xref: /illumos-gate/usr/src/uts/common/rpc/svc_rdma.c (revision 2ee857385108d299b716b075df1220fdc893b20b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1983, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright 2012 Marcel Telka <marcel@telka.sk>
26  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27  */
28 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */
30 /*
31  * Portions of this source code were derived from Berkeley
32  * 4.3 BSD under license from the Regents of the University of
33  * California.
34  */
35 
36 /*
37  * Server side of RPC over RDMA in the kernel.
38  */
39 
40 #include <sys/param.h>
41 #include <sys/types.h>
42 #include <sys/user.h>
43 #include <sys/sysmacros.h>
44 #include <sys/proc.h>
45 #include <sys/file.h>
46 #include <sys/errno.h>
47 #include <sys/kmem.h>
48 #include <sys/debug.h>
49 #include <sys/systm.h>
50 #include <sys/cmn_err.h>
51 #include <sys/kstat.h>
52 #include <sys/vtrace.h>
53 #include <sys/debug.h>
54 
55 #include <rpc/types.h>
56 #include <rpc/xdr.h>
57 #include <rpc/auth.h>
58 #include <rpc/clnt.h>
59 #include <rpc/rpc_msg.h>
60 #include <rpc/svc.h>
61 #include <rpc/rpc_rdma.h>
62 #include <sys/ddi.h>
63 #include <sys/sunddi.h>
64 
65 #include <inet/common.h>
66 #include <inet/ip.h>
67 #include <inet/ip6.h>
68 
69 #include <nfs/nfs.h>
70 #include <sys/sdt.h>
71 
72 #define	SVC_RDMA_SUCCESS 0
73 #define	SVC_RDMA_FAIL -1
74 
75 #define	SVC_CREDIT_FACTOR (0.5)
76 
77 #define	MSG_IS_RPCSEC_GSS(msg)		\
78 	((msg)->rm_reply.rp_acpt.ar_verf.oa_flavor == RPCSEC_GSS)
79 
80 
81 uint32_t rdma_bufs_granted = RDMA_BUFS_GRANT;
82 
83 /*
84  * RDMA transport specific data associated with SVCMASTERXPRT
85  */
86 struct rdma_data {
87 	SVCMASTERXPRT	*rd_xprt;	/* back ptr to SVCMASTERXPRT */
88 	struct rdma_svc_data rd_data;	/* rdma data */
89 	rdma_mod_t	*r_mod;		/* RDMA module containing ops ptr */
90 };
91 
92 /*
93  * Plugin connection specific data stashed away in clone SVCXPRT
94  */
95 struct clone_rdma_data {
96 	bool_t		cloned;		/* xprt cloned for thread processing */
97 	CONN		*conn;		/* RDMA connection */
98 	rdma_buf_t	rpcbuf;		/* RPC req/resp buffer */
99 	struct clist	*cl_reply;	/* reply chunk buffer info */
100 	struct clist	*cl_wlist;		/* write list clist */
101 };
102 
103 
104 #define	MAXADDRLEN	128	/* max length for address mask */
105 
106 /*
107  * Routines exported through ops vector.
108  */
109 static bool_t		svc_rdma_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
110 static bool_t		svc_rdma_ksend(SVCXPRT *, struct rpc_msg *);
111 static bool_t		svc_rdma_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
112 static bool_t		svc_rdma_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
113 void			svc_rdma_kdestroy(SVCMASTERXPRT *);
114 static int		svc_rdma_kdup(struct svc_req *, caddr_t, int,
115 				struct dupreq **, bool_t *);
116 static void		svc_rdma_kdupdone(struct dupreq *, caddr_t,
117 				void (*)(), int, int);
118 static int32_t		*svc_rdma_kgetres(SVCXPRT *, int);
119 static void		svc_rdma_kfreeres(SVCXPRT *);
120 static void		svc_rdma_kclone_destroy(SVCXPRT *);
121 static void		svc_rdma_kstart(SVCMASTERXPRT *);
122 void			svc_rdma_kstop(SVCMASTERXPRT *);
123 static void		svc_rdma_kclone_xprt(SVCXPRT *, SVCXPRT *);
124 static void		svc_rdma_ktattrs(SVCXPRT *, int, void **);
125 
126 static int	svc_process_long_reply(SVCXPRT *, xdrproc_t,
127 			caddr_t, struct rpc_msg *, bool_t, int *,
128 			int *, int *, unsigned int *);
129 
130 static int	svc_compose_rpcmsg(SVCXPRT *, CONN *, xdrproc_t,
131 			caddr_t, rdma_buf_t *, XDR **, struct rpc_msg *,
132 			bool_t, uint_t *);
133 static bool_t rpcmsg_length(xdrproc_t,
134 		caddr_t,
135 		struct rpc_msg *, bool_t, int);
136 
137 /*
138  * Server transport operations vector.
139  */
140 struct svc_ops rdma_svc_ops = {
141 	svc_rdma_krecv,		/* Get requests */
142 	svc_rdma_kgetargs,	/* Deserialize arguments */
143 	svc_rdma_ksend,		/* Send reply */
144 	svc_rdma_kfreeargs,	/* Free argument data space */
145 	svc_rdma_kdestroy,	/* Destroy transport handle */
146 	svc_rdma_kdup,		/* Check entry in dup req cache */
147 	svc_rdma_kdupdone,	/* Mark entry in dup req cache as done */
148 	svc_rdma_kgetres,	/* Get pointer to response buffer */
149 	svc_rdma_kfreeres,	/* Destroy pre-serialized response header */
150 	svc_rdma_kclone_destroy,	/* Destroy a clone xprt */
151 	svc_rdma_kstart,	/* Tell `ready-to-receive' to rpcmod */
152 	svc_rdma_kclone_xprt,	/* Transport specific clone xprt */
153 	svc_rdma_ktattrs,	/* Get Transport Attributes */
154 	NULL,			/* Increment transport reference count */
155 	NULL			/* Decrement transport reference count */
156 };
157 
158 /*
159  * Server statistics
160  * NOTE: This structure type is duplicated in the NFS fast path.
161  */
162 struct {
163 	kstat_named_t	rscalls;
164 	kstat_named_t	rsbadcalls;
165 	kstat_named_t	rsnullrecv;
166 	kstat_named_t	rsbadlen;
167 	kstat_named_t	rsxdrcall;
168 	kstat_named_t	rsdupchecks;
169 	kstat_named_t	rsdupreqs;
170 	kstat_named_t	rslongrpcs;
171 	kstat_named_t	rstotalreplies;
172 	kstat_named_t	rstotallongreplies;
173 	kstat_named_t	rstotalinlinereplies;
174 } rdmarsstat = {
175 	{ "calls",	KSTAT_DATA_UINT64 },
176 	{ "badcalls",	KSTAT_DATA_UINT64 },
177 	{ "nullrecv",	KSTAT_DATA_UINT64 },
178 	{ "badlen",	KSTAT_DATA_UINT64 },
179 	{ "xdrcall",	KSTAT_DATA_UINT64 },
180 	{ "dupchecks",	KSTAT_DATA_UINT64 },
181 	{ "dupreqs",	KSTAT_DATA_UINT64 },
182 	{ "longrpcs",	KSTAT_DATA_UINT64 },
183 	{ "totalreplies",	KSTAT_DATA_UINT64 },
184 	{ "totallongreplies",	KSTAT_DATA_UINT64 },
185 	{ "totalinlinereplies",	KSTAT_DATA_UINT64 },
186 };
187 
188 kstat_named_t *rdmarsstat_ptr = (kstat_named_t *)&rdmarsstat;
189 uint_t rdmarsstat_ndata = sizeof (rdmarsstat) / sizeof (kstat_named_t);
190 
191 #define	RSSTAT_INCR(x)	atomic_inc_64(&rdmarsstat.x.value.ui64)
192 /*
193  * Create a transport record.
194  * The transport record, output buffer, and private data structure
195  * are allocated.  The output buffer is serialized into using xdrmem.
196  * There is one transport record per user process which implements a
197  * set of services.
198  */
199 /* ARGSUSED */
200 int
201 svc_rdma_kcreate(char *netid, SVC_CALLOUT_TABLE *sct, int id,
202     rdma_xprt_group_t *started_xprts)
203 {
204 	int error;
205 	SVCMASTERXPRT *xprt;
206 	struct rdma_data *rd;
207 	rdma_registry_t *rmod;
208 	rdma_xprt_record_t *xprt_rec;
209 	queue_t	*q;
210 	/*
211 	 * modload the RDMA plugins is not already done.
212 	 */
213 	if (!rdma_modloaded) {
214 		/*CONSTANTCONDITION*/
215 		ASSERT(sizeof (struct clone_rdma_data) <= SVC_P2LEN);
216 
217 		mutex_enter(&rdma_modload_lock);
218 		if (!rdma_modloaded) {
219 			error = rdma_modload();
220 		}
221 		mutex_exit(&rdma_modload_lock);
222 
223 		if (error)
224 			return (error);
225 	}
226 
227 	/*
228 	 * master_xprt_count is the count of master transport handles
229 	 * that were successfully created and are ready to recieve for
230 	 * RDMA based access.
231 	 */
232 	error = 0;
233 	xprt_rec = NULL;
234 	rw_enter(&rdma_lock, RW_READER);
235 	if (rdma_mod_head == NULL) {
236 		started_xprts->rtg_count = 0;
237 		rw_exit(&rdma_lock);
238 		if (rdma_dev_available)
239 			return (EPROTONOSUPPORT);
240 		else
241 			return (ENODEV);
242 	}
243 
244 	/*
245 	 * If we have reached here, then atleast one RDMA plugin has loaded.
246 	 * Create a master_xprt, make it start listenining on the device,
247 	 * if an error is generated, record it, we might need to shut
248 	 * the master_xprt.
249 	 * SVC_START() calls svc_rdma_kstart which calls plugin binding
250 	 * routines.
251 	 */
252 	for (rmod = rdma_mod_head; rmod != NULL; rmod = rmod->r_next) {
253 
254 		/*
255 		 * One SVCMASTERXPRT per RDMA plugin.
256 		 */
257 		xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP);
258 		xprt->xp_ops = &rdma_svc_ops;
259 		xprt->xp_sct = sct;
260 		xprt->xp_type = T_RDMA;
261 		mutex_init(&xprt->xp_req_lock, NULL, MUTEX_DEFAULT, NULL);
262 		mutex_init(&xprt->xp_thread_lock, NULL, MUTEX_DEFAULT, NULL);
263 		xprt->xp_req_head = (mblk_t *)0;
264 		xprt->xp_req_tail = (mblk_t *)0;
265 		xprt->xp_full = FALSE;
266 		xprt->xp_enable = FALSE;
267 		xprt->xp_reqs = 0;
268 		xprt->xp_size = 0;
269 		xprt->xp_threads = 0;
270 		xprt->xp_detached_threads = 0;
271 
272 		rd = kmem_zalloc(sizeof (*rd), KM_SLEEP);
273 		xprt->xp_p2 = (caddr_t)rd;
274 		rd->rd_xprt = xprt;
275 		rd->r_mod = rmod->r_mod;
276 
277 		q = &rd->rd_data.q;
278 		xprt->xp_wq = q;
279 		q->q_ptr = &rd->rd_xprt;
280 		xprt->xp_netid = NULL;
281 
282 		/*
283 		 * Each of the plugins will have their own Service ID
284 		 * to listener specific mapping, like port number for VI
285 		 * and service name for IB.
286 		 */
287 		rd->rd_data.svcid = id;
288 		error = svc_xprt_register(xprt, id);
289 		if (error) {
290 			DTRACE_PROBE(krpc__e__svcrdma__xprt__reg);
291 			goto cleanup;
292 		}
293 
294 		SVC_START(xprt);
295 		if (!rd->rd_data.active) {
296 			svc_xprt_unregister(xprt);
297 			error = rd->rd_data.err_code;
298 			goto cleanup;
299 		}
300 
301 		/*
302 		 * This is set only when there is atleast one or more
303 		 * transports successfully created. We insert the pointer
304 		 * to the created RDMA master xprt into a separately maintained
305 		 * list. This way we can easily reference it later to cleanup,
306 		 * when NFS kRPC service pool is going away/unregistered.
307 		 */
308 		started_xprts->rtg_count ++;
309 		xprt_rec = kmem_alloc(sizeof (*xprt_rec), KM_SLEEP);
310 		xprt_rec->rtr_xprt_ptr = xprt;
311 		xprt_rec->rtr_next = started_xprts->rtg_listhead;
312 		started_xprts->rtg_listhead = xprt_rec;
313 		continue;
314 cleanup:
315 		SVC_DESTROY(xprt);
316 		if (error == RDMA_FAILED)
317 			error = EPROTONOSUPPORT;
318 	}
319 
320 	rw_exit(&rdma_lock);
321 
322 	/*
323 	 * Don't return any error even if a single plugin was started
324 	 * successfully.
325 	 */
326 	if (started_xprts->rtg_count == 0)
327 		return (error);
328 	return (0);
329 }
330 
331 /*
332  * Cleanup routine for freeing up memory allocated by
333  * svc_rdma_kcreate()
334  */
335 void
336 svc_rdma_kdestroy(SVCMASTERXPRT *xprt)
337 {
338 	struct rdma_data *rd = (struct rdma_data *)xprt->xp_p2;
339 
340 
341 	mutex_destroy(&xprt->xp_req_lock);
342 	mutex_destroy(&xprt->xp_thread_lock);
343 	kmem_free(rd, sizeof (*rd));
344 	kmem_free(xprt, sizeof (*xprt));
345 }
346 
347 
348 static void
349 svc_rdma_kstart(SVCMASTERXPRT *xprt)
350 {
351 	struct rdma_svc_data *svcdata;
352 	rdma_mod_t *rmod;
353 
354 	svcdata = &((struct rdma_data *)xprt->xp_p2)->rd_data;
355 	rmod = ((struct rdma_data *)xprt->xp_p2)->r_mod;
356 
357 	/*
358 	 * Create a listener for  module at this port
359 	 */
360 
361 	if (rmod->rdma_count != 0)
362 		(*rmod->rdma_ops->rdma_svc_listen)(svcdata);
363 	else
364 		svcdata->err_code = RDMA_FAILED;
365 }
366 
367 void
368 svc_rdma_kstop(SVCMASTERXPRT *xprt)
369 {
370 	struct rdma_svc_data *svcdata;
371 	rdma_mod_t *rmod;
372 
373 	svcdata	= &((struct rdma_data *)xprt->xp_p2)->rd_data;
374 	rmod = ((struct rdma_data *)xprt->xp_p2)->r_mod;
375 
376 	/*
377 	 * Call the stop listener routine for each plugin. If rdma_count is
378 	 * already zero set active to zero.
379 	 */
380 	if (rmod->rdma_count != 0)
381 		(*rmod->rdma_ops->rdma_svc_stop)(svcdata);
382 	else
383 		svcdata->active = 0;
384 	if (svcdata->active)
385 		DTRACE_PROBE(krpc__e__svcrdma__kstop);
386 }
387 
388 /* ARGSUSED */
389 static void
390 svc_rdma_kclone_destroy(SVCXPRT *clone_xprt)
391 {
392 
393 	struct clone_rdma_data *cdrp;
394 	cdrp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
395 
396 	/*
397 	 * Only free buffers and release connection when cloned is set.
398 	 */
399 	if (cdrp->cloned != TRUE)
400 		return;
401 
402 	rdma_buf_free(cdrp->conn, &cdrp->rpcbuf);
403 	if (cdrp->cl_reply) {
404 		clist_free(cdrp->cl_reply);
405 		cdrp->cl_reply = NULL;
406 	}
407 	RDMA_REL_CONN(cdrp->conn);
408 
409 	cdrp->cloned = 0;
410 }
411 
412 /*
413  * Clone the xprt specific information.  It will be freed by
414  * SVC_CLONE_DESTROY.
415  */
416 static void
417 svc_rdma_kclone_xprt(SVCXPRT *src_xprt, SVCXPRT *dst_xprt)
418 {
419 	struct clone_rdma_data *srcp2;
420 	struct clone_rdma_data *dstp2;
421 
422 	srcp2 = (struct clone_rdma_data *)src_xprt->xp_p2buf;
423 	dstp2 = (struct clone_rdma_data *)dst_xprt->xp_p2buf;
424 
425 	if (srcp2->conn != NULL) {
426 		srcp2->cloned = TRUE;
427 		*dstp2 = *srcp2;
428 	}
429 }
430 
431 static void
432 svc_rdma_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr)
433 {
434 	CONN	*conn;
435 	*tattr = NULL;
436 
437 	switch (attrflag) {
438 	case SVC_TATTR_ADDRMASK:
439 		conn = ((struct clone_rdma_data *)clone_xprt->xp_p2buf)->conn;
440 		ASSERT(conn != NULL);
441 		if (conn)
442 			*tattr = (void *)&conn->c_addrmask;
443 	}
444 }
445 
446 static bool_t
447 svc_rdma_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
448 {
449 	XDR	*xdrs;
450 	CONN	*conn;
451 	rdma_recv_data_t	*rdp = (rdma_recv_data_t *)mp->b_rptr;
452 	struct clone_rdma_data *crdp;
453 	struct clist	*cl = NULL;
454 	struct clist	*wcl = NULL;
455 	struct clist	*cllong = NULL;
456 
457 	rdma_stat	status;
458 	uint32_t vers, op, pos, xid;
459 	uint32_t rdma_credit;
460 	uint32_t wcl_total_length = 0;
461 	bool_t	wwl = FALSE;
462 
463 	crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
464 	RSSTAT_INCR(rscalls);
465 	conn = rdp->conn;
466 
467 	status = rdma_svc_postrecv(conn);
468 	if (status != RDMA_SUCCESS) {
469 		DTRACE_PROBE(krpc__e__svcrdma__krecv__postrecv);
470 		goto badrpc_call;
471 	}
472 
473 	xdrs = &clone_xprt->xp_xdrin;
474 	xdrmem_create(xdrs, rdp->rpcmsg.addr, rdp->rpcmsg.len, XDR_DECODE);
475 	xid = *(uint32_t *)rdp->rpcmsg.addr;
476 	XDR_SETPOS(xdrs, sizeof (uint32_t));
477 
478 	if (! xdr_u_int(xdrs, &vers) ||
479 	    ! xdr_u_int(xdrs, &rdma_credit) ||
480 	    ! xdr_u_int(xdrs, &op)) {
481 		DTRACE_PROBE(krpc__e__svcrdma__krecv__uint);
482 		goto xdr_err;
483 	}
484 
485 	/* Checking if the status of the recv operation was normal */
486 	if (rdp->status != 0) {
487 		DTRACE_PROBE1(krpc__e__svcrdma__krecv__invalid__status,
488 		    int, rdp->status);
489 		goto badrpc_call;
490 	}
491 
492 	if (! xdr_do_clist(xdrs, &cl)) {
493 		DTRACE_PROBE(krpc__e__svcrdma__krecv__do__clist);
494 		goto xdr_err;
495 	}
496 
497 	if (!xdr_decode_wlist_svc(xdrs, &wcl, &wwl, &wcl_total_length, conn)) {
498 		DTRACE_PROBE(krpc__e__svcrdma__krecv__decode__wlist);
499 		if (cl)
500 			clist_free(cl);
501 		goto xdr_err;
502 	}
503 	crdp->cl_wlist = wcl;
504 
505 	crdp->cl_reply = NULL;
506 	(void) xdr_decode_reply_wchunk(xdrs, &crdp->cl_reply);
507 
508 	/*
509 	 * A chunk at 0 offset indicates that the RPC call message
510 	 * is in a chunk. Get the RPC call message chunk.
511 	 */
512 	if (cl != NULL && op == RDMA_NOMSG) {
513 
514 		/* Remove RPC call message chunk from chunklist */
515 		cllong = cl;
516 		cl = cl->c_next;
517 		cllong->c_next = NULL;
518 
519 
520 		/* Allocate and register memory for the RPC call msg chunk */
521 		cllong->rb_longbuf.type = RDMA_LONG_BUFFER;
522 		cllong->rb_longbuf.len = cllong->c_len > LONG_REPLY_LEN ?
523 		    cllong->c_len : LONG_REPLY_LEN;
524 
525 		if (rdma_buf_alloc(conn, &cllong->rb_longbuf)) {
526 			clist_free(cllong);
527 			goto cll_malloc_err;
528 		}
529 
530 		cllong->u.c_daddr3 = cllong->rb_longbuf.addr;
531 
532 		if (cllong->u.c_daddr == NULL) {
533 			DTRACE_PROBE(krpc__e__svcrdma__krecv__nomem);
534 			rdma_buf_free(conn, &cllong->rb_longbuf);
535 			clist_free(cllong);
536 			goto cll_malloc_err;
537 		}
538 
539 		status = clist_register(conn, cllong, CLIST_REG_DST);
540 		if (status) {
541 			DTRACE_PROBE(krpc__e__svcrdma__krecv__clist__reg);
542 			rdma_buf_free(conn, &cllong->rb_longbuf);
543 			clist_free(cllong);
544 			goto cll_malloc_err;
545 		}
546 
547 		/*
548 		 * Now read the RPC call message in
549 		 */
550 		status = RDMA_READ(conn, cllong, WAIT);
551 		if (status) {
552 			DTRACE_PROBE(krpc__e__svcrdma__krecv__read);
553 			(void) clist_deregister(conn, cllong);
554 			rdma_buf_free(conn, &cllong->rb_longbuf);
555 			clist_free(cllong);
556 			goto cll_malloc_err;
557 		}
558 
559 		status = clist_syncmem(conn, cllong, CLIST_REG_DST);
560 		(void) clist_deregister(conn, cllong);
561 
562 		xdrrdma_create(xdrs, (caddr_t)(uintptr_t)cllong->u.c_daddr3,
563 		    cllong->c_len, 0, cl, XDR_DECODE, conn);
564 
565 		crdp->rpcbuf = cllong->rb_longbuf;
566 		crdp->rpcbuf.len = cllong->c_len;
567 		clist_free(cllong);
568 		RDMA_BUF_FREE(conn, &rdp->rpcmsg);
569 	} else {
570 		pos = XDR_GETPOS(xdrs);
571 		xdrrdma_create(xdrs, rdp->rpcmsg.addr + pos,
572 		    rdp->rpcmsg.len - pos, 0, cl, XDR_DECODE, conn);
573 		crdp->rpcbuf = rdp->rpcmsg;
574 
575 		/* Use xdrrdmablk_ops to indicate there is a read chunk list */
576 		if (cl != NULL) {
577 			int32_t flg = XDR_RDMA_RLIST_REG;
578 
579 			XDR_CONTROL(xdrs, XDR_RDMA_SET_FLAGS, &flg);
580 			xdrs->x_ops = &xdrrdmablk_ops;
581 		}
582 	}
583 
584 	if (crdp->cl_wlist) {
585 		int32_t flg = XDR_RDMA_WLIST_REG;
586 
587 		XDR_CONTROL(xdrs, XDR_RDMA_SET_WLIST, crdp->cl_wlist);
588 		XDR_CONTROL(xdrs, XDR_RDMA_SET_FLAGS, &flg);
589 	}
590 
591 	if (! xdr_callmsg(xdrs, msg)) {
592 		DTRACE_PROBE(krpc__e__svcrdma__krecv__callmsg);
593 		RSSTAT_INCR(rsxdrcall);
594 		goto callmsg_err;
595 	}
596 
597 	/*
598 	 * Point the remote transport address in the service_transport
599 	 * handle at the address in the request.
600 	 */
601 	clone_xprt->xp_rtaddr.buf = conn->c_raddr.buf;
602 	clone_xprt->xp_rtaddr.len = conn->c_raddr.len;
603 	clone_xprt->xp_rtaddr.maxlen = conn->c_raddr.len;
604 
605 	clone_xprt->xp_lcladdr.buf = conn->c_laddr.buf;
606 	clone_xprt->xp_lcladdr.len = conn->c_laddr.len;
607 	clone_xprt->xp_lcladdr.maxlen = conn->c_laddr.len;
608 
609 	/*
610 	 * In case of RDMA, connection management is
611 	 * entirely done in rpcib module and netid in the
612 	 * SVCMASTERXPRT is NULL. Initialize the clone netid
613 	 * from the connection.
614 	 */
615 
616 	clone_xprt->xp_netid = conn->c_netid;
617 
618 	clone_xprt->xp_xid = xid;
619 	crdp->conn = conn;
620 
621 	freeb(mp);
622 
623 	return (TRUE);
624 
625 callmsg_err:
626 	rdma_buf_free(conn, &crdp->rpcbuf);
627 
628 cll_malloc_err:
629 	if (cl)
630 		clist_free(cl);
631 xdr_err:
632 	XDR_DESTROY(xdrs);
633 
634 badrpc_call:
635 	RDMA_BUF_FREE(conn, &rdp->rpcmsg);
636 	RDMA_REL_CONN(conn);
637 	freeb(mp);
638 	RSSTAT_INCR(rsbadcalls);
639 	return (FALSE);
640 }
641 
642 static int
643 svc_process_long_reply(SVCXPRT * clone_xprt,
644     xdrproc_t xdr_results, caddr_t xdr_location,
645     struct rpc_msg *msg, bool_t has_args, int *msglen,
646     int *freelen, int *numchunks, unsigned int *final_len)
647 {
648 	int status;
649 	XDR xdrslong;
650 	struct clist *wcl = NULL;
651 	int count = 0;
652 	int alloc_len;
653 	char  *memp;
654 	rdma_buf_t long_rpc = {0};
655 	struct clone_rdma_data *crdp;
656 
657 	crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
658 
659 	bzero(&xdrslong, sizeof (xdrslong));
660 
661 	/* Choose a size for the long rpc response */
662 	if (MSG_IS_RPCSEC_GSS(msg)) {
663 		alloc_len = RNDUP(MAX_AUTH_BYTES + *msglen);
664 	} else {
665 		alloc_len = RNDUP(*msglen);
666 	}
667 
668 	if (alloc_len <= 64 * 1024) {
669 		if (alloc_len > 32 * 1024) {
670 			alloc_len = 64 * 1024;
671 		} else {
672 			if (alloc_len > 16 * 1024) {
673 				alloc_len = 32 * 1024;
674 			} else {
675 				alloc_len = 16 * 1024;
676 			}
677 		}
678 	}
679 
680 	long_rpc.type = RDMA_LONG_BUFFER;
681 	long_rpc.len = alloc_len;
682 	if (rdma_buf_alloc(crdp->conn, &long_rpc)) {
683 		return (SVC_RDMA_FAIL);
684 	}
685 
686 	memp = long_rpc.addr;
687 	xdrmem_create(&xdrslong, memp, alloc_len, XDR_ENCODE);
688 
689 	msg->rm_xid = clone_xprt->xp_xid;
690 
691 	if (!(xdr_replymsg(&xdrslong, msg) &&
692 	    (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, &xdrslong,
693 	    xdr_results, xdr_location)))) {
694 		rdma_buf_free(crdp->conn, &long_rpc);
695 		DTRACE_PROBE(krpc__e__svcrdma__longrep__authwrap);
696 		return (SVC_RDMA_FAIL);
697 	}
698 
699 	*final_len = XDR_GETPOS(&xdrslong);
700 
701 	DTRACE_PROBE1(krpc__i__replylen, uint_t, *final_len);
702 	*numchunks = 0;
703 	*freelen = 0;
704 
705 	wcl = crdp->cl_reply;
706 	wcl->rb_longbuf = long_rpc;
707 
708 	count = *final_len;
709 	while ((wcl != NULL) && (count > 0)) {
710 
711 		if (wcl->c_dmemhandle.mrc_rmr == 0)
712 			break;
713 
714 		DTRACE_PROBE2(krpc__i__write__chunks, uint32_t, count,
715 		    uint32_t, wcl->c_len);
716 
717 		if (wcl->c_len > count) {
718 			wcl->c_len = count;
719 		}
720 		wcl->w.c_saddr3 = (caddr_t)memp;
721 
722 		count -= wcl->c_len;
723 		*numchunks +=  1;
724 		memp += wcl->c_len;
725 		wcl = wcl->c_next;
726 	}
727 
728 	/*
729 	 * Make rest of the chunks 0-len
730 	 */
731 	while (wcl != NULL) {
732 		if (wcl->c_dmemhandle.mrc_rmr == 0)
733 			break;
734 		wcl->c_len = 0;
735 		wcl = wcl->c_next;
736 	}
737 
738 	wcl = crdp->cl_reply;
739 
740 	/*
741 	 * MUST fail if there are still more data
742 	 */
743 	if (count > 0) {
744 		rdma_buf_free(crdp->conn, &long_rpc);
745 		DTRACE_PROBE(krpc__e__svcrdma__longrep__dlen__clist);
746 		return (SVC_RDMA_FAIL);
747 	}
748 
749 	if (clist_register(crdp->conn, wcl, CLIST_REG_SOURCE) != RDMA_SUCCESS) {
750 		rdma_buf_free(crdp->conn, &long_rpc);
751 		DTRACE_PROBE(krpc__e__svcrdma__longrep__clistreg);
752 		return (SVC_RDMA_FAIL);
753 	}
754 
755 	status = clist_syncmem(crdp->conn, wcl, CLIST_REG_SOURCE);
756 
757 	if (status) {
758 		(void) clist_deregister(crdp->conn, wcl);
759 		rdma_buf_free(crdp->conn, &long_rpc);
760 		DTRACE_PROBE(krpc__e__svcrdma__longrep__syncmem);
761 		return (SVC_RDMA_FAIL);
762 	}
763 
764 	status = RDMA_WRITE(crdp->conn, wcl, WAIT);
765 
766 	(void) clist_deregister(crdp->conn, wcl);
767 	rdma_buf_free(crdp->conn, &wcl->rb_longbuf);
768 
769 	if (status != RDMA_SUCCESS) {
770 		DTRACE_PROBE(krpc__e__svcrdma__longrep__write);
771 		return (SVC_RDMA_FAIL);
772 	}
773 
774 	return (SVC_RDMA_SUCCESS);
775 }
776 
777 
778 static int
779 svc_compose_rpcmsg(SVCXPRT * clone_xprt, CONN * conn, xdrproc_t xdr_results,
780     caddr_t xdr_location, rdma_buf_t *rpcreply, XDR ** xdrs,
781     struct rpc_msg *msg, bool_t has_args, uint_t *len)
782 {
783 	/*
784 	 * Get a pre-allocated buffer for rpc reply
785 	 */
786 	rpcreply->type = SEND_BUFFER;
787 	if (rdma_buf_alloc(conn, rpcreply)) {
788 		DTRACE_PROBE(krpc__e__svcrdma__rpcmsg__reply__nofreebufs);
789 		return (SVC_RDMA_FAIL);
790 	}
791 
792 	xdrrdma_create(*xdrs, rpcreply->addr, rpcreply->len,
793 	    0, NULL, XDR_ENCODE, conn);
794 
795 	msg->rm_xid = clone_xprt->xp_xid;
796 
797 	if (has_args) {
798 		if (!(xdr_replymsg(*xdrs, msg) &&
799 		    (!has_args ||
800 		    SVCAUTH_WRAP(&clone_xprt->xp_auth, *xdrs,
801 		    xdr_results, xdr_location)))) {
802 			rdma_buf_free(conn, rpcreply);
803 			DTRACE_PROBE(
804 			    krpc__e__svcrdma__rpcmsg__reply__authwrap1);
805 			return (SVC_RDMA_FAIL);
806 		}
807 	} else {
808 		if (!xdr_replymsg(*xdrs, msg)) {
809 			rdma_buf_free(conn, rpcreply);
810 			DTRACE_PROBE(
811 			    krpc__e__svcrdma__rpcmsg__reply__authwrap2);
812 			return (SVC_RDMA_FAIL);
813 		}
814 	}
815 
816 	*len = XDR_GETPOS(*xdrs);
817 
818 	return (SVC_RDMA_SUCCESS);
819 }
820 
821 /*
822  * Send rpc reply.
823  */
824 static bool_t
825 svc_rdma_ksend(SVCXPRT * clone_xprt, struct rpc_msg *msg)
826 {
827 	XDR *xdrs_rpc = &(clone_xprt->xp_xdrout);
828 	XDR xdrs_rhdr;
829 	CONN *conn = NULL;
830 	rdma_buf_t rbuf_resp = {0}, rbuf_rpc_resp = {0};
831 
832 	struct clone_rdma_data *crdp;
833 	struct clist *cl_read = NULL;
834 	struct clist *cl_send = NULL;
835 	struct clist *cl_write = NULL;
836 	xdrproc_t xdr_results;		/* results XDR encoding function */
837 	caddr_t xdr_location;		/* response results pointer */
838 
839 	int retval = FALSE;
840 	int status, msglen, num_wreply_segments = 0;
841 	uint32_t rdma_credit = 0;
842 	int freelen = 0;
843 	bool_t has_args;
844 	uint_t  final_resp_len, rdma_response_op, vers;
845 
846 	bzero(&xdrs_rhdr, sizeof (XDR));
847 	crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
848 	conn = crdp->conn;
849 
850 	/*
851 	 * If there is a result procedure specified in the reply message,
852 	 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
853 	 * We need to make sure it won't be processed twice, so we null
854 	 * it for xdr_replymsg here.
855 	 */
856 	has_args = FALSE;
857 	if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
858 	    msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
859 		if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
860 			has_args = TRUE;
861 			xdr_location = msg->acpted_rply.ar_results.where;
862 			msg->acpted_rply.ar_results.proc = xdr_void;
863 			msg->acpted_rply.ar_results.where = NULL;
864 		}
865 	}
866 
867 	/*
868 	 * Given the limit on the inline response size (RPC_MSG_SZ),
869 	 * there is a need to make a guess as to the overall size of
870 	 * the response.  If the resultant size is beyond the inline
871 	 * size, then the server needs to use the "reply chunk list"
872 	 * provided by the client (if the client provided one).  An
873 	 * example of this type of response would be a READDIR
874 	 * response (e.g. a small directory read would fit in RPC_MSG_SZ
875 	 * and that is the preference but it may not fit)
876 	 *
877 	 * Combine the encoded size and the size of the true results
878 	 * and then make the decision about where to encode and send results.
879 	 *
880 	 * One important note, this calculation is ignoring the size
881 	 * of the encoding of the authentication overhead.  The reason
882 	 * for this is rooted in the complexities of access to the
883 	 * encoded size of RPCSEC_GSS related authentiation,
884 	 * integrity, and privacy.
885 	 *
886 	 * If it turns out that the encoded authentication bumps the
887 	 * response over the RPC_MSG_SZ limit, then it may need to
888 	 * attempt to encode for the reply chunk list.
889 	 */
890 
891 	/*
892 	 * Calculating the "sizeof" the RPC response header and the
893 	 * encoded results.
894 	 */
895 	msglen = xdr_sizeof(xdr_replymsg, msg);
896 
897 	if (msglen > 0) {
898 		RSSTAT_INCR(rstotalreplies);
899 	}
900 	if (has_args)
901 		msglen += xdrrdma_sizeof(xdr_results, xdr_location,
902 		    rdma_minchunk, NULL, NULL);
903 
904 	DTRACE_PROBE1(krpc__i__svcrdma__ksend__msglen, int, msglen);
905 
906 	status = SVC_RDMA_SUCCESS;
907 
908 	if (msglen < RPC_MSG_SZ) {
909 		/*
910 		 * Looks like the response will fit in the inline
911 		 * response; let's try
912 		 */
913 		RSSTAT_INCR(rstotalinlinereplies);
914 
915 		rdma_response_op = RDMA_MSG;
916 
917 		status = svc_compose_rpcmsg(clone_xprt, conn, xdr_results,
918 		    xdr_location, &rbuf_rpc_resp, &xdrs_rpc, msg,
919 		    has_args, &final_resp_len);
920 
921 		DTRACE_PROBE1(krpc__i__srdma__ksend__compose_status,
922 		    int, status);
923 		DTRACE_PROBE1(krpc__i__srdma__ksend__compose_len,
924 		    int, final_resp_len);
925 
926 		if (status == SVC_RDMA_SUCCESS && crdp->cl_reply) {
927 			clist_free(crdp->cl_reply);
928 			crdp->cl_reply = NULL;
929 		}
930 	}
931 
932 	/*
933 	 * If the encode failed (size?) or the message really is
934 	 * larger than what is allowed, try the response chunk list.
935 	 */
936 	if (status != SVC_RDMA_SUCCESS || msglen >= RPC_MSG_SZ) {
937 		/*
938 		 * attempting to use a reply chunk list when there
939 		 * isn't one won't get very far...
940 		 */
941 		if (crdp->cl_reply == NULL) {
942 			DTRACE_PROBE(krpc__e__svcrdma__ksend__noreplycl);
943 			goto out;
944 		}
945 
946 		RSSTAT_INCR(rstotallongreplies);
947 
948 		msglen = xdr_sizeof(xdr_replymsg, msg);
949 		msglen += xdrrdma_sizeof(xdr_results, xdr_location, 0,
950 		    NULL, NULL);
951 
952 		status = svc_process_long_reply(clone_xprt, xdr_results,
953 		    xdr_location, msg, has_args, &msglen, &freelen,
954 		    &num_wreply_segments, &final_resp_len);
955 
956 		DTRACE_PROBE1(krpc__i__svcrdma__ksend__longreplen,
957 		    int, final_resp_len);
958 
959 		if (status != SVC_RDMA_SUCCESS) {
960 			DTRACE_PROBE(krpc__e__svcrdma__ksend__compose__failed);
961 			goto out;
962 		}
963 
964 		rdma_response_op = RDMA_NOMSG;
965 	}
966 
967 	DTRACE_PROBE1(krpc__i__svcrdma__ksend__rdmamsg__len,
968 	    int, final_resp_len);
969 
970 	rbuf_resp.type = SEND_BUFFER;
971 	if (rdma_buf_alloc(conn, &rbuf_resp)) {
972 		rdma_buf_free(conn, &rbuf_rpc_resp);
973 		DTRACE_PROBE(krpc__e__svcrdma__ksend__nofreebufs);
974 		goto out;
975 	}
976 
977 	rdma_credit = rdma_bufs_granted;
978 
979 	vers = RPCRDMA_VERS;
980 	xdrmem_create(&xdrs_rhdr, rbuf_resp.addr, rbuf_resp.len, XDR_ENCODE);
981 	(*(uint32_t *)rbuf_resp.addr) = msg->rm_xid;
982 	/* Skip xid and set the xdr position accordingly. */
983 	XDR_SETPOS(&xdrs_rhdr, sizeof (uint32_t));
984 	if (!xdr_u_int(&xdrs_rhdr, &vers) ||
985 	    !xdr_u_int(&xdrs_rhdr, &rdma_credit) ||
986 	    !xdr_u_int(&xdrs_rhdr, &rdma_response_op)) {
987 		rdma_buf_free(conn, &rbuf_rpc_resp);
988 		rdma_buf_free(conn, &rbuf_resp);
989 		DTRACE_PROBE(krpc__e__svcrdma__ksend__uint);
990 		goto out;
991 	}
992 
993 	/*
994 	 * Now XDR the read chunk list, actually always NULL
995 	 */
996 	(void) xdr_encode_rlist_svc(&xdrs_rhdr, cl_read);
997 
998 	/*
999 	 * encode write list -- we already drove RDMA_WRITEs
1000 	 */
1001 	cl_write = crdp->cl_wlist;
1002 	if (!xdr_encode_wlist(&xdrs_rhdr, cl_write)) {
1003 		DTRACE_PROBE(krpc__e__svcrdma__ksend__enc__wlist);
1004 		rdma_buf_free(conn, &rbuf_rpc_resp);
1005 		rdma_buf_free(conn, &rbuf_resp);
1006 		goto out;
1007 	}
1008 
1009 	/*
1010 	 * XDR encode the RDMA_REPLY write chunk
1011 	 */
1012 	if (!xdr_encode_reply_wchunk(&xdrs_rhdr, crdp->cl_reply,
1013 	    num_wreply_segments)) {
1014 		rdma_buf_free(conn, &rbuf_rpc_resp);
1015 		rdma_buf_free(conn, &rbuf_resp);
1016 		goto out;
1017 	}
1018 
1019 	clist_add(&cl_send, 0, XDR_GETPOS(&xdrs_rhdr), &rbuf_resp.handle,
1020 	    rbuf_resp.addr, NULL, NULL);
1021 
1022 	if (rdma_response_op == RDMA_MSG) {
1023 		clist_add(&cl_send, 0, final_resp_len, &rbuf_rpc_resp.handle,
1024 		    rbuf_rpc_resp.addr, NULL, NULL);
1025 	}
1026 
1027 	status = RDMA_SEND(conn, cl_send, msg->rm_xid);
1028 
1029 	if (status == RDMA_SUCCESS) {
1030 		retval = TRUE;
1031 	}
1032 
1033 out:
1034 	/*
1035 	 * Free up sendlist chunks
1036 	 */
1037 	if (cl_send != NULL)
1038 		clist_free(cl_send);
1039 
1040 	/*
1041 	 * Destroy private data for xdr rdma
1042 	 */
1043 	if (clone_xprt->xp_xdrout.x_ops != NULL) {
1044 		XDR_DESTROY(&(clone_xprt->xp_xdrout));
1045 	}
1046 
1047 	if (crdp->cl_reply) {
1048 		clist_free(crdp->cl_reply);
1049 		crdp->cl_reply = NULL;
1050 	}
1051 
1052 	/*
1053 	 * This is completely disgusting.  If public is set it is
1054 	 * a pointer to a structure whose first field is the address
1055 	 * of the function to free that structure and any related
1056 	 * stuff.  (see rrokfree in nfs_xdr.c).
1057 	 */
1058 	if (xdrs_rpc->x_public) {
1059 		/* LINTED pointer alignment */
1060 		(**((int (**)()) xdrs_rpc->x_public)) (xdrs_rpc->x_public);
1061 	}
1062 
1063 	if (xdrs_rhdr.x_ops != NULL) {
1064 		XDR_DESTROY(&xdrs_rhdr);
1065 	}
1066 
1067 	return (retval);
1068 }
1069 
1070 /*
1071  * Deserialize arguments.
1072  */
1073 static bool_t
1074 svc_rdma_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args, caddr_t args_ptr)
1075 {
1076 	if ((SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
1077 	    xdr_args, args_ptr)) != TRUE)
1078 		return (FALSE);
1079 	return (TRUE);
1080 }
1081 
1082 static bool_t
1083 svc_rdma_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
1084     caddr_t args_ptr)
1085 {
1086 	struct clone_rdma_data *crdp;
1087 	bool_t retval;
1088 
1089 	/*
1090 	 * If the cloned bit is true, then this transport specific
1091 	 * rmda data has been duplicated into another cloned xprt. Do
1092 	 * not free, or release the connection, it is still in use.  The
1093 	 * buffers will be freed and the connection released later by
1094 	 * SVC_CLONE_DESTROY().
1095 	 */
1096 	crdp = (struct clone_rdma_data *)clone_xprt->xp_p2buf;
1097 	if (crdp->cloned == TRUE) {
1098 		crdp->cloned = 0;
1099 		return (TRUE);
1100 	}
1101 
1102 	/*
1103 	 * Free the args if needed then XDR_DESTROY
1104 	 */
1105 	if (args_ptr) {
1106 		XDR	*xdrs = &clone_xprt->xp_xdrin;
1107 
1108 		xdrs->x_op = XDR_FREE;
1109 		retval = (*xdr_args)(xdrs, args_ptr);
1110 	}
1111 
1112 	XDR_DESTROY(&(clone_xprt->xp_xdrin));
1113 	rdma_buf_free(crdp->conn, &crdp->rpcbuf);
1114 	if (crdp->cl_reply) {
1115 		clist_free(crdp->cl_reply);
1116 		crdp->cl_reply = NULL;
1117 	}
1118 	RDMA_REL_CONN(crdp->conn);
1119 
1120 	return (retval);
1121 }
1122 
1123 /* ARGSUSED */
1124 static int32_t *
1125 svc_rdma_kgetres(SVCXPRT *clone_xprt, int size)
1126 {
1127 	return (NULL);
1128 }
1129 
1130 /* ARGSUSED */
1131 static void
1132 svc_rdma_kfreeres(SVCXPRT *clone_xprt)
1133 {
1134 }
1135 
1136 /*
1137  * the dup cacheing routines below provide a cache of non-failure
1138  * transaction id's.  rpc service routines can use this to detect
1139  * retransmissions and re-send a non-failure response.
1140  */
1141 
1142 /*
1143  * MAXDUPREQS is the number of cached items.  It should be adjusted
1144  * to the service load so that there is likely to be a response entry
1145  * when the first retransmission comes in.
1146  */
1147 #define	MAXDUPREQS	8192
1148 
1149 /*
1150  * This should be appropriately scaled to MAXDUPREQS.  To produce as less as
1151  * possible collisions it is suggested to set this to a prime.
1152  */
1153 #define	DRHASHSZ	2053
1154 
1155 #define	XIDHASH(xid)	((xid) % DRHASHSZ)
1156 #define	DRHASH(dr)	XIDHASH((dr)->dr_xid)
1157 #define	REQTOXID(req)	((req)->rq_xprt->xp_xid)
1158 
1159 static int	rdmandupreqs = 0;
1160 int	rdmamaxdupreqs = MAXDUPREQS;
1161 static kmutex_t rdmadupreq_lock;
1162 static struct dupreq *rdmadrhashtbl[DRHASHSZ];
1163 static int	rdmadrhashstat[DRHASHSZ];
1164 
1165 static void unhash(struct dupreq *);
1166 
1167 /*
1168  * rdmadrmru points to the head of a circular linked list in lru order.
1169  * rdmadrmru->dr_next == drlru
1170  */
1171 struct dupreq *rdmadrmru;
1172 
1173 /*
1174  * svc_rdma_kdup searches the request cache and returns 0 if the
1175  * request is not found in the cache.  If it is found, then it
1176  * returns the state of the request (in progress or done) and
1177  * the status or attributes that were part of the original reply.
1178  */
1179 static int
1180 svc_rdma_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
1181     bool_t *dupcachedp)
1182 {
1183 	struct dupreq *dr;
1184 	uint32_t xid;
1185 	uint32_t drhash;
1186 	int status;
1187 
1188 	xid = REQTOXID(req);
1189 	mutex_enter(&rdmadupreq_lock);
1190 	RSSTAT_INCR(rsdupchecks);
1191 	/*
1192 	 * Check to see whether an entry already exists in the cache.
1193 	 */
1194 	dr = rdmadrhashtbl[XIDHASH(xid)];
1195 	while (dr != NULL) {
1196 		if (dr->dr_xid == xid &&
1197 		    dr->dr_proc == req->rq_proc &&
1198 		    dr->dr_prog == req->rq_prog &&
1199 		    dr->dr_vers == req->rq_vers &&
1200 		    dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
1201 		    bcmp((caddr_t)dr->dr_addr.buf,
1202 		    (caddr_t)req->rq_xprt->xp_rtaddr.buf,
1203 		    dr->dr_addr.len) == 0) {
1204 			status = dr->dr_status;
1205 			if (status == DUP_DONE) {
1206 				bcopy(dr->dr_resp.buf, res, size);
1207 				if (dupcachedp != NULL)
1208 					*dupcachedp = (dr->dr_resfree != NULL);
1209 			} else {
1210 				dr->dr_status = DUP_INPROGRESS;
1211 				*drpp = dr;
1212 			}
1213 			RSSTAT_INCR(rsdupreqs);
1214 			mutex_exit(&rdmadupreq_lock);
1215 			return (status);
1216 		}
1217 		dr = dr->dr_chain;
1218 	}
1219 
1220 	/*
1221 	 * There wasn't an entry, either allocate a new one or recycle
1222 	 * an old one.
1223 	 */
1224 	if (rdmandupreqs < rdmamaxdupreqs) {
1225 		dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
1226 		if (dr == NULL) {
1227 			mutex_exit(&rdmadupreq_lock);
1228 			return (DUP_ERROR);
1229 		}
1230 		dr->dr_resp.buf = NULL;
1231 		dr->dr_resp.maxlen = 0;
1232 		dr->dr_addr.buf = NULL;
1233 		dr->dr_addr.maxlen = 0;
1234 		if (rdmadrmru) {
1235 			dr->dr_next = rdmadrmru->dr_next;
1236 			rdmadrmru->dr_next = dr;
1237 		} else {
1238 			dr->dr_next = dr;
1239 		}
1240 		rdmandupreqs++;
1241 	} else {
1242 		dr = rdmadrmru->dr_next;
1243 		while (dr->dr_status == DUP_INPROGRESS) {
1244 			dr = dr->dr_next;
1245 			if (dr == rdmadrmru->dr_next) {
1246 				mutex_exit(&rdmadupreq_lock);
1247 				return (DUP_ERROR);
1248 			}
1249 		}
1250 		unhash(dr);
1251 		if (dr->dr_resfree) {
1252 			(*dr->dr_resfree)(dr->dr_resp.buf);
1253 		}
1254 	}
1255 	dr->dr_resfree = NULL;
1256 	rdmadrmru = dr;
1257 
1258 	dr->dr_xid = REQTOXID(req);
1259 	dr->dr_prog = req->rq_prog;
1260 	dr->dr_vers = req->rq_vers;
1261 	dr->dr_proc = req->rq_proc;
1262 	if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
1263 		if (dr->dr_addr.buf != NULL)
1264 			kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
1265 		dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
1266 		dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen, KM_NOSLEEP);
1267 		if (dr->dr_addr.buf == NULL) {
1268 			dr->dr_addr.maxlen = 0;
1269 			dr->dr_status = DUP_DROP;
1270 			mutex_exit(&rdmadupreq_lock);
1271 			return (DUP_ERROR);
1272 		}
1273 	}
1274 	dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
1275 	bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
1276 	if (dr->dr_resp.maxlen < size) {
1277 		if (dr->dr_resp.buf != NULL)
1278 			kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
1279 		dr->dr_resp.maxlen = (unsigned int)size;
1280 		dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
1281 		if (dr->dr_resp.buf == NULL) {
1282 			dr->dr_resp.maxlen = 0;
1283 			dr->dr_status = DUP_DROP;
1284 			mutex_exit(&rdmadupreq_lock);
1285 			return (DUP_ERROR);
1286 		}
1287 	}
1288 	dr->dr_status = DUP_INPROGRESS;
1289 
1290 	drhash = (uint32_t)DRHASH(dr);
1291 	dr->dr_chain = rdmadrhashtbl[drhash];
1292 	rdmadrhashtbl[drhash] = dr;
1293 	rdmadrhashstat[drhash]++;
1294 	mutex_exit(&rdmadupreq_lock);
1295 	*drpp = dr;
1296 	return (DUP_NEW);
1297 }
1298 
1299 /*
1300  * svc_rdma_kdupdone marks the request done (DUP_DONE or DUP_DROP)
1301  * and stores the response.
1302  */
1303 static void
1304 svc_rdma_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
1305     int size, int status)
1306 {
1307 	ASSERT(dr->dr_resfree == NULL);
1308 	if (status == DUP_DONE) {
1309 		bcopy(res, dr->dr_resp.buf, size);
1310 		dr->dr_resfree = dis_resfree;
1311 	}
1312 	dr->dr_status = status;
1313 }
1314 
1315 /*
1316  * This routine expects that the mutex, rdmadupreq_lock, is already held.
1317  */
1318 static void
1319 unhash(struct dupreq *dr)
1320 {
1321 	struct dupreq *drt;
1322 	struct dupreq *drtprev = NULL;
1323 	uint32_t drhash;
1324 
1325 	ASSERT(MUTEX_HELD(&rdmadupreq_lock));
1326 
1327 	drhash = (uint32_t)DRHASH(dr);
1328 	drt = rdmadrhashtbl[drhash];
1329 	while (drt != NULL) {
1330 		if (drt == dr) {
1331 			rdmadrhashstat[drhash]--;
1332 			if (drtprev == NULL) {
1333 				rdmadrhashtbl[drhash] = drt->dr_chain;
1334 			} else {
1335 				drtprev->dr_chain = drt->dr_chain;
1336 			}
1337 			return;
1338 		}
1339 		drtprev = drt;
1340 		drt = drt->dr_chain;
1341 	}
1342 }
1343 
1344 bool_t
1345 rdma_get_wchunk(struct svc_req *req, iovec_t *iov, struct clist *wlist)
1346 {
1347 	struct clist	*clist;
1348 	uint32_t	tlen;
1349 
1350 	if (req->rq_xprt->xp_type != T_RDMA) {
1351 		return (FALSE);
1352 	}
1353 
1354 	tlen = 0;
1355 	clist = wlist;
1356 	while (clist) {
1357 		tlen += clist->c_len;
1358 		clist = clist->c_next;
1359 	}
1360 
1361 	/*
1362 	 * set iov to addr+len of first segment of first wchunk of
1363 	 * wlist sent by client.  krecv() already malloc'd a buffer
1364 	 * large enough, but registration is deferred until we write
1365 	 * the buffer back to (NFS) client using RDMA_WRITE.
1366 	 */
1367 	iov->iov_base = (caddr_t)(uintptr_t)wlist->w.c_saddr;
1368 	iov->iov_len = tlen;
1369 
1370 	return (TRUE);
1371 }
1372 
1373 /*
1374  * routine to setup the read chunk lists
1375  */
1376 
1377 int
1378 rdma_setup_read_chunks(struct clist *wcl, uint32_t count, int *wcl_len)
1379 {
1380 	int		data_len, avail_len;
1381 	uint_t		round_len;
1382 
1383 	data_len = avail_len = 0;
1384 
1385 	while (wcl != NULL && count > 0) {
1386 		if (wcl->c_dmemhandle.mrc_rmr == 0)
1387 			break;
1388 
1389 		if (wcl->c_len < count) {
1390 			data_len += wcl->c_len;
1391 			avail_len = 0;
1392 		} else {
1393 			data_len += count;
1394 			avail_len = wcl->c_len - count;
1395 			wcl->c_len = count;
1396 		}
1397 		count -= wcl->c_len;
1398 
1399 		if (count == 0)
1400 			break;
1401 
1402 		wcl = wcl->c_next;
1403 	}
1404 
1405 	/*
1406 	 * MUST fail if there are still more data
1407 	 */
1408 	if (count > 0) {
1409 		DTRACE_PROBE2(krpc__e__rdma_setup_read_chunks_clist_len,
1410 		    int, data_len, int, count);
1411 		return (FALSE);
1412 	}
1413 
1414 	/*
1415 	 * Round up the last chunk to 4-byte boundary
1416 	 */
1417 	*wcl_len = roundup(data_len, BYTES_PER_XDR_UNIT);
1418 	round_len = *wcl_len - data_len;
1419 
1420 	if (round_len) {
1421 
1422 		/*
1423 		 * If there is space in the current chunk,
1424 		 * add the roundup to the chunk.
1425 		 */
1426 		if (avail_len >= round_len) {
1427 			wcl->c_len += round_len;
1428 		} else  {
1429 			/*
1430 			 * try the next one.
1431 			 */
1432 			wcl = wcl->c_next;
1433 			if ((wcl == NULL) || (wcl->c_len < round_len)) {
1434 				DTRACE_PROBE1(
1435 				    krpc__e__rdma_setup_read_chunks_rndup,
1436 				    int, round_len);
1437 				return (FALSE);
1438 			}
1439 			wcl->c_len = round_len;
1440 		}
1441 	}
1442 
1443 	wcl = wcl->c_next;
1444 
1445 	/*
1446 	 * Make rest of the chunks 0-len
1447 	 */
1448 
1449 	clist_zero_len(wcl);
1450 
1451 	return (TRUE);
1452 }
1453