xref: /illumos-gate/usr/src/uts/common/rpc/svc.c (revision f4ce81cfdad23bacfdb147be77d8d5fbe7673847)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved.
29  */
30 
31 /*	Copyright (c) 1983, 1984, 1985,  1986, 1987, 1988, 1989 AT&T	*/
32 /*	  All Rights Reserved  	*/
33 
34 /*
35  * Portions of this source code were derived from Berkeley 4.3 BSD
36  * under license from the Regents of the University of California.
37  */
38 
39 /*
40  * Server-side remote procedure call interface.
41  *
42  * Master transport handle (SVCMASTERXPRT).
43  *   The master transport handle structure is shared among service
44  *   threads processing events on the transport. Some fields in the
45  *   master structure are protected by locks
46  *   - xp_req_lock protects the request queue:
47  *	xp_req_head, xp_req_tail
48  *   - xp_thread_lock protects the thread (clone) counts
49  *	xp_threads, xp_detached_threads, xp_wq
50  *   Each master transport is registered to exactly one thread pool.
51  *
52  * Clone transport handle (SVCXPRT)
53  *   The clone transport handle structure is a per-service-thread handle
54  *   to the transport. The structure carries all the fields/buffers used
55  *   for request processing. A service thread or, in other words, a clone
56  *   structure, can be linked to an arbitrary master structure to process
57  *   requests on this transport. The master handle keeps track of reference
58  *   counts of threads (clones) linked to it. A service thread can switch
59  *   to another transport by unlinking its clone handle from the current
60  *   transport and linking to a new one. Switching is relatively inexpensive
61  *   but it involves locking (master's xprt->xp_thread_lock).
62  *
63  * Pools.
64  *   A pool represents a kernel RPC service (NFS, Lock Manager, etc.).
65  *   Transports related to the service are registered to the service pool.
66  *   Service threads can switch between different transports in the pool.
67  *   Thus, each service has its own pool of service threads. The maximum
68  *   number of threads in a pool is pool->p_maxthreads. This limit allows
69  *   to restrict resource usage by the service. Some fields are protected
70  *   by locks:
71  *   - p_req_lock protects several counts and flags:
72  *	p_reqs, p_walkers, p_asleep, p_drowsy, p_req_cv
73  *   - p_thread_lock governs other thread counts:
74  *	p_threads, p_detached_threads, p_reserved_threads, p_closing
75  *
76  *   In addition, each pool contains a doubly-linked list of transports,
77  *   an `xprt-ready' queue and a creator thread (see below). Threads in
78  *   the pool share some other parameters such as stack size and
79  *   polling timeout.
80  *
81  *   Pools are initialized through the svc_pool_create() function called from
82  *   the nfssys() system call. However, thread creation must be done by
83  *   the userland agent. This is done by using SVCPOOL_WAIT and
84  *   SVCPOOL_RUN arguments to nfssys(), which call svc_wait() and
85  *   svc_do_run(), respectively. Once the pool has been initialized,
86  *   the userland process must set up a 'creator' thread. This thread
87  *   should park itself in the kernel by calling svc_wait(). If
88  *   svc_wait() returns successfully, it should fork off a new worker
89  *   thread, which then calls svc_do_run() in order to get work. When
90  *   that thread is complete, svc_do_run() will return, and the user
91  *   program should call thr_exit().
92  *
93  *   When we try to register a new pool and there is an old pool with
94  *   the same id in the doubly linked pool list (this happens when we kill
95  *   and restart nfsd or lockd), then we unlink the old pool from the list
96  *   and mark its state as `closing'. After that the transports can still
97  *   process requests but new transports won't be registered. When all the
98  *   transports and service threads associated with the pool are gone the
99  *   creator thread (see below) will clean up the pool structure and exit.
100  *
101  * svc_queuereq() and svc_run().
102  *   The kernel RPC server is interrupt driven. The svc_queuereq() interrupt
103  *   routine is called to deliver an RPC request. The service threads
104  *   loop in svc_run(). The interrupt function queues a request on the
105  *   transport's queue and it makes sure that the request is serviced.
106  *   It may either wake up one of sleeping threads, or ask for a new thread
107  *   to be created, or, if the previous request is just being picked up, do
108  *   nothing. In the last case the service thread that is picking up the
109  *   previous request will wake up or create the next thread. After a service
110  *   thread processes a request and sends a reply it returns to svc_run()
111  *   and svc_run() calls svc_poll() to find new input.
112  *
113  *   There is no longer an "inconsistent" but "safe" optimization in the
114  *   svc_queuereq() code. This "inconsistent" state was leading to
115  *   inconsistencies between the actual number of requests and the value
116  *   of p_reqs (the total number of requests). Because of this, hangs were
117  *   occurring in svc_poll() where p_reqs was greater than one and no
118  *   requests were found on the request queues.
119  *
120  * svc_poll().
121  *   In order to avoid unnecessary locking, which causes performance
122  *   problems, we always look for a pending request on the current transport.
123  *   If there is none we take a hint from the pool's `xprt-ready' queue.
124  *   If the queue had an overflow we switch to the `drain' mode checking
125  *   each transport  in the pool's transport list. Once we find a
126  *   master transport handle with a pending request we latch the request
127  *   lock on this transport and return to svc_run(). If the request
128  *   belongs to a transport different than the one the service thread is
129  *   linked to we need to unlink and link again.
130  *
131  *   A service thread goes asleep when there are no pending
132  *   requests on the transports registered on the pool's transports.
133  *   All the pool's threads sleep on the same condition variable.
134  *   If a thread has been sleeping for too long period of time
135  *   (by default 5 seconds) it wakes up and exits.  Also when a transport
136  *   is closing sleeping threads wake up to unlink from this transport.
137  *
138  * The `xprt-ready' queue.
139  *   If a service thread finds no request on a transport it is currently linked
140  *   to it will find another transport with a pending request. To make
141  *   this search more efficient each pool has an `xprt-ready' queue.
142  *   The queue is a FIFO. When the interrupt routine queues a request it also
143  *   inserts a pointer to the transport into the `xprt-ready' queue. A
144  *   thread looking for a transport with a pending request can pop up a
145  *   transport and check for a request. The request can be already gone
146  *   since it could be taken by a thread linked to that transport. In such a
147  *   case we try the next hint. The `xprt-ready' queue has fixed size (by
148  *   default 256 nodes). If it overflows svc_poll() has to switch to the
149  *   less efficient but safe `drain' mode and walk through the pool's
150  *   transport list.
151  *
152  *   Both the svc_poll() loop and the `xprt-ready' queue are optimized
153  *   for the peak load case that is for the situation when the queue is not
154  *   empty, there are all the time few pending requests, and a service
155  *   thread which has just processed a request does not go asleep but picks
156  *   up immediately the next request.
157  *
158  * Thread creator.
159  *   Each pool has a thread creator associated with it. The creator thread
160  *   sleeps on a condition variable and waits for a signal to create a
161  *   service thread. The actual thread creation is done in userland by
162  *   the method described in "Pools" above.
163  *
164  *   Signaling threads should turn on the `creator signaled' flag, and
165  *   can avoid sending signals when the flag is on. The flag is cleared
166  *   when the thread is created.
167  *
168  *   When the pool is in closing state (ie it has been already unregistered
169  *   from the pool list) the last thread on the last transport in the pool
170  *   should turn the p_creator_exit flag on. The creator thread will
171  *   clean up the pool structure and exit.
172  *
173  * Thread reservation; Detaching service threads.
174  *   A service thread can detach itself to block for an extended amount
175  *   of time. However, to keep the service active we need to guarantee
176  *   at least pool->p_redline non-detached threads that can process incoming
177  *   requests. This, the maximum number of detached and reserved threads is
178  *   p->p_maxthreads - p->p_redline. A service thread should first acquire
179  *   a reservation, and if the reservation was granted it can detach itself.
180  *   If a reservation was granted but the thread does not detach itself
181  *   it should cancel the reservation before it returns to svc_run().
182  */
183 
184 #include <sys/param.h>
185 #include <sys/types.h>
186 #include <rpc/types.h>
187 #include <sys/socket.h>
188 #include <sys/time.h>
189 #include <sys/tiuser.h>
190 #include <sys/t_kuser.h>
191 #include <netinet/in.h>
192 #include <rpc/xdr.h>
193 #include <rpc/auth.h>
194 #include <rpc/clnt.h>
195 #include <rpc/rpc_msg.h>
196 #include <rpc/svc.h>
197 #include <sys/proc.h>
198 #include <sys/user.h>
199 #include <sys/stream.h>
200 #include <sys/strsubr.h>
201 #include <sys/tihdr.h>
202 #include <sys/debug.h>
203 #include <sys/cmn_err.h>
204 #include <sys/file.h>
205 #include <sys/systm.h>
206 #include <sys/callb.h>
207 #include <sys/vtrace.h>
208 #include <sys/zone.h>
209 #include <nfs/nfs.h>
210 #include <sys/tsol/label_macro.h>
211 
212 #define	RQCRED_SIZE	400	/* this size is excessive */
213 
214 /*
215  * Defines for svc_poll()
216  */
217 #define	SVC_EXPRTGONE ((SVCMASTERXPRT *)1)	/* Transport is closing */
218 #define	SVC_ETIMEDOUT ((SVCMASTERXPRT *)2)	/* Timeout */
219 #define	SVC_EINTR ((SVCMASTERXPRT *)3)		/* Interrupted by signal */
220 
221 /*
222  * Default stack size for service threads.
223  */
224 #define	DEFAULT_SVC_RUN_STKSIZE		(0)	/* default kernel stack */
225 
226 int    svc_default_stksize = DEFAULT_SVC_RUN_STKSIZE;
227 
228 /*
229  * Default polling timeout for service threads.
230  * Multiplied by hz when used.
231  */
232 #define	DEFAULT_SVC_POLL_TIMEOUT	(5)	/* seconds */
233 
234 clock_t svc_default_timeout = DEFAULT_SVC_POLL_TIMEOUT;
235 
236 /*
237  * Size of the `xprt-ready' queue.
238  */
239 #define	DEFAULT_SVC_QSIZE		(256)	/* qnodes */
240 
241 size_t svc_default_qsize = DEFAULT_SVC_QSIZE;
242 
243 /*
244  * Default limit for the number of service threads.
245  */
246 #define	DEFAULT_SVC_MAXTHREADS		(INT16_MAX)
247 
248 int    svc_default_maxthreads = DEFAULT_SVC_MAXTHREADS;
249 
250 /*
251  * Maximum number of requests from the same transport (in `drain' mode).
252  */
253 #define	DEFAULT_SVC_MAX_SAME_XPRT	(8)
254 
255 int    svc_default_max_same_xprt = DEFAULT_SVC_MAX_SAME_XPRT;
256 
257 
258 /*
259  * Default `Redline' of non-detached threads.
260  * Total number of detached and reserved threads in an RPC server
261  * thread pool is limited to pool->p_maxthreads - svc_redline.
262  */
263 #define	DEFAULT_SVC_REDLINE		(1)
264 
265 int    svc_default_redline = DEFAULT_SVC_REDLINE;
266 
267 /*
268  * A node for the `xprt-ready' queue.
269  * See below.
270  */
271 struct __svcxprt_qnode {
272 	__SVCXPRT_QNODE	*q_next;
273 	SVCMASTERXPRT	*q_xprt;
274 };
275 
276 /*
277  * Global SVC variables (private).
278  */
279 struct svc_globals {
280 	SVCPOOL		*svc_pools;
281 	kmutex_t	svc_plock;
282 };
283 
284 /*
285  * Debug variable to check for rdma based
286  * transport startup and cleanup. Contorlled
287  * through /etc/system. Off by default.
288  */
289 int rdma_check = 0;
290 
291 /*
292  * Authentication parameters list.
293  */
294 static caddr_t rqcred_head;
295 static kmutex_t rqcred_lock;
296 
297 /*
298  * Pointers to transport specific `rele' routines in rpcmod (set from rpcmod).
299  */
300 void	(*rpc_rele)(queue_t *, mblk_t *) = NULL;
301 void	(*mir_rele)(queue_t *, mblk_t *) = NULL;
302 
303 /* ARGSUSED */
304 void
305 rpc_rdma_rele(queue_t *q, mblk_t *mp)
306 {
307 }
308 void    (*rdma_rele)(queue_t *, mblk_t *) = rpc_rdma_rele;
309 
310 
311 /*
312  * This macro picks which `rele' routine to use, based on the transport type.
313  */
314 #define	RELE_PROC(xprt) \
315 	((xprt)->xp_type == T_RDMA ? rdma_rele : \
316 	(((xprt)->xp_type == T_CLTS) ? rpc_rele : mir_rele))
317 
318 /*
319  * If true, then keep quiet about version mismatch.
320  * This macro is for broadcast RPC only. We have no broadcast RPC in
321  * kernel now but one may define a flag in the transport structure
322  * and redefine this macro.
323  */
324 #define	version_keepquiet(xprt)	(FALSE)
325 
326 /*
327  * ZSD key used to retrieve zone-specific svc globals
328  */
329 static zone_key_t svc_zone_key;
330 
331 static void svc_callout_free(SVCMASTERXPRT *);
332 static void svc_xprt_qinit(SVCPOOL *, size_t);
333 static void svc_xprt_qdestroy(SVCPOOL *);
334 static void svc_thread_creator(SVCPOOL *);
335 static void svc_creator_signal(SVCPOOL *);
336 static void svc_creator_signalexit(SVCPOOL *);
337 static void svc_pool_unregister(struct svc_globals *, SVCPOOL *);
338 static int svc_run(SVCPOOL *);
339 
340 /* ARGSUSED */
341 static void *
342 svc_zoneinit(zoneid_t zoneid)
343 {
344 	struct svc_globals *svc;
345 
346 	svc = kmem_alloc(sizeof (*svc), KM_SLEEP);
347 	mutex_init(&svc->svc_plock, NULL, MUTEX_DEFAULT, NULL);
348 	svc->svc_pools = NULL;
349 	return (svc);
350 }
351 
352 /* ARGSUSED */
353 static void
354 svc_zoneshutdown(zoneid_t zoneid, void *arg)
355 {
356 	struct svc_globals *svc = arg;
357 	SVCPOOL *pool;
358 
359 	mutex_enter(&svc->svc_plock);
360 	while ((pool = svc->svc_pools) != NULL) {
361 		svc_pool_unregister(svc, pool);
362 	}
363 	mutex_exit(&svc->svc_plock);
364 }
365 
366 /* ARGSUSED */
367 static void
368 svc_zonefini(zoneid_t zoneid, void *arg)
369 {
370 	struct svc_globals *svc = arg;
371 
372 	ASSERT(svc->svc_pools == NULL);
373 	mutex_destroy(&svc->svc_plock);
374 	kmem_free(svc, sizeof (*svc));
375 }
376 
377 /*
378  * Global SVC init routine.
379  * Initialize global generic and transport type specific structures
380  * used by the kernel RPC server side. This routine is called only
381  * once when the module is being loaded.
382  */
383 void
384 svc_init()
385 {
386 	zone_key_create(&svc_zone_key, svc_zoneinit, svc_zoneshutdown,
387 	    svc_zonefini);
388 	svc_cots_init();
389 	svc_clts_init();
390 }
391 
392 /*
393  * Destroy the SVCPOOL structure.
394  */
395 static void
396 svc_pool_cleanup(SVCPOOL *pool)
397 {
398 	ASSERT(pool->p_threads + pool->p_detached_threads == 0);
399 	ASSERT(pool->p_lcount == 0);
400 	ASSERT(pool->p_closing);
401 
402 	/*
403 	 * Call the user supplied shutdown function.  This is done
404 	 * here so the user of the pool will be able to cleanup
405 	 * service related resources.
406 	 */
407 	if (pool->p_shutdown != NULL)
408 		(pool->p_shutdown)();
409 
410 	/* Destroy `xprt-ready' queue */
411 	svc_xprt_qdestroy(pool);
412 
413 	/* Destroy transport list */
414 	rw_destroy(&pool->p_lrwlock);
415 
416 	/* Destroy locks and condition variables */
417 	mutex_destroy(&pool->p_thread_lock);
418 	mutex_destroy(&pool->p_req_lock);
419 	cv_destroy(&pool->p_req_cv);
420 
421 	/* Destroy creator's locks and condition variables */
422 	mutex_destroy(&pool->p_creator_lock);
423 	cv_destroy(&pool->p_creator_cv);
424 	mutex_destroy(&pool->p_user_lock);
425 	cv_destroy(&pool->p_user_cv);
426 
427 	/* Free pool structure */
428 	kmem_free(pool, sizeof (SVCPOOL));
429 }
430 
431 /*
432  * If all the transports and service threads are already gone
433  * signal the creator thread to clean up and exit.
434  */
435 static bool_t
436 svc_pool_tryexit(SVCPOOL *pool)
437 {
438 	ASSERT(MUTEX_HELD(&pool->p_thread_lock));
439 	ASSERT(pool->p_closing);
440 
441 	if (pool->p_threads + pool->p_detached_threads == 0) {
442 		rw_enter(&pool->p_lrwlock, RW_READER);
443 		if (pool->p_lcount == 0) {
444 			/*
445 			 * Release the locks before sending a signal.
446 			 */
447 			rw_exit(&pool->p_lrwlock);
448 			mutex_exit(&pool->p_thread_lock);
449 
450 			/*
451 			 * Notify the creator thread to clean up and exit
452 			 *
453 			 * NOTICE: No references to the pool beyond this point!
454 			 *		   The pool is being destroyed.
455 			 */
456 			ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
457 			svc_creator_signalexit(pool);
458 
459 			return (TRUE);
460 		}
461 		rw_exit(&pool->p_lrwlock);
462 	}
463 
464 	ASSERT(MUTEX_HELD(&pool->p_thread_lock));
465 	return (FALSE);
466 }
467 
468 /*
469  * Find a pool with a given id.
470  */
471 static SVCPOOL *
472 svc_pool_find(struct svc_globals *svc, int id)
473 {
474 	SVCPOOL *pool;
475 
476 	ASSERT(MUTEX_HELD(&svc->svc_plock));
477 
478 	/*
479 	 * Search the list for a pool with a matching id
480 	 * and register the transport handle with that pool.
481 	 */
482 	for (pool = svc->svc_pools; pool; pool = pool->p_next)
483 		if (pool->p_id == id)
484 			return (pool);
485 
486 	return (NULL);
487 }
488 
489 /*
490  * PSARC 2003/523 Contract Private Interface
491  * svc_do_run
492  * Changes must be reviewed by Solaris File Sharing
493  * Changes must be communicated to contract-2003-523@sun.com
494  */
495 int
496 svc_do_run(int id)
497 {
498 	SVCPOOL *pool;
499 	int err = 0;
500 	struct svc_globals *svc;
501 
502 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
503 	mutex_enter(&svc->svc_plock);
504 
505 	pool = svc_pool_find(svc, id);
506 
507 	mutex_exit(&svc->svc_plock);
508 
509 	if (pool == NULL)
510 		return (ENOENT);
511 
512 	/*
513 	 * Increment counter of pool threads now
514 	 * that a thread has been created.
515 	 */
516 	mutex_enter(&pool->p_thread_lock);
517 	pool->p_threads++;
518 	mutex_exit(&pool->p_thread_lock);
519 
520 	/* Give work to the new thread. */
521 	err = svc_run(pool);
522 
523 	return (err);
524 }
525 
526 /*
527  * Unregister a pool from the pool list.
528  * Set the closing state. If all the transports and service threads
529  * are already gone signal the creator thread to clean up and exit.
530  */
531 static void
532 svc_pool_unregister(struct svc_globals *svc, SVCPOOL *pool)
533 {
534 	SVCPOOL *next = pool->p_next;
535 	SVCPOOL *prev = pool->p_prev;
536 
537 	ASSERT(MUTEX_HELD(&svc->svc_plock));
538 
539 	/* Remove from the list */
540 	if (pool == svc->svc_pools)
541 		svc->svc_pools = next;
542 	if (next)
543 		next->p_prev = prev;
544 	if (prev)
545 		prev->p_next = next;
546 	pool->p_next = pool->p_prev = NULL;
547 
548 	/*
549 	 * Offline the pool. Mark the pool as closing.
550 	 * If there are no transports in this pool notify
551 	 * the creator thread to clean it up and exit.
552 	 */
553 	mutex_enter(&pool->p_thread_lock);
554 	if (pool->p_offline != NULL)
555 		(pool->p_offline)();
556 	pool->p_closing = TRUE;
557 	if (svc_pool_tryexit(pool))
558 		return;
559 	mutex_exit(&pool->p_thread_lock);
560 }
561 
562 /*
563  * Register a pool with a given id in the global doubly linked pool list.
564  * - if there is a pool with the same id in the list then unregister it
565  * - insert the new pool into the list.
566  */
567 static void
568 svc_pool_register(struct svc_globals *svc, SVCPOOL *pool, int id)
569 {
570 	SVCPOOL *old_pool;
571 
572 	/*
573 	 * If there is a pool with the same id then remove it from
574 	 * the list and mark the pool as closing.
575 	 */
576 	mutex_enter(&svc->svc_plock);
577 
578 	if (old_pool = svc_pool_find(svc, id))
579 		svc_pool_unregister(svc, old_pool);
580 
581 	/* Insert into the doubly linked list */
582 	pool->p_id = id;
583 	pool->p_next = svc->svc_pools;
584 	pool->p_prev = NULL;
585 	if (svc->svc_pools)
586 		svc->svc_pools->p_prev = pool;
587 	svc->svc_pools = pool;
588 
589 	mutex_exit(&svc->svc_plock);
590 }
591 
592 /*
593  * Initialize a newly created pool structure
594  */
595 static int
596 svc_pool_init(SVCPOOL *pool, uint_t maxthreads, uint_t redline,
597 	uint_t qsize, uint_t timeout, uint_t stksize, uint_t max_same_xprt)
598 {
599 	klwp_t *lwp = ttolwp(curthread);
600 
601 	ASSERT(pool);
602 
603 	if (maxthreads == 0)
604 		maxthreads = svc_default_maxthreads;
605 	if (redline == 0)
606 		redline = svc_default_redline;
607 	if (qsize == 0)
608 		qsize = svc_default_qsize;
609 	if (timeout == 0)
610 		timeout = svc_default_timeout;
611 	if (stksize == 0)
612 		stksize = svc_default_stksize;
613 	if (max_same_xprt == 0)
614 		max_same_xprt = svc_default_max_same_xprt;
615 
616 	if (maxthreads < redline)
617 		return (EINVAL);
618 
619 	/* Allocate and initialize the `xprt-ready' queue */
620 	svc_xprt_qinit(pool, qsize);
621 
622 	/* Initialize doubly-linked xprt list */
623 	rw_init(&pool->p_lrwlock, NULL, RW_DEFAULT, NULL);
624 
625 	/*
626 	 * Setting lwp_childstksz on the current lwp so that
627 	 * descendants of this lwp get the modified stacksize, if
628 	 * it is defined. It is important that either this lwp or
629 	 * one of its descendants do the actual servicepool thread
630 	 * creation to maintain the stacksize inheritance.
631 	 */
632 	if (lwp != NULL)
633 		lwp->lwp_childstksz = stksize;
634 
635 	/* Initialize thread limits, locks and condition variables */
636 	pool->p_maxthreads = maxthreads;
637 	pool->p_redline = redline;
638 	pool->p_timeout = timeout * hz;
639 	pool->p_stksize = stksize;
640 	pool->p_max_same_xprt = max_same_xprt;
641 	mutex_init(&pool->p_thread_lock, NULL, MUTEX_DEFAULT, NULL);
642 	mutex_init(&pool->p_req_lock, NULL, MUTEX_DEFAULT, NULL);
643 	cv_init(&pool->p_req_cv, NULL, CV_DEFAULT, NULL);
644 
645 	/* Initialize userland creator */
646 	pool->p_user_exit = FALSE;
647 	pool->p_signal_create_thread = FALSE;
648 	pool->p_user_waiting = FALSE;
649 	mutex_init(&pool->p_user_lock, NULL, MUTEX_DEFAULT, NULL);
650 	cv_init(&pool->p_user_cv, NULL, CV_DEFAULT, NULL);
651 
652 	/* Initialize the creator and start the creator thread */
653 	pool->p_creator_exit = FALSE;
654 	mutex_init(&pool->p_creator_lock, NULL, MUTEX_DEFAULT, NULL);
655 	cv_init(&pool->p_creator_cv, NULL, CV_DEFAULT, NULL);
656 
657 	(void) zthread_create(NULL, pool->p_stksize, svc_thread_creator,
658 	    pool, 0, minclsyspri);
659 
660 	return (0);
661 }
662 
663 /*
664  * PSARC 2003/523 Contract Private Interface
665  * svc_pool_create
666  * Changes must be reviewed by Solaris File Sharing
667  * Changes must be communicated to contract-2003-523@sun.com
668  *
669  * Create an kernel RPC server-side thread/transport pool.
670  *
671  * This is public interface for creation of a server RPC thread pool
672  * for a given service provider. Transports registered with the pool's id
673  * will be served by a pool's threads. This function is called from the
674  * nfssys() system call.
675  */
676 int
677 svc_pool_create(struct svcpool_args *args)
678 {
679 	SVCPOOL *pool;
680 	int error;
681 	struct svc_globals *svc;
682 
683 	/*
684 	 * Caller should check credentials in a way appropriate
685 	 * in the context of the call.
686 	 */
687 
688 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
689 	/* Allocate a new pool */
690 	pool = kmem_zalloc(sizeof (SVCPOOL), KM_SLEEP);
691 
692 	/*
693 	 * Initialize the pool structure and create a creator thread.
694 	 */
695 	error = svc_pool_init(pool, args->maxthreads, args->redline,
696 	    args->qsize, args->timeout, args->stksize, args->max_same_xprt);
697 
698 	if (error) {
699 		kmem_free(pool, sizeof (SVCPOOL));
700 		return (error);
701 	}
702 
703 	/* Register the pool with the global pool list */
704 	svc_pool_register(svc, pool, args->id);
705 
706 	return (0);
707 }
708 
709 int
710 svc_pool_control(int id, int cmd, void *arg)
711 {
712 	SVCPOOL *pool;
713 	struct svc_globals *svc;
714 
715 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
716 
717 	switch (cmd) {
718 	case SVCPSET_SHUTDOWN_PROC:
719 		/*
720 		 * Search the list for a pool with a matching id
721 		 * and register the transport handle with that pool.
722 		 */
723 		mutex_enter(&svc->svc_plock);
724 
725 		if ((pool = svc_pool_find(svc, id)) == NULL) {
726 			mutex_exit(&svc->svc_plock);
727 			return (ENOENT);
728 		}
729 		/*
730 		 * Grab the transport list lock before releasing the
731 		 * pool list lock
732 		 */
733 		rw_enter(&pool->p_lrwlock, RW_WRITER);
734 		mutex_exit(&svc->svc_plock);
735 
736 		pool->p_shutdown = *((void (*)())arg);
737 
738 		rw_exit(&pool->p_lrwlock);
739 
740 		return (0);
741 	case SVCPSET_UNREGISTER_PROC:
742 		/*
743 		 * Search the list for a pool with a matching id
744 		 * and register the unregister callback handle with that pool.
745 		 */
746 		mutex_enter(&svc->svc_plock);
747 
748 		if ((pool = svc_pool_find(svc, id)) == NULL) {
749 			mutex_exit(&svc->svc_plock);
750 			return (ENOENT);
751 		}
752 		/*
753 		 * Grab the transport list lock before releasing the
754 		 * pool list lock
755 		 */
756 		rw_enter(&pool->p_lrwlock, RW_WRITER);
757 		mutex_exit(&svc->svc_plock);
758 
759 		pool->p_offline = *((void (*)())arg);
760 
761 		rw_exit(&pool->p_lrwlock);
762 
763 		return (0);
764 	default:
765 		return (EINVAL);
766 	}
767 }
768 
769 /*
770  * Pool's transport list manipulation routines.
771  * - svc_xprt_register()
772  * - svc_xprt_unregister()
773  *
774  * svc_xprt_register() is called from svc_tli_kcreate() to
775  * insert a new master transport handle into the doubly linked
776  * list of server transport handles (one list per pool).
777  *
778  * The list is used by svc_poll(), when it operates in `drain'
779  * mode, to search for a next transport with a pending request.
780  */
781 
782 int
783 svc_xprt_register(SVCMASTERXPRT *xprt, int id)
784 {
785 	SVCMASTERXPRT *prev, *next;
786 	SVCPOOL *pool;
787 	struct svc_globals *svc;
788 
789 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
790 	/*
791 	 * Search the list for a pool with a matching id
792 	 * and register the transport handle with that pool.
793 	 */
794 	mutex_enter(&svc->svc_plock);
795 
796 	if ((pool = svc_pool_find(svc, id)) == NULL) {
797 		mutex_exit(&svc->svc_plock);
798 		return (ENOENT);
799 	}
800 
801 	/* Grab the transport list lock before releasing the pool list lock */
802 	rw_enter(&pool->p_lrwlock, RW_WRITER);
803 	mutex_exit(&svc->svc_plock);
804 
805 	/* Don't register new transports when the pool is in closing state */
806 	if (pool->p_closing) {
807 		rw_exit(&pool->p_lrwlock);
808 		return (EBUSY);
809 	}
810 
811 	/*
812 	 * Initialize xp_pool to point to the pool.
813 	 * We don't want to go through the pool list every time.
814 	 */
815 	xprt->xp_pool = pool;
816 
817 	/*
818 	 * Insert a transport handle into the list.
819 	 * The list head points to the most recently inserted transport.
820 	 */
821 	if (pool->p_lhead == NULL)
822 		pool->p_lhead = xprt->xp_prev = xprt->xp_next = xprt;
823 	else {
824 		next = pool->p_lhead;
825 		prev = pool->p_lhead->xp_prev;
826 
827 		xprt->xp_next = next;
828 		xprt->xp_prev = prev;
829 
830 		pool->p_lhead = prev->xp_next = next->xp_prev = xprt;
831 	}
832 
833 	/* Increment the transports count */
834 	pool->p_lcount++;
835 
836 	rw_exit(&pool->p_lrwlock);
837 	return (0);
838 }
839 
840 /*
841  * Called from svc_xprt_cleanup() to remove a master transport handle
842  * from the pool's list of server transports (when a transport is
843  * being destroyed).
844  */
845 void
846 svc_xprt_unregister(SVCMASTERXPRT *xprt)
847 {
848 	SVCPOOL *pool = xprt->xp_pool;
849 
850 	/*
851 	 * Unlink xprt from the list.
852 	 * If the list head points to this xprt then move it
853 	 * to the next xprt or reset to NULL if this is the last
854 	 * xprt in the list.
855 	 */
856 	rw_enter(&pool->p_lrwlock, RW_WRITER);
857 
858 	if (xprt == xprt->xp_next)
859 		pool->p_lhead = NULL;
860 	else {
861 		SVCMASTERXPRT *next = xprt->xp_next;
862 		SVCMASTERXPRT *prev = xprt->xp_prev;
863 
864 		next->xp_prev = prev;
865 		prev->xp_next = next;
866 
867 		if (pool->p_lhead == xprt)
868 			pool->p_lhead = next;
869 	}
870 
871 	xprt->xp_next = xprt->xp_prev = NULL;
872 
873 	/* Decrement list count */
874 	pool->p_lcount--;
875 
876 	rw_exit(&pool->p_lrwlock);
877 }
878 
879 static void
880 svc_xprt_qdestroy(SVCPOOL *pool)
881 {
882 	mutex_destroy(&pool->p_qend_lock);
883 	kmem_free(pool->p_qbody, pool->p_qsize * sizeof (__SVCXPRT_QNODE));
884 }
885 
886 /*
887  * Initialize an `xprt-ready' queue for a given pool.
888  */
889 static void
890 svc_xprt_qinit(SVCPOOL *pool, size_t qsize)
891 {
892 	int i;
893 
894 	pool->p_qsize = qsize;
895 	pool->p_qbody = kmem_zalloc(pool->p_qsize * sizeof (__SVCXPRT_QNODE),
896 	    KM_SLEEP);
897 
898 	for (i = 0; i < pool->p_qsize - 1; i++)
899 		pool->p_qbody[i].q_next = &(pool->p_qbody[i+1]);
900 
901 	pool->p_qbody[pool->p_qsize-1].q_next = &(pool->p_qbody[0]);
902 	pool->p_qtop = &(pool->p_qbody[0]);
903 	pool->p_qend = &(pool->p_qbody[0]);
904 
905 	mutex_init(&pool->p_qend_lock, NULL, MUTEX_DEFAULT, NULL);
906 }
907 
908 /*
909  * Called from the svc_queuereq() interrupt routine to queue
910  * a hint for svc_poll() which transport has a pending request.
911  * - insert a pointer to xprt into the xprt-ready queue (FIFO)
912  * - if the xprt-ready queue is full turn the overflow flag on.
913  *
914  * NOTICE: pool->p_qtop is protected by the the pool's request lock
915  * and the caller (svc_queuereq()) must hold the lock.
916  */
917 static void
918 svc_xprt_qput(SVCPOOL *pool, SVCMASTERXPRT *xprt)
919 {
920 	ASSERT(MUTEX_HELD(&pool->p_req_lock));
921 
922 	/* If the overflow flag is there is nothing we can do */
923 	if (pool->p_qoverflow)
924 		return;
925 
926 	/* If the queue is full turn the overflow flag on and exit */
927 	if (pool->p_qtop->q_next == pool->p_qend) {
928 		mutex_enter(&pool->p_qend_lock);
929 		if (pool->p_qtop->q_next == pool->p_qend) {
930 			pool->p_qoverflow = TRUE;
931 			mutex_exit(&pool->p_qend_lock);
932 			return;
933 		}
934 		mutex_exit(&pool->p_qend_lock);
935 	}
936 
937 	/* Insert a hint and move pool->p_qtop */
938 	pool->p_qtop->q_xprt = xprt;
939 	pool->p_qtop = pool->p_qtop->q_next;
940 }
941 
942 /*
943  * Called from svc_poll() to get a hint which transport has a
944  * pending request. Returns a pointer to a transport or NULL if the
945  * `xprt-ready' queue is empty.
946  *
947  * Since we do not acquire the pool's request lock while checking if
948  * the queue is empty we may miss a request that is just being delivered.
949  * However this is ok since svc_poll() will retry again until the
950  * count indicates that there are pending requests for this pool.
951  */
952 static SVCMASTERXPRT *
953 svc_xprt_qget(SVCPOOL *pool)
954 {
955 	SVCMASTERXPRT *xprt;
956 
957 	mutex_enter(&pool->p_qend_lock);
958 	do {
959 		/*
960 		 * If the queue is empty return NULL.
961 		 * Since we do not acquire the pool's request lock which
962 		 * protects pool->p_qtop this is not exact check. However,
963 		 * this is safe - if we miss a request here svc_poll()
964 		 * will retry again.
965 		 */
966 		if (pool->p_qend == pool->p_qtop) {
967 			mutex_exit(&pool->p_qend_lock);
968 			return (NULL);
969 		}
970 
971 		/* Get a hint and move pool->p_qend */
972 		xprt = pool->p_qend->q_xprt;
973 		pool->p_qend = pool->p_qend->q_next;
974 
975 		/* Skip fields deleted by svc_xprt_qdelete()	 */
976 	} while (xprt == NULL);
977 	mutex_exit(&pool->p_qend_lock);
978 
979 	return (xprt);
980 }
981 
982 /*
983  * Delete all the references to a transport handle that
984  * is being destroyed from the xprt-ready queue.
985  * Deleted pointers are replaced with NULLs.
986  */
987 static void
988 svc_xprt_qdelete(SVCPOOL *pool, SVCMASTERXPRT *xprt)
989 {
990 	__SVCXPRT_QNODE *q = pool->p_qend;
991 	__SVCXPRT_QNODE *qtop = pool->p_qtop;
992 
993 	/*
994 	 * Delete all the references to xprt between the current
995 	 * position of pool->p_qend and current pool->p_qtop.
996 	 */
997 	for (;;) {
998 		if (q->q_xprt == xprt)
999 			q->q_xprt = NULL;
1000 		if (q == qtop)
1001 			return;
1002 		q = q->q_next;
1003 	}
1004 }
1005 
1006 /*
1007  * Destructor for a master server transport handle.
1008  * - if there are no more non-detached threads linked to this transport
1009  *   then, if requested, call xp_closeproc (we don't wait for detached
1010  *   threads linked to this transport to complete).
1011  * - if there are no more threads linked to this
1012  *   transport then
1013  *   a) remove references to this transport from the xprt-ready queue
1014  *   b) remove a reference to this transport from the pool's transport list
1015  *   c) call a transport specific `destroy' function
1016  *   d) cancel remaining thread reservations.
1017  *
1018  * NOTICE: Caller must hold the transport's thread lock.
1019  */
1020 static void
1021 svc_xprt_cleanup(SVCMASTERXPRT *xprt, bool_t detached)
1022 {
1023 	ASSERT(MUTEX_HELD(&xprt->xp_thread_lock));
1024 	ASSERT(xprt->xp_wq == NULL);
1025 
1026 	/*
1027 	 * If called from the last non-detached thread
1028 	 * it should call the closeproc on this transport.
1029 	 */
1030 	if (!detached && xprt->xp_threads == 0 && xprt->xp_closeproc) {
1031 		(*(xprt->xp_closeproc)) (xprt);
1032 	}
1033 
1034 	if (xprt->xp_threads + xprt->xp_detached_threads > 0)
1035 		mutex_exit(&xprt->xp_thread_lock);
1036 	else {
1037 		/* Remove references to xprt from the `xprt-ready' queue */
1038 		svc_xprt_qdelete(xprt->xp_pool, xprt);
1039 
1040 		/* Unregister xprt from the pool's transport list */
1041 		svc_xprt_unregister(xprt);
1042 		svc_callout_free(xprt);
1043 		SVC_DESTROY(xprt);
1044 	}
1045 }
1046 
1047 /*
1048  * Find a dispatch routine for a given prog/vers pair.
1049  * This function is called from svc_getreq() to search the callout
1050  * table for an entry with a matching RPC program number `prog'
1051  * and a version range that covers `vers'.
1052  * - if it finds a matching entry it returns pointer to the dispatch routine
1053  * - otherwise it returns NULL and, if `minp' or `maxp' are not NULL,
1054  *   fills them with, respectively, lowest version and highest version
1055  *   supported for the program `prog'
1056  */
1057 static SVC_DISPATCH *
1058 svc_callout_find(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers,
1059     rpcvers_t *vers_min, rpcvers_t *vers_max)
1060 {
1061 	SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1062 	int i;
1063 
1064 	*vers_min = ~(rpcvers_t)0;
1065 	*vers_max = 0;
1066 
1067 	for (i = 0; i < sct->sct_size; i++) {
1068 		SVC_CALLOUT *sc = &sct->sct_sc[i];
1069 
1070 		if (prog == sc->sc_prog) {
1071 			if (vers >= sc->sc_versmin && vers <= sc->sc_versmax)
1072 				return (sc->sc_dispatch);
1073 
1074 			if (*vers_max < sc->sc_versmax)
1075 				*vers_max = sc->sc_versmax;
1076 			if (*vers_min > sc->sc_versmin)
1077 				*vers_min = sc->sc_versmin;
1078 		}
1079 	}
1080 
1081 	return (NULL);
1082 }
1083 
1084 /*
1085  * Optionally free callout table allocated for this transport by
1086  * the service provider.
1087  */
1088 static void
1089 svc_callout_free(SVCMASTERXPRT *xprt)
1090 {
1091 	SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1092 
1093 	if (sct->sct_free) {
1094 		kmem_free(sct->sct_sc, sct->sct_size * sizeof (SVC_CALLOUT));
1095 		kmem_free(sct, sizeof (SVC_CALLOUT_TABLE));
1096 	}
1097 }
1098 
1099 /*
1100  * Send a reply to an RPC request
1101  *
1102  * PSARC 2003/523 Contract Private Interface
1103  * svc_sendreply
1104  * Changes must be reviewed by Solaris File Sharing
1105  * Changes must be communicated to contract-2003-523@sun.com
1106  */
1107 bool_t
1108 svc_sendreply(const SVCXPRT *clone_xprt, const xdrproc_t xdr_results,
1109     const caddr_t xdr_location)
1110 {
1111 	struct rpc_msg rply;
1112 
1113 	rply.rm_direction = REPLY;
1114 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1115 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1116 	rply.acpted_rply.ar_stat = SUCCESS;
1117 	rply.acpted_rply.ar_results.where = xdr_location;
1118 	rply.acpted_rply.ar_results.proc = xdr_results;
1119 
1120 	return (SVC_REPLY((SVCXPRT *)clone_xprt, &rply));
1121 }
1122 
1123 /*
1124  * No procedure error reply
1125  *
1126  * PSARC 2003/523 Contract Private Interface
1127  * svcerr_noproc
1128  * Changes must be reviewed by Solaris File Sharing
1129  * Changes must be communicated to contract-2003-523@sun.com
1130  */
1131 void
1132 svcerr_noproc(const SVCXPRT *clone_xprt)
1133 {
1134 	struct rpc_msg rply;
1135 
1136 	rply.rm_direction = REPLY;
1137 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1138 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1139 	rply.acpted_rply.ar_stat = PROC_UNAVAIL;
1140 	SVC_FREERES((SVCXPRT *)clone_xprt);
1141 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1142 }
1143 
1144 /*
1145  * Can't decode arguments error reply
1146  *
1147  * PSARC 2003/523 Contract Private Interface
1148  * svcerr_decode
1149  * Changes must be reviewed by Solaris File Sharing
1150  * Changes must be communicated to contract-2003-523@sun.com
1151  */
1152 void
1153 svcerr_decode(const SVCXPRT *clone_xprt)
1154 {
1155 	struct rpc_msg rply;
1156 
1157 	rply.rm_direction = REPLY;
1158 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1159 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1160 	rply.acpted_rply.ar_stat = GARBAGE_ARGS;
1161 	SVC_FREERES((SVCXPRT *)clone_xprt);
1162 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1163 }
1164 
1165 /*
1166  * Some system error
1167  */
1168 void
1169 svcerr_systemerr(const SVCXPRT *clone_xprt)
1170 {
1171 	struct rpc_msg rply;
1172 
1173 	rply.rm_direction = REPLY;
1174 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1175 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1176 	rply.acpted_rply.ar_stat = SYSTEM_ERR;
1177 	SVC_FREERES((SVCXPRT *)clone_xprt);
1178 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1179 }
1180 
1181 /*
1182  * Authentication error reply
1183  */
1184 void
1185 svcerr_auth(const SVCXPRT *clone_xprt, const enum auth_stat why)
1186 {
1187 	struct rpc_msg rply;
1188 
1189 	rply.rm_direction = REPLY;
1190 	rply.rm_reply.rp_stat = MSG_DENIED;
1191 	rply.rjcted_rply.rj_stat = AUTH_ERROR;
1192 	rply.rjcted_rply.rj_why = why;
1193 	SVC_FREERES((SVCXPRT *)clone_xprt);
1194 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1195 }
1196 
1197 /*
1198  * Authentication too weak error reply
1199  */
1200 void
1201 svcerr_weakauth(const SVCXPRT *clone_xprt)
1202 {
1203 	svcerr_auth((SVCXPRT *)clone_xprt, AUTH_TOOWEAK);
1204 }
1205 
1206 /*
1207  * Authentication error; bad credentials
1208  */
1209 void
1210 svcerr_badcred(const SVCXPRT *clone_xprt)
1211 {
1212 	struct rpc_msg rply;
1213 
1214 	rply.rm_direction = REPLY;
1215 	rply.rm_reply.rp_stat = MSG_DENIED;
1216 	rply.rjcted_rply.rj_stat = AUTH_ERROR;
1217 	rply.rjcted_rply.rj_why = AUTH_BADCRED;
1218 	SVC_FREERES((SVCXPRT *)clone_xprt);
1219 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1220 }
1221 
1222 /*
1223  * Program unavailable error reply
1224  *
1225  * PSARC 2003/523 Contract Private Interface
1226  * svcerr_noprog
1227  * Changes must be reviewed by Solaris File Sharing
1228  * Changes must be communicated to contract-2003-523@sun.com
1229  */
1230 void
1231 svcerr_noprog(const SVCXPRT *clone_xprt)
1232 {
1233 	struct rpc_msg rply;
1234 
1235 	rply.rm_direction = REPLY;
1236 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1237 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1238 	rply.acpted_rply.ar_stat = PROG_UNAVAIL;
1239 	SVC_FREERES((SVCXPRT *)clone_xprt);
1240 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1241 }
1242 
1243 /*
1244  * Program version mismatch error reply
1245  *
1246  * PSARC 2003/523 Contract Private Interface
1247  * svcerr_progvers
1248  * Changes must be reviewed by Solaris File Sharing
1249  * Changes must be communicated to contract-2003-523@sun.com
1250  */
1251 void
1252 svcerr_progvers(const SVCXPRT *clone_xprt,
1253     const rpcvers_t low_vers, const rpcvers_t high_vers)
1254 {
1255 	struct rpc_msg rply;
1256 
1257 	rply.rm_direction = REPLY;
1258 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1259 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1260 	rply.acpted_rply.ar_stat = PROG_MISMATCH;
1261 	rply.acpted_rply.ar_vers.low = low_vers;
1262 	rply.acpted_rply.ar_vers.high = high_vers;
1263 	SVC_FREERES((SVCXPRT *)clone_xprt);
1264 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1265 }
1266 
1267 /*
1268  * Get server side input from some transport.
1269  *
1270  * Statement of authentication parameters management:
1271  * This function owns and manages all authentication parameters, specifically
1272  * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
1273  * the "cooked" credentials (rqst->rq_clntcred).
1274  * However, this function does not know the structure of the cooked
1275  * credentials, so it make the following assumptions:
1276  *   a) the structure is contiguous (no pointers), and
1277  *   b) the cred structure size does not exceed RQCRED_SIZE bytes.
1278  * In all events, all three parameters are freed upon exit from this routine.
1279  * The storage is trivially managed on the call stack in user land, but
1280  * is malloced in kernel land.
1281  *
1282  * Note: the xprt's xp_svc_lock is not held while the service's dispatch
1283  * routine is running.	If we decide to implement svc_unregister(), we'll
1284  * need to decide whether it's okay for a thread to unregister a service
1285  * while a request is being processed.	If we decide that this is a
1286  * problem, we can probably use some sort of reference counting scheme to
1287  * keep the callout entry from going away until the request has completed.
1288  */
1289 static void
1290 svc_getreq(
1291 	SVCXPRT *clone_xprt,	/* clone transport handle */
1292 	mblk_t *mp)
1293 {
1294 	struct rpc_msg msg;
1295 	struct svc_req r;
1296 	char  *cred_area;	/* too big to allocate on call stack */
1297 
1298 	TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_START,
1299 	    "svc_getreq_start:");
1300 
1301 	ASSERT(clone_xprt->xp_master != NULL);
1302 	ASSERT(!is_system_labeled() || msg_getcred(mp, NULL) != NULL ||
1303 	    mp->b_datap->db_type != M_DATA);
1304 
1305 	/*
1306 	 * Firstly, allocate the authentication parameters' storage
1307 	 */
1308 	mutex_enter(&rqcred_lock);
1309 	if (rqcred_head) {
1310 		cred_area = rqcred_head;
1311 
1312 		/* LINTED pointer alignment */
1313 		rqcred_head = *(caddr_t *)rqcred_head;
1314 		mutex_exit(&rqcred_lock);
1315 	} else {
1316 		mutex_exit(&rqcred_lock);
1317 		cred_area = kmem_alloc(2 * MAX_AUTH_BYTES + RQCRED_SIZE,
1318 		    KM_SLEEP);
1319 	}
1320 	msg.rm_call.cb_cred.oa_base = cred_area;
1321 	msg.rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
1322 	r.rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]);
1323 
1324 	/*
1325 	 * underlying transport recv routine may modify mblk data
1326 	 * and make it difficult to extract label afterwards. So
1327 	 * get the label from the raw mblk data now.
1328 	 */
1329 	if (is_system_labeled()) {
1330 		cred_t *cr;
1331 
1332 		r.rq_label = kmem_alloc(sizeof (bslabel_t), KM_SLEEP);
1333 		cr = msg_getcred(mp, NULL);
1334 		ASSERT(cr != NULL);
1335 
1336 		bcopy(label2bslabel(crgetlabel(cr)), r.rq_label,
1337 		    sizeof (bslabel_t));
1338 	} else {
1339 		r.rq_label = NULL;
1340 	}
1341 
1342 	/*
1343 	 * Now receive a message from the transport.
1344 	 */
1345 	if (SVC_RECV(clone_xprt, mp, &msg)) {
1346 		void (*dispatchroutine) (struct svc_req *, SVCXPRT *);
1347 		rpcvers_t vers_min;
1348 		rpcvers_t vers_max;
1349 		bool_t no_dispatch;
1350 		enum auth_stat why;
1351 
1352 		/*
1353 		 * Find the registered program and call its
1354 		 * dispatch routine.
1355 		 */
1356 		r.rq_xprt = clone_xprt;
1357 		r.rq_prog = msg.rm_call.cb_prog;
1358 		r.rq_vers = msg.rm_call.cb_vers;
1359 		r.rq_proc = msg.rm_call.cb_proc;
1360 		r.rq_cred = msg.rm_call.cb_cred;
1361 
1362 		/*
1363 		 * First authenticate the message.
1364 		 */
1365 		TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_START,
1366 		    "svc_getreq_auth_start:");
1367 		if ((why = sec_svc_msg(&r, &msg, &no_dispatch)) != AUTH_OK) {
1368 			TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1369 			    "svc_getreq_auth_end:(%S)", "failed");
1370 			svcerr_auth(clone_xprt, why);
1371 			/*
1372 			 * Free the arguments.
1373 			 */
1374 			(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1375 		} else if (no_dispatch) {
1376 			/*
1377 			 * XXX - when bug id 4053736 is done, remove
1378 			 * the SVC_FREEARGS() call.
1379 			 */
1380 			(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1381 		} else {
1382 			TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1383 			    "svc_getreq_auth_end:(%S)", "good");
1384 
1385 			dispatchroutine = svc_callout_find(clone_xprt,
1386 			    r.rq_prog, r.rq_vers, &vers_min, &vers_max);
1387 
1388 			if (dispatchroutine) {
1389 				(*dispatchroutine) (&r, clone_xprt);
1390 			} else {
1391 				/*
1392 				 * If we got here, the program or version
1393 				 * is not served ...
1394 				 */
1395 				if (vers_max == 0 ||
1396 				    version_keepquiet(clone_xprt))
1397 					svcerr_noprog(clone_xprt);
1398 				else
1399 					svcerr_progvers(clone_xprt, vers_min,
1400 					    vers_max);
1401 
1402 				/*
1403 				 * Free the arguments. For successful calls
1404 				 * this is done by the dispatch routine.
1405 				 */
1406 				(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1407 				/* Fall through to ... */
1408 			}
1409 			/*
1410 			 * Call cleanup procedure for RPCSEC_GSS.
1411 			 * This is a hack since there is currently no
1412 			 * op, such as SVC_CLEANAUTH. rpc_gss_cleanup
1413 			 * should only be called for a non null proc.
1414 			 * Null procs in RPC GSS are overloaded to
1415 			 * provide context setup and control. The main
1416 			 * purpose of rpc_gss_cleanup is to decrement the
1417 			 * reference count associated with the cached
1418 			 * GSS security context. We should never get here
1419 			 * for an RPCSEC_GSS null proc since *no_dispatch
1420 			 * would have been set to true from sec_svc_msg above.
1421 			 */
1422 			if (r.rq_cred.oa_flavor == RPCSEC_GSS)
1423 				rpc_gss_cleanup(clone_xprt);
1424 		}
1425 	}
1426 
1427 	if (r.rq_label != NULL)
1428 		kmem_free(r.rq_label, sizeof (bslabel_t));
1429 
1430 	/*
1431 	 * Free authentication parameters' storage
1432 	 */
1433 	mutex_enter(&rqcred_lock);
1434 	/* LINTED pointer alignment */
1435 	*(caddr_t *)cred_area = rqcred_head;
1436 	rqcred_head = cred_area;
1437 	mutex_exit(&rqcred_lock);
1438 }
1439 
1440 /*
1441  * Allocate new clone transport handle.
1442  */
1443 SVCXPRT *
1444 svc_clone_init(void)
1445 {
1446 	SVCXPRT *clone_xprt;
1447 
1448 	clone_xprt = kmem_zalloc(sizeof (SVCXPRT), KM_SLEEP);
1449 	clone_xprt->xp_cred = crget();
1450 	return (clone_xprt);
1451 }
1452 
1453 /*
1454  * Free memory allocated by svc_clone_init.
1455  */
1456 void
1457 svc_clone_free(SVCXPRT *clone_xprt)
1458 {
1459 	/* Fre credentials from crget() */
1460 	if (clone_xprt->xp_cred)
1461 		crfree(clone_xprt->xp_cred);
1462 	kmem_free(clone_xprt, sizeof (SVCXPRT));
1463 }
1464 
1465 /*
1466  * Link a per-thread clone transport handle to a master
1467  * - increment a thread reference count on the master
1468  * - copy some of the master's fields to the clone
1469  * - call a transport specific clone routine.
1470  */
1471 void
1472 svc_clone_link(SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt)
1473 {
1474 	cred_t *cred = clone_xprt->xp_cred;
1475 
1476 	ASSERT(cred);
1477 
1478 	/*
1479 	 * Bump up master's thread count.
1480 	 * Linking a per-thread clone transport handle to a master
1481 	 * associates a service thread with the master.
1482 	 */
1483 	mutex_enter(&xprt->xp_thread_lock);
1484 	xprt->xp_threads++;
1485 	mutex_exit(&xprt->xp_thread_lock);
1486 
1487 	/* Clear everything */
1488 	bzero(clone_xprt, sizeof (SVCXPRT));
1489 
1490 	/* Set pointer to the master transport stucture */
1491 	clone_xprt->xp_master = xprt;
1492 
1493 	/* Structure copy of all the common fields */
1494 	clone_xprt->xp_xpc = xprt->xp_xpc;
1495 
1496 	/* Restore per-thread fields (xp_cred) */
1497 	clone_xprt->xp_cred = cred;
1498 
1499 
1500 	/*
1501 	 * NOTICE: There is no transport-type specific code now.
1502 	 *	   If you want to add a transport-type specific cloning code
1503 	 *	   add one more operation (e.g. xp_clone()) to svc_ops,
1504 	 *	   implement it for each transport type, and call it here
1505 	 *	   through an appropriate macro (e.g. SVC_CLONE()).
1506 	 */
1507 }
1508 
1509 /*
1510  * Unlink a non-detached clone transport handle from a master
1511  * - decrement a thread reference count on the master
1512  * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1513  *   if this is the last non-detached/absolute thread on this transport
1514  *   then it will close/destroy the transport
1515  * - call transport specific function to destroy the clone handle
1516  * - clear xp_master to avoid recursion.
1517  */
1518 void
1519 svc_clone_unlink(SVCXPRT *clone_xprt)
1520 {
1521 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1522 
1523 	/* This cannot be a detached thread */
1524 	ASSERT(!clone_xprt->xp_detached);
1525 	ASSERT(xprt->xp_threads > 0);
1526 
1527 	/* Decrement a reference count on the transport */
1528 	mutex_enter(&xprt->xp_thread_lock);
1529 	xprt->xp_threads--;
1530 
1531 	/* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1532 	if (xprt->xp_wq)
1533 		mutex_exit(&xprt->xp_thread_lock);
1534 	else
1535 		svc_xprt_cleanup(xprt, FALSE);
1536 
1537 	/* Call a transport specific clone `destroy' function */
1538 	SVC_CLONE_DESTROY(clone_xprt);
1539 
1540 	/* Clear xp_master */
1541 	clone_xprt->xp_master = NULL;
1542 }
1543 
1544 /*
1545  * Unlink a detached clone transport handle from a master
1546  * - decrement the thread count on the master
1547  * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1548  *   if this is the last thread on this transport then it will destroy
1549  *   the transport.
1550  * - call a transport specific function to destroy the clone handle
1551  * - clear xp_master to avoid recursion.
1552  */
1553 static void
1554 svc_clone_unlinkdetached(SVCXPRT *clone_xprt)
1555 {
1556 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1557 
1558 	/* This must be a detached thread */
1559 	ASSERT(clone_xprt->xp_detached);
1560 	ASSERT(xprt->xp_detached_threads > 0);
1561 	ASSERT(xprt->xp_threads + xprt->xp_detached_threads > 0);
1562 
1563 	/* Grab xprt->xp_thread_lock and decrement link counts */
1564 	mutex_enter(&xprt->xp_thread_lock);
1565 	xprt->xp_detached_threads--;
1566 
1567 	/* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1568 	if (xprt->xp_wq)
1569 		mutex_exit(&xprt->xp_thread_lock);
1570 	else
1571 		svc_xprt_cleanup(xprt, TRUE);
1572 
1573 	/* Call transport specific clone `destroy' function */
1574 	SVC_CLONE_DESTROY(clone_xprt);
1575 
1576 	/* Clear xp_master */
1577 	clone_xprt->xp_master = NULL;
1578 }
1579 
1580 /*
1581  * Try to exit a non-detached service thread
1582  * - check if there are enough threads left
1583  * - if this thread (ie its clone transport handle) are linked
1584  *   to a master transport then unlink it
1585  * - free the clone structure
1586  * - return to userland for thread exit
1587  *
1588  * If this is the last non-detached or the last thread on this
1589  * transport then the call to svc_clone_unlink() will, respectively,
1590  * close and/or destroy the transport.
1591  */
1592 static void
1593 svc_thread_exit(SVCPOOL *pool, SVCXPRT *clone_xprt)
1594 {
1595 	if (clone_xprt->xp_master)
1596 		svc_clone_unlink(clone_xprt);
1597 	svc_clone_free(clone_xprt);
1598 
1599 	mutex_enter(&pool->p_thread_lock);
1600 	pool->p_threads--;
1601 	if (pool->p_closing && svc_pool_tryexit(pool))
1602 		/* return -  thread exit will be handled at user level */
1603 		return;
1604 	mutex_exit(&pool->p_thread_lock);
1605 
1606 	/* return -  thread exit will be handled at user level */
1607 }
1608 
1609 /*
1610  * Exit a detached service thread that returned to svc_run
1611  * - decrement the `detached thread' count for the pool
1612  * - unlink the detached clone transport handle from the master
1613  * - free the clone structure
1614  * - return to userland for thread exit
1615  *
1616  * If this is the last thread on this transport then the call
1617  * to svc_clone_unlinkdetached() will destroy the transport.
1618  */
1619 static void
1620 svc_thread_exitdetached(SVCPOOL *pool, SVCXPRT *clone_xprt)
1621 {
1622 	/* This must be a detached thread */
1623 	ASSERT(clone_xprt->xp_master);
1624 	ASSERT(clone_xprt->xp_detached);
1625 	ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
1626 
1627 	svc_clone_unlinkdetached(clone_xprt);
1628 	svc_clone_free(clone_xprt);
1629 
1630 	mutex_enter(&pool->p_thread_lock);
1631 
1632 	ASSERT(pool->p_reserved_threads >= 0);
1633 	ASSERT(pool->p_detached_threads > 0);
1634 
1635 	pool->p_detached_threads--;
1636 	if (pool->p_closing && svc_pool_tryexit(pool))
1637 		/* return -  thread exit will be handled at user level */
1638 		return;
1639 	mutex_exit(&pool->p_thread_lock);
1640 
1641 	/* return -  thread exit will be handled at user level */
1642 }
1643 
1644 /*
1645  * PSARC 2003/523 Contract Private Interface
1646  * svc_wait
1647  * Changes must be reviewed by Solaris File Sharing
1648  * Changes must be communicated to contract-2003-523@sun.com
1649  */
1650 int
1651 svc_wait(int id)
1652 {
1653 	SVCPOOL *pool;
1654 	int	err = 0;
1655 	struct svc_globals *svc;
1656 
1657 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
1658 	mutex_enter(&svc->svc_plock);
1659 	pool = svc_pool_find(svc, id);
1660 	mutex_exit(&svc->svc_plock);
1661 
1662 	if (pool == NULL)
1663 		return (ENOENT);
1664 
1665 	mutex_enter(&pool->p_user_lock);
1666 
1667 	/* Check if there's already a user thread waiting on this pool */
1668 	if (pool->p_user_waiting) {
1669 		mutex_exit(&pool->p_user_lock);
1670 		return (EBUSY);
1671 	}
1672 
1673 	pool->p_user_waiting = TRUE;
1674 
1675 	/* Go to sleep, waiting for the signaled flag. */
1676 	while (!pool->p_signal_create_thread && !pool->p_user_exit) {
1677 		if (cv_wait_sig(&pool->p_user_cv, &pool->p_user_lock) == 0) {
1678 			/* Interrupted, return to handle exit or signal */
1679 			pool->p_user_waiting = FALSE;
1680 			pool->p_signal_create_thread = FALSE;
1681 			mutex_exit(&pool->p_user_lock);
1682 
1683 			/*
1684 			 * Thread has been interrupted and therefore
1685 			 * the service daemon is leaving as well so
1686 			 * let's go ahead and remove the service
1687 			 * pool at this time.
1688 			 */
1689 			mutex_enter(&svc->svc_plock);
1690 			svc_pool_unregister(svc, pool);
1691 			mutex_exit(&svc->svc_plock);
1692 
1693 			return (EINTR);
1694 		}
1695 	}
1696 
1697 	pool->p_signal_create_thread = FALSE;
1698 	pool->p_user_waiting = FALSE;
1699 
1700 	/*
1701 	 * About to exit the service pool. Set return value
1702 	 * to let the userland code know our intent. Signal
1703 	 * svc_thread_creator() so that it can clean up the
1704 	 * pool structure.
1705 	 */
1706 	if (pool->p_user_exit) {
1707 		err = ECANCELED;
1708 		cv_signal(&pool->p_user_cv);
1709 	}
1710 
1711 	mutex_exit(&pool->p_user_lock);
1712 
1713 	/* Return to userland with error code, for possible thread creation. */
1714 	return (err);
1715 }
1716 
1717 /*
1718  * `Service threads' creator thread.
1719  * The creator thread waits for a signal to create new thread.
1720  */
1721 static void
1722 svc_thread_creator(SVCPOOL *pool)
1723 {
1724 	callb_cpr_t cpr_info;	/* CPR info for the creator thread */
1725 
1726 	CALLB_CPR_INIT(&cpr_info, &pool->p_creator_lock, callb_generic_cpr,
1727 	    "svc_thread_creator");
1728 
1729 	for (;;) {
1730 		mutex_enter(&pool->p_creator_lock);
1731 
1732 		/* Check if someone set the exit flag */
1733 		if (pool->p_creator_exit)
1734 			break;
1735 
1736 		/* Clear the `signaled' flag and go asleep */
1737 		pool->p_creator_signaled = FALSE;
1738 
1739 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
1740 		cv_wait(&pool->p_creator_cv, &pool->p_creator_lock);
1741 		CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1742 
1743 		/* Check if someone signaled to exit */
1744 		if (pool->p_creator_exit)
1745 			break;
1746 
1747 		mutex_exit(&pool->p_creator_lock);
1748 
1749 		mutex_enter(&pool->p_thread_lock);
1750 
1751 		/*
1752 		 * When the pool is in closing state and all the transports
1753 		 * are gone the creator should not create any new threads.
1754 		 */
1755 		if (pool->p_closing) {
1756 			rw_enter(&pool->p_lrwlock, RW_READER);
1757 			if (pool->p_lcount == 0) {
1758 				rw_exit(&pool->p_lrwlock);
1759 				mutex_exit(&pool->p_thread_lock);
1760 				continue;
1761 			}
1762 			rw_exit(&pool->p_lrwlock);
1763 		}
1764 
1765 		/*
1766 		 * Create a new service thread now.
1767 		 */
1768 		ASSERT(pool->p_reserved_threads >= 0);
1769 		ASSERT(pool->p_detached_threads >= 0);
1770 
1771 		if (pool->p_threads + pool->p_detached_threads <
1772 		    pool->p_maxthreads) {
1773 			/*
1774 			 * Signal the service pool wait thread
1775 			 * only if it hasn't already been signaled.
1776 			 */
1777 			mutex_enter(&pool->p_user_lock);
1778 			if (pool->p_signal_create_thread == FALSE) {
1779 				pool->p_signal_create_thread = TRUE;
1780 				cv_signal(&pool->p_user_cv);
1781 			}
1782 			mutex_exit(&pool->p_user_lock);
1783 
1784 		}
1785 
1786 		mutex_exit(&pool->p_thread_lock);
1787 	}
1788 
1789 	/*
1790 	 * Pool is closed. Cleanup and exit.
1791 	 */
1792 
1793 	/* Signal userland creator thread that it can stop now. */
1794 	mutex_enter(&pool->p_user_lock);
1795 	pool->p_user_exit = TRUE;
1796 	cv_broadcast(&pool->p_user_cv);
1797 	mutex_exit(&pool->p_user_lock);
1798 
1799 	/* Wait for svc_wait() to be done with the pool */
1800 	mutex_enter(&pool->p_user_lock);
1801 	while (pool->p_user_waiting) {
1802 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
1803 		cv_wait(&pool->p_user_cv, &pool->p_user_lock);
1804 		CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1805 	}
1806 	mutex_exit(&pool->p_user_lock);
1807 
1808 	CALLB_CPR_EXIT(&cpr_info);
1809 	svc_pool_cleanup(pool);
1810 	zthread_exit();
1811 }
1812 
1813 /*
1814  * If the creator thread  is idle signal it to create
1815  * a new service thread.
1816  */
1817 static void
1818 svc_creator_signal(SVCPOOL *pool)
1819 {
1820 	mutex_enter(&pool->p_creator_lock);
1821 	if (pool->p_creator_signaled == FALSE) {
1822 		pool->p_creator_signaled = TRUE;
1823 		cv_signal(&pool->p_creator_cv);
1824 	}
1825 	mutex_exit(&pool->p_creator_lock);
1826 }
1827 
1828 /*
1829  * Notify the creator thread to clean up and exit.
1830  */
1831 static void
1832 svc_creator_signalexit(SVCPOOL *pool)
1833 {
1834 	mutex_enter(&pool->p_creator_lock);
1835 	pool->p_creator_exit = TRUE;
1836 	cv_signal(&pool->p_creator_cv);
1837 	mutex_exit(&pool->p_creator_lock);
1838 }
1839 
1840 /*
1841  * Polling part of the svc_run().
1842  * - search for a transport with a pending request
1843  * - when one is found then latch the request lock and return to svc_run()
1844  * - if there is no request go asleep and wait for a signal
1845  * - handle two exceptions:
1846  *   a) current transport is closing
1847  *   b) timeout waiting for a new request
1848  *   in both cases return to svc_run()
1849  */
1850 static SVCMASTERXPRT *
1851 svc_poll(SVCPOOL *pool, SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt)
1852 {
1853 	/*
1854 	 * Main loop iterates until
1855 	 * a) we find a pending request,
1856 	 * b) detect that the current transport is closing
1857 	 * c) time out waiting for a new request.
1858 	 */
1859 	for (;;) {
1860 		SVCMASTERXPRT *next;
1861 		clock_t timeleft;
1862 
1863 		/*
1864 		 * Step 1.
1865 		 * Check if there is a pending request on the current
1866 		 * transport handle so that we can avoid cloning.
1867 		 * If so then decrement the `pending-request' count for
1868 		 * the pool and return to svc_run().
1869 		 *
1870 		 * We need to prevent a potential starvation. When
1871 		 * a selected transport has all pending requests coming in
1872 		 * all the time then the service threads will never switch to
1873 		 * another transport. With a limited number of service
1874 		 * threads some transports may be never serviced.
1875 		 * To prevent such a scenario we pick up at most
1876 		 * pool->p_max_same_xprt requests from the same transport
1877 		 * and then take a hint from the xprt-ready queue or walk
1878 		 * the transport list.
1879 		 */
1880 		if (xprt && xprt->xp_req_head && (!pool->p_qoverflow ||
1881 		    clone_xprt->xp_same_xprt++ < pool->p_max_same_xprt)) {
1882 			mutex_enter(&xprt->xp_req_lock);
1883 			if (xprt->xp_req_head) {
1884 				mutex_enter(&pool->p_req_lock);
1885 				pool->p_reqs--;
1886 				if (pool->p_reqs == 0)
1887 					pool->p_qoverflow = FALSE;
1888 				mutex_exit(&pool->p_req_lock);
1889 
1890 				return (xprt);
1891 			}
1892 			mutex_exit(&xprt->xp_req_lock);
1893 		}
1894 		clone_xprt->xp_same_xprt = 0;
1895 
1896 		/*
1897 		 * Step 2.
1898 		 * If there is no request on the current transport try to
1899 		 * find another transport with a pending request.
1900 		 */
1901 		mutex_enter(&pool->p_req_lock);
1902 		pool->p_walkers++;
1903 		mutex_exit(&pool->p_req_lock);
1904 
1905 		/*
1906 		 * Make sure that transports will not be destroyed just
1907 		 * while we are checking them.
1908 		 */
1909 		rw_enter(&pool->p_lrwlock, RW_READER);
1910 
1911 		for (;;) {
1912 			SVCMASTERXPRT *hint;
1913 
1914 			/*
1915 			 * Get the next transport from the xprt-ready queue.
1916 			 * This is a hint. There is no guarantee that the
1917 			 * transport still has a pending request since it
1918 			 * could be picked up by another thread in step 1.
1919 			 *
1920 			 * If the transport has a pending request then keep
1921 			 * it locked. Decrement the `pending-requests' for
1922 			 * the pool and `walking-threads' counts, and return
1923 			 * to svc_run().
1924 			 */
1925 			hint = svc_xprt_qget(pool);
1926 
1927 			if (hint && hint->xp_req_head) {
1928 				mutex_enter(&hint->xp_req_lock);
1929 				if (hint->xp_req_head) {
1930 					rw_exit(&pool->p_lrwlock);
1931 
1932 					mutex_enter(&pool->p_req_lock);
1933 					pool->p_reqs--;
1934 					if (pool->p_reqs == 0)
1935 						pool->p_qoverflow = FALSE;
1936 					pool->p_walkers--;
1937 					mutex_exit(&pool->p_req_lock);
1938 
1939 					return (hint);
1940 				}
1941 				mutex_exit(&hint->xp_req_lock);
1942 			}
1943 
1944 			/*
1945 			 * If there was no hint in the xprt-ready queue then
1946 			 * - if there is less pending requests than polling
1947 			 *   threads go asleep
1948 			 * - otherwise check if there was an overflow in the
1949 			 *   xprt-ready queue; if so, then we need to break
1950 			 *   the `drain' mode
1951 			 */
1952 			if (hint == NULL) {
1953 				if (pool->p_reqs < pool->p_walkers) {
1954 					mutex_enter(&pool->p_req_lock);
1955 					if (pool->p_reqs < pool->p_walkers)
1956 						goto sleep;
1957 					mutex_exit(&pool->p_req_lock);
1958 				}
1959 				if (pool->p_qoverflow) {
1960 					break;
1961 				}
1962 			}
1963 		}
1964 
1965 		/*
1966 		 * If there was an overflow in the xprt-ready queue then we
1967 		 * need to switch to the `drain' mode, i.e. walk through the
1968 		 * pool's transport list and search for a transport with a
1969 		 * pending request. If we manage to drain all the pending
1970 		 * requests then we can clear the overflow flag. This will
1971 		 * switch svc_poll() back to taking hints from the xprt-ready
1972 		 * queue (which is generally more efficient).
1973 		 *
1974 		 * If there are no registered transports simply go asleep.
1975 		 */
1976 		if (xprt == NULL && pool->p_lhead == NULL) {
1977 			mutex_enter(&pool->p_req_lock);
1978 			goto sleep;
1979 		}
1980 
1981 		/*
1982 		 * `Walk' through the pool's list of master server
1983 		 * transport handles. Continue to loop until there are less
1984 		 * looping threads then pending requests.
1985 		 */
1986 		next = xprt ? xprt->xp_next : pool->p_lhead;
1987 
1988 		for (;;) {
1989 			/*
1990 			 * Check if there is a request on this transport.
1991 			 *
1992 			 * Since blocking on a locked mutex is very expensive
1993 			 * check for a request without a lock first. If we miss
1994 			 * a request that is just being delivered but this will
1995 			 * cost at most one full walk through the list.
1996 			 */
1997 			if (next->xp_req_head) {
1998 				/*
1999 				 * Check again, now with a lock.
2000 				 */
2001 				mutex_enter(&next->xp_req_lock);
2002 				if (next->xp_req_head) {
2003 					rw_exit(&pool->p_lrwlock);
2004 
2005 					mutex_enter(&pool->p_req_lock);
2006 					pool->p_reqs--;
2007 					if (pool->p_reqs == 0)
2008 						pool->p_qoverflow = FALSE;
2009 					pool->p_walkers--;
2010 					mutex_exit(&pool->p_req_lock);
2011 
2012 					return (next);
2013 				}
2014 				mutex_exit(&next->xp_req_lock);
2015 			}
2016 
2017 			/*
2018 			 * Continue to `walk' through the pool's
2019 			 * transport list until there is less requests
2020 			 * than walkers. Check this condition without
2021 			 * a lock first to avoid contention on a mutex.
2022 			 */
2023 			if (pool->p_reqs < pool->p_walkers) {
2024 				/* Check again, now with the lock. */
2025 				mutex_enter(&pool->p_req_lock);
2026 				if (pool->p_reqs < pool->p_walkers)
2027 					break;	/* goto sleep */
2028 				mutex_exit(&pool->p_req_lock);
2029 			}
2030 
2031 			next = next->xp_next;
2032 		}
2033 
2034 	sleep:
2035 		/*
2036 		 * No work to do. Stop the `walk' and go asleep.
2037 		 * Decrement the `walking-threads' count for the pool.
2038 		 */
2039 		pool->p_walkers--;
2040 		rw_exit(&pool->p_lrwlock);
2041 
2042 		/*
2043 		 * Count us as asleep, mark this thread as safe
2044 		 * for suspend and wait for a request.
2045 		 */
2046 		pool->p_asleep++;
2047 		timeleft = cv_timedwait_sig(&pool->p_req_cv, &pool->p_req_lock,
2048 		    pool->p_timeout + lbolt);
2049 
2050 		/*
2051 		 * If the drowsy flag is on this means that
2052 		 * someone has signaled a wakeup. In such a case
2053 		 * the `asleep-threads' count has already updated
2054 		 * so just clear the flag.
2055 		 *
2056 		 * If the drowsy flag is off then we need to update
2057 		 * the `asleep-threads' count.
2058 		 */
2059 		if (pool->p_drowsy) {
2060 			pool->p_drowsy = FALSE;
2061 			/*
2062 			 * If the thread is here because it timedout,
2063 			 * instead of returning SVC_ETIMEDOUT, it is
2064 			 * time to do some more work.
2065 			 */
2066 			if (timeleft == -1)
2067 				timeleft = 1;
2068 		} else {
2069 			pool->p_asleep--;
2070 		}
2071 		mutex_exit(&pool->p_req_lock);
2072 
2073 		/*
2074 		 * If we received a signal while waiting for a
2075 		 * request, inform svc_run(), so that we can return
2076 		 * to user level and exit.
2077 		 */
2078 		if (timeleft == 0)
2079 			return (SVC_EINTR);
2080 
2081 		/*
2082 		 * If the current transport is gone then notify
2083 		 * svc_run() to unlink from it.
2084 		 */
2085 		if (xprt && xprt->xp_wq == NULL)
2086 			return (SVC_EXPRTGONE);
2087 
2088 		/*
2089 		 * If we have timed out waiting for a request inform
2090 		 * svc_run() that we probably don't need this thread.
2091 		 */
2092 		if (timeleft == -1)
2093 			return (SVC_ETIMEDOUT);
2094 	}
2095 }
2096 
2097 /*
2098  * Main loop of the kernel RPC server
2099  * - wait for input (find a transport with a pending request).
2100  * - dequeue the request
2101  * - call a registered server routine to process the requests
2102  *
2103  * There can many threads running concurrently in this loop
2104  * on the same or on different transports.
2105  */
2106 static int
2107 svc_run(SVCPOOL *pool)
2108 {
2109 	SVCMASTERXPRT *xprt = NULL;	/* master transport handle  */
2110 	SVCXPRT *clone_xprt;	/* clone for this thread    */
2111 	proc_t *p = ttoproc(curthread);
2112 
2113 	/* Allocate a clone transport handle for this thread */
2114 	clone_xprt = svc_clone_init();
2115 
2116 	/*
2117 	 * The loop iterates until the thread becomes
2118 	 * idle too long or the transport is gone.
2119 	 */
2120 	for (;;) {
2121 		SVCMASTERXPRT *next;
2122 		mblk_t *mp;
2123 
2124 		TRACE_0(TR_FAC_KRPC, TR_SVC_RUN, "svc_run");
2125 
2126 		/*
2127 		 * If the process is exiting/killed, return
2128 		 * immediately without processing any more
2129 		 * requests.
2130 		 */
2131 		if (p->p_flag & (SEXITING | SKILLED)) {
2132 			svc_thread_exit(pool, clone_xprt);
2133 			return (EINTR);
2134 		}
2135 
2136 		/* Find a transport with a pending request */
2137 		next = svc_poll(pool, xprt, clone_xprt);
2138 
2139 		/*
2140 		 * If svc_poll() finds a transport with a request
2141 		 * it latches xp_req_lock on it. Therefore we need
2142 		 * to dequeue the request and release the lock as
2143 		 * soon as possible.
2144 		 */
2145 		ASSERT(next != NULL &&
2146 		    (next == SVC_EXPRTGONE ||
2147 		    next == SVC_ETIMEDOUT ||
2148 		    next == SVC_EINTR ||
2149 		    MUTEX_HELD(&next->xp_req_lock)));
2150 
2151 		/* Ooops! Current transport is closing. Unlink now */
2152 		if (next == SVC_EXPRTGONE) {
2153 			svc_clone_unlink(clone_xprt);
2154 			xprt = NULL;
2155 			continue;
2156 		}
2157 
2158 		/* Ooops! Timeout while waiting for a request. Exit */
2159 		if (next == SVC_ETIMEDOUT) {
2160 			svc_thread_exit(pool, clone_xprt);
2161 			return (0);
2162 		}
2163 
2164 		/*
2165 		 * Interrupted by a signal while waiting for a
2166 		 * request. Return to userspace and exit.
2167 		 */
2168 		if (next == SVC_EINTR) {
2169 			svc_thread_exit(pool, clone_xprt);
2170 			return (EINTR);
2171 		}
2172 
2173 		/*
2174 		 * De-queue the request and release the request lock
2175 		 * on this transport (latched by svc_poll()).
2176 		 */
2177 		mp = next->xp_req_head;
2178 		next->xp_req_head = mp->b_next;
2179 		mp->b_next = (mblk_t *)0;
2180 
2181 		TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_DEQ,
2182 		    "rpc_que_req_deq:pool %p mp %p", pool, mp);
2183 		mutex_exit(&next->xp_req_lock);
2184 
2185 		/*
2186 		 * If this is a new request on a current transport then
2187 		 * the clone structure is already properly initialized.
2188 		 * Otherwise, if the request is on a different transport,
2189 		 * unlink from the current master and link to
2190 		 * the one we got a request on.
2191 		 */
2192 		if (next != xprt) {
2193 			if (xprt)
2194 				svc_clone_unlink(clone_xprt);
2195 			svc_clone_link(next, clone_xprt);
2196 			xprt = next;
2197 		}
2198 
2199 		/*
2200 		 * If there are more requests and req_cv hasn't
2201 		 * been signaled yet then wake up one more thread now.
2202 		 *
2203 		 * We avoid signaling req_cv until the most recently
2204 		 * signaled thread wakes up and gets CPU to clear
2205 		 * the `drowsy' flag.
2206 		 */
2207 		if (!(pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2208 		    pool->p_asleep == 0)) {
2209 			mutex_enter(&pool->p_req_lock);
2210 
2211 			if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2212 			    pool->p_asleep == 0)
2213 				mutex_exit(&pool->p_req_lock);
2214 			else {
2215 				pool->p_asleep--;
2216 				pool->p_drowsy = TRUE;
2217 
2218 				cv_signal(&pool->p_req_cv);
2219 				mutex_exit(&pool->p_req_lock);
2220 			}
2221 		}
2222 
2223 		/*
2224 		 * If there are no asleep/signaled threads, we are
2225 		 * still below pool->p_maxthreads limit, and no thread is
2226 		 * currently being created then signal the creator
2227 		 * for one more service thread.
2228 		 *
2229 		 * The asleep and drowsy checks are not protected
2230 		 * by a lock since it hurts performance and a wrong
2231 		 * decision is not essential.
2232 		 */
2233 		if (pool->p_asleep == 0 && !pool->p_drowsy &&
2234 		    pool->p_threads + pool->p_detached_threads <
2235 		    pool->p_maxthreads)
2236 			svc_creator_signal(pool);
2237 
2238 		/*
2239 		 * Process the request.
2240 		 */
2241 		svc_getreq(clone_xprt, mp);
2242 
2243 		/* If thread had a reservation it should have been canceled */
2244 		ASSERT(!clone_xprt->xp_reserved);
2245 
2246 		/*
2247 		 * If the clone is marked detached then exit.
2248 		 * The rpcmod slot has already been released
2249 		 * when we detached this thread.
2250 		 */
2251 		if (clone_xprt->xp_detached) {
2252 			svc_thread_exitdetached(pool, clone_xprt);
2253 			return (0);
2254 		}
2255 
2256 		/*
2257 		 * Release our reference on the rpcmod
2258 		 * slot attached to xp_wq->q_ptr.
2259 		 */
2260 		(*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL);
2261 	}
2262 	/* NOTREACHED */
2263 }
2264 
2265 /*
2266  * Flush any pending requests for the queue and
2267  * and free the associated mblks.
2268  */
2269 void
2270 svc_queueclean(queue_t *q)
2271 {
2272 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2273 	mblk_t *mp;
2274 	SVCPOOL *pool;
2275 
2276 	/*
2277 	 * clean up the requests
2278 	 */
2279 	mutex_enter(&xprt->xp_req_lock);
2280 	pool = xprt->xp_pool;
2281 	while ((mp = xprt->xp_req_head) != NULL) {
2282 		/* remove the request from the list and decrement p_reqs */
2283 		xprt->xp_req_head = mp->b_next;
2284 		mutex_enter(&pool->p_req_lock);
2285 		mp->b_next = (mblk_t *)0;
2286 		pool->p_reqs--;
2287 		mutex_exit(&pool->p_req_lock);
2288 		(*RELE_PROC(xprt)) (xprt->xp_wq, mp);
2289 	}
2290 	mutex_exit(&xprt->xp_req_lock);
2291 }
2292 
2293 /*
2294  * This routine is called by rpcmod to inform kernel RPC that a
2295  * queue is closing. It is called after all the requests have been
2296  * picked up (that is after all the slots on the queue have
2297  * been released by kernel RPC). It is also guaranteed that no more
2298  * request will be delivered on this transport.
2299  *
2300  * - clear xp_wq to mark the master server transport handle as closing
2301  * - if there are no more threads on this transport close/destroy it
2302  * - otherwise, broadcast threads sleeping in svc_poll(); the last
2303  *   thread will close/destroy the transport.
2304  */
2305 void
2306 svc_queueclose(queue_t *q)
2307 {
2308 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2309 
2310 	if (xprt == NULL) {
2311 		/*
2312 		 * If there is no master xprt associated with this stream,
2313 		 * then there is nothing to do.  This happens regularly
2314 		 * with connection-oriented listening streams created by
2315 		 * nfsd.
2316 		 */
2317 		return;
2318 	}
2319 
2320 	mutex_enter(&xprt->xp_thread_lock);
2321 
2322 	ASSERT(xprt->xp_req_head == NULL);
2323 	ASSERT(xprt->xp_wq != NULL);
2324 
2325 	xprt->xp_wq = NULL;
2326 
2327 	if (xprt->xp_threads == 0) {
2328 		SVCPOOL *pool = xprt->xp_pool;
2329 
2330 		/*
2331 		 * svc_xprt_cleanup() destroys the transport
2332 		 * or releases the transport thread lock
2333 		 */
2334 		svc_xprt_cleanup(xprt, FALSE);
2335 
2336 		mutex_enter(&pool->p_thread_lock);
2337 
2338 		/*
2339 		 * If the pool is in closing state and this was
2340 		 * the last transport in the pool then signal the creator
2341 		 * thread to clean up and exit.
2342 		 */
2343 		if (pool->p_closing && svc_pool_tryexit(pool)) {
2344 			return;
2345 		}
2346 		mutex_exit(&pool->p_thread_lock);
2347 	} else {
2348 		/*
2349 		 * Wakeup threads sleeping in svc_poll() so that they
2350 		 * unlink from the transport
2351 		 */
2352 		mutex_enter(&xprt->xp_pool->p_req_lock);
2353 		cv_broadcast(&xprt->xp_pool->p_req_cv);
2354 		mutex_exit(&xprt->xp_pool->p_req_lock);
2355 
2356 		/*
2357 		 *  NOTICE: No references to the master transport structure
2358 		 *	    beyond this point!
2359 		 */
2360 		mutex_exit(&xprt->xp_thread_lock);
2361 	}
2362 }
2363 
2364 /*
2365  * Interrupt `request delivery' routine called from rpcmod
2366  * - put a request at the tail of the transport request queue
2367  * - insert a hint for svc_poll() into the xprt-ready queue
2368  * - increment the `pending-requests' count for the pool
2369  * - wake up a thread sleeping in svc_poll() if necessary
2370  * - if all the threads are running ask the creator for a new one.
2371  */
2372 void
2373 svc_queuereq(queue_t *q, mblk_t *mp)
2374 {
2375 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2376 	SVCPOOL *pool = xprt->xp_pool;
2377 
2378 	TRACE_0(TR_FAC_KRPC, TR_SVC_QUEUEREQ_START, "svc_queuereq_start");
2379 
2380 	ASSERT(!is_system_labeled() || msg_getcred(mp, NULL) != NULL ||
2381 	    mp->b_datap->db_type != M_DATA);
2382 
2383 	/*
2384 	 * Step 1.
2385 	 * Grab the transport's request lock and the
2386 	 * pool's request lock so that when we put
2387 	 * the request at the tail of the transport's
2388 	 * request queue, possibly put the request on
2389 	 * the xprt ready queue and increment the
2390 	 * pending request count it looks atomic.
2391 	 */
2392 	mutex_enter(&xprt->xp_req_lock);
2393 	mutex_enter(&pool->p_req_lock);
2394 	if (xprt->xp_req_head == NULL)
2395 		xprt->xp_req_head = mp;
2396 	else
2397 		xprt->xp_req_tail->b_next = mp;
2398 	xprt->xp_req_tail = mp;
2399 
2400 	/*
2401 	 * Step 2.
2402 	 * Insert a hint into the xprt-ready queue, increment
2403 	 * `pending-requests' count for the pool, and wake up
2404 	 * a thread sleeping in svc_poll() if necessary.
2405 	 */
2406 
2407 	/* Insert pointer to this transport into the xprt-ready queue */
2408 	svc_xprt_qput(pool, xprt);
2409 
2410 	/* Increment the `pending-requests' count for the pool */
2411 	pool->p_reqs++;
2412 
2413 	TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_ENQ,
2414 	    "rpc_que_req_enq:pool %p mp %p", pool, mp);
2415 
2416 	/*
2417 	 * If there are more requests and req_cv hasn't
2418 	 * been signaled yet then wake up one more thread now.
2419 	 *
2420 	 * We avoid signaling req_cv until the most recently
2421 	 * signaled thread wakes up and gets CPU to clear
2422 	 * the `drowsy' flag.
2423 	 */
2424 	if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2425 	    pool->p_asleep == 0) {
2426 		mutex_exit(&pool->p_req_lock);
2427 	} else {
2428 		pool->p_drowsy = TRUE;
2429 		pool->p_asleep--;
2430 
2431 		/*
2432 		 * Signal wakeup and drop the request lock.
2433 		 */
2434 		cv_signal(&pool->p_req_cv);
2435 		mutex_exit(&pool->p_req_lock);
2436 	}
2437 	mutex_exit(&xprt->xp_req_lock);
2438 
2439 	/*
2440 	 * Step 3.
2441 	 * If there are no asleep/signaled threads, we are
2442 	 * still below pool->p_maxthreads limit, and no thread is
2443 	 * currently being created then signal the creator
2444 	 * for one more service thread.
2445 	 *
2446 	 * The asleep and drowsy checks are not not protected
2447 	 * by a lock since it hurts performance and a wrong
2448 	 * decision is not essential.
2449 	 */
2450 	if (pool->p_asleep == 0 && !pool->p_drowsy &&
2451 	    pool->p_threads + pool->p_detached_threads < pool->p_maxthreads)
2452 		svc_creator_signal(pool);
2453 
2454 	TRACE_1(TR_FAC_KRPC, TR_SVC_QUEUEREQ_END,
2455 	    "svc_queuereq_end:(%S)", "end");
2456 }
2457 
2458 /*
2459  * Reserve a service thread so that it can be detached later.
2460  * This reservation is required to make sure that when it tries to
2461  * detach itself the total number of detached threads does not exceed
2462  * pool->p_maxthreads - pool->p_redline (i.e. that we can have
2463  * up to pool->p_redline non-detached threads).
2464  *
2465  * If the thread does not detach itself later, it should cancel the
2466  * reservation before returning to svc_run().
2467  *
2468  * - check if there is room for more reserved/detached threads
2469  * - if so, then increment the `reserved threads' count for the pool
2470  * - mark the thread as reserved (setting the flag in the clone transport
2471  *   handle for this thread
2472  * - returns 1 if the reservation succeeded, 0 if it failed.
2473  */
2474 int
2475 svc_reserve_thread(SVCXPRT *clone_xprt)
2476 {
2477 	SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2478 
2479 	/* Recursive reservations are not allowed */
2480 	ASSERT(!clone_xprt->xp_reserved);
2481 	ASSERT(!clone_xprt->xp_detached);
2482 
2483 	/* Check pool counts if there is room for reservation */
2484 	mutex_enter(&pool->p_thread_lock);
2485 	if (pool->p_reserved_threads + pool->p_detached_threads >=
2486 	    pool->p_maxthreads - pool->p_redline) {
2487 		mutex_exit(&pool->p_thread_lock);
2488 		return (0);
2489 	}
2490 	pool->p_reserved_threads++;
2491 	mutex_exit(&pool->p_thread_lock);
2492 
2493 	/* Mark the thread (clone handle) as reserved */
2494 	clone_xprt->xp_reserved = TRUE;
2495 
2496 	return (1);
2497 }
2498 
2499 /*
2500  * Cancel a reservation for a thread.
2501  * - decrement the `reserved threads' count for the pool
2502  * - clear the flag in the clone transport handle for this thread.
2503  */
2504 void
2505 svc_unreserve_thread(SVCXPRT *clone_xprt)
2506 {
2507 	SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2508 
2509 	/* Thread must have a reservation */
2510 	ASSERT(clone_xprt->xp_reserved);
2511 	ASSERT(!clone_xprt->xp_detached);
2512 
2513 	/* Decrement global count */
2514 	mutex_enter(&pool->p_thread_lock);
2515 	pool->p_reserved_threads--;
2516 	mutex_exit(&pool->p_thread_lock);
2517 
2518 	/* Clear reservation flag */
2519 	clone_xprt->xp_reserved = FALSE;
2520 }
2521 
2522 /*
2523  * Detach a thread from its transport, so that it can block for an
2524  * extended time.  Because the transport can be closed after the thread is
2525  * detached, the thread should have already sent off a reply if it was
2526  * going to send one.
2527  *
2528  * - decrement `non-detached threads' count and increment `detached threads'
2529  *   counts for the transport
2530  * - decrement the  `non-detached threads' and `reserved threads'
2531  *   counts and increment the `detached threads' count for the pool
2532  * - release the rpcmod slot
2533  * - mark the clone (thread) as detached.
2534  *
2535  * No need to return a pointer to the thread's CPR information, since
2536  * the thread has a userland identity.
2537  *
2538  * NOTICE: a thread must not detach itself without making a prior reservation
2539  *	   through svc_thread_reserve().
2540  */
2541 callb_cpr_t *
2542 svc_detach_thread(SVCXPRT *clone_xprt)
2543 {
2544 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
2545 	SVCPOOL *pool = xprt->xp_pool;
2546 
2547 	/* Thread must have a reservation */
2548 	ASSERT(clone_xprt->xp_reserved);
2549 	ASSERT(!clone_xprt->xp_detached);
2550 
2551 	/* Bookkeeping for this transport */
2552 	mutex_enter(&xprt->xp_thread_lock);
2553 	xprt->xp_threads--;
2554 	xprt->xp_detached_threads++;
2555 	mutex_exit(&xprt->xp_thread_lock);
2556 
2557 	/* Bookkeeping for the pool */
2558 	mutex_enter(&pool->p_thread_lock);
2559 	pool->p_threads--;
2560 	pool->p_reserved_threads--;
2561 	pool->p_detached_threads++;
2562 	mutex_exit(&pool->p_thread_lock);
2563 
2564 	/* Release an rpcmod slot for this request */
2565 	(*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL);
2566 
2567 	/* Mark the clone (thread) as detached */
2568 	clone_xprt->xp_reserved = FALSE;
2569 	clone_xprt->xp_detached = TRUE;
2570 
2571 	return (NULL);
2572 }
2573 
2574 /*
2575  * This routine is responsible for extracting RDMA plugin master XPRT,
2576  * unregister from the SVCPOOL and initiate plugin specific cleanup.
2577  * It is passed a list/group of rdma transports as records which are
2578  * active in a given registered or unregistered kRPC thread pool. Its shuts
2579  * all active rdma transports in that pool. If the thread active on the trasport
2580  * happens to be last thread for that pool, it will signal the creater thread
2581  * to cleanup the pool and destroy the xprt in svc_queueclose()
2582  */
2583 void
2584 rdma_stop(rdma_xprt_group_t *rdma_xprts)
2585 {
2586 	SVCMASTERXPRT *xprt;
2587 	rdma_xprt_record_t *curr_rec;
2588 	queue_t *q;
2589 	mblk_t *mp;
2590 	int i, rtg_count;
2591 	SVCPOOL *pool;
2592 
2593 	if (rdma_xprts->rtg_count == 0)
2594 		return;
2595 
2596 	rtg_count = rdma_xprts->rtg_count;
2597 
2598 	for (i = 0; i < rtg_count; i++) {
2599 		curr_rec = rdma_xprts->rtg_listhead;
2600 		rdma_xprts->rtg_listhead = curr_rec->rtr_next;
2601 		rdma_xprts->rtg_count--;
2602 		curr_rec->rtr_next = NULL;
2603 		xprt = curr_rec->rtr_xprt_ptr;
2604 		q = xprt->xp_wq;
2605 		svc_rdma_kstop(xprt);
2606 
2607 		mutex_enter(&xprt->xp_req_lock);
2608 		pool = xprt->xp_pool;
2609 		while ((mp = xprt->xp_req_head) != NULL) {
2610 			/*
2611 			 * remove the request from the list and
2612 			 * decrement p_reqs
2613 			 */
2614 			xprt->xp_req_head = mp->b_next;
2615 			mutex_enter(&pool->p_req_lock);
2616 			mp->b_next = (mblk_t *)0;
2617 			pool->p_reqs--;
2618 			mutex_exit(&pool->p_req_lock);
2619 			if (mp) {
2620 				rdma_recv_data_t *rdp = (rdma_recv_data_t *)
2621 				    mp->b_rptr;
2622 				RDMA_BUF_FREE(rdp->conn, &rdp->rpcmsg);
2623 				RDMA_REL_CONN(rdp->conn);
2624 				freemsg(mp);
2625 			}
2626 		}
2627 		mutex_exit(&xprt->xp_req_lock);
2628 		svc_queueclose(q);
2629 #ifdef	DEBUG
2630 		if (rdma_check)
2631 			cmn_err(CE_NOTE, "rdma_stop: Exited svc_queueclose\n");
2632 #endif
2633 		/*
2634 		 * Free the rdma transport record for the expunged rdma
2635 		 * based master transport handle.
2636 		 */
2637 		kmem_free(curr_rec, sizeof (rdma_xprt_record_t));
2638 		if (!rdma_xprts->rtg_listhead)
2639 			break;
2640 	}
2641 }
2642 
2643 
2644 /*
2645  * rpc_msg_dup/rpc_msg_free
2646  * Currently only used by svc_rpcsec_gss.c but put in this file as it
2647  * may be useful to others in the future.
2648  * But future consumers should be careful cuz so far
2649  *   - only tested/used for call msgs (not reply)
2650  *   - only tested/used with call verf oa_length==0
2651  */
2652 struct rpc_msg *
2653 rpc_msg_dup(struct rpc_msg *src)
2654 {
2655 	struct rpc_msg *dst;
2656 	struct opaque_auth oa_src, oa_dst;
2657 
2658 	dst = kmem_alloc(sizeof (*dst), KM_SLEEP);
2659 
2660 	dst->rm_xid = src->rm_xid;
2661 	dst->rm_direction = src->rm_direction;
2662 
2663 	dst->rm_call.cb_rpcvers = src->rm_call.cb_rpcvers;
2664 	dst->rm_call.cb_prog = src->rm_call.cb_prog;
2665 	dst->rm_call.cb_vers = src->rm_call.cb_vers;
2666 	dst->rm_call.cb_proc = src->rm_call.cb_proc;
2667 
2668 	/* dup opaque auth call body cred */
2669 	oa_src = src->rm_call.cb_cred;
2670 
2671 	oa_dst.oa_flavor = oa_src.oa_flavor;
2672 	oa_dst.oa_base = kmem_alloc(oa_src.oa_length, KM_SLEEP);
2673 
2674 	bcopy(oa_src.oa_base, oa_dst.oa_base, oa_src.oa_length);
2675 	oa_dst.oa_length = oa_src.oa_length;
2676 
2677 	dst->rm_call.cb_cred = oa_dst;
2678 
2679 	/* dup or just alloc opaque auth call body verifier */
2680 	if (src->rm_call.cb_verf.oa_length > 0) {
2681 		oa_src = src->rm_call.cb_verf;
2682 
2683 		oa_dst.oa_flavor = oa_src.oa_flavor;
2684 		oa_dst.oa_base = kmem_alloc(oa_src.oa_length, KM_SLEEP);
2685 
2686 		bcopy(oa_src.oa_base, oa_dst.oa_base, oa_src.oa_length);
2687 		oa_dst.oa_length = oa_src.oa_length;
2688 
2689 		dst->rm_call.cb_verf = oa_dst;
2690 	} else {
2691 		oa_dst.oa_flavor = -1;  /* will be set later */
2692 		oa_dst.oa_base = kmem_alloc(MAX_AUTH_BYTES, KM_SLEEP);
2693 
2694 		oa_dst.oa_length = 0;   /* will be set later */
2695 
2696 		dst->rm_call.cb_verf = oa_dst;
2697 	}
2698 	return (dst);
2699 
2700 error:
2701 	kmem_free(dst->rm_call.cb_cred.oa_base,	dst->rm_call.cb_cred.oa_length);
2702 	kmem_free(dst, sizeof (*dst));
2703 	return (NULL);
2704 }
2705 
2706 void
2707 rpc_msg_free(struct rpc_msg **msg, int cb_verf_oa_length)
2708 {
2709 	struct rpc_msg *m = *msg;
2710 
2711 	kmem_free(m->rm_call.cb_cred.oa_base, m->rm_call.cb_cred.oa_length);
2712 	m->rm_call.cb_cred.oa_base = NULL;
2713 	m->rm_call.cb_cred.oa_length = 0;
2714 
2715 	kmem_free(m->rm_call.cb_verf.oa_base, cb_verf_oa_length);
2716 	m->rm_call.cb_verf.oa_base = NULL;
2717 	m->rm_call.cb_verf.oa_length = 0;
2718 
2719 	kmem_free(m, sizeof (*m));
2720 	m = NULL;
2721 }
2722