1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 29 */ 30 31 #ifndef _SYS_DTRACE_H 32 #define _SYS_DTRACE_H 33 34 #ifdef __cplusplus 35 extern "C" { 36 #endif 37 38 /* 39 * DTrace Dynamic Tracing Software: Kernel Interfaces 40 * 41 * Note: The contents of this file are private to the implementation of the 42 * Solaris system and DTrace subsystem and are subject to change at any time 43 * without notice. Applications and drivers using these interfaces will fail 44 * to run on future releases. These interfaces should not be used for any 45 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 46 * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 47 */ 48 49 #ifndef _ASM 50 51 #include <sys/types.h> 52 #include <sys/modctl.h> 53 #include <sys/processor.h> 54 #include <sys/systm.h> 55 #include <sys/ctf_api.h> 56 #include <sys/cyclic.h> 57 #include <sys/int_limits.h> 58 59 /* 60 * DTrace Universal Constants and Typedefs 61 */ 62 #define DTRACE_CPUALL -1 /* all CPUs */ 63 #define DTRACE_IDNONE 0 /* invalid probe identifier */ 64 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ 65 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ 66 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ 67 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ 68 #define DTRACE_PROVNONE 0 /* invalid provider identifier */ 69 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ 70 #define DTRACE_ARGNONE -1 /* invalid argument index */ 71 72 #define DTRACE_PROVNAMELEN 64 73 #define DTRACE_MODNAMELEN 64 74 #define DTRACE_FUNCNAMELEN 128 75 #define DTRACE_NAMELEN 64 76 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ 77 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) 78 #define DTRACE_ARGTYPELEN 128 79 80 typedef uint32_t dtrace_id_t; /* probe identifier */ 81 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ 82 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ 83 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ 84 typedef uint16_t dtrace_actkind_t; /* action kind */ 85 typedef int64_t dtrace_optval_t; /* option value */ 86 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ 87 88 typedef enum dtrace_probespec { 89 DTRACE_PROBESPEC_NONE = -1, 90 DTRACE_PROBESPEC_PROVIDER = 0, 91 DTRACE_PROBESPEC_MOD, 92 DTRACE_PROBESPEC_FUNC, 93 DTRACE_PROBESPEC_NAME 94 } dtrace_probespec_t; 95 96 /* 97 * DTrace Intermediate Format (DIF) 98 * 99 * The following definitions describe the DTrace Intermediate Format (DIF), a 100 * a RISC-like instruction set and program encoding used to represent 101 * predicates and actions that can be bound to DTrace probes. The constants 102 * below defining the number of available registers are suggested minimums; the 103 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of 104 * registers provided by the current DTrace implementation. 105 */ 106 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ 107 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ 108 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ 109 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ 110 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ 111 112 #define DIF_OP_OR 1 /* or r1, r2, rd */ 113 #define DIF_OP_XOR 2 /* xor r1, r2, rd */ 114 #define DIF_OP_AND 3 /* and r1, r2, rd */ 115 #define DIF_OP_SLL 4 /* sll r1, r2, rd */ 116 #define DIF_OP_SRL 5 /* srl r1, r2, rd */ 117 #define DIF_OP_SUB 6 /* sub r1, r2, rd */ 118 #define DIF_OP_ADD 7 /* add r1, r2, rd */ 119 #define DIF_OP_MUL 8 /* mul r1, r2, rd */ 120 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ 121 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ 122 #define DIF_OP_SREM 11 /* srem r1, r2, rd */ 123 #define DIF_OP_UREM 12 /* urem r1, r2, rd */ 124 #define DIF_OP_NOT 13 /* not r1, rd */ 125 #define DIF_OP_MOV 14 /* mov r1, rd */ 126 #define DIF_OP_CMP 15 /* cmp r1, r2 */ 127 #define DIF_OP_TST 16 /* tst r1 */ 128 #define DIF_OP_BA 17 /* ba label */ 129 #define DIF_OP_BE 18 /* be label */ 130 #define DIF_OP_BNE 19 /* bne label */ 131 #define DIF_OP_BG 20 /* bg label */ 132 #define DIF_OP_BGU 21 /* bgu label */ 133 #define DIF_OP_BGE 22 /* bge label */ 134 #define DIF_OP_BGEU 23 /* bgeu label */ 135 #define DIF_OP_BL 24 /* bl label */ 136 #define DIF_OP_BLU 25 /* blu label */ 137 #define DIF_OP_BLE 26 /* ble label */ 138 #define DIF_OP_BLEU 27 /* bleu label */ 139 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ 140 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ 141 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ 142 #define DIF_OP_LDUB 31 /* ldub [r1], rd */ 143 #define DIF_OP_LDUH 32 /* lduh [r1], rd */ 144 #define DIF_OP_LDUW 33 /* lduw [r1], rd */ 145 #define DIF_OP_LDX 34 /* ldx [r1], rd */ 146 #define DIF_OP_RET 35 /* ret rd */ 147 #define DIF_OP_NOP 36 /* nop */ 148 #define DIF_OP_SETX 37 /* setx intindex, rd */ 149 #define DIF_OP_SETS 38 /* sets strindex, rd */ 150 #define DIF_OP_SCMP 39 /* scmp r1, r2 */ 151 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ 152 #define DIF_OP_LDGS 41 /* ldgs var, rd */ 153 #define DIF_OP_STGS 42 /* stgs var, rs */ 154 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ 155 #define DIF_OP_LDTS 44 /* ldts var, rd */ 156 #define DIF_OP_STTS 45 /* stts var, rs */ 157 #define DIF_OP_SRA 46 /* sra r1, r2, rd */ 158 #define DIF_OP_CALL 47 /* call subr, rd */ 159 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ 160 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ 161 #define DIF_OP_POPTS 50 /* popts */ 162 #define DIF_OP_FLUSHTS 51 /* flushts */ 163 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ 164 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ 165 #define DIF_OP_STGAA 54 /* stgaa var, rs */ 166 #define DIF_OP_STTAA 55 /* sttaa var, rs */ 167 #define DIF_OP_LDLS 56 /* ldls var, rd */ 168 #define DIF_OP_STLS 57 /* stls var, rs */ 169 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ 170 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ 171 #define DIF_OP_STB 60 /* stb r1, [rd] */ 172 #define DIF_OP_STH 61 /* sth r1, [rd] */ 173 #define DIF_OP_STW 62 /* stw r1, [rd] */ 174 #define DIF_OP_STX 63 /* stx r1, [rd] */ 175 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ 176 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ 177 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ 178 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ 179 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ 180 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ 181 #define DIF_OP_ULDX 70 /* uldx [r1], rd */ 182 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ 183 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ 184 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ 185 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ 186 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ 187 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ 188 #define DIF_OP_RLDX 77 /* rldx [r1], rd */ 189 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ 190 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ 191 192 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ 193 #define DIF_STROFF_MAX 0xffff /* highest string table offset */ 194 #define DIF_REGISTER_MAX 0xff /* highest register number */ 195 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ 196 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ 197 198 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ 199 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ 200 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ 201 202 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ 203 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ 204 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ 205 206 #define DIF_VAR_ARGS 0x0000 /* arguments array */ 207 #define DIF_VAR_REGS 0x0001 /* registers array */ 208 #define DIF_VAR_UREGS 0x0002 /* user registers array */ 209 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ 210 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ 211 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ 212 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ 213 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ 214 #define DIF_VAR_ID 0x0105 /* probe ID */ 215 #define DIF_VAR_ARG0 0x0106 /* first argument */ 216 #define DIF_VAR_ARG1 0x0107 /* second argument */ 217 #define DIF_VAR_ARG2 0x0108 /* third argument */ 218 #define DIF_VAR_ARG3 0x0109 /* fourth argument */ 219 #define DIF_VAR_ARG4 0x010a /* fifth argument */ 220 #define DIF_VAR_ARG5 0x010b /* sixth argument */ 221 #define DIF_VAR_ARG6 0x010c /* seventh argument */ 222 #define DIF_VAR_ARG7 0x010d /* eighth argument */ 223 #define DIF_VAR_ARG8 0x010e /* ninth argument */ 224 #define DIF_VAR_ARG9 0x010f /* tenth argument */ 225 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ 226 #define DIF_VAR_CALLER 0x0111 /* caller */ 227 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ 228 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ 229 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ 230 #define DIF_VAR_PROBENAME 0x0115 /* probe name */ 231 #define DIF_VAR_PID 0x0116 /* process ID */ 232 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ 233 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ 234 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ 235 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ 236 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ 237 #define DIF_VAR_UCALLER 0x011c /* user-level caller */ 238 #define DIF_VAR_PPID 0x011d /* parent process ID */ 239 #define DIF_VAR_UID 0x011e /* process user ID */ 240 #define DIF_VAR_GID 0x011f /* process group ID */ 241 #define DIF_VAR_ERRNO 0x0120 /* thread errno */ 242 243 #define DIF_SUBR_RAND 0 244 #define DIF_SUBR_MUTEX_OWNED 1 245 #define DIF_SUBR_MUTEX_OWNER 2 246 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 247 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 248 #define DIF_SUBR_RW_READ_HELD 5 249 #define DIF_SUBR_RW_WRITE_HELD 6 250 #define DIF_SUBR_RW_ISWRITER 7 251 #define DIF_SUBR_COPYIN 8 252 #define DIF_SUBR_COPYINSTR 9 253 #define DIF_SUBR_SPECULATION 10 254 #define DIF_SUBR_PROGENYOF 11 255 #define DIF_SUBR_STRLEN 12 256 #define DIF_SUBR_COPYOUT 13 257 #define DIF_SUBR_COPYOUTSTR 14 258 #define DIF_SUBR_ALLOCA 15 259 #define DIF_SUBR_BCOPY 16 260 #define DIF_SUBR_COPYINTO 17 261 #define DIF_SUBR_MSGDSIZE 18 262 #define DIF_SUBR_MSGSIZE 19 263 #define DIF_SUBR_GETMAJOR 20 264 #define DIF_SUBR_GETMINOR 21 265 #define DIF_SUBR_DDI_PATHNAME 22 266 #define DIF_SUBR_STRJOIN 23 267 #define DIF_SUBR_LLTOSTR 24 268 #define DIF_SUBR_BASENAME 25 269 #define DIF_SUBR_DIRNAME 26 270 #define DIF_SUBR_CLEANPATH 27 271 #define DIF_SUBR_STRCHR 28 272 #define DIF_SUBR_STRRCHR 29 273 #define DIF_SUBR_STRSTR 30 274 #define DIF_SUBR_STRTOK 31 275 #define DIF_SUBR_SUBSTR 32 276 #define DIF_SUBR_INDEX 33 277 #define DIF_SUBR_RINDEX 34 278 #define DIF_SUBR_HTONS 35 279 #define DIF_SUBR_HTONL 36 280 #define DIF_SUBR_HTONLL 37 281 #define DIF_SUBR_NTOHS 38 282 #define DIF_SUBR_NTOHL 39 283 #define DIF_SUBR_NTOHLL 40 284 #define DIF_SUBR_INET_NTOP 41 285 #define DIF_SUBR_INET_NTOA 42 286 #define DIF_SUBR_INET_NTOA6 43 287 288 #define DIF_SUBR_MAX 43 /* max subroutine value */ 289 290 typedef uint32_t dif_instr_t; 291 292 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) 293 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) 294 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) 295 #define DIF_INSTR_RD(i) ((i) & 0xff) 296 #define DIF_INSTR_RS(i) ((i) & 0xff) 297 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) 298 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) 299 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) 300 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) 301 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) 302 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) 303 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) 304 305 #define DIF_INSTR_FMT(op, r1, r2, d) \ 306 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) 307 308 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) 309 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) 310 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) 311 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) 312 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) 313 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 314 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 315 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) 316 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) 317 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) 318 #define DIF_INSTR_NOP (DIF_OP_NOP << 24) 319 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) 320 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) 321 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) 322 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) 323 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) 324 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) 325 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) 326 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) 327 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) 328 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) 329 330 #define DIF_REG_R0 0 /* %r0 is always set to zero */ 331 332 /* 333 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types 334 * of variables, function and associative array arguments, and the return type 335 * for each DIF object (shown below). It contains a description of the type, 336 * its size in bytes, and a module identifier. 337 */ 338 typedef struct dtrace_diftype { 339 uint8_t dtdt_kind; /* type kind (see below) */ 340 uint8_t dtdt_ckind; /* type kind in CTF */ 341 uint8_t dtdt_flags; /* type flags (see below) */ 342 uint8_t dtdt_pad; /* reserved for future use */ 343 uint32_t dtdt_size; /* type size in bytes (unless string) */ 344 } dtrace_diftype_t; 345 346 #define DIF_TYPE_CTF 0 /* type is a CTF type */ 347 #define DIF_TYPE_STRING 1 /* type is a D string */ 348 349 #define DIF_TF_BYREF 0x1 /* type is passed by reference */ 350 351 /* 352 * A DTrace Intermediate Format variable record is used to describe each of the 353 * variables referenced by a given DIF object. It contains an integer variable 354 * identifier along with variable scope and properties, as shown below. The 355 * size of this structure must be sizeof (int) aligned. 356 */ 357 typedef struct dtrace_difv { 358 uint32_t dtdv_name; /* variable name index in dtdo_strtab */ 359 uint32_t dtdv_id; /* variable reference identifier */ 360 uint8_t dtdv_kind; /* variable kind (see below) */ 361 uint8_t dtdv_scope; /* variable scope (see below) */ 362 uint16_t dtdv_flags; /* variable flags (see below) */ 363 dtrace_diftype_t dtdv_type; /* variable type (see above) */ 364 } dtrace_difv_t; 365 366 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ 367 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ 368 369 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ 370 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ 371 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ 372 373 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ 374 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ 375 376 /* 377 * DTrace Actions 378 * 379 * The upper byte determines the class of the action; the low bytes determines 380 * the specific action within that class. The classes of actions are as 381 * follows: 382 * 383 * [ no class ] <= May record process- or kernel-related data 384 * DTRACEACT_PROC <= Only records process-related data 385 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes 386 * DTRACEACT_KERNEL <= Only records kernel-related data 387 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel 388 * DTRACEACT_SPECULATIVE <= Speculation-related action 389 * DTRACEACT_AGGREGATION <= Aggregating action 390 */ 391 #define DTRACEACT_NONE 0 /* no action */ 392 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ 393 #define DTRACEACT_EXIT 2 /* exit() action */ 394 #define DTRACEACT_PRINTF 3 /* printf() action */ 395 #define DTRACEACT_PRINTA 4 /* printa() action */ 396 #define DTRACEACT_LIBACT 5 /* library-controlled action */ 397 398 #define DTRACEACT_PROC 0x0100 399 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) 400 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) 401 #define DTRACEACT_USYM (DTRACEACT_PROC + 3) 402 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) 403 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) 404 405 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 406 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) 407 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) 408 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) 409 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) 410 411 #define DTRACEACT_PROC_CONTROL 0x0300 412 413 #define DTRACEACT_KERNEL 0x0400 414 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 415 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) 416 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) 417 418 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 419 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) 420 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) 421 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) 422 423 #define DTRACEACT_SPECULATIVE 0x0600 424 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) 425 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) 426 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) 427 428 #define DTRACEACT_CLASS(x) ((x) & 0xff00) 429 430 #define DTRACEACT_ISDESTRUCTIVE(x) \ 431 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ 432 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) 433 434 #define DTRACEACT_ISSPECULATIVE(x) \ 435 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) 436 437 #define DTRACEACT_ISPRINTFLIKE(x) \ 438 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ 439 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) 440 441 /* 442 * DTrace Aggregating Actions 443 * 444 * These are functions f(x) for which the following is true: 445 * 446 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) 447 * 448 * where x_n is a set of arbitrary data. Aggregating actions are in their own 449 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow 450 * for easier processing of the aggregation argument and data payload for a few 451 * aggregating actions (notably: quantize(), lquantize(), and ustack()). 452 */ 453 #define DTRACEACT_AGGREGATION 0x0700 454 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) 455 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) 456 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) 457 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) 458 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) 459 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) 460 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) 461 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) 462 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9) 463 464 #define DTRACEACT_ISAGG(x) \ 465 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) 466 467 #define DTRACE_QUANTIZE_NBUCKETS \ 468 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) 469 470 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) 471 472 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ 473 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ 474 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ 475 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 476 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) 477 478 #define DTRACE_LQUANTIZE_STEPSHIFT 48 479 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) 480 #define DTRACE_LQUANTIZE_LEVELSHIFT 32 481 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) 482 #define DTRACE_LQUANTIZE_BASESHIFT 0 483 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX 484 485 #define DTRACE_LQUANTIZE_STEP(x) \ 486 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ 487 DTRACE_LQUANTIZE_STEPSHIFT) 488 489 #define DTRACE_LQUANTIZE_LEVELS(x) \ 490 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ 491 DTRACE_LQUANTIZE_LEVELSHIFT) 492 493 #define DTRACE_LQUANTIZE_BASE(x) \ 494 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ 495 DTRACE_LQUANTIZE_BASESHIFT) 496 497 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48 498 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48) 499 #define DTRACE_LLQUANTIZE_LOWSHIFT 32 500 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32) 501 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16 502 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16) 503 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0 504 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX 505 506 #define DTRACE_LLQUANTIZE_FACTOR(x) \ 507 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \ 508 DTRACE_LLQUANTIZE_FACTORSHIFT) 509 510 #define DTRACE_LLQUANTIZE_LOW(x) \ 511 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \ 512 DTRACE_LLQUANTIZE_LOWSHIFT) 513 514 #define DTRACE_LLQUANTIZE_HIGH(x) \ 515 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \ 516 DTRACE_LLQUANTIZE_HIGHSHIFT) 517 518 #define DTRACE_LLQUANTIZE_NSTEP(x) \ 519 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \ 520 DTRACE_LLQUANTIZE_NSTEPSHIFT) 521 522 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) 523 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) 524 #define DTRACE_USTACK_ARG(x, y) \ 525 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) 526 527 #ifndef _LP64 528 #ifndef _LITTLE_ENDIAN 529 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name 530 #else 531 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad 532 #endif 533 #else 534 #define DTRACE_PTR(type, name) type *name 535 #endif 536 537 /* 538 * DTrace Object Format (DOF) 539 * 540 * DTrace programs can be persistently encoded in the DOF format so that they 541 * may be embedded in other programs (for example, in an ELF file) or in the 542 * dtrace driver configuration file for use in anonymous tracing. The DOF 543 * format is versioned and extensible so that it can be revised and so that 544 * internal data structures can be modified or extended compatibly. All DOF 545 * structures use fixed-size types, so the 32-bit and 64-bit representations 546 * are identical and consumers can use either data model transparently. 547 * 548 * The file layout is structured as follows: 549 * 550 * +---------------+-------------------+----- ... ----+---- ... ------+ 551 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | 552 * | (file header) | (section headers) | section data | section data | 553 * +---------------+-------------------+----- ... ----+---- ... ------+ 554 * |<------------ dof_hdr.dofh_loadsz --------------->| | 555 * |<------------ dof_hdr.dofh_filesz ------------------------------->| 556 * 557 * The file header stores meta-data including a magic number, data model for 558 * the instrumentation, data encoding, and properties of the DIF code within. 559 * The header describes its own size and the size of the section headers. By 560 * convention, an array of section headers follows the file header, and then 561 * the data for all loadable sections and unloadable sections. This permits 562 * consumer code to easily download the headers and all loadable data into the 563 * DTrace driver in one contiguous chunk, omitting other extraneous sections. 564 * 565 * The section headers describe the size, offset, alignment, and section type 566 * for each section. Sections are described using a set of #defines that tell 567 * the consumer what kind of data is expected. Sections can contain links to 568 * other sections by storing a dof_secidx_t, an index into the section header 569 * array, inside of the section data structures. The section header includes 570 * an entry size so that sections with data arrays can grow their structures. 571 * 572 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which 573 * are represented themselves as a collection of related DOF sections. This 574 * permits us to change the set of sections associated with a DIFO over time, 575 * and also permits us to encode DIFOs that contain different sets of sections. 576 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a 577 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of 578 * dof_secidx_t's which in turn denote the sections associated with this DIFO. 579 * 580 * This loose coupling of the file structure (header and sections) to the 581 * structure of the DTrace program itself (ECB descriptions, action 582 * descriptions, and DIFOs) permits activities such as relocation processing 583 * to occur in a single pass without having to understand D program structure. 584 * 585 * Finally, strings are always stored in ELF-style string tables along with a 586 * string table section index and string table offset. Therefore strings in 587 * DOF are always arbitrary-length and not bound to the current implementation. 588 */ 589 590 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ 591 592 typedef struct dof_hdr { 593 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ 594 uint32_t dofh_flags; /* file attribute flags (if any) */ 595 uint32_t dofh_hdrsize; /* size of file header in bytes */ 596 uint32_t dofh_secsize; /* size of section header in bytes */ 597 uint32_t dofh_secnum; /* number of section headers */ 598 uint64_t dofh_secoff; /* file offset of section headers */ 599 uint64_t dofh_loadsz; /* file size of loadable portion */ 600 uint64_t dofh_filesz; /* file size of entire DOF file */ 601 uint64_t dofh_pad; /* reserved for future use */ 602 } dof_hdr_t; 603 604 #define DOF_ID_MAG0 0 /* first byte of magic number */ 605 #define DOF_ID_MAG1 1 /* second byte of magic number */ 606 #define DOF_ID_MAG2 2 /* third byte of magic number */ 607 #define DOF_ID_MAG3 3 /* fourth byte of magic number */ 608 #define DOF_ID_MODEL 4 /* DOF data model (see below) */ 609 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ 610 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ 611 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ 612 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ 613 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ 614 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ 615 616 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ 617 #define DOF_MAG_MAG1 'D' 618 #define DOF_MAG_MAG2 'O' 619 #define DOF_MAG_MAG3 'F' 620 621 #define DOF_MAG_STRING "\177DOF" 622 #define DOF_MAG_STRLEN 4 623 624 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ 625 #define DOF_MODEL_ILP32 1 626 #define DOF_MODEL_LP64 2 627 628 #ifdef _LP64 629 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 630 #else 631 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 632 #endif 633 634 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ 635 #define DOF_ENCODE_LSB 1 636 #define DOF_ENCODE_MSB 2 637 638 #ifdef _BIG_ENDIAN 639 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB 640 #else 641 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB 642 #endif 643 644 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ 645 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ 646 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ 647 648 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ 649 650 typedef uint32_t dof_secidx_t; /* section header table index type */ 651 typedef uint32_t dof_stridx_t; /* string table index type */ 652 653 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ 654 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ 655 656 typedef struct dof_sec { 657 uint32_t dofs_type; /* section type (see below) */ 658 uint32_t dofs_align; /* section data memory alignment */ 659 uint32_t dofs_flags; /* section flags (if any) */ 660 uint32_t dofs_entsize; /* size of section entry (if table) */ 661 uint64_t dofs_offset; /* offset of section data within file */ 662 uint64_t dofs_size; /* size of section data in bytes */ 663 } dof_sec_t; 664 665 #define DOF_SECT_NONE 0 /* null section */ 666 #define DOF_SECT_COMMENTS 1 /* compiler comments */ 667 #define DOF_SECT_SOURCE 2 /* D program source code */ 668 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ 669 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ 670 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ 671 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ 672 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ 673 #define DOF_SECT_STRTAB 8 /* string table */ 674 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ 675 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ 676 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ 677 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ 678 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ 679 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ 680 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ 681 #define DOF_SECT_PROBES 16 /* dof_probe_t array */ 682 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ 683 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ 684 #define DOF_SECT_INTTAB 19 /* uint64_t array */ 685 #define DOF_SECT_UTSNAME 20 /* struct utsname */ 686 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ 687 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ 688 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ 689 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ 690 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ 691 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ 692 693 #define DOF_SECF_LOAD 1 /* section should be loaded */ 694 695 #define DOF_SEC_ISLOADABLE(x) \ 696 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \ 697 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \ 698 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \ 699 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \ 700 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \ 701 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \ 702 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \ 703 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \ 704 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \ 705 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \ 706 ((x) == DOF_SECT_XLIMPORT) || ((x) == DOF_SECT_XLEXPORT) || \ 707 ((x) == DOF_SECT_PREXPORT) || ((x) == DOF_SECT_PRENOFFS)) 708 709 typedef struct dof_ecbdesc { 710 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ 711 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ 712 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ 713 uint32_t dofe_pad; /* reserved for future use */ 714 uint64_t dofe_uarg; /* user-supplied library argument */ 715 } dof_ecbdesc_t; 716 717 typedef struct dof_probedesc { 718 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ 719 dof_stridx_t dofp_provider; /* provider string */ 720 dof_stridx_t dofp_mod; /* module string */ 721 dof_stridx_t dofp_func; /* function string */ 722 dof_stridx_t dofp_name; /* name string */ 723 uint32_t dofp_id; /* probe identifier (or zero) */ 724 } dof_probedesc_t; 725 726 typedef struct dof_actdesc { 727 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ 728 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ 729 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ 730 uint32_t dofa_ntuple; /* number of subsequent tuple actions */ 731 uint64_t dofa_arg; /* kind-specific argument */ 732 uint64_t dofa_uarg; /* user-supplied argument */ 733 } dof_actdesc_t; 734 735 typedef struct dof_difohdr { 736 dtrace_diftype_t dofd_rtype; /* return type for this fragment */ 737 dof_secidx_t dofd_links[1]; /* variable length array of indices */ 738 } dof_difohdr_t; 739 740 typedef struct dof_relohdr { 741 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ 742 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ 743 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ 744 } dof_relohdr_t; 745 746 typedef struct dof_relodesc { 747 dof_stridx_t dofr_name; /* string name of relocation symbol */ 748 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ 749 uint64_t dofr_offset; /* byte offset for relocation */ 750 uint64_t dofr_data; /* additional type-specific data */ 751 } dof_relodesc_t; 752 753 #define DOF_RELO_NONE 0 /* empty relocation entry */ 754 #define DOF_RELO_SETX 1 /* relocate setx value */ 755 756 typedef struct dof_optdesc { 757 uint32_t dofo_option; /* option identifier */ 758 dof_secidx_t dofo_strtab; /* string table, if string option */ 759 uint64_t dofo_value; /* option value or string index */ 760 } dof_optdesc_t; 761 762 typedef uint32_t dof_attr_t; /* encoded stability attributes */ 763 764 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 765 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) 766 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) 767 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) 768 769 typedef struct dof_provider { 770 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ 771 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ 772 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ 773 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ 774 dof_stridx_t dofpv_name; /* provider name string */ 775 dof_attr_t dofpv_provattr; /* provider attributes */ 776 dof_attr_t dofpv_modattr; /* module attributes */ 777 dof_attr_t dofpv_funcattr; /* function attributes */ 778 dof_attr_t dofpv_nameattr; /* name attributes */ 779 dof_attr_t dofpv_argsattr; /* args attributes */ 780 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ 781 } dof_provider_t; 782 783 typedef struct dof_probe { 784 uint64_t dofpr_addr; /* probe base address or offset */ 785 dof_stridx_t dofpr_func; /* probe function string */ 786 dof_stridx_t dofpr_name; /* probe name string */ 787 dof_stridx_t dofpr_nargv; /* native argument type strings */ 788 dof_stridx_t dofpr_xargv; /* translated argument type strings */ 789 uint32_t dofpr_argidx; /* index of first argument mapping */ 790 uint32_t dofpr_offidx; /* index of first offset entry */ 791 uint8_t dofpr_nargc; /* native argument count */ 792 uint8_t dofpr_xargc; /* translated argument count */ 793 uint16_t dofpr_noffs; /* number of offset entries for probe */ 794 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ 795 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ 796 uint16_t dofpr_pad1; /* reserved for future use */ 797 uint32_t dofpr_pad2; /* reserved for future use */ 798 } dof_probe_t; 799 800 typedef struct dof_xlator { 801 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ 802 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ 803 dof_stridx_t dofxl_argv; /* input parameter type strings */ 804 uint32_t dofxl_argc; /* input parameter list length */ 805 dof_stridx_t dofxl_type; /* output type string name */ 806 dof_attr_t dofxl_attr; /* output stability attributes */ 807 } dof_xlator_t; 808 809 typedef struct dof_xlmember { 810 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ 811 dof_stridx_t dofxm_name; /* member name */ 812 dtrace_diftype_t dofxm_type; /* member type */ 813 } dof_xlmember_t; 814 815 typedef struct dof_xlref { 816 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ 817 uint32_t dofxr_member; /* index of referenced dof_xlmember */ 818 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ 819 } dof_xlref_t; 820 821 /* 822 * DTrace Intermediate Format Object (DIFO) 823 * 824 * A DIFO is used to store the compiled DIF for a D expression, its return 825 * type, and its string and variable tables. The string table is a single 826 * buffer of character data into which sets instructions and variable 827 * references can reference strings using a byte offset. The variable table 828 * is an array of dtrace_difv_t structures that describe the name and type of 829 * each variable and the id used in the DIF code. This structure is described 830 * above in the DIF section of this header file. The DIFO is used at both 831 * user-level (in the library) and in the kernel, but the structure is never 832 * passed between the two: the DOF structures form the only interface. As a 833 * result, the definition can change depending on the presence of _KERNEL. 834 */ 835 typedef struct dtrace_difo { 836 dif_instr_t *dtdo_buf; /* instruction buffer */ 837 uint64_t *dtdo_inttab; /* integer table (optional) */ 838 char *dtdo_strtab; /* string table (optional) */ 839 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ 840 uint_t dtdo_len; /* length of instruction buffer */ 841 uint_t dtdo_intlen; /* length of integer table */ 842 uint_t dtdo_strlen; /* length of string table */ 843 uint_t dtdo_varlen; /* length of variable table */ 844 dtrace_diftype_t dtdo_rtype; /* return type */ 845 uint_t dtdo_refcnt; /* owner reference count */ 846 uint_t dtdo_destructive; /* invokes destructive subroutines */ 847 #ifndef _KERNEL 848 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ 849 dof_relodesc_t *dtdo_ureltab; /* user relocations */ 850 struct dt_node **dtdo_xlmtab; /* translator references */ 851 uint_t dtdo_krelen; /* length of krelo table */ 852 uint_t dtdo_urelen; /* length of urelo table */ 853 uint_t dtdo_xlmlen; /* length of translator table */ 854 #endif 855 } dtrace_difo_t; 856 857 /* 858 * DTrace Enabling Description Structures 859 * 860 * When DTrace is tracking the description of a DTrace enabling entity (probe, 861 * predicate, action, ECB, record, etc.), it does so in a description 862 * structure. These structures all end in "desc", and are used at both 863 * user-level and in the kernel -- but (with the exception of 864 * dtrace_probedesc_t) they are never passed between them. Typically, 865 * user-level will use the description structures when assembling an enabling. 866 * It will then distill those description structures into a DOF object (see 867 * above), and send it into the kernel. The kernel will again use the 868 * description structures to create a description of the enabling as it reads 869 * the DOF. When the description is complete, the enabling will be actually 870 * created -- turning it into the structures that represent the enabling 871 * instead of merely describing it. Not surprisingly, the description 872 * structures bear a strong resemblance to the DOF structures that act as their 873 * conduit. 874 */ 875 struct dtrace_predicate; 876 877 typedef struct dtrace_probedesc { 878 dtrace_id_t dtpd_id; /* probe identifier */ 879 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ 880 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ 881 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ 882 char dtpd_name[DTRACE_NAMELEN]; /* probe name */ 883 } dtrace_probedesc_t; 884 885 typedef struct dtrace_repldesc { 886 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ 887 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ 888 } dtrace_repldesc_t; 889 890 typedef struct dtrace_preddesc { 891 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ 892 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ 893 } dtrace_preddesc_t; 894 895 typedef struct dtrace_actdesc { 896 dtrace_difo_t *dtad_difo; /* pointer to DIF object */ 897 struct dtrace_actdesc *dtad_next; /* next action */ 898 dtrace_actkind_t dtad_kind; /* kind of action */ 899 uint32_t dtad_ntuple; /* number in tuple */ 900 uint64_t dtad_arg; /* action argument */ 901 uint64_t dtad_uarg; /* user argument */ 902 int dtad_refcnt; /* reference count */ 903 } dtrace_actdesc_t; 904 905 typedef struct dtrace_ecbdesc { 906 dtrace_actdesc_t *dted_action; /* action description(s) */ 907 dtrace_preddesc_t dted_pred; /* predicate description */ 908 dtrace_probedesc_t dted_probe; /* probe description */ 909 uint64_t dted_uarg; /* library argument */ 910 int dted_refcnt; /* reference count */ 911 } dtrace_ecbdesc_t; 912 913 /* 914 * DTrace Metadata Description Structures 915 * 916 * DTrace separates the trace data stream from the metadata stream. The only 917 * metadata tokens placed in the data stream are enabled probe identifiers 918 * (EPIDs) or (in the case of aggregations) aggregation identifiers. In order 919 * to determine the structure of the data, DTrace consumers pass the token to 920 * the kernel, and receive in return a corresponding description of the enabled 921 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the 922 * dtrace_aggdesc structure). Both of these structures are expressed in terms 923 * of record descriptions (via the dtrace_recdesc structure) that describe the 924 * exact structure of the data. Some record descriptions may also contain a 925 * format identifier; this additional bit of metadata can be retrieved from the 926 * kernel, for which a format description is returned via the dtrace_fmtdesc 927 * structure. Note that all four of these structures must be bitness-neutral 928 * to allow for a 32-bit DTrace consumer on a 64-bit kernel. 929 */ 930 typedef struct dtrace_recdesc { 931 dtrace_actkind_t dtrd_action; /* kind of action */ 932 uint32_t dtrd_size; /* size of record */ 933 uint32_t dtrd_offset; /* offset in ECB's data */ 934 uint16_t dtrd_alignment; /* required alignment */ 935 uint16_t dtrd_format; /* format, if any */ 936 uint64_t dtrd_arg; /* action argument */ 937 uint64_t dtrd_uarg; /* user argument */ 938 } dtrace_recdesc_t; 939 940 typedef struct dtrace_eprobedesc { 941 dtrace_epid_t dtepd_epid; /* enabled probe ID */ 942 dtrace_id_t dtepd_probeid; /* probe ID */ 943 uint64_t dtepd_uarg; /* library argument */ 944 uint32_t dtepd_size; /* total size */ 945 int dtepd_nrecs; /* number of records */ 946 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ 947 } dtrace_eprobedesc_t; 948 949 typedef struct dtrace_aggdesc { 950 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ 951 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ 952 int dtagd_flags; /* not filled in by kernel */ 953 dtrace_aggid_t dtagd_id; /* aggregation ID */ 954 dtrace_epid_t dtagd_epid; /* enabled probe ID */ 955 uint32_t dtagd_size; /* size in bytes */ 956 int dtagd_nrecs; /* number of records */ 957 uint32_t dtagd_pad; /* explicit padding */ 958 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ 959 } dtrace_aggdesc_t; 960 961 typedef struct dtrace_fmtdesc { 962 DTRACE_PTR(char, dtfd_string); /* format string */ 963 int dtfd_length; /* length of format string */ 964 uint16_t dtfd_format; /* format identifier */ 965 } dtrace_fmtdesc_t; 966 967 #define DTRACE_SIZEOF_EPROBEDESC(desc) \ 968 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ 969 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 970 971 #define DTRACE_SIZEOF_AGGDESC(desc) \ 972 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ 973 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 974 975 /* 976 * DTrace Option Interface 977 * 978 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections 979 * in a DOF image. The dof_optdesc structure contains an option identifier and 980 * an option value. The valid option identifiers are found below; the mapping 981 * between option identifiers and option identifying strings is maintained at 982 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the 983 * following are potentially valid option values: all positive integers, zero 984 * and negative one. Some options (notably "bufpolicy" and "bufresize") take 985 * predefined tokens as their values; these are defined with 986 * DTRACEOPT_{option}_{token}. 987 */ 988 #define DTRACEOPT_BUFSIZE 0 /* buffer size */ 989 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ 990 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ 991 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ 992 #define DTRACEOPT_SPECSIZE 4 /* speculation size */ 993 #define DTRACEOPT_NSPEC 5 /* number of speculations */ 994 #define DTRACEOPT_STRSIZE 6 /* string size */ 995 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ 996 #define DTRACEOPT_CPU 8 /* CPU to trace */ 997 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ 998 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ 999 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ 1000 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ 1001 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ 1002 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ 1003 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ 1004 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ 1005 #define DTRACEOPT_STATUSRATE 17 /* status rate */ 1006 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ 1007 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ 1008 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ 1009 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ 1010 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ 1011 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ 1012 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ 1013 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ 1014 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ 1015 #define DTRACEOPT_MAX 27 /* number of options */ 1016 1017 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ 1018 1019 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ 1020 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ 1021 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ 1022 1023 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ 1024 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ 1025 1026 /* 1027 * DTrace Buffer Interface 1028 * 1029 * In order to get a snapshot of the principal or aggregation buffer, 1030 * user-level passes a buffer description to the kernel with the dtrace_bufdesc 1031 * structure. This describes which CPU user-level is interested in, and 1032 * where user-level wishes the kernel to snapshot the buffer to (the 1033 * dtbd_data field). The kernel uses the same structure to pass back some 1034 * information regarding the buffer: the size of data actually copied out, the 1035 * number of drops, the number of errors, and the offset of the oldest record. 1036 * If the buffer policy is a "switch" policy, taking a snapshot of the 1037 * principal buffer has the additional effect of switching the active and 1038 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has 1039 * the additional effect of switching the active and inactive buffers. 1040 */ 1041 typedef struct dtrace_bufdesc { 1042 uint64_t dtbd_size; /* size of buffer */ 1043 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ 1044 uint32_t dtbd_errors; /* number of errors */ 1045 uint64_t dtbd_drops; /* number of drops */ 1046 DTRACE_PTR(char, dtbd_data); /* data */ 1047 uint64_t dtbd_oldest; /* offset of oldest record */ 1048 } dtrace_bufdesc_t; 1049 1050 /* 1051 * DTrace Status 1052 * 1053 * The status of DTrace is relayed via the dtrace_status structure. This 1054 * structure contains members to count drops other than the capacity drops 1055 * available via the buffer interface (see above). This consists of dynamic 1056 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and 1057 * speculative drops (including capacity speculative drops, drops due to busy 1058 * speculative buffers and drops due to unavailable speculative buffers). 1059 * Additionally, the status structure contains a field to indicate the number 1060 * of "fill"-policy buffers have been filled and a boolean field to indicate 1061 * that exit() has been called. If the dtst_exiting field is non-zero, no 1062 * further data will be generated until tracing is stopped (at which time any 1063 * enablings of the END action will be processed); if user-level sees that 1064 * this field is non-zero, tracing should be stopped as soon as possible. 1065 */ 1066 typedef struct dtrace_status { 1067 uint64_t dtst_dyndrops; /* dynamic drops */ 1068 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ 1069 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ 1070 uint64_t dtst_specdrops; /* speculative drops */ 1071 uint64_t dtst_specdrops_busy; /* spec drops due to busy */ 1072 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ 1073 uint64_t dtst_errors; /* total errors */ 1074 uint64_t dtst_filled; /* number of filled bufs */ 1075 uint64_t dtst_stkstroverflows; /* stack string tab overflows */ 1076 uint64_t dtst_dblerrors; /* errors in ERROR probes */ 1077 char dtst_killed; /* non-zero if killed */ 1078 char dtst_exiting; /* non-zero if exit() called */ 1079 char dtst_pad[6]; /* pad out to 64-bit align */ 1080 } dtrace_status_t; 1081 1082 /* 1083 * DTrace Configuration 1084 * 1085 * User-level may need to understand some elements of the kernel DTrace 1086 * configuration in order to generate correct DIF. This information is 1087 * conveyed via the dtrace_conf structure. 1088 */ 1089 typedef struct dtrace_conf { 1090 uint_t dtc_difversion; /* supported DIF version */ 1091 uint_t dtc_difintregs; /* # of DIF integer registers */ 1092 uint_t dtc_diftupregs; /* # of DIF tuple registers */ 1093 uint_t dtc_ctfmodel; /* CTF data model */ 1094 uint_t dtc_pad[8]; /* reserved for future use */ 1095 } dtrace_conf_t; 1096 1097 /* 1098 * DTrace Faults 1099 * 1100 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; 1101 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe 1102 * postprocessing at user-level. Probe processing faults induce an ERROR 1103 * probe and are replicated in unistd.d to allow users' ERROR probes to decode 1104 * the error condition using thse symbolic labels. 1105 */ 1106 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ 1107 #define DTRACEFLT_BADADDR 1 /* Bad address */ 1108 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ 1109 #define DTRACEFLT_ILLOP 3 /* Illegal operation */ 1110 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ 1111 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ 1112 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ 1113 #define DTRACEFLT_UPRIV 7 /* Illegal user access */ 1114 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ 1115 #define DTRACEFLT_BADSTACK 9 /* Bad stack */ 1116 1117 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ 1118 1119 /* 1120 * DTrace Argument Types 1121 * 1122 * Because it would waste both space and time, argument types do not reside 1123 * with the probe. In order to determine argument types for args[X] 1124 * variables, the D compiler queries for argument types on a probe-by-probe 1125 * basis. (This optimizes for the common case that arguments are either not 1126 * used or used in an untyped fashion.) Typed arguments are specified with a 1127 * string of the type name in the dtragd_native member of the argument 1128 * description structure. Typed arguments may be further translated to types 1129 * of greater stability; the provider indicates such a translated argument by 1130 * filling in the dtargd_xlate member with the string of the translated type. 1131 * Finally, the provider may indicate which argument value a given argument 1132 * maps to by setting the dtargd_mapping member -- allowing a single argument 1133 * to map to multiple args[X] variables. 1134 */ 1135 typedef struct dtrace_argdesc { 1136 dtrace_id_t dtargd_id; /* probe identifier */ 1137 int dtargd_ndx; /* arg number (-1 iff none) */ 1138 int dtargd_mapping; /* value mapping */ 1139 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ 1140 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ 1141 } dtrace_argdesc_t; 1142 1143 /* 1144 * DTrace Stability Attributes 1145 * 1146 * Each DTrace provider advertises the name and data stability of each of its 1147 * probe description components, as well as its architectural dependencies. 1148 * The D compiler can query the provider attributes (dtrace_pattr_t below) in 1149 * order to compute the properties of an input program and report them. 1150 */ 1151 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ 1152 typedef uint8_t dtrace_class_t; /* architectural dependency class */ 1153 1154 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ 1155 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ 1156 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ 1157 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ 1158 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ 1159 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ 1160 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ 1161 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ 1162 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ 1163 1164 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ 1165 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ 1166 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ 1167 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ 1168 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ 1169 #define DTRACE_CLASS_COMMON 5 /* common to all systems */ 1170 #define DTRACE_CLASS_MAX 5 /* maximum valid class */ 1171 1172 #define DTRACE_PRIV_NONE 0x0000 1173 #define DTRACE_PRIV_KERNEL 0x0001 1174 #define DTRACE_PRIV_USER 0x0002 1175 #define DTRACE_PRIV_PROC 0x0004 1176 #define DTRACE_PRIV_OWNER 0x0008 1177 #define DTRACE_PRIV_ZONEOWNER 0x0010 1178 1179 #define DTRACE_PRIV_ALL \ 1180 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ 1181 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) 1182 1183 typedef struct dtrace_ppriv { 1184 uint32_t dtpp_flags; /* privilege flags */ 1185 uid_t dtpp_uid; /* user ID */ 1186 zoneid_t dtpp_zoneid; /* zone ID */ 1187 } dtrace_ppriv_t; 1188 1189 typedef struct dtrace_attribute { 1190 dtrace_stability_t dtat_name; /* entity name stability */ 1191 dtrace_stability_t dtat_data; /* entity data stability */ 1192 dtrace_class_t dtat_class; /* entity data dependency */ 1193 } dtrace_attribute_t; 1194 1195 typedef struct dtrace_pattr { 1196 dtrace_attribute_t dtpa_provider; /* provider attributes */ 1197 dtrace_attribute_t dtpa_mod; /* module attributes */ 1198 dtrace_attribute_t dtpa_func; /* function attributes */ 1199 dtrace_attribute_t dtpa_name; /* name attributes */ 1200 dtrace_attribute_t dtpa_args; /* args[] attributes */ 1201 } dtrace_pattr_t; 1202 1203 typedef struct dtrace_providerdesc { 1204 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ 1205 dtrace_pattr_t dtvd_attr; /* stability attributes */ 1206 dtrace_ppriv_t dtvd_priv; /* privileges required */ 1207 } dtrace_providerdesc_t; 1208 1209 /* 1210 * DTrace Pseudodevice Interface 1211 * 1212 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace 1213 * pseudodevice driver. These ioctls comprise the user-kernel interface to 1214 * DTrace. 1215 */ 1216 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) 1217 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ 1218 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ 1219 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ 1220 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ 1221 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ 1222 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ 1223 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ 1224 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ 1225 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ 1226 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ 1227 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ 1228 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ 1229 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ 1230 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ 1231 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ 1232 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ 1233 1234 /* 1235 * DTrace Helpers 1236 * 1237 * In general, DTrace establishes probes in processes and takes actions on 1238 * processes without knowing their specific user-level structures. Instead of 1239 * existing in the framework, process-specific knowledge is contained by the 1240 * enabling D program -- which can apply process-specific knowledge by making 1241 * appropriate use of DTrace primitives like copyin() and copyinstr() to 1242 * operate on user-level data. However, there may exist some specific probes 1243 * of particular semantic relevance that the application developer may wish to 1244 * explicitly export. For example, an application may wish to export a probe 1245 * at the point that it begins and ends certain well-defined transactions. In 1246 * addition to providing probes, programs may wish to offer assistance for 1247 * certain actions. For example, in highly dynamic environments (e.g., Java), 1248 * it may be difficult to obtain a stack trace in terms of meaningful symbol 1249 * names (the translation from instruction addresses to corresponding symbol 1250 * names may only be possible in situ); these environments may wish to define 1251 * a series of actions to be applied in situ to obtain a meaningful stack 1252 * trace. 1253 * 1254 * These two mechanisms -- user-level statically defined tracing and assisting 1255 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified 1256 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of 1257 * providers, probes and their arguments. If a helper wishes to provide 1258 * action assistance, probe descriptions and corresponding DIF actions may be 1259 * specified in the helper DOF. For such helper actions, however, the probe 1260 * description describes the specific helper: all DTrace helpers have the 1261 * provider name "dtrace" and the module name "helper", and the name of the 1262 * helper is contained in the function name (for example, the ustack() helper 1263 * is named "ustack"). Any helper-specific name may be contained in the name 1264 * (for example, if a helper were to have a constructor, it might be named 1265 * "dtrace:helper:<helper>:init"). Helper actions are only called when the 1266 * action that they are helping is taken. Helper actions may only return DIF 1267 * expressions, and may only call the following subroutines: 1268 * 1269 * alloca() <= Allocates memory out of the consumer's scratch space 1270 * bcopy() <= Copies memory to scratch space 1271 * copyin() <= Copies memory from user-level into consumer's scratch 1272 * copyinto() <= Copies memory into a specific location in scratch 1273 * copyinstr() <= Copies a string into a specific location in scratch 1274 * 1275 * Helper actions may only access the following built-in variables: 1276 * 1277 * curthread <= Current kthread_t pointer 1278 * tid <= Current thread identifier 1279 * pid <= Current process identifier 1280 * ppid <= Parent process identifier 1281 * uid <= Current user ID 1282 * gid <= Current group ID 1283 * execname <= Current executable name 1284 * zonename <= Current zone name 1285 * 1286 * Helper actions may not manipulate or allocate dynamic variables, but they 1287 * may have clause-local and statically-allocated global variables. The 1288 * helper action variable state is specific to the helper action -- variables 1289 * used by the helper action may not be accessed outside of the helper 1290 * action, and the helper action may not access variables that like outside 1291 * of it. Helper actions may not load from kernel memory at-large; they are 1292 * restricting to loading current user state (via copyin() and variants) and 1293 * scratch space. As with probe enablings, helper actions are executed in 1294 * program order. The result of the helper action is the result of the last 1295 * executing helper expression. 1296 * 1297 * Helpers -- composed of either providers/probes or probes/actions (or both) 1298 * -- are added by opening the "helper" minor node, and issuing an ioctl(2) 1299 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This 1300 * encapsulates the name and base address of the user-level library or 1301 * executable publishing the helpers and probes as well as the DOF that 1302 * contains the definitions of those helpers and probes. 1303 * 1304 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy 1305 * helpers and should no longer be used. No other ioctls are valid on the 1306 * helper minor node. 1307 */ 1308 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) 1309 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ 1310 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ 1311 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ 1312 1313 typedef struct dof_helper { 1314 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ 1315 uint64_t dofhp_addr; /* base address of object */ 1316 uint64_t dofhp_dof; /* address of helper DOF */ 1317 } dof_helper_t; 1318 1319 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ 1320 #define DTRACEMNR_HELPER "helper" /* node for helpers */ 1321 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ 1322 #define DTRACEMNRN_HELPER 1 /* minor for helpers */ 1323 #define DTRACEMNRN_CLONE 2 /* first clone minor */ 1324 1325 #ifdef _KERNEL 1326 1327 /* 1328 * DTrace Provider API 1329 * 1330 * The following functions are implemented by the DTrace framework and are 1331 * used to implement separate in-kernel DTrace providers. Common functions 1332 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are 1333 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. 1334 * 1335 * The provider API has two halves: the API that the providers consume from 1336 * DTrace, and the API that providers make available to DTrace. 1337 * 1338 * 1 Framework-to-Provider API 1339 * 1340 * 1.1 Overview 1341 * 1342 * The Framework-to-Provider API is represented by the dtrace_pops structure 1343 * that the provider passes to the framework when registering itself. This 1344 * structure consists of the following members: 1345 * 1346 * dtps_provide() <-- Provide all probes, all modules 1347 * dtps_provide_module() <-- Provide all probes in specified module 1348 * dtps_enable() <-- Enable specified probe 1349 * dtps_disable() <-- Disable specified probe 1350 * dtps_suspend() <-- Suspend specified probe 1351 * dtps_resume() <-- Resume specified probe 1352 * dtps_getargdesc() <-- Get the argument description for args[X] 1353 * dtps_getargval() <-- Get the value for an argX or args[X] variable 1354 * dtps_usermode() <-- Find out if the probe was fired in user mode 1355 * dtps_destroy() <-- Destroy all state associated with this probe 1356 * 1357 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) 1358 * 1359 * 1.2.1 Overview 1360 * 1361 * Called to indicate that the provider should provide all probes. If the 1362 * specified description is non-NULL, dtps_provide() is being called because 1363 * no probe matched a specified probe -- if the provider has the ability to 1364 * create custom probes, it may wish to create a probe that matches the 1365 * specified description. 1366 * 1367 * 1.2.2 Arguments and notes 1368 * 1369 * The first argument is the cookie as passed to dtrace_register(). The 1370 * second argument is a pointer to a probe description that the provider may 1371 * wish to consider when creating custom probes. The provider is expected to 1372 * call back into the DTrace framework via dtrace_probe_create() to create 1373 * any necessary probes. dtps_provide() may be called even if the provider 1374 * has made available all probes; the provider should check the return value 1375 * of dtrace_probe_create() to handle this case. Note that the provider need 1376 * not implement both dtps_provide() and dtps_provide_module(); see 1377 * "Arguments and Notes" for dtrace_register(), below. 1378 * 1379 * 1.2.3 Return value 1380 * 1381 * None. 1382 * 1383 * 1.2.4 Caller's context 1384 * 1385 * dtps_provide() is typically called from open() or ioctl() context, but may 1386 * be called from other contexts as well. The DTrace framework is locked in 1387 * such a way that providers may not register or unregister. This means that 1388 * the provider may not call any DTrace API that affects its registration with 1389 * the framework, including dtrace_register(), dtrace_unregister(), 1390 * dtrace_invalidate(), and dtrace_condense(). However, the context is such 1391 * that the provider may (and indeed, is expected to) call probe-related 1392 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), 1393 * and dtrace_probe_arg(). 1394 * 1395 * 1.3 void dtps_provide_module(void *arg, struct modctl *mp) 1396 * 1397 * 1.3.1 Overview 1398 * 1399 * Called to indicate that the provider should provide all probes in the 1400 * specified module. 1401 * 1402 * 1.3.2 Arguments and notes 1403 * 1404 * The first argument is the cookie as passed to dtrace_register(). The 1405 * second argument is a pointer to a modctl structure that indicates the 1406 * module for which probes should be created. 1407 * 1408 * 1.3.3 Return value 1409 * 1410 * None. 1411 * 1412 * 1.3.4 Caller's context 1413 * 1414 * dtps_provide_module() may be called from open() or ioctl() context, but 1415 * may also be called from a module loading context. mod_lock is held, and 1416 * the DTrace framework is locked in such a way that providers may not 1417 * register or unregister. This means that the provider may not call any 1418 * DTrace API that affects its registration with the framework, including 1419 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1420 * dtrace_condense(). However, the context is such that the provider may (and 1421 * indeed, is expected to) call probe-related DTrace routines, including 1422 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note 1423 * that the provider need not implement both dtps_provide() and 1424 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), 1425 * below. 1426 * 1427 * 1.4 int dtps_enable(void *arg, dtrace_id_t id, void *parg) 1428 * 1429 * 1.4.1 Overview 1430 * 1431 * Called to enable the specified probe. 1432 * 1433 * 1.4.2 Arguments and notes 1434 * 1435 * The first argument is the cookie as passed to dtrace_register(). The 1436 * second argument is the identifier of the probe to be enabled. The third 1437 * argument is the probe argument as passed to dtrace_probe_create(). 1438 * dtps_enable() will be called when a probe transitions from not being 1439 * enabled at all to having one or more ECB. The number of ECBs associated 1440 * with the probe may change without subsequent calls into the provider. 1441 * When the number of ECBs drops to zero, the provider will be explicitly 1442 * told to disable the probe via dtps_disable(). dtrace_probe() should never 1443 * be called for a probe identifier that hasn't been explicitly enabled via 1444 * dtps_enable(). 1445 * 1446 * 1.4.3 Return value 1447 * 1448 * On success, dtps_enable() should return 0. On failure, -1 should be 1449 * returned. 1450 * 1451 * 1.4.4 Caller's context 1452 * 1453 * The DTrace framework is locked in such a way that it may not be called 1454 * back into at all. cpu_lock is held. mod_lock is not held and may not 1455 * be acquired. 1456 * 1457 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) 1458 * 1459 * 1.5.1 Overview 1460 * 1461 * Called to disable the specified probe. 1462 * 1463 * 1.5.2 Arguments and notes 1464 * 1465 * The first argument is the cookie as passed to dtrace_register(). The 1466 * second argument is the identifier of the probe to be disabled. The third 1467 * argument is the probe argument as passed to dtrace_probe_create(). 1468 * dtps_disable() will be called when a probe transitions from being enabled 1469 * to having zero ECBs. dtrace_probe() should never be called for a probe 1470 * identifier that has been explicitly enabled via dtps_disable(). 1471 * 1472 * 1.5.3 Return value 1473 * 1474 * None. 1475 * 1476 * 1.5.4 Caller's context 1477 * 1478 * The DTrace framework is locked in such a way that it may not be called 1479 * back into at all. cpu_lock is held. mod_lock is not held and may not 1480 * be acquired. 1481 * 1482 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) 1483 * 1484 * 1.6.1 Overview 1485 * 1486 * Called to suspend the specified enabled probe. This entry point is for 1487 * providers that may need to suspend some or all of their probes when CPUs 1488 * are being powered on or when the boot monitor is being entered for a 1489 * prolonged period of time. 1490 * 1491 * 1.6.2 Arguments and notes 1492 * 1493 * The first argument is the cookie as passed to dtrace_register(). The 1494 * second argument is the identifier of the probe to be suspended. The 1495 * third argument is the probe argument as passed to dtrace_probe_create(). 1496 * dtps_suspend will only be called on an enabled probe. Providers that 1497 * provide a dtps_suspend entry point will want to take roughly the action 1498 * that it takes for dtps_disable. 1499 * 1500 * 1.6.3 Return value 1501 * 1502 * None. 1503 * 1504 * 1.6.4 Caller's context 1505 * 1506 * Interrupts are disabled. The DTrace framework is in a state such that the 1507 * specified probe cannot be disabled or destroyed for the duration of 1508 * dtps_suspend(). As interrupts are disabled, the provider is afforded 1509 * little latitude; the provider is expected to do no more than a store to 1510 * memory. 1511 * 1512 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) 1513 * 1514 * 1.7.1 Overview 1515 * 1516 * Called to resume the specified enabled probe. This entry point is for 1517 * providers that may need to resume some or all of their probes after the 1518 * completion of an event that induced a call to dtps_suspend(). 1519 * 1520 * 1.7.2 Arguments and notes 1521 * 1522 * The first argument is the cookie as passed to dtrace_register(). The 1523 * second argument is the identifier of the probe to be resumed. The 1524 * third argument is the probe argument as passed to dtrace_probe_create(). 1525 * dtps_resume will only be called on an enabled probe. Providers that 1526 * provide a dtps_resume entry point will want to take roughly the action 1527 * that it takes for dtps_enable. 1528 * 1529 * 1.7.3 Return value 1530 * 1531 * None. 1532 * 1533 * 1.7.4 Caller's context 1534 * 1535 * Interrupts are disabled. The DTrace framework is in a state such that the 1536 * specified probe cannot be disabled or destroyed for the duration of 1537 * dtps_resume(). As interrupts are disabled, the provider is afforded 1538 * little latitude; the provider is expected to do no more than a store to 1539 * memory. 1540 * 1541 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, 1542 * dtrace_argdesc_t *desc) 1543 * 1544 * 1.8.1 Overview 1545 * 1546 * Called to retrieve the argument description for an args[X] variable. 1547 * 1548 * 1.8.2 Arguments and notes 1549 * 1550 * The first argument is the cookie as passed to dtrace_register(). The 1551 * second argument is the identifier of the current probe. The third 1552 * argument is the probe argument as passed to dtrace_probe_create(). The 1553 * fourth argument is a pointer to the argument description. This 1554 * description is both an input and output parameter: it contains the 1555 * index of the desired argument in the dtargd_ndx field, and expects 1556 * the other fields to be filled in upon return. If there is no argument 1557 * corresponding to the specified index, the dtargd_ndx field should be set 1558 * to DTRACE_ARGNONE. 1559 * 1560 * 1.8.3 Return value 1561 * 1562 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping 1563 * members of the dtrace_argdesc_t structure are all output values. 1564 * 1565 * 1.8.4 Caller's context 1566 * 1567 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and 1568 * the DTrace framework is locked in such a way that providers may not 1569 * register or unregister. This means that the provider may not call any 1570 * DTrace API that affects its registration with the framework, including 1571 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1572 * dtrace_condense(). 1573 * 1574 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, 1575 * int argno, int aframes) 1576 * 1577 * 1.9.1 Overview 1578 * 1579 * Called to retrieve a value for an argX or args[X] variable. 1580 * 1581 * 1.9.2 Arguments and notes 1582 * 1583 * The first argument is the cookie as passed to dtrace_register(). The 1584 * second argument is the identifier of the current probe. The third 1585 * argument is the probe argument as passed to dtrace_probe_create(). The 1586 * fourth argument is the number of the argument (the X in the example in 1587 * 1.9.1). The fifth argument is the number of stack frames that were used 1588 * to get from the actual place in the code that fired the probe to 1589 * dtrace_probe() itself, the so-called artificial frames. This argument may 1590 * be used to descend an appropriate number of frames to find the correct 1591 * values. If this entry point is left NULL, the dtrace_getarg() built-in 1592 * function is used. 1593 * 1594 * 1.9.3 Return value 1595 * 1596 * The value of the argument. 1597 * 1598 * 1.9.4 Caller's context 1599 * 1600 * This is called from within dtrace_probe() meaning that interrupts 1601 * are disabled. No locks should be taken within this entry point. 1602 * 1603 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) 1604 * 1605 * 1.10.1 Overview 1606 * 1607 * Called to determine if the probe was fired in a user context. 1608 * 1609 * 1.10.2 Arguments and notes 1610 * 1611 * The first argument is the cookie as passed to dtrace_register(). The 1612 * second argument is the identifier of the current probe. The third 1613 * argument is the probe argument as passed to dtrace_probe_create(). This 1614 * entry point must not be left NULL for providers whose probes allow for 1615 * mixed mode tracing, that is to say those probes that can fire during 1616 * kernel- _or_ user-mode execution 1617 * 1618 * 1.10.3 Return value 1619 * 1620 * A boolean value. 1621 * 1622 * 1.10.4 Caller's context 1623 * 1624 * This is called from within dtrace_probe() meaning that interrupts 1625 * are disabled. No locks should be taken within this entry point. 1626 * 1627 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) 1628 * 1629 * 1.11.1 Overview 1630 * 1631 * Called to destroy the specified probe. 1632 * 1633 * 1.11.2 Arguments and notes 1634 * 1635 * The first argument is the cookie as passed to dtrace_register(). The 1636 * second argument is the identifier of the probe to be destroyed. The third 1637 * argument is the probe argument as passed to dtrace_probe_create(). The 1638 * provider should free all state associated with the probe. The framework 1639 * guarantees that dtps_destroy() is only called for probes that have either 1640 * been disabled via dtps_disable() or were never enabled via dtps_enable(). 1641 * Once dtps_disable() has been called for a probe, no further call will be 1642 * made specifying the probe. 1643 * 1644 * 1.11.3 Return value 1645 * 1646 * None. 1647 * 1648 * 1.11.4 Caller's context 1649 * 1650 * The DTrace framework is locked in such a way that it may not be called 1651 * back into at all. mod_lock is held. cpu_lock is not held, and may not be 1652 * acquired. 1653 * 1654 * 1655 * 2 Provider-to-Framework API 1656 * 1657 * 2.1 Overview 1658 * 1659 * The Provider-to-Framework API provides the mechanism for the provider to 1660 * register itself with the DTrace framework, to create probes, to lookup 1661 * probes and (most importantly) to fire probes. The Provider-to-Framework 1662 * consists of: 1663 * 1664 * dtrace_register() <-- Register a provider with the DTrace framework 1665 * dtrace_unregister() <-- Remove a provider's DTrace registration 1666 * dtrace_invalidate() <-- Invalidate the specified provider 1667 * dtrace_condense() <-- Remove a provider's unenabled probes 1668 * dtrace_attached() <-- Indicates whether or not DTrace has attached 1669 * dtrace_probe_create() <-- Create a DTrace probe 1670 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name 1671 * dtrace_probe_arg() <-- Return the probe argument for a specific probe 1672 * dtrace_probe() <-- Fire the specified probe 1673 * 1674 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, 1675 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, 1676 * dtrace_provider_id_t *idp) 1677 * 1678 * 2.2.1 Overview 1679 * 1680 * dtrace_register() registers the calling provider with the DTrace 1681 * framework. It should generally be called by DTrace providers in their 1682 * attach(9E) entry point. 1683 * 1684 * 2.2.2 Arguments and Notes 1685 * 1686 * The first argument is the name of the provider. The second argument is a 1687 * pointer to the stability attributes for the provider. The third argument 1688 * is the privilege flags for the provider, and must be some combination of: 1689 * 1690 * DTRACE_PRIV_NONE <= All users may enable probes from this provider 1691 * 1692 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may 1693 * enable probes from this provider 1694 * 1695 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may 1696 * enable probes from this provider 1697 * 1698 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL 1699 * may enable probes from this provider 1700 * 1701 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on 1702 * the privilege requirements above. These probes 1703 * require either (a) a user ID matching the user 1704 * ID of the cred passed in the fourth argument 1705 * or (b) the PRIV_PROC_OWNER privilege. 1706 * 1707 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on 1708 * the privilege requirements above. These probes 1709 * require either (a) a zone ID matching the zone 1710 * ID of the cred passed in the fourth argument 1711 * or (b) the PRIV_PROC_ZONE privilege. 1712 * 1713 * Note that these flags designate the _visibility_ of the probes, not 1714 * the conditions under which they may or may not fire. 1715 * 1716 * The fourth argument is the credential that is associated with the 1717 * provider. This argument should be NULL if the privilege flags don't 1718 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the 1719 * framework stashes the uid and zoneid represented by this credential 1720 * for use at probe-time, in implicit predicates. These limit visibility 1721 * of the probes to users and/or zones which have sufficient privilege to 1722 * access them. 1723 * 1724 * The fifth argument is a DTrace provider operations vector, which provides 1725 * the implementation for the Framework-to-Provider API. (See Section 1, 1726 * above.) This must be non-NULL, and each member must be non-NULL. The 1727 * exceptions to this are (1) the dtps_provide() and dtps_provide_module() 1728 * members (if the provider so desires, _one_ of these members may be left 1729 * NULL -- denoting that the provider only implements the other) and (2) 1730 * the dtps_suspend() and dtps_resume() members, which must either both be 1731 * NULL or both be non-NULL. 1732 * 1733 * The sixth argument is a cookie to be specified as the first argument for 1734 * each function in the Framework-to-Provider API. This argument may have 1735 * any value. 1736 * 1737 * The final argument is a pointer to dtrace_provider_id_t. If 1738 * dtrace_register() successfully completes, the provider identifier will be 1739 * stored in the memory pointed to be this argument. This argument must be 1740 * non-NULL. 1741 * 1742 * 2.2.3 Return value 1743 * 1744 * On success, dtrace_register() returns 0 and stores the new provider's 1745 * identifier into the memory pointed to by the idp argument. On failure, 1746 * dtrace_register() returns an errno: 1747 * 1748 * EINVAL The arguments passed to dtrace_register() were somehow invalid. 1749 * This may because a parameter that must be non-NULL was NULL, 1750 * because the name was invalid (either empty or an illegal 1751 * provider name) or because the attributes were invalid. 1752 * 1753 * No other failure code is returned. 1754 * 1755 * 2.2.4 Caller's context 1756 * 1757 * dtrace_register() may induce calls to dtrace_provide(); the provider must 1758 * hold no locks across dtrace_register() that may also be acquired by 1759 * dtrace_provide(). cpu_lock and mod_lock must not be held. 1760 * 1761 * 2.3 int dtrace_unregister(dtrace_provider_t id) 1762 * 1763 * 2.3.1 Overview 1764 * 1765 * Unregisters the specified provider from the DTrace framework. It should 1766 * generally be called by DTrace providers in their detach(9E) entry point. 1767 * 1768 * 2.3.2 Arguments and Notes 1769 * 1770 * The only argument is the provider identifier, as returned from a 1771 * successful call to dtrace_register(). As a result of calling 1772 * dtrace_unregister(), the DTrace framework will call back into the provider 1773 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully 1774 * completes, however, the DTrace framework will no longer make calls through 1775 * the Framework-to-Provider API. 1776 * 1777 * 2.3.3 Return value 1778 * 1779 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() 1780 * returns an errno: 1781 * 1782 * EBUSY There are currently processes that have the DTrace pseudodevice 1783 * open, or there exists an anonymous enabling that hasn't yet 1784 * been claimed. 1785 * 1786 * No other failure code is returned. 1787 * 1788 * 2.3.4 Caller's context 1789 * 1790 * Because a call to dtrace_unregister() may induce calls through the 1791 * Framework-to-Provider API, the caller may not hold any lock across 1792 * dtrace_register() that is also acquired in any of the Framework-to- 1793 * Provider API functions. Additionally, mod_lock may not be held. 1794 * 1795 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) 1796 * 1797 * 2.4.1 Overview 1798 * 1799 * Invalidates the specified provider. All subsequent probe lookups for the 1800 * specified provider will fail, but its probes will not be removed. 1801 * 1802 * 2.4.2 Arguments and note 1803 * 1804 * The only argument is the provider identifier, as returned from a 1805 * successful call to dtrace_register(). In general, a provider's probes 1806 * always remain valid; dtrace_invalidate() is a mechanism for invalidating 1807 * an entire provider, regardless of whether or not probes are enabled or 1808 * not. Note that dtrace_invalidate() will _not_ prevent already enabled 1809 * probes from firing -- it will merely prevent any new enablings of the 1810 * provider's probes. 1811 * 1812 * 2.5 int dtrace_condense(dtrace_provider_id_t id) 1813 * 1814 * 2.5.1 Overview 1815 * 1816 * Removes all the unenabled probes for the given provider. This function is 1817 * not unlike dtrace_unregister(), except that it doesn't remove the 1818 * provider just as many of its associated probes as it can. 1819 * 1820 * 2.5.2 Arguments and Notes 1821 * 1822 * As with dtrace_unregister(), the sole argument is the provider identifier 1823 * as returned from a successful call to dtrace_register(). As a result of 1824 * calling dtrace_condense(), the DTrace framework will call back into the 1825 * given provider's dtps_destroy() entry point for each of the provider's 1826 * unenabled probes. 1827 * 1828 * 2.5.3 Return value 1829 * 1830 * Currently, dtrace_condense() always returns 0. However, consumers of this 1831 * function should check the return value as appropriate; its behavior may 1832 * change in the future. 1833 * 1834 * 2.5.4 Caller's context 1835 * 1836 * As with dtrace_unregister(), the caller may not hold any lock across 1837 * dtrace_condense() that is also acquired in the provider's entry points. 1838 * Also, mod_lock may not be held. 1839 * 1840 * 2.6 int dtrace_attached() 1841 * 1842 * 2.6.1 Overview 1843 * 1844 * Indicates whether or not DTrace has attached. 1845 * 1846 * 2.6.2 Arguments and Notes 1847 * 1848 * For most providers, DTrace makes initial contact beyond registration. 1849 * That is, once a provider has registered with DTrace, it waits to hear 1850 * from DTrace to create probes. However, some providers may wish to 1851 * proactively create probes without first being told by DTrace to do so. 1852 * If providers wish to do this, they must first call dtrace_attached() to 1853 * determine if DTrace itself has attached. If dtrace_attached() returns 0, 1854 * the provider must not make any other Provider-to-Framework API call. 1855 * 1856 * 2.6.3 Return value 1857 * 1858 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. 1859 * 1860 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, 1861 * const char *func, const char *name, int aframes, void *arg) 1862 * 1863 * 2.7.1 Overview 1864 * 1865 * Creates a probe with specified module name, function name, and name. 1866 * 1867 * 2.7.2 Arguments and Notes 1868 * 1869 * The first argument is the provider identifier, as returned from a 1870 * successful call to dtrace_register(). The second, third, and fourth 1871 * arguments are the module name, function name, and probe name, 1872 * respectively. Of these, module name and function name may both be NULL 1873 * (in which case the probe is considered to be unanchored), or they may both 1874 * be non-NULL. The name must be non-NULL, and must point to a non-empty 1875 * string. 1876 * 1877 * The fifth argument is the number of artificial stack frames that will be 1878 * found on the stack when dtrace_probe() is called for the new probe. These 1879 * artificial frames will be automatically be pruned should the stack() or 1880 * stackdepth() functions be called as part of one of the probe's ECBs. If 1881 * the parameter doesn't add an artificial frame, this parameter should be 1882 * zero. 1883 * 1884 * The final argument is a probe argument that will be passed back to the 1885 * provider when a probe-specific operation is called. (e.g., via 1886 * dtps_enable(), dtps_disable(), etc.) 1887 * 1888 * Note that it is up to the provider to be sure that the probe that it 1889 * creates does not already exist -- if the provider is unsure of the probe's 1890 * existence, it should assure its absence with dtrace_probe_lookup() before 1891 * calling dtrace_probe_create(). 1892 * 1893 * 2.7.3 Return value 1894 * 1895 * dtrace_probe_create() always succeeds, and always returns the identifier 1896 * of the newly-created probe. 1897 * 1898 * 2.7.4 Caller's context 1899 * 1900 * While dtrace_probe_create() is generally expected to be called from 1901 * dtps_provide() and/or dtps_provide_module(), it may be called from other 1902 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1903 * 1904 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, 1905 * const char *func, const char *name) 1906 * 1907 * 2.8.1 Overview 1908 * 1909 * Looks up a probe based on provdider and one or more of module name, 1910 * function name and probe name. 1911 * 1912 * 2.8.2 Arguments and Notes 1913 * 1914 * The first argument is the provider identifier, as returned from a 1915 * successful call to dtrace_register(). The second, third, and fourth 1916 * arguments are the module name, function name, and probe name, 1917 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return 1918 * the identifier of the first probe that is provided by the specified 1919 * provider and matches all of the non-NULL matching criteria. 1920 * dtrace_probe_lookup() is generally used by a provider to be check the 1921 * existence of a probe before creating it with dtrace_probe_create(). 1922 * 1923 * 2.8.3 Return value 1924 * 1925 * If the probe exists, returns its identifier. If the probe does not exist, 1926 * return DTRACE_IDNONE. 1927 * 1928 * 2.8.4 Caller's context 1929 * 1930 * While dtrace_probe_lookup() is generally expected to be called from 1931 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1932 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1933 * 1934 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) 1935 * 1936 * 2.9.1 Overview 1937 * 1938 * Returns the probe argument associated with the specified probe. 1939 * 1940 * 2.9.2 Arguments and Notes 1941 * 1942 * The first argument is the provider identifier, as returned from a 1943 * successful call to dtrace_register(). The second argument is a probe 1944 * identifier, as returned from dtrace_probe_lookup() or 1945 * dtrace_probe_create(). This is useful if a probe has multiple 1946 * provider-specific components to it: the provider can create the probe 1947 * once with provider-specific state, and then add to the state by looking 1948 * up the probe based on probe identifier. 1949 * 1950 * 2.9.3 Return value 1951 * 1952 * Returns the argument associated with the specified probe. If the 1953 * specified probe does not exist, or if the specified probe is not provided 1954 * by the specified provider, NULL is returned. 1955 * 1956 * 2.9.4 Caller's context 1957 * 1958 * While dtrace_probe_arg() is generally expected to be called from 1959 * dtps_provide() and/or dtps_provide_module(), it may also be called from 1960 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 1961 * 1962 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, 1963 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 1964 * 1965 * 2.10.1 Overview 1966 * 1967 * The epicenter of DTrace: fires the specified probes with the specified 1968 * arguments. 1969 * 1970 * 2.10.2 Arguments and Notes 1971 * 1972 * The first argument is a probe identifier as returned by 1973 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth 1974 * arguments are the values to which the D variables "arg0" through "arg4" 1975 * will be mapped. 1976 * 1977 * dtrace_probe() should be called whenever the specified probe has fired -- 1978 * however the provider defines it. 1979 * 1980 * 2.10.3 Return value 1981 * 1982 * None. 1983 * 1984 * 2.10.4 Caller's context 1985 * 1986 * dtrace_probe() may be called in virtually any context: kernel, user, 1987 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with 1988 * dispatcher locks held, with interrupts disabled, etc. The only latitude 1989 * that must be afforded to DTrace is the ability to make calls within 1990 * itself (and to its in-kernel subroutines) and the ability to access 1991 * arbitrary (but mapped) memory. On some platforms, this constrains 1992 * context. For example, on UltraSPARC, dtrace_probe() cannot be called 1993 * from any context in which TL is greater than zero. dtrace_probe() may 1994 * also not be called from any routine which may be called by dtrace_probe() 1995 * -- which includes functions in the DTrace framework and some in-kernel 1996 * DTrace subroutines. All such functions "dtrace_"; providers that 1997 * instrument the kernel arbitrarily should be sure to not instrument these 1998 * routines. 1999 */ 2000 typedef struct dtrace_pops { 2001 void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec); 2002 void (*dtps_provide_module)(void *arg, struct modctl *mp); 2003 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); 2004 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); 2005 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); 2006 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); 2007 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, 2008 dtrace_argdesc_t *desc); 2009 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, 2010 int argno, int aframes); 2011 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); 2012 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); 2013 } dtrace_pops_t; 2014 2015 typedef uintptr_t dtrace_provider_id_t; 2016 2017 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, 2018 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); 2019 extern int dtrace_unregister(dtrace_provider_id_t); 2020 extern int dtrace_condense(dtrace_provider_id_t); 2021 extern void dtrace_invalidate(dtrace_provider_id_t); 2022 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *, 2023 const char *, const char *); 2024 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, 2025 const char *, const char *, int, void *); 2026 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); 2027 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, 2028 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); 2029 2030 /* 2031 * DTrace Meta Provider API 2032 * 2033 * The following functions are implemented by the DTrace framework and are 2034 * used to implement meta providers. Meta providers plug into the DTrace 2035 * framework and are used to instantiate new providers on the fly. At 2036 * present, there is only one type of meta provider and only one meta 2037 * provider may be registered with the DTrace framework at a time. The 2038 * sole meta provider type provides user-land static tracing facilities 2039 * by taking meta probe descriptions and adding a corresponding provider 2040 * into the DTrace framework. 2041 * 2042 * 1 Framework-to-Provider 2043 * 2044 * 1.1 Overview 2045 * 2046 * The Framework-to-Provider API is represented by the dtrace_mops structure 2047 * that the meta provider passes to the framework when registering itself as 2048 * a meta provider. This structure consists of the following members: 2049 * 2050 * dtms_create_probe() <-- Add a new probe to a created provider 2051 * dtms_provide_pid() <-- Create a new provider for a given process 2052 * dtms_remove_pid() <-- Remove a previously created provider 2053 * 2054 * 1.2 void dtms_create_probe(void *arg, void *parg, 2055 * dtrace_helper_probedesc_t *probedesc); 2056 * 2057 * 1.2.1 Overview 2058 * 2059 * Called by the DTrace framework to create a new probe in a provider 2060 * created by this meta provider. 2061 * 2062 * 1.2.2 Arguments and notes 2063 * 2064 * The first argument is the cookie as passed to dtrace_meta_register(). 2065 * The second argument is the provider cookie for the associated provider; 2066 * this is obtained from the return value of dtms_provide_pid(). The third 2067 * argument is the helper probe description. 2068 * 2069 * 1.2.3 Return value 2070 * 2071 * None 2072 * 2073 * 1.2.4 Caller's context 2074 * 2075 * dtms_create_probe() is called from either ioctl() or module load context. 2076 * The DTrace framework is locked in such a way that meta providers may not 2077 * register or unregister. This means that the meta provider cannot call 2078 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context is 2079 * such that the provider may (and is expected to) call provider-related 2080 * DTrace provider APIs including dtrace_probe_create(). 2081 * 2082 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, 2083 * pid_t pid) 2084 * 2085 * 1.3.1 Overview 2086 * 2087 * Called by the DTrace framework to instantiate a new provider given the 2088 * description of the provider and probes in the mprov argument. The 2089 * meta provider should call dtrace_register() to insert the new provider 2090 * into the DTrace framework. 2091 * 2092 * 1.3.2 Arguments and notes 2093 * 2094 * The first argument is the cookie as passed to dtrace_meta_register(). 2095 * The second argument is a pointer to a structure describing the new 2096 * helper provider. The third argument is the process identifier for 2097 * process associated with this new provider. Note that the name of the 2098 * provider as passed to dtrace_register() should be the contatenation of 2099 * the dtmpb_provname member of the mprov argument and the processs 2100 * identifier as a string. 2101 * 2102 * 1.3.3 Return value 2103 * 2104 * The cookie for the provider that the meta provider creates. This is 2105 * the same value that it passed to dtrace_register(). 2106 * 2107 * 1.3.4 Caller's context 2108 * 2109 * dtms_provide_pid() is called from either ioctl() or module load context. 2110 * The DTrace framework is locked in such a way that meta providers may not 2111 * register or unregister. This means that the meta provider cannot call 2112 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2113 * is such that the provider may -- and is expected to -- call 2114 * provider-related DTrace provider APIs including dtrace_register(). 2115 * 2116 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, 2117 * pid_t pid) 2118 * 2119 * 1.4.1 Overview 2120 * 2121 * Called by the DTrace framework to remove a provider that had previously 2122 * been instantiated via the dtms_provide_pid() entry point. The meta 2123 * provider need not remove the provider immediately, but this entry 2124 * point indicates that the provider should be removed as soon as possible 2125 * using the dtrace_unregister() API. 2126 * 2127 * 1.4.2 Arguments and notes 2128 * 2129 * The first argument is the cookie as passed to dtrace_meta_register(). 2130 * The second argument is a pointer to a structure describing the helper 2131 * provider. The third argument is the process identifier for process 2132 * associated with this new provider. 2133 * 2134 * 1.4.3 Return value 2135 * 2136 * None 2137 * 2138 * 1.4.4 Caller's context 2139 * 2140 * dtms_remove_pid() is called from either ioctl() or exit() context. 2141 * The DTrace framework is locked in such a way that meta providers may not 2142 * register or unregister. This means that the meta provider cannot call 2143 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2144 * is such that the provider may -- and is expected to -- call 2145 * provider-related DTrace provider APIs including dtrace_unregister(). 2146 */ 2147 typedef struct dtrace_helper_probedesc { 2148 char *dthpb_mod; /* probe module */ 2149 char *dthpb_func; /* probe function */ 2150 char *dthpb_name; /* probe name */ 2151 uint64_t dthpb_base; /* base address */ 2152 uint32_t *dthpb_offs; /* offsets array */ 2153 uint32_t *dthpb_enoffs; /* is-enabled offsets array */ 2154 uint32_t dthpb_noffs; /* offsets count */ 2155 uint32_t dthpb_nenoffs; /* is-enabled offsets count */ 2156 uint8_t *dthpb_args; /* argument mapping array */ 2157 uint8_t dthpb_xargc; /* translated argument count */ 2158 uint8_t dthpb_nargc; /* native argument count */ 2159 char *dthpb_xtypes; /* translated types strings */ 2160 char *dthpb_ntypes; /* native types strings */ 2161 } dtrace_helper_probedesc_t; 2162 2163 typedef struct dtrace_helper_provdesc { 2164 char *dthpv_provname; /* provider name */ 2165 dtrace_pattr_t dthpv_pattr; /* stability attributes */ 2166 } dtrace_helper_provdesc_t; 2167 2168 typedef struct dtrace_mops { 2169 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); 2170 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2171 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2172 } dtrace_mops_t; 2173 2174 typedef uintptr_t dtrace_meta_provider_id_t; 2175 2176 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, 2177 dtrace_meta_provider_id_t *); 2178 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); 2179 2180 /* 2181 * DTrace Kernel Hooks 2182 * 2183 * The following functions are implemented by the base kernel and form a set of 2184 * hooks used by the DTrace framework. DTrace hooks are implemented in either 2185 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a 2186 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. 2187 */ 2188 2189 typedef enum dtrace_vtime_state { 2190 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ 2191 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ 2192 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ 2193 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ 2194 } dtrace_vtime_state_t; 2195 2196 extern dtrace_vtime_state_t dtrace_vtime_active; 2197 extern void dtrace_vtime_switch(kthread_t *next); 2198 extern void dtrace_vtime_enable_tnf(void); 2199 extern void dtrace_vtime_disable_tnf(void); 2200 extern void dtrace_vtime_enable(void); 2201 extern void dtrace_vtime_disable(void); 2202 2203 struct regs; 2204 2205 extern int (*dtrace_pid_probe_ptr)(struct regs *); 2206 extern int (*dtrace_return_probe_ptr)(struct regs *); 2207 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); 2208 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); 2209 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); 2210 extern void dtrace_fasttrap_fork(proc_t *, proc_t *); 2211 2212 typedef uintptr_t dtrace_icookie_t; 2213 typedef void (*dtrace_xcall_t)(void *); 2214 2215 extern dtrace_icookie_t dtrace_interrupt_disable(void); 2216 extern void dtrace_interrupt_enable(dtrace_icookie_t); 2217 2218 extern void dtrace_membar_producer(void); 2219 extern void dtrace_membar_consumer(void); 2220 2221 extern void (*dtrace_cpu_init)(processorid_t); 2222 extern void (*dtrace_modload)(struct modctl *); 2223 extern void (*dtrace_modunload)(struct modctl *); 2224 extern void (*dtrace_helpers_cleanup)(); 2225 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); 2226 extern void (*dtrace_cpustart_init)(); 2227 extern void (*dtrace_cpustart_fini)(); 2228 2229 extern void (*dtrace_debugger_init)(); 2230 extern void (*dtrace_debugger_fini)(); 2231 extern dtrace_cacheid_t dtrace_predcache_id; 2232 2233 extern hrtime_t dtrace_gethrtime(void); 2234 extern void dtrace_sync(void); 2235 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); 2236 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); 2237 extern void dtrace_vpanic(const char *, __va_list); 2238 extern void dtrace_panic(const char *, ...); 2239 2240 extern int dtrace_safe_defer_signal(void); 2241 extern void dtrace_safe_synchronous_signal(void); 2242 2243 extern int dtrace_mach_aframes(void); 2244 2245 #if defined(__i386) || defined(__amd64) 2246 extern int dtrace_instr_size(uchar_t *instr); 2247 extern int dtrace_instr_size_isa(uchar_t *, model_t, int *); 2248 extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2249 extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t)); 2250 extern void dtrace_invop_callsite(void); 2251 #endif 2252 2253 #ifdef __sparc 2254 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); 2255 extern void dtrace_getfsr(uint64_t *); 2256 #endif 2257 2258 #define DTRACE_CPUFLAG_ISSET(flag) \ 2259 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag)) 2260 2261 #define DTRACE_CPUFLAG_SET(flag) \ 2262 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag)) 2263 2264 #define DTRACE_CPUFLAG_CLEAR(flag) \ 2265 (cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag)) 2266 2267 #endif /* _KERNEL */ 2268 2269 #endif /* _ASM */ 2270 2271 #if defined(__i386) || defined(__amd64) 2272 2273 #define DTRACE_INVOP_PUSHL_EBP 1 2274 #define DTRACE_INVOP_POPL_EBP 2 2275 #define DTRACE_INVOP_LEAVE 3 2276 #define DTRACE_INVOP_NOP 4 2277 #define DTRACE_INVOP_RET 5 2278 2279 #endif 2280 2281 #ifdef __cplusplus 2282 } 2283 #endif 2284 2285 #endif /* _SYS_DTRACE_H */ 2286