    copyinstr()   <= Copies a string into a specific location in scratch
1314  *
1315  * Helper actions may only access the following built-in variables:
1316  *
1317  *    curthread     <= Current kthread_t pointer
1318  *    tid           <= Current thread identifier
1319  *    pid           <= Current process identifier
1320  *    ppid          <= Parent process identifier
1321  *    uid           <= Current user ID
1322  *    gid           <= Current group ID
1323  *    execname      <= Current executable name
1324  *    zonename      <= Current zone name
1325  *
1326  * Helper actions may not manipulate or allocate dynamic variables, but they
1327  * may have clause-local and statically-allocated global variables.  The
1328  * helper action variable state is specific to the helper action -- variables
1329  * used by the helper action may not be accessed outside of the helper
1330  * action, and the helper action may not access variables that like outside
1331  * of it.  Helper actions may not load from kernel memory at-large; they are
1332  * restricting to loading current user state (via copyin() and variants) and
1333  * scratch space.  As with probe enablings, helper actions are executed in
1334  * program order.  The result of the helper action is the result of the last
1335  * executing helper expression.
1336  *
1337  * Helpers -- composed of either providers/probes or probes/actions (or both)
1338  * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1339  * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1340  * encapsulates the name and base address of the user-level library or
1341  * executable publishing the helpers and probes as well as the DOF that
1342  * contains the definitions of those helpers and probes.
1343  *
1344  * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1345  * helpers and should no longer be used.  No other ioctls are valid on the
1346  * helper minor node.
1347  */
1348 #define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1349 #define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1350 #define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1351 #define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1352 
1353 typedef struct dof_helper {
1354 	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1355 	uint64_t dofhp_addr;			/* base address of object */
1356 	uint64_t dofhp_dof;			/* address of helper DOF */
1357 } dof_helper_t;
1358 
1359 #define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1360 #define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1361 #define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1362 #define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1363 #define	DTRACEMNRN_CLONE	2		/* first clone minor */
1364 
1365 #ifdef _KERNEL
1366 
1367 /*
1368  * DTrace Provider API
1369  *
1370  * The following functions are implemented by the DTrace framework and are
1371  * used to implement separate in-kernel DTrace providers.  Common functions
1372  * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1373  * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1374  *
1375  * The provider API has two halves:  the API that the providers consume from
1376  * DTrace, and the API that providers make available to DTrace.
1377  *
1378  * 1 Framework-to-Provider API
1379  *
1380  * 1.1  Overview
1381  *
1382  * The Framework-to-Provider API is represented by the dtrace_pops structure
1383  * that the provider passes to the framework when registering itself.  This
1384  * structure consists of the following members:
1385  *
1386  *   dtps_provide()          <-- Provide all probes, all modules
1387  *   dtps_provide_module()   <-- Provide all probes in specified module
1388  *   dtps_enable()           <-- Enable specified probe
1389  *   dtps_disable()          <-- Disable specified probe
1390  *   dtps_suspend()          <-- Suspend specified probe
1391  *   dtps_resume()           <-- Resume specified probe
1392  *   dtps_getargdesc()       <-- Get the argument description for args[X]
1393  *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1394  *   dtps_mode()             <-- Return the mode of the fired probe
1395  *   dtps_destroy()          <-- Destroy all state associated with this probe
1396  *
1397  * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1398  *
1399  * 1.2.1  Overview
1400  *
1401  *   Called to indicate that the provider should provide all probes.  If the
1402  *   specified description is non-NULL, dtps_provide() is being called because
1403  *   no probe matched a specified probe -- if the provider has the ability to
1404  *   create custom probes, it may wish to create a probe that matches the
1405  *   specified description.
1406  *
1407  * 1.2.2  Arguments and notes
1408  *
1409  *   The first argument is the cookie as passed to dtrace_register().  The
1410  *   second argument is a pointer to a probe description that the provider may
1411  *   wish to consider when creating custom probes.  The provider is expected to
1412  *   call back into the DTrace framework via dtrace_probe_create() to create
1413  *   any necessary probes.  dtps_provide() may be called even if the provider
1414  *   has made available all probes; the provider should check the return value
1415  *   of dtrace_probe_create() to handle this case.  Note that the provider need
1416  *   not implement both dtps_provide() and dtps_provide_module(); see
1417  *   "Arguments and Notes" for dtrace_register(), below.
1418  *
1419  * 1.2.3  Return value
1420  *
1421  *   None.
1422  *
1423  * 1.2.4  Caller's context
1424  *
1425  *   dtps_provide() is typically called from open() or ioctl() context, but may
1426  *   be called from other contexts as well.  The DTrace framework is locked in
1427  *   such a way that providers may not register or unregister.  This means that
1428  *   the provider may not call any DTrace API that affects its registration with
1429  *   the framework, including dtrace_register(), dtrace_unregister(),
1430  *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1431  *   that the provider may (and indeed, is expected to) call probe-related
1432  *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1433  *   and dtrace_probe_arg().
1434  *
1435  * 1.3  void dtps_provide_module(void *arg, struct modctl *mp)
1436  *
1437  * 1.3.1  Overview
1438  *
1439  *   Called to indicate that the provider should provide all probes in the
1440  *   specified module.
1441  *
1442  * 1.3.2  Arguments and notes
1443  *
1444  *   The first argument is the cookie as passed to dtrace_register().  The
1445  *   second argument is a pointer to a modctl structure that indicates the
1446  *   module for which probes should be created.
1447  *
1448  * 1.3.3  Return value
1449  *
1450  *   None.
1451  *
1452  * 1.3.4  Caller's context
1453  *
1454  *   dtps_provide_module() may be called from open() or ioctl() context, but
1455  *   may also be called from a module loading context.  mod_lock is held, and
1456  *   the DTrace framework is locked in such a way that providers may not
1457  *   register or unregister.  This means that the provider may not call any
1458  *   DTrace API that affects its registration with the framework, including
1459  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1460  *   dtrace_condense().  However, the context is such that the provider may (and
1461  *   indeed, is expected to) call probe-related DTrace routines, including
1462  *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1463  *   that the provider need not implement both dtps_provide() and
1464  *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1465  *   below.
1466  *
1467  * 1.4  int dtps_enable(void *arg, dtrace_id_t id, void *parg)
1468  *
1469  * 1.4.1  Overview
1470  *
1471  *   Called to enable the specified probe.
1472  *
1473  * 1.4.2  Arguments and notes
1474  *
1475  *   The first argument is the cookie as passed to dtrace_register().  The
1476  *   second argument is the identifier of the probe to be enabled.  The third
1477  *   argument is the probe argument as passed to dtrace_probe_create().
1478  *   dtps_enable() will be called when a probe transitions from not being
1479  *   enabled at all to having one or more ECB.  The number of ECBs associated
1480  *   with the probe may change without subsequent calls into the provider.
1481  *   When the number of ECBs drops to zero, the provider will be explicitly
1482  *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1483  *   be called for a probe identifier that hasn't been explicitly enabled via
1484  *   dtps_enable().
1485  *
1486  * 1.4.3  Return value
1487  *
1488  *   On success, dtps_enable() should return 0. On failure, -1 should be
1489  *   returned.
1490  *
1491  * 1.4.4  Caller's context
1492  *
1493  *   The DTrace framework is locked in such a way that it may not be called
1494  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1495  *   be acquired.
1496  *
1497  * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1498  *
1499  * 1.5.1  Overview
1500  *
1501  *   Called to disable the specified probe.
1502  *
1503  * 1.5.2  Arguments and notes
1504  *
1505  *   The first argument is the cookie as passed to dtrace_register().  The
1506  *   second argument is the identifier of the probe to be disabled.  The third
1507  *   argument is the probe argument as passed to dtrace_probe_create().
1508  *   dtps_disable() will be called when a probe transitions from being enabled
1509  *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1510  *   identifier that has been explicitly enabled via dtps_disable().
1511  *
1512  * 1.5.3  Return value
1513  *
1514  *   None.
1515  *
1516  * 1.5.4  Caller's context
1517  *
1518  *   The DTrace framework is locked in such a way that it may not be called
1519  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1520  *   be acquired.
1521  *
1522  * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1523  *
1524  * 1.6.1  Overview
1525  *
1526  *   Called to suspend the specified enabled probe.  This entry point is for
1527  *   providers that may need to suspend some or all of their probes when CPUs
1528  *   are being powered on or when the boot monitor is being entered for a
1529  *   prolonged period of time.
1530  *
1531  * 1.6.2  Arguments and notes
1532  *
1533  *   The first argument is the cookie as passed to dtrace_register().  The
1534  *   second argument is the identifier of the probe to be suspended.  The
1535  *   third argument is the probe argument as passed to dtrace_probe_create().
1536  *   dtps_suspend will only be called on an enabled probe.  Providers that
1537  *   provide a dtps_suspend entry point will want to take roughly the action
1538  *   that it takes for dtps_disable.
1539  *
1540  * 1.6.3  Return value
1541  *
1542  *   None.
1543  *
1544  * 1.6.4  Caller's context
1545  *
1546  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1547  *   specified probe cannot be disabled or destroyed for the duration of
1548  *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1549  *   little latitude; the provider is expected to do no more than a store to
1550  *   memory.
1551  *
1552  * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1553  *
1554  * 1.7.1  Overview
1555  *
1556  *   Called to resume the specified enabled probe.  This entry point is for
1557  *   providers that may need to resume some or all of their probes after the
1558  *   completion of an event that induced a call to dtps_suspend().
1559  *
1560  * 1.7.2  Arguments and notes
1561  *
1562  *   The first argument is the cookie as passed to dtrace_register().  The
1563  *   second argument is the identifier of the probe to be resumed.  The
1564  *   third argument is the probe argument as passed to dtrace_probe_create().
1565  *   dtps_resume will only be called on an enabled probe.  Providers that
1566  *   provide a dtps_resume entry point will want to take roughly the action
1567  *   that it takes for dtps_enable.
1568  *
1569  * 1.7.3  Return value
1570  *
1571  *   None.
1572  *
1573  * 1.7.4  Caller's context
1574  *
1575  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1576  *   specified probe cannot be disabled or destroyed for the duration of
1577  *   dtps_resume().  As interrupts are disabled, the provider is afforded
1578  *   little latitude; the provider is expected to do no more than a store to
1579  *   memory.
1580  *
1581  * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1582  *           dtrace_argdesc_t *desc)
1583  *
1584  * 1.8.1  Overview
1585  *
1586  *   Called to retrieve the argument description for an args[X] variable.
1587  *
1588  * 1.8.2  Arguments and notes
1589  *
1590  *   The first argument is the cookie as passed to dtrace_register(). The
1591  *   second argument is the identifier of the current probe. The third
1592  *   argument is the probe argument as passed to dtrace_probe_create(). The
1593  *   fourth argument is a pointer to the argument description.  This
1594  *   description is both an input and output parameter:  it contains the
1595  *   index of the desired argument in the dtargd_ndx field, and expects
1596  *   the other fields to be filled in upon return.  If there is no argument
1597  *   corresponding to the specified index, the dtargd_ndx field should be set
1598  *   to DTRACE_ARGNONE.
1599  *
1600  * 1.8.3  Return value
1601  *
1602  *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1603  *   members of the dtrace_argdesc_t structure are all output values.
1604  *
1605  * 1.8.4  Caller's context
1606  *
1607  *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1608  *   the DTrace framework is locked in such a way that providers may not
1609  *   register or unregister.  This means that the provider may not call any
1610  *   DTrace API that affects its registration with the framework, including
1611  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1612  *   dtrace_condense().
1613  *
1614  * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1615  *               int argno, int aframes)
1616  *
1617  * 1.9.1  Overview
1618  *
1619  *   Called to retrieve a value for an argX or args[X] variable.
1620  *
1621  * 1.9.2  Arguments and notes
1622  *
1623  *   The first argument is the cookie as passed to dtrace_register(). The
1624  *   second argument is the identifier of the current probe. The third
1625  *   argument is the probe argument as passed to dtrace_probe_create(). The
1626  *   fourth argument is the number of the argument (the X in the example in
1627  *   1.9.1). The fifth argument is the number of stack frames that were used
1628  *   to get from the actual place in the code that fired the probe to
1629  *   dtrace_probe() itself, the so-called artificial frames. This argument may
1630  *   be used to descend an appropriate number of frames to find the correct
1631  *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1632  *   function is used.
1633  *
1634  * 1.9.3  Return value
1635  *
1636  *   The value of the argument.
1637  *
1638  * 1.9.4  Caller's context
1639  *
1640  *   This is called from within dtrace_probe() meaning that interrupts
1641  *   are disabled. No locks should be taken within this entry point.
1642  *
1643  * 1.10  int dtps_mode(void *arg, dtrace_id_t id, void *parg)
1644  *
1645  * 1.10.1  Overview
1646  *
1647  *   Called to determine the mode of a fired probe.
1648  *
1649  * 1.10.2  Arguments and notes
1650  *
1651  *   The first argument is the cookie as passed to dtrace_register(). The
1652  *   second argument is the identifier of the current probe.  The third
1653  *   argument is the probe argument as passed to dtrace_probe_create().  This
1654  *   entry point must not be left NULL for providers whose probes allow for
1655  *   mixed mode tracing, that is to say those unanchored probes that can fire
1656  *   during kernel- or user-mode execution.
1657  *
1658  * 1.10.3  Return value
1659  *
1660  *   A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1661  *   or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1662  *   is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1663  *   DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT).  If
1664  *   DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1665  *   in the probe firing being silently ignored for the enabling; if the
1666  *   DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1667  *   prevent probe processing for the enabling, but restrictions will be in
1668  *   place that induce a UPRIV fault upon attempt to examine probe arguments
1669  *   or current process state.  If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1670  *   is set, similar restrictions will be placed upon operation if the
1671  *   privilege is sufficient to process the enabling, but does not otherwise
1672  *   entitle the enabling to all zones.  The DTRACE_MODE_NOPRIV_DROP and
1673  *   DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1674  *   two policies must be specified), but either may be combined (or not)
1675  *   with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1676  *
1677  * 1.10.4  Caller's context
1678  *
1679  *   This is called from within dtrace_probe() meaning that interrupts
1680  *   are disabled. No locks should be taken within this entry point.
1681  *
1682  * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1683  *
1684  * 1.11.1 Overview
1685  *
1686  *   Called to destroy the specified probe.
1687  *
1688  * 1.11.2 Arguments and notes
1689  *
1690  *   The first argument is the cookie as passed to dtrace_register().  The
1691  *   second argument is the identifier of the probe to be destroyed.  The third
1692  *   argument is the probe argument as passed to dtrace_probe_create().  The
1693  *   provider should free all state associated with the probe.  The framework
1694  *   guarantees that dtps_destroy() is only called for probes that have either
1695  *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1696  *   Once dtps_disable() has been called for a probe, no further call will be
1697  *   made specifying the probe.
1698  *
1699  * 1.11.3 Return value
1700  *
1701  *   None.
1702  *
1703  * 1.11.4 Caller's context
1704  *
1705  *   The DTrace framework is locked in such a way that it may not be called
1706  *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1707  *   acquired.
1708  *
1709  *
1710  * 2 Provider-to-Framework API
1711  *
1712  * 2.1  Overview
1713  *
1714  * The Provider-to-Framework API provides the mechanism for the provider to
1715  * register itself with the DTrace framework, to create probes, to lookup
1716  * probes and (most importantly) to fire probes.  The Provider-to-Framework
1717  * consists of:
1718  *
1719  *   dtrace_register()       <-- Register a provider with the DTrace framework
1720  *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1721  *   dtrace_invalidate()     <-- Invalidate the specified provider
1722  *   dtrace_condense()       <-- Remove a provider's unenabled probes
1723  *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1724  *   dtrace_probe_create()   <-- Create a DTrace probe
1725  *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1726  *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1727  *   dtrace_probe()          <-- Fire the specified probe
1728  *
1729  * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1730  *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1731  *          dtrace_provider_id_t *idp)
1732  *
1733  * 2.2.1  Overview
1734  *
1735  *   dtrace_register() registers the calling provider with the DTrace
1736  *   framework.  It should generally be called by DTrace providers in their
1737  *   attach(9E) entry point.
1738  *
1739  * 2.2.2  Arguments and Notes
1740  *
1741  *   The first argument is the name of the provider.  The second argument is a
1742  *   pointer to the stability attributes for the provider.  The third argument
1743  *   is the privilege flags for the provider, and must be some combination of:
1744  *
1745  *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1746  *
1747  *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1748  *                             enable probes from this provider
1749  *
1750  *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1751  *                             enable probes from this provider
1752  *
1753  *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1754  *                             may enable probes from this provider
1755  *
1756  *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1757  *                             the privilege requirements above. These probes
1758  *                             require either (a) a user ID matching the user
1759  *                             ID of the cred passed in the fourth argument
1760  *                             or (b) the PRIV_PROC_OWNER privilege.
1761  *
1762  *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1763  *                             the privilege requirements above. These probes
1764  *                             require either (a) a zone ID matching the zone
1765  *                             ID of the cred passed in the fourth argument
1766  *                             or (b) the PRIV_PROC_ZONE privilege.
1767  *
1768  *   Note that these flags designate the _visibility_ of the probes, not
1769  *   the conditions under which they may or may not fire.
1770  *
1771  *   The fourth argument is the credential that is associated with the
1772  *   provider.  This argument should be NULL if the privilege flags don't
1773  *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1774  *   framework stashes the uid and zoneid represented by this credential
1775  *   for use at probe-time, in implicit predicates.  These limit visibility
1776  *   of the probes to users and/or zones which have sufficient privilege to
1777  *   access them.
1778  *
1779  *   The fifth argument is a DTrace provider operations vector, which provides
1780  *   the implementation for the Framework-to-Provider API.  (See Section 1,
1781  *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1782  *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1783  *   members (if the provider so desires, _one_ of these members may be left
1784  *   NULL -- denoting that the provider only implements the other) and (2)
1785  *   the dtps_suspend() and dtps_resume() members, which must either both be
1786  *   NULL or both be non-NULL.
1787  *
1788  *   The sixth argument is a cookie to be specified as the first argument for
1789  *   each function in the Framework-to-Provider API.  This argument may have
1790  *   any value.
1791  *
1792  *   The final argument is a pointer to dtrace_provider_id_t.  If
1793  *   dtrace_register() successfully completes, the provider identifier will be
1794  *   stored in the memory pointed to be this argument.  This argument must be
1795  *   non-NULL.
1796  *
1797  * 2.2.3  Return value
1798  *
1799  *   On success, dtrace_register() returns 0 and stores the new provider's
1800  *   identifier into the memory pointed to by the idp argument.  On failure,
1801  *   dtrace_register() returns an errno:
1802  *
1803  *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1804  *              This may because a parameter that must be non-NULL was NULL,
1805  *              because the name was invalid (either empty or an illegal
1806  *              provider name) or because the attributes were invalid.
1807  *
1808  *   No other failure code is returned.
1809  *
1810  * 2.2.4  Caller's context
1811  *
1812  *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1813  *   hold no locks across dtrace_register() that may also be acquired by
1814  *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1815  *
1816  * 2.3  int dtrace_unregister(dtrace_provider_t id)
1817  *
1818  * 2.3.1  Overview
1819  *
1820  *   Unregisters the specified provider from the DTrace framework.  It should
1821  *   generally be called by DTrace providers in their detach(9E) entry point.
1822  *
1823  * 2.3.2  Arguments and Notes
1824  *
1825  *   The only argument is the provider identifier, as returned from a
1826  *   successful call to dtrace_register().  As a result of calling
1827  *   dtrace_unregister(), the DTrace framework will call back into the provider
1828  *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1829  *   completes, however, the DTrace framework will no longer make calls through
1830  *   the Framework-to-Provider API.
1831  *
1832  * 2.3.3  Return value
1833  *
1834  *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1835  *   returns an errno:
1836  *
1837  *     EBUSY    There are currently processes that have the DTrace pseudodevice
1838  *              open, or there exists an anonymous enabling that hasn't yet
1839  *              been claimed.
1840  *
1841  *   No other failure code is returned.
1842  *
1843  * 2.3.4  Caller's context
1844  *
1845  *   Because a call to dtrace_unregister() may induce calls through the
1846  *   Framework-to-Provider API, the caller may not hold any lock across
1847  *   dtrace_register() that is also acquired in any of the Framework-to-
1848  *   Provider API functions.  Additionally, mod_lock may not be held.
1849  *
1850  * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1851  *
1852  * 2.4.1  Overview
1853  *
1854  *   Invalidates the specified provider.  All subsequent probe lookups for the
1855  *   specified provider will fail, but its probes will not be removed.
1856  *
1857  * 2.4.2  Arguments and note
1858  *
1859  *   The only argument is the provider identifier, as returned from a
1860  *   successful call to dtrace_register().  In general, a provider's probes
1861  *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1862  *   an entire provider, regardless of whether or not probes are enabled or
1863  *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1864  *   probes from firing -- it will merely prevent any new enablings of the
1865  *   provider's probes.
1866  *
1867  * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1868  *
1869  * 2.5.1  Overview
1870  *
1871  *   Removes all the unenabled probes for the given provider. This function is
1872  *   not unlike dtrace_unregister(), except that it doesn't remove the
1873  *   provider just as many of its associated probes as it can.
1874  *
1875  * 2.5.2  Arguments and Notes
1876  *
1877  *   As with dtrace_unregister(), the sole argument is the provider identifier
1878  *   as returned from a successful call to dtrace_register().  As a result of
1879  *   calling dtrace_condense(), the DTrace framework will call back into the
1880  *   given provider's dtps_destroy() entry point for each of the provider's
1881  *   unenabled probes.
1882  *
1883  * 2.5.3  Return value
1884  *
1885  *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1886  *   function should check the return value as appropriate; its behavior may
1887  *   change in the future.
1888  *
1889  * 2.5.4  Caller's context
1890  *
1891  *   As with dtrace_unregister(), the caller may not hold any lock across
1892  *   dtrace_condense() that is also acquired in the provider's entry points.
1893  *   Also, mod_lock may not be held.
1894  *
1895  * 2.6 int dtrace_attached()
1896  *
1897  * 2.6.1  Overview
1898  *
1899  *   Indicates whether or not DTrace has attached.
1900  *
1901  * 2.6.2  Arguments and Notes
1902  *
1903  *   For most providers, DTrace makes initial contact beyond registration.
1904  *   That is, once a provider has registered with DTrace, it waits to hear
1905  *   from DTrace to create probes.  However, some providers may wish to
1906  *   proactively create probes without first being told by DTrace to do so.
1907  *   If providers wish to do this, they must first call dtrace_attached() to
1908  *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1909  *   the provider must not make any other Provider-to-Framework API call.
1910  *
1911  * 2.6.3  Return value
1912  *
1913  *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1914  *
1915  * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1916  *	    const char *func, const char *name, int aframes, void *arg)
1917  *
1918  * 2.7.1  Overview
1919  *
1920  *   Creates a probe with specified module name, function name, and name.
1921  *
1922  * 2.7.2  Arguments and Notes
1923  *
1924  *   The first argument is the provider identifier, as returned from a
1925  *   successful call to dtrace_register().  The second, third, and fourth
1926  *   arguments are the module name, function name, and probe name,
1927  *   respectively.  Of these, module name and function name may both be NULL
1928  *   (in which case the probe is considered to be unanchored), or they may both
1929  *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
1930  *   string.
1931  *
1932  *   The fifth argument is the number of artificial stack frames that will be
1933  *   found on the stack when dtrace_probe() is called for the new probe.  These
1934  *   artificial frames will be automatically be pruned should the stack() or
1935  *   stackdepth() functions be called as part of one of the probe's ECBs.  If
1936  *   the parameter doesn't add an artificial frame, this parameter should be
1937  *   zero.
1938  *
1939  *   The final argument is a probe argument that will be passed back to the
1940  *   provider when a probe-specific operation is called.  (e.g., via
1941  *   dtps_enable(), dtps_disable(), etc.)
1942  *
1943  *   Note that it is up to the provider to be sure that the probe that it
1944  *   creates does not already exist -- if the provider is unsure of the probe's
1945  *   existence, it should assure its absence with dtrace_probe_lookup() before
1946  *   calling dtrace_probe_create().
1947  *
1948  * 2.7.3  Return value
1949  *
1950  *   dtrace_probe_create() always succeeds, and always returns the identifier
1951  *   of the newly-created probe.
1952  *
1953  * 2.7.4  Caller's context
1954  *
1955  *   While dtrace_probe_create() is generally expected to be called from
1956  *   dtps_provide() and/or dtps_provide_module(), it may be called from other
1957  *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1958  *
1959  * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1960  *	    const char *func, const char *name)
1961  *
1962  * 2.8.1  Overview
1963  *
1964  *   Looks up a probe based on provdider and one or more of module name,
1965  *   function name and probe name.
1966  *
1967  * 2.8.2  Arguments and Notes
1968  *
1969  *   The first argument is the provider identifier, as returned from a
1970  *   successful call to dtrace_register().  The second, third, and fourth
1971  *   arguments are the module name, function name, and probe name,
1972  *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
1973  *   the identifier of the first probe that is provided by the specified
1974  *   provider and matches all of the non-NULL matching criteria.
1975  *   dtrace_probe_lookup() is generally used by a provider to be check the
1976  *   existence of a probe before creating it with dtrace_probe_create().
1977  *
1978  * 2.8.3  Return value
1979  *
1980  *   If the probe exists, returns its identifier.  If the probe does not exist,
1981  *   return DTRACE_IDNONE.
1982  *
1983  * 2.8.4  Caller's context
1984  *
1985  *   While dtrace_probe_lookup() is generally expected to be called from
1986  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1987  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1988  *
1989  * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1990  *
1991  * 2.9.1  Overview
1992  *
1993  *   Returns the probe argument associated with the specified probe.
1994  *
1995  * 2.9.2  Arguments and Notes
1996  *
1997  *   The first argument is the provider identifier, as returned from a
1998  *   successful call to dtrace_register().  The second argument is a probe
1999  *   identifier, as returned from dtrace_probe_lookup() or
2000  *   dtrace_probe_create().  This is useful if a probe has multiple
2001  *   provider-specific components to it:  the provider can create the probe
2002  *   once with provider-specific state, and then add to the state by looking
2003  *   up the probe based on probe identifier.
2004  *
2005  * 2.9.3  Return value
2006  *
2007  *   Returns the argument associated with the specified probe.  If the
2008  *   specified probe does not exist, or if the specified probe is not provided
2009  *   by the specified provider, NULL is returned.
2010  *
2011  * 2.9.4  Caller's context
2012  *
2013  *   While dtrace_probe_arg() is generally expected to be called from
2014  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2015  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2016  *
2017  * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2018  *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2019  *
2020  * 2.10.1  Overview
2021  *
2022  *   The epicenter of DTrace:  fires the specified probes with the specified
2023  *   arguments.
2024  *
2025  * 2.10.2  Arguments and Notes
2026  *
2027  *   The first argument is a probe identifier as returned by
2028  *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
2029  *   arguments are the values to which the D variables "arg0" through "arg4"
2030  *   will be mapped.
2031  *
2032  *   dtrace_probe() should be called whenever the specified probe has fired --
2033  *   however the provider defines it.
2034  *
2035  * 2.10.3  Return value
2036  *
2037  *   None.
2038  *
2039  * 2.10.4  Caller's context
2040  *
2041  *   dtrace_probe() may be called in virtually any context:  kernel, user,
2042  *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2043  *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
2044  *   that must be afforded to DTrace is the ability to make calls within
2045  *   itself (and to its in-kernel subroutines) and the ability to access
2046  *   arbitrary (but mapped) memory.  On some platforms, this constrains
2047  *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
2048  *   from any context in which TL is greater than zero.  dtrace_probe() may
2049  *   also not be called from any routine which may be called by dtrace_probe()
2050  *   -- which includes functions in the DTrace framework and some in-kernel
2051  *   DTrace subroutines.  All such functions "dtrace_"; providers that
2052  *   instrument the kernel arbitrarily should be sure to not instrument these
2053  *   routines.
2054  */
2055 typedef struct dtrace_pops {
2056 	void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
2057 	void (*dtps_provide_module)(void *arg, struct modctl *mp);
2058 	int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2059 	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2060 	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2061 	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2062 	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2063 	    dtrace_argdesc_t *desc);
2064 	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2065 	    int argno, int aframes);
2066 	int (*dtps_mode)(void *arg, dtrace_id_t id, void *parg);
2067 	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2068 } dtrace_pops_t;
2069 
2070 #define	DTRACE_MODE_KERNEL			0x01
2071 #define	DTRACE_MODE_USER			0x02
2072 #define	DTRACE_MODE_NOPRIV_DROP			0x10
2073 #define	DTRACE_MODE_NOPRIV_RESTRICT		0x20
2074 #define	DTRACE_MODE_LIMITEDPRIV_RESTRICT	0x40
2075 
2076 typedef uintptr_t	dtrace_provider_id_t;
2077 
2078 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2079     cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2080 extern int dtrace_unregister(dtrace_provider_id_t);
2081 extern int dtrace_condense(dtrace_provider_id_t);
2082 extern void dtrace_invalidate(dtrace_provider_id_t);
2083 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
2084     const char *, const char *);
2085 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2086     const char *, const char *, int, void *);
2087 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2088 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2089     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2090 
2091 /*
2092  * DTrace Meta Provider API
2093  *
2094  * The following functions are implemented by the DTrace framework and are
2095  * used to implement meta providers. Meta providers plug into the DTrace
2096  * framework and are used to instantiate new providers on the fly. At
2097  * present, there is only one type of meta provider and only one meta
2098  * provider may be registered with the DTrace framework at a time. The
2099  * sole meta provider type provides user-land static tracing facilities
2100  * by taking meta probe descriptions and adding a corresponding provider
2101  * into the DTrace framework.
2102  *
2103  * 1 Framework-to-Provider
2104  *
2105  * 1.1 Overview
2106  *
2107  * The Framework-to-Provider API is represented by the dtrace_mops structure
2108  * that the meta provider passes to the framework when registering itself as
2109  * a meta provider. This structure consists of the following members:
2110  *
2111  *   dtms_create_probe()	<-- Add a new probe to a created provider
2112  *   dtms_provide_pid()		<-- Create a new provider for a given process
2113  *   dtms_remove_pid()		<-- Remove a previously created provider
2114  *
2115  * 1.2  void dtms_create_probe(void *arg, void *parg,
2116  *           dtrace_helper_probedesc_t *probedesc);
2117  *
2118  * 1.2.1  Overview
2119  *
2120  *   Called by the DTrace framework to create a new probe in a provider
2121  *   created by this meta provider.
2122  *
2123  * 1.2.2  Arguments and notes
2124  *
2125  *   The first argument is the cookie as passed to dtrace_meta_register().
2126  *   The second argument is the provider cookie for the associated provider;
2127  *   this is obtained from the return value of dtms_provide_pid(). The third
2128  *   argument is the helper probe description.
2129  *
2130  * 1.2.3  Return value
2131  *
2132  *   None
2133  *
2134  * 1.2.4  Caller's context
2135  *
2136  *   dtms_create_probe() is called from either ioctl() or module load context
2137  *   in the context of a newly-created provider (that is, a provider that
2138  *   is a result of a call to dtms_provide_pid()). The DTrace framework is
2139  *   locked in such a way that meta providers may not register or unregister,
2140  *   such that no other thread can call into a meta provider operation and that
2141  *   atomicity is assured with respect to meta provider operations across
2142  *   dtms_provide_pid() and subsequent calls to dtms_create_probe().
2143  *   The context is thus effectively single-threaded with respect to the meta
2144  *   provider, and that the meta provider cannot call dtrace_meta_register()
2145  *   or dtrace_meta_unregister(). However, the context is such that the
2146  *   provider may (and is expected to) call provider-related DTrace provider
2147  *   APIs including dtrace_probe_create().
2148  *
2149  * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2150  *	      pid_t pid)
2151  *
2152  * 1.3.1  Overview
2153  *
2154  *   Called by the DTrace framework to instantiate a new provider given the
2155  *   description of the provider and probes in the mprov argument. The
2156  *   meta provider should call dtrace_register() to insert the new provider
2157  *   into the DTrace framework.
2158  *
2159  * 1.3.2  Arguments and notes
2160  *
2161  *   The first argument is the cookie as passed to dtrace_meta_register().
2162  *   The second argument is a pointer to a structure describing the new
2163  *   helper provider. The third argument is the process identifier for
2164  *   process associated with this new provider. Note that the name of the
2165  *   provider as passed to dtrace_register() should be the contatenation of
2166  *   the dtmpb_provname member of the mprov argument and the processs
2167  *   identifier as a string.
2168  *
2169  * 1.3.3  Return value
2170  *
2171  *   The cookie for the provider that the meta provider creates. This is
2172  *   the same value that it passed to dtrace_register().
2173  *
2174  * 1.3.4  Caller's context
2175  *
2176  *   dtms_provide_pid() is called from either ioctl() or module load context.
2177  *   The DTrace framework is locked in such a way that meta providers may not
2178  *   register or unregister. This means that the meta provider cannot call
2179  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2180  *   is such that the provider may -- and is expected to --  call
2181  *   provider-related DTrace provider APIs including dtrace_register().
2182  *
2183  * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2184  *	     pid_t pid)
2185  *
2186  * 1.4.1  Overview
2187  *
2188  *   Called by the DTrace framework to remove a provider that had previously
2189  *   been instantiated via the dtms_provide_pid() entry point. The meta
2190  *   provider need not remove the provider immediately, but this entry
2191  *   point indicates that the provider should be removed as soon as possible
2192  *   using the dtrace_unregister() API.
2193  *
2194  * 1.4.2  Arguments and notes
2195  *
2196  *   The first argument is the cookie as passed to dtrace_meta_register().
2197  *   The second argument is a pointer to a structure describing the helper
2198  *   provider. The third argument is the process identifier for process
2199  *   associated with this new provider.
2200  *
2201  * 1.4.3  Return value
2202  *
2203  *   None
2204  *
2205  * 1.4.4  Caller's context
2206  *
2207  *   dtms_remove_pid() is called from either ioctl() or exit() context.
2208  *   The DTrace framework is locked in such a way that meta providers may not
2209  *   register or unregister. This means that the meta provider cannot call
2210  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2211  *   is such that the provider may -- and is expected to -- call
2212  *   provider-related DTrace provider APIs including dtrace_unregister().
2213  */
2214 typedef struct dtrace_helper_probedesc {
2215 	char *dthpb_mod;			/* probe module */
2216 	char *dthpb_func;			/* probe function */
2217 	char *dthpb_name;			/* probe name */
2218 	uint64_t dthpb_base;			/* base address */
2219 	uint32_t *dthpb_offs;			/* offsets array */
2220 	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2221 	uint32_t dthpb_noffs;			/* offsets count */
2222 	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2223 	uint8_t *dthpb_args;			/* argument mapping array */
2224 	uint8_t dthpb_xargc;			/* translated argument count */
2225 	uint8_t dthpb_nargc;			/* native argument count */
2226 	char *dthpb_xtypes;			/* translated types strings */
2227 	char *dthpb_ntypes;			/* native types strings */
2228 } dtrace_helper_probedesc_t;
2229 
2230 typedef struct dtrace_helper_provdesc {
2231 	char *dthpv_provname;			/* provider name */
2232 	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2233 } dtrace_helper_provdesc_t;
2234 
2235 typedef struct dtrace_mops {
2236 	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2237 	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2238 	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2239 } dtrace_mops_t;
2240 
2241 typedef uintptr_t	dtrace_meta_provider_id_t;
2242 
2243 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2244     dtrace_meta_provider_id_t *);
2245 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2246 
2247 /*
2248  * DTrace Kernel Hooks
2249  *
2250  * The following functions are implemented by the base kernel and form a set of
2251  * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2252  * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2253  * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2254  */
2255 
2256 typedef enum dtrace_vtime_state {
2257 	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2258 	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2259 	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2260 	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2261 } dtrace_vtime_state_t;
2262 
2263 extern dtrace_vtime_state_t dtrace_vtime_active;
2264 extern void dtrace_vtime_switch(kthread_t *next);
2265 extern void dtrace_vtime_enable_tnf(void);
2266 extern void dtrace_vtime_disable_tnf(void);
2267 extern void dtrace_vtime_enable(void);
2268 extern void dtrace_vtime_disable(void);
2269 
2270 struct regs;
2271 
2272 extern int (*dtrace_pid_probe_ptr)(struct regs *);
2273 extern int (*dtrace_return_probe_ptr)(struct regs *);
2274 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2275 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2276 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2277 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2278 
2279 typedef uintptr_t dtrace_icookie_t;
2280 typedef void (*dtrace_xcall_t)(void *);
2281 
2282 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2283 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2284 
2285 extern void dtrace_membar_producer(void);
2286 extern void dtrace_membar_consumer(void);
2287 
2288 extern void (*dtrace_cpu_init)(processorid_t);
2289 extern void (*dtrace_modload)(struct modctl *);
2290 extern void (*dtrace_modunload)(struct modctl *);
2291 extern void (*dtrace_helpers_cleanup)(proc_t *);
2292 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2293 extern void (*dtrace_cpustart_init)();
2294 extern void (*dtrace_cpustart_fini)();
2295 extern void (*dtrace_closef)();
2296 
2297 extern void (*dtrace_debugger_init)();
2298 extern void (*dtrace_debugger_fini)();
2299 extern dtrace_cacheid_t dtrace_predcache_id;
2300 
2301 extern hrtime_t dtrace_gethrtime(void);
2302 extern void dtrace_sync(void);
2303 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2304 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2305 extern void dtrace_vpanic(const char *, __va_list);
2306 extern void dtrace_panic(const char *, ...);
2307 
2308 extern int dtrace_safe_defer_signal(void);
2309 extern void dtrace_safe_synchronous_signal(void);
2310 
2311 extern int dtrace_mach_aframes(void);
2312 
2313 #if defined(__i386) || defined(__amd64)
2314 extern int dtrace_instr_size(uchar_t *instr);
2315 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2316 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2317 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2318 extern void dtrace_invop_callsite(void);
2319 #endif
2320 
2321 #ifdef __sparc
2322 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2323 extern void dtrace_getfsr(uint64_t *);
2324 #endif
2325 
2326 #define	DTRACE_CPUFLAG_ISSET(flag) \
2327 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2328 
2329 #define	DTRACE_CPUFLAG_SET(flag) \
2330 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2331 
2332 #define	DTRACE_CPUFLAG_CLEAR(flag) \
2333 	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2334 
2335 #endif /* _KERNEL */
2336 
2337 #endif	/* _ASM */
2338 
2339 #if defined(__i386) || defined(__amd64)
2340 
2341 #define	DTRACE_INVOP_PUSHL_EBP		1
2342 #define	DTRACE_INVOP_POPL_EBP		2
2343 #define	DTRACE_INVOP_LEAVE		3
2344 #define	DTRACE_INVOP_NOP		4
2345 #define	DTRACE_INVOP_RET		5
2346 
2347 #endif
2348 
2349 #ifdef	__cplusplus
2350 }
2351 #endif
2352 
2353 #endif	/* _SYS_DTRACE_H */
2354