1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #ifndef _SYS_CRYPTO_SCHED_IMPL_H 28 #define _SYS_CRYPTO_SCHED_IMPL_H 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 /* 33 * Scheduler internal structures. 34 */ 35 36 #ifdef __cplusplus 37 extern "C" { 38 #endif 39 40 #include <sys/types.h> 41 #include <sys/mutex.h> 42 #include <sys/condvar.h> 43 #include <sys/door.h> 44 #include <sys/crypto/api.h> 45 #include <sys/crypto/spi.h> 46 #include <sys/crypto/impl.h> 47 #include <sys/crypto/common.h> 48 #include <sys/crypto/ops_impl.h> 49 50 typedef void (kcf_func_t)(void *, int); 51 52 typedef enum kcf_req_status { 53 REQ_ALLOCATED = 1, 54 REQ_WAITING, /* At the framework level */ 55 REQ_INPROGRESS, /* At the provider level */ 56 REQ_DONE, 57 REQ_CANCELED 58 } kcf_req_status_t; 59 60 typedef enum kcf_call_type { 61 CRYPTO_SYNCH = 1, 62 CRYPTO_ASYNCH 63 } kcf_call_type_t; 64 65 #define CHECK_RESTRICT(crq) (crq != NULL && \ 66 ((crq)->cr_flag & CRYPTO_RESTRICTED)) 67 68 #define CHECK_FASTPATH(crq, pd) ((crq) == NULL || \ 69 !((crq)->cr_flag & CRYPTO_ALWAYS_QUEUE)) && \ 70 (pd)->pd_prov_type == CRYPTO_SW_PROVIDER 71 72 #define KCF_KMFLAG(crq) (((crq) == NULL) ? KM_SLEEP : KM_NOSLEEP) 73 74 /* 75 * The framework keeps an internal handle to use in the adaptive 76 * asynchronous case. This is the case when a client has the 77 * CRYPTO_ALWAYS_QUEUE bit clear and a software provider is used for 78 * the request. The request is completed in the context of the calling 79 * thread and kernel memory must be allocated with KM_NOSLEEP. 80 * 81 * The framework passes a pointer to the handle in crypto_req_handle_t 82 * argument when it calls the SPI of the software provider. The macros 83 * KCF_RHNDL() and KCF_SWFP_RHNDL() are used to do this. 84 * 85 * When a provider asks the framework for kmflag value via 86 * crypto_kmflag(9S) we use REQHNDL2_KMFLAG() macro. 87 */ 88 extern ulong_t kcf_swprov_hndl; 89 #define KCF_RHNDL(kmflag) (((kmflag) == KM_SLEEP) ? NULL : &kcf_swprov_hndl) 90 #define KCF_SWFP_RHNDL(crq) (((crq) == NULL) ? NULL : &kcf_swprov_hndl) 91 #define REQHNDL2_KMFLAG(rhndl) \ 92 ((rhndl == &kcf_swprov_hndl) ? KM_NOSLEEP : KM_SLEEP) 93 94 /* Internal call_req flags. They start after the public ones in api.h */ 95 96 #define CRYPTO_SETDUAL 0x00001000 /* Set the 'cont' boolean before */ 97 /* submitting the request */ 98 #define KCF_ISDUALREQ(crq) \ 99 (((crq) == NULL) ? B_FALSE : (crq->cr_flag & CRYPTO_SETDUAL)) 100 101 typedef struct kcf_prov_tried { 102 kcf_provider_desc_t *pt_pd; 103 struct kcf_prov_tried *pt_next; 104 } kcf_prov_tried_t; 105 106 #define IS_FG_SUPPORTED(mdesc, fg) \ 107 (((mdesc)->pm_mech_info.cm_func_group_mask & (fg)) != 0) 108 109 #define IS_PROVIDER_TRIED(pd, tlist) \ 110 (tlist != NULL && is_in_triedlist(pd, tlist)) 111 112 #define IS_RECOVERABLE(error) \ 113 (error == CRYPTO_BUFFER_TOO_BIG || \ 114 error == CRYPTO_BUSY || \ 115 error == CRYPTO_DEVICE_ERROR || \ 116 error == CRYPTO_DEVICE_MEMORY || \ 117 error == CRYPTO_KEY_SIZE_RANGE || \ 118 error == CRYPTO_NO_PERMISSION) 119 120 #define KCF_ATOMIC_INCR(x) atomic_add_32(&(x), 1) 121 #define KCF_ATOMIC_DECR(x) atomic_add_32(&(x), -1) 122 123 /* 124 * Node structure for synchronous requests. 125 */ 126 typedef struct kcf_sreq_node { 127 /* Should always be the first field in this structure */ 128 kcf_call_type_t sn_type; 129 /* 130 * sn_cv and sr_lock are used to wait for the 131 * operation to complete. sn_lock also protects 132 * the sn_state field. 133 */ 134 kcondvar_t sn_cv; 135 kmutex_t sn_lock; 136 kcf_req_status_t sn_state; 137 138 /* 139 * Return value from the operation. This will be 140 * one of the CRYPTO_* errors defined in common.h. 141 */ 142 int sn_rv; 143 144 /* 145 * parameters to call the SPI with. This can be 146 * a pointer as we know the caller context/stack stays. 147 */ 148 struct kcf_req_params *sn_params; 149 150 /* Internal context for this request */ 151 struct kcf_context *sn_context; 152 153 /* Provider handling this request */ 154 kcf_provider_desc_t *sn_provider; 155 } kcf_sreq_node_t; 156 157 /* 158 * Node structure for asynchronous requests. A node can be on 159 * on a chain of requests hanging of the internal context 160 * structure and can be in the global software provider queue. 161 */ 162 typedef struct kcf_areq_node { 163 /* Should always be the first field in this structure */ 164 kcf_call_type_t an_type; 165 166 /* an_lock protects the field an_state */ 167 kmutex_t an_lock; 168 kcf_req_status_t an_state; 169 crypto_call_req_t an_reqarg; 170 171 /* 172 * parameters to call the SPI with. We need to 173 * save the params since the caller stack can go away. 174 */ 175 struct kcf_req_params an_params; 176 177 /* 178 * The next two fields should be NULL for operations that 179 * don't need a context. 180 */ 181 /* Internal context for this request */ 182 struct kcf_context *an_context; 183 184 /* next in chain of requests for context */ 185 struct kcf_areq_node *an_ctxchain_next; 186 187 boolean_t an_is_my_turn; 188 boolean_t an_isdual; /* for internal reuse */ 189 190 /* 191 * Next and previous nodes in the global software 192 * queue. These fields are NULL for a hardware 193 * provider since we use a taskq there. 194 */ 195 struct kcf_areq_node *an_next; 196 struct kcf_areq_node *an_prev; 197 198 /* Provider handling this request */ 199 kcf_provider_desc_t *an_provider; 200 kcf_prov_tried_t *an_tried_plist; 201 202 struct kcf_areq_node *an_idnext; /* Next in ID hash */ 203 struct kcf_areq_node *an_idprev; /* Prev in ID hash */ 204 kcondvar_t an_done; /* Signal request completion */ 205 uint_t an_refcnt; 206 } kcf_areq_node_t; 207 208 #define KCF_AREQ_REFHOLD(areq) { \ 209 atomic_add_32(&(areq)->an_refcnt, 1); \ 210 ASSERT((areq)->an_refcnt != 0); \ 211 } 212 213 #define KCF_AREQ_REFRELE(areq) { \ 214 ASSERT((areq)->an_refcnt != 0); \ 215 membar_exit(); \ 216 if (atomic_add_32_nv(&(areq)->an_refcnt, -1) == 0) \ 217 kcf_free_req(areq); \ 218 } 219 220 #define GET_REQ_TYPE(arg) *((kcf_call_type_t *)(arg)) 221 222 #define NOTIFY_CLIENT(areq, err) (*(areq)->an_reqarg.cr_callback_func)(\ 223 (areq)->an_reqarg.cr_callback_arg, err); 224 225 /* For internally generated call requests for dual operations */ 226 typedef struct kcf_call_req { 227 crypto_call_req_t kr_callreq; /* external client call req */ 228 kcf_req_params_t kr_params; /* Params saved for next call */ 229 kcf_areq_node_t *kr_areq; /* Use this areq */ 230 off_t kr_saveoffset; 231 size_t kr_savelen; 232 } kcf_dual_req_t; 233 234 /* 235 * The following are some what similar to macros in callo.h, which implement 236 * callout tables. 237 * 238 * The lower four bits of the ID are used to encode the table ID to 239 * index in to. The REQID_COUNTER_HIGH bit is used to avoid any check for 240 * wrap around when generating ID. We assume that there won't be a request 241 * which takes more time than 2^^(sizeof (long) - 5) other requests submitted 242 * after it. This ensures there won't be any ID collision. 243 */ 244 #define REQID_COUNTER_HIGH (1UL << (8 * sizeof (long) - 1)) 245 #define REQID_COUNTER_SHIFT 4 246 #define REQID_COUNTER_LOW (1 << REQID_COUNTER_SHIFT) 247 #define REQID_TABLES 16 248 #define REQID_TABLE_MASK (REQID_TABLES - 1) 249 250 #define REQID_BUCKETS 512 251 #define REQID_BUCKET_MASK (REQID_BUCKETS - 1) 252 #define REQID_HASH(id) (((id) >> REQID_COUNTER_SHIFT) & REQID_BUCKET_MASK) 253 254 #define GET_REQID(areq) (areq)->an_reqarg.cr_reqid 255 #define SET_REQID(areq, val) GET_REQID(areq) = val 256 257 /* 258 * Hash table for async requests. 259 */ 260 typedef struct kcf_reqid_table { 261 kmutex_t rt_lock; 262 crypto_req_id_t rt_curid; 263 kcf_areq_node_t *rt_idhash[REQID_BUCKETS]; 264 } kcf_reqid_table_t; 265 266 /* 267 * Global software provider queue structure. Requests to be 268 * handled by a SW provider and have the ALWAYS_QUEUE flag set 269 * get queued here. 270 */ 271 typedef struct kcf_global_swq { 272 /* 273 * gs_cv and gs_lock are used to wait for new requests. 274 * gs_lock protects the changes to the queue. 275 */ 276 kcondvar_t gs_cv; 277 kmutex_t gs_lock; 278 uint_t gs_njobs; 279 uint_t gs_maxjobs; 280 kcf_areq_node_t *gs_first; 281 kcf_areq_node_t *gs_last; 282 } kcf_global_swq_t; 283 284 285 /* 286 * Internal representation of a canonical context. We contain crypto_ctx_t 287 * structure in order to have just one memory allocation. The SPI 288 * ((crypto_ctx_t *)ctx)->cc_framework_private maps to this structure. 289 */ 290 typedef struct kcf_context { 291 crypto_ctx_t kc_glbl_ctx; 292 uint_t kc_refcnt; 293 kcondvar_t kc_in_use_cv; 294 kmutex_t kc_in_use_lock; 295 /* 296 * kc_req_chain_first and kc_req_chain_last are used to chain 297 * multiple async requests using the same context. They should be 298 * NULL for sync requests. 299 */ 300 kcf_areq_node_t *kc_req_chain_first; 301 kcf_areq_node_t *kc_req_chain_last; 302 boolean_t kc_need_signal; /* Initialized to B_FALSE */ 303 kcf_provider_desc_t *kc_prov_desc; /* Prov. descriptor */ 304 struct kcf_context *kc_secondctx; /* for dual contexts */ 305 } kcf_context_t; 306 307 /* 308 * Bump up the reference count on the framework private context. A 309 * global context or a request that references this structure should 310 * do a hold. 311 */ 312 #define KCF_CONTEXT_REFHOLD(ictx) { \ 313 atomic_add_32(&(ictx)->kc_refcnt, 1); \ 314 ASSERT((ictx)->kc_refcnt != 0); \ 315 } 316 317 /* 318 * Decrement the reference count on the framework private context. 319 * When the last reference is released, the framework private 320 * context structure is freed along with the global context. 321 */ 322 #define KCF_CONTEXT_REFRELE(ictx) { \ 323 ASSERT((ictx)->kc_refcnt != 0); \ 324 membar_exit(); \ 325 if (atomic_add_32_nv(&(ictx)->kc_refcnt, -1) == 0) \ 326 kcf_free_context(ictx); \ 327 } 328 329 /* 330 * Check if we can release the context now. In case of CRYPTO_QUEUED 331 * we do not release it as we can do it only after the provider notified 332 * us. In case of CRYPTO_BUSY, the client can retry the request using 333 * the context, so we do not release the context. 334 * 335 * This macro should be called only from the final routine in 336 * an init/update/final sequence. We do not release the context in case 337 * of update operations. We require the consumer to free it 338 * explicitly, in case it wants to abandon the operation. This is done 339 * as there may be mechanisms in ECB mode that can continue even if 340 * an operation on a block fails. 341 */ 342 #define KCF_CONTEXT_COND_RELEASE(rv, kcf_ctx) { \ 343 if (KCF_CONTEXT_DONE(rv)) \ 344 KCF_CONTEXT_REFRELE(kcf_ctx); \ 345 } 346 347 /* 348 * This macro determines whether we're done with a context. 349 */ 350 #define KCF_CONTEXT_DONE(rv) \ 351 ((rv) != CRYPTO_QUEUED && (rv) != CRYPTO_BUSY && \ 352 (rv) != CRYPTO_BUFFER_TOO_SMALL) 353 354 /* 355 * A crypto_ctx_template_t is internally a pointer to this struct 356 */ 357 typedef struct kcf_ctx_template { 358 crypto_kcf_provider_handle_t ct_prov_handle; /* provider handle */ 359 uint_t ct_generation; /* generation # */ 360 size_t ct_size; /* for freeing */ 361 crypto_spi_ctx_template_t ct_prov_tmpl; /* context template */ 362 /* from the SW prov */ 363 } kcf_ctx_template_t; 364 365 /* 366 * Structure for pool of threads working on global software queue. 367 */ 368 typedef struct kcf_pool { 369 uint32_t kp_threads; /* Number of threads in pool */ 370 uint32_t kp_idlethreads; /* Idle threads in pool */ 371 uint32_t kp_blockedthreads; /* Blocked threads in pool */ 372 373 /* 374 * cv & lock to monitor the condition when no threads 375 * are around. In this case the failover thread kicks in. 376 */ 377 kcondvar_t kp_nothr_cv; 378 kmutex_t kp_thread_lock; 379 380 /* Userspace thread creator variables. */ 381 boolean_t kp_signal_create_thread; /* Create requested flag */ 382 int kp_nthrs; /* # of threads to create */ 383 boolean_t kp_user_waiting; /* Thread waiting for work */ 384 385 /* 386 * cv & lock for the condition where more threads need to be 387 * created. kp_user_lock also protects the three fileds above. 388 */ 389 kcondvar_t kp_user_cv; /* Creator cond. variable */ 390 kmutex_t kp_user_lock; /* Creator lock */ 391 } kcf_pool_t; 392 393 394 /* 395 * State of a crypto bufcall element. 396 */ 397 typedef enum cbuf_state { 398 CBUF_FREE = 1, 399 CBUF_WAITING, 400 CBUF_RUNNING 401 } cbuf_state_t; 402 403 /* 404 * Structure of a crypto bufcall element. 405 */ 406 typedef struct kcf_cbuf_elem { 407 /* 408 * lock and cv to wait for CBUF_RUNNING to be done 409 * kc_lock also protects kc_state. 410 */ 411 kmutex_t kc_lock; 412 kcondvar_t kc_cv; 413 cbuf_state_t kc_state; 414 415 struct kcf_cbuf_elem *kc_next; 416 struct kcf_cbuf_elem *kc_prev; 417 418 void (*kc_func)(void *arg); 419 void *kc_arg; 420 } kcf_cbuf_elem_t; 421 422 /* 423 * State of a notify element. 424 */ 425 typedef enum ntfy_elem_state { 426 NTFY_WAITING = 1, 427 NTFY_RUNNING 428 } ntfy_elem_state_t; 429 430 /* 431 * Structure of a notify list element. 432 */ 433 typedef struct kcf_ntfy_elem { 434 /* 435 * lock and cv to wait for NTFY_RUNNING to be done. 436 * kn_lock also protects kn_state. 437 */ 438 kmutex_t kn_lock; 439 kcondvar_t kn_cv; 440 ntfy_elem_state_t kn_state; 441 442 struct kcf_ntfy_elem *kn_next; 443 struct kcf_ntfy_elem *kn_prev; 444 445 crypto_notify_callback_t kn_func; 446 uint32_t kn_event_mask; 447 } kcf_ntfy_elem_t; 448 449 450 /* 451 * The following values are based on the assumption that it would 452 * take around eight cpus to load a hardware provider (This is true for 453 * at least one product) and a kernel client may come from different 454 * low-priority interrupt levels. We will have CYRPTO_TASKQ_MIN number 455 * of cached taskq entries. These are just reasonable estimates and 456 * might need to change in future. 457 */ 458 #define CYRPTO_TASKQ_MIN 64 459 #define CRYPTO_TASKQ_MAX 1024 460 461 extern int crypto_taskq_minalloc; 462 extern int crypto_taskq_maxalloc; 463 extern kcf_global_swq_t *gswq; 464 extern int kcf_maxthreads; 465 extern int kcf_minthreads; 466 467 /* Door handle for talking to kcfd */ 468 extern door_handle_t kcf_dh; 469 extern kmutex_t kcf_dh_lock; 470 471 /* 472 * All pending crypto bufcalls are put on a list. cbuf_list_lock 473 * protects changes to this list. 474 */ 475 extern kmutex_t cbuf_list_lock; 476 extern kcondvar_t cbuf_list_cv; 477 478 /* 479 * All event subscribers are put on a list. kcf_notify_list_lock 480 * protects changes to this list. 481 */ 482 extern kmutex_t ntfy_list_lock; 483 extern kcondvar_t ntfy_list_cv; 484 485 boolean_t kcf_get_next_logical_provider_member(kcf_provider_desc_t *, 486 kcf_provider_desc_t *, kcf_provider_desc_t **); 487 extern int kcf_get_hardware_provider(crypto_mech_type_t, offset_t, offset_t, 488 kcf_provider_desc_t *, kcf_provider_desc_t **); 489 extern int kcf_get_hardware_provider_nomech(offset_t, offset_t, 490 kcf_provider_desc_t *, kcf_provider_desc_t **); 491 extern void kcf_free_triedlist(kcf_prov_tried_t *); 492 extern kcf_prov_tried_t *kcf_insert_triedlist(kcf_prov_tried_t **, 493 kcf_provider_desc_t *, int); 494 extern kcf_provider_desc_t *kcf_get_mech_provider(crypto_mech_type_t, 495 kcf_mech_entry_t **, int *, kcf_prov_tried_t *, crypto_func_group_t, 496 boolean_t, size_t); 497 extern kcf_provider_desc_t *kcf_get_dual_provider(crypto_mechanism_t *, 498 crypto_mechanism_t *, kcf_mech_entry_t **, crypto_mech_type_t *, 499 crypto_mech_type_t *, int *, kcf_prov_tried_t *, 500 crypto_func_group_t, crypto_func_group_t, boolean_t, size_t); 501 extern crypto_ctx_t *kcf_new_ctx(crypto_call_req_t *, kcf_provider_desc_t *, 502 crypto_session_id_t); 503 extern int kcf_submit_request(kcf_provider_desc_t *, crypto_ctx_t *, 504 crypto_call_req_t *, kcf_req_params_t *, boolean_t); 505 extern void kcf_sched_init(void); 506 extern void kcf_sched_start(void); 507 extern void kcf_sop_done(kcf_sreq_node_t *, int); 508 extern void kcf_aop_done(kcf_areq_node_t *, int); 509 extern int common_submit_request(kcf_provider_desc_t *, 510 crypto_ctx_t *, kcf_req_params_t *, crypto_req_handle_t); 511 extern void kcf_free_context(kcf_context_t *); 512 513 extern int kcf_svc_wait(int *); 514 extern int kcf_svc_do_run(void); 515 extern int kcf_verify_signature(kcf_provider_desc_t *); 516 extern struct modctl *kcf_get_modctl(crypto_provider_info_t *); 517 extern void verify_unverified_providers(); 518 extern void kcf_free_req(kcf_areq_node_t *areq); 519 extern void crypto_bufcall_service(void); 520 521 extern void kcf_walk_ntfylist(uint32_t, void *); 522 523 extern kcf_dual_req_t *kcf_alloc_req(crypto_call_req_t *); 524 extern void kcf_next_req(void *, int); 525 extern void kcf_last_req(void *, int); 526 527 #ifdef __cplusplus 528 } 529 #endif 530 531 #endif /* _SYS_CRYPTO_SCHED_IMPL_H */ 532