xref: /illumos-gate/usr/src/uts/common/sys/avl.h (revision 46b592853d0f4f11781b6b0a7533f267c6aee132)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef	_AVL_H
27 #define	_AVL_H
28 
29 /*
30  * This is a private header file.  Applications should not directly include
31  * this file.
32  */
33 
34 #ifdef	__cplusplus
35 extern "C" {
36 #endif
37 
38 #include <sys/types.h>
39 #include <sys/avl_impl.h>
40 
41 /*
42  * This is a generic implemenatation of AVL trees for use in the Solaris kernel.
43  * The interfaces provide an efficient way of implementing an ordered set of
44  * data structures.
45  *
46  * AVL trees provide an alternative to using an ordered linked list. Using AVL
47  * trees will usually be faster, however they requires more storage. An ordered
48  * linked list in general requires 2 pointers in each data structure. The
49  * AVL tree implementation uses 3 pointers. The following chart gives the
50  * approximate performance of operations with the different approaches:
51  *
52  *	Operation	 Link List	AVL tree
53  *	---------	 --------	--------
54  *	lookup		   O(n)		O(log(n))
55  *
56  *	insert 1 node	 constant	constant
57  *
58  *	delete 1 node	 constant	between constant and O(log(n))
59  *
60  *	delete all nodes   O(n)		O(n)
61  *
62  *	visit the next
63  *	or prev node	 constant	between constant and O(log(n))
64  *
65  *
66  * The data structure nodes are anchored at an "avl_tree_t" (the equivalent
67  * of a list header) and the individual nodes will have a field of
68  * type "avl_node_t" (corresponding to list pointers).
69  *
70  * The type "avl_index_t" is used to indicate a position in the list for
71  * certain calls.
72  *
73  * The usage scenario is generally:
74  *
75  * 1. Create the list/tree with: avl_create()
76  *
77  * followed by any mixture of:
78  *
79  * 2a. Insert nodes with: avl_add(), or avl_find() and avl_insert()
80  *
81  * 2b. Visited elements with:
82  *	 avl_first() - returns the lowest valued node
83  *	 avl_last() - returns the highest valued node
84  *	 AVL_NEXT() - given a node go to next higher one
85  *	 AVL_PREV() - given a node go to previous lower one
86  *
87  * 2c.  Find the node with the closest value either less than or greater
88  *	than a given value with avl_nearest().
89  *
90  * 2d. Remove individual nodes from the list/tree with avl_remove().
91  *
92  * and finally when the list is being destroyed
93  *
94  * 3. Use avl_destroy_nodes() to quickly process/free up any remaining nodes.
95  *    Note that once you use avl_destroy_nodes(), you can no longer
96  *    use any routine except avl_destroy_nodes() and avl_destoy().
97  *
98  * 4. Use avl_destroy() to destroy the AVL tree itself.
99  *
100  * Any locking for multiple thread access is up to the user to provide, just
101  * as is needed for any linked list implementation.
102  */
103 
104 
105 /*
106  * Type used for the root of the AVL tree.
107  */
108 typedef struct avl_tree avl_tree_t;
109 
110 /*
111  * The data nodes in the AVL tree must have a field of this type.
112  */
113 typedef struct avl_node avl_node_t;
114 
115 /*
116  * An opaque type used to locate a position in the tree where a node
117  * would be inserted.
118  */
119 typedef uintptr_t avl_index_t;
120 
121 
122 /*
123  * Direction constants used for avl_nearest().
124  */
125 #define	AVL_BEFORE	(0)
126 #define	AVL_AFTER	(1)
127 
128 
129 /*
130  * Prototypes
131  *
132  * Where not otherwise mentioned, "void *" arguments are a pointer to the
133  * user data structure which must contain a field of type avl_node_t.
134  *
135  * Also assume the user data structures looks like:
136  *	stuct my_type {
137  *		...
138  *		avl_node_t	my_link;
139  *		...
140  *	};
141  */
142 
143 /*
144  * Initialize an AVL tree. Arguments are:
145  *
146  * tree   - the tree to be initialized
147  * compar - function to compare two nodes, it must return exactly: -1, 0, or +1
148  *          -1 for <, 0 for ==, and +1 for >
149  * size   - the value of sizeof(struct my_type)
150  * offset - the value of OFFSETOF(struct my_type, my_link)
151  */
152 extern void avl_create(avl_tree_t *tree,
153 	int (*compar) (const void *, const void *), size_t size, size_t offset);
154 
155 
156 /*
157  * Find a node with a matching value in the tree. Returns the matching node
158  * found. If not found, it returns NULL and then if "where" is not NULL it sets
159  * "where" for use with avl_insert() or avl_nearest().
160  *
161  * node   - node that has the value being looked for
162  * where  - position for use with avl_nearest() or avl_insert(), may be NULL
163  */
164 extern void *avl_find(avl_tree_t *tree, const void *node, avl_index_t *where);
165 
166 /*
167  * Insert a node into the tree.
168  *
169  * node   - the node to insert
170  * where  - position as returned from avl_find()
171  */
172 extern void avl_insert(avl_tree_t *tree, void *node, avl_index_t where);
173 
174 /*
175  * Insert "new_data" in "tree" in the given "direction" either after
176  * or before the data "here".
177  *
178  * This might be usefull for avl clients caching recently accessed
179  * data to avoid doing avl_find() again for insertion.
180  *
181  * new_data	- new data to insert
182  * here		- existing node in "tree"
183  * direction	- either AVL_AFTER or AVL_BEFORE the data "here".
184  */
185 extern void avl_insert_here(avl_tree_t *tree, void *new_data, void *here,
186     int direction);
187 
188 
189 /*
190  * Return the first or last valued node in the tree. Will return NULL
191  * if the tree is empty.
192  *
193  */
194 extern void *avl_first(avl_tree_t *tree);
195 extern void *avl_last(avl_tree_t *tree);
196 
197 
198 /*
199  * Return the next or previous valued node in the tree.
200  * AVL_NEXT() will return NULL if at the last node.
201  * AVL_PREV() will return NULL if at the first node.
202  *
203  * node   - the node from which the next or previous node is found
204  */
205 #define	AVL_NEXT(tree, node)	avl_walk(tree, node, AVL_AFTER)
206 #define	AVL_PREV(tree, node)	avl_walk(tree, node, AVL_BEFORE)
207 
208 
209 /*
210  * Find the node with the nearest value either greater or less than
211  * the value from a previous avl_find(). Returns the node or NULL if
212  * there isn't a matching one.
213  *
214  * where     - position as returned from avl_find()
215  * direction - either AVL_BEFORE or AVL_AFTER
216  *
217  * EXAMPLE get the greatest node that is less than a given value:
218  *
219  *	avl_tree_t *tree;
220  *	struct my_data look_for_value = {....};
221  *	struct my_data *node;
222  *	struct my_data *less;
223  *	avl_index_t where;
224  *
225  *	node = avl_find(tree, &look_for_value, &where);
226  *	if (node != NULL)
227  *		less = AVL_PREV(tree, node);
228  *	else
229  *		less = avl_nearest(tree, where, AVL_BEFORE);
230  */
231 extern void *avl_nearest(avl_tree_t *tree, avl_index_t where, int direction);
232 
233 
234 /*
235  * Add a single node to the tree.
236  * The node must not be in the tree, and it must not
237  * compare equal to any other node already in the tree.
238  *
239  * node   - the node to add
240  */
241 extern void avl_add(avl_tree_t *tree, void *node);
242 
243 
244 /*
245  * Remove a single node from the tree.  The node must be in the tree.
246  *
247  * node   - the node to remove
248  */
249 extern void avl_remove(avl_tree_t *tree, void *node);
250 
251 /*
252  * Reinsert a node only if its order has changed relative to its nearest
253  * neighbors. To optimize performance avl_update_lt() checks only the previous
254  * node and avl_update_gt() checks only the next node. Use avl_update_lt() and
255  * avl_update_gt() only if you know the direction in which the order of the
256  * node may change.
257  */
258 extern boolean_t avl_update(avl_tree_t *, void *);
259 extern boolean_t avl_update_lt(avl_tree_t *, void *);
260 extern boolean_t avl_update_gt(avl_tree_t *, void *);
261 
262 /*
263  * Return the number of nodes in the tree
264  */
265 extern ulong_t avl_numnodes(avl_tree_t *tree);
266 
267 /*
268  * Return B_TRUE if there are zero nodes in the tree, B_FALSE otherwise.
269  */
270 extern boolean_t avl_is_empty(avl_tree_t *tree);
271 
272 /*
273  * Used to destroy any remaining nodes in a tree. The cookie argument should
274  * be initialized to NULL before the first call. Returns a node that has been
275  * removed from the tree and may be free()'d. Returns NULL when the tree is
276  * empty.
277  *
278  * Once you call avl_destroy_nodes(), you can only continuing calling it and
279  * finally avl_destroy(). No other AVL routines will be valid.
280  *
281  * cookie - a "void *" used to save state between calls to avl_destroy_nodes()
282  *
283  * EXAMPLE:
284  *	avl_tree_t *tree;
285  *	struct my_data *node;
286  *	void *cookie;
287  *
288  *	cookie = NULL;
289  *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
290  *		free(node);
291  *	avl_destroy(tree);
292  */
293 extern void *avl_destroy_nodes(avl_tree_t *tree, void **cookie);
294 
295 
296 /*
297  * Final destroy of an AVL tree. Arguments are:
298  *
299  * tree   - the empty tree to destroy
300  */
301 extern void avl_destroy(avl_tree_t *tree);
302 
303 
304 
305 #ifdef	__cplusplus
306 }
307 #endif
308 
309 #endif	/* _AVL_H */
310