1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #ifndef _SYS_DDI_IMPLDEFS_H 27 #define _SYS_DDI_IMPLDEFS_H 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/t_lock.h> 32 #include <sys/ddipropdefs.h> 33 #include <sys/devops.h> 34 #include <sys/autoconf.h> 35 #include <sys/mutex.h> 36 #include <vm/page.h> 37 #include <sys/dacf_impl.h> 38 #include <sys/ndifm.h> 39 #include <sys/epm.h> 40 #include <sys/ddidmareq.h> 41 #include <sys/ddi_intr.h> 42 #include <sys/ddi_hp.h> 43 #include <sys/ddi_hp_impl.h> 44 #include <sys/ddi_isa.h> 45 #include <sys/id_space.h> 46 #include <sys/modhash.h> 47 #include <sys/bitset.h> 48 49 #ifdef __cplusplus 50 extern "C" { 51 #endif 52 53 /* 54 * The device id implementation has been switched to be based on properties. 55 * For compatibility with di_devid libdevinfo interface the following 56 * must be defined: 57 */ 58 #define DEVID_COMPATIBILITY ((ddi_devid_t)-1) 59 60 /* 61 * Definitions for node class. 62 * DDI_NC_PROM: a node with a nodeid that may be used in a promif call. 63 * DDI_NC_PSEUDO: a software created node with a software assigned nodeid. 64 */ 65 typedef enum { 66 DDI_NC_PROM = 0, 67 DDI_NC_PSEUDO 68 } ddi_node_class_t; 69 70 /* 71 * Definitions for generic callback mechanism. 72 */ 73 typedef enum { 74 DDI_CB_INTR_ADD, /* More available interrupts */ 75 DDI_CB_INTR_REMOVE /* Fewer available interrupts */ 76 } ddi_cb_action_t; 77 78 typedef enum { 79 DDI_CB_FLAG_INTR = 0x1 /* Driver is IRM aware */ 80 } ddi_cb_flags_t; 81 82 #define DDI_CB_FLAG_VALID(f) ((f) & DDI_CB_FLAG_INTR) 83 84 typedef int (*ddi_cb_func_t)(dev_info_t *dip, ddi_cb_action_t action, 85 void *cbarg, void *arg1, void *arg2); 86 87 typedef struct ddi_cb { 88 uint64_t cb_flags; 89 dev_info_t *cb_dip; 90 ddi_cb_func_t cb_func; 91 void *cb_arg1; 92 void *cb_arg2; 93 } ddi_cb_t; 94 95 /* 96 * dev_info: The main device information structure this is intended to be 97 * opaque to drivers and drivers should use ddi functions to 98 * access *all* driver accessible fields. 99 * 100 * devi_parent_data includes property lists (interrupts, registers, etc.) 101 * devi_driver_data includes whatever the driver wants to place there. 102 */ 103 struct devinfo_audit; 104 105 typedef struct devi_port { 106 union { 107 struct { 108 uint32_t type; 109 uint32_t pad; 110 } port; 111 uint64_t type64; 112 } info; 113 void *priv_p; 114 } devi_port_t; 115 116 typedef struct devi_bus_priv { 117 devi_port_t port_up; 118 devi_port_t port_down; 119 } devi_bus_priv_t; 120 121 struct iommulib_unit; 122 typedef struct iommulib_unit *iommulib_handle_t; 123 typedef uint8_t ndi_flavor_t; 124 struct ddi_hp_cn_handle; 125 126 struct dev_info { 127 128 struct dev_info *devi_parent; /* my parent node in tree */ 129 struct dev_info *devi_child; /* my child list head */ 130 struct dev_info *devi_sibling; /* next element on my level */ 131 132 char *devi_binding_name; /* name used to bind driver: */ 133 /* shared storage, points to */ 134 /* devi_node_name, devi_compat_names */ 135 /* or devi_rebinding_name */ 136 137 char *devi_addr; /* address part of name */ 138 139 int devi_nodeid; /* device nodeid */ 140 int devi_instance; /* device instance number */ 141 142 struct dev_ops *devi_ops; /* driver operations */ 143 144 void *devi_parent_data; /* parent private data */ 145 void *devi_driver_data; /* driver private data */ 146 147 ddi_prop_t *devi_drv_prop_ptr; /* head of driver prop list */ 148 ddi_prop_t *devi_sys_prop_ptr; /* head of system prop list */ 149 150 struct ddi_minor_data *devi_minor; /* head of minor list */ 151 struct dev_info *devi_next; /* Next instance of this device */ 152 kmutex_t devi_lock; /* Protects per-devinfo data */ 153 154 /* logical parents for busop primitives */ 155 156 struct dev_info *devi_bus_map_fault; /* bus_map_fault parent */ 157 struct dev_info *devi_bus_dma_map; /* bus_dma_map parent */ 158 struct dev_info *devi_bus_dma_allochdl; /* bus_dma_newhdl parent */ 159 struct dev_info *devi_bus_dma_freehdl; /* bus_dma_freehdl parent */ 160 struct dev_info *devi_bus_dma_bindhdl; /* bus_dma_bindhdl parent */ 161 struct dev_info *devi_bus_dma_unbindhdl; /* bus_dma_unbindhdl parent */ 162 struct dev_info *devi_bus_dma_flush; /* bus_dma_flush parent */ 163 struct dev_info *devi_bus_dma_win; /* bus_dma_win parent */ 164 struct dev_info *devi_bus_dma_ctl; /* bus_dma_ctl parent */ 165 struct dev_info *devi_bus_ctl; /* bus_ctl parent */ 166 167 ddi_prop_t *devi_hw_prop_ptr; /* head of hw prop list */ 168 169 char *devi_node_name; /* The 'name' of the node */ 170 char *devi_compat_names; /* A list of driver names */ 171 size_t devi_compat_length; /* Size of compat_names */ 172 173 int (*devi_bus_dma_bindfunc)(dev_info_t *, dev_info_t *, 174 ddi_dma_handle_t, struct ddi_dma_req *, ddi_dma_cookie_t *, 175 uint_t *); 176 int (*devi_bus_dma_unbindfunc)(dev_info_t *, dev_info_t *, 177 ddi_dma_handle_t); 178 179 char *devi_devid_str; /* registered device id */ 180 181 /* 182 * power management entries 183 * components exist even if the device is not currently power managed 184 */ 185 struct pm_info *devi_pm_info; /* 0 => dev not power managed */ 186 uint_t devi_pm_flags; /* pm flags */ 187 int devi_pm_num_components; /* number of components */ 188 size_t devi_pm_comp_size; /* size of devi_components */ 189 struct pm_component *devi_pm_components; /* array of pm components */ 190 struct dev_info *devi_pm_ppm; /* ppm attached to this one */ 191 void *devi_pm_ppm_private; /* for use by ppm driver */ 192 int devi_pm_dev_thresh; /* "device" threshold */ 193 uint_t devi_pm_kidsupcnt; /* # of kids powered up */ 194 struct pm_scan *devi_pm_scan; /* pm scan info */ 195 uint_t devi_pm_noinvolpm; /* # of descendents no-invol */ 196 uint_t devi_pm_volpmd; /* # of voluntarily pm'ed */ 197 kmutex_t devi_pm_lock; /* pm lock for state */ 198 kmutex_t devi_pm_busy_lock; /* for component busy count */ 199 200 uint_t devi_state; /* device/bus state flags */ 201 /* see below for definitions */ 202 kcondvar_t devi_cv; /* cv */ 203 int devi_ref; /* reference count */ 204 205 dacf_rsrvlist_t *devi_dacf_tasks; /* dacf reservation queue */ 206 207 ddi_node_class_t devi_node_class; /* Node class */ 208 int devi_node_attributes; /* Node attributes: See below */ 209 210 char *devi_device_class; 211 212 /* 213 * New mpxio kernel hooks entries 214 */ 215 int devi_mdi_component; /* mpxio component type */ 216 void *devi_mdi_client; /* mpxio client information */ 217 void *devi_mdi_xhci; /* vhci/phci info */ 218 219 ddi_prop_list_t *devi_global_prop_list; /* driver global properties */ 220 major_t devi_major; /* driver major number */ 221 ddi_node_state_t devi_node_state; /* state of node */ 222 uint_t devi_flags; /* configuration flags */ 223 int devi_circular; /* for recursive operations */ 224 void *devi_busy_thread; /* thread operating on node */ 225 void *devi_taskq; /* hotplug taskq */ 226 227 /* device driver statistical and audit info */ 228 struct devinfo_audit *devi_audit; /* last state change */ 229 230 /* 231 * FMA support for resource caches and error handlers 232 */ 233 struct i_ddi_fmhdl *devi_fmhdl; 234 235 uint_t devi_cpr_flags; 236 237 /* Owned by DDI interrupt framework */ 238 devinfo_intr_t *devi_intr_p; 239 240 void *devi_nex_pm; /* nexus PM private */ 241 242 char *devi_addr_buf; /* buffer for devi_addr */ 243 244 char *devi_rebinding_name; /* binding_name of rebind */ 245 246 /* For device contracts that have this dip's minor node as resource */ 247 kmutex_t devi_ct_lock; /* contract lock */ 248 kcondvar_t devi_ct_cv; /* contract cv */ 249 int devi_ct_count; /* # of outstanding responses */ 250 int devi_ct_neg; /* neg. occurred on dip */ 251 list_t devi_ct; 252 253 /* owned by bus framework */ 254 devi_bus_priv_t devi_bus; /* bus private data */ 255 256 /* Declarations of the pure dynamic properties to snapshot */ 257 struct i_ddi_prop_dyn *devi_prop_dyn_driver; /* prop_op */ 258 struct i_ddi_prop_dyn *devi_prop_dyn_parent; /* bus_prop_op */ 259 260 /* For intel iommu support */ 261 void *devi_iommu_private; 262 263 /* IOMMU handle */ 264 iommulib_handle_t devi_iommulib_handle; 265 266 /* Generic callback mechanism */ 267 ddi_cb_t *devi_cb_p; 268 269 /* ndi 'flavors' */ 270 ndi_flavor_t devi_flavor; /* flavor assigned by parent */ 271 ndi_flavor_t devi_flavorv_n; /* number of child-flavors */ 272 void **devi_flavorv; /* child-flavor specific data */ 273 274 /* Owned by hotplug framework */ 275 struct ddi_hp_cn_handle *devi_hp_hdlp; /* hotplug handle list */ 276 }; 277 278 #define DEVI(dev_info_type) ((struct dev_info *)(dev_info_type)) 279 280 /* 281 * NB: The 'name' field, for compatibility with old code (both existing 282 * device drivers and userland code), is now defined as the name used 283 * to bind the node to a device driver, and not the device node name. 284 * If the device node name does not define a binding to a device driver, 285 * and the framework uses a different algorithm to create the binding to 286 * the driver, the node name and binding name will be different. 287 * 288 * Note that this implies that the node name plus instance number does 289 * NOT create a unique driver id; only the binding name plus instance 290 * number creates a unique driver id. 291 * 292 * New code should not use 'devi_name'; use 'devi_binding_name' or 293 * 'devi_node_name' and/or the routines that access those fields. 294 */ 295 296 #define devi_name devi_binding_name 297 298 /* 299 * DDI_CF1, DDI_CF2 and DDI_DRV_UNLOADED are obsolete. They are kept 300 * around to allow legacy drivers to to compile. 301 */ 302 #define DDI_CF1(devi) (DEVI(devi)->devi_addr != NULL) 303 #define DDI_CF2(devi) (DEVI(devi)->devi_ops != NULL) 304 #define DDI_DRV_UNLOADED(devi) (DEVI(devi)->devi_ops == &mod_nodev_ops) 305 306 /* 307 * The device state flags (devi_state) contains information regarding 308 * the state of the device (Online/Offline/Down). For bus nexus 309 * devices, the device state also contains state information regarding 310 * the state of the bus represented by this nexus node. 311 * 312 * Device state information is stored in bits [0-7], bus state in bits 313 * [8-15]. 314 * 315 * NOTE: all devi_state updates should be protected by devi_lock. 316 */ 317 #define DEVI_DEVICE_OFFLINE 0x00000001 318 #define DEVI_DEVICE_DOWN 0x00000002 319 #define DEVI_DEVICE_DEGRADED 0x00000004 320 #define DEVI_DEVICE_REMOVED 0x00000008 /* hardware removed */ 321 322 #define DEVI_BUS_QUIESCED 0x00000100 323 #define DEVI_BUS_DOWN 0x00000200 324 #define DEVI_NDI_CONFIG 0x00000400 /* perform config when attaching */ 325 326 #define DEVI_S_ATTACHING 0x00010000 327 #define DEVI_S_DETACHING 0x00020000 328 #define DEVI_S_ONLINING 0x00040000 329 #define DEVI_S_OFFLINING 0x00080000 330 331 #define DEVI_S_INVOKING_DACF 0x00100000 /* busy invoking a dacf task */ 332 333 #define DEVI_S_UNBOUND 0x00200000 334 #define DEVI_S_REPORT 0x08000000 /* report status change */ 335 336 #define DEVI_S_EVADD 0x10000000 /* state of devfs event */ 337 #define DEVI_S_EVREMOVE 0x20000000 /* state of devfs event */ 338 #define DEVI_S_NEED_RESET 0x40000000 /* devo_reset should be called */ 339 340 /* 341 * Device state macros. 342 * o All SET/CLR/DONE users must protect context with devi_lock. 343 * o DEVI_SET_DEVICE_ONLINE users must do his own DEVI_SET_REPORT. 344 * o DEVI_SET_DEVICE_{DOWN|DEGRADED|UP} should only be used when !OFFLINE. 345 * o DEVI_SET_DEVICE_UP clears DOWN and DEGRADED. 346 */ 347 #define DEVI_IS_DEVICE_OFFLINE(dip) \ 348 ((DEVI(dip)->devi_state & DEVI_DEVICE_OFFLINE) == DEVI_DEVICE_OFFLINE) 349 350 #define DEVI_SET_DEVICE_ONLINE(dip) { \ 351 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 352 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 353 mutex_exit(&DEVI(dip)->devi_lock); \ 354 e_ddi_undegrade_finalize(dip); \ 355 mutex_enter(&DEVI(dip)->devi_lock); \ 356 } \ 357 /* setting ONLINE clears DOWN, DEGRADED, OFFLINE */ \ 358 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DOWN | \ 359 DEVI_DEVICE_DEGRADED | DEVI_DEVICE_OFFLINE); \ 360 } 361 362 #define DEVI_SET_DEVICE_OFFLINE(dip) { \ 363 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 364 DEVI(dip)->devi_state |= (DEVI_DEVICE_OFFLINE | DEVI_S_REPORT); \ 365 } 366 367 #define DEVI_IS_DEVICE_DOWN(dip) \ 368 ((DEVI(dip)->devi_state & DEVI_DEVICE_DOWN) == DEVI_DEVICE_DOWN) 369 370 #define DEVI_SET_DEVICE_DOWN(dip) { \ 371 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 372 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 373 DEVI(dip)->devi_state |= (DEVI_DEVICE_DOWN | DEVI_S_REPORT); \ 374 } 375 376 #define DEVI_IS_DEVICE_DEGRADED(dip) \ 377 ((DEVI(dip)->devi_state & \ 378 (DEVI_DEVICE_DEGRADED|DEVI_DEVICE_DOWN)) == DEVI_DEVICE_DEGRADED) 379 380 #define DEVI_SET_DEVICE_DEGRADED(dip) { \ 381 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 382 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 383 mutex_exit(&DEVI(dip)->devi_lock); \ 384 e_ddi_degrade_finalize(dip); \ 385 mutex_enter(&DEVI(dip)->devi_lock); \ 386 DEVI(dip)->devi_state |= (DEVI_DEVICE_DEGRADED | DEVI_S_REPORT); \ 387 } 388 389 #define DEVI_SET_DEVICE_UP(dip) { \ 390 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 391 ASSERT(!DEVI_IS_DEVICE_OFFLINE(dip)); \ 392 if (DEVI(dip)->devi_state & DEVI_DEVICE_DEGRADED) { \ 393 mutex_exit(&DEVI(dip)->devi_lock); \ 394 e_ddi_undegrade_finalize(dip); \ 395 mutex_enter(&DEVI(dip)->devi_lock); \ 396 } \ 397 DEVI(dip)->devi_state &= ~(DEVI_DEVICE_DEGRADED | DEVI_DEVICE_DOWN); \ 398 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 399 } 400 401 /* Device removal and insertion */ 402 #define DEVI_IS_DEVICE_REMOVED(dip) \ 403 ((DEVI(dip)->devi_state & DEVI_DEVICE_REMOVED) == DEVI_DEVICE_REMOVED) 404 405 #define DEVI_SET_DEVICE_REMOVED(dip) { \ 406 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 407 DEVI(dip)->devi_state |= DEVI_DEVICE_REMOVED | DEVI_S_REPORT; \ 408 } 409 410 #define DEVI_SET_DEVICE_REINSERTED(dip) { \ 411 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 412 DEVI(dip)->devi_state &= ~DEVI_DEVICE_REMOVED; \ 413 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 414 } 415 416 /* Bus state change macros */ 417 #define DEVI_IS_BUS_QUIESCED(dip) \ 418 ((DEVI(dip)->devi_state & DEVI_BUS_QUIESCED) == DEVI_BUS_QUIESCED) 419 420 #define DEVI_SET_BUS_ACTIVE(dip) { \ 421 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 422 DEVI(dip)->devi_state &= ~DEVI_BUS_QUIESCED; \ 423 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 424 } 425 426 #define DEVI_SET_BUS_QUIESCE(dip) { \ 427 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 428 DEVI(dip)->devi_state |= (DEVI_BUS_QUIESCED | DEVI_S_REPORT); \ 429 } 430 431 #define DEVI_IS_BUS_DOWN(dip) \ 432 ((DEVI(dip)->devi_state & DEVI_BUS_DOWN) == DEVI_BUS_DOWN) 433 434 #define DEVI_SET_BUS_UP(dip) { \ 435 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 436 DEVI(dip)->devi_state &= ~DEVI_BUS_DOWN; \ 437 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 438 } 439 440 #define DEVI_SET_BUS_DOWN(dip) { \ 441 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 442 DEVI(dip)->devi_state |= (DEVI_BUS_DOWN | DEVI_S_REPORT); \ 443 } 444 445 /* Status change report needed */ 446 #define DEVI_NEED_REPORT(dip) \ 447 ((DEVI(dip)->devi_state & DEVI_S_REPORT) == DEVI_S_REPORT) 448 449 #define DEVI_SET_REPORT(dip) { \ 450 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 451 DEVI(dip)->devi_state |= DEVI_S_REPORT; \ 452 } 453 454 #define DEVI_REPORT_DONE(dip) { \ 455 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 456 DEVI(dip)->devi_state &= ~DEVI_S_REPORT; \ 457 } 458 459 /* Do an NDI_CONFIG for its children */ 460 #define DEVI_NEED_NDI_CONFIG(dip) \ 461 ((DEVI(dip)->devi_state & DEVI_NDI_CONFIG) == DEVI_NDI_CONFIG) 462 463 #define DEVI_SET_NDI_CONFIG(dip) { \ 464 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 465 DEVI(dip)->devi_state |= DEVI_NDI_CONFIG; \ 466 } 467 468 #define DEVI_CLR_NDI_CONFIG(dip) { \ 469 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 470 DEVI(dip)->devi_state &= ~DEVI_NDI_CONFIG; \ 471 } 472 473 /* Attaching or detaching state */ 474 #define DEVI_IS_ATTACHING(dip) \ 475 ((DEVI(dip)->devi_state & DEVI_S_ATTACHING) == DEVI_S_ATTACHING) 476 477 #define DEVI_SET_ATTACHING(dip) { \ 478 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 479 DEVI(dip)->devi_state |= DEVI_S_ATTACHING; \ 480 } 481 482 #define DEVI_CLR_ATTACHING(dip) { \ 483 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 484 DEVI(dip)->devi_state &= ~DEVI_S_ATTACHING; \ 485 } 486 487 #define DEVI_IS_DETACHING(dip) \ 488 ((DEVI(dip)->devi_state & DEVI_S_DETACHING) == DEVI_S_DETACHING) 489 490 #define DEVI_SET_DETACHING(dip) { \ 491 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 492 DEVI(dip)->devi_state |= DEVI_S_DETACHING; \ 493 } 494 495 #define DEVI_CLR_DETACHING(dip) { \ 496 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 497 DEVI(dip)->devi_state &= ~DEVI_S_DETACHING; \ 498 } 499 500 /* Onlining or offlining state */ 501 #define DEVI_IS_ONLINING(dip) \ 502 ((DEVI(dip)->devi_state & DEVI_S_ONLINING) == DEVI_S_ONLINING) 503 504 #define DEVI_SET_ONLINING(dip) { \ 505 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 506 DEVI(dip)->devi_state |= DEVI_S_ONLINING; \ 507 } 508 509 #define DEVI_CLR_ONLINING(dip) { \ 510 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 511 DEVI(dip)->devi_state &= ~DEVI_S_ONLINING; \ 512 } 513 514 #define DEVI_IS_OFFLINING(dip) \ 515 ((DEVI(dip)->devi_state & DEVI_S_OFFLINING) == DEVI_S_OFFLINING) 516 517 #define DEVI_SET_OFFLINING(dip) { \ 518 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 519 DEVI(dip)->devi_state |= DEVI_S_OFFLINING; \ 520 } 521 522 #define DEVI_CLR_OFFLINING(dip) { \ 523 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 524 DEVI(dip)->devi_state &= ~DEVI_S_OFFLINING; \ 525 } 526 527 #define DEVI_IS_IN_RECONFIG(dip) \ 528 (DEVI(dip)->devi_state & (DEVI_S_OFFLINING | DEVI_S_ONLINING)) 529 530 /* Busy invoking a dacf task against this node */ 531 #define DEVI_IS_INVOKING_DACF(dip) \ 532 ((DEVI(dip)->devi_state & DEVI_S_INVOKING_DACF) == DEVI_S_INVOKING_DACF) 533 534 #define DEVI_SET_INVOKING_DACF(dip) { \ 535 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 536 DEVI(dip)->devi_state |= DEVI_S_INVOKING_DACF; \ 537 } 538 539 #define DEVI_CLR_INVOKING_DACF(dip) { \ 540 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 541 DEVI(dip)->devi_state &= ~DEVI_S_INVOKING_DACF; \ 542 } 543 544 /* Events for add/remove */ 545 #define DEVI_EVADD(dip) \ 546 ((DEVI(dip)->devi_state & DEVI_S_EVADD) == DEVI_S_EVADD) 547 548 #define DEVI_SET_EVADD(dip) { \ 549 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 550 DEVI(dip)->devi_state &= ~DEVI_S_EVREMOVE; \ 551 DEVI(dip)->devi_state |= DEVI_S_EVADD; \ 552 } 553 554 #define DEVI_EVREMOVE(dip) \ 555 ((DEVI(dip)->devi_state & DEVI_S_EVREMOVE) == DEVI_S_EVREMOVE) 556 557 #define DEVI_SET_EVREMOVE(dip) { \ 558 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 559 DEVI(dip)->devi_state &= ~DEVI_S_EVADD; \ 560 DEVI(dip)->devi_state |= DEVI_S_EVREMOVE; \ 561 } 562 563 #define DEVI_SET_EVUNINIT(dip) { \ 564 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 565 DEVI(dip)->devi_state &= ~(DEVI_S_EVADD | DEVI_S_EVREMOVE); \ 566 } 567 568 /* Need to call the devo_reset entry point for this device at shutdown */ 569 #define DEVI_NEED_RESET(dip) \ 570 ((DEVI(dip)->devi_state & DEVI_S_NEED_RESET) == DEVI_S_NEED_RESET) 571 572 #define DEVI_SET_NEED_RESET(dip) { \ 573 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 574 DEVI(dip)->devi_state |= DEVI_S_NEED_RESET; \ 575 } 576 577 #define DEVI_CLR_NEED_RESET(dip) { \ 578 ASSERT(mutex_owned(&DEVI(dip)->devi_lock)); \ 579 DEVI(dip)->devi_state &= ~DEVI_S_NEED_RESET; \ 580 } 581 582 /* 583 * devi_flags bits 584 * 585 * NOTE: all devi_state updates should be protected by devi_lock. 586 */ 587 #define DEVI_BUSY 0x00000001 /* busy configuring children */ 588 #define DEVI_MADE_CHILDREN 0x00000002 /* children made from specs */ 589 #define DEVI_ATTACHED_CHILDREN 0x00000004 /* attached all existing children */ 590 #define DEVI_BRANCH_HELD 0x00000008 /* branch rooted at this dip held */ 591 #define DEVI_NO_BIND 0x00000010 /* prevent driver binding */ 592 #define DEVI_REGISTERED_DEVID 0x00000020 /* device registered a devid */ 593 #define DEVI_PHCI_SIGNALS_VHCI 0x00000040 /* pHCI ndi_devi_exit signals vHCI */ 594 #define DEVI_REBIND 0x00000080 /* post initchild driver rebind */ 595 #define DEVI_RETIRED 0x00000100 /* device is retired */ 596 #define DEVI_RETIRING 0x00000200 /* being evaluated for retire */ 597 #define DEVI_R_CONSTRAINT 0x00000400 /* constraints have been applied */ 598 #define DEVI_R_BLOCKED 0x00000800 /* constraints block retire */ 599 #define DEVI_CT_NOP 0x00001000 /* NOP contract event occurred */ 600 601 #define DEVI_BUSY_CHANGING(dip) (DEVI(dip)->devi_flags & DEVI_BUSY) 602 #define DEVI_BUSY_OWNED(dip) (DEVI_BUSY_CHANGING(dip) && \ 603 ((DEVI(dip))->devi_busy_thread == curthread)) 604 605 char *i_ddi_devi_class(dev_info_t *); 606 int i_ddi_set_devi_class(dev_info_t *, char *, int); 607 608 /* 609 * This structure represents one piece of bus space occupied by a given 610 * device. It is used in an array for devices with multiple address windows. 611 */ 612 struct regspec { 613 uint_t regspec_bustype; /* cookie for bus type it's on */ 614 uint_t regspec_addr; /* address of reg relative to bus */ 615 uint_t regspec_size; /* size of this register set */ 616 }; 617 618 /* 619 * This structure represents one piece of nexus bus space. 620 * It is used in an array for nexi with multiple bus spaces 621 * to define the childs offsets in the parents bus space. 622 */ 623 struct rangespec { 624 uint_t rng_cbustype; /* Child's address, hi order */ 625 uint_t rng_coffset; /* Child's address, lo order */ 626 uint_t rng_bustype; /* Parent's address, hi order */ 627 uint_t rng_offset; /* Parent's address, lo order */ 628 uint_t rng_size; /* size of space for this entry */ 629 }; 630 631 #ifdef _KERNEL 632 633 typedef enum { 634 DDI_PRE = 0, 635 DDI_POST = 1 636 } ddi_pre_post_t; 637 638 /* 639 * This structure represents notification of a child attach event 640 * These could both be the same if attach/detach commands were in the 641 * same name space. 642 * Note that the target dip is passed as an arg already. 643 */ 644 struct attachspec { 645 ddi_attach_cmd_t cmd; /* type of event */ 646 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 647 dev_info_t *pdip; /* parent of attaching node */ 648 int result; /* result of attach op (post command only) */ 649 }; 650 651 /* 652 * This structure represents notification of a child detach event 653 * Note that the target dip is passed as an arg already. 654 */ 655 struct detachspec { 656 ddi_detach_cmd_t cmd; /* type of event */ 657 ddi_pre_post_t when; /* one of DDI_PRE or DDI_POST */ 658 dev_info_t *pdip; /* parent of detaching node */ 659 int result; /* result of detach op (post command only) */ 660 }; 661 662 #endif /* _KERNEL */ 663 664 typedef enum { 665 DDM_MINOR = 0, 666 DDM_ALIAS, 667 DDM_DEFAULT, 668 DDM_INTERNAL_PATH 669 } ddi_minor_type; 670 671 /* implementation flags for driver specified device access control */ 672 #define DM_NO_FSPERM 0x1 673 674 struct devplcy; 675 676 struct ddi_minor { 677 char *name; /* name of node */ 678 dev_t dev; /* device number */ 679 int spec_type; /* block or char */ 680 int flags; /* access flags */ 681 char *node_type; /* block, byte, serial, network */ 682 struct devplcy *node_priv; /* privilege for this minor */ 683 mode_t priv_mode; /* default apparent privilege mode */ 684 }; 685 686 /* 687 * devi_node_attributes contains node attributes private to the 688 * ddi implementation. As a consumer, do not use these bit definitions 689 * directly, use the ndi functions that check for the existence of the 690 * specific node attributes. 691 * 692 * DDI_PERSISTENT indicates a 'persistent' node; one that is not 693 * automatically freed by the framework if the driver is unloaded 694 * or the driver fails to attach to this node. 695 * 696 * DDI_AUTO_ASSIGNED_NODEID indicates that the nodeid was auto-assigned 697 * by the framework and should be auto-freed if the node is removed. 698 * 699 * DDI_VHCI_NODE indicates that the node type is VHCI. This flag 700 * must be set by ndi_devi_config_vhci() routine only. 701 * 702 * DDI_HIDDEN_NODE indicates that the node should not show up in snapshots 703 * or in /devices. 704 * 705 * DDI_HOTPLUG_NODE indicates that the node created by nexus hotplug. 706 */ 707 #define DDI_PERSISTENT 0x01 708 #define DDI_AUTO_ASSIGNED_NODEID 0x02 709 #define DDI_VHCI_NODE 0x04 710 #define DDI_HIDDEN_NODE 0x08 711 #define DDI_HOTPLUG_NODE 0x10 712 713 #define DEVI_VHCI_NODE(dip) \ 714 (DEVI(dip)->devi_node_attributes & DDI_VHCI_NODE) 715 716 /* 717 * The ddi_minor_data structure gets filled in by ddi_create_minor_node. 718 * It then gets attached to the devinfo node as a property. 719 */ 720 struct ddi_minor_data { 721 struct ddi_minor_data *next; /* next one in the chain */ 722 dev_info_t *dip; /* pointer to devinfo node */ 723 ddi_minor_type type; /* Following data type */ 724 struct ddi_minor d_minor; /* Actual minor node data */ 725 }; 726 727 #define ddm_name d_minor.name 728 #define ddm_dev d_minor.dev 729 #define ddm_flags d_minor.flags 730 #define ddm_spec_type d_minor.spec_type 731 #define ddm_node_type d_minor.node_type 732 #define ddm_node_priv d_minor.node_priv 733 #define ddm_priv_mode d_minor.priv_mode 734 735 /* 736 * parent private data structure contains register, interrupt, property 737 * and range information. 738 */ 739 struct ddi_parent_private_data { 740 int par_nreg; /* number of regs */ 741 struct regspec *par_reg; /* array of regs */ 742 int par_nintr; /* number of interrupts */ 743 struct intrspec *par_intr; /* array of possible interrupts */ 744 int par_nrng; /* number of ranges */ 745 struct rangespec *par_rng; /* array of ranges */ 746 }; 747 #define DEVI_PD(d) \ 748 ((struct ddi_parent_private_data *)DEVI((d))->devi_parent_data) 749 750 #define sparc_pd_getnreg(dev) (DEVI_PD(dev)->par_nreg) 751 #define sparc_pd_getnintr(dev) (DEVI_PD(dev)->par_nintr) 752 #define sparc_pd_getnrng(dev) (DEVI_PD(dev)->par_nrng) 753 #define sparc_pd_getreg(dev, n) (&DEVI_PD(dev)->par_reg[(n)]) 754 #define sparc_pd_getintr(dev, n) (&DEVI_PD(dev)->par_intr[(n)]) 755 #define sparc_pd_getrng(dev, n) (&DEVI_PD(dev)->par_rng[(n)]) 756 757 #ifdef _KERNEL 758 /* 759 * This data structure is private to the indexed soft state allocator. 760 */ 761 typedef struct i_ddi_soft_state { 762 void **array; /* the array of pointers */ 763 kmutex_t lock; /* serialize access to this struct */ 764 size_t size; /* how many bytes per state struct */ 765 size_t n_items; /* how many structs herein */ 766 struct i_ddi_soft_state *next; /* 'dirty' elements */ 767 } i_ddi_soft_state; 768 769 /* 770 * This data structure is private to the stringhashed soft state allocator. 771 */ 772 typedef struct i_ddi_soft_state_bystr { 773 size_t ss_size; /* how many bytes per state struct */ 774 mod_hash_t *ss_mod_hash; /* hash implementation */ 775 } i_ddi_soft_state_bystr; 776 777 /* 778 * This data structure is private to the ddi_strid_* implementation 779 */ 780 typedef struct i_ddi_strid { 781 size_t strid_chunksz; 782 size_t strid_spacesz; 783 id_space_t *strid_space; 784 mod_hash_t *strid_byid; 785 mod_hash_t *strid_bystr; 786 } i_ddi_strid; 787 #endif /* _KERNEL */ 788 789 /* 790 * Solaris DDI DMA implementation structure and function definitions. 791 * 792 * Note: no callers of DDI functions must depend upon data structures 793 * declared below. They are not guaranteed to remain constant. 794 */ 795 796 /* 797 * Implementation DMA mapping structure. 798 * 799 * The publicly visible ddi_dma_req structure is filled 800 * in by a caller that wishes to map a memory object 801 * for DMA. Internal to this implementation of the public 802 * DDI DMA functions this request structure is put together 803 * with bus nexus specific functions that have additional 804 * information and constraints as to how to go about doing 805 * the requested mapping function 806 * 807 * In this implementation, some of the information from the 808 * original requester is retained throughout the lifetime 809 * of the I/O mapping being active. 810 */ 811 812 /* 813 * This is the implementation specific description 814 * of how we've mapped an object for DMA. 815 */ 816 #if defined(__sparc) 817 typedef struct ddi_dma_impl { 818 /* 819 * DMA mapping information 820 */ 821 ulong_t dmai_mapping; /* mapping cookie */ 822 823 /* 824 * Size of the current mapping, in bytes. 825 * 826 * Note that this is distinct from the size of the object being mapped 827 * for DVMA. We might have only a portion of the object mapped at any 828 * given point in time. 829 */ 830 uint_t dmai_size; 831 832 /* 833 * Offset, in bytes, into object that is currently mapped. 834 */ 835 off_t dmai_offset; 836 837 /* 838 * Information gathered from the original DMA mapping 839 * request and saved for the lifetime of the mapping. 840 */ 841 uint_t dmai_minxfer; 842 uint_t dmai_burstsizes; 843 uint_t dmai_ndvmapages; 844 uint_t dmai_pool; /* cached DVMA space */ 845 uint_t dmai_rflags; /* requester's flags + ours */ 846 uint_t dmai_inuse; /* active handle? */ 847 uint_t dmai_nwin; 848 uint_t dmai_winsize; 849 caddr_t dmai_nexus_private; 850 void *dmai_iopte; 851 uint_t *dmai_sbi; 852 void *dmai_minfo; /* random mapping information */ 853 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 854 ddi_dma_obj_t dmai_object; /* requester's object */ 855 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 856 ddi_dma_cookie_t *dmai_cookie; /* pointer to first DMA cookie */ 857 858 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 859 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 860 int dmai_fault; 861 ndi_err_t dmai_error; 862 863 } ddi_dma_impl_t; 864 865 #elif defined(__x86) 866 867 /* 868 * ddi_dma_impl portion that genunix (sunddi.c) depends on. x86 rootnex 869 * implementation specific state is in dmai_private. 870 */ 871 typedef struct ddi_dma_impl { 872 ddi_dma_cookie_t *dmai_cookie; /* array of DMA cookies */ 873 void *dmai_private; 874 875 /* 876 * Information gathered from the original dma mapping 877 * request and saved for the lifetime of the mapping. 878 */ 879 uint_t dmai_minxfer; 880 uint_t dmai_burstsizes; 881 uint_t dmai_rflags; /* requester's flags + ours */ 882 int dmai_nwin; 883 dev_info_t *dmai_rdip; /* original requester's dev_info_t */ 884 885 ddi_dma_attr_t dmai_attr; /* DMA attributes */ 886 887 int (*dmai_fault_check)(struct ddi_dma_impl *handle); 888 void (*dmai_fault_notify)(struct ddi_dma_impl *handle); 889 int dmai_fault; 890 ndi_err_t dmai_error; 891 } ddi_dma_impl_t; 892 893 #else 894 #error "struct ddi_dma_impl not defined for this architecture" 895 #endif /* defined(__sparc) */ 896 897 /* 898 * For now DMA segments share state with the DMA handle 899 */ 900 typedef ddi_dma_impl_t ddi_dma_seg_impl_t; 901 902 /* 903 * These flags use reserved bits from the dma request flags. 904 * 905 * A note about the DMP_NOSYNC flags: the root nexus will 906 * set these as it sees best. If an intermediate nexus 907 * actually needs these operations, then during the unwind 908 * from the call to ddi_dma_bind, the nexus driver *must* 909 * clear the appropriate flag(s). This is because, as an 910 * optimization, ddi_dma_sync(9F) looks at these flags before 911 * deciding to spend the time going back up the tree. 912 */ 913 914 #define _DMCM1 DDI_DMA_RDWR|DDI_DMA_REDZONE|DDI_DMA_PARTIAL 915 #define _DMCM2 DDI_DMA_CONSISTENT|DMP_VMEREQ 916 #define DMP_DDIFLAGS (_DMCM1|_DMCM2) 917 #define DMP_SHADOW 0x20 918 #define DMP_LKIOPB 0x40 919 #define DMP_LKSYSV 0x80 920 #define DMP_IOCACHE 0x100 921 #define DMP_USEHAT 0x200 922 #define DMP_PHYSADDR 0x400 923 #define DMP_INVALID 0x800 924 #define DMP_NOLIMIT 0x1000 925 #define DMP_VMEREQ 0x10000000 926 #define DMP_BYPASSNEXUS 0x20000000 927 #define DMP_NODEVSYNC 0x40000000 928 #define DMP_NOCPUSYNC 0x80000000 929 #define DMP_NOSYNC (DMP_NODEVSYNC|DMP_NOCPUSYNC) 930 931 /* 932 * In order to complete a device to device mapping that 933 * has percolated as high as an IU nexus (gone that high 934 * because the DMA request is a VADDR type), we define 935 * structure to use with the DDI_CTLOPS_DMAPMAPC request 936 * that re-traverses the request tree to finish the 937 * DMA 'mapping' for a device. 938 */ 939 struct dma_phys_mapc { 940 struct ddi_dma_req *dma_req; /* original request */ 941 ddi_dma_impl_t *mp; /* current handle, or none */ 942 int nptes; /* number of ptes */ 943 void *ptes; /* ptes already read */ 944 }; 945 946 #define MAXCALLBACK 20 947 948 /* 949 * Callback definitions 950 */ 951 struct ddi_callback { 952 struct ddi_callback *c_nfree; 953 struct ddi_callback *c_nlist; 954 int (*c_call)(); 955 int c_count; 956 caddr_t c_arg; 957 size_t c_size; 958 }; 959 960 /* 961 * Pure dynamic property declaration. A pure dynamic property is a property 962 * for which a driver's prop_op(9E) implementation will return a value on 963 * demand, but the property name does not exist on a property list (global, 964 * driver, system, or hardware) - the person asking for the value must know 965 * the name and type information. 966 * 967 * For a pure dynamic property to show up in a di_init() devinfo shapshot, the 968 * devinfo driver must know name and type. The i_ddi_prop_dyn_t mechanism 969 * allows a driver to define an array of the name/type information of its 970 * dynamic properties. When a driver declares its dynamic properties in a 971 * i_ddi_prop_dyn_t array, and registers that array using 972 * i_ddi_prop_dyn_driver_set() the devinfo driver has sufficient information 973 * to represent the properties in a snapshot - calling the driver's 974 * prop_op(9E) to obtain values. 975 * 976 * The last element of a i_ddi_prop_dyn_t is detected via a NULL dp_name value. 977 * 978 * A pure dynamic property name associated with a minor_node/dev_t should be 979 * defined with a dp_spec_type of S_IFCHR or S_IFBLK, as appropriate. The 980 * driver's prop_op(9E) entry point will be called for all 981 * ddi_create_minor_node(9F) nodes of the specified spec_type. For a driver 982 * where not all minor_node/dev_t combinations support the same named 983 * properties, it is the responsibility of the prop_op(9E) implementation to 984 * sort out what combinations are appropriate. 985 * 986 * A pure dynamic property of a devinfo node should be defined with a 987 * dp_spec_type of 0. 988 * 989 * NB: Public DDI property interfaces no longer support pure dynamic 990 * properties, but they are still still used. A prime example is the cmlb 991 * implementation of size(9P) properties. Using pure dynamic properties 992 * reduces the space required to maintain per-partition information. Since 993 * there are no public interfaces to create pure dynamic properties, 994 * the i_ddi_prop_dyn_t mechanism should remain private. 995 */ 996 typedef struct i_ddi_prop_dyn { 997 char *dp_name; /* name of dynamic property */ 998 int dp_type; /* DDI_PROP_TYPE_ of property */ 999 int dp_spec_type; /* 0, S_IFCHR, S_IFBLK */ 1000 } i_ddi_prop_dyn_t; 1001 void i_ddi_prop_dyn_driver_set(dev_info_t *, 1002 i_ddi_prop_dyn_t *); 1003 i_ddi_prop_dyn_t *i_ddi_prop_dyn_driver_get(dev_info_t *); 1004 void i_ddi_prop_dyn_parent_set(dev_info_t *, 1005 i_ddi_prop_dyn_t *); 1006 i_ddi_prop_dyn_t *i_ddi_prop_dyn_parent_get(dev_info_t *); 1007 void i_ddi_prop_dyn_cache_invalidate(dev_info_t *, 1008 i_ddi_prop_dyn_t *); 1009 1010 /* 1011 * Device id - Internal definition. 1012 */ 1013 #define DEVID_MAGIC_MSB 0x69 1014 #define DEVID_MAGIC_LSB 0x64 1015 #define DEVID_REV_MSB 0x00 1016 #define DEVID_REV_LSB 0x01 1017 #define DEVID_HINT_SIZE 4 1018 1019 typedef struct impl_devid { 1020 uchar_t did_magic_hi; /* device id magic # (msb) */ 1021 uchar_t did_magic_lo; /* device id magic # (lsb) */ 1022 uchar_t did_rev_hi; /* device id revision # (msb) */ 1023 uchar_t did_rev_lo; /* device id revision # (lsb) */ 1024 uchar_t did_type_hi; /* device id type (msb) */ 1025 uchar_t did_type_lo; /* device id type (lsb) */ 1026 uchar_t did_len_hi; /* length of devid data (msb) */ 1027 uchar_t did_len_lo; /* length of devid data (lsb) */ 1028 char did_driver[DEVID_HINT_SIZE]; /* driver name - HINT */ 1029 char did_id[1]; /* start of device id data */ 1030 } impl_devid_t; 1031 1032 #define DEVID_GETTYPE(devid) ((ushort_t) \ 1033 (((devid)->did_type_hi << NBBY) + \ 1034 (devid)->did_type_lo)) 1035 1036 #define DEVID_FORMTYPE(devid, type) (devid)->did_type_hi = hibyte((type)); \ 1037 (devid)->did_type_lo = lobyte((type)); 1038 1039 #define DEVID_GETLEN(devid) ((ushort_t) \ 1040 (((devid)->did_len_hi << NBBY) + \ 1041 (devid)->did_len_lo)) 1042 1043 #define DEVID_FORMLEN(devid, len) (devid)->did_len_hi = hibyte((len)); \ 1044 (devid)->did_len_lo = lobyte((len)); 1045 1046 /* 1047 * Per PSARC/1995/352, a binary devid contains fields for <magic number>, 1048 * <revision>, <driver_hint>, <type>, <id_length>, and the <id> itself. 1049 * This proposal would encode the binary devid into a string consisting 1050 * of "<magic><revision>,<driver_hint>@<type><id>" as indicated below 1051 * (<id_length> is rederived from the length of the string 1052 * representation of the <id>): 1053 * 1054 * <magic> ->"id" 1055 * 1056 * <rev> ->"%d" // "0" -> type of DEVID_NONE "id0" 1057 * // NOTE: PSARC/1995/352 <revision> is "1". 1058 * // NOTE: support limited to 10 revisions 1059 * // in current implementation 1060 * 1061 * <driver_hint> ->"%s" // "sd"/"ssd" 1062 * // NOTE: driver names limited to 4 1063 * // characters for <revision> "1" 1064 * 1065 * <type> ->'w' | // DEVID_SCSI3_WWN <hex_id> 1066 * 'W' | // DEVID_SCSI3_WWN <ascii_id> 1067 * 't' | // DEVID_SCSI3_VPD_T10 <hex_id> 1068 * 'T' | // DEVID_SCSI3_VPD_T10 <ascii_id> 1069 * 'x' | // DEVID_SCSI3_VPD_EUI <hex_id> 1070 * 'X' | // DEVID_SCSI3_VPD_EUI <ascii_id> 1071 * 'n' | // DEVID_SCSI3_VPD_NAA <hex_id> 1072 * 'N' | // DEVID_SCSI3_VPD_NAA <ascii_id> 1073 * 's' | // DEVID_SCSI_SERIAL <hex_id> 1074 * 'S' | // DEVID_SCSI_SERIAL <ascii_id> 1075 * 'f' | // DEVID_FAB <hex_id> 1076 * 'F' | // DEVID_FAB <ascii_id> 1077 * 'e' | // DEVID_ENCAP <hex_id> 1078 * 'E' | // DEVID_ENCAP <ascii_id> 1079 * 'a' | // DEVID_ATA_SERIAL <hex_id> 1080 * 'A' | // DEVID_ATA_SERIAL <ascii_id> 1081 * 'u' | // unknown <hex_id> 1082 * 'U' // unknown <ascii_id> 1083 * // NOTE:lower case -> <hex_id> 1084 * // upper case -> <ascii_id> 1085 * // NOTE:this covers all types currently 1086 * // defined for <revision> 1. 1087 * // NOTE:a <type> can be added 1088 * // without changing the <revision>. 1089 * 1090 * <id> -> <ascii_id> | // <type> is upper case 1091 * <hex_id> // <type> is lower case 1092 * 1093 * <ascii_id> // only if all bytes of binary <id> field 1094 * // are in the set: 1095 * // [A-Z][a-z][0-9]+-.= and space and 0x00 1096 * // the encoded form is: 1097 * // [A-Z][a-z][0-9]+-.= and _ and ~ 1098 * // NOTE: ' ' <=> '_', 0x00 <=> '~' 1099 * // these sets are chosen to avoid shell 1100 * // and conflicts with DDI node names. 1101 * 1102 * <hex_id> // if not <ascii_id>; each byte of binary 1103 * // <id> maps a to 2 digit ascii hex 1104 * // representation in the string. 1105 * 1106 * This encoding provides a meaningful correlation between the /devices 1107 * path and the devid string where possible. 1108 * 1109 * Fibre: 1110 * sbus@6,0/SUNW,socal@d,10000/sf@1,0/ssd@w21000020370bb488,0:c,raw 1111 * id1,ssd@w20000020370bb488:c,raw 1112 * 1113 * Copper: 1114 * sbus@7,0/SUNW,fas@3,8800000/sd@a,0:c 1115 * id1,sd@SIBM_____1XY210__________:c 1116 */ 1117 /* determine if a byte of an id meets ASCII representation requirements */ 1118 #define DEVID_IDBYTE_ISASCII(b) ( \ 1119 (((b) >= 'a') && ((b) <= 'z')) || \ 1120 (((b) >= 'A') && ((b) <= 'Z')) || \ 1121 (((b) >= '0') && ((b) <= '9')) || \ 1122 (b == '+') || (b == '-') || (b == '.') || (b == '=') || \ 1123 (b == ' ') || (b == 0x00)) 1124 1125 /* set type to lower case to indicate that the did_id field is ascii */ 1126 #define DEVID_TYPE_SETASCII(c) (c - 0x20) /* 'a' -> 'A' */ 1127 1128 /* determine from type if did_id field is binary or ascii */ 1129 #define DEVID_TYPE_ISASCII(c) (((c) >= 'A') && ((c) <= 'Z')) 1130 1131 /* convert type field from binary to ascii */ 1132 #define DEVID_TYPE_BINTOASCII(b) ( \ 1133 ((b) == DEVID_SCSI3_WWN) ? 'w' : \ 1134 ((b) == DEVID_SCSI3_VPD_T10) ? 't' : \ 1135 ((b) == DEVID_SCSI3_VPD_EUI) ? 'x' : \ 1136 ((b) == DEVID_SCSI3_VPD_NAA) ? 'n' : \ 1137 ((b) == DEVID_SCSI_SERIAL) ? 's' : \ 1138 ((b) == DEVID_FAB) ? 'f' : \ 1139 ((b) == DEVID_ENCAP) ? 'e' : \ 1140 ((b) == DEVID_ATA_SERIAL) ? 'a' : \ 1141 'u') /* unknown */ 1142 1143 /* convert type field from ascii to binary */ 1144 #define DEVID_TYPE_ASCIITOBIN(c) ( \ 1145 (((c) == 'w') || ((c) == 'W')) ? DEVID_SCSI3_WWN : \ 1146 (((c) == 't') || ((c) == 'T')) ? DEVID_SCSI3_VPD_T10 : \ 1147 (((c) == 'x') || ((c) == 'X')) ? DEVID_SCSI3_VPD_EUI : \ 1148 (((c) == 'n') || ((c) == 'N')) ? DEVID_SCSI3_VPD_NAA : \ 1149 (((c) == 's') || ((c) == 'S')) ? DEVID_SCSI_SERIAL : \ 1150 (((c) == 'f') || ((c) == 'F')) ? DEVID_FAB : \ 1151 (((c) == 'e') || ((c) == 'E')) ? DEVID_ENCAP : \ 1152 (((c) == 'a') || ((c) == 'A')) ? DEVID_ATA_SERIAL : \ 1153 DEVID_MAXTYPE +1) /* unknown */ 1154 1155 /* determine if the type should be forced to hex encoding (non-ascii) */ 1156 #define DEVID_TYPE_BIN_FORCEHEX(b) ( \ 1157 ((b) == DEVID_SCSI3_WWN) || \ 1158 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1159 ((b) == DEVID_SCSI3_VPD_NAA) || \ 1160 ((b) == DEVID_FAB)) 1161 1162 /* determine if the type is from a scsi3 vpd */ 1163 #define IS_DEVID_SCSI3_VPD_TYPE(b) ( \ 1164 ((b) == DEVID_SCSI3_VPD_T10) || \ 1165 ((b) == DEVID_SCSI3_VPD_EUI) || \ 1166 ((b) == DEVID_SCSI3_VPD_NAA)) 1167 1168 /* convert rev field from binary to ascii (only supports 10 revs) */ 1169 #define DEVID_REV_BINTOASCII(b) (b + '0') 1170 1171 /* convert rev field from ascii to binary (only supports 10 revs) */ 1172 #define DEVID_REV_ASCIITOBIN(c) (c - '0') 1173 1174 /* name of devid property */ 1175 #define DEVID_PROP_NAME "devid" 1176 1177 /* 1178 * prop_name used by pci_{save,restore}_config_regs() 1179 */ 1180 #define SAVED_CONFIG_REGS "pci-config-regs" 1181 #define SAVED_CONFIG_REGS_MASK "pcie-config-regs-mask" 1182 #define SAVED_CONFIG_REGS_CAPINFO "pci-cap-info" 1183 1184 typedef struct pci_config_header_state { 1185 uint16_t chs_command; 1186 uint8_t chs_cache_line_size; 1187 uint8_t chs_latency_timer; 1188 uint8_t chs_header_type; 1189 uint8_t chs_sec_latency_timer; 1190 uint8_t chs_bridge_control; 1191 uint32_t chs_base0; 1192 uint32_t chs_base1; 1193 uint32_t chs_base2; 1194 uint32_t chs_base3; 1195 uint32_t chs_base4; 1196 uint32_t chs_base5; 1197 } pci_config_header_state_t; 1198 1199 #ifdef _KERNEL 1200 1201 typedef struct pci_cap_save_desc { 1202 uint16_t cap_offset; 1203 uint16_t cap_id; 1204 uint32_t cap_nregs; 1205 } pci_cap_save_desc_t; 1206 1207 typedef struct pci_cap_entry { 1208 uint16_t cap_id; 1209 uint16_t cap_reg; 1210 uint16_t cap_mask; 1211 uint32_t cap_ndwords; 1212 uint32_t (*cap_save_func)(ddi_acc_handle_t confhdl, uint16_t cap_ptr, 1213 uint32_t *regbuf, uint32_t ndwords); 1214 } pci_cap_entry_t; 1215 1216 #endif /* _KERNEL */ 1217 1218 #ifdef __cplusplus 1219 } 1220 #endif 1221 1222 #endif /* _SYS_DDI_IMPLDEFS_H */ 1223