1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved. 29 */ 30 31 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 32 /* All Rights Reserved */ 33 34 /* 35 * Portions of this source code were derived from Berkeley 4.3 BSD 36 * under license from the Regents of the University of California. 37 */ 38 39 #pragma ident "%Z%%M% %I% %E% SMI" 40 41 /* 42 * Server-side remote procedure call interface. 43 * 44 * Master transport handle (SVCMASTERXPRT). 45 * The master transport handle structure is shared among service 46 * threads processing events on the transport. Some fields in the 47 * master structure are protected by locks 48 * - xp_req_lock protects the request queue: 49 * xp_req_head, xp_req_tail 50 * - xp_thread_lock protects the thread (clone) counts 51 * xp_threads, xp_detached_threads, xp_wq 52 * Each master transport is registered to exactly one thread pool. 53 * 54 * Clone transport handle (SVCXPRT) 55 * The clone transport handle structure is a per-service-thread handle 56 * to the transport. The structure carries all the fields/buffers used 57 * for request processing. A service thread or, in other words, a clone 58 * structure, can be linked to an arbitrary master structure to process 59 * requests on this transport. The master handle keeps track of reference 60 * counts of threads (clones) linked to it. A service thread can switch 61 * to another transport by unlinking its clone handle from the current 62 * transport and linking to a new one. Switching is relatively inexpensive 63 * but it involves locking (master's xprt->xp_thread_lock). 64 * 65 * Pools. 66 * A pool represents a kernel RPC service (NFS, Lock Manager, etc.). 67 * Transports related to the service are registered to the service pool. 68 * Service threads can switch between different transports in the pool. 69 * Thus, each service has its own pool of service threads. The maximum 70 * number of threads in a pool is pool->p_maxthreads. This limit allows 71 * to restrict resource usage by the service. Some fields are protected 72 * by locks: 73 * - p_req_lock protects several counts and flags: 74 * p_reqs, p_walkers, p_asleep, p_drowsy, p_req_cv 75 * - p_thread_lock governs other thread counts: 76 * p_threads, p_detached_threads, p_reserved_threads, p_closing 77 * 78 * In addition, each pool contains a doubly-linked list of transports, 79 * an `xprt-ready' queue and a creator thread (see below). Threads in 80 * the pool share some other parameters such as stack size and 81 * polling timeout. 82 * 83 * Pools are initialized through the svc_pool_create() function called from 84 * the nfssys() system call. However, thread creation must be done by 85 * the userland agent. This is done by using SVCPOOL_WAIT and 86 * SVCPOOL_RUN arguments to nfssys(), which call svc_wait() and 87 * svc_do_run(), respectively. Once the pool has been initialized, 88 * the userland process must set up a 'creator' thread. This thread 89 * should park itself in the kernel by calling svc_wait(). If 90 * svc_wait() returns successfully, it should fork off a new worker 91 * thread, which then calls svc_do_run() in order to get work. When 92 * that thread is complete, svc_do_run() will return, and the user 93 * program should call thr_exit(). 94 * 95 * When we try to register a new pool and there is an old pool with 96 * the same id in the doubly linked pool list (this happens when we kill 97 * and restart nfsd or lockd), then we unlink the old pool from the list 98 * and mark its state as `closing'. After that the transports can still 99 * process requests but new transports won't be registered. When all the 100 * transports and service threads associated with the pool are gone the 101 * creator thread (see below) will clean up the pool structure and exit. 102 * 103 * svc_queuereq() and svc_run(). 104 * The kernel RPC server is interrupt driven. The svc_queuereq() interrupt 105 * routine is called to deliver an RPC request. The service threads 106 * loop in svc_run(). The interrupt function queues a request on the 107 * transport's queue and it makes sure that the request is serviced. 108 * It may either wake up one of sleeping threads, or ask for a new thread 109 * to be created, or, if the previous request is just being picked up, do 110 * nothing. In the last case the service thread that is picking up the 111 * previous request will wake up or create the next thread. After a service 112 * thread processes a request and sends a reply it returns to svc_run() 113 * and svc_run() calls svc_poll() to find new input. 114 * 115 * There is no longer an "inconsistent" but "safe" optimization in the 116 * svc_queuereq() code. This "inconsistent" state was leading to 117 * inconsistencies between the actual number of requests and the value 118 * of p_reqs (the total number of requests). Because of this, hangs were 119 * occurring in svc_poll() where p_reqs was greater than one and no 120 * requests were found on the request queues. 121 * 122 * svc_poll(). 123 * In order to avoid unnecessary locking, which causes performance 124 * problems, we always look for a pending request on the current transport. 125 * If there is none we take a hint from the pool's `xprt-ready' queue. 126 * If the queue had an overflow we switch to the `drain' mode checking 127 * each transport in the pool's transport list. Once we find a 128 * master transport handle with a pending request we latch the request 129 * lock on this transport and return to svc_run(). If the request 130 * belongs to a transport different than the one the service thread is 131 * linked to we need to unlink and link again. 132 * 133 * A service thread goes asleep when there are no pending 134 * requests on the transports registered on the pool's transports. 135 * All the pool's threads sleep on the same condition variable. 136 * If a thread has been sleeping for too long period of time 137 * (by default 5 seconds) it wakes up and exits. Also when a transport 138 * is closing sleeping threads wake up to unlink from this transport. 139 * 140 * The `xprt-ready' queue. 141 * If a service thread finds no request on a transport it is currently linked 142 * to it will find another transport with a pending request. To make 143 * this search more efficient each pool has an `xprt-ready' queue. 144 * The queue is a FIFO. When the interrupt routine queues a request it also 145 * inserts a pointer to the transport into the `xprt-ready' queue. A 146 * thread looking for a transport with a pending request can pop up a 147 * transport and check for a request. The request can be already gone 148 * since it could be taken by a thread linked to that transport. In such a 149 * case we try the next hint. The `xprt-ready' queue has fixed size (by 150 * default 256 nodes). If it overflows svc_poll() has to switch to the 151 * less efficient but safe `drain' mode and walk through the pool's 152 * transport list. 153 * 154 * Both the svc_poll() loop and the `xprt-ready' queue are optimized 155 * for the peak load case that is for the situation when the queue is not 156 * empty, there are all the time few pending requests, and a service 157 * thread which has just processed a request does not go asleep but picks 158 * up immediately the next request. 159 * 160 * Thread creator. 161 * Each pool has a thread creator associated with it. The creator thread 162 * sleeps on a condition variable and waits for a signal to create a 163 * service thread. The actual thread creation is done in userland by 164 * the method described in "Pools" above. 165 * 166 * Signaling threads should turn on the `creator signaled' flag, and 167 * can avoid sending signals when the flag is on. The flag is cleared 168 * when the thread is created. 169 * 170 * When the pool is in closing state (ie it has been already unregistered 171 * from the pool list) the last thread on the last transport in the pool 172 * should turn the p_creator_exit flag on. The creator thread will 173 * clean up the pool structure and exit. 174 * 175 * Thread reservation; Detaching service threads. 176 * A service thread can detach itself to block for an extended amount 177 * of time. However, to keep the service active we need to guarantee 178 * at least pool->p_redline non-detached threads that can process incoming 179 * requests. This, the maximum number of detached and reserved threads is 180 * p->p_maxthreads - p->p_redline. A service thread should first acquire 181 * a reservation, and if the reservation was granted it can detach itself. 182 * If a reservation was granted but the thread does not detach itself 183 * it should cancel the reservation before it returns to svc_run(). 184 */ 185 186 #include <sys/param.h> 187 #include <sys/types.h> 188 #include <rpc/types.h> 189 #include <sys/socket.h> 190 #include <sys/time.h> 191 #include <sys/tiuser.h> 192 #include <sys/t_kuser.h> 193 #include <netinet/in.h> 194 #include <rpc/xdr.h> 195 #include <rpc/auth.h> 196 #include <rpc/clnt.h> 197 #include <rpc/rpc_msg.h> 198 #include <rpc/svc.h> 199 #include <sys/proc.h> 200 #include <sys/user.h> 201 #include <sys/stream.h> 202 #include <sys/strsubr.h> 203 #include <sys/tihdr.h> 204 #include <sys/debug.h> 205 #include <sys/cmn_err.h> 206 #include <sys/file.h> 207 #include <sys/systm.h> 208 #include <sys/callb.h> 209 #include <sys/vtrace.h> 210 #include <sys/zone.h> 211 #include <nfs/nfs.h> 212 #include <sys/tsol/label_macro.h> 213 214 #define RQCRED_SIZE 400 /* this size is excessive */ 215 216 /* 217 * Defines for svc_poll() 218 */ 219 #define SVC_EXPRTGONE ((SVCMASTERXPRT *)1) /* Transport is closing */ 220 #define SVC_ETIMEDOUT ((SVCMASTERXPRT *)2) /* Timeout */ 221 #define SVC_EINTR ((SVCMASTERXPRT *)3) /* Interrupted by signal */ 222 223 /* 224 * Default stack size for service threads. 225 */ 226 #define DEFAULT_SVC_RUN_STKSIZE (0) /* default kernel stack */ 227 228 int svc_default_stksize = DEFAULT_SVC_RUN_STKSIZE; 229 230 /* 231 * Default polling timeout for service threads. 232 * Multiplied by hz when used. 233 */ 234 #define DEFAULT_SVC_POLL_TIMEOUT (5) /* seconds */ 235 236 clock_t svc_default_timeout = DEFAULT_SVC_POLL_TIMEOUT; 237 238 /* 239 * Size of the `xprt-ready' queue. 240 */ 241 #define DEFAULT_SVC_QSIZE (256) /* qnodes */ 242 243 size_t svc_default_qsize = DEFAULT_SVC_QSIZE; 244 245 /* 246 * Default limit for the number of service threads. 247 */ 248 #define DEFAULT_SVC_MAXTHREADS (INT16_MAX) 249 250 int svc_default_maxthreads = DEFAULT_SVC_MAXTHREADS; 251 252 /* 253 * Maximum number of requests from the same transport (in `drain' mode). 254 */ 255 #define DEFAULT_SVC_MAX_SAME_XPRT (8) 256 257 int svc_default_max_same_xprt = DEFAULT_SVC_MAX_SAME_XPRT; 258 259 260 /* 261 * Default `Redline' of non-detached threads. 262 * Total number of detached and reserved threads in an RPC server 263 * thread pool is limited to pool->p_maxthreads - svc_redline. 264 */ 265 #define DEFAULT_SVC_REDLINE (1) 266 267 int svc_default_redline = DEFAULT_SVC_REDLINE; 268 269 /* 270 * A node for the `xprt-ready' queue. 271 * See below. 272 */ 273 struct __svcxprt_qnode { 274 __SVCXPRT_QNODE *q_next; 275 SVCMASTERXPRT *q_xprt; 276 }; 277 278 /* 279 * Global SVC variables (private). 280 */ 281 struct svc_globals { 282 SVCPOOL *svc_pools; 283 kmutex_t svc_plock; 284 }; 285 286 /* 287 * Debug variable to check for rdma based 288 * transport startup and cleanup. Contorlled 289 * through /etc/system. Off by default. 290 */ 291 int rdma_check = 0; 292 293 /* 294 * Authentication parameters list. 295 */ 296 static caddr_t rqcred_head; 297 static kmutex_t rqcred_lock; 298 299 /* 300 * Pointers to transport specific `rele' routines in rpcmod (set from rpcmod). 301 */ 302 void (*rpc_rele)(queue_t *, mblk_t *) = NULL; 303 void (*mir_rele)(queue_t *, mblk_t *) = NULL; 304 305 /* ARGSUSED */ 306 void 307 rpc_rdma_rele(queue_t *q, mblk_t *mp) 308 { 309 } 310 void (*rdma_rele)(queue_t *, mblk_t *) = rpc_rdma_rele; 311 312 313 /* 314 * This macro picks which `rele' routine to use, based on the transport type. 315 */ 316 #define RELE_PROC(xprt) \ 317 ((xprt)->xp_type == T_RDMA ? rdma_rele : \ 318 (((xprt)->xp_type == T_CLTS) ? rpc_rele : mir_rele)) 319 320 /* 321 * If true, then keep quiet about version mismatch. 322 * This macro is for broadcast RPC only. We have no broadcast RPC in 323 * kernel now but one may define a flag in the transport structure 324 * and redefine this macro. 325 */ 326 #define version_keepquiet(xprt) (FALSE) 327 328 /* 329 * ZSD key used to retrieve zone-specific svc globals 330 */ 331 static zone_key_t svc_zone_key; 332 333 static void svc_callout_free(SVCMASTERXPRT *); 334 static void svc_xprt_qinit(SVCPOOL *, size_t); 335 static void svc_xprt_qdestroy(SVCPOOL *); 336 static void svc_thread_creator(SVCPOOL *); 337 static void svc_creator_signal(SVCPOOL *); 338 static void svc_creator_signalexit(SVCPOOL *); 339 static void svc_pool_unregister(struct svc_globals *, SVCPOOL *); 340 static int svc_run(SVCPOOL *); 341 342 /* ARGSUSED */ 343 static void * 344 svc_zoneinit(zoneid_t zoneid) 345 { 346 struct svc_globals *svc; 347 348 svc = kmem_alloc(sizeof (*svc), KM_SLEEP); 349 mutex_init(&svc->svc_plock, NULL, MUTEX_DEFAULT, NULL); 350 svc->svc_pools = NULL; 351 return (svc); 352 } 353 354 /* ARGSUSED */ 355 static void 356 svc_zoneshutdown(zoneid_t zoneid, void *arg) 357 { 358 struct svc_globals *svc = arg; 359 SVCPOOL *pool; 360 361 mutex_enter(&svc->svc_plock); 362 while ((pool = svc->svc_pools) != NULL) { 363 svc_pool_unregister(svc, pool); 364 } 365 mutex_exit(&svc->svc_plock); 366 } 367 368 /* ARGSUSED */ 369 static void 370 svc_zonefini(zoneid_t zoneid, void *arg) 371 { 372 struct svc_globals *svc = arg; 373 374 ASSERT(svc->svc_pools == NULL); 375 mutex_destroy(&svc->svc_plock); 376 kmem_free(svc, sizeof (*svc)); 377 } 378 379 /* 380 * Global SVC init routine. 381 * Initialize global generic and transport type specific structures 382 * used by the kernel RPC server side. This routine is called only 383 * once when the module is being loaded. 384 */ 385 void 386 svc_init() 387 { 388 zone_key_create(&svc_zone_key, svc_zoneinit, svc_zoneshutdown, 389 svc_zonefini); 390 svc_cots_init(); 391 svc_clts_init(); 392 } 393 394 /* 395 * Destroy the SVCPOOL structure. 396 */ 397 static void 398 svc_pool_cleanup(SVCPOOL *pool) 399 { 400 ASSERT(pool->p_threads + pool->p_detached_threads == 0); 401 ASSERT(pool->p_lcount == 0); 402 ASSERT(pool->p_closing); 403 404 /* 405 * Call the user supplied shutdown function. This is done 406 * here so the user of the pool will be able to cleanup 407 * service related resources. 408 */ 409 if (pool->p_shutdown != NULL) 410 (pool->p_shutdown)(); 411 412 /* Destroy `xprt-ready' queue */ 413 svc_xprt_qdestroy(pool); 414 415 /* Destroy transport list */ 416 rw_destroy(&pool->p_lrwlock); 417 418 /* Destroy locks and condition variables */ 419 mutex_destroy(&pool->p_thread_lock); 420 mutex_destroy(&pool->p_req_lock); 421 cv_destroy(&pool->p_req_cv); 422 423 /* Destroy creator's locks and condition variables */ 424 mutex_destroy(&pool->p_creator_lock); 425 cv_destroy(&pool->p_creator_cv); 426 mutex_destroy(&pool->p_user_lock); 427 cv_destroy(&pool->p_user_cv); 428 429 /* Free pool structure */ 430 kmem_free(pool, sizeof (SVCPOOL)); 431 } 432 433 /* 434 * If all the transports and service threads are already gone 435 * signal the creator thread to clean up and exit. 436 */ 437 static bool_t 438 svc_pool_tryexit(SVCPOOL *pool) 439 { 440 ASSERT(MUTEX_HELD(&pool->p_thread_lock)); 441 ASSERT(pool->p_closing); 442 443 if (pool->p_threads + pool->p_detached_threads == 0) { 444 rw_enter(&pool->p_lrwlock, RW_READER); 445 if (pool->p_lcount == 0) { 446 /* 447 * Release the locks before sending a signal. 448 */ 449 rw_exit(&pool->p_lrwlock); 450 mutex_exit(&pool->p_thread_lock); 451 452 /* 453 * Notify the creator thread to clean up and exit 454 * 455 * NOTICE: No references to the pool beyond this point! 456 * The pool is being destroyed. 457 */ 458 ASSERT(!MUTEX_HELD(&pool->p_thread_lock)); 459 svc_creator_signalexit(pool); 460 461 return (TRUE); 462 } 463 rw_exit(&pool->p_lrwlock); 464 } 465 466 ASSERT(MUTEX_HELD(&pool->p_thread_lock)); 467 return (FALSE); 468 } 469 470 /* 471 * Find a pool with a given id. 472 */ 473 static SVCPOOL * 474 svc_pool_find(struct svc_globals *svc, int id) 475 { 476 SVCPOOL *pool; 477 478 ASSERT(MUTEX_HELD(&svc->svc_plock)); 479 480 /* 481 * Search the list for a pool with a matching id 482 * and register the transport handle with that pool. 483 */ 484 for (pool = svc->svc_pools; pool; pool = pool->p_next) 485 if (pool->p_id == id) 486 return (pool); 487 488 return (NULL); 489 } 490 491 /* 492 * PSARC 2003/523 Contract Private Interface 493 * svc_do_run 494 * Changes must be reviewed by Solaris File Sharing 495 * Changes must be communicated to contract-2003-523@sun.com 496 */ 497 int 498 svc_do_run(int id) 499 { 500 SVCPOOL *pool; 501 int err = 0; 502 struct svc_globals *svc; 503 504 svc = zone_getspecific(svc_zone_key, curproc->p_zone); 505 mutex_enter(&svc->svc_plock); 506 507 pool = svc_pool_find(svc, id); 508 509 mutex_exit(&svc->svc_plock); 510 511 if (pool == NULL) 512 return (ENOENT); 513 514 /* 515 * Increment counter of pool threads now 516 * that a thread has been created. 517 */ 518 mutex_enter(&pool->p_thread_lock); 519 pool->p_threads++; 520 mutex_exit(&pool->p_thread_lock); 521 522 /* Give work to the new thread. */ 523 err = svc_run(pool); 524 525 return (err); 526 } 527 528 /* 529 * Unregister a pool from the pool list. 530 * Set the closing state. If all the transports and service threads 531 * are already gone signal the creator thread to clean up and exit. 532 */ 533 static void 534 svc_pool_unregister(struct svc_globals *svc, SVCPOOL *pool) 535 { 536 SVCPOOL *next = pool->p_next; 537 SVCPOOL *prev = pool->p_prev; 538 539 ASSERT(MUTEX_HELD(&svc->svc_plock)); 540 541 /* Remove from the list */ 542 if (pool == svc->svc_pools) 543 svc->svc_pools = next; 544 if (next) 545 next->p_prev = prev; 546 if (prev) 547 prev->p_next = next; 548 pool->p_next = pool->p_prev = NULL; 549 550 /* 551 * Offline the pool. Mark the pool as closing. 552 * If there are no transports in this pool notify 553 * the creator thread to clean it up and exit. 554 */ 555 mutex_enter(&pool->p_thread_lock); 556 if (pool->p_offline != NULL) 557 (pool->p_offline)(); 558 pool->p_closing = TRUE; 559 if (svc_pool_tryexit(pool)) 560 return; 561 mutex_exit(&pool->p_thread_lock); 562 } 563 564 /* 565 * Register a pool with a given id in the global doubly linked pool list. 566 * - if there is a pool with the same id in the list then unregister it 567 * - insert the new pool into the list. 568 */ 569 static void 570 svc_pool_register(struct svc_globals *svc, SVCPOOL *pool, int id) 571 { 572 SVCPOOL *old_pool; 573 574 /* 575 * If there is a pool with the same id then remove it from 576 * the list and mark the pool as closing. 577 */ 578 mutex_enter(&svc->svc_plock); 579 580 if (old_pool = svc_pool_find(svc, id)) 581 svc_pool_unregister(svc, old_pool); 582 583 /* Insert into the doubly linked list */ 584 pool->p_id = id; 585 pool->p_next = svc->svc_pools; 586 pool->p_prev = NULL; 587 if (svc->svc_pools) 588 svc->svc_pools->p_prev = pool; 589 svc->svc_pools = pool; 590 591 mutex_exit(&svc->svc_plock); 592 } 593 594 /* 595 * Initialize a newly created pool structure 596 */ 597 static int 598 svc_pool_init(SVCPOOL *pool, uint_t maxthreads, uint_t redline, 599 uint_t qsize, uint_t timeout, uint_t stksize, uint_t max_same_xprt) 600 { 601 klwp_t *lwp = ttolwp(curthread); 602 603 ASSERT(pool); 604 605 if (maxthreads == 0) 606 maxthreads = svc_default_maxthreads; 607 if (redline == 0) 608 redline = svc_default_redline; 609 if (qsize == 0) 610 qsize = svc_default_qsize; 611 if (timeout == 0) 612 timeout = svc_default_timeout; 613 if (stksize == 0) 614 stksize = svc_default_stksize; 615 if (max_same_xprt == 0) 616 max_same_xprt = svc_default_max_same_xprt; 617 618 if (maxthreads < redline) 619 return (EINVAL); 620 621 /* Allocate and initialize the `xprt-ready' queue */ 622 svc_xprt_qinit(pool, qsize); 623 624 /* Initialize doubly-linked xprt list */ 625 rw_init(&pool->p_lrwlock, NULL, RW_DEFAULT, NULL); 626 627 /* 628 * Setting lwp_childstksz on the current lwp so that 629 * descendants of this lwp get the modified stacksize, if 630 * it is defined. It is important that either this lwp or 631 * one of its descendants do the actual servicepool thread 632 * creation to maintain the stacksize inheritance. 633 */ 634 if (lwp != NULL) 635 lwp->lwp_childstksz = stksize; 636 637 /* Initialize thread limits, locks and condition variables */ 638 pool->p_maxthreads = maxthreads; 639 pool->p_redline = redline; 640 pool->p_timeout = timeout * hz; 641 pool->p_stksize = stksize; 642 pool->p_max_same_xprt = max_same_xprt; 643 mutex_init(&pool->p_thread_lock, NULL, MUTEX_DEFAULT, NULL); 644 mutex_init(&pool->p_req_lock, NULL, MUTEX_DEFAULT, NULL); 645 cv_init(&pool->p_req_cv, NULL, CV_DEFAULT, NULL); 646 647 /* Initialize userland creator */ 648 pool->p_user_exit = FALSE; 649 pool->p_signal_create_thread = FALSE; 650 pool->p_user_waiting = FALSE; 651 mutex_init(&pool->p_user_lock, NULL, MUTEX_DEFAULT, NULL); 652 cv_init(&pool->p_user_cv, NULL, CV_DEFAULT, NULL); 653 654 /* Initialize the creator and start the creator thread */ 655 pool->p_creator_exit = FALSE; 656 mutex_init(&pool->p_creator_lock, NULL, MUTEX_DEFAULT, NULL); 657 cv_init(&pool->p_creator_cv, NULL, CV_DEFAULT, NULL); 658 659 (void) zthread_create(NULL, pool->p_stksize, svc_thread_creator, 660 pool, 0, minclsyspri); 661 662 return (0); 663 } 664 665 /* 666 * PSARC 2003/523 Contract Private Interface 667 * svc_pool_create 668 * Changes must be reviewed by Solaris File Sharing 669 * Changes must be communicated to contract-2003-523@sun.com 670 * 671 * Create an kernel RPC server-side thread/transport pool. 672 * 673 * This is public interface for creation of a server RPC thread pool 674 * for a given service provider. Transports registered with the pool's id 675 * will be served by a pool's threads. This function is called from the 676 * nfssys() system call. 677 */ 678 int 679 svc_pool_create(struct svcpool_args *args) 680 { 681 SVCPOOL *pool; 682 int error; 683 struct svc_globals *svc; 684 685 /* 686 * Caller should check credentials in a way appropriate 687 * in the context of the call. 688 */ 689 690 svc = zone_getspecific(svc_zone_key, curproc->p_zone); 691 /* Allocate a new pool */ 692 pool = kmem_zalloc(sizeof (SVCPOOL), KM_SLEEP); 693 694 /* 695 * Initialize the pool structure and create a creator thread. 696 */ 697 error = svc_pool_init(pool, args->maxthreads, args->redline, 698 args->qsize, args->timeout, args->stksize, args->max_same_xprt); 699 700 if (error) { 701 kmem_free(pool, sizeof (SVCPOOL)); 702 return (error); 703 } 704 705 /* Register the pool with the global pool list */ 706 svc_pool_register(svc, pool, args->id); 707 708 return (0); 709 } 710 711 int 712 svc_pool_control(int id, int cmd, void *arg) 713 { 714 SVCPOOL *pool; 715 struct svc_globals *svc; 716 717 svc = zone_getspecific(svc_zone_key, curproc->p_zone); 718 719 switch (cmd) { 720 case SVCPSET_SHUTDOWN_PROC: 721 /* 722 * Search the list for a pool with a matching id 723 * and register the transport handle with that pool. 724 */ 725 mutex_enter(&svc->svc_plock); 726 727 if ((pool = svc_pool_find(svc, id)) == NULL) { 728 mutex_exit(&svc->svc_plock); 729 return (ENOENT); 730 } 731 /* 732 * Grab the transport list lock before releasing the 733 * pool list lock 734 */ 735 rw_enter(&pool->p_lrwlock, RW_WRITER); 736 mutex_exit(&svc->svc_plock); 737 738 pool->p_shutdown = *((void (*)())arg); 739 740 rw_exit(&pool->p_lrwlock); 741 742 return (0); 743 case SVCPSET_UNREGISTER_PROC: 744 /* 745 * Search the list for a pool with a matching id 746 * and register the unregister callback handle with that pool. 747 */ 748 mutex_enter(&svc->svc_plock); 749 750 if ((pool = svc_pool_find(svc, id)) == NULL) { 751 mutex_exit(&svc->svc_plock); 752 return (ENOENT); 753 } 754 /* 755 * Grab the transport list lock before releasing the 756 * pool list lock 757 */ 758 rw_enter(&pool->p_lrwlock, RW_WRITER); 759 mutex_exit(&svc->svc_plock); 760 761 pool->p_offline = *((void (*)())arg); 762 763 rw_exit(&pool->p_lrwlock); 764 765 return (0); 766 default: 767 return (EINVAL); 768 } 769 } 770 771 /* 772 * Pool's transport list manipulation routines. 773 * - svc_xprt_register() 774 * - svc_xprt_unregister() 775 * 776 * svc_xprt_register() is called from svc_tli_kcreate() to 777 * insert a new master transport handle into the doubly linked 778 * list of server transport handles (one list per pool). 779 * 780 * The list is used by svc_poll(), when it operates in `drain' 781 * mode, to search for a next transport with a pending request. 782 */ 783 784 int 785 svc_xprt_register(SVCMASTERXPRT *xprt, int id) 786 { 787 SVCMASTERXPRT *prev, *next; 788 SVCPOOL *pool; 789 struct svc_globals *svc; 790 791 svc = zone_getspecific(svc_zone_key, curproc->p_zone); 792 /* 793 * Search the list for a pool with a matching id 794 * and register the transport handle with that pool. 795 */ 796 mutex_enter(&svc->svc_plock); 797 798 if ((pool = svc_pool_find(svc, id)) == NULL) { 799 mutex_exit(&svc->svc_plock); 800 return (ENOENT); 801 } 802 803 /* Grab the transport list lock before releasing the pool list lock */ 804 rw_enter(&pool->p_lrwlock, RW_WRITER); 805 mutex_exit(&svc->svc_plock); 806 807 /* Don't register new transports when the pool is in closing state */ 808 if (pool->p_closing) { 809 rw_exit(&pool->p_lrwlock); 810 return (EBUSY); 811 } 812 813 /* 814 * Initialize xp_pool to point to the pool. 815 * We don't want to go through the pool list every time. 816 */ 817 xprt->xp_pool = pool; 818 819 /* 820 * Insert a transport handle into the list. 821 * The list head points to the most recently inserted transport. 822 */ 823 if (pool->p_lhead == NULL) 824 pool->p_lhead = xprt->xp_prev = xprt->xp_next = xprt; 825 else { 826 next = pool->p_lhead; 827 prev = pool->p_lhead->xp_prev; 828 829 xprt->xp_next = next; 830 xprt->xp_prev = prev; 831 832 pool->p_lhead = prev->xp_next = next->xp_prev = xprt; 833 } 834 835 /* Increment the transports count */ 836 pool->p_lcount++; 837 838 rw_exit(&pool->p_lrwlock); 839 return (0); 840 } 841 842 /* 843 * Called from svc_xprt_cleanup() to remove a master transport handle 844 * from the pool's list of server transports (when a transport is 845 * being destroyed). 846 */ 847 void 848 svc_xprt_unregister(SVCMASTERXPRT *xprt) 849 { 850 SVCPOOL *pool = xprt->xp_pool; 851 852 /* 853 * Unlink xprt from the list. 854 * If the list head points to this xprt then move it 855 * to the next xprt or reset to NULL if this is the last 856 * xprt in the list. 857 */ 858 rw_enter(&pool->p_lrwlock, RW_WRITER); 859 860 if (xprt == xprt->xp_next) 861 pool->p_lhead = NULL; 862 else { 863 SVCMASTERXPRT *next = xprt->xp_next; 864 SVCMASTERXPRT *prev = xprt->xp_prev; 865 866 next->xp_prev = prev; 867 prev->xp_next = next; 868 869 if (pool->p_lhead == xprt) 870 pool->p_lhead = next; 871 } 872 873 xprt->xp_next = xprt->xp_prev = NULL; 874 875 /* Decrement list count */ 876 pool->p_lcount--; 877 878 rw_exit(&pool->p_lrwlock); 879 } 880 881 static void 882 svc_xprt_qdestroy(SVCPOOL *pool) 883 { 884 mutex_destroy(&pool->p_qend_lock); 885 kmem_free(pool->p_qbody, pool->p_qsize * sizeof (__SVCXPRT_QNODE)); 886 } 887 888 /* 889 * Initialize an `xprt-ready' queue for a given pool. 890 */ 891 static void 892 svc_xprt_qinit(SVCPOOL *pool, size_t qsize) 893 { 894 int i; 895 896 pool->p_qsize = qsize; 897 pool->p_qbody = kmem_zalloc(pool->p_qsize * sizeof (__SVCXPRT_QNODE), 898 KM_SLEEP); 899 900 for (i = 0; i < pool->p_qsize - 1; i++) 901 pool->p_qbody[i].q_next = &(pool->p_qbody[i+1]); 902 903 pool->p_qbody[pool->p_qsize-1].q_next = &(pool->p_qbody[0]); 904 pool->p_qtop = &(pool->p_qbody[0]); 905 pool->p_qend = &(pool->p_qbody[0]); 906 907 mutex_init(&pool->p_qend_lock, NULL, MUTEX_DEFAULT, NULL); 908 } 909 910 /* 911 * Called from the svc_queuereq() interrupt routine to queue 912 * a hint for svc_poll() which transport has a pending request. 913 * - insert a pointer to xprt into the xprt-ready queue (FIFO) 914 * - if the xprt-ready queue is full turn the overflow flag on. 915 * 916 * NOTICE: pool->p_qtop is protected by the the pool's request lock 917 * and the caller (svc_queuereq()) must hold the lock. 918 */ 919 static void 920 svc_xprt_qput(SVCPOOL *pool, SVCMASTERXPRT *xprt) 921 { 922 ASSERT(MUTEX_HELD(&pool->p_req_lock)); 923 924 /* If the overflow flag is there is nothing we can do */ 925 if (pool->p_qoverflow) 926 return; 927 928 /* If the queue is full turn the overflow flag on and exit */ 929 if (pool->p_qtop->q_next == pool->p_qend) { 930 mutex_enter(&pool->p_qend_lock); 931 if (pool->p_qtop->q_next == pool->p_qend) { 932 pool->p_qoverflow = TRUE; 933 mutex_exit(&pool->p_qend_lock); 934 return; 935 } 936 mutex_exit(&pool->p_qend_lock); 937 } 938 939 /* Insert a hint and move pool->p_qtop */ 940 pool->p_qtop->q_xprt = xprt; 941 pool->p_qtop = pool->p_qtop->q_next; 942 } 943 944 /* 945 * Called from svc_poll() to get a hint which transport has a 946 * pending request. Returns a pointer to a transport or NULL if the 947 * `xprt-ready' queue is empty. 948 * 949 * Since we do not acquire the pool's request lock while checking if 950 * the queue is empty we may miss a request that is just being delivered. 951 * However this is ok since svc_poll() will retry again until the 952 * count indicates that there are pending requests for this pool. 953 */ 954 static SVCMASTERXPRT * 955 svc_xprt_qget(SVCPOOL *pool) 956 { 957 SVCMASTERXPRT *xprt; 958 959 mutex_enter(&pool->p_qend_lock); 960 do { 961 /* 962 * If the queue is empty return NULL. 963 * Since we do not acquire the pool's request lock which 964 * protects pool->p_qtop this is not exact check. However, 965 * this is safe - if we miss a request here svc_poll() 966 * will retry again. 967 */ 968 if (pool->p_qend == pool->p_qtop) { 969 mutex_exit(&pool->p_qend_lock); 970 return (NULL); 971 } 972 973 /* Get a hint and move pool->p_qend */ 974 xprt = pool->p_qend->q_xprt; 975 pool->p_qend = pool->p_qend->q_next; 976 977 /* Skip fields deleted by svc_xprt_qdelete() */ 978 } while (xprt == NULL); 979 mutex_exit(&pool->p_qend_lock); 980 981 return (xprt); 982 } 983 984 /* 985 * Delete all the references to a transport handle that 986 * is being destroyed from the xprt-ready queue. 987 * Deleted pointers are replaced with NULLs. 988 */ 989 static void 990 svc_xprt_qdelete(SVCPOOL *pool, SVCMASTERXPRT *xprt) 991 { 992 __SVCXPRT_QNODE *q = pool->p_qend; 993 __SVCXPRT_QNODE *qtop = pool->p_qtop; 994 995 /* 996 * Delete all the references to xprt between the current 997 * position of pool->p_qend and current pool->p_qtop. 998 */ 999 for (;;) { 1000 if (q->q_xprt == xprt) 1001 q->q_xprt = NULL; 1002 if (q == qtop) 1003 return; 1004 q = q->q_next; 1005 } 1006 } 1007 1008 /* 1009 * Destructor for a master server transport handle. 1010 * - if there are no more non-detached threads linked to this transport 1011 * then, if requested, call xp_closeproc (we don't wait for detached 1012 * threads linked to this transport to complete). 1013 * - if there are no more threads linked to this 1014 * transport then 1015 * a) remove references to this transport from the xprt-ready queue 1016 * b) remove a reference to this transport from the pool's transport list 1017 * c) call a transport specific `destroy' function 1018 * d) cancel remaining thread reservations. 1019 * 1020 * NOTICE: Caller must hold the transport's thread lock. 1021 */ 1022 static void 1023 svc_xprt_cleanup(SVCMASTERXPRT *xprt, bool_t detached) 1024 { 1025 ASSERT(MUTEX_HELD(&xprt->xp_thread_lock)); 1026 ASSERT(xprt->xp_wq == NULL); 1027 1028 /* 1029 * If called from the last non-detached thread 1030 * it should call the closeproc on this transport. 1031 */ 1032 if (!detached && xprt->xp_threads == 0 && xprt->xp_closeproc) { 1033 (*(xprt->xp_closeproc)) (xprt); 1034 } 1035 1036 if (xprt->xp_threads + xprt->xp_detached_threads > 0) 1037 mutex_exit(&xprt->xp_thread_lock); 1038 else { 1039 /* Remove references to xprt from the `xprt-ready' queue */ 1040 svc_xprt_qdelete(xprt->xp_pool, xprt); 1041 1042 /* Unregister xprt from the pool's transport list */ 1043 svc_xprt_unregister(xprt); 1044 svc_callout_free(xprt); 1045 SVC_DESTROY(xprt); 1046 } 1047 } 1048 1049 /* 1050 * Find a dispatch routine for a given prog/vers pair. 1051 * This function is called from svc_getreq() to search the callout 1052 * table for an entry with a matching RPC program number `prog' 1053 * and a version range that covers `vers'. 1054 * - if it finds a matching entry it returns pointer to the dispatch routine 1055 * - otherwise it returns NULL and, if `minp' or `maxp' are not NULL, 1056 * fills them with, respectively, lowest version and highest version 1057 * supported for the program `prog' 1058 */ 1059 static SVC_DISPATCH * 1060 svc_callout_find(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers, 1061 rpcvers_t *vers_min, rpcvers_t *vers_max) 1062 { 1063 SVC_CALLOUT_TABLE *sct = xprt->xp_sct; 1064 int i; 1065 1066 *vers_min = ~(rpcvers_t)0; 1067 *vers_max = 0; 1068 1069 for (i = 0; i < sct->sct_size; i++) { 1070 SVC_CALLOUT *sc = &sct->sct_sc[i]; 1071 1072 if (prog == sc->sc_prog) { 1073 if (vers >= sc->sc_versmin && vers <= sc->sc_versmax) 1074 return (sc->sc_dispatch); 1075 1076 if (*vers_max < sc->sc_versmax) 1077 *vers_max = sc->sc_versmax; 1078 if (*vers_min > sc->sc_versmin) 1079 *vers_min = sc->sc_versmin; 1080 } 1081 } 1082 1083 return (NULL); 1084 } 1085 1086 /* 1087 * Optionally free callout table allocated for this transport by 1088 * the service provider. 1089 */ 1090 static void 1091 svc_callout_free(SVCMASTERXPRT *xprt) 1092 { 1093 SVC_CALLOUT_TABLE *sct = xprt->xp_sct; 1094 1095 if (sct->sct_free) { 1096 kmem_free(sct->sct_sc, sct->sct_size * sizeof (SVC_CALLOUT)); 1097 kmem_free(sct, sizeof (SVC_CALLOUT_TABLE)); 1098 } 1099 } 1100 1101 /* 1102 * Send a reply to an RPC request 1103 * 1104 * PSARC 2003/523 Contract Private Interface 1105 * svc_sendreply 1106 * Changes must be reviewed by Solaris File Sharing 1107 * Changes must be communicated to contract-2003-523@sun.com 1108 */ 1109 bool_t 1110 svc_sendreply(const SVCXPRT *clone_xprt, const xdrproc_t xdr_results, 1111 const caddr_t xdr_location) 1112 { 1113 struct rpc_msg rply; 1114 1115 rply.rm_direction = REPLY; 1116 rply.rm_reply.rp_stat = MSG_ACCEPTED; 1117 rply.acpted_rply.ar_verf = clone_xprt->xp_verf; 1118 rply.acpted_rply.ar_stat = SUCCESS; 1119 rply.acpted_rply.ar_results.where = xdr_location; 1120 rply.acpted_rply.ar_results.proc = xdr_results; 1121 1122 return (SVC_REPLY((SVCXPRT *)clone_xprt, &rply)); 1123 } 1124 1125 /* 1126 * No procedure error reply 1127 * 1128 * PSARC 2003/523 Contract Private Interface 1129 * svcerr_noproc 1130 * Changes must be reviewed by Solaris File Sharing 1131 * Changes must be communicated to contract-2003-523@sun.com 1132 */ 1133 void 1134 svcerr_noproc(const SVCXPRT *clone_xprt) 1135 { 1136 struct rpc_msg rply; 1137 1138 rply.rm_direction = REPLY; 1139 rply.rm_reply.rp_stat = MSG_ACCEPTED; 1140 rply.acpted_rply.ar_verf = clone_xprt->xp_verf; 1141 rply.acpted_rply.ar_stat = PROC_UNAVAIL; 1142 SVC_FREERES((SVCXPRT *)clone_xprt); 1143 SVC_REPLY((SVCXPRT *)clone_xprt, &rply); 1144 } 1145 1146 /* 1147 * Can't decode arguments error reply 1148 * 1149 * PSARC 2003/523 Contract Private Interface 1150 * svcerr_decode 1151 * Changes must be reviewed by Solaris File Sharing 1152 * Changes must be communicated to contract-2003-523@sun.com 1153 */ 1154 void 1155 svcerr_decode(const SVCXPRT *clone_xprt) 1156 { 1157 struct rpc_msg rply; 1158 1159 rply.rm_direction = REPLY; 1160 rply.rm_reply.rp_stat = MSG_ACCEPTED; 1161 rply.acpted_rply.ar_verf = clone_xprt->xp_verf; 1162 rply.acpted_rply.ar_stat = GARBAGE_ARGS; 1163 SVC_FREERES((SVCXPRT *)clone_xprt); 1164 SVC_REPLY((SVCXPRT *)clone_xprt, &rply); 1165 } 1166 1167 /* 1168 * Some system error 1169 */ 1170 void 1171 svcerr_systemerr(const SVCXPRT *clone_xprt) 1172 { 1173 struct rpc_msg rply; 1174 1175 rply.rm_direction = REPLY; 1176 rply.rm_reply.rp_stat = MSG_ACCEPTED; 1177 rply.acpted_rply.ar_verf = clone_xprt->xp_verf; 1178 rply.acpted_rply.ar_stat = SYSTEM_ERR; 1179 SVC_FREERES((SVCXPRT *)clone_xprt); 1180 SVC_REPLY((SVCXPRT *)clone_xprt, &rply); 1181 } 1182 1183 /* 1184 * Authentication error reply 1185 */ 1186 void 1187 svcerr_auth(const SVCXPRT *clone_xprt, const enum auth_stat why) 1188 { 1189 struct rpc_msg rply; 1190 1191 rply.rm_direction = REPLY; 1192 rply.rm_reply.rp_stat = MSG_DENIED; 1193 rply.rjcted_rply.rj_stat = AUTH_ERROR; 1194 rply.rjcted_rply.rj_why = why; 1195 SVC_FREERES((SVCXPRT *)clone_xprt); 1196 SVC_REPLY((SVCXPRT *)clone_xprt, &rply); 1197 } 1198 1199 /* 1200 * Authentication too weak error reply 1201 */ 1202 void 1203 svcerr_weakauth(const SVCXPRT *clone_xprt) 1204 { 1205 svcerr_auth((SVCXPRT *)clone_xprt, AUTH_TOOWEAK); 1206 } 1207 1208 /* 1209 * Program unavailable error reply 1210 * 1211 * PSARC 2003/523 Contract Private Interface 1212 * svcerr_noprog 1213 * Changes must be reviewed by Solaris File Sharing 1214 * Changes must be communicated to contract-2003-523@sun.com 1215 */ 1216 void 1217 svcerr_noprog(const SVCXPRT *clone_xprt) 1218 { 1219 struct rpc_msg rply; 1220 1221 rply.rm_direction = REPLY; 1222 rply.rm_reply.rp_stat = MSG_ACCEPTED; 1223 rply.acpted_rply.ar_verf = clone_xprt->xp_verf; 1224 rply.acpted_rply.ar_stat = PROG_UNAVAIL; 1225 SVC_FREERES((SVCXPRT *)clone_xprt); 1226 SVC_REPLY((SVCXPRT *)clone_xprt, &rply); 1227 } 1228 1229 /* 1230 * Program version mismatch error reply 1231 * 1232 * PSARC 2003/523 Contract Private Interface 1233 * svcerr_progvers 1234 * Changes must be reviewed by Solaris File Sharing 1235 * Changes must be communicated to contract-2003-523@sun.com 1236 */ 1237 void 1238 svcerr_progvers(const SVCXPRT *clone_xprt, 1239 const rpcvers_t low_vers, const rpcvers_t high_vers) 1240 { 1241 struct rpc_msg rply; 1242 1243 rply.rm_direction = REPLY; 1244 rply.rm_reply.rp_stat = MSG_ACCEPTED; 1245 rply.acpted_rply.ar_verf = clone_xprt->xp_verf; 1246 rply.acpted_rply.ar_stat = PROG_MISMATCH; 1247 rply.acpted_rply.ar_vers.low = low_vers; 1248 rply.acpted_rply.ar_vers.high = high_vers; 1249 SVC_FREERES((SVCXPRT *)clone_xprt); 1250 SVC_REPLY((SVCXPRT *)clone_xprt, &rply); 1251 } 1252 1253 /* 1254 * Get server side input from some transport. 1255 * 1256 * Statement of authentication parameters management: 1257 * This function owns and manages all authentication parameters, specifically 1258 * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and 1259 * the "cooked" credentials (rqst->rq_clntcred). 1260 * However, this function does not know the structure of the cooked 1261 * credentials, so it make the following assumptions: 1262 * a) the structure is contiguous (no pointers), and 1263 * b) the cred structure size does not exceed RQCRED_SIZE bytes. 1264 * In all events, all three parameters are freed upon exit from this routine. 1265 * The storage is trivially managed on the call stack in user land, but 1266 * is malloced in kernel land. 1267 * 1268 * Note: the xprt's xp_svc_lock is not held while the service's dispatch 1269 * routine is running. If we decide to implement svc_unregister(), we'll 1270 * need to decide whether it's okay for a thread to unregister a service 1271 * while a request is being processed. If we decide that this is a 1272 * problem, we can probably use some sort of reference counting scheme to 1273 * keep the callout entry from going away until the request has completed. 1274 */ 1275 static void 1276 svc_getreq( 1277 SVCXPRT *clone_xprt, /* clone transport handle */ 1278 mblk_t *mp) 1279 { 1280 struct rpc_msg msg; 1281 struct svc_req r; 1282 char *cred_area; /* too big to allocate on call stack */ 1283 1284 TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_START, 1285 "svc_getreq_start:"); 1286 1287 ASSERT(clone_xprt->xp_master != NULL); 1288 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL || 1289 mp->b_datap->db_type != M_DATA); 1290 1291 /* 1292 * Firstly, allocate the authentication parameters' storage 1293 */ 1294 mutex_enter(&rqcred_lock); 1295 if (rqcred_head) { 1296 cred_area = rqcred_head; 1297 1298 /* LINTED pointer alignment */ 1299 rqcred_head = *(caddr_t *)rqcred_head; 1300 mutex_exit(&rqcred_lock); 1301 } else { 1302 mutex_exit(&rqcred_lock); 1303 cred_area = kmem_alloc(2 * MAX_AUTH_BYTES + RQCRED_SIZE, 1304 KM_SLEEP); 1305 } 1306 msg.rm_call.cb_cred.oa_base = cred_area; 1307 msg.rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]); 1308 r.rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]); 1309 1310 /* 1311 * underlying transport recv routine may modify mblk data 1312 * and make it difficult to extract label afterwards. So 1313 * get the label from the raw mblk data now. 1314 */ 1315 if (is_system_labeled()) { 1316 mblk_t *lmp; 1317 1318 r.rq_label = kmem_alloc(sizeof (bslabel_t), KM_SLEEP); 1319 if (DB_CRED(mp) != NULL) 1320 lmp = mp; 1321 else { 1322 ASSERT(mp->b_cont != NULL); 1323 lmp = mp->b_cont; 1324 ASSERT(DB_CRED(lmp) != NULL); 1325 } 1326 bcopy(label2bslabel(crgetlabel(DB_CRED(lmp))), r.rq_label, 1327 sizeof (bslabel_t)); 1328 } else { 1329 r.rq_label = NULL; 1330 } 1331 1332 /* 1333 * Now receive a message from the transport. 1334 */ 1335 if (SVC_RECV(clone_xprt, mp, &msg)) { 1336 void (*dispatchroutine) (struct svc_req *, SVCXPRT *); 1337 rpcvers_t vers_min; 1338 rpcvers_t vers_max; 1339 bool_t no_dispatch; 1340 enum auth_stat why; 1341 1342 /* 1343 * Find the registered program and call its 1344 * dispatch routine. 1345 */ 1346 r.rq_xprt = clone_xprt; 1347 r.rq_prog = msg.rm_call.cb_prog; 1348 r.rq_vers = msg.rm_call.cb_vers; 1349 r.rq_proc = msg.rm_call.cb_proc; 1350 r.rq_cred = msg.rm_call.cb_cred; 1351 1352 /* 1353 * First authenticate the message. 1354 */ 1355 TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_START, 1356 "svc_getreq_auth_start:"); 1357 if ((why = sec_svc_msg(&r, &msg, &no_dispatch)) != AUTH_OK) { 1358 TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END, 1359 "svc_getreq_auth_end:(%S)", "failed"); 1360 svcerr_auth(clone_xprt, why); 1361 /* 1362 * Free the arguments. 1363 */ 1364 (void) SVC_FREEARGS(clone_xprt, NULL, NULL); 1365 } else if (no_dispatch) { 1366 /* 1367 * XXX - when bug id 4053736 is done, remove 1368 * the SVC_FREEARGS() call. 1369 */ 1370 (void) SVC_FREEARGS(clone_xprt, NULL, NULL); 1371 } else { 1372 TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END, 1373 "svc_getreq_auth_end:(%S)", "good"); 1374 1375 dispatchroutine = svc_callout_find(clone_xprt, 1376 r.rq_prog, r.rq_vers, &vers_min, &vers_max); 1377 1378 if (dispatchroutine) { 1379 (*dispatchroutine) (&r, clone_xprt); 1380 } else { 1381 /* 1382 * If we got here, the program or version 1383 * is not served ... 1384 */ 1385 if (vers_max == 0 || 1386 version_keepquiet(clone_xprt)) 1387 svcerr_noprog(clone_xprt); 1388 else 1389 svcerr_progvers(clone_xprt, vers_min, 1390 vers_max); 1391 1392 /* 1393 * Free the arguments. For successful calls 1394 * this is done by the dispatch routine. 1395 */ 1396 (void) SVC_FREEARGS(clone_xprt, NULL, NULL); 1397 /* Fall through to ... */ 1398 } 1399 /* 1400 * Call cleanup procedure for RPCSEC_GSS. 1401 * This is a hack since there is currently no 1402 * op, such as SVC_CLEANAUTH. rpc_gss_cleanup 1403 * should only be called for a non null proc. 1404 * Null procs in RPC GSS are overloaded to 1405 * provide context setup and control. The main 1406 * purpose of rpc_gss_cleanup is to decrement the 1407 * reference count associated with the cached 1408 * GSS security context. We should never get here 1409 * for an RPCSEC_GSS null proc since *no_dispatch 1410 * would have been set to true from sec_svc_msg above. 1411 */ 1412 if (r.rq_cred.oa_flavor == RPCSEC_GSS) 1413 rpc_gss_cleanup(clone_xprt); 1414 } 1415 } 1416 1417 if (r.rq_label != NULL) 1418 kmem_free(r.rq_label, sizeof (bslabel_t)); 1419 1420 /* 1421 * Free authentication parameters' storage 1422 */ 1423 mutex_enter(&rqcred_lock); 1424 /* LINTED pointer alignment */ 1425 *(caddr_t *)cred_area = rqcred_head; 1426 rqcred_head = cred_area; 1427 mutex_exit(&rqcred_lock); 1428 } 1429 1430 /* 1431 * Allocate new clone transport handle. 1432 */ 1433 static SVCXPRT * 1434 svc_clone_init(void) 1435 { 1436 SVCXPRT *clone_xprt; 1437 1438 clone_xprt = kmem_zalloc(sizeof (SVCXPRT), KM_SLEEP); 1439 clone_xprt->xp_cred = crget(); 1440 return (clone_xprt); 1441 } 1442 1443 /* 1444 * Free memory allocated by svc_clone_init. 1445 */ 1446 static void 1447 svc_clone_free(SVCXPRT *clone_xprt) 1448 { 1449 /* Fre credentials from crget() */ 1450 if (clone_xprt->xp_cred) 1451 crfree(clone_xprt->xp_cred); 1452 kmem_free(clone_xprt, sizeof (SVCXPRT)); 1453 } 1454 1455 /* 1456 * Link a per-thread clone transport handle to a master 1457 * - increment a thread reference count on the master 1458 * - copy some of the master's fields to the clone 1459 * - call a transport specific clone routine. 1460 */ 1461 static void 1462 svc_clone_link(SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt) 1463 { 1464 cred_t *cred = clone_xprt->xp_cred; 1465 1466 ASSERT(cred); 1467 1468 /* 1469 * Bump up master's thread count. 1470 * Linking a per-thread clone transport handle to a master 1471 * associates a service thread with the master. 1472 */ 1473 mutex_enter(&xprt->xp_thread_lock); 1474 xprt->xp_threads++; 1475 mutex_exit(&xprt->xp_thread_lock); 1476 1477 /* Clear everything */ 1478 bzero(clone_xprt, sizeof (SVCXPRT)); 1479 1480 /* Set pointer to the master transport stucture */ 1481 clone_xprt->xp_master = xprt; 1482 1483 /* Structure copy of all the common fields */ 1484 clone_xprt->xp_xpc = xprt->xp_xpc; 1485 1486 /* Restore per-thread fields (xp_cred) */ 1487 clone_xprt->xp_cred = cred; 1488 1489 1490 /* 1491 * NOTICE: There is no transport-type specific code now. 1492 * If you want to add a transport-type specific cloning code 1493 * add one more operation (e.g. xp_clone()) to svc_ops, 1494 * implement it for each transport type, and call it here 1495 * through an appropriate macro (e.g. SVC_CLONE()). 1496 */ 1497 } 1498 1499 /* 1500 * Unlink a non-detached clone transport handle from a master 1501 * - decrement a thread reference count on the master 1502 * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup(); 1503 * if this is the last non-detached/absolute thread on this transport 1504 * then it will close/destroy the transport 1505 * - call transport specific function to destroy the clone handle 1506 * - clear xp_master to avoid recursion. 1507 */ 1508 static void 1509 svc_clone_unlink(SVCXPRT *clone_xprt) 1510 { 1511 SVCMASTERXPRT *xprt = clone_xprt->xp_master; 1512 1513 /* This cannot be a detached thread */ 1514 ASSERT(!clone_xprt->xp_detached); 1515 ASSERT(xprt->xp_threads > 0); 1516 1517 /* Decrement a reference count on the transport */ 1518 mutex_enter(&xprt->xp_thread_lock); 1519 xprt->xp_threads--; 1520 1521 /* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */ 1522 if (xprt->xp_wq) 1523 mutex_exit(&xprt->xp_thread_lock); 1524 else 1525 svc_xprt_cleanup(xprt, FALSE); 1526 1527 /* Call a transport specific clone `destroy' function */ 1528 SVC_CLONE_DESTROY(clone_xprt); 1529 1530 /* Clear xp_master */ 1531 clone_xprt->xp_master = NULL; 1532 } 1533 1534 /* 1535 * Unlink a detached clone transport handle from a master 1536 * - decrement the thread count on the master 1537 * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup(); 1538 * if this is the last thread on this transport then it will destroy 1539 * the transport. 1540 * - call a transport specific function to destroy the clone handle 1541 * - clear xp_master to avoid recursion. 1542 */ 1543 static void 1544 svc_clone_unlinkdetached(SVCXPRT *clone_xprt) 1545 { 1546 SVCMASTERXPRT *xprt = clone_xprt->xp_master; 1547 1548 /* This must be a detached thread */ 1549 ASSERT(clone_xprt->xp_detached); 1550 ASSERT(xprt->xp_detached_threads > 0); 1551 ASSERT(xprt->xp_threads + xprt->xp_detached_threads > 0); 1552 1553 /* Grab xprt->xp_thread_lock and decrement link counts */ 1554 mutex_enter(&xprt->xp_thread_lock); 1555 xprt->xp_detached_threads--; 1556 1557 /* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */ 1558 if (xprt->xp_wq) 1559 mutex_exit(&xprt->xp_thread_lock); 1560 else 1561 svc_xprt_cleanup(xprt, TRUE); 1562 1563 /* Call transport specific clone `destroy' function */ 1564 SVC_CLONE_DESTROY(clone_xprt); 1565 1566 /* Clear xp_master */ 1567 clone_xprt->xp_master = NULL; 1568 } 1569 1570 /* 1571 * Try to exit a non-detached service thread 1572 * - check if there are enough threads left 1573 * - if this thread (ie its clone transport handle) are linked 1574 * to a master transport then unlink it 1575 * - free the clone structure 1576 * - return to userland for thread exit 1577 * 1578 * If this is the last non-detached or the last thread on this 1579 * transport then the call to svc_clone_unlink() will, respectively, 1580 * close and/or destroy the transport. 1581 */ 1582 static void 1583 svc_thread_exit(SVCPOOL *pool, SVCXPRT *clone_xprt) 1584 { 1585 if (clone_xprt->xp_master) 1586 svc_clone_unlink(clone_xprt); 1587 svc_clone_free(clone_xprt); 1588 1589 mutex_enter(&pool->p_thread_lock); 1590 pool->p_threads--; 1591 if (pool->p_closing && svc_pool_tryexit(pool)) 1592 /* return - thread exit will be handled at user level */ 1593 return; 1594 mutex_exit(&pool->p_thread_lock); 1595 1596 /* return - thread exit will be handled at user level */ 1597 } 1598 1599 /* 1600 * Exit a detached service thread that returned to svc_run 1601 * - decrement the `detached thread' count for the pool 1602 * - unlink the detached clone transport handle from the master 1603 * - free the clone structure 1604 * - return to userland for thread exit 1605 * 1606 * If this is the last thread on this transport then the call 1607 * to svc_clone_unlinkdetached() will destroy the transport. 1608 */ 1609 static void 1610 svc_thread_exitdetached(SVCPOOL *pool, SVCXPRT *clone_xprt) 1611 { 1612 /* This must be a detached thread */ 1613 ASSERT(clone_xprt->xp_master); 1614 ASSERT(clone_xprt->xp_detached); 1615 ASSERT(!MUTEX_HELD(&pool->p_thread_lock)); 1616 1617 svc_clone_unlinkdetached(clone_xprt); 1618 svc_clone_free(clone_xprt); 1619 1620 mutex_enter(&pool->p_thread_lock); 1621 1622 ASSERT(pool->p_reserved_threads >= 0); 1623 ASSERT(pool->p_detached_threads > 0); 1624 1625 pool->p_detached_threads--; 1626 if (pool->p_closing && svc_pool_tryexit(pool)) 1627 /* return - thread exit will be handled at user level */ 1628 return; 1629 mutex_exit(&pool->p_thread_lock); 1630 1631 /* return - thread exit will be handled at user level */ 1632 } 1633 1634 /* 1635 * PSARC 2003/523 Contract Private Interface 1636 * svc_wait 1637 * Changes must be reviewed by Solaris File Sharing 1638 * Changes must be communicated to contract-2003-523@sun.com 1639 */ 1640 int 1641 svc_wait(int id) 1642 { 1643 SVCPOOL *pool; 1644 int err = 0; 1645 struct svc_globals *svc; 1646 1647 svc = zone_getspecific(svc_zone_key, curproc->p_zone); 1648 mutex_enter(&svc->svc_plock); 1649 pool = svc_pool_find(svc, id); 1650 mutex_exit(&svc->svc_plock); 1651 1652 if (pool == NULL) 1653 return (ENOENT); 1654 1655 mutex_enter(&pool->p_user_lock); 1656 1657 /* Check if there's already a user thread waiting on this pool */ 1658 if (pool->p_user_waiting) { 1659 mutex_exit(&pool->p_user_lock); 1660 return (EBUSY); 1661 } 1662 1663 pool->p_user_waiting = TRUE; 1664 1665 /* Go to sleep, waiting for the signaled flag. */ 1666 while (!pool->p_signal_create_thread && !pool->p_user_exit) { 1667 if (cv_wait_sig(&pool->p_user_cv, &pool->p_user_lock) == 0) { 1668 /* Interrupted, return to handle exit or signal */ 1669 pool->p_user_waiting = FALSE; 1670 pool->p_signal_create_thread = FALSE; 1671 mutex_exit(&pool->p_user_lock); 1672 1673 /* 1674 * Thread has been interrupted and therefore 1675 * the service daemon is leaving as well so 1676 * let's go ahead and remove the service 1677 * pool at this time. 1678 */ 1679 mutex_enter(&svc->svc_plock); 1680 svc_pool_unregister(svc, pool); 1681 mutex_exit(&svc->svc_plock); 1682 1683 return (EINTR); 1684 } 1685 } 1686 1687 pool->p_signal_create_thread = FALSE; 1688 pool->p_user_waiting = FALSE; 1689 1690 /* 1691 * About to exit the service pool. Set return value 1692 * to let the userland code know our intent. Signal 1693 * svc_thread_creator() so that it can clean up the 1694 * pool structure. 1695 */ 1696 if (pool->p_user_exit) { 1697 err = ECANCELED; 1698 cv_signal(&pool->p_user_cv); 1699 } 1700 1701 mutex_exit(&pool->p_user_lock); 1702 1703 /* Return to userland with error code, for possible thread creation. */ 1704 return (err); 1705 } 1706 1707 /* 1708 * `Service threads' creator thread. 1709 * The creator thread waits for a signal to create new thread. 1710 */ 1711 static void 1712 svc_thread_creator(SVCPOOL *pool) 1713 { 1714 callb_cpr_t cpr_info; /* CPR info for the creator thread */ 1715 1716 CALLB_CPR_INIT(&cpr_info, &pool->p_creator_lock, callb_generic_cpr, 1717 "svc_thread_creator"); 1718 1719 for (;;) { 1720 mutex_enter(&pool->p_creator_lock); 1721 1722 /* Check if someone set the exit flag */ 1723 if (pool->p_creator_exit) 1724 break; 1725 1726 /* Clear the `signaled' flag and go asleep */ 1727 pool->p_creator_signaled = FALSE; 1728 1729 CALLB_CPR_SAFE_BEGIN(&cpr_info); 1730 cv_wait(&pool->p_creator_cv, &pool->p_creator_lock); 1731 CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock); 1732 1733 /* Check if someone signaled to exit */ 1734 if (pool->p_creator_exit) 1735 break; 1736 1737 mutex_exit(&pool->p_creator_lock); 1738 1739 mutex_enter(&pool->p_thread_lock); 1740 1741 /* 1742 * When the pool is in closing state and all the transports 1743 * are gone the creator should not create any new threads. 1744 */ 1745 if (pool->p_closing) { 1746 rw_enter(&pool->p_lrwlock, RW_READER); 1747 if (pool->p_lcount == 0) { 1748 rw_exit(&pool->p_lrwlock); 1749 mutex_exit(&pool->p_thread_lock); 1750 continue; 1751 } 1752 rw_exit(&pool->p_lrwlock); 1753 } 1754 1755 /* 1756 * Create a new service thread now. 1757 */ 1758 ASSERT(pool->p_reserved_threads >= 0); 1759 ASSERT(pool->p_detached_threads >= 0); 1760 1761 if (pool->p_threads + pool->p_detached_threads < 1762 pool->p_maxthreads) { 1763 /* 1764 * Signal the service pool wait thread 1765 * only if it hasn't already been signaled. 1766 */ 1767 mutex_enter(&pool->p_user_lock); 1768 if (pool->p_signal_create_thread == FALSE) { 1769 pool->p_signal_create_thread = TRUE; 1770 cv_signal(&pool->p_user_cv); 1771 } 1772 mutex_exit(&pool->p_user_lock); 1773 1774 } 1775 1776 mutex_exit(&pool->p_thread_lock); 1777 } 1778 1779 /* 1780 * Pool is closed. Cleanup and exit. 1781 */ 1782 1783 /* Signal userland creator thread that it can stop now. */ 1784 mutex_enter(&pool->p_user_lock); 1785 pool->p_user_exit = TRUE; 1786 cv_broadcast(&pool->p_user_cv); 1787 mutex_exit(&pool->p_user_lock); 1788 1789 /* Wait for svc_wait() to be done with the pool */ 1790 mutex_enter(&pool->p_user_lock); 1791 while (pool->p_user_waiting) { 1792 CALLB_CPR_SAFE_BEGIN(&cpr_info); 1793 cv_wait(&pool->p_user_cv, &pool->p_user_lock); 1794 CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock); 1795 } 1796 mutex_exit(&pool->p_user_lock); 1797 1798 CALLB_CPR_EXIT(&cpr_info); 1799 svc_pool_cleanup(pool); 1800 zthread_exit(); 1801 } 1802 1803 /* 1804 * If the creator thread is idle signal it to create 1805 * a new service thread. 1806 */ 1807 static void 1808 svc_creator_signal(SVCPOOL *pool) 1809 { 1810 mutex_enter(&pool->p_creator_lock); 1811 if (pool->p_creator_signaled == FALSE) { 1812 pool->p_creator_signaled = TRUE; 1813 cv_signal(&pool->p_creator_cv); 1814 } 1815 mutex_exit(&pool->p_creator_lock); 1816 } 1817 1818 /* 1819 * Notify the creator thread to clean up and exit. 1820 */ 1821 static void 1822 svc_creator_signalexit(SVCPOOL *pool) 1823 { 1824 mutex_enter(&pool->p_creator_lock); 1825 pool->p_creator_exit = TRUE; 1826 cv_signal(&pool->p_creator_cv); 1827 mutex_exit(&pool->p_creator_lock); 1828 } 1829 1830 /* 1831 * Polling part of the svc_run(). 1832 * - search for a transport with a pending request 1833 * - when one is found then latch the request lock and return to svc_run() 1834 * - if there is no request go asleep and wait for a signal 1835 * - handle two exceptions: 1836 * a) current transport is closing 1837 * b) timeout waiting for a new request 1838 * in both cases return to svc_run() 1839 */ 1840 static SVCMASTERXPRT * 1841 svc_poll(SVCPOOL *pool, SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt) 1842 { 1843 /* 1844 * Main loop iterates until 1845 * a) we find a pending request, 1846 * b) detect that the current transport is closing 1847 * c) time out waiting for a new request. 1848 */ 1849 for (;;) { 1850 SVCMASTERXPRT *next; 1851 clock_t timeleft; 1852 1853 /* 1854 * Step 1. 1855 * Check if there is a pending request on the current 1856 * transport handle so that we can avoid cloning. 1857 * If so then decrement the `pending-request' count for 1858 * the pool and return to svc_run(). 1859 * 1860 * We need to prevent a potential starvation. When 1861 * a selected transport has all pending requests coming in 1862 * all the time then the service threads will never switch to 1863 * another transport. With a limited number of service 1864 * threads some transports may be never serviced. 1865 * To prevent such a scenario we pick up at most 1866 * pool->p_max_same_xprt requests from the same transport 1867 * and then take a hint from the xprt-ready queue or walk 1868 * the transport list. 1869 */ 1870 if (xprt && xprt->xp_req_head && (!pool->p_qoverflow || 1871 clone_xprt->xp_same_xprt++ < pool->p_max_same_xprt)) { 1872 mutex_enter(&xprt->xp_req_lock); 1873 if (xprt->xp_req_head) { 1874 mutex_enter(&pool->p_req_lock); 1875 pool->p_reqs--; 1876 if (pool->p_reqs == 0) 1877 pool->p_qoverflow = FALSE; 1878 mutex_exit(&pool->p_req_lock); 1879 1880 return (xprt); 1881 } 1882 mutex_exit(&xprt->xp_req_lock); 1883 } 1884 clone_xprt->xp_same_xprt = 0; 1885 1886 /* 1887 * Step 2. 1888 * If there is no request on the current transport try to 1889 * find another transport with a pending request. 1890 */ 1891 mutex_enter(&pool->p_req_lock); 1892 pool->p_walkers++; 1893 mutex_exit(&pool->p_req_lock); 1894 1895 /* 1896 * Make sure that transports will not be destroyed just 1897 * while we are checking them. 1898 */ 1899 rw_enter(&pool->p_lrwlock, RW_READER); 1900 1901 for (;;) { 1902 SVCMASTERXPRT *hint; 1903 1904 /* 1905 * Get the next transport from the xprt-ready queue. 1906 * This is a hint. There is no guarantee that the 1907 * transport still has a pending request since it 1908 * could be picked up by another thread in step 1. 1909 * 1910 * If the transport has a pending request then keep 1911 * it locked. Decrement the `pending-requests' for 1912 * the pool and `walking-threads' counts, and return 1913 * to svc_run(). 1914 */ 1915 hint = svc_xprt_qget(pool); 1916 1917 if (hint && hint->xp_req_head) { 1918 mutex_enter(&hint->xp_req_lock); 1919 if (hint->xp_req_head) { 1920 rw_exit(&pool->p_lrwlock); 1921 1922 mutex_enter(&pool->p_req_lock); 1923 pool->p_reqs--; 1924 if (pool->p_reqs == 0) 1925 pool->p_qoverflow = FALSE; 1926 pool->p_walkers--; 1927 mutex_exit(&pool->p_req_lock); 1928 1929 return (hint); 1930 } 1931 mutex_exit(&hint->xp_req_lock); 1932 } 1933 1934 /* 1935 * If there was no hint in the xprt-ready queue then 1936 * - if there is less pending requests than polling 1937 * threads go asleep 1938 * - otherwise check if there was an overflow in the 1939 * xprt-ready queue; if so, then we need to break 1940 * the `drain' mode 1941 */ 1942 if (hint == NULL) { 1943 if (pool->p_reqs < pool->p_walkers) { 1944 mutex_enter(&pool->p_req_lock); 1945 if (pool->p_reqs < pool->p_walkers) 1946 goto sleep; 1947 mutex_exit(&pool->p_req_lock); 1948 } 1949 if (pool->p_qoverflow) { 1950 break; 1951 } 1952 } 1953 } 1954 1955 /* 1956 * If there was an overflow in the xprt-ready queue then we 1957 * need to switch to the `drain' mode, i.e. walk through the 1958 * pool's transport list and search for a transport with a 1959 * pending request. If we manage to drain all the pending 1960 * requests then we can clear the overflow flag. This will 1961 * switch svc_poll() back to taking hints from the xprt-ready 1962 * queue (which is generally more efficient). 1963 * 1964 * If there are no registered transports simply go asleep. 1965 */ 1966 if (xprt == NULL && pool->p_lhead == NULL) { 1967 mutex_enter(&pool->p_req_lock); 1968 goto sleep; 1969 } 1970 1971 /* 1972 * `Walk' through the pool's list of master server 1973 * transport handles. Continue to loop until there are less 1974 * looping threads then pending requests. 1975 */ 1976 next = xprt ? xprt->xp_next : pool->p_lhead; 1977 1978 for (;;) { 1979 /* 1980 * Check if there is a request on this transport. 1981 * 1982 * Since blocking on a locked mutex is very expensive 1983 * check for a request without a lock first. If we miss 1984 * a request that is just being delivered but this will 1985 * cost at most one full walk through the list. 1986 */ 1987 if (next->xp_req_head) { 1988 /* 1989 * Check again, now with a lock. 1990 */ 1991 mutex_enter(&next->xp_req_lock); 1992 if (next->xp_req_head) { 1993 rw_exit(&pool->p_lrwlock); 1994 1995 mutex_enter(&pool->p_req_lock); 1996 pool->p_reqs--; 1997 if (pool->p_reqs == 0) 1998 pool->p_qoverflow = FALSE; 1999 pool->p_walkers--; 2000 mutex_exit(&pool->p_req_lock); 2001 2002 return (next); 2003 } 2004 mutex_exit(&next->xp_req_lock); 2005 } 2006 2007 /* 2008 * Continue to `walk' through the pool's 2009 * transport list until there is less requests 2010 * than walkers. Check this condition without 2011 * a lock first to avoid contention on a mutex. 2012 */ 2013 if (pool->p_reqs < pool->p_walkers) { 2014 /* Check again, now with the lock. */ 2015 mutex_enter(&pool->p_req_lock); 2016 if (pool->p_reqs < pool->p_walkers) 2017 break; /* goto sleep */ 2018 mutex_exit(&pool->p_req_lock); 2019 } 2020 2021 next = next->xp_next; 2022 } 2023 2024 sleep: 2025 /* 2026 * No work to do. Stop the `walk' and go asleep. 2027 * Decrement the `walking-threads' count for the pool. 2028 */ 2029 pool->p_walkers--; 2030 rw_exit(&pool->p_lrwlock); 2031 2032 /* 2033 * Count us as asleep, mark this thread as safe 2034 * for suspend and wait for a request. 2035 */ 2036 pool->p_asleep++; 2037 timeleft = cv_timedwait_sig(&pool->p_req_cv, &pool->p_req_lock, 2038 pool->p_timeout + lbolt); 2039 2040 /* 2041 * If the drowsy flag is on this means that 2042 * someone has signaled a wakeup. In such a case 2043 * the `asleep-threads' count has already updated 2044 * so just clear the flag. 2045 * 2046 * If the drowsy flag is off then we need to update 2047 * the `asleep-threads' count. 2048 */ 2049 if (pool->p_drowsy) { 2050 pool->p_drowsy = FALSE; 2051 /* 2052 * If the thread is here because it timedout, 2053 * instead of returning SVC_ETIMEDOUT, it is 2054 * time to do some more work. 2055 */ 2056 if (timeleft == -1) 2057 timeleft = 1; 2058 } else { 2059 pool->p_asleep--; 2060 } 2061 mutex_exit(&pool->p_req_lock); 2062 2063 /* 2064 * If we received a signal while waiting for a 2065 * request, inform svc_run(), so that we can return 2066 * to user level and restart the call. 2067 */ 2068 if (timeleft == 0) 2069 return (SVC_EINTR); 2070 2071 /* 2072 * If the current transport is gone then notify 2073 * svc_run() to unlink from it. 2074 */ 2075 if (xprt && xprt->xp_wq == NULL) 2076 return (SVC_EXPRTGONE); 2077 2078 /* 2079 * If we have timed out waiting for a request inform 2080 * svc_run() that we probably don't need this thread. 2081 */ 2082 if (timeleft == -1) 2083 return (SVC_ETIMEDOUT); 2084 } 2085 } 2086 2087 /* 2088 * Main loop of the kernel RPC server 2089 * - wait for input (find a transport with a pending request). 2090 * - dequeue the request 2091 * - call a registered server routine to process the requests 2092 * 2093 * There can many threads running concurrently in this loop 2094 * on the same or on different transports. 2095 */ 2096 static int 2097 svc_run(SVCPOOL *pool) 2098 { 2099 SVCMASTERXPRT *xprt = NULL; /* master transport handle */ 2100 SVCXPRT *clone_xprt; /* clone for this thread */ 2101 struct svc_globals *svc; 2102 proc_t *p = ttoproc(curthread); 2103 2104 /* Allocate a clone transport handle for this thread */ 2105 clone_xprt = svc_clone_init(); 2106 2107 /* 2108 * The loop iterates until the thread becomes 2109 * idle too long or the transport is gone. 2110 */ 2111 for (;;) { 2112 SVCMASTERXPRT *next; 2113 mblk_t *mp; 2114 2115 TRACE_0(TR_FAC_KRPC, TR_SVC_RUN, "svc_run"); 2116 2117 /* 2118 * If the process is exiting/killed, return 2119 * immediately without processing any more 2120 * requests. 2121 */ 2122 if (p->p_flag & (SEXITING | SKILLED)) { 2123 svc_thread_exit(pool, clone_xprt); 2124 2125 /* 2126 * Thread has been interrupted and therefore 2127 * the service daemon is leaving as well so 2128 * let's go ahead and remove the service 2129 * pool at this time. 2130 */ 2131 svc = zone_getspecific(svc_zone_key, curproc->p_zone); 2132 mutex_enter(&svc->svc_plock); 2133 svc_pool_unregister(svc, pool); 2134 mutex_exit(&svc->svc_plock); 2135 2136 return (0); 2137 } 2138 2139 /* Find a transport with a pending request */ 2140 next = svc_poll(pool, xprt, clone_xprt); 2141 2142 /* 2143 * If svc_poll() finds a transport with a request 2144 * it latches xp_req_lock on it. Therefore we need 2145 * to dequeue the request and release the lock as 2146 * soon as possible. 2147 */ 2148 ASSERT(next != NULL && 2149 (next == SVC_EXPRTGONE || 2150 next == SVC_ETIMEDOUT || 2151 next == SVC_EINTR || 2152 MUTEX_HELD(&next->xp_req_lock))); 2153 2154 /* Ooops! Current transport is closing. Unlink now */ 2155 if (next == SVC_EXPRTGONE) { 2156 svc_clone_unlink(clone_xprt); 2157 xprt = NULL; 2158 continue; 2159 } 2160 2161 /* Ooops! Timeout while waiting for a request. Exit */ 2162 if (next == SVC_ETIMEDOUT) { 2163 svc_thread_exit(pool, clone_xprt); 2164 return (0); 2165 } 2166 2167 /* 2168 * Interrupted by a signal while waiting for a 2169 * request. Return to userspace and restart. 2170 */ 2171 if (next == SVC_EINTR) { 2172 svc_thread_exit(pool, clone_xprt); 2173 2174 /* 2175 * Thread has been interrupted and therefore 2176 * the service daemon is leaving as well so 2177 * let's go ahead and remove the service 2178 * pool at this time. 2179 */ 2180 svc = zone_getspecific(svc_zone_key, curproc->p_zone); 2181 mutex_enter(&svc->svc_plock); 2182 svc_pool_unregister(svc, pool); 2183 mutex_exit(&svc->svc_plock); 2184 2185 return (EINTR); 2186 } 2187 2188 /* 2189 * De-queue the request and release the request lock 2190 * on this transport (latched by svc_poll()). 2191 */ 2192 mp = next->xp_req_head; 2193 next->xp_req_head = mp->b_next; 2194 mp->b_next = (mblk_t *)0; 2195 2196 TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_DEQ, 2197 "rpc_que_req_deq:pool %p mp %p", pool, mp); 2198 mutex_exit(&next->xp_req_lock); 2199 2200 /* 2201 * If this is a new request on a current transport then 2202 * the clone structure is already properly initialized. 2203 * Otherwise, if the request is on a different transport, 2204 * unlink from the current master and link to 2205 * the one we got a request on. 2206 */ 2207 if (next != xprt) { 2208 if (xprt) 2209 svc_clone_unlink(clone_xprt); 2210 svc_clone_link(next, clone_xprt); 2211 xprt = next; 2212 } 2213 2214 /* 2215 * If there are more requests and req_cv hasn't 2216 * been signaled yet then wake up one more thread now. 2217 * 2218 * We avoid signaling req_cv until the most recently 2219 * signaled thread wakes up and gets CPU to clear 2220 * the `drowsy' flag. 2221 */ 2222 if (!(pool->p_drowsy || pool->p_reqs <= pool->p_walkers || 2223 pool->p_asleep == 0)) { 2224 mutex_enter(&pool->p_req_lock); 2225 2226 if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers || 2227 pool->p_asleep == 0) 2228 mutex_exit(&pool->p_req_lock); 2229 else { 2230 pool->p_asleep--; 2231 pool->p_drowsy = TRUE; 2232 2233 cv_signal(&pool->p_req_cv); 2234 mutex_exit(&pool->p_req_lock); 2235 } 2236 } 2237 2238 /* 2239 * If there are no asleep/signaled threads, we are 2240 * still below pool->p_maxthreads limit, and no thread is 2241 * currently being created then signal the creator 2242 * for one more service thread. 2243 * 2244 * The asleep and drowsy checks are not protected 2245 * by a lock since it hurts performance and a wrong 2246 * decision is not essential. 2247 */ 2248 if (pool->p_asleep == 0 && !pool->p_drowsy && 2249 pool->p_threads + pool->p_detached_threads < 2250 pool->p_maxthreads) 2251 svc_creator_signal(pool); 2252 2253 /* 2254 * Process the request. 2255 */ 2256 svc_getreq(clone_xprt, mp); 2257 2258 /* If thread had a reservation it should have been canceled */ 2259 ASSERT(!clone_xprt->xp_reserved); 2260 2261 /* 2262 * If the clone is marked detached then exit. 2263 * The rpcmod slot has already been released 2264 * when we detached this thread. 2265 */ 2266 if (clone_xprt->xp_detached) { 2267 svc_thread_exitdetached(pool, clone_xprt); 2268 return (0); 2269 } 2270 2271 /* 2272 * Release our reference on the rpcmod 2273 * slot attached to xp_wq->q_ptr. 2274 */ 2275 (*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL); 2276 } 2277 /* NOTREACHED */ 2278 } 2279 2280 /* 2281 * Flush any pending requests for the queue and 2282 * and free the associated mblks. 2283 */ 2284 void 2285 svc_queueclean(queue_t *q) 2286 { 2287 SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0]; 2288 mblk_t *mp; 2289 SVCPOOL *pool; 2290 2291 /* 2292 * clean up the requests 2293 */ 2294 mutex_enter(&xprt->xp_req_lock); 2295 pool = xprt->xp_pool; 2296 while ((mp = xprt->xp_req_head) != NULL) { 2297 /* remove the request from the list and decrement p_reqs */ 2298 xprt->xp_req_head = mp->b_next; 2299 mutex_enter(&pool->p_req_lock); 2300 mp->b_next = (mblk_t *)0; 2301 pool->p_reqs--; 2302 mutex_exit(&pool->p_req_lock); 2303 (*RELE_PROC(xprt)) (xprt->xp_wq, mp); 2304 } 2305 mutex_exit(&xprt->xp_req_lock); 2306 } 2307 2308 /* 2309 * This routine is called by rpcmod to inform kernel RPC that a 2310 * queue is closing. It is called after all the requests have been 2311 * picked up (that is after all the slots on the queue have 2312 * been released by kernel RPC). It is also guaranteed that no more 2313 * request will be delivered on this transport. 2314 * 2315 * - clear xp_wq to mark the master server transport handle as closing 2316 * - if there are no more threads on this transport close/destroy it 2317 * - otherwise, broadcast threads sleeping in svc_poll(); the last 2318 * thread will close/destroy the transport. 2319 */ 2320 void 2321 svc_queueclose(queue_t *q) 2322 { 2323 SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0]; 2324 2325 if (xprt == NULL) { 2326 /* 2327 * If there is no master xprt associated with this stream, 2328 * then there is nothing to do. This happens regularly 2329 * with connection-oriented listening streams created by 2330 * nfsd. 2331 */ 2332 return; 2333 } 2334 2335 mutex_enter(&xprt->xp_thread_lock); 2336 2337 ASSERT(xprt->xp_req_head == NULL); 2338 ASSERT(xprt->xp_wq != NULL); 2339 2340 xprt->xp_wq = NULL; 2341 2342 if (xprt->xp_threads == 0) { 2343 SVCPOOL *pool = xprt->xp_pool; 2344 2345 /* 2346 * svc_xprt_cleanup() destroys the transport 2347 * or releases the transport thread lock 2348 */ 2349 svc_xprt_cleanup(xprt, FALSE); 2350 2351 mutex_enter(&pool->p_thread_lock); 2352 2353 /* 2354 * If the pool is in closing state and this was 2355 * the last transport in the pool then signal the creator 2356 * thread to clean up and exit. 2357 */ 2358 if (pool->p_closing && svc_pool_tryexit(pool)) { 2359 return; 2360 } 2361 mutex_exit(&pool->p_thread_lock); 2362 } else { 2363 /* 2364 * Wakeup threads sleeping in svc_poll() so that they 2365 * unlink from the transport 2366 */ 2367 mutex_enter(&xprt->xp_pool->p_req_lock); 2368 cv_broadcast(&xprt->xp_pool->p_req_cv); 2369 mutex_exit(&xprt->xp_pool->p_req_lock); 2370 2371 /* 2372 * NOTICE: No references to the master transport structure 2373 * beyond this point! 2374 */ 2375 mutex_exit(&xprt->xp_thread_lock); 2376 } 2377 } 2378 2379 /* 2380 * Interrupt `request delivery' routine called from rpcmod 2381 * - put a request at the tail of the transport request queue 2382 * - insert a hint for svc_poll() into the xprt-ready queue 2383 * - increment the `pending-requests' count for the pool 2384 * - wake up a thread sleeping in svc_poll() if necessary 2385 * - if all the threads are running ask the creator for a new one. 2386 */ 2387 void 2388 svc_queuereq(queue_t *q, mblk_t *mp) 2389 { 2390 SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0]; 2391 SVCPOOL *pool = xprt->xp_pool; 2392 2393 TRACE_0(TR_FAC_KRPC, TR_SVC_QUEUEREQ_START, "svc_queuereq_start"); 2394 2395 ASSERT(!is_system_labeled() || DB_CRED(mp) != NULL || 2396 mp->b_datap->db_type != M_DATA); 2397 2398 /* 2399 * Step 1. 2400 * Grab the transport's request lock and the 2401 * pool's request lock so that when we put 2402 * the request at the tail of the transport's 2403 * request queue, possibly put the request on 2404 * the xprt ready queue and increment the 2405 * pending request count it looks atomic. 2406 */ 2407 mutex_enter(&xprt->xp_req_lock); 2408 mutex_enter(&pool->p_req_lock); 2409 if (xprt->xp_req_head == NULL) 2410 xprt->xp_req_head = mp; 2411 else 2412 xprt->xp_req_tail->b_next = mp; 2413 xprt->xp_req_tail = mp; 2414 2415 /* 2416 * Step 2. 2417 * Insert a hint into the xprt-ready queue, increment 2418 * `pending-requests' count for the pool, and wake up 2419 * a thread sleeping in svc_poll() if necessary. 2420 */ 2421 2422 /* Insert pointer to this transport into the xprt-ready queue */ 2423 svc_xprt_qput(pool, xprt); 2424 2425 /* Increment the `pending-requests' count for the pool */ 2426 pool->p_reqs++; 2427 2428 TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_ENQ, 2429 "rpc_que_req_enq:pool %p mp %p", pool, mp); 2430 2431 /* 2432 * If there are more requests and req_cv hasn't 2433 * been signaled yet then wake up one more thread now. 2434 * 2435 * We avoid signaling req_cv until the most recently 2436 * signaled thread wakes up and gets CPU to clear 2437 * the `drowsy' flag. 2438 */ 2439 if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers || 2440 pool->p_asleep == 0) { 2441 mutex_exit(&pool->p_req_lock); 2442 } else { 2443 pool->p_drowsy = TRUE; 2444 pool->p_asleep--; 2445 2446 /* 2447 * Signal wakeup and drop the request lock. 2448 */ 2449 cv_signal(&pool->p_req_cv); 2450 mutex_exit(&pool->p_req_lock); 2451 } 2452 mutex_exit(&xprt->xp_req_lock); 2453 2454 /* 2455 * Step 3. 2456 * If there are no asleep/signaled threads, we are 2457 * still below pool->p_maxthreads limit, and no thread is 2458 * currently being created then signal the creator 2459 * for one more service thread. 2460 * 2461 * The asleep and drowsy checks are not not protected 2462 * by a lock since it hurts performance and a wrong 2463 * decision is not essential. 2464 */ 2465 if (pool->p_asleep == 0 && !pool->p_drowsy && 2466 pool->p_threads + pool->p_detached_threads < pool->p_maxthreads) 2467 svc_creator_signal(pool); 2468 2469 TRACE_1(TR_FAC_KRPC, TR_SVC_QUEUEREQ_END, 2470 "svc_queuereq_end:(%S)", "end"); 2471 } 2472 2473 /* 2474 * Reserve a service thread so that it can be detached later. 2475 * This reservation is required to make sure that when it tries to 2476 * detach itself the total number of detached threads does not exceed 2477 * pool->p_maxthreads - pool->p_redline (i.e. that we can have 2478 * up to pool->p_redline non-detached threads). 2479 * 2480 * If the thread does not detach itself later, it should cancel the 2481 * reservation before returning to svc_run(). 2482 * 2483 * - check if there is room for more reserved/detached threads 2484 * - if so, then increment the `reserved threads' count for the pool 2485 * - mark the thread as reserved (setting the flag in the clone transport 2486 * handle for this thread 2487 * - returns 1 if the reservation succeeded, 0 if it failed. 2488 */ 2489 int 2490 svc_reserve_thread(SVCXPRT *clone_xprt) 2491 { 2492 SVCPOOL *pool = clone_xprt->xp_master->xp_pool; 2493 2494 /* Recursive reservations are not allowed */ 2495 ASSERT(!clone_xprt->xp_reserved); 2496 ASSERT(!clone_xprt->xp_detached); 2497 2498 /* Check pool counts if there is room for reservation */ 2499 mutex_enter(&pool->p_thread_lock); 2500 if (pool->p_reserved_threads + pool->p_detached_threads >= 2501 pool->p_maxthreads - pool->p_redline) { 2502 mutex_exit(&pool->p_thread_lock); 2503 return (0); 2504 } 2505 pool->p_reserved_threads++; 2506 mutex_exit(&pool->p_thread_lock); 2507 2508 /* Mark the thread (clone handle) as reserved */ 2509 clone_xprt->xp_reserved = TRUE; 2510 2511 return (1); 2512 } 2513 2514 /* 2515 * Cancel a reservation for a thread. 2516 * - decrement the `reserved threads' count for the pool 2517 * - clear the flag in the clone transport handle for this thread. 2518 */ 2519 void 2520 svc_unreserve_thread(SVCXPRT *clone_xprt) 2521 { 2522 SVCPOOL *pool = clone_xprt->xp_master->xp_pool; 2523 2524 /* Thread must have a reservation */ 2525 ASSERT(clone_xprt->xp_reserved); 2526 ASSERT(!clone_xprt->xp_detached); 2527 2528 /* Decrement global count */ 2529 mutex_enter(&pool->p_thread_lock); 2530 pool->p_reserved_threads--; 2531 mutex_exit(&pool->p_thread_lock); 2532 2533 /* Clear reservation flag */ 2534 clone_xprt->xp_reserved = FALSE; 2535 } 2536 2537 /* 2538 * Detach a thread from its transport, so that it can block for an 2539 * extended time. Because the transport can be closed after the thread is 2540 * detached, the thread should have already sent off a reply if it was 2541 * going to send one. 2542 * 2543 * - decrement `non-detached threads' count and increment `detached threads' 2544 * counts for the transport 2545 * - decrement the `non-detached threads' and `reserved threads' 2546 * counts and increment the `detached threads' count for the pool 2547 * - release the rpcmod slot 2548 * - mark the clone (thread) as detached. 2549 * 2550 * No need to return a pointer to the thread's CPR information, since 2551 * the thread has a userland identity. 2552 * 2553 * NOTICE: a thread must not detach itself without making a prior reservation 2554 * through svc_thread_reserve(). 2555 */ 2556 callb_cpr_t * 2557 svc_detach_thread(SVCXPRT *clone_xprt) 2558 { 2559 SVCMASTERXPRT *xprt = clone_xprt->xp_master; 2560 SVCPOOL *pool = xprt->xp_pool; 2561 2562 /* Thread must have a reservation */ 2563 ASSERT(clone_xprt->xp_reserved); 2564 ASSERT(!clone_xprt->xp_detached); 2565 2566 /* Bookkeeping for this transport */ 2567 mutex_enter(&xprt->xp_thread_lock); 2568 xprt->xp_threads--; 2569 xprt->xp_detached_threads++; 2570 mutex_exit(&xprt->xp_thread_lock); 2571 2572 /* Bookkeeping for the pool */ 2573 mutex_enter(&pool->p_thread_lock); 2574 pool->p_threads--; 2575 pool->p_reserved_threads--; 2576 pool->p_detached_threads++; 2577 mutex_exit(&pool->p_thread_lock); 2578 2579 /* Release an rpcmod slot for this request */ 2580 (*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL); 2581 2582 /* Mark the clone (thread) as detached */ 2583 clone_xprt->xp_reserved = FALSE; 2584 clone_xprt->xp_detached = TRUE; 2585 2586 return (NULL); 2587 } 2588 2589 /* 2590 * This routine is responsible for extracting RDMA plugin master XPRT, 2591 * unregister from the SVCPOOL and initiate plugin specific cleanup. 2592 * It is passed a list/group of rdma transports as records which are 2593 * active in a given registered or unregistered kRPC thread pool. Its shuts 2594 * all active rdma transports in that pool. If the thread active on the trasport 2595 * happens to be last thread for that pool, it will signal the creater thread 2596 * to cleanup the pool and destroy the xprt in svc_queueclose() 2597 */ 2598 void 2599 rdma_stop(rdma_xprt_group_t rdma_xprts) 2600 { 2601 SVCMASTERXPRT *xprt; 2602 rdma_xprt_record_t *curr_rec; 2603 queue_t *q; 2604 mblk_t *mp; 2605 int i; 2606 SVCPOOL *pool; 2607 2608 if (rdma_xprts.rtg_count == 0) 2609 return; 2610 2611 for (i = 0; i < rdma_xprts.rtg_count; i++) { 2612 curr_rec = rdma_xprts.rtg_listhead; 2613 rdma_xprts.rtg_listhead = curr_rec->rtr_next; 2614 curr_rec->rtr_next = NULL; 2615 xprt = curr_rec->rtr_xprt_ptr; 2616 q = xprt->xp_wq; 2617 svc_rdma_kstop(xprt); 2618 2619 mutex_enter(&xprt->xp_req_lock); 2620 pool = xprt->xp_pool; 2621 while ((mp = xprt->xp_req_head) != NULL) { 2622 /* 2623 * remove the request from the list and 2624 * decrement p_reqs 2625 */ 2626 xprt->xp_req_head = mp->b_next; 2627 mutex_enter(&pool->p_req_lock); 2628 mp->b_next = (mblk_t *)0; 2629 pool->p_reqs--; 2630 mutex_exit(&pool->p_req_lock); 2631 if (mp) 2632 freemsg(mp); 2633 } 2634 mutex_exit(&xprt->xp_req_lock); 2635 svc_queueclose(q); 2636 #ifdef DEBUG 2637 if (rdma_check) 2638 cmn_err(CE_NOTE, "rdma_stop: Exited svc_queueclose\n"); 2639 #endif 2640 /* 2641 * Free the rdma transport record for the expunged rdma 2642 * based master transport handle. 2643 */ 2644 kmem_free(curr_rec, sizeof (rdma_xprt_record_t)); 2645 if (!rdma_xprts.rtg_listhead) 2646 break; 2647 } 2648 } 2649