xref: /illumos-gate/usr/src/uts/common/rpc/svc.c (revision b1cdc7203182cbb9ef6b7bc6085ee5b8dbee793b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
24  */
25 
26 /*
27  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 /*
32  * Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved.
33  */
34 
35 /*	Copyright (c) 1983, 1984, 1985,  1986, 1987, 1988, 1989 AT&T	*/
36 /*	  All Rights Reserved  	*/
37 
38 /*
39  * Portions of this source code were derived from Berkeley 4.3 BSD
40  * under license from the Regents of the University of California.
41  */
42 
43 /*
44  * Server-side remote procedure call interface.
45  *
46  * Master transport handle (SVCMASTERXPRT).
47  *   The master transport handle structure is shared among service
48  *   threads processing events on the transport. Some fields in the
49  *   master structure are protected by locks
50  *   - xp_req_lock protects the request queue:
51  *	xp_req_head, xp_req_tail, xp_reqs, xp_size, xp_full, xp_enable
52  *   - xp_thread_lock protects the thread (clone) counts
53  *	xp_threads, xp_detached_threads, xp_wq
54  *   Each master transport is registered to exactly one thread pool.
55  *
56  * Clone transport handle (SVCXPRT)
57  *   The clone transport handle structure is a per-service-thread handle
58  *   to the transport. The structure carries all the fields/buffers used
59  *   for request processing. A service thread or, in other words, a clone
60  *   structure, can be linked to an arbitrary master structure to process
61  *   requests on this transport. The master handle keeps track of reference
62  *   counts of threads (clones) linked to it. A service thread can switch
63  *   to another transport by unlinking its clone handle from the current
64  *   transport and linking to a new one. Switching is relatively inexpensive
65  *   but it involves locking (master's xprt->xp_thread_lock).
66  *
67  * Pools.
68  *   A pool represents a kernel RPC service (NFS, Lock Manager, etc.).
69  *   Transports related to the service are registered to the service pool.
70  *   Service threads can switch between different transports in the pool.
71  *   Thus, each service has its own pool of service threads. The maximum
72  *   number of threads in a pool is pool->p_maxthreads. This limit allows
73  *   to restrict resource usage by the service. Some fields are protected
74  *   by locks:
75  *   - p_req_lock protects several counts and flags:
76  *	p_reqs, p_size, p_walkers, p_asleep, p_drowsy, p_req_cv
77  *   - p_thread_lock governs other thread counts:
78  *	p_threads, p_detached_threads, p_reserved_threads, p_closing
79  *
80  *   In addition, each pool contains a doubly-linked list of transports,
81  *   an `xprt-ready' queue and a creator thread (see below). Threads in
82  *   the pool share some other parameters such as stack size and
83  *   polling timeout.
84  *
85  *   Pools are initialized through the svc_pool_create() function called from
86  *   the nfssys() system call. However, thread creation must be done by
87  *   the userland agent. This is done by using SVCPOOL_WAIT and
88  *   SVCPOOL_RUN arguments to nfssys(), which call svc_wait() and
89  *   svc_do_run(), respectively. Once the pool has been initialized,
90  *   the userland process must set up a 'creator' thread. This thread
91  *   should park itself in the kernel by calling svc_wait(). If
92  *   svc_wait() returns successfully, it should fork off a new worker
93  *   thread, which then calls svc_do_run() in order to get work. When
94  *   that thread is complete, svc_do_run() will return, and the user
95  *   program should call thr_exit().
96  *
97  *   When we try to register a new pool and there is an old pool with
98  *   the same id in the doubly linked pool list (this happens when we kill
99  *   and restart nfsd or lockd), then we unlink the old pool from the list
100  *   and mark its state as `closing'. After that the transports can still
101  *   process requests but new transports won't be registered. When all the
102  *   transports and service threads associated with the pool are gone the
103  *   creator thread (see below) will clean up the pool structure and exit.
104  *
105  * svc_queuereq() and svc_run().
106  *   The kernel RPC server is interrupt driven. The svc_queuereq() interrupt
107  *   routine is called to deliver an RPC request. The service threads
108  *   loop in svc_run(). The interrupt function queues a request on the
109  *   transport's queue and it makes sure that the request is serviced.
110  *   It may either wake up one of sleeping threads, or ask for a new thread
111  *   to be created, or, if the previous request is just being picked up, do
112  *   nothing. In the last case the service thread that is picking up the
113  *   previous request will wake up or create the next thread. After a service
114  *   thread processes a request and sends a reply it returns to svc_run()
115  *   and svc_run() calls svc_poll() to find new input.
116  *
117  * svc_poll().
118  *   In order to avoid unnecessary locking, which causes performance
119  *   problems, we always look for a pending request on the current transport.
120  *   If there is none we take a hint from the pool's `xprt-ready' queue.
121  *   If the queue had an overflow we switch to the `drain' mode checking
122  *   each transport  in the pool's transport list. Once we find a
123  *   master transport handle with a pending request we latch the request
124  *   lock on this transport and return to svc_run(). If the request
125  *   belongs to a transport different than the one the service thread is
126  *   linked to we need to unlink and link again.
127  *
128  *   A service thread goes asleep when there are no pending
129  *   requests on the transports registered on the pool's transports.
130  *   All the pool's threads sleep on the same condition variable.
131  *   If a thread has been sleeping for too long period of time
132  *   (by default 5 seconds) it wakes up and exits.  Also when a transport
133  *   is closing sleeping threads wake up to unlink from this transport.
134  *
135  * The `xprt-ready' queue.
136  *   If a service thread finds no request on a transport it is currently linked
137  *   to it will find another transport with a pending request. To make
138  *   this search more efficient each pool has an `xprt-ready' queue.
139  *   The queue is a FIFO. When the interrupt routine queues a request it also
140  *   inserts a pointer to the transport into the `xprt-ready' queue. A
141  *   thread looking for a transport with a pending request can pop up a
142  *   transport and check for a request. The request can be already gone
143  *   since it could be taken by a thread linked to that transport. In such a
144  *   case we try the next hint. The `xprt-ready' queue has fixed size (by
145  *   default 256 nodes). If it overflows svc_poll() has to switch to the
146  *   less efficient but safe `drain' mode and walk through the pool's
147  *   transport list.
148  *
149  *   Both the svc_poll() loop and the `xprt-ready' queue are optimized
150  *   for the peak load case that is for the situation when the queue is not
151  *   empty, there are all the time few pending requests, and a service
152  *   thread which has just processed a request does not go asleep but picks
153  *   up immediately the next request.
154  *
155  * Thread creator.
156  *   Each pool has a thread creator associated with it. The creator thread
157  *   sleeps on a condition variable and waits for a signal to create a
158  *   service thread. The actual thread creation is done in userland by
159  *   the method described in "Pools" above.
160  *
161  *   Signaling threads should turn on the `creator signaled' flag, and
162  *   can avoid sending signals when the flag is on. The flag is cleared
163  *   when the thread is created.
164  *
165  *   When the pool is in closing state (ie it has been already unregistered
166  *   from the pool list) the last thread on the last transport in the pool
167  *   should turn the p_creator_exit flag on. The creator thread will
168  *   clean up the pool structure and exit.
169  *
170  * Thread reservation; Detaching service threads.
171  *   A service thread can detach itself to block for an extended amount
172  *   of time. However, to keep the service active we need to guarantee
173  *   at least pool->p_redline non-detached threads that can process incoming
174  *   requests. This, the maximum number of detached and reserved threads is
175  *   p->p_maxthreads - p->p_redline. A service thread should first acquire
176  *   a reservation, and if the reservation was granted it can detach itself.
177  *   If a reservation was granted but the thread does not detach itself
178  *   it should cancel the reservation before it returns to svc_run().
179  */
180 
181 #include <sys/param.h>
182 #include <sys/types.h>
183 #include <rpc/types.h>
184 #include <sys/socket.h>
185 #include <sys/time.h>
186 #include <sys/tiuser.h>
187 #include <sys/t_kuser.h>
188 #include <netinet/in.h>
189 #include <rpc/xdr.h>
190 #include <rpc/auth.h>
191 #include <rpc/clnt.h>
192 #include <rpc/rpc_msg.h>
193 #include <rpc/svc.h>
194 #include <sys/proc.h>
195 #include <sys/user.h>
196 #include <sys/stream.h>
197 #include <sys/strsubr.h>
198 #include <sys/strsun.h>
199 #include <sys/tihdr.h>
200 #include <sys/debug.h>
201 #include <sys/cmn_err.h>
202 #include <sys/file.h>
203 #include <sys/systm.h>
204 #include <sys/callb.h>
205 #include <sys/vtrace.h>
206 #include <sys/zone.h>
207 #include <nfs/nfs.h>
208 #include <sys/tsol/label_macro.h>
209 
210 /*
211  * Defines for svc_poll()
212  */
213 #define	SVC_EXPRTGONE ((SVCMASTERXPRT *)1)	/* Transport is closing */
214 #define	SVC_ETIMEDOUT ((SVCMASTERXPRT *)2)	/* Timeout */
215 #define	SVC_EINTR ((SVCMASTERXPRT *)3)		/* Interrupted by signal */
216 
217 /*
218  * Default stack size for service threads.
219  */
220 #define	DEFAULT_SVC_RUN_STKSIZE		(0)	/* default kernel stack */
221 
222 int    svc_default_stksize = DEFAULT_SVC_RUN_STKSIZE;
223 
224 /*
225  * Default polling timeout for service threads.
226  * Multiplied by hz when used.
227  */
228 #define	DEFAULT_SVC_POLL_TIMEOUT	(5)	/* seconds */
229 
230 clock_t svc_default_timeout = DEFAULT_SVC_POLL_TIMEOUT;
231 
232 /*
233  * Size of the `xprt-ready' queue.
234  */
235 #define	DEFAULT_SVC_QSIZE		(256)	/* qnodes */
236 
237 size_t svc_default_qsize = DEFAULT_SVC_QSIZE;
238 
239 /*
240  * Default limit for the number of service threads.
241  */
242 #define	DEFAULT_SVC_MAXTHREADS		(INT16_MAX)
243 
244 int    svc_default_maxthreads = DEFAULT_SVC_MAXTHREADS;
245 
246 /*
247  * Maximum number of requests from the same transport (in `drain' mode).
248  */
249 #define	DEFAULT_SVC_MAX_SAME_XPRT	(8)
250 
251 int    svc_default_max_same_xprt = DEFAULT_SVC_MAX_SAME_XPRT;
252 
253 
254 /*
255  * Default `Redline' of non-detached threads.
256  * Total number of detached and reserved threads in an RPC server
257  * thread pool is limited to pool->p_maxthreads - svc_redline.
258  */
259 #define	DEFAULT_SVC_REDLINE		(1)
260 
261 int    svc_default_redline = DEFAULT_SVC_REDLINE;
262 
263 /*
264  * A node for the `xprt-ready' queue.
265  * See below.
266  */
267 struct __svcxprt_qnode {
268 	__SVCXPRT_QNODE	*q_next;
269 	SVCMASTERXPRT	*q_xprt;
270 };
271 
272 /*
273  * Global SVC variables (private).
274  */
275 struct svc_globals {
276 	SVCPOOL		*svc_pools;
277 	kmutex_t	svc_plock;
278 };
279 
280 /*
281  * Debug variable to check for rdma based
282  * transport startup and cleanup. Contorlled
283  * through /etc/system. Off by default.
284  */
285 int rdma_check = 0;
286 
287 /*
288  * This allows disabling flow control in svc_queuereq().
289  */
290 volatile int svc_flowcontrol_disable = 0;
291 
292 /*
293  * Authentication parameters list.
294  */
295 static caddr_t rqcred_head;
296 static kmutex_t rqcred_lock;
297 
298 /*
299  * Pointers to transport specific `rele' routines in rpcmod (set from rpcmod).
300  */
301 void	(*rpc_rele)(queue_t *, mblk_t *, bool_t) = NULL;
302 void	(*mir_rele)(queue_t *, mblk_t *, bool_t) = NULL;
303 
304 /* ARGSUSED */
305 void
306 rpc_rdma_rele(queue_t *q, mblk_t *mp, bool_t enable)
307 {
308 }
309 void    (*rdma_rele)(queue_t *, mblk_t *, bool_t) = rpc_rdma_rele;
310 
311 
312 /*
313  * This macro picks which `rele' routine to use, based on the transport type.
314  */
315 #define	RELE_PROC(xprt) \
316 	((xprt)->xp_type == T_RDMA ? rdma_rele : \
317 	(((xprt)->xp_type == T_CLTS) ? rpc_rele : mir_rele))
318 
319 /*
320  * If true, then keep quiet about version mismatch.
321  * This macro is for broadcast RPC only. We have no broadcast RPC in
322  * kernel now but one may define a flag in the transport structure
323  * and redefine this macro.
324  */
325 #define	version_keepquiet(xprt)	(FALSE)
326 
327 /*
328  * ZSD key used to retrieve zone-specific svc globals
329  */
330 static zone_key_t svc_zone_key;
331 
332 static void svc_callout_free(SVCMASTERXPRT *);
333 static void svc_xprt_qinit(SVCPOOL *, size_t);
334 static void svc_xprt_qdestroy(SVCPOOL *);
335 static void svc_thread_creator(SVCPOOL *);
336 static void svc_creator_signal(SVCPOOL *);
337 static void svc_creator_signalexit(SVCPOOL *);
338 static void svc_pool_unregister(struct svc_globals *, SVCPOOL *);
339 static int svc_run(SVCPOOL *);
340 
341 /* ARGSUSED */
342 static void *
343 svc_zoneinit(zoneid_t zoneid)
344 {
345 	struct svc_globals *svc;
346 
347 	svc = kmem_alloc(sizeof (*svc), KM_SLEEP);
348 	mutex_init(&svc->svc_plock, NULL, MUTEX_DEFAULT, NULL);
349 	svc->svc_pools = NULL;
350 	return (svc);
351 }
352 
353 /* ARGSUSED */
354 static void
355 svc_zoneshutdown(zoneid_t zoneid, void *arg)
356 {
357 	struct svc_globals *svc = arg;
358 	SVCPOOL *pool;
359 
360 	mutex_enter(&svc->svc_plock);
361 	while ((pool = svc->svc_pools) != NULL) {
362 		svc_pool_unregister(svc, pool);
363 	}
364 	mutex_exit(&svc->svc_plock);
365 }
366 
367 /* ARGSUSED */
368 static void
369 svc_zonefini(zoneid_t zoneid, void *arg)
370 {
371 	struct svc_globals *svc = arg;
372 
373 	ASSERT(svc->svc_pools == NULL);
374 	mutex_destroy(&svc->svc_plock);
375 	kmem_free(svc, sizeof (*svc));
376 }
377 
378 /*
379  * Global SVC init routine.
380  * Initialize global generic and transport type specific structures
381  * used by the kernel RPC server side. This routine is called only
382  * once when the module is being loaded.
383  */
384 void
385 svc_init()
386 {
387 	zone_key_create(&svc_zone_key, svc_zoneinit, svc_zoneshutdown,
388 	    svc_zonefini);
389 	svc_cots_init();
390 	svc_clts_init();
391 }
392 
393 /*
394  * Destroy the SVCPOOL structure.
395  */
396 static void
397 svc_pool_cleanup(SVCPOOL *pool)
398 {
399 	ASSERT(pool->p_threads + pool->p_detached_threads == 0);
400 	ASSERT(pool->p_lcount == 0);
401 	ASSERT(pool->p_closing);
402 
403 	/*
404 	 * Call the user supplied shutdown function.  This is done
405 	 * here so the user of the pool will be able to cleanup
406 	 * service related resources.
407 	 */
408 	if (pool->p_shutdown != NULL)
409 		(pool->p_shutdown)();
410 
411 	/* Destroy `xprt-ready' queue */
412 	svc_xprt_qdestroy(pool);
413 
414 	/* Destroy transport list */
415 	rw_destroy(&pool->p_lrwlock);
416 
417 	/* Destroy locks and condition variables */
418 	mutex_destroy(&pool->p_thread_lock);
419 	mutex_destroy(&pool->p_req_lock);
420 	cv_destroy(&pool->p_req_cv);
421 
422 	/* Destroy creator's locks and condition variables */
423 	mutex_destroy(&pool->p_creator_lock);
424 	cv_destroy(&pool->p_creator_cv);
425 	mutex_destroy(&pool->p_user_lock);
426 	cv_destroy(&pool->p_user_cv);
427 
428 	/* Free pool structure */
429 	kmem_free(pool, sizeof (SVCPOOL));
430 }
431 
432 /*
433  * If all the transports and service threads are already gone
434  * signal the creator thread to clean up and exit.
435  */
436 static bool_t
437 svc_pool_tryexit(SVCPOOL *pool)
438 {
439 	ASSERT(MUTEX_HELD(&pool->p_thread_lock));
440 	ASSERT(pool->p_closing);
441 
442 	if (pool->p_threads + pool->p_detached_threads == 0) {
443 		rw_enter(&pool->p_lrwlock, RW_READER);
444 		if (pool->p_lcount == 0) {
445 			/*
446 			 * Release the locks before sending a signal.
447 			 */
448 			rw_exit(&pool->p_lrwlock);
449 			mutex_exit(&pool->p_thread_lock);
450 
451 			/*
452 			 * Notify the creator thread to clean up and exit
453 			 *
454 			 * NOTICE: No references to the pool beyond this point!
455 			 *		   The pool is being destroyed.
456 			 */
457 			ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
458 			svc_creator_signalexit(pool);
459 
460 			return (TRUE);
461 		}
462 		rw_exit(&pool->p_lrwlock);
463 	}
464 
465 	ASSERT(MUTEX_HELD(&pool->p_thread_lock));
466 	return (FALSE);
467 }
468 
469 /*
470  * Find a pool with a given id.
471  */
472 static SVCPOOL *
473 svc_pool_find(struct svc_globals *svc, int id)
474 {
475 	SVCPOOL *pool;
476 
477 	ASSERT(MUTEX_HELD(&svc->svc_plock));
478 
479 	/*
480 	 * Search the list for a pool with a matching id
481 	 * and register the transport handle with that pool.
482 	 */
483 	for (pool = svc->svc_pools; pool; pool = pool->p_next)
484 		if (pool->p_id == id)
485 			return (pool);
486 
487 	return (NULL);
488 }
489 
490 /*
491  * PSARC 2003/523 Contract Private Interface
492  * svc_do_run
493  * Changes must be reviewed by Solaris File Sharing
494  * Changes must be communicated to contract-2003-523@sun.com
495  */
496 int
497 svc_do_run(int id)
498 {
499 	SVCPOOL *pool;
500 	int err = 0;
501 	struct svc_globals *svc;
502 
503 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
504 	mutex_enter(&svc->svc_plock);
505 
506 	pool = svc_pool_find(svc, id);
507 
508 	mutex_exit(&svc->svc_plock);
509 
510 	if (pool == NULL)
511 		return (ENOENT);
512 
513 	/*
514 	 * Increment counter of pool threads now
515 	 * that a thread has been created.
516 	 */
517 	mutex_enter(&pool->p_thread_lock);
518 	pool->p_threads++;
519 	mutex_exit(&pool->p_thread_lock);
520 
521 	/* Give work to the new thread. */
522 	err = svc_run(pool);
523 
524 	return (err);
525 }
526 
527 /*
528  * Unregister a pool from the pool list.
529  * Set the closing state. If all the transports and service threads
530  * are already gone signal the creator thread to clean up and exit.
531  */
532 static void
533 svc_pool_unregister(struct svc_globals *svc, SVCPOOL *pool)
534 {
535 	SVCPOOL *next = pool->p_next;
536 	SVCPOOL *prev = pool->p_prev;
537 
538 	ASSERT(MUTEX_HELD(&svc->svc_plock));
539 
540 	/* Remove from the list */
541 	if (pool == svc->svc_pools)
542 		svc->svc_pools = next;
543 	if (next)
544 		next->p_prev = prev;
545 	if (prev)
546 		prev->p_next = next;
547 	pool->p_next = pool->p_prev = NULL;
548 
549 	/*
550 	 * Offline the pool. Mark the pool as closing.
551 	 * If there are no transports in this pool notify
552 	 * the creator thread to clean it up and exit.
553 	 */
554 	mutex_enter(&pool->p_thread_lock);
555 	if (pool->p_offline != NULL)
556 		(pool->p_offline)();
557 	pool->p_closing = TRUE;
558 	if (svc_pool_tryexit(pool))
559 		return;
560 	mutex_exit(&pool->p_thread_lock);
561 }
562 
563 /*
564  * Register a pool with a given id in the global doubly linked pool list.
565  * - if there is a pool with the same id in the list then unregister it
566  * - insert the new pool into the list.
567  */
568 static void
569 svc_pool_register(struct svc_globals *svc, SVCPOOL *pool, int id)
570 {
571 	SVCPOOL *old_pool;
572 
573 	/*
574 	 * If there is a pool with the same id then remove it from
575 	 * the list and mark the pool as closing.
576 	 */
577 	mutex_enter(&svc->svc_plock);
578 
579 	if (old_pool = svc_pool_find(svc, id))
580 		svc_pool_unregister(svc, old_pool);
581 
582 	/* Insert into the doubly linked list */
583 	pool->p_id = id;
584 	pool->p_next = svc->svc_pools;
585 	pool->p_prev = NULL;
586 	if (svc->svc_pools)
587 		svc->svc_pools->p_prev = pool;
588 	svc->svc_pools = pool;
589 
590 	mutex_exit(&svc->svc_plock);
591 }
592 
593 /*
594  * Initialize a newly created pool structure
595  */
596 static int
597 svc_pool_init(SVCPOOL *pool, uint_t maxthreads, uint_t redline,
598 	uint_t qsize, uint_t timeout, uint_t stksize, uint_t max_same_xprt)
599 {
600 	klwp_t *lwp = ttolwp(curthread);
601 
602 	ASSERT(pool);
603 
604 	if (maxthreads == 0)
605 		maxthreads = svc_default_maxthreads;
606 	if (redline == 0)
607 		redline = svc_default_redline;
608 	if (qsize == 0)
609 		qsize = svc_default_qsize;
610 	if (timeout == 0)
611 		timeout = svc_default_timeout;
612 	if (stksize == 0)
613 		stksize = svc_default_stksize;
614 	if (max_same_xprt == 0)
615 		max_same_xprt = svc_default_max_same_xprt;
616 
617 	if (maxthreads < redline)
618 		return (EINVAL);
619 
620 	/* Allocate and initialize the `xprt-ready' queue */
621 	svc_xprt_qinit(pool, qsize);
622 
623 	/* Initialize doubly-linked xprt list */
624 	rw_init(&pool->p_lrwlock, NULL, RW_DEFAULT, NULL);
625 
626 	/*
627 	 * Setting lwp_childstksz on the current lwp so that
628 	 * descendants of this lwp get the modified stacksize, if
629 	 * it is defined. It is important that either this lwp or
630 	 * one of its descendants do the actual servicepool thread
631 	 * creation to maintain the stacksize inheritance.
632 	 */
633 	if (lwp != NULL)
634 		lwp->lwp_childstksz = stksize;
635 
636 	/* Initialize thread limits, locks and condition variables */
637 	pool->p_maxthreads = maxthreads;
638 	pool->p_redline = redline;
639 	pool->p_timeout = timeout * hz;
640 	pool->p_stksize = stksize;
641 	pool->p_max_same_xprt = max_same_xprt;
642 	mutex_init(&pool->p_thread_lock, NULL, MUTEX_DEFAULT, NULL);
643 	mutex_init(&pool->p_req_lock, NULL, MUTEX_DEFAULT, NULL);
644 	cv_init(&pool->p_req_cv, NULL, CV_DEFAULT, NULL);
645 
646 	/* Initialize userland creator */
647 	pool->p_user_exit = FALSE;
648 	pool->p_signal_create_thread = FALSE;
649 	pool->p_user_waiting = FALSE;
650 	mutex_init(&pool->p_user_lock, NULL, MUTEX_DEFAULT, NULL);
651 	cv_init(&pool->p_user_cv, NULL, CV_DEFAULT, NULL);
652 
653 	/* Initialize the creator and start the creator thread */
654 	pool->p_creator_exit = FALSE;
655 	mutex_init(&pool->p_creator_lock, NULL, MUTEX_DEFAULT, NULL);
656 	cv_init(&pool->p_creator_cv, NULL, CV_DEFAULT, NULL);
657 
658 	(void) zthread_create(NULL, pool->p_stksize, svc_thread_creator,
659 	    pool, 0, minclsyspri);
660 
661 	return (0);
662 }
663 
664 /*
665  * PSARC 2003/523 Contract Private Interface
666  * svc_pool_create
667  * Changes must be reviewed by Solaris File Sharing
668  * Changes must be communicated to contract-2003-523@sun.com
669  *
670  * Create an kernel RPC server-side thread/transport pool.
671  *
672  * This is public interface for creation of a server RPC thread pool
673  * for a given service provider. Transports registered with the pool's id
674  * will be served by a pool's threads. This function is called from the
675  * nfssys() system call.
676  */
677 int
678 svc_pool_create(struct svcpool_args *args)
679 {
680 	SVCPOOL *pool;
681 	int error;
682 	struct svc_globals *svc;
683 
684 	/*
685 	 * Caller should check credentials in a way appropriate
686 	 * in the context of the call.
687 	 */
688 
689 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
690 	/* Allocate a new pool */
691 	pool = kmem_zalloc(sizeof (SVCPOOL), KM_SLEEP);
692 
693 	/*
694 	 * Initialize the pool structure and create a creator thread.
695 	 */
696 	error = svc_pool_init(pool, args->maxthreads, args->redline,
697 	    args->qsize, args->timeout, args->stksize, args->max_same_xprt);
698 
699 	if (error) {
700 		kmem_free(pool, sizeof (SVCPOOL));
701 		return (error);
702 	}
703 
704 	/* Register the pool with the global pool list */
705 	svc_pool_register(svc, pool, args->id);
706 
707 	return (0);
708 }
709 
710 int
711 svc_pool_control(int id, int cmd, void *arg)
712 {
713 	SVCPOOL *pool;
714 	struct svc_globals *svc;
715 
716 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
717 
718 	switch (cmd) {
719 	case SVCPSET_SHUTDOWN_PROC:
720 		/*
721 		 * Search the list for a pool with a matching id
722 		 * and register the transport handle with that pool.
723 		 */
724 		mutex_enter(&svc->svc_plock);
725 
726 		if ((pool = svc_pool_find(svc, id)) == NULL) {
727 			mutex_exit(&svc->svc_plock);
728 			return (ENOENT);
729 		}
730 		/*
731 		 * Grab the transport list lock before releasing the
732 		 * pool list lock
733 		 */
734 		rw_enter(&pool->p_lrwlock, RW_WRITER);
735 		mutex_exit(&svc->svc_plock);
736 
737 		pool->p_shutdown = *((void (*)())arg);
738 
739 		rw_exit(&pool->p_lrwlock);
740 
741 		return (0);
742 	case SVCPSET_UNREGISTER_PROC:
743 		/*
744 		 * Search the list for a pool with a matching id
745 		 * and register the unregister callback handle with that pool.
746 		 */
747 		mutex_enter(&svc->svc_plock);
748 
749 		if ((pool = svc_pool_find(svc, id)) == NULL) {
750 			mutex_exit(&svc->svc_plock);
751 			return (ENOENT);
752 		}
753 		/*
754 		 * Grab the transport list lock before releasing the
755 		 * pool list lock
756 		 */
757 		rw_enter(&pool->p_lrwlock, RW_WRITER);
758 		mutex_exit(&svc->svc_plock);
759 
760 		pool->p_offline = *((void (*)())arg);
761 
762 		rw_exit(&pool->p_lrwlock);
763 
764 		return (0);
765 	default:
766 		return (EINVAL);
767 	}
768 }
769 
770 /*
771  * Pool's transport list manipulation routines.
772  * - svc_xprt_register()
773  * - svc_xprt_unregister()
774  *
775  * svc_xprt_register() is called from svc_tli_kcreate() to
776  * insert a new master transport handle into the doubly linked
777  * list of server transport handles (one list per pool).
778  *
779  * The list is used by svc_poll(), when it operates in `drain'
780  * mode, to search for a next transport with a pending request.
781  */
782 
783 int
784 svc_xprt_register(SVCMASTERXPRT *xprt, int id)
785 {
786 	SVCMASTERXPRT *prev, *next;
787 	SVCPOOL *pool;
788 	struct svc_globals *svc;
789 
790 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
791 	/*
792 	 * Search the list for a pool with a matching id
793 	 * and register the transport handle with that pool.
794 	 */
795 	mutex_enter(&svc->svc_plock);
796 
797 	if ((pool = svc_pool_find(svc, id)) == NULL) {
798 		mutex_exit(&svc->svc_plock);
799 		return (ENOENT);
800 	}
801 
802 	/* Grab the transport list lock before releasing the pool list lock */
803 	rw_enter(&pool->p_lrwlock, RW_WRITER);
804 	mutex_exit(&svc->svc_plock);
805 
806 	/* Don't register new transports when the pool is in closing state */
807 	if (pool->p_closing) {
808 		rw_exit(&pool->p_lrwlock);
809 		return (EBUSY);
810 	}
811 
812 	/*
813 	 * Initialize xp_pool to point to the pool.
814 	 * We don't want to go through the pool list every time.
815 	 */
816 	xprt->xp_pool = pool;
817 
818 	/*
819 	 * Insert a transport handle into the list.
820 	 * The list head points to the most recently inserted transport.
821 	 */
822 	if (pool->p_lhead == NULL)
823 		pool->p_lhead = xprt->xp_prev = xprt->xp_next = xprt;
824 	else {
825 		next = pool->p_lhead;
826 		prev = pool->p_lhead->xp_prev;
827 
828 		xprt->xp_next = next;
829 		xprt->xp_prev = prev;
830 
831 		pool->p_lhead = prev->xp_next = next->xp_prev = xprt;
832 	}
833 
834 	/* Increment the transports count */
835 	pool->p_lcount++;
836 
837 	rw_exit(&pool->p_lrwlock);
838 	return (0);
839 }
840 
841 /*
842  * Called from svc_xprt_cleanup() to remove a master transport handle
843  * from the pool's list of server transports (when a transport is
844  * being destroyed).
845  */
846 void
847 svc_xprt_unregister(SVCMASTERXPRT *xprt)
848 {
849 	SVCPOOL *pool = xprt->xp_pool;
850 
851 	/*
852 	 * Unlink xprt from the list.
853 	 * If the list head points to this xprt then move it
854 	 * to the next xprt or reset to NULL if this is the last
855 	 * xprt in the list.
856 	 */
857 	rw_enter(&pool->p_lrwlock, RW_WRITER);
858 
859 	if (xprt == xprt->xp_next)
860 		pool->p_lhead = NULL;
861 	else {
862 		SVCMASTERXPRT *next = xprt->xp_next;
863 		SVCMASTERXPRT *prev = xprt->xp_prev;
864 
865 		next->xp_prev = prev;
866 		prev->xp_next = next;
867 
868 		if (pool->p_lhead == xprt)
869 			pool->p_lhead = next;
870 	}
871 
872 	xprt->xp_next = xprt->xp_prev = NULL;
873 
874 	/* Decrement list count */
875 	pool->p_lcount--;
876 
877 	rw_exit(&pool->p_lrwlock);
878 }
879 
880 static void
881 svc_xprt_qdestroy(SVCPOOL *pool)
882 {
883 	mutex_destroy(&pool->p_qend_lock);
884 	kmem_free(pool->p_qbody, pool->p_qsize * sizeof (__SVCXPRT_QNODE));
885 }
886 
887 /*
888  * Initialize an `xprt-ready' queue for a given pool.
889  */
890 static void
891 svc_xprt_qinit(SVCPOOL *pool, size_t qsize)
892 {
893 	int i;
894 
895 	pool->p_qsize = qsize;
896 	pool->p_qbody = kmem_zalloc(pool->p_qsize * sizeof (__SVCXPRT_QNODE),
897 	    KM_SLEEP);
898 
899 	for (i = 0; i < pool->p_qsize - 1; i++)
900 		pool->p_qbody[i].q_next = &(pool->p_qbody[i+1]);
901 
902 	pool->p_qbody[pool->p_qsize-1].q_next = &(pool->p_qbody[0]);
903 	pool->p_qtop = &(pool->p_qbody[0]);
904 	pool->p_qend = &(pool->p_qbody[0]);
905 
906 	mutex_init(&pool->p_qend_lock, NULL, MUTEX_DEFAULT, NULL);
907 }
908 
909 /*
910  * Called from the svc_queuereq() interrupt routine to queue
911  * a hint for svc_poll() which transport has a pending request.
912  * - insert a pointer to xprt into the xprt-ready queue (FIFO)
913  * - if the xprt-ready queue is full turn the overflow flag on.
914  *
915  * NOTICE: pool->p_qtop is protected by the pool's request lock
916  * and the caller (svc_queuereq()) must hold the lock.
917  */
918 static void
919 svc_xprt_qput(SVCPOOL *pool, SVCMASTERXPRT *xprt)
920 {
921 	ASSERT(MUTEX_HELD(&pool->p_req_lock));
922 
923 	/* If the overflow flag is on there is nothing we can do */
924 	if (pool->p_qoverflow)
925 		return;
926 
927 	/* If the queue is full turn the overflow flag on and exit */
928 	if (pool->p_qtop->q_next == pool->p_qend) {
929 		mutex_enter(&pool->p_qend_lock);
930 		if (pool->p_qtop->q_next == pool->p_qend) {
931 			pool->p_qoverflow = TRUE;
932 			mutex_exit(&pool->p_qend_lock);
933 			return;
934 		}
935 		mutex_exit(&pool->p_qend_lock);
936 	}
937 
938 	/* Insert a hint and move pool->p_qtop */
939 	pool->p_qtop->q_xprt = xprt;
940 	pool->p_qtop = pool->p_qtop->q_next;
941 }
942 
943 /*
944  * Called from svc_poll() to get a hint which transport has a
945  * pending request. Returns a pointer to a transport or NULL if the
946  * `xprt-ready' queue is empty.
947  *
948  * Since we do not acquire the pool's request lock while checking if
949  * the queue is empty we may miss a request that is just being delivered.
950  * However this is ok since svc_poll() will retry again until the
951  * count indicates that there are pending requests for this pool.
952  */
953 static SVCMASTERXPRT *
954 svc_xprt_qget(SVCPOOL *pool)
955 {
956 	SVCMASTERXPRT *xprt;
957 
958 	mutex_enter(&pool->p_qend_lock);
959 	do {
960 		/*
961 		 * If the queue is empty return NULL.
962 		 * Since we do not acquire the pool's request lock which
963 		 * protects pool->p_qtop this is not exact check. However,
964 		 * this is safe - if we miss a request here svc_poll()
965 		 * will retry again.
966 		 */
967 		if (pool->p_qend == pool->p_qtop) {
968 			mutex_exit(&pool->p_qend_lock);
969 			return (NULL);
970 		}
971 
972 		/* Get a hint and move pool->p_qend */
973 		xprt = pool->p_qend->q_xprt;
974 		pool->p_qend = pool->p_qend->q_next;
975 
976 		/* Skip fields deleted by svc_xprt_qdelete()	 */
977 	} while (xprt == NULL);
978 	mutex_exit(&pool->p_qend_lock);
979 
980 	return (xprt);
981 }
982 
983 /*
984  * Delete all the references to a transport handle that
985  * is being destroyed from the xprt-ready queue.
986  * Deleted pointers are replaced with NULLs.
987  */
988 static void
989 svc_xprt_qdelete(SVCPOOL *pool, SVCMASTERXPRT *xprt)
990 {
991 	__SVCXPRT_QNODE *q;
992 
993 	mutex_enter(&pool->p_req_lock);
994 	for (q = pool->p_qend; q != pool->p_qtop; q = q->q_next) {
995 		if (q->q_xprt == xprt)
996 			q->q_xprt = NULL;
997 	}
998 	mutex_exit(&pool->p_req_lock);
999 }
1000 
1001 /*
1002  * Destructor for a master server transport handle.
1003  * - if there are no more non-detached threads linked to this transport
1004  *   then, if requested, call xp_closeproc (we don't wait for detached
1005  *   threads linked to this transport to complete).
1006  * - if there are no more threads linked to this
1007  *   transport then
1008  *   a) remove references to this transport from the xprt-ready queue
1009  *   b) remove a reference to this transport from the pool's transport list
1010  *   c) call a transport specific `destroy' function
1011  *   d) cancel remaining thread reservations.
1012  *
1013  * NOTICE: Caller must hold the transport's thread lock.
1014  */
1015 static void
1016 svc_xprt_cleanup(SVCMASTERXPRT *xprt, bool_t detached)
1017 {
1018 	ASSERT(MUTEX_HELD(&xprt->xp_thread_lock));
1019 	ASSERT(xprt->xp_wq == NULL);
1020 
1021 	/*
1022 	 * If called from the last non-detached thread
1023 	 * it should call the closeproc on this transport.
1024 	 */
1025 	if (!detached && xprt->xp_threads == 0 && xprt->xp_closeproc) {
1026 		(*(xprt->xp_closeproc)) (xprt);
1027 	}
1028 
1029 	if (xprt->xp_threads + xprt->xp_detached_threads > 0)
1030 		mutex_exit(&xprt->xp_thread_lock);
1031 	else {
1032 		/* Remove references to xprt from the `xprt-ready' queue */
1033 		svc_xprt_qdelete(xprt->xp_pool, xprt);
1034 
1035 		/* Unregister xprt from the pool's transport list */
1036 		svc_xprt_unregister(xprt);
1037 		svc_callout_free(xprt);
1038 		SVC_DESTROY(xprt);
1039 	}
1040 }
1041 
1042 /*
1043  * Find a dispatch routine for a given prog/vers pair.
1044  * This function is called from svc_getreq() to search the callout
1045  * table for an entry with a matching RPC program number `prog'
1046  * and a version range that covers `vers'.
1047  * - if it finds a matching entry it returns pointer to the dispatch routine
1048  * - otherwise it returns NULL and, if `minp' or `maxp' are not NULL,
1049  *   fills them with, respectively, lowest version and highest version
1050  *   supported for the program `prog'
1051  */
1052 static SVC_DISPATCH *
1053 svc_callout_find(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers,
1054     rpcvers_t *vers_min, rpcvers_t *vers_max)
1055 {
1056 	SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1057 	int i;
1058 
1059 	*vers_min = ~(rpcvers_t)0;
1060 	*vers_max = 0;
1061 
1062 	for (i = 0; i < sct->sct_size; i++) {
1063 		SVC_CALLOUT *sc = &sct->sct_sc[i];
1064 
1065 		if (prog == sc->sc_prog) {
1066 			if (vers >= sc->sc_versmin && vers <= sc->sc_versmax)
1067 				return (sc->sc_dispatch);
1068 
1069 			if (*vers_max < sc->sc_versmax)
1070 				*vers_max = sc->sc_versmax;
1071 			if (*vers_min > sc->sc_versmin)
1072 				*vers_min = sc->sc_versmin;
1073 		}
1074 	}
1075 
1076 	return (NULL);
1077 }
1078 
1079 /*
1080  * Optionally free callout table allocated for this transport by
1081  * the service provider.
1082  */
1083 static void
1084 svc_callout_free(SVCMASTERXPRT *xprt)
1085 {
1086 	SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1087 
1088 	if (sct->sct_free) {
1089 		kmem_free(sct->sct_sc, sct->sct_size * sizeof (SVC_CALLOUT));
1090 		kmem_free(sct, sizeof (SVC_CALLOUT_TABLE));
1091 	}
1092 }
1093 
1094 /*
1095  * Send a reply to an RPC request
1096  *
1097  * PSARC 2003/523 Contract Private Interface
1098  * svc_sendreply
1099  * Changes must be reviewed by Solaris File Sharing
1100  * Changes must be communicated to contract-2003-523@sun.com
1101  */
1102 bool_t
1103 svc_sendreply(const SVCXPRT *clone_xprt, const xdrproc_t xdr_results,
1104     const caddr_t xdr_location)
1105 {
1106 	struct rpc_msg rply;
1107 
1108 	rply.rm_direction = REPLY;
1109 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1110 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1111 	rply.acpted_rply.ar_stat = SUCCESS;
1112 	rply.acpted_rply.ar_results.where = xdr_location;
1113 	rply.acpted_rply.ar_results.proc = xdr_results;
1114 
1115 	return (SVC_REPLY((SVCXPRT *)clone_xprt, &rply));
1116 }
1117 
1118 /*
1119  * No procedure error reply
1120  *
1121  * PSARC 2003/523 Contract Private Interface
1122  * svcerr_noproc
1123  * Changes must be reviewed by Solaris File Sharing
1124  * Changes must be communicated to contract-2003-523@sun.com
1125  */
1126 void
1127 svcerr_noproc(const SVCXPRT *clone_xprt)
1128 {
1129 	struct rpc_msg rply;
1130 
1131 	rply.rm_direction = REPLY;
1132 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1133 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1134 	rply.acpted_rply.ar_stat = PROC_UNAVAIL;
1135 	SVC_FREERES((SVCXPRT *)clone_xprt);
1136 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1137 }
1138 
1139 /*
1140  * Can't decode arguments error reply
1141  *
1142  * PSARC 2003/523 Contract Private Interface
1143  * svcerr_decode
1144  * Changes must be reviewed by Solaris File Sharing
1145  * Changes must be communicated to contract-2003-523@sun.com
1146  */
1147 void
1148 svcerr_decode(const SVCXPRT *clone_xprt)
1149 {
1150 	struct rpc_msg rply;
1151 
1152 	rply.rm_direction = REPLY;
1153 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1154 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1155 	rply.acpted_rply.ar_stat = GARBAGE_ARGS;
1156 	SVC_FREERES((SVCXPRT *)clone_xprt);
1157 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1158 }
1159 
1160 /*
1161  * Some system error
1162  */
1163 void
1164 svcerr_systemerr(const SVCXPRT *clone_xprt)
1165 {
1166 	struct rpc_msg rply;
1167 
1168 	rply.rm_direction = REPLY;
1169 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1170 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1171 	rply.acpted_rply.ar_stat = SYSTEM_ERR;
1172 	SVC_FREERES((SVCXPRT *)clone_xprt);
1173 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1174 }
1175 
1176 /*
1177  * Authentication error reply
1178  */
1179 void
1180 svcerr_auth(const SVCXPRT *clone_xprt, const enum auth_stat why)
1181 {
1182 	struct rpc_msg rply;
1183 
1184 	rply.rm_direction = REPLY;
1185 	rply.rm_reply.rp_stat = MSG_DENIED;
1186 	rply.rjcted_rply.rj_stat = AUTH_ERROR;
1187 	rply.rjcted_rply.rj_why = why;
1188 	SVC_FREERES((SVCXPRT *)clone_xprt);
1189 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1190 }
1191 
1192 /*
1193  * Authentication too weak error reply
1194  */
1195 void
1196 svcerr_weakauth(const SVCXPRT *clone_xprt)
1197 {
1198 	svcerr_auth((SVCXPRT *)clone_xprt, AUTH_TOOWEAK);
1199 }
1200 
1201 /*
1202  * Authentication error; bad credentials
1203  */
1204 void
1205 svcerr_badcred(const SVCXPRT *clone_xprt)
1206 {
1207 	struct rpc_msg rply;
1208 
1209 	rply.rm_direction = REPLY;
1210 	rply.rm_reply.rp_stat = MSG_DENIED;
1211 	rply.rjcted_rply.rj_stat = AUTH_ERROR;
1212 	rply.rjcted_rply.rj_why = AUTH_BADCRED;
1213 	SVC_FREERES((SVCXPRT *)clone_xprt);
1214 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1215 }
1216 
1217 /*
1218  * Program unavailable error reply
1219  *
1220  * PSARC 2003/523 Contract Private Interface
1221  * svcerr_noprog
1222  * Changes must be reviewed by Solaris File Sharing
1223  * Changes must be communicated to contract-2003-523@sun.com
1224  */
1225 void
1226 svcerr_noprog(const SVCXPRT *clone_xprt)
1227 {
1228 	struct rpc_msg rply;
1229 
1230 	rply.rm_direction = REPLY;
1231 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1232 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1233 	rply.acpted_rply.ar_stat = PROG_UNAVAIL;
1234 	SVC_FREERES((SVCXPRT *)clone_xprt);
1235 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1236 }
1237 
1238 /*
1239  * Program version mismatch error reply
1240  *
1241  * PSARC 2003/523 Contract Private Interface
1242  * svcerr_progvers
1243  * Changes must be reviewed by Solaris File Sharing
1244  * Changes must be communicated to contract-2003-523@sun.com
1245  */
1246 void
1247 svcerr_progvers(const SVCXPRT *clone_xprt,
1248     const rpcvers_t low_vers, const rpcvers_t high_vers)
1249 {
1250 	struct rpc_msg rply;
1251 
1252 	rply.rm_direction = REPLY;
1253 	rply.rm_reply.rp_stat = MSG_ACCEPTED;
1254 	rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1255 	rply.acpted_rply.ar_stat = PROG_MISMATCH;
1256 	rply.acpted_rply.ar_vers.low = low_vers;
1257 	rply.acpted_rply.ar_vers.high = high_vers;
1258 	SVC_FREERES((SVCXPRT *)clone_xprt);
1259 	SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1260 }
1261 
1262 /*
1263  * Get server side input from some transport.
1264  *
1265  * Statement of authentication parameters management:
1266  * This function owns and manages all authentication parameters, specifically
1267  * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
1268  * the "cooked" credentials (rqst->rq_clntcred).
1269  * However, this function does not know the structure of the cooked
1270  * credentials, so it make the following assumptions:
1271  *   a) the structure is contiguous (no pointers), and
1272  *   b) the cred structure size does not exceed RQCRED_SIZE bytes.
1273  * In all events, all three parameters are freed upon exit from this routine.
1274  * The storage is trivially managed on the call stack in user land, but
1275  * is malloced in kernel land.
1276  *
1277  * Note: the xprt's xp_svc_lock is not held while the service's dispatch
1278  * routine is running.	If we decide to implement svc_unregister(), we'll
1279  * need to decide whether it's okay for a thread to unregister a service
1280  * while a request is being processed.	If we decide that this is a
1281  * problem, we can probably use some sort of reference counting scheme to
1282  * keep the callout entry from going away until the request has completed.
1283  */
1284 static void
1285 svc_getreq(
1286 	SVCXPRT *clone_xprt,	/* clone transport handle */
1287 	mblk_t *mp)
1288 {
1289 	struct rpc_msg msg;
1290 	struct svc_req r;
1291 	char  *cred_area;	/* too big to allocate on call stack */
1292 
1293 	TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_START,
1294 	    "svc_getreq_start:");
1295 
1296 	ASSERT(clone_xprt->xp_master != NULL);
1297 	ASSERT(!is_system_labeled() || msg_getcred(mp, NULL) != NULL ||
1298 	    mp->b_datap->db_type != M_DATA);
1299 
1300 	/*
1301 	 * Firstly, allocate the authentication parameters' storage
1302 	 */
1303 	mutex_enter(&rqcred_lock);
1304 	if (rqcred_head) {
1305 		cred_area = rqcred_head;
1306 
1307 		/* LINTED pointer alignment */
1308 		rqcred_head = *(caddr_t *)rqcred_head;
1309 		mutex_exit(&rqcred_lock);
1310 	} else {
1311 		mutex_exit(&rqcred_lock);
1312 		cred_area = kmem_alloc(2 * MAX_AUTH_BYTES + RQCRED_SIZE,
1313 		    KM_SLEEP);
1314 	}
1315 	msg.rm_call.cb_cred.oa_base = cred_area;
1316 	msg.rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
1317 	r.rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]);
1318 
1319 	/*
1320 	 * underlying transport recv routine may modify mblk data
1321 	 * and make it difficult to extract label afterwards. So
1322 	 * get the label from the raw mblk data now.
1323 	 */
1324 	if (is_system_labeled()) {
1325 		cred_t *cr;
1326 
1327 		r.rq_label = kmem_alloc(sizeof (bslabel_t), KM_SLEEP);
1328 		cr = msg_getcred(mp, NULL);
1329 		ASSERT(cr != NULL);
1330 
1331 		bcopy(label2bslabel(crgetlabel(cr)), r.rq_label,
1332 		    sizeof (bslabel_t));
1333 	} else {
1334 		r.rq_label = NULL;
1335 	}
1336 
1337 	/*
1338 	 * Now receive a message from the transport.
1339 	 */
1340 	if (SVC_RECV(clone_xprt, mp, &msg)) {
1341 		void (*dispatchroutine) (struct svc_req *, SVCXPRT *);
1342 		rpcvers_t vers_min;
1343 		rpcvers_t vers_max;
1344 		bool_t no_dispatch;
1345 		enum auth_stat why;
1346 
1347 		/*
1348 		 * Find the registered program and call its
1349 		 * dispatch routine.
1350 		 */
1351 		r.rq_xprt = clone_xprt;
1352 		r.rq_prog = msg.rm_call.cb_prog;
1353 		r.rq_vers = msg.rm_call.cb_vers;
1354 		r.rq_proc = msg.rm_call.cb_proc;
1355 		r.rq_cred = msg.rm_call.cb_cred;
1356 
1357 		/*
1358 		 * First authenticate the message.
1359 		 */
1360 		TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_START,
1361 		    "svc_getreq_auth_start:");
1362 		if ((why = sec_svc_msg(&r, &msg, &no_dispatch)) != AUTH_OK) {
1363 			TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1364 			    "svc_getreq_auth_end:(%S)", "failed");
1365 			svcerr_auth(clone_xprt, why);
1366 			/*
1367 			 * Free the arguments.
1368 			 */
1369 			(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1370 		} else if (no_dispatch) {
1371 			/*
1372 			 * XXX - when bug id 4053736 is done, remove
1373 			 * the SVC_FREEARGS() call.
1374 			 */
1375 			(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1376 		} else {
1377 			TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1378 			    "svc_getreq_auth_end:(%S)", "good");
1379 
1380 			dispatchroutine = svc_callout_find(clone_xprt,
1381 			    r.rq_prog, r.rq_vers, &vers_min, &vers_max);
1382 
1383 			if (dispatchroutine) {
1384 				(*dispatchroutine) (&r, clone_xprt);
1385 			} else {
1386 				/*
1387 				 * If we got here, the program or version
1388 				 * is not served ...
1389 				 */
1390 				if (vers_max == 0 ||
1391 				    version_keepquiet(clone_xprt))
1392 					svcerr_noprog(clone_xprt);
1393 				else
1394 					svcerr_progvers(clone_xprt, vers_min,
1395 					    vers_max);
1396 
1397 				/*
1398 				 * Free the arguments. For successful calls
1399 				 * this is done by the dispatch routine.
1400 				 */
1401 				(void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1402 				/* Fall through to ... */
1403 			}
1404 			/*
1405 			 * Call cleanup procedure for RPCSEC_GSS.
1406 			 * This is a hack since there is currently no
1407 			 * op, such as SVC_CLEANAUTH. rpc_gss_cleanup
1408 			 * should only be called for a non null proc.
1409 			 * Null procs in RPC GSS are overloaded to
1410 			 * provide context setup and control. The main
1411 			 * purpose of rpc_gss_cleanup is to decrement the
1412 			 * reference count associated with the cached
1413 			 * GSS security context. We should never get here
1414 			 * for an RPCSEC_GSS null proc since *no_dispatch
1415 			 * would have been set to true from sec_svc_msg above.
1416 			 */
1417 			if (r.rq_cred.oa_flavor == RPCSEC_GSS)
1418 				rpc_gss_cleanup(clone_xprt);
1419 		}
1420 	}
1421 
1422 	if (r.rq_label != NULL)
1423 		kmem_free(r.rq_label, sizeof (bslabel_t));
1424 
1425 	/*
1426 	 * Free authentication parameters' storage
1427 	 */
1428 	mutex_enter(&rqcred_lock);
1429 	/* LINTED pointer alignment */
1430 	*(caddr_t *)cred_area = rqcred_head;
1431 	rqcred_head = cred_area;
1432 	mutex_exit(&rqcred_lock);
1433 }
1434 
1435 /*
1436  * Allocate new clone transport handle.
1437  */
1438 SVCXPRT *
1439 svc_clone_init(void)
1440 {
1441 	SVCXPRT *clone_xprt;
1442 
1443 	clone_xprt = kmem_zalloc(sizeof (SVCXPRT), KM_SLEEP);
1444 	clone_xprt->xp_cred = crget();
1445 	return (clone_xprt);
1446 }
1447 
1448 /*
1449  * Free memory allocated by svc_clone_init.
1450  */
1451 void
1452 svc_clone_free(SVCXPRT *clone_xprt)
1453 {
1454 	/* Fre credentials from crget() */
1455 	if (clone_xprt->xp_cred)
1456 		crfree(clone_xprt->xp_cred);
1457 	kmem_free(clone_xprt, sizeof (SVCXPRT));
1458 }
1459 
1460 /*
1461  * Link a per-thread clone transport handle to a master
1462  * - increment a thread reference count on the master
1463  * - copy some of the master's fields to the clone
1464  * - call a transport specific clone routine.
1465  */
1466 void
1467 svc_clone_link(SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt, SVCXPRT *clone_xprt2)
1468 {
1469 	cred_t *cred = clone_xprt->xp_cred;
1470 
1471 	ASSERT(cred);
1472 
1473 	/*
1474 	 * Bump up master's thread count.
1475 	 * Linking a per-thread clone transport handle to a master
1476 	 * associates a service thread with the master.
1477 	 */
1478 	mutex_enter(&xprt->xp_thread_lock);
1479 	xprt->xp_threads++;
1480 	mutex_exit(&xprt->xp_thread_lock);
1481 
1482 	/* Clear everything */
1483 	bzero(clone_xprt, sizeof (SVCXPRT));
1484 
1485 	/* Set pointer to the master transport stucture */
1486 	clone_xprt->xp_master = xprt;
1487 
1488 	/* Structure copy of all the common fields */
1489 	clone_xprt->xp_xpc = xprt->xp_xpc;
1490 
1491 	/* Restore per-thread fields (xp_cred) */
1492 	clone_xprt->xp_cred = cred;
1493 
1494 	if (clone_xprt2)
1495 		SVC_CLONE_XPRT(clone_xprt2, clone_xprt);
1496 }
1497 
1498 /*
1499  * Unlink a non-detached clone transport handle from a master
1500  * - decrement a thread reference count on the master
1501  * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1502  *   if this is the last non-detached/absolute thread on this transport
1503  *   then it will close/destroy the transport
1504  * - call transport specific function to destroy the clone handle
1505  * - clear xp_master to avoid recursion.
1506  */
1507 void
1508 svc_clone_unlink(SVCXPRT *clone_xprt)
1509 {
1510 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1511 
1512 	/* This cannot be a detached thread */
1513 	ASSERT(!clone_xprt->xp_detached);
1514 	ASSERT(xprt->xp_threads > 0);
1515 
1516 	/* Decrement a reference count on the transport */
1517 	mutex_enter(&xprt->xp_thread_lock);
1518 	xprt->xp_threads--;
1519 
1520 	/* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1521 	if (xprt->xp_wq)
1522 		mutex_exit(&xprt->xp_thread_lock);
1523 	else
1524 		svc_xprt_cleanup(xprt, FALSE);
1525 
1526 	/* Call a transport specific clone `destroy' function */
1527 	SVC_CLONE_DESTROY(clone_xprt);
1528 
1529 	/* Clear xp_master */
1530 	clone_xprt->xp_master = NULL;
1531 }
1532 
1533 /*
1534  * Unlink a detached clone transport handle from a master
1535  * - decrement the thread count on the master
1536  * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1537  *   if this is the last thread on this transport then it will destroy
1538  *   the transport.
1539  * - call a transport specific function to destroy the clone handle
1540  * - clear xp_master to avoid recursion.
1541  */
1542 static void
1543 svc_clone_unlinkdetached(SVCXPRT *clone_xprt)
1544 {
1545 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1546 
1547 	/* This must be a detached thread */
1548 	ASSERT(clone_xprt->xp_detached);
1549 	ASSERT(xprt->xp_detached_threads > 0);
1550 	ASSERT(xprt->xp_threads + xprt->xp_detached_threads > 0);
1551 
1552 	/* Grab xprt->xp_thread_lock and decrement link counts */
1553 	mutex_enter(&xprt->xp_thread_lock);
1554 	xprt->xp_detached_threads--;
1555 
1556 	/* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1557 	if (xprt->xp_wq)
1558 		mutex_exit(&xprt->xp_thread_lock);
1559 	else
1560 		svc_xprt_cleanup(xprt, TRUE);
1561 
1562 	/* Call transport specific clone `destroy' function */
1563 	SVC_CLONE_DESTROY(clone_xprt);
1564 
1565 	/* Clear xp_master */
1566 	clone_xprt->xp_master = NULL;
1567 }
1568 
1569 /*
1570  * Try to exit a non-detached service thread
1571  * - check if there are enough threads left
1572  * - if this thread (ie its clone transport handle) are linked
1573  *   to a master transport then unlink it
1574  * - free the clone structure
1575  * - return to userland for thread exit
1576  *
1577  * If this is the last non-detached or the last thread on this
1578  * transport then the call to svc_clone_unlink() will, respectively,
1579  * close and/or destroy the transport.
1580  */
1581 static void
1582 svc_thread_exit(SVCPOOL *pool, SVCXPRT *clone_xprt)
1583 {
1584 	if (clone_xprt->xp_master)
1585 		svc_clone_unlink(clone_xprt);
1586 	svc_clone_free(clone_xprt);
1587 
1588 	mutex_enter(&pool->p_thread_lock);
1589 	pool->p_threads--;
1590 	if (pool->p_closing && svc_pool_tryexit(pool))
1591 		/* return -  thread exit will be handled at user level */
1592 		return;
1593 	mutex_exit(&pool->p_thread_lock);
1594 
1595 	/* return -  thread exit will be handled at user level */
1596 }
1597 
1598 /*
1599  * Exit a detached service thread that returned to svc_run
1600  * - decrement the `detached thread' count for the pool
1601  * - unlink the detached clone transport handle from the master
1602  * - free the clone structure
1603  * - return to userland for thread exit
1604  *
1605  * If this is the last thread on this transport then the call
1606  * to svc_clone_unlinkdetached() will destroy the transport.
1607  */
1608 static void
1609 svc_thread_exitdetached(SVCPOOL *pool, SVCXPRT *clone_xprt)
1610 {
1611 	/* This must be a detached thread */
1612 	ASSERT(clone_xprt->xp_master);
1613 	ASSERT(clone_xprt->xp_detached);
1614 	ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
1615 
1616 	svc_clone_unlinkdetached(clone_xprt);
1617 	svc_clone_free(clone_xprt);
1618 
1619 	mutex_enter(&pool->p_thread_lock);
1620 
1621 	ASSERT(pool->p_reserved_threads >= 0);
1622 	ASSERT(pool->p_detached_threads > 0);
1623 
1624 	pool->p_detached_threads--;
1625 	if (pool->p_closing && svc_pool_tryexit(pool))
1626 		/* return -  thread exit will be handled at user level */
1627 		return;
1628 	mutex_exit(&pool->p_thread_lock);
1629 
1630 	/* return -  thread exit will be handled at user level */
1631 }
1632 
1633 /*
1634  * PSARC 2003/523 Contract Private Interface
1635  * svc_wait
1636  * Changes must be reviewed by Solaris File Sharing
1637  * Changes must be communicated to contract-2003-523@sun.com
1638  */
1639 int
1640 svc_wait(int id)
1641 {
1642 	SVCPOOL *pool;
1643 	int	err = 0;
1644 	struct svc_globals *svc;
1645 
1646 	svc = zone_getspecific(svc_zone_key, curproc->p_zone);
1647 	mutex_enter(&svc->svc_plock);
1648 	pool = svc_pool_find(svc, id);
1649 	mutex_exit(&svc->svc_plock);
1650 
1651 	if (pool == NULL)
1652 		return (ENOENT);
1653 
1654 	mutex_enter(&pool->p_user_lock);
1655 
1656 	/* Check if there's already a user thread waiting on this pool */
1657 	if (pool->p_user_waiting) {
1658 		mutex_exit(&pool->p_user_lock);
1659 		return (EBUSY);
1660 	}
1661 
1662 	pool->p_user_waiting = TRUE;
1663 
1664 	/* Go to sleep, waiting for the signaled flag. */
1665 	while (!pool->p_signal_create_thread && !pool->p_user_exit) {
1666 		if (cv_wait_sig(&pool->p_user_cv, &pool->p_user_lock) == 0) {
1667 			/* Interrupted, return to handle exit or signal */
1668 			pool->p_user_waiting = FALSE;
1669 			pool->p_signal_create_thread = FALSE;
1670 			mutex_exit(&pool->p_user_lock);
1671 
1672 			/*
1673 			 * Thread has been interrupted and therefore
1674 			 * the service daemon is leaving as well so
1675 			 * let's go ahead and remove the service
1676 			 * pool at this time.
1677 			 */
1678 			mutex_enter(&svc->svc_plock);
1679 			svc_pool_unregister(svc, pool);
1680 			mutex_exit(&svc->svc_plock);
1681 
1682 			return (EINTR);
1683 		}
1684 	}
1685 
1686 	pool->p_signal_create_thread = FALSE;
1687 	pool->p_user_waiting = FALSE;
1688 
1689 	/*
1690 	 * About to exit the service pool. Set return value
1691 	 * to let the userland code know our intent. Signal
1692 	 * svc_thread_creator() so that it can clean up the
1693 	 * pool structure.
1694 	 */
1695 	if (pool->p_user_exit) {
1696 		err = ECANCELED;
1697 		cv_signal(&pool->p_user_cv);
1698 	}
1699 
1700 	mutex_exit(&pool->p_user_lock);
1701 
1702 	/* Return to userland with error code, for possible thread creation. */
1703 	return (err);
1704 }
1705 
1706 /*
1707  * `Service threads' creator thread.
1708  * The creator thread waits for a signal to create new thread.
1709  */
1710 static void
1711 svc_thread_creator(SVCPOOL *pool)
1712 {
1713 	callb_cpr_t cpr_info;	/* CPR info for the creator thread */
1714 
1715 	CALLB_CPR_INIT(&cpr_info, &pool->p_creator_lock, callb_generic_cpr,
1716 	    "svc_thread_creator");
1717 
1718 	for (;;) {
1719 		mutex_enter(&pool->p_creator_lock);
1720 
1721 		/* Check if someone set the exit flag */
1722 		if (pool->p_creator_exit)
1723 			break;
1724 
1725 		/* Clear the `signaled' flag and go asleep */
1726 		pool->p_creator_signaled = FALSE;
1727 
1728 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
1729 		cv_wait(&pool->p_creator_cv, &pool->p_creator_lock);
1730 		CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1731 
1732 		/* Check if someone signaled to exit */
1733 		if (pool->p_creator_exit)
1734 			break;
1735 
1736 		mutex_exit(&pool->p_creator_lock);
1737 
1738 		mutex_enter(&pool->p_thread_lock);
1739 
1740 		/*
1741 		 * When the pool is in closing state and all the transports
1742 		 * are gone the creator should not create any new threads.
1743 		 */
1744 		if (pool->p_closing) {
1745 			rw_enter(&pool->p_lrwlock, RW_READER);
1746 			if (pool->p_lcount == 0) {
1747 				rw_exit(&pool->p_lrwlock);
1748 				mutex_exit(&pool->p_thread_lock);
1749 				continue;
1750 			}
1751 			rw_exit(&pool->p_lrwlock);
1752 		}
1753 
1754 		/*
1755 		 * Create a new service thread now.
1756 		 */
1757 		ASSERT(pool->p_reserved_threads >= 0);
1758 		ASSERT(pool->p_detached_threads >= 0);
1759 
1760 		if (pool->p_threads + pool->p_detached_threads <
1761 		    pool->p_maxthreads) {
1762 			/*
1763 			 * Signal the service pool wait thread
1764 			 * only if it hasn't already been signaled.
1765 			 */
1766 			mutex_enter(&pool->p_user_lock);
1767 			if (pool->p_signal_create_thread == FALSE) {
1768 				pool->p_signal_create_thread = TRUE;
1769 				cv_signal(&pool->p_user_cv);
1770 			}
1771 			mutex_exit(&pool->p_user_lock);
1772 
1773 		}
1774 
1775 		mutex_exit(&pool->p_thread_lock);
1776 	}
1777 
1778 	/*
1779 	 * Pool is closed. Cleanup and exit.
1780 	 */
1781 
1782 	/* Signal userland creator thread that it can stop now. */
1783 	mutex_enter(&pool->p_user_lock);
1784 	pool->p_user_exit = TRUE;
1785 	cv_broadcast(&pool->p_user_cv);
1786 	mutex_exit(&pool->p_user_lock);
1787 
1788 	/* Wait for svc_wait() to be done with the pool */
1789 	mutex_enter(&pool->p_user_lock);
1790 	while (pool->p_user_waiting) {
1791 		CALLB_CPR_SAFE_BEGIN(&cpr_info);
1792 		cv_wait(&pool->p_user_cv, &pool->p_user_lock);
1793 		CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1794 	}
1795 	mutex_exit(&pool->p_user_lock);
1796 
1797 	CALLB_CPR_EXIT(&cpr_info);
1798 	svc_pool_cleanup(pool);
1799 	zthread_exit();
1800 }
1801 
1802 /*
1803  * If the creator thread  is idle signal it to create
1804  * a new service thread.
1805  */
1806 static void
1807 svc_creator_signal(SVCPOOL *pool)
1808 {
1809 	mutex_enter(&pool->p_creator_lock);
1810 	if (pool->p_creator_signaled == FALSE) {
1811 		pool->p_creator_signaled = TRUE;
1812 		cv_signal(&pool->p_creator_cv);
1813 	}
1814 	mutex_exit(&pool->p_creator_lock);
1815 }
1816 
1817 /*
1818  * Notify the creator thread to clean up and exit.
1819  */
1820 static void
1821 svc_creator_signalexit(SVCPOOL *pool)
1822 {
1823 	mutex_enter(&pool->p_creator_lock);
1824 	pool->p_creator_exit = TRUE;
1825 	cv_signal(&pool->p_creator_cv);
1826 	mutex_exit(&pool->p_creator_lock);
1827 }
1828 
1829 /*
1830  * Polling part of the svc_run().
1831  * - search for a transport with a pending request
1832  * - when one is found then latch the request lock and return to svc_run()
1833  * - if there is no request go asleep and wait for a signal
1834  * - handle two exceptions:
1835  *   a) current transport is closing
1836  *   b) timeout waiting for a new request
1837  *   in both cases return to svc_run()
1838  */
1839 static SVCMASTERXPRT *
1840 svc_poll(SVCPOOL *pool, SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt)
1841 {
1842 	/*
1843 	 * Main loop iterates until
1844 	 * a) we find a pending request,
1845 	 * b) detect that the current transport is closing
1846 	 * c) time out waiting for a new request.
1847 	 */
1848 	for (;;) {
1849 		SVCMASTERXPRT *next;
1850 		clock_t timeleft;
1851 
1852 		/*
1853 		 * Step 1.
1854 		 * Check if there is a pending request on the current
1855 		 * transport handle so that we can avoid cloning.
1856 		 * If so then decrement the `pending-request' count for
1857 		 * the pool and return to svc_run().
1858 		 *
1859 		 * We need to prevent a potential starvation. When
1860 		 * a selected transport has all pending requests coming in
1861 		 * all the time then the service threads will never switch to
1862 		 * another transport. With a limited number of service
1863 		 * threads some transports may be never serviced.
1864 		 * To prevent such a scenario we pick up at most
1865 		 * pool->p_max_same_xprt requests from the same transport
1866 		 * and then take a hint from the xprt-ready queue or walk
1867 		 * the transport list.
1868 		 */
1869 		if (xprt && xprt->xp_req_head && (!pool->p_qoverflow ||
1870 		    clone_xprt->xp_same_xprt++ < pool->p_max_same_xprt)) {
1871 			mutex_enter(&xprt->xp_req_lock);
1872 			if (xprt->xp_req_head)
1873 				return (xprt);
1874 			mutex_exit(&xprt->xp_req_lock);
1875 		}
1876 		clone_xprt->xp_same_xprt = 0;
1877 
1878 		/*
1879 		 * Step 2.
1880 		 * If there is no request on the current transport try to
1881 		 * find another transport with a pending request.
1882 		 */
1883 		mutex_enter(&pool->p_req_lock);
1884 		pool->p_walkers++;
1885 		mutex_exit(&pool->p_req_lock);
1886 
1887 		/*
1888 		 * Make sure that transports will not be destroyed just
1889 		 * while we are checking them.
1890 		 */
1891 		rw_enter(&pool->p_lrwlock, RW_READER);
1892 
1893 		for (;;) {
1894 			SVCMASTERXPRT *hint;
1895 
1896 			/*
1897 			 * Get the next transport from the xprt-ready queue.
1898 			 * This is a hint. There is no guarantee that the
1899 			 * transport still has a pending request since it
1900 			 * could be picked up by another thread in step 1.
1901 			 *
1902 			 * If the transport has a pending request then keep
1903 			 * it locked. Decrement the `pending-requests' for
1904 			 * the pool and `walking-threads' counts, and return
1905 			 * to svc_run().
1906 			 */
1907 			hint = svc_xprt_qget(pool);
1908 
1909 			if (hint && hint->xp_req_head) {
1910 				mutex_enter(&hint->xp_req_lock);
1911 				if (hint->xp_req_head) {
1912 					rw_exit(&pool->p_lrwlock);
1913 
1914 					mutex_enter(&pool->p_req_lock);
1915 					pool->p_walkers--;
1916 					mutex_exit(&pool->p_req_lock);
1917 
1918 					return (hint);
1919 				}
1920 				mutex_exit(&hint->xp_req_lock);
1921 			}
1922 
1923 			/*
1924 			 * If there was no hint in the xprt-ready queue then
1925 			 * - if there is less pending requests than polling
1926 			 *   threads go asleep
1927 			 * - otherwise check if there was an overflow in the
1928 			 *   xprt-ready queue; if so, then we need to break
1929 			 *   the `drain' mode
1930 			 */
1931 			if (hint == NULL) {
1932 				if (pool->p_reqs < pool->p_walkers) {
1933 					mutex_enter(&pool->p_req_lock);
1934 					if (pool->p_reqs < pool->p_walkers)
1935 						goto sleep;
1936 					mutex_exit(&pool->p_req_lock);
1937 				}
1938 				if (pool->p_qoverflow) {
1939 					break;
1940 				}
1941 			}
1942 		}
1943 
1944 		/*
1945 		 * If there was an overflow in the xprt-ready queue then we
1946 		 * need to switch to the `drain' mode, i.e. walk through the
1947 		 * pool's transport list and search for a transport with a
1948 		 * pending request. If we manage to drain all the pending
1949 		 * requests then we can clear the overflow flag. This will
1950 		 * switch svc_poll() back to taking hints from the xprt-ready
1951 		 * queue (which is generally more efficient).
1952 		 *
1953 		 * If there are no registered transports simply go asleep.
1954 		 */
1955 		if (xprt == NULL && pool->p_lhead == NULL) {
1956 			mutex_enter(&pool->p_req_lock);
1957 			goto sleep;
1958 		}
1959 
1960 		/*
1961 		 * `Walk' through the pool's list of master server
1962 		 * transport handles. Continue to loop until there are less
1963 		 * looping threads then pending requests.
1964 		 */
1965 		next = xprt ? xprt->xp_next : pool->p_lhead;
1966 
1967 		for (;;) {
1968 			/*
1969 			 * Check if there is a request on this transport.
1970 			 *
1971 			 * Since blocking on a locked mutex is very expensive
1972 			 * check for a request without a lock first. If we miss
1973 			 * a request that is just being delivered but this will
1974 			 * cost at most one full walk through the list.
1975 			 */
1976 			if (next->xp_req_head) {
1977 				/*
1978 				 * Check again, now with a lock.
1979 				 */
1980 				mutex_enter(&next->xp_req_lock);
1981 				if (next->xp_req_head) {
1982 					rw_exit(&pool->p_lrwlock);
1983 
1984 					mutex_enter(&pool->p_req_lock);
1985 					pool->p_walkers--;
1986 					mutex_exit(&pool->p_req_lock);
1987 
1988 					return (next);
1989 				}
1990 				mutex_exit(&next->xp_req_lock);
1991 			}
1992 
1993 			/*
1994 			 * Continue to `walk' through the pool's
1995 			 * transport list until there is less requests
1996 			 * than walkers. Check this condition without
1997 			 * a lock first to avoid contention on a mutex.
1998 			 */
1999 			if (pool->p_reqs < pool->p_walkers) {
2000 				/* Check again, now with the lock. */
2001 				mutex_enter(&pool->p_req_lock);
2002 				if (pool->p_reqs < pool->p_walkers)
2003 					break;	/* goto sleep */
2004 				mutex_exit(&pool->p_req_lock);
2005 			}
2006 
2007 			next = next->xp_next;
2008 		}
2009 
2010 	sleep:
2011 		/*
2012 		 * No work to do. Stop the `walk' and go asleep.
2013 		 * Decrement the `walking-threads' count for the pool.
2014 		 */
2015 		pool->p_walkers--;
2016 		rw_exit(&pool->p_lrwlock);
2017 
2018 		/*
2019 		 * Count us as asleep, mark this thread as safe
2020 		 * for suspend and wait for a request.
2021 		 */
2022 		pool->p_asleep++;
2023 		timeleft = cv_reltimedwait_sig(&pool->p_req_cv,
2024 		    &pool->p_req_lock, pool->p_timeout, TR_CLOCK_TICK);
2025 
2026 		/*
2027 		 * If the drowsy flag is on this means that
2028 		 * someone has signaled a wakeup. In such a case
2029 		 * the `asleep-threads' count has already updated
2030 		 * so just clear the flag.
2031 		 *
2032 		 * If the drowsy flag is off then we need to update
2033 		 * the `asleep-threads' count.
2034 		 */
2035 		if (pool->p_drowsy) {
2036 			pool->p_drowsy = FALSE;
2037 			/*
2038 			 * If the thread is here because it timedout,
2039 			 * instead of returning SVC_ETIMEDOUT, it is
2040 			 * time to do some more work.
2041 			 */
2042 			if (timeleft == -1)
2043 				timeleft = 1;
2044 		} else {
2045 			pool->p_asleep--;
2046 		}
2047 		mutex_exit(&pool->p_req_lock);
2048 
2049 		/*
2050 		 * If we received a signal while waiting for a
2051 		 * request, inform svc_run(), so that we can return
2052 		 * to user level and exit.
2053 		 */
2054 		if (timeleft == 0)
2055 			return (SVC_EINTR);
2056 
2057 		/*
2058 		 * If the current transport is gone then notify
2059 		 * svc_run() to unlink from it.
2060 		 */
2061 		if (xprt && xprt->xp_wq == NULL)
2062 			return (SVC_EXPRTGONE);
2063 
2064 		/*
2065 		 * If we have timed out waiting for a request inform
2066 		 * svc_run() that we probably don't need this thread.
2067 		 */
2068 		if (timeleft == -1)
2069 			return (SVC_ETIMEDOUT);
2070 	}
2071 }
2072 
2073 /*
2074  * calculate memory space used by message
2075  */
2076 static size_t
2077 svc_msgsize(mblk_t *mp)
2078 {
2079 	size_t count = 0;
2080 
2081 	for (; mp; mp = mp->b_cont)
2082 		count += MBLKSIZE(mp);
2083 
2084 	return (count);
2085 }
2086 
2087 /*
2088  * svc_flowcontrol() attempts to turn the flow control on or off for the
2089  * transport.
2090  *
2091  * On input the xprt->xp_full determines whether the flow control is currently
2092  * off (FALSE) or on (TRUE).  If it is off we do tests to see whether we should
2093  * turn it on, and vice versa.
2094  *
2095  * There are two conditions considered for the flow control.  Both conditions
2096  * have the low and the high watermark.  Once the high watermark is reached in
2097  * EITHER condition the flow control is turned on.  For turning the flow
2098  * control off BOTH conditions must be below the low watermark.
2099  *
2100  * Condition #1 - Number of requests queued:
2101  *
2102  * The max number of threads working on the pool is roughly pool->p_maxthreads.
2103  * Every thread could handle up to pool->p_max_same_xprt requests from one
2104  * transport before it moves to another transport.  See svc_poll() for details.
2105  * In case all threads in the pool are working on a transport they will handle
2106  * no more than enough_reqs (pool->p_maxthreads * pool->p_max_same_xprt)
2107  * requests in one shot from that transport.  We are turning the flow control
2108  * on once the high watermark is reached for a transport so that the underlying
2109  * queue knows the rate of incoming requests is higher than we are able to
2110  * handle.
2111  *
2112  * The high watermark: 2 * enough_reqs
2113  * The low watermark: enough_reqs
2114  *
2115  * Condition #2 - Length of the data payload for the queued messages/requests:
2116  *
2117  * We want to prevent a particular pool exhausting the memory, so once the
2118  * total length of queued requests for the whole pool reaches the high
2119  * watermark we start to turn on the flow control for significant memory
2120  * consumers (individual transports).  To keep the implementation simple
2121  * enough, this condition is not exact, because we count only the data part of
2122  * the queued requests and we ignore the overhead.  For our purposes this
2123  * should be enough.  We should also consider that up to pool->p_maxthreads
2124  * threads for the pool might work on large requests (this is not counted for
2125  * this condition).  We need to leave some space for rest of the system and for
2126  * other big memory consumers (like ZFS).  Also, after the flow control is
2127  * turned on (on cots transports) we can start to accumulate a few megabytes in
2128  * queues for each transport.
2129  *
2130  * Usually, the big memory consumers are NFS WRITE requests, so we do not
2131  * expect to see this condition met for other than NFS pools.
2132  *
2133  * The high watermark: 1/5 of available memory
2134  * The low watermark: 1/6 of available memory
2135  *
2136  * Once the high watermark is reached we turn the flow control on only for
2137  * transports exceeding a per-transport memory limit.  The per-transport
2138  * fraction of memory is calculated as:
2139  *
2140  * the high watermark / number of transports
2141  *
2142  * For transports with less than the per-transport fraction of memory consumed,
2143  * the flow control is not turned on, so they are not blocked by a few "hungry"
2144  * transports.  Because of this, the total memory consumption for the
2145  * particular pool might grow up to 2 * the high watermark.
2146  *
2147  * The individual transports are unblocked once their consumption is below:
2148  *
2149  * per-transport fraction of memory / 2
2150  *
2151  * or once the total memory consumption for the whole pool falls below the low
2152  * watermark.
2153  *
2154  */
2155 static void
2156 svc_flowcontrol(SVCMASTERXPRT *xprt)
2157 {
2158 	SVCPOOL *pool = xprt->xp_pool;
2159 	size_t totalmem = ptob(physmem);
2160 	int enough_reqs = pool->p_maxthreads * pool->p_max_same_xprt;
2161 
2162 	ASSERT(MUTEX_HELD(&xprt->xp_req_lock));
2163 
2164 	/* Should we turn the flow control on? */
2165 	if (xprt->xp_full == FALSE) {
2166 		/* Is flow control disabled? */
2167 		if (svc_flowcontrol_disable != 0)
2168 			return;
2169 
2170 		/* Is there enough requests queued? */
2171 		if (xprt->xp_reqs >= enough_reqs * 2) {
2172 			xprt->xp_full = TRUE;
2173 			return;
2174 		}
2175 
2176 		/*
2177 		 * If this pool uses over 20% of memory and this transport is
2178 		 * significant memory consumer then we are full
2179 		 */
2180 		if (pool->p_size >= totalmem / 5 &&
2181 		    xprt->xp_size >= totalmem / 5 / pool->p_lcount)
2182 			xprt->xp_full = TRUE;
2183 
2184 		return;
2185 	}
2186 
2187 	/* We might want to turn the flow control off */
2188 
2189 	/* Do we still have enough requests? */
2190 	if (xprt->xp_reqs > enough_reqs)
2191 		return;
2192 
2193 	/*
2194 	 * If this pool still uses over 16% of memory and this transport is
2195 	 * still significant memory consumer then we are still full
2196 	 */
2197 	if (pool->p_size >= totalmem / 6 &&
2198 	    xprt->xp_size >= totalmem / 5 / pool->p_lcount / 2)
2199 		return;
2200 
2201 	/* Turn the flow control off and make sure rpcmod is notified */
2202 	xprt->xp_full = FALSE;
2203 	xprt->xp_enable = TRUE;
2204 }
2205 
2206 /*
2207  * Main loop of the kernel RPC server
2208  * - wait for input (find a transport with a pending request).
2209  * - dequeue the request
2210  * - call a registered server routine to process the requests
2211  *
2212  * There can many threads running concurrently in this loop
2213  * on the same or on different transports.
2214  */
2215 static int
2216 svc_run(SVCPOOL *pool)
2217 {
2218 	SVCMASTERXPRT *xprt = NULL;	/* master transport handle  */
2219 	SVCXPRT *clone_xprt;	/* clone for this thread    */
2220 	proc_t *p = ttoproc(curthread);
2221 
2222 	/* Allocate a clone transport handle for this thread */
2223 	clone_xprt = svc_clone_init();
2224 
2225 	/*
2226 	 * The loop iterates until the thread becomes
2227 	 * idle too long or the transport is gone.
2228 	 */
2229 	for (;;) {
2230 		SVCMASTERXPRT *next;
2231 		mblk_t *mp;
2232 		bool_t enable;
2233 		size_t size;
2234 
2235 		TRACE_0(TR_FAC_KRPC, TR_SVC_RUN, "svc_run");
2236 
2237 		/*
2238 		 * If the process is exiting/killed, return
2239 		 * immediately without processing any more
2240 		 * requests.
2241 		 */
2242 		if (p->p_flag & (SEXITING | SKILLED)) {
2243 			svc_thread_exit(pool, clone_xprt);
2244 			return (EINTR);
2245 		}
2246 
2247 		/* Find a transport with a pending request */
2248 		next = svc_poll(pool, xprt, clone_xprt);
2249 
2250 		/*
2251 		 * If svc_poll() finds a transport with a request
2252 		 * it latches xp_req_lock on it. Therefore we need
2253 		 * to dequeue the request and release the lock as
2254 		 * soon as possible.
2255 		 */
2256 		ASSERT(next != NULL &&
2257 		    (next == SVC_EXPRTGONE ||
2258 		    next == SVC_ETIMEDOUT ||
2259 		    next == SVC_EINTR ||
2260 		    MUTEX_HELD(&next->xp_req_lock)));
2261 
2262 		/* Ooops! Current transport is closing. Unlink now */
2263 		if (next == SVC_EXPRTGONE) {
2264 			svc_clone_unlink(clone_xprt);
2265 			xprt = NULL;
2266 			continue;
2267 		}
2268 
2269 		/* Ooops! Timeout while waiting for a request. Exit */
2270 		if (next == SVC_ETIMEDOUT) {
2271 			svc_thread_exit(pool, clone_xprt);
2272 			return (0);
2273 		}
2274 
2275 		/*
2276 		 * Interrupted by a signal while waiting for a
2277 		 * request. Return to userspace and exit.
2278 		 */
2279 		if (next == SVC_EINTR) {
2280 			svc_thread_exit(pool, clone_xprt);
2281 			return (EINTR);
2282 		}
2283 
2284 		/*
2285 		 * De-queue the request and release the request lock
2286 		 * on this transport (latched by svc_poll()).
2287 		 */
2288 		mp = next->xp_req_head;
2289 		next->xp_req_head = mp->b_next;
2290 		mp->b_next = (mblk_t *)0;
2291 		size = svc_msgsize(mp);
2292 
2293 		mutex_enter(&pool->p_req_lock);
2294 		pool->p_reqs--;
2295 		if (pool->p_reqs == 0)
2296 			pool->p_qoverflow = FALSE;
2297 		pool->p_size -= size;
2298 		mutex_exit(&pool->p_req_lock);
2299 
2300 		next->xp_reqs--;
2301 		next->xp_size -= size;
2302 
2303 		if (next->xp_full)
2304 			svc_flowcontrol(next);
2305 
2306 		TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_DEQ,
2307 		    "rpc_que_req_deq:pool %p mp %p", pool, mp);
2308 		mutex_exit(&next->xp_req_lock);
2309 
2310 		/*
2311 		 * If this is a new request on a current transport then
2312 		 * the clone structure is already properly initialized.
2313 		 * Otherwise, if the request is on a different transport,
2314 		 * unlink from the current master and link to
2315 		 * the one we got a request on.
2316 		 */
2317 		if (next != xprt) {
2318 			if (xprt)
2319 				svc_clone_unlink(clone_xprt);
2320 			svc_clone_link(next, clone_xprt, NULL);
2321 			xprt = next;
2322 		}
2323 
2324 		/*
2325 		 * If there are more requests and req_cv hasn't
2326 		 * been signaled yet then wake up one more thread now.
2327 		 *
2328 		 * We avoid signaling req_cv until the most recently
2329 		 * signaled thread wakes up and gets CPU to clear
2330 		 * the `drowsy' flag.
2331 		 */
2332 		if (!(pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2333 		    pool->p_asleep == 0)) {
2334 			mutex_enter(&pool->p_req_lock);
2335 
2336 			if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2337 			    pool->p_asleep == 0)
2338 				mutex_exit(&pool->p_req_lock);
2339 			else {
2340 				pool->p_asleep--;
2341 				pool->p_drowsy = TRUE;
2342 
2343 				cv_signal(&pool->p_req_cv);
2344 				mutex_exit(&pool->p_req_lock);
2345 			}
2346 		}
2347 
2348 		/*
2349 		 * If there are no asleep/signaled threads, we are
2350 		 * still below pool->p_maxthreads limit, and no thread is
2351 		 * currently being created then signal the creator
2352 		 * for one more service thread.
2353 		 *
2354 		 * The asleep and drowsy checks are not protected
2355 		 * by a lock since it hurts performance and a wrong
2356 		 * decision is not essential.
2357 		 */
2358 		if (pool->p_asleep == 0 && !pool->p_drowsy &&
2359 		    pool->p_threads + pool->p_detached_threads <
2360 		    pool->p_maxthreads)
2361 			svc_creator_signal(pool);
2362 
2363 		/*
2364 		 * Process the request.
2365 		 */
2366 		svc_getreq(clone_xprt, mp);
2367 
2368 		/* If thread had a reservation it should have been canceled */
2369 		ASSERT(!clone_xprt->xp_reserved);
2370 
2371 		/*
2372 		 * If the clone is marked detached then exit.
2373 		 * The rpcmod slot has already been released
2374 		 * when we detached this thread.
2375 		 */
2376 		if (clone_xprt->xp_detached) {
2377 			svc_thread_exitdetached(pool, clone_xprt);
2378 			return (0);
2379 		}
2380 
2381 		/*
2382 		 * Release our reference on the rpcmod
2383 		 * slot attached to xp_wq->q_ptr.
2384 		 */
2385 		mutex_enter(&xprt->xp_req_lock);
2386 		enable = xprt->xp_enable;
2387 		if (enable)
2388 			xprt->xp_enable = FALSE;
2389 		mutex_exit(&xprt->xp_req_lock);
2390 		(*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL, enable);
2391 	}
2392 	/* NOTREACHED */
2393 }
2394 
2395 /*
2396  * Flush any pending requests for the queue and
2397  * free the associated mblks.
2398  */
2399 void
2400 svc_queueclean(queue_t *q)
2401 {
2402 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2403 	mblk_t *mp;
2404 	SVCPOOL *pool;
2405 
2406 	/*
2407 	 * clean up the requests
2408 	 */
2409 	mutex_enter(&xprt->xp_req_lock);
2410 	pool = xprt->xp_pool;
2411 	while ((mp = xprt->xp_req_head) != NULL) {
2412 		/* remove the request from the list */
2413 		xprt->xp_req_head = mp->b_next;
2414 		mp->b_next = (mblk_t *)0;
2415 		(*RELE_PROC(xprt)) (xprt->xp_wq, mp, FALSE);
2416 	}
2417 
2418 	mutex_enter(&pool->p_req_lock);
2419 	pool->p_reqs -= xprt->xp_reqs;
2420 	pool->p_size -= xprt->xp_size;
2421 	mutex_exit(&pool->p_req_lock);
2422 
2423 	xprt->xp_reqs = 0;
2424 	xprt->xp_size = 0;
2425 	xprt->xp_full = FALSE;
2426 	xprt->xp_enable = FALSE;
2427 	mutex_exit(&xprt->xp_req_lock);
2428 }
2429 
2430 /*
2431  * This routine is called by rpcmod to inform kernel RPC that a
2432  * queue is closing. It is called after all the requests have been
2433  * picked up (that is after all the slots on the queue have
2434  * been released by kernel RPC). It is also guaranteed that no more
2435  * request will be delivered on this transport.
2436  *
2437  * - clear xp_wq to mark the master server transport handle as closing
2438  * - if there are no more threads on this transport close/destroy it
2439  * - otherwise, leave the linked threads to close/destroy the transport
2440  *   later.
2441  */
2442 void
2443 svc_queueclose(queue_t *q)
2444 {
2445 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2446 
2447 	if (xprt == NULL) {
2448 		/*
2449 		 * If there is no master xprt associated with this stream,
2450 		 * then there is nothing to do.  This happens regularly
2451 		 * with connection-oriented listening streams created by
2452 		 * nfsd.
2453 		 */
2454 		return;
2455 	}
2456 
2457 	mutex_enter(&xprt->xp_thread_lock);
2458 
2459 	ASSERT(xprt->xp_req_head == NULL);
2460 	ASSERT(xprt->xp_wq != NULL);
2461 
2462 	xprt->xp_wq = NULL;
2463 
2464 	if (xprt->xp_threads == 0) {
2465 		SVCPOOL *pool = xprt->xp_pool;
2466 
2467 		/*
2468 		 * svc_xprt_cleanup() destroys the transport
2469 		 * or releases the transport thread lock
2470 		 */
2471 		svc_xprt_cleanup(xprt, FALSE);
2472 
2473 		mutex_enter(&pool->p_thread_lock);
2474 
2475 		/*
2476 		 * If the pool is in closing state and this was
2477 		 * the last transport in the pool then signal the creator
2478 		 * thread to clean up and exit.
2479 		 */
2480 		if (pool->p_closing && svc_pool_tryexit(pool)) {
2481 			return;
2482 		}
2483 		mutex_exit(&pool->p_thread_lock);
2484 	} else {
2485 		/*
2486 		 * There are still some threads linked to the transport.  They
2487 		 * are very likely sleeping in svc_poll().  We could wake up
2488 		 * them by broadcasting on the p_req_cv condition variable, but
2489 		 * that might give us a performance penalty if there are too
2490 		 * many sleeping threads.
2491 		 *
2492 		 * Instead, we do nothing here.  The linked threads will unlink
2493 		 * themselves and destroy the transport once they are woken up
2494 		 * on timeout, or by new request.  There is no reason to hurry
2495 		 * up now with the thread wake up.
2496 		 */
2497 
2498 		/*
2499 		 *  NOTICE: No references to the master transport structure
2500 		 *	    beyond this point!
2501 		 */
2502 		mutex_exit(&xprt->xp_thread_lock);
2503 	}
2504 }
2505 
2506 /*
2507  * Interrupt `request delivery' routine called from rpcmod
2508  * - put a request at the tail of the transport request queue
2509  * - insert a hint for svc_poll() into the xprt-ready queue
2510  * - increment the `pending-requests' count for the pool
2511  * - handle flow control
2512  * - wake up a thread sleeping in svc_poll() if necessary
2513  * - if all the threads are running ask the creator for a new one.
2514  */
2515 bool_t
2516 svc_queuereq(queue_t *q, mblk_t *mp, bool_t flowcontrol)
2517 {
2518 	SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2519 	SVCPOOL *pool = xprt->xp_pool;
2520 	size_t size;
2521 
2522 	TRACE_0(TR_FAC_KRPC, TR_SVC_QUEUEREQ_START, "svc_queuereq_start");
2523 
2524 	ASSERT(!is_system_labeled() || msg_getcred(mp, NULL) != NULL ||
2525 	    mp->b_datap->db_type != M_DATA);
2526 
2527 	/*
2528 	 * Step 1.
2529 	 * Grab the transport's request lock and the
2530 	 * pool's request lock so that when we put
2531 	 * the request at the tail of the transport's
2532 	 * request queue, possibly put the request on
2533 	 * the xprt ready queue and increment the
2534 	 * pending request count it looks atomic.
2535 	 */
2536 	mutex_enter(&xprt->xp_req_lock);
2537 	if (flowcontrol && xprt->xp_full) {
2538 		mutex_exit(&xprt->xp_req_lock);
2539 
2540 		return (FALSE);
2541 	}
2542 	ASSERT(xprt->xp_full == FALSE);
2543 	mutex_enter(&pool->p_req_lock);
2544 	if (xprt->xp_req_head == NULL)
2545 		xprt->xp_req_head = mp;
2546 	else
2547 		xprt->xp_req_tail->b_next = mp;
2548 	xprt->xp_req_tail = mp;
2549 
2550 	/*
2551 	 * Step 2.
2552 	 * Insert a hint into the xprt-ready queue, increment
2553 	 * counters, handle flow control, and wake up
2554 	 * a thread sleeping in svc_poll() if necessary.
2555 	 */
2556 
2557 	/* Insert pointer to this transport into the xprt-ready queue */
2558 	svc_xprt_qput(pool, xprt);
2559 
2560 	/* Increment counters */
2561 	pool->p_reqs++;
2562 	xprt->xp_reqs++;
2563 
2564 	size = svc_msgsize(mp);
2565 	xprt->xp_size += size;
2566 	pool->p_size += size;
2567 
2568 	/* Handle flow control */
2569 	if (flowcontrol)
2570 		svc_flowcontrol(xprt);
2571 
2572 	TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_ENQ,
2573 	    "rpc_que_req_enq:pool %p mp %p", pool, mp);
2574 
2575 	/*
2576 	 * If there are more requests and req_cv hasn't
2577 	 * been signaled yet then wake up one more thread now.
2578 	 *
2579 	 * We avoid signaling req_cv until the most recently
2580 	 * signaled thread wakes up and gets CPU to clear
2581 	 * the `drowsy' flag.
2582 	 */
2583 	if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2584 	    pool->p_asleep == 0) {
2585 		mutex_exit(&pool->p_req_lock);
2586 	} else {
2587 		pool->p_drowsy = TRUE;
2588 		pool->p_asleep--;
2589 
2590 		/*
2591 		 * Signal wakeup and drop the request lock.
2592 		 */
2593 		cv_signal(&pool->p_req_cv);
2594 		mutex_exit(&pool->p_req_lock);
2595 	}
2596 	mutex_exit(&xprt->xp_req_lock);
2597 
2598 	/*
2599 	 * Step 3.
2600 	 * If there are no asleep/signaled threads, we are
2601 	 * still below pool->p_maxthreads limit, and no thread is
2602 	 * currently being created then signal the creator
2603 	 * for one more service thread.
2604 	 *
2605 	 * The asleep and drowsy checks are not not protected
2606 	 * by a lock since it hurts performance and a wrong
2607 	 * decision is not essential.
2608 	 */
2609 	if (pool->p_asleep == 0 && !pool->p_drowsy &&
2610 	    pool->p_threads + pool->p_detached_threads < pool->p_maxthreads)
2611 		svc_creator_signal(pool);
2612 
2613 	TRACE_1(TR_FAC_KRPC, TR_SVC_QUEUEREQ_END,
2614 	    "svc_queuereq_end:(%S)", "end");
2615 
2616 	return (TRUE);
2617 }
2618 
2619 /*
2620  * Reserve a service thread so that it can be detached later.
2621  * This reservation is required to make sure that when it tries to
2622  * detach itself the total number of detached threads does not exceed
2623  * pool->p_maxthreads - pool->p_redline (i.e. that we can have
2624  * up to pool->p_redline non-detached threads).
2625  *
2626  * If the thread does not detach itself later, it should cancel the
2627  * reservation before returning to svc_run().
2628  *
2629  * - check if there is room for more reserved/detached threads
2630  * - if so, then increment the `reserved threads' count for the pool
2631  * - mark the thread as reserved (setting the flag in the clone transport
2632  *   handle for this thread
2633  * - returns 1 if the reservation succeeded, 0 if it failed.
2634  */
2635 int
2636 svc_reserve_thread(SVCXPRT *clone_xprt)
2637 {
2638 	SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2639 
2640 	/* Recursive reservations are not allowed */
2641 	ASSERT(!clone_xprt->xp_reserved);
2642 	ASSERT(!clone_xprt->xp_detached);
2643 
2644 	/* Check pool counts if there is room for reservation */
2645 	mutex_enter(&pool->p_thread_lock);
2646 	if (pool->p_reserved_threads + pool->p_detached_threads >=
2647 	    pool->p_maxthreads - pool->p_redline) {
2648 		mutex_exit(&pool->p_thread_lock);
2649 		return (0);
2650 	}
2651 	pool->p_reserved_threads++;
2652 	mutex_exit(&pool->p_thread_lock);
2653 
2654 	/* Mark the thread (clone handle) as reserved */
2655 	clone_xprt->xp_reserved = TRUE;
2656 
2657 	return (1);
2658 }
2659 
2660 /*
2661  * Cancel a reservation for a thread.
2662  * - decrement the `reserved threads' count for the pool
2663  * - clear the flag in the clone transport handle for this thread.
2664  */
2665 void
2666 svc_unreserve_thread(SVCXPRT *clone_xprt)
2667 {
2668 	SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2669 
2670 	/* Thread must have a reservation */
2671 	ASSERT(clone_xprt->xp_reserved);
2672 	ASSERT(!clone_xprt->xp_detached);
2673 
2674 	/* Decrement global count */
2675 	mutex_enter(&pool->p_thread_lock);
2676 	pool->p_reserved_threads--;
2677 	mutex_exit(&pool->p_thread_lock);
2678 
2679 	/* Clear reservation flag */
2680 	clone_xprt->xp_reserved = FALSE;
2681 }
2682 
2683 /*
2684  * Detach a thread from its transport, so that it can block for an
2685  * extended time.  Because the transport can be closed after the thread is
2686  * detached, the thread should have already sent off a reply if it was
2687  * going to send one.
2688  *
2689  * - decrement `non-detached threads' count and increment `detached threads'
2690  *   counts for the transport
2691  * - decrement the  `non-detached threads' and `reserved threads'
2692  *   counts and increment the `detached threads' count for the pool
2693  * - release the rpcmod slot
2694  * - mark the clone (thread) as detached.
2695  *
2696  * No need to return a pointer to the thread's CPR information, since
2697  * the thread has a userland identity.
2698  *
2699  * NOTICE: a thread must not detach itself without making a prior reservation
2700  *	   through svc_thread_reserve().
2701  */
2702 callb_cpr_t *
2703 svc_detach_thread(SVCXPRT *clone_xprt)
2704 {
2705 	SVCMASTERXPRT *xprt = clone_xprt->xp_master;
2706 	SVCPOOL *pool = xprt->xp_pool;
2707 	bool_t enable;
2708 
2709 	/* Thread must have a reservation */
2710 	ASSERT(clone_xprt->xp_reserved);
2711 	ASSERT(!clone_xprt->xp_detached);
2712 
2713 	/* Bookkeeping for this transport */
2714 	mutex_enter(&xprt->xp_thread_lock);
2715 	xprt->xp_threads--;
2716 	xprt->xp_detached_threads++;
2717 	mutex_exit(&xprt->xp_thread_lock);
2718 
2719 	/* Bookkeeping for the pool */
2720 	mutex_enter(&pool->p_thread_lock);
2721 	pool->p_threads--;
2722 	pool->p_reserved_threads--;
2723 	pool->p_detached_threads++;
2724 	mutex_exit(&pool->p_thread_lock);
2725 
2726 	/* Release an rpcmod slot for this request */
2727 	mutex_enter(&xprt->xp_req_lock);
2728 	enable = xprt->xp_enable;
2729 	if (enable)
2730 		xprt->xp_enable = FALSE;
2731 	mutex_exit(&xprt->xp_req_lock);
2732 	(*RELE_PROC(xprt)) (clone_xprt->xp_wq, NULL, enable);
2733 
2734 	/* Mark the clone (thread) as detached */
2735 	clone_xprt->xp_reserved = FALSE;
2736 	clone_xprt->xp_detached = TRUE;
2737 
2738 	return (NULL);
2739 }
2740 
2741 /*
2742  * This routine is responsible for extracting RDMA plugin master XPRT,
2743  * unregister from the SVCPOOL and initiate plugin specific cleanup.
2744  * It is passed a list/group of rdma transports as records which are
2745  * active in a given registered or unregistered kRPC thread pool. Its shuts
2746  * all active rdma transports in that pool. If the thread active on the trasport
2747  * happens to be last thread for that pool, it will signal the creater thread
2748  * to cleanup the pool and destroy the xprt in svc_queueclose()
2749  */
2750 void
2751 rdma_stop(rdma_xprt_group_t *rdma_xprts)
2752 {
2753 	SVCMASTERXPRT *xprt;
2754 	rdma_xprt_record_t *curr_rec;
2755 	queue_t *q;
2756 	mblk_t *mp;
2757 	int i, rtg_count;
2758 	SVCPOOL *pool;
2759 
2760 	if (rdma_xprts->rtg_count == 0)
2761 		return;
2762 
2763 	rtg_count = rdma_xprts->rtg_count;
2764 
2765 	for (i = 0; i < rtg_count; i++) {
2766 		curr_rec = rdma_xprts->rtg_listhead;
2767 		rdma_xprts->rtg_listhead = curr_rec->rtr_next;
2768 		rdma_xprts->rtg_count--;
2769 		curr_rec->rtr_next = NULL;
2770 		xprt = curr_rec->rtr_xprt_ptr;
2771 		q = xprt->xp_wq;
2772 		svc_rdma_kstop(xprt);
2773 
2774 		mutex_enter(&xprt->xp_req_lock);
2775 		pool = xprt->xp_pool;
2776 		while ((mp = xprt->xp_req_head) != NULL) {
2777 			rdma_recv_data_t *rdp = (rdma_recv_data_t *)mp->b_rptr;
2778 
2779 			/* remove the request from the list */
2780 			xprt->xp_req_head = mp->b_next;
2781 			mp->b_next = (mblk_t *)0;
2782 
2783 			RDMA_BUF_FREE(rdp->conn, &rdp->rpcmsg);
2784 			RDMA_REL_CONN(rdp->conn);
2785 			freemsg(mp);
2786 		}
2787 		mutex_enter(&pool->p_req_lock);
2788 		pool->p_reqs -= xprt->xp_reqs;
2789 		pool->p_size -= xprt->xp_size;
2790 		mutex_exit(&pool->p_req_lock);
2791 		xprt->xp_reqs = 0;
2792 		xprt->xp_size = 0;
2793 		xprt->xp_full = FALSE;
2794 		xprt->xp_enable = FALSE;
2795 		mutex_exit(&xprt->xp_req_lock);
2796 		svc_queueclose(q);
2797 #ifdef	DEBUG
2798 		if (rdma_check)
2799 			cmn_err(CE_NOTE, "rdma_stop: Exited svc_queueclose\n");
2800 #endif
2801 		/*
2802 		 * Free the rdma transport record for the expunged rdma
2803 		 * based master transport handle.
2804 		 */
2805 		kmem_free(curr_rec, sizeof (rdma_xprt_record_t));
2806 		if (!rdma_xprts->rtg_listhead)
2807 			break;
2808 	}
2809 }
2810 
2811 
2812 /*
2813  * rpc_msg_dup/rpc_msg_free
2814  * Currently only used by svc_rpcsec_gss.c but put in this file as it
2815  * may be useful to others in the future.
2816  * But future consumers should be careful cuz so far
2817  *   - only tested/used for call msgs (not reply)
2818  *   - only tested/used with call verf oa_length==0
2819  */
2820 struct rpc_msg *
2821 rpc_msg_dup(struct rpc_msg *src)
2822 {
2823 	struct rpc_msg *dst;
2824 	struct opaque_auth oa_src, oa_dst;
2825 
2826 	dst = kmem_alloc(sizeof (*dst), KM_SLEEP);
2827 
2828 	dst->rm_xid = src->rm_xid;
2829 	dst->rm_direction = src->rm_direction;
2830 
2831 	dst->rm_call.cb_rpcvers = src->rm_call.cb_rpcvers;
2832 	dst->rm_call.cb_prog = src->rm_call.cb_prog;
2833 	dst->rm_call.cb_vers = src->rm_call.cb_vers;
2834 	dst->rm_call.cb_proc = src->rm_call.cb_proc;
2835 
2836 	/* dup opaque auth call body cred */
2837 	oa_src = src->rm_call.cb_cred;
2838 
2839 	oa_dst.oa_flavor = oa_src.oa_flavor;
2840 	oa_dst.oa_base = kmem_alloc(oa_src.oa_length, KM_SLEEP);
2841 
2842 	bcopy(oa_src.oa_base, oa_dst.oa_base, oa_src.oa_length);
2843 	oa_dst.oa_length = oa_src.oa_length;
2844 
2845 	dst->rm_call.cb_cred = oa_dst;
2846 
2847 	/* dup or just alloc opaque auth call body verifier */
2848 	if (src->rm_call.cb_verf.oa_length > 0) {
2849 		oa_src = src->rm_call.cb_verf;
2850 
2851 		oa_dst.oa_flavor = oa_src.oa_flavor;
2852 		oa_dst.oa_base = kmem_alloc(oa_src.oa_length, KM_SLEEP);
2853 
2854 		bcopy(oa_src.oa_base, oa_dst.oa_base, oa_src.oa_length);
2855 		oa_dst.oa_length = oa_src.oa_length;
2856 
2857 		dst->rm_call.cb_verf = oa_dst;
2858 	} else {
2859 		oa_dst.oa_flavor = -1;  /* will be set later */
2860 		oa_dst.oa_base = kmem_alloc(MAX_AUTH_BYTES, KM_SLEEP);
2861 
2862 		oa_dst.oa_length = 0;   /* will be set later */
2863 
2864 		dst->rm_call.cb_verf = oa_dst;
2865 	}
2866 	return (dst);
2867 
2868 error:
2869 	kmem_free(dst->rm_call.cb_cred.oa_base,	dst->rm_call.cb_cred.oa_length);
2870 	kmem_free(dst, sizeof (*dst));
2871 	return (NULL);
2872 }
2873 
2874 void
2875 rpc_msg_free(struct rpc_msg **msg, int cb_verf_oa_length)
2876 {
2877 	struct rpc_msg *m = *msg;
2878 
2879 	kmem_free(m->rm_call.cb_cred.oa_base, m->rm_call.cb_cred.oa_length);
2880 	m->rm_call.cb_cred.oa_base = NULL;
2881 	m->rm_call.cb_cred.oa_length = 0;
2882 
2883 	kmem_free(m->rm_call.cb_verf.oa_base, cb_verf_oa_length);
2884 	m->rm_call.cb_verf.oa_base = NULL;
2885 	m->rm_call.cb_verf.oa_length = 0;
2886 
2887 	kmem_free(m, sizeof (*m));
2888 	m = NULL;
2889 }
2890