xref: /illumos-gate/usr/src/uts/common/rpc/svc_rdma.c (revision a38ddfee9c8c6b6c5a2947ff52fd2338362a4444)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
26 /* All Rights Reserved */
27 /*
28  * Portions of this source code were derived from Berkeley
29  * 4.3 BSD under license from the Regents of the University of
30  * California.
31  */
32 
33 /*
34  * Server side of RPC over RDMA in the kernel.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/user.h>
40 #include <sys/sysmacros.h>
41 #include <sys/proc.h>
42 #include <sys/file.h>
43 #include <sys/errno.h>
44 #include <sys/kmem.h>
45 #include <sys/debug.h>
46 #include <sys/systm.h>
47 #include <sys/cmn_err.h>
48 #include <sys/kstat.h>
49 #include <sys/vtrace.h>
50 #include <sys/debug.h>
51 
52 #include <rpc/types.h>
53 #include <rpc/xdr.h>
54 #include <rpc/auth.h>
55 #include <rpc/clnt.h>
56 #include <rpc/rpc_msg.h>
57 #include <rpc/svc.h>
58 #include <rpc/rpc_rdma.h>
59 #include <sys/ddi.h>
60 #include <sys/sunddi.h>
61 
62 #include <inet/common.h>
63 #include <inet/ip.h>
64 #include <inet/ip6.h>
65 
66 #include <nfs/nfs.h>
67 #include <sys/sdt.h>
68 
69 #define	SVC_RDMA_SUCCESS 0
70 #define	SVC_RDMA_FAIL -1
71 
72 #define	SVC_CREDIT_FACTOR (0.5)
73 
74 #define	MSG_IS_RPCSEC_GSS(msg)		\
75 	((msg)->rm_reply.rp_acpt.ar_verf.oa_flavor == RPCSEC_GSS)
76 
77 
78 uint32_t rdma_bufs_granted = RDMA_BUFS_GRANT;
79 
80 /*
81  * RDMA transport specific data associated with SVCMASTERXPRT
82  */
83 struct rdma_data {
84 	SVCMASTERXPRT 	*rd_xprt;	/* back ptr to SVCMASTERXPRT */
85 	struct rdma_svc_data rd_data;	/* rdma data */
86 	rdma_mod_t	*r_mod;		/* RDMA module containing ops ptr */
87 };
88 
89 /*
90  * Plugin connection specific data stashed away in clone SVCXPRT
91  */
92 struct clone_rdma_data {
93 	CONN		*conn;		/* RDMA connection */
94 	rdma_buf_t	rpcbuf;		/* RPC req/resp buffer */
95 	struct clist	*cl_reply;	/* reply chunk buffer info */
96 	struct clist	*cl_wlist;		/* write list clist */
97 };
98 
99 #define	MAXADDRLEN	128	/* max length for address mask */
100 
101 /*
102  * Routines exported through ops vector.
103  */
104 static bool_t		svc_rdma_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
105 static bool_t		svc_rdma_ksend(SVCXPRT *, struct rpc_msg *);
106 static bool_t		svc_rdma_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
107 static bool_t		svc_rdma_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
108 void			svc_rdma_kdestroy(SVCMASTERXPRT *);
109 static int		svc_rdma_kdup(struct svc_req *, caddr_t, int,
110 				struct dupreq **, bool_t *);
111 static void		svc_rdma_kdupdone(struct dupreq *, caddr_t,
112 				void (*)(), int, int);
113 static int32_t		*svc_rdma_kgetres(SVCXPRT *, int);
114 static void		svc_rdma_kfreeres(SVCXPRT *);
115 static void		svc_rdma_kclone_destroy(SVCXPRT *);
116 static void		svc_rdma_kstart(SVCMASTERXPRT *);
117 void			svc_rdma_kstop(SVCMASTERXPRT *);
118 
119 static int	svc_process_long_reply(SVCXPRT *, xdrproc_t,
120 			caddr_t, struct rpc_msg *, bool_t, int *,
121 			int *, int *, unsigned int *);
122 
123 static int	svc_compose_rpcmsg(SVCXPRT *, CONN *, xdrproc_t,
124 			caddr_t, rdma_buf_t *, XDR **, struct rpc_msg *,
125 			bool_t, uint_t *);
126 static bool_t rpcmsg_length(xdrproc_t,
127 		caddr_t,
128 		struct rpc_msg *, bool_t, int);
129 
130 /*
131  * Server transport operations vector.
132  */
133 struct svc_ops rdma_svc_ops = {
134 	svc_rdma_krecv,		/* Get requests */
135 	svc_rdma_kgetargs,	/* Deserialize arguments */
136 	svc_rdma_ksend,		/* Send reply */
137 	svc_rdma_kfreeargs,	/* Free argument data space */
138 	svc_rdma_kdestroy,	/* Destroy transport handle */
139 	svc_rdma_kdup,		/* Check entry in dup req cache */
140 	svc_rdma_kdupdone,	/* Mark entry in dup req cache as done */
141 	svc_rdma_kgetres,	/* Get pointer to response buffer */
142 	svc_rdma_kfreeres,	/* Destroy pre-serialized response header */
143 	svc_rdma_kclone_destroy,	/* Destroy a clone xprt */
144 	svc_rdma_kstart		/* Tell `ready-to-receive' to rpcmod */
145 };
146 
147 /*
148  * Server statistics
149  * NOTE: This structure type is duplicated in the NFS fast path.
150  */
151 struct {
152 	kstat_named_t	rscalls;
153 	kstat_named_t	rsbadcalls;
154 	kstat_named_t	rsnullrecv;
155 	kstat_named_t	rsbadlen;
156 	kstat_named_t	rsxdrcall;
157 	kstat_named_t	rsdupchecks;
158 	kstat_named_t	rsdupreqs;
159 	kstat_named_t	rslongrpcs;
160 	kstat_named_t	rstotalreplies;
161 	kstat_named_t	rstotallongreplies;
162 	kstat_named_t	rstotalinlinereplies;
163 } rdmarsstat = {
164 	{ "calls",	KSTAT_DATA_UINT64 },
165 	{ "badcalls",	KSTAT_DATA_UINT64 },
166 	{ "nullrecv",	KSTAT_DATA_UINT64 },
167 	{ "badlen",	KSTAT_DATA_UINT64 },
168 	{ "xdrcall",	KSTAT_DATA_UINT64 },
169 	{ "dupchecks",	KSTAT_DATA_UINT64 },
170 	{ "dupreqs",	KSTAT_DATA_UINT64 },
171 	{ "longrpcs",	KSTAT_DATA_UINT64 },
172 	{ "totalreplies",	KSTAT_DATA_UINT64 },
173 	{ "totallongreplies",	KSTAT_DATA_UINT64 },
174 	{ "totalinlinereplies",	KSTAT_DATA_UINT64 },
175 };
176 
177 kstat_named_t *rdmarsstat_ptr = (kstat_named_t *)&rdmarsstat;
178 uint_t rdmarsstat_ndata = sizeof (rdmarsstat) / sizeof (kstat_named_t);
179 
180 #define	RSSTAT_INCR(x)	atomic_add_64(&rdmarsstat.x.value.ui64, 1)
181 /*
182  * Create a transport record.
183  * The transport record, output buffer, and private data structure
184  * are allocated.  The output buffer is serialized into using xdrmem.
185  * There is one transport record per user process which implements a
186  * set of services.
187  */
188 /* ARGSUSED */
189 int
190 svc_rdma_kcreate(char *netid, SVC_CALLOUT_TABLE *sct, int id,
191     rdma_xprt_group_t *started_xprts)
192 {
193 	int error;
194 	SVCMASTERXPRT *xprt;
195 	struct rdma_data *rd;
196 	rdma_registry_t *rmod;
197 	rdma_xprt_record_t *xprt_rec;
198 	queue_t	*q;
199 	/*
200 	 * modload the RDMA plugins is not already done.
201 	 */
202 	if (!rdma_modloaded) {
203 		/*CONSTANTCONDITION*/
204 		ASSERT(sizeof (struct clone_rdma_data) <= SVC_P2LEN);
205 
206 		mutex_enter(&rdma_modload_lock);
207 		if (!rdma_modloaded) {
208 			error = rdma_modload();
209 		}
210 		mutex_exit(&rdma_modload_lock);
211 
212 		if (error)
213 			return (error);
214 	}
215 
216 	/*
217 	 * master_xprt_count is the count of master transport handles
218 	 * that were successfully created and are ready to recieve for
219 	 * RDMA based access.
220 	 */
221 	error = 0;
222 	xprt_rec = NULL;
223 	rw_enter(&rdma_lock, RW_READER);
224 	if (rdma_mod_head == NULL) {
225 		started_xprts->rtg_count = 0;
226 		rw_exit(&rdma_lock);
227 		if (rdma_dev_available)
228 			return (EPROTONOSUPPORT);
229 		else
230 			return (ENODEV);
231 	}
232 
233 	/*
234 	 * If we have reached here, then atleast one RDMA plugin has loaded.
235 	 * Create a master_xprt, make it start listenining on the device,
236 	 * if an error is generated, record it, we might need to shut
237 	 * the master_xprt.
238 	 * SVC_START() calls svc_rdma_kstart which calls plugin binding
239 	 * routines.
240 	 */
241 	for (rmod = rdma_mod_head; rmod != NULL; rmod = rmod->r_next) {
242 
243 		/*
244 		 * One SVCMASTERXPRT per RDMA plugin.
245 		 */
246 		xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP);
247 		xprt->xp_ops = &rdma_svc_ops;
248 		xprt->xp_sct = sct;
249 		xprt->xp_type = T_RDMA;
250 		mutex_init(&xprt->xp_req_lock, NULL, MUTEX_DEFAULT, NULL);
251 		mutex_init(&xprt->xp_thread_lock, NULL, MUTEX_DEFAULT, NULL);
252 		xprt->xp_req_head = (mblk_t *)0;
253 		xprt->xp_req_tail = (mblk_t *)0;
254 		xprt->xp_threads = 0;
255 		xprt->xp_detached_threads = 0;
256 
257 		rd = kmem_zalloc(sizeof (*rd), KM_SLEEP);
258 		xprt->xp_p2 = (caddr_t)rd;
259 		rd->rd_xprt = xprt;
260 		rd->r_mod = rmod->r_mod;
261 
262 		q = &rd->rd_data.q;
263 		xprt->xp_wq = q;
264 		q->q_ptr = &rd->rd_xprt;
265 		xprt->xp_netid = NULL;
266 
267 		if (netid != NULL) {
268 			xprt->xp_netid = kmem_alloc(strlen(netid) + 1,
269 			    KM_SLEEP);
270 			(void) strcpy(xprt->xp_netid, netid);
271 		}
272 
273 		xprt->xp_addrmask.maxlen =
274 		    xprt->xp_addrmask.len = sizeof (struct sockaddr_in);
275 		xprt->xp_addrmask.buf =
276 		    kmem_zalloc(xprt->xp_addrmask.len, KM_SLEEP);
277 		((struct sockaddr_in *)xprt->xp_addrmask.buf)->sin_addr.s_addr =
278 		    (uint32_t)~0;
279 		((struct sockaddr_in *)xprt->xp_addrmask.buf)->sin_family =
280 		    (ushort_t)~0;
281 
282 		/*
283 		 * Each of the plugins will have their own Service ID
284 		 * to listener specific mapping, like port number for VI
285 		 * and service name for IB.
286 		 */
287 		rd->rd_data.svcid = id;
288 		error = svc_xprt_register(xprt, id);
289 		if (error) {
290 			DTRACE_PROBE(krpc__e__svcrdma__xprt__reg);
291 			goto cleanup;
292 		}
293 
294 		SVC_START(xprt);
295 		if (!rd->rd_data.active) {
296 			svc_xprt_unregister(xprt);
297 			error = rd->rd_data.err_code;
298 			goto cleanup;
299 		}
300 
301 		/*
302 		 * This is set only when there is atleast one or more
303 		 * transports successfully created. We insert the pointer
304 		 * to the created RDMA master xprt into a separately maintained
305 		 * list. This way we can easily reference it later to cleanup,
306 		 * when NFS kRPC service pool is going away/unregistered.
307 		 */
308 		started_xprts->rtg_count ++;
309 		xprt_rec = kmem_alloc(sizeof (*xprt_rec), KM_SLEEP);
310 		xprt_rec->rtr_xprt_ptr = xprt;
311 		xprt_rec->rtr_next = started_xprts->rtg_listhead;
312 		started_xprts->rtg_listhead = xprt_rec;
313 		continue;
314 cleanup:
315 		SVC_DESTROY(xprt);
316 		if (error == RDMA_FAILED)
317 			error = EPROTONOSUPPORT;
318 	}
319 
320 	rw_exit(&rdma_lock);
321 
322 	/*
323 	 * Don't return any error even if a single plugin was started
324 	 * successfully.
325 	 */
326 	if (started_xprts->rtg_count == 0)
327 		return (error);
328 	return (0);
329 }
330 
331 /*
332  * Cleanup routine for freeing up memory allocated by
333  * svc_rdma_kcreate()
334  */
335 void
336 svc_rdma_kdestroy(SVCMASTERXPRT *xprt)
337 {
338 	struct rdma_data *rd = (struct rdma_data *)xprt->xp_p2;
339 
340 
341 	mutex_destroy(&xprt->xp_req_lock);
342 	mutex_destroy(&xprt->xp_thread_lock);
343 	kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
344 	kmem_free(rd, sizeof (*rd));
345 	kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
346 	kmem_free(xprt, sizeof (*xprt));
347 }
348 
349 
350 static void
351 svc_rdma_kstart(SVCMASTERXPRT *xprt)
352 {
353 	struct rdma_svc_data *svcdata;
354 	rdma_mod_t *rmod;
355 
356 	svcdata = &((struct rdma_data *)xprt->xp_p2)->rd_data;
357 	rmod = ((struct rdma_data *)xprt->xp_p2)->r_mod;
358 
359 	/*
360 	 * Create a listener for  module at this port
361 	 */
362 
363 	(*rmod->rdma_ops->rdma_svc_listen)(svcdata);
364 }
365 
366 void
367 svc_rdma_kstop(SVCMASTERXPRT *xprt)
368 {
369 	struct rdma_svc_data *svcdata;
370 	rdma_mod_t *rmod;
371 
372 	svcdata	= &((struct rdma_data *)xprt->xp_p2)->rd_data;
373 	rmod = ((struct rdma_data *)xprt->xp_p2)->r_mod;
374 
375 	/*
376 	 * Call the stop listener routine for each plugin.
377 	 */
378 	(*rmod->rdma_ops->rdma_svc_stop)(svcdata);
379 	if (svcdata->active)
380 		DTRACE_PROBE(krpc__e__svcrdma__kstop);
381 }
382 
383 /* ARGSUSED */
384 static void
385 svc_rdma_kclone_destroy(SVCXPRT *clone_xprt)
386 {
387 }
388 
389 static bool_t
390 svc_rdma_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
391 {
392 	XDR	*xdrs;
393 	CONN	*conn;
394 
395 	rdma_recv_data_t	*rdp = (rdma_recv_data_t *)mp->b_rptr;
396 	struct clone_rdma_data *crdp;
397 	struct clist	*cl = NULL;
398 	struct clist	*wcl = NULL;
399 	struct clist	*cllong = NULL;
400 
401 	rdma_stat	status;
402 	uint32_t vers, op, pos, xid;
403 	uint32_t rdma_credit;
404 	uint32_t wcl_total_length = 0;
405 	bool_t	wwl = FALSE;
406 
407 	crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
408 	RSSTAT_INCR(rscalls);
409 	conn = rdp->conn;
410 
411 	status = rdma_svc_postrecv(conn);
412 	if (status != RDMA_SUCCESS) {
413 		DTRACE_PROBE(krpc__e__svcrdma__krecv__postrecv);
414 		goto badrpc_call;
415 	}
416 
417 	xdrs = &clone_xprt->xp_xdrin;
418 	xdrmem_create(xdrs, rdp->rpcmsg.addr, rdp->rpcmsg.len, XDR_DECODE);
419 	xid = *(uint32_t *)rdp->rpcmsg.addr;
420 	XDR_SETPOS(xdrs, sizeof (uint32_t));
421 
422 	if (! xdr_u_int(xdrs, &vers) ||
423 	    ! xdr_u_int(xdrs, &rdma_credit) ||
424 	    ! xdr_u_int(xdrs, &op)) {
425 		DTRACE_PROBE(krpc__e__svcrdma__krecv__uint);
426 		goto xdr_err;
427 	}
428 
429 	/* Checking if the status of the recv operation was normal */
430 	if (rdp->status != 0) {
431 		DTRACE_PROBE1(krpc__e__svcrdma__krecv__invalid__status,
432 		    int, rdp->status);
433 		goto badrpc_call;
434 	}
435 
436 	if (! xdr_do_clist(xdrs, &cl)) {
437 		DTRACE_PROBE(krpc__e__svcrdma__krecv__do__clist);
438 		goto xdr_err;
439 	}
440 
441 	if (!xdr_decode_wlist_svc(xdrs, &wcl, &wwl, &wcl_total_length, conn)) {
442 		DTRACE_PROBE(krpc__e__svcrdma__krecv__decode__wlist);
443 		if (cl)
444 			clist_free(cl);
445 		goto xdr_err;
446 	}
447 	crdp->cl_wlist = wcl;
448 
449 	crdp->cl_reply = NULL;
450 	(void) xdr_decode_reply_wchunk(xdrs, &crdp->cl_reply);
451 
452 	/*
453 	 * A chunk at 0 offset indicates that the RPC call message
454 	 * is in a chunk. Get the RPC call message chunk.
455 	 */
456 	if (cl != NULL && op == RDMA_NOMSG) {
457 
458 		/* Remove RPC call message chunk from chunklist */
459 		cllong = cl;
460 		cl = cl->c_next;
461 		cllong->c_next = NULL;
462 
463 
464 		/* Allocate and register memory for the RPC call msg chunk */
465 		cllong->rb_longbuf.type = RDMA_LONG_BUFFER;
466 		cllong->rb_longbuf.len = cllong->c_len > LONG_REPLY_LEN ?
467 		    cllong->c_len : LONG_REPLY_LEN;
468 
469 		if (rdma_buf_alloc(conn, &cllong->rb_longbuf)) {
470 			clist_free(cllong);
471 			goto cll_malloc_err;
472 		}
473 
474 		cllong->u.c_daddr3 = cllong->rb_longbuf.addr;
475 
476 		if (cllong->u.c_daddr == NULL) {
477 			DTRACE_PROBE(krpc__e__svcrdma__krecv__nomem);
478 			rdma_buf_free(conn, &cllong->rb_longbuf);
479 			clist_free(cllong);
480 			goto cll_malloc_err;
481 		}
482 
483 		status = clist_register(conn, cllong, CLIST_REG_DST);
484 		if (status) {
485 			DTRACE_PROBE(krpc__e__svcrdma__krecv__clist__reg);
486 			rdma_buf_free(conn, &cllong->rb_longbuf);
487 			clist_free(cllong);
488 			goto cll_malloc_err;
489 		}
490 
491 		/*
492 		 * Now read the RPC call message in
493 		 */
494 		status = RDMA_READ(conn, cllong, WAIT);
495 		if (status) {
496 			DTRACE_PROBE(krpc__e__svcrdma__krecv__read);
497 			(void) clist_deregister(conn, cllong, CLIST_REG_DST);
498 			rdma_buf_free(conn, &cllong->rb_longbuf);
499 			clist_free(cllong);
500 			goto cll_malloc_err;
501 		}
502 
503 		status = clist_syncmem(conn, cllong, CLIST_REG_DST);
504 		(void) clist_deregister(conn, cllong, CLIST_REG_DST);
505 
506 		xdrrdma_create(xdrs, (caddr_t)(uintptr_t)cllong->u.c_daddr3,
507 		    cllong->c_len, 0, cl, XDR_DECODE, conn);
508 
509 		crdp->rpcbuf = cllong->rb_longbuf;
510 		crdp->rpcbuf.len = cllong->c_len;
511 		clist_free(cllong);
512 		RDMA_BUF_FREE(conn, &rdp->rpcmsg);
513 	} else {
514 		pos = XDR_GETPOS(xdrs);
515 		xdrrdma_create(xdrs, rdp->rpcmsg.addr + pos,
516 		    rdp->rpcmsg.len - pos, 0, cl, XDR_DECODE, conn);
517 		crdp->rpcbuf = rdp->rpcmsg;
518 
519 		/* Use xdrrdmablk_ops to indicate there is a read chunk list */
520 		if (cl != NULL) {
521 			int32_t flg = XDR_RDMA_RLIST_REG;
522 
523 			XDR_CONTROL(xdrs, XDR_RDMA_SET_FLAGS, &flg);
524 			xdrs->x_ops = &xdrrdmablk_ops;
525 		}
526 	}
527 
528 	if (crdp->cl_wlist) {
529 		int32_t flg = XDR_RDMA_WLIST_REG;
530 
531 		XDR_CONTROL(xdrs, XDR_RDMA_SET_WLIST, crdp->cl_wlist);
532 		XDR_CONTROL(xdrs, XDR_RDMA_SET_FLAGS, &flg);
533 	}
534 
535 	if (! xdr_callmsg(xdrs, msg)) {
536 		DTRACE_PROBE(krpc__e__svcrdma__krecv__callmsg);
537 		RSSTAT_INCR(rsxdrcall);
538 		goto callmsg_err;
539 	}
540 
541 	/*
542 	 * Point the remote transport address in the service_transport
543 	 * handle at the address in the request.
544 	 */
545 	clone_xprt->xp_rtaddr.buf = conn->c_raddr.buf;
546 	clone_xprt->xp_rtaddr.len = conn->c_raddr.len;
547 	clone_xprt->xp_rtaddr.maxlen = conn->c_raddr.len;
548 	clone_xprt->xp_xid = xid;
549 	crdp->conn = conn;
550 
551 	freeb(mp);
552 
553 	return (TRUE);
554 
555 callmsg_err:
556 	rdma_buf_free(conn, &crdp->rpcbuf);
557 
558 cll_malloc_err:
559 	if (cl)
560 		clist_free(cl);
561 xdr_err:
562 	XDR_DESTROY(xdrs);
563 
564 badrpc_call:
565 	RDMA_BUF_FREE(conn, &rdp->rpcmsg);
566 	RDMA_REL_CONN(conn);
567 	freeb(mp);
568 	RSSTAT_INCR(rsbadcalls);
569 	return (FALSE);
570 }
571 
572 static int
573 svc_process_long_reply(SVCXPRT * clone_xprt,
574     xdrproc_t xdr_results, caddr_t xdr_location,
575     struct rpc_msg *msg, bool_t has_args, int *msglen,
576     int *freelen, int *numchunks, unsigned int *final_len)
577 {
578 	int status;
579 	XDR xdrslong;
580 	struct clist *wcl = NULL;
581 	int count = 0;
582 	int alloc_len;
583 	char  *memp;
584 	rdma_buf_t long_rpc = {0};
585 	struct clone_rdma_data *crdp;
586 
587 	crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
588 
589 	bzero(&xdrslong, sizeof (xdrslong));
590 
591 	/* Choose a size for the long rpc response */
592 	if (MSG_IS_RPCSEC_GSS(msg)) {
593 		alloc_len = RNDUP(MAX_AUTH_BYTES + *msglen);
594 	} else {
595 		alloc_len = RNDUP(*msglen);
596 	}
597 
598 	if (alloc_len <= 64 * 1024) {
599 		if (alloc_len > 32 * 1024) {
600 			alloc_len = 64 * 1024;
601 		} else {
602 			if (alloc_len > 16 * 1024) {
603 				alloc_len = 32 * 1024;
604 			} else {
605 				alloc_len = 16 * 1024;
606 			}
607 		}
608 	}
609 
610 	long_rpc.type = RDMA_LONG_BUFFER;
611 	long_rpc.len = alloc_len;
612 	if (rdma_buf_alloc(crdp->conn, &long_rpc)) {
613 		return (SVC_RDMA_FAIL);
614 	}
615 
616 	memp = long_rpc.addr;
617 	xdrmem_create(&xdrslong, memp, alloc_len, XDR_ENCODE);
618 
619 	msg->rm_xid = clone_xprt->xp_xid;
620 
621 	if (!(xdr_replymsg(&xdrslong, msg) &&
622 	    (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, &xdrslong,
623 	    xdr_results, xdr_location)))) {
624 		rdma_buf_free(crdp->conn, &long_rpc);
625 		DTRACE_PROBE(krpc__e__svcrdma__longrep__authwrap);
626 		return (SVC_RDMA_FAIL);
627 	}
628 
629 	*final_len = XDR_GETPOS(&xdrslong);
630 
631 	*numchunks = 0;
632 	*freelen = 0;
633 
634 	wcl = crdp->cl_reply;
635 	wcl->rb_longbuf = long_rpc;
636 
637 	count = *final_len;
638 	while (wcl != NULL) {
639 		if (wcl->c_dmemhandle.mrc_rmr == 0)
640 			break;
641 
642 		if (wcl->c_len > count) {
643 			wcl->c_len = count;
644 		}
645 		wcl->w.c_saddr3 = (caddr_t)memp;
646 
647 		count -= wcl->c_len;
648 		*numchunks +=  1;
649 		if (count == 0)
650 			break;
651 		memp += wcl->c_len;
652 		wcl = wcl->c_next;
653 	}
654 
655 	wcl = crdp->cl_reply;
656 
657 	/*
658 	 * MUST fail if there are still more data
659 	 */
660 	if (count > 0) {
661 		rdma_buf_free(crdp->conn, &long_rpc);
662 		DTRACE_PROBE(krpc__e__svcrdma__longrep__dlen__clist);
663 		return (SVC_RDMA_FAIL);
664 	}
665 
666 	if (clist_register(crdp->conn, wcl, CLIST_REG_SOURCE) != RDMA_SUCCESS) {
667 		rdma_buf_free(crdp->conn, &long_rpc);
668 		DTRACE_PROBE(krpc__e__svcrdma__longrep__clistreg);
669 		return (SVC_RDMA_FAIL);
670 	}
671 
672 	status = clist_syncmem(crdp->conn, wcl, CLIST_REG_SOURCE);
673 
674 	if (status) {
675 		(void) clist_deregister(crdp->conn, wcl, CLIST_REG_SOURCE);
676 		rdma_buf_free(crdp->conn, &long_rpc);
677 		DTRACE_PROBE(krpc__e__svcrdma__longrep__syncmem);
678 		return (SVC_RDMA_FAIL);
679 	}
680 
681 	status = RDMA_WRITE(crdp->conn, wcl, WAIT);
682 
683 	(void) clist_deregister(crdp->conn, wcl, CLIST_REG_SOURCE);
684 	rdma_buf_free(crdp->conn, &wcl->rb_longbuf);
685 
686 	if (status != RDMA_SUCCESS) {
687 		DTRACE_PROBE(krpc__e__svcrdma__longrep__write);
688 		return (SVC_RDMA_FAIL);
689 	}
690 
691 	return (SVC_RDMA_SUCCESS);
692 }
693 
694 
695 static int
696 svc_compose_rpcmsg(SVCXPRT * clone_xprt, CONN * conn, xdrproc_t xdr_results,
697     caddr_t xdr_location, rdma_buf_t *rpcreply, XDR ** xdrs,
698     struct rpc_msg *msg, bool_t has_args, uint_t *len)
699 {
700 	/*
701 	 * Get a pre-allocated buffer for rpc reply
702 	 */
703 	rpcreply->type = SEND_BUFFER;
704 	if (rdma_buf_alloc(conn, rpcreply)) {
705 		DTRACE_PROBE(krpc__e__svcrdma__rpcmsg__reply__nofreebufs);
706 		return (SVC_RDMA_FAIL);
707 	}
708 
709 	xdrrdma_create(*xdrs, rpcreply->addr, rpcreply->len,
710 	    0, NULL, XDR_ENCODE, conn);
711 
712 	msg->rm_xid = clone_xprt->xp_xid;
713 
714 	if (has_args) {
715 		if (!(xdr_replymsg(*xdrs, msg) &&
716 		    (!has_args ||
717 		    SVCAUTH_WRAP(&clone_xprt->xp_auth, *xdrs,
718 		    xdr_results, xdr_location)))) {
719 			rdma_buf_free(conn, rpcreply);
720 			DTRACE_PROBE(
721 			    krpc__e__svcrdma__rpcmsg__reply__authwrap1);
722 			return (SVC_RDMA_FAIL);
723 		}
724 	} else {
725 		if (!xdr_replymsg(*xdrs, msg)) {
726 			rdma_buf_free(conn, rpcreply);
727 			DTRACE_PROBE(
728 			    krpc__e__svcrdma__rpcmsg__reply__authwrap2);
729 			return (SVC_RDMA_FAIL);
730 		}
731 	}
732 
733 	*len = XDR_GETPOS(*xdrs);
734 
735 	return (SVC_RDMA_SUCCESS);
736 }
737 
738 /*
739  * Send rpc reply.
740  */
741 static bool_t
742 svc_rdma_ksend(SVCXPRT * clone_xprt, struct rpc_msg *msg)
743 {
744 	XDR *xdrs_rpc = &(clone_xprt->xp_xdrout);
745 	XDR xdrs_rhdr;
746 	CONN *conn = NULL;
747 	rdma_buf_t rbuf_resp = {0}, rbuf_rpc_resp = {0};
748 
749 	struct clone_rdma_data *crdp;
750 	struct clist *cl_read = NULL;
751 	struct clist *cl_send = NULL;
752 	struct clist *cl_write = NULL;
753 	xdrproc_t xdr_results;		/* results XDR encoding function */
754 	caddr_t xdr_location;		/* response results pointer */
755 
756 	int retval = FALSE;
757 	int status, msglen, num_wreply_segments = 0;
758 	uint32_t rdma_credit = 0;
759 	int freelen = 0;
760 	bool_t has_args;
761 	uint_t  final_resp_len, rdma_response_op, vers;
762 
763 	bzero(&xdrs_rhdr, sizeof (XDR));
764 	crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
765 	conn = crdp->conn;
766 
767 	/*
768 	 * If there is a result procedure specified in the reply message,
769 	 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
770 	 * We need to make sure it won't be processed twice, so we null
771 	 * it for xdr_replymsg here.
772 	 */
773 	has_args = FALSE;
774 	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
775 	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
776 		if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
777 			has_args = TRUE;
778 			xdr_location = msg->acpted_rply.ar_results.where;
779 			msg->acpted_rply.ar_results.proc = xdr_void;
780 			msg->acpted_rply.ar_results.where = NULL;
781 		}
782 	}
783 
784 	/*
785 	 * Given the limit on the inline response size (RPC_MSG_SZ),
786 	 * there is a need to make a guess as to the overall size of
787 	 * the response.  If the resultant size is beyond the inline
788 	 * size, then the server needs to use the "reply chunk list"
789 	 * provided by the client (if the client provided one).  An
790 	 * example of this type of response would be a READDIR
791 	 * response (e.g. a small directory read would fit in RPC_MSG_SZ
792 	 * and that is the preference but it may not fit)
793 	 *
794 	 * Combine the encoded size and the size of the true results
795 	 * and then make the decision about where to encode and send results.
796 	 *
797 	 * One important note, this calculation is ignoring the size
798 	 * of the encoding of the authentication overhead.  The reason
799 	 * for this is rooted in the complexities of access to the
800 	 * encoded size of RPCSEC_GSS related authentiation,
801 	 * integrity, and privacy.
802 	 *
803 	 * If it turns out that the encoded authentication bumps the
804 	 * response over the RPC_MSG_SZ limit, then it may need to
805 	 * attempt to encode for the reply chunk list.
806 	 */
807 
808 	/*
809 	 * Calculating the "sizeof" the RPC response header and the
810 	 * encoded results.
811 	 */
812 	msglen = xdr_sizeof(xdr_replymsg, msg);
813 
814 	if (msglen > 0) {
815 		RSSTAT_INCR(rstotalreplies);
816 	}
817 	if (has_args)
818 		msglen += xdrrdma_sizeof(xdr_results, xdr_location,
819 		    rdma_minchunk, NULL, NULL);
820 
821 	DTRACE_PROBE1(krpc__i__svcrdma__ksend__msglen, int, msglen);
822 
823 	status = SVC_RDMA_SUCCESS;
824 
825 	if (msglen < RPC_MSG_SZ) {
826 		/*
827 		 * Looks like the response will fit in the inline
828 		 * response; let's try
829 		 */
830 		RSSTAT_INCR(rstotalinlinereplies);
831 
832 		rdma_response_op = RDMA_MSG;
833 
834 		status = svc_compose_rpcmsg(clone_xprt, conn, xdr_results,
835 		    xdr_location, &rbuf_rpc_resp, &xdrs_rpc, msg,
836 		    has_args, &final_resp_len);
837 
838 		DTRACE_PROBE1(krpc__i__srdma__ksend__compose_status,
839 		    int, status);
840 		DTRACE_PROBE1(krpc__i__srdma__ksend__compose_len,
841 		    int, final_resp_len);
842 
843 		if (status == SVC_RDMA_SUCCESS && crdp->cl_reply) {
844 			clist_free(crdp->cl_reply);
845 			crdp->cl_reply = NULL;
846 		}
847 	}
848 
849 	/*
850 	 * If the encode failed (size?) or the message really is
851 	 * larger than what is allowed, try the response chunk list.
852 	 */
853 	if (status != SVC_RDMA_SUCCESS || msglen >= RPC_MSG_SZ) {
854 		/*
855 		 * attempting to use a reply chunk list when there
856 		 * isn't one won't get very far...
857 		 */
858 		if (crdp->cl_reply == NULL) {
859 			DTRACE_PROBE(krpc__e__svcrdma__ksend__noreplycl);
860 			goto out;
861 		}
862 
863 		RSSTAT_INCR(rstotallongreplies);
864 
865 		msglen = xdr_sizeof(xdr_replymsg, msg);
866 		msglen += xdrrdma_sizeof(xdr_results, xdr_location, 0,
867 		    NULL, NULL);
868 
869 		status = svc_process_long_reply(clone_xprt, xdr_results,
870 		    xdr_location, msg, has_args, &msglen, &freelen,
871 		    &num_wreply_segments, &final_resp_len);
872 
873 		DTRACE_PROBE1(krpc__i__svcrdma__ksend__longreplen,
874 		    int, final_resp_len);
875 
876 		if (status != SVC_RDMA_SUCCESS) {
877 			DTRACE_PROBE(krpc__e__svcrdma__ksend__compose__failed);
878 			goto out;
879 		}
880 
881 		rdma_response_op = RDMA_NOMSG;
882 	}
883 
884 	DTRACE_PROBE1(krpc__i__svcrdma__ksend__rdmamsg__len,
885 	    int, final_resp_len);
886 
887 	rbuf_resp.type = SEND_BUFFER;
888 	if (rdma_buf_alloc(conn, &rbuf_resp)) {
889 		rdma_buf_free(conn, &rbuf_rpc_resp);
890 		DTRACE_PROBE(krpc__e__svcrdma__ksend__nofreebufs);
891 		goto out;
892 	}
893 
894 	rdma_credit = rdma_bufs_granted;
895 
896 	vers = RPCRDMA_VERS;
897 	xdrmem_create(&xdrs_rhdr, rbuf_resp.addr, rbuf_resp.len, XDR_ENCODE);
898 	(*(uint32_t *)rbuf_resp.addr) = msg->rm_xid;
899 	/* Skip xid and set the xdr position accordingly. */
900 	XDR_SETPOS(&xdrs_rhdr, sizeof (uint32_t));
901 	if (!xdr_u_int(&xdrs_rhdr, &vers) ||
902 	    !xdr_u_int(&xdrs_rhdr, &rdma_credit) ||
903 	    !xdr_u_int(&xdrs_rhdr, &rdma_response_op)) {
904 		rdma_buf_free(conn, &rbuf_rpc_resp);
905 		rdma_buf_free(conn, &rbuf_resp);
906 		DTRACE_PROBE(krpc__e__svcrdma__ksend__uint);
907 		goto out;
908 	}
909 
910 	/*
911 	 * Now XDR the read chunk list, actually always NULL
912 	 */
913 	(void) xdr_encode_rlist_svc(&xdrs_rhdr, cl_read);
914 
915 	/*
916 	 * encode write list -- we already drove RDMA_WRITEs
917 	 */
918 	cl_write = crdp->cl_wlist;
919 	if (!xdr_encode_wlist(&xdrs_rhdr, cl_write)) {
920 		DTRACE_PROBE(krpc__e__svcrdma__ksend__enc__wlist);
921 		rdma_buf_free(conn, &rbuf_rpc_resp);
922 		rdma_buf_free(conn, &rbuf_resp);
923 		goto out;
924 	}
925 
926 	/*
927 	 * XDR encode the RDMA_REPLY write chunk
928 	 */
929 	if (!xdr_encode_reply_wchunk(&xdrs_rhdr, crdp->cl_reply,
930 	    num_wreply_segments)) {
931 		rdma_buf_free(conn, &rbuf_rpc_resp);
932 		rdma_buf_free(conn, &rbuf_resp);
933 		goto out;
934 	}
935 
936 	clist_add(&cl_send, 0, XDR_GETPOS(&xdrs_rhdr), &rbuf_resp.handle,
937 	    rbuf_resp.addr, NULL, NULL);
938 
939 	if (rdma_response_op == RDMA_MSG) {
940 		clist_add(&cl_send, 0, final_resp_len, &rbuf_rpc_resp.handle,
941 		    rbuf_rpc_resp.addr, NULL, NULL);
942 	}
943 
944 	status = RDMA_SEND(conn, cl_send, msg->rm_xid);
945 
946 	if (status == RDMA_SUCCESS) {
947 		retval = TRUE;
948 	}
949 
950 out:
951 	/*
952 	 * Free up sendlist chunks
953 	 */
954 	if (cl_send != NULL)
955 		clist_free(cl_send);
956 
957 	/*
958 	 * Destroy private data for xdr rdma
959 	 */
960 	if (clone_xprt->xp_xdrout.x_ops != NULL) {
961 		XDR_DESTROY(&(clone_xprt->xp_xdrout));
962 	}
963 
964 	if (crdp->cl_reply) {
965 		clist_free(crdp->cl_reply);
966 		crdp->cl_reply = NULL;
967 	}
968 
969 	/*
970 	 * This is completely disgusting.  If public is set it is
971 	 * a pointer to a structure whose first field is the address
972 	 * of the function to free that structure and any related
973 	 * stuff.  (see rrokfree in nfs_xdr.c).
974 	 */
975 	if (xdrs_rpc->x_public) {
976 		/* LINTED pointer alignment */
977 		(**((int (**)()) xdrs_rpc->x_public)) (xdrs_rpc->x_public);
978 	}
979 
980 	if (xdrs_rhdr.x_ops != NULL) {
981 		XDR_DESTROY(&xdrs_rhdr);
982 	}
983 
984 	return (retval);
985 }
986 
987 /*
988  * Deserialize arguments.
989  */
990 static bool_t
991 svc_rdma_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, caddr_t args_ptr)
992 {
993 	if ((SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
994 	    xdr_args, args_ptr)) != TRUE)
995 		return (FALSE);
996 	return (TRUE);
997 }
998 
999 static bool_t
1000 svc_rdma_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
1001     caddr_t args_ptr)
1002 {
1003 	struct clone_rdma_data *crdp;
1004 	bool_t retval;
1005 
1006 	crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
1007 
1008 	/*
1009 	 * Free the args if needed then XDR_DESTROY
1010 	 */
1011 	if (args_ptr) {
1012 		XDR	*xdrs = &clone_xprt->xp_xdrin;
1013 
1014 		xdrs->x_op = XDR_FREE;
1015 		retval = (*xdr_args)(xdrs, args_ptr);
1016 	}
1017 
1018 	XDR_DESTROY(&(clone_xprt->xp_xdrin));
1019 	rdma_buf_free(crdp->conn, &crdp->rpcbuf);
1020 	if (crdp->cl_reply) {
1021 		clist_free(crdp->cl_reply);
1022 		crdp->cl_reply = NULL;
1023 	}
1024 	RDMA_REL_CONN(crdp->conn);
1025 
1026 	return (retval);
1027 }
1028 
1029 /* ARGSUSED */
1030 static int32_t *
1031 svc_rdma_kgetres(SVCXPRT *clone_xprt, int size)
1032 {
1033 	return (NULL);
1034 }
1035 
1036 /* ARGSUSED */
1037 static void
1038 svc_rdma_kfreeres(SVCXPRT *clone_xprt)
1039 {
1040 }
1041 
1042 /*
1043  * the dup cacheing routines below provide a cache of non-failure
1044  * transaction id's.  rpc service routines can use this to detect
1045  * retransmissions and re-send a non-failure response.
1046  */
1047 
1048 /*
1049  * MAXDUPREQS is the number of cached items.  It should be adjusted
1050  * to the service load so that there is likely to be a response entry
1051  * when the first retransmission comes in.
1052  */
1053 #define	MAXDUPREQS	1024
1054 
1055 /*
1056  * This should be appropriately scaled to MAXDUPREQS.
1057  */
1058 #define	DRHASHSZ	257
1059 
1060 #if ((DRHASHSZ & (DRHASHSZ - 1)) == 0)
1061 #define	XIDHASH(xid)	((xid) & (DRHASHSZ - 1))
1062 #else
1063 #define	XIDHASH(xid)	((xid) % DRHASHSZ)
1064 #endif
1065 #define	DRHASH(dr)	XIDHASH((dr)->dr_xid)
1066 #define	REQTOXID(req)	((req)->rq_xprt->xp_xid)
1067 
1068 static int	rdmandupreqs = 0;
1069 int	rdmamaxdupreqs = MAXDUPREQS;
1070 static kmutex_t rdmadupreq_lock;
1071 static struct dupreq *rdmadrhashtbl[DRHASHSZ];
1072 static int	rdmadrhashstat[DRHASHSZ];
1073 
1074 static void unhash(struct dupreq *);
1075 
1076 /*
1077  * rdmadrmru points to the head of a circular linked list in lru order.
1078  * rdmadrmru->dr_next == drlru
1079  */
1080 struct dupreq *rdmadrmru;
1081 
1082 /*
1083  * svc_rdma_kdup searches the request cache and returns 0 if the
1084  * request is not found in the cache.  If it is found, then it
1085  * returns the state of the request (in progress or done) and
1086  * the status or attributes that were part of the original reply.
1087  */
1088 static int
1089 svc_rdma_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
1090 	bool_t *dupcachedp)
1091 {
1092 	struct dupreq *dr;
1093 	uint32_t xid;
1094 	uint32_t drhash;
1095 	int status;
1096 
1097 	xid = REQTOXID(req);
1098 	mutex_enter(&rdmadupreq_lock);
1099 	RSSTAT_INCR(rsdupchecks);
1100 	/*
1101 	 * Check to see whether an entry already exists in the cache.
1102 	 */
1103 	dr = rdmadrhashtbl[XIDHASH(xid)];
1104 	while (dr != NULL) {
1105 		if (dr->dr_xid == xid &&
1106 		    dr->dr_proc == req->rq_proc &&
1107 		    dr->dr_prog == req->rq_prog &&
1108 		    dr->dr_vers == req->rq_vers &&
1109 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
1110 		    bcmp((caddr_t)dr->dr_addr.buf,
1111 		    (caddr_t)req->rq_xprt->xp_rtaddr.buf,
1112 		    dr->dr_addr.len) == 0) {
1113 			status = dr->dr_status;
1114 			if (status == DUP_DONE) {
1115 				bcopy(dr->dr_resp.buf, res, size);
1116 				if (dupcachedp != NULL)
1117 					*dupcachedp = (dr->dr_resfree != NULL);
1118 			} else {
1119 				dr->dr_status = DUP_INPROGRESS;
1120 				*drpp = dr;
1121 			}
1122 			RSSTAT_INCR(rsdupreqs);
1123 			mutex_exit(&rdmadupreq_lock);
1124 			return (status);
1125 		}
1126 		dr = dr->dr_chain;
1127 	}
1128 
1129 	/*
1130 	 * There wasn't an entry, either allocate a new one or recycle
1131 	 * an old one.
1132 	 */
1133 	if (rdmandupreqs < rdmamaxdupreqs) {
1134 		dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
1135 		if (dr == NULL) {
1136 			mutex_exit(&rdmadupreq_lock);
1137 			return (DUP_ERROR);
1138 		}
1139 		dr->dr_resp.buf = NULL;
1140 		dr->dr_resp.maxlen = 0;
1141 		dr->dr_addr.buf = NULL;
1142 		dr->dr_addr.maxlen = 0;
1143 		if (rdmadrmru) {
1144 			dr->dr_next = rdmadrmru->dr_next;
1145 			rdmadrmru->dr_next = dr;
1146 		} else {
1147 			dr->dr_next = dr;
1148 		}
1149 		rdmandupreqs++;
1150 	} else {
1151 		dr = rdmadrmru->dr_next;
1152 		while (dr->dr_status == DUP_INPROGRESS) {
1153 			dr = dr->dr_next;
1154 			if (dr == rdmadrmru->dr_next) {
1155 				mutex_exit(&rdmadupreq_lock);
1156 				return (DUP_ERROR);
1157 			}
1158 		}
1159 		unhash(dr);
1160 		if (dr->dr_resfree) {
1161 			(*dr->dr_resfree)(dr->dr_resp.buf);
1162 		}
1163 	}
1164 	dr->dr_resfree = NULL;
1165 	rdmadrmru = dr;
1166 
1167 	dr->dr_xid = REQTOXID(req);
1168 	dr->dr_prog = req->rq_prog;
1169 	dr->dr_vers = req->rq_vers;
1170 	dr->dr_proc = req->rq_proc;
1171 	if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
1172 		if (dr->dr_addr.buf != NULL)
1173 			kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
1174 		dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
1175 		dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, KM_NOSLEEP);
1176 		if (dr->dr_addr.buf == NULL) {
1177 			dr->dr_addr.maxlen = 0;
1178 			dr->dr_status = DUP_DROP;
1179 			mutex_exit(&rdmadupreq_lock);
1180 			return (DUP_ERROR);
1181 		}
1182 	}
1183 	dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
1184 	bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
1185 	if (dr->dr_resp.maxlen < size) {
1186 		if (dr->dr_resp.buf != NULL)
1187 			kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
1188 		dr->dr_resp.maxlen = (unsigned int)size;
1189 		dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
1190 		if (dr->dr_resp.buf == NULL) {
1191 			dr->dr_resp.maxlen = 0;
1192 			dr->dr_status = DUP_DROP;
1193 			mutex_exit(&rdmadupreq_lock);
1194 			return (DUP_ERROR);
1195 		}
1196 	}
1197 	dr->dr_status = DUP_INPROGRESS;
1198 
1199 	drhash = (uint32_t)DRHASH(dr);
1200 	dr->dr_chain = rdmadrhashtbl[drhash];
1201 	rdmadrhashtbl[drhash] = dr;
1202 	rdmadrhashstat[drhash]++;
1203 	mutex_exit(&rdmadupreq_lock);
1204 	*drpp = dr;
1205 	return (DUP_NEW);
1206 }
1207 
1208 /*
1209  * svc_rdma_kdupdone marks the request done (DUP_DONE or DUP_DROP)
1210  * and stores the response.
1211  */
1212 static void
1213 svc_rdma_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
1214 	int size, int status)
1215 {
1216 	ASSERT(dr->dr_resfree == NULL);
1217 	if (status == DUP_DONE) {
1218 		bcopy(res, dr->dr_resp.buf, size);
1219 		dr->dr_resfree = dis_resfree;
1220 	}
1221 	dr->dr_status = status;
1222 }
1223 
1224 /*
1225  * This routine expects that the mutex, rdmadupreq_lock, is already held.
1226  */
1227 static void
1228 unhash(struct dupreq *dr)
1229 {
1230 	struct dupreq *drt;
1231 	struct dupreq *drtprev = NULL;
1232 	uint32_t drhash;
1233 
1234 	ASSERT(MUTEX_HELD(&rdmadupreq_lock));
1235 
1236 	drhash = (uint32_t)DRHASH(dr);
1237 	drt = rdmadrhashtbl[drhash];
1238 	while (drt != NULL) {
1239 		if (drt == dr) {
1240 			rdmadrhashstat[drhash]--;
1241 			if (drtprev == NULL) {
1242 				rdmadrhashtbl[drhash] = drt->dr_chain;
1243 			} else {
1244 				drtprev->dr_chain = drt->dr_chain;
1245 			}
1246 			return;
1247 		}
1248 		drtprev = drt;
1249 		drt = drt->dr_chain;
1250 	}
1251 }
1252 
1253 bool_t
1254 rdma_get_wchunk(struct svc_req *req, iovec_t *iov, struct clist *wlist)
1255 {
1256 	struct clist	*clist;
1257 	uint32_t	tlen;
1258 
1259 	if (req->rq_xprt->xp_type != T_RDMA) {
1260 		return (FALSE);
1261 	}
1262 
1263 	tlen = 0;
1264 	clist = wlist;
1265 	while (clist) {
1266 		tlen += clist->c_len;
1267 		clist = clist->c_next;
1268 	}
1269 
1270 	/*
1271 	 * set iov to addr+len of first segment of first wchunk of
1272 	 * wlist sent by client.  krecv() already malloc'd a buffer
1273 	 * large enough, but registration is deferred until we write
1274 	 * the buffer back to (NFS) client using RDMA_WRITE.
1275 	 */
1276 	iov->iov_base = (caddr_t)(uintptr_t)wlist->w.c_saddr;
1277 	iov->iov_len = tlen;
1278 
1279 	return (TRUE);
1280 }
1281