1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2012 Marcel Telka <marcel@telka.sk>
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
26 * Copyright 2021 Racktop Systems, Inc.
27 */
28
29 /*
30 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
31 * Use is subject to license terms.
32 */
33
34 /*
35 * Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved.
36 */
37
38 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
39 /* All Rights Reserved */
40
41 /*
42 * Portions of this source code were derived from Berkeley 4.3 BSD
43 * under license from the Regents of the University of California.
44 */
45
46 /*
47 * Server-side remote procedure call interface.
48 *
49 * Master transport handle (SVCMASTERXPRT).
50 * The master transport handle structure is shared among service
51 * threads processing events on the transport. Some fields in the
52 * master structure are protected by locks
53 * - xp_req_lock protects the request queue:
54 * xp_req_head, xp_req_tail, xp_reqs, xp_size, xp_full, xp_enable
55 * - xp_thread_lock protects the thread (clone) counts
56 * xp_threads, xp_detached_threads, xp_wq
57 * Each master transport is registered to exactly one thread pool.
58 *
59 * Clone transport handle (SVCXPRT)
60 * The clone transport handle structure is a per-service-thread handle
61 * to the transport. The structure carries all the fields/buffers used
62 * for request processing. A service thread or, in other words, a clone
63 * structure, can be linked to an arbitrary master structure to process
64 * requests on this transport. The master handle keeps track of reference
65 * counts of threads (clones) linked to it. A service thread can switch
66 * to another transport by unlinking its clone handle from the current
67 * transport and linking to a new one. Switching is relatively inexpensive
68 * but it involves locking (master's xprt->xp_thread_lock).
69 *
70 * Pools.
71 * A pool represents a kernel RPC service (NFS, Lock Manager, etc.).
72 * Transports related to the service are registered to the service pool.
73 * Service threads can switch between different transports in the pool.
74 * Thus, each service has its own pool of service threads. The maximum
75 * number of threads in a pool is pool->p_maxthreads. This limit allows
76 * to restrict resource usage by the service. Some fields are protected
77 * by locks:
78 * - p_req_lock protects several counts and flags:
79 * p_reqs, p_size, p_walkers, p_asleep, p_drowsy, p_req_cv
80 * - p_thread_lock governs other thread counts:
81 * p_threads, p_detached_threads, p_reserved_threads, p_closing
82 *
83 * In addition, each pool contains a doubly-linked list of transports,
84 * an `xprt-ready' queue and a creator thread (see below). Threads in
85 * the pool share some other parameters such as stack size and
86 * polling timeout.
87 *
88 * Pools are initialized through the svc_pool_create() function called from
89 * the nfssys() system call. However, thread creation must be done by
90 * the userland agent. This is done by using SVCPOOL_WAIT and
91 * SVCPOOL_RUN arguments to nfssys(), which call svc_wait() and
92 * svc_do_run(), respectively. Once the pool has been initialized,
93 * the userland process must set up a 'creator' thread. This thread
94 * should park itself in the kernel by calling svc_wait(). If
95 * svc_wait() returns successfully, it should fork off a new worker
96 * thread, which then calls svc_do_run() in order to get work. When
97 * that thread is complete, svc_do_run() will return, and the user
98 * program should call thr_exit().
99 *
100 * When we try to register a new pool and there is an old pool with
101 * the same id in the doubly linked pool list (this happens when we kill
102 * and restart nfsd or lockd), then we unlink the old pool from the list
103 * and mark its state as `closing'. After that the transports can still
104 * process requests but new transports won't be registered. When all the
105 * transports and service threads associated with the pool are gone the
106 * creator thread (see below) will clean up the pool structure and exit.
107 *
108 * svc_queuereq() and svc_run().
109 * The kernel RPC server is interrupt driven. The svc_queuereq() interrupt
110 * routine is called to deliver an RPC request. The service threads
111 * loop in svc_run(). The interrupt function queues a request on the
112 * transport's queue and it makes sure that the request is serviced.
113 * It may either wake up one of sleeping threads, or ask for a new thread
114 * to be created, or, if the previous request is just being picked up, do
115 * nothing. In the last case the service thread that is picking up the
116 * previous request will wake up or create the next thread. After a service
117 * thread processes a request and sends a reply it returns to svc_run()
118 * and svc_run() calls svc_poll() to find new input.
119 *
120 * svc_poll().
121 * In order to avoid unnecessary locking, which causes performance
122 * problems, we always look for a pending request on the current transport.
123 * If there is none we take a hint from the pool's `xprt-ready' queue.
124 * If the queue had an overflow we switch to the `drain' mode checking
125 * each transport in the pool's transport list. Once we find a
126 * master transport handle with a pending request we latch the request
127 * lock on this transport and return to svc_run(). If the request
128 * belongs to a transport different than the one the service thread is
129 * linked to we need to unlink and link again.
130 *
131 * A service thread goes asleep when there are no pending
132 * requests on the transports registered on the pool's transports.
133 * All the pool's threads sleep on the same condition variable.
134 * If a thread has been sleeping for too long period of time
135 * (by default 5 seconds) it wakes up and exits. Also when a transport
136 * is closing sleeping threads wake up to unlink from this transport.
137 *
138 * The `xprt-ready' queue.
139 * If a service thread finds no request on a transport it is currently linked
140 * to it will find another transport with a pending request. To make
141 * this search more efficient each pool has an `xprt-ready' queue.
142 * The queue is a FIFO. When the interrupt routine queues a request it also
143 * inserts a pointer to the transport into the `xprt-ready' queue. A
144 * thread looking for a transport with a pending request can pop up a
145 * transport and check for a request. The request can be already gone
146 * since it could be taken by a thread linked to that transport. In such a
147 * case we try the next hint. The `xprt-ready' queue has fixed size (by
148 * default 256 nodes). If it overflows svc_poll() has to switch to the
149 * less efficient but safe `drain' mode and walk through the pool's
150 * transport list.
151 *
152 * Both the svc_poll() loop and the `xprt-ready' queue are optimized
153 * for the peak load case that is for the situation when the queue is not
154 * empty, there are all the time few pending requests, and a service
155 * thread which has just processed a request does not go asleep but picks
156 * up immediately the next request.
157 *
158 * Thread creator.
159 * Each pool has a thread creator associated with it. The creator thread
160 * sleeps on a condition variable and waits for a signal to create a
161 * service thread. The actual thread creation is done in userland by
162 * the method described in "Pools" above.
163 *
164 * Signaling threads should turn on the `creator signaled' flag, and
165 * can avoid sending signals when the flag is on. The flag is cleared
166 * when the thread is created.
167 *
168 * When the pool is in closing state (ie it has been already unregistered
169 * from the pool list) the last thread on the last transport in the pool
170 * should turn the p_creator_exit flag on. The creator thread will
171 * clean up the pool structure and exit.
172 *
173 * Thread reservation; Detaching service threads.
174 * A service thread can detach itself to block for an extended amount
175 * of time. However, to keep the service active we need to guarantee
176 * at least pool->p_redline non-detached threads that can process incoming
177 * requests. This, the maximum number of detached and reserved threads is
178 * p->p_maxthreads - p->p_redline. A service thread should first acquire
179 * a reservation, and if the reservation was granted it can detach itself.
180 * If a reservation was granted but the thread does not detach itself
181 * it should cancel the reservation before it returns to svc_run().
182 */
183
184 #include <sys/param.h>
185 #include <sys/types.h>
186 #include <rpc/types.h>
187 #include <sys/socket.h>
188 #include <sys/time.h>
189 #include <sys/tiuser.h>
190 #include <sys/t_kuser.h>
191 #include <netinet/in.h>
192 #include <rpc/xdr.h>
193 #include <rpc/auth.h>
194 #include <rpc/clnt.h>
195 #include <rpc/rpc_msg.h>
196 #include <rpc/svc.h>
197 #include <sys/proc.h>
198 #include <sys/user.h>
199 #include <sys/stream.h>
200 #include <sys/strsubr.h>
201 #include <sys/strsun.h>
202 #include <sys/tihdr.h>
203 #include <sys/debug.h>
204 #include <sys/cmn_err.h>
205 #include <sys/file.h>
206 #include <sys/systm.h>
207 #include <sys/callb.h>
208 #include <sys/vtrace.h>
209 #include <sys/zone.h>
210 #include <nfs/nfs.h>
211 #include <sys/tsol/label_macro.h>
212
213 /*
214 * Defines for svc_poll()
215 */
216 #define SVC_EXPRTGONE ((SVCMASTERXPRT *)1) /* Transport is closing */
217 #define SVC_ETIMEDOUT ((SVCMASTERXPRT *)2) /* Timeout */
218 #define SVC_EINTR ((SVCMASTERXPRT *)3) /* Interrupted by signal */
219
220 /*
221 * Default stack size for service threads.
222 */
223 #define DEFAULT_SVC_RUN_STKSIZE (0) /* default kernel stack */
224
225 int svc_default_stksize = DEFAULT_SVC_RUN_STKSIZE;
226
227 /*
228 * Default polling timeout for service threads.
229 * Multiplied by hz when used.
230 */
231 #define DEFAULT_SVC_POLL_TIMEOUT (5) /* seconds */
232
233 clock_t svc_default_timeout = DEFAULT_SVC_POLL_TIMEOUT;
234
235 /*
236 * Size of the `xprt-ready' queue.
237 */
238 #define DEFAULT_SVC_QSIZE (256) /* qnodes */
239
240 size_t svc_default_qsize = DEFAULT_SVC_QSIZE;
241
242 /*
243 * Default limit for the number of service threads.
244 */
245 #define DEFAULT_SVC_MAXTHREADS (INT16_MAX)
246
247 int svc_default_maxthreads = DEFAULT_SVC_MAXTHREADS;
248
249 /*
250 * Maximum number of requests from the same transport (in `drain' mode).
251 */
252 #define DEFAULT_SVC_MAX_SAME_XPRT (8)
253
254 int svc_default_max_same_xprt = DEFAULT_SVC_MAX_SAME_XPRT;
255
256
257 /*
258 * Default `Redline' of non-detached threads.
259 * Total number of detached and reserved threads in an RPC server
260 * thread pool is limited to pool->p_maxthreads - svc_redline.
261 */
262 #define DEFAULT_SVC_REDLINE (1)
263
264 int svc_default_redline = DEFAULT_SVC_REDLINE;
265
266 /*
267 * A node for the `xprt-ready' queue.
268 * See below.
269 */
270 struct __svcxprt_qnode {
271 __SVCXPRT_QNODE *q_next;
272 SVCMASTERXPRT *q_xprt;
273 };
274
275 /*
276 * Global SVC variables (private).
277 */
278 struct svc_globals {
279 SVCPOOL *svc_pools;
280 kmutex_t svc_plock;
281 };
282
283 /*
284 * Debug variable to check for rdma based
285 * transport startup and cleanup. Contorlled
286 * through /etc/system. Off by default.
287 */
288 int rdma_check = 0;
289
290 /*
291 * This allows disabling flow control in svc_queuereq().
292 */
293 volatile int svc_flowcontrol_disable = 0;
294
295 /*
296 * Authentication parameters list.
297 */
298 static caddr_t rqcred_head;
299 static kmutex_t rqcred_lock;
300
301 /*
302 * If true, then keep quiet about version mismatch.
303 * This macro is for broadcast RPC only. We have no broadcast RPC in
304 * kernel now but one may define a flag in the transport structure
305 * and redefine this macro.
306 */
307 #define version_keepquiet(xprt) (FALSE)
308
309 /*
310 * ZSD key used to retrieve zone-specific svc globals
311 */
312 static zone_key_t svc_zone_key;
313
314 static void svc_callout_free(SVCMASTERXPRT *);
315 static void svc_xprt_qinit(SVCPOOL *, size_t);
316 static void svc_xprt_qdestroy(SVCPOOL *);
317 static void svc_thread_creator(SVCPOOL *);
318 static void svc_creator_signal(SVCPOOL *);
319 static void svc_creator_signalexit(SVCPOOL *);
320 static void svc_pool_unregister(struct svc_globals *, SVCPOOL *);
321 static int svc_run(SVCPOOL *);
322
323 /* ARGSUSED */
324 static void *
svc_zoneinit(zoneid_t zoneid)325 svc_zoneinit(zoneid_t zoneid)
326 {
327 struct svc_globals *svc;
328
329 svc = kmem_alloc(sizeof (*svc), KM_SLEEP);
330 mutex_init(&svc->svc_plock, NULL, MUTEX_DEFAULT, NULL);
331 svc->svc_pools = NULL;
332 return (svc);
333 }
334
335 /* ARGSUSED */
336 static void
svc_zoneshutdown(zoneid_t zoneid,void * arg)337 svc_zoneshutdown(zoneid_t zoneid, void *arg)
338 {
339 struct svc_globals *svc = arg;
340 SVCPOOL *pool;
341
342 mutex_enter(&svc->svc_plock);
343 while ((pool = svc->svc_pools) != NULL) {
344 svc_pool_unregister(svc, pool);
345 }
346 mutex_exit(&svc->svc_plock);
347 }
348
349 /* ARGSUSED */
350 static void
svc_zonefini(zoneid_t zoneid,void * arg)351 svc_zonefini(zoneid_t zoneid, void *arg)
352 {
353 struct svc_globals *svc = arg;
354
355 ASSERT(svc->svc_pools == NULL);
356 mutex_destroy(&svc->svc_plock);
357 kmem_free(svc, sizeof (*svc));
358 }
359
360 /*
361 * Global SVC init routine.
362 * Initialize global generic and transport type specific structures
363 * used by the kernel RPC server side. This routine is called only
364 * once when the module is being loaded.
365 */
366 void
svc_init()367 svc_init()
368 {
369 zone_key_create(&svc_zone_key, svc_zoneinit, svc_zoneshutdown,
370 svc_zonefini);
371 svc_cots_init();
372 svc_clts_init();
373 }
374
375 /*
376 * Destroy the SVCPOOL structure.
377 */
378 static void
svc_pool_cleanup(SVCPOOL * pool)379 svc_pool_cleanup(SVCPOOL *pool)
380 {
381 ASSERT(pool->p_threads + pool->p_detached_threads == 0);
382 ASSERT(pool->p_lcount == 0);
383 ASSERT(pool->p_closing);
384
385 /*
386 * Call the user supplied shutdown function. This is done
387 * here so the user of the pool will be able to cleanup
388 * service related resources.
389 */
390 if (pool->p_shutdown != NULL)
391 (pool->p_shutdown)();
392
393 /* Destroy `xprt-ready' queue */
394 svc_xprt_qdestroy(pool);
395
396 /* Destroy transport list */
397 rw_destroy(&pool->p_lrwlock);
398
399 /* Destroy locks and condition variables */
400 mutex_destroy(&pool->p_thread_lock);
401 mutex_destroy(&pool->p_req_lock);
402 cv_destroy(&pool->p_req_cv);
403
404 /* Destroy creator's locks and condition variables */
405 mutex_destroy(&pool->p_creator_lock);
406 cv_destroy(&pool->p_creator_cv);
407 mutex_destroy(&pool->p_user_lock);
408 cv_destroy(&pool->p_user_cv);
409
410 /* Free pool structure */
411 kmem_free(pool, sizeof (SVCPOOL));
412 }
413
414 /*
415 * If all the transports and service threads are already gone
416 * signal the creator thread to clean up and exit.
417 */
418 static bool_t
svc_pool_tryexit(SVCPOOL * pool)419 svc_pool_tryexit(SVCPOOL *pool)
420 {
421 ASSERT(MUTEX_HELD(&pool->p_thread_lock));
422 ASSERT(pool->p_closing);
423
424 if (pool->p_threads + pool->p_detached_threads == 0) {
425 rw_enter(&pool->p_lrwlock, RW_READER);
426 if (pool->p_lcount == 0) {
427 /*
428 * Release the locks before sending a signal.
429 */
430 rw_exit(&pool->p_lrwlock);
431 mutex_exit(&pool->p_thread_lock);
432
433 /*
434 * Notify the creator thread to clean up and exit
435 *
436 * NOTICE: No references to the pool beyond this point!
437 * The pool is being destroyed.
438 */
439 ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
440 svc_creator_signalexit(pool);
441
442 return (TRUE);
443 }
444 rw_exit(&pool->p_lrwlock);
445 }
446
447 ASSERT(MUTEX_HELD(&pool->p_thread_lock));
448 return (FALSE);
449 }
450
451 /*
452 * Find a pool with a given id.
453 */
454 static SVCPOOL *
svc_pool_find(struct svc_globals * svc,int id)455 svc_pool_find(struct svc_globals *svc, int id)
456 {
457 SVCPOOL *pool;
458
459 ASSERT(MUTEX_HELD(&svc->svc_plock));
460
461 /*
462 * Search the list for a pool with a matching id
463 * and register the transport handle with that pool.
464 */
465 for (pool = svc->svc_pools; pool; pool = pool->p_next)
466 if (pool->p_id == id)
467 return (pool);
468
469 return (NULL);
470 }
471
472 /*
473 * PSARC 2003/523 Contract Private Interface
474 * svc_do_run
475 * Changes must be reviewed by Solaris File Sharing
476 * Changes must be communicated to contract-2003-523@sun.com
477 */
478 int
svc_do_run(int id)479 svc_do_run(int id)
480 {
481 SVCPOOL *pool;
482 int err = 0;
483 struct svc_globals *svc;
484
485 svc = zone_getspecific(svc_zone_key, curproc->p_zone);
486 mutex_enter(&svc->svc_plock);
487
488 pool = svc_pool_find(svc, id);
489
490 mutex_exit(&svc->svc_plock);
491
492 if (pool == NULL)
493 return (ENOENT);
494
495 /*
496 * Increment counter of pool threads now
497 * that a thread has been created.
498 */
499 mutex_enter(&pool->p_thread_lock);
500 pool->p_threads++;
501 mutex_exit(&pool->p_thread_lock);
502
503 /* Give work to the new thread. */
504 err = svc_run(pool);
505
506 return (err);
507 }
508
509 /*
510 * Unregister a pool from the pool list.
511 * Set the closing state. If all the transports and service threads
512 * are already gone signal the creator thread to clean up and exit.
513 */
514 static void
svc_pool_unregister(struct svc_globals * svc,SVCPOOL * pool)515 svc_pool_unregister(struct svc_globals *svc, SVCPOOL *pool)
516 {
517 SVCPOOL *next = pool->p_next;
518 SVCPOOL *prev = pool->p_prev;
519
520 ASSERT(MUTEX_HELD(&svc->svc_plock));
521
522 /* Remove from the list */
523 if (pool == svc->svc_pools)
524 svc->svc_pools = next;
525 if (next)
526 next->p_prev = prev;
527 if (prev)
528 prev->p_next = next;
529 pool->p_next = pool->p_prev = NULL;
530
531 /*
532 * Offline the pool. Mark the pool as closing.
533 * If there are no transports in this pool notify
534 * the creator thread to clean it up and exit.
535 */
536 mutex_enter(&pool->p_thread_lock);
537 if (pool->p_offline != NULL)
538 (pool->p_offline)();
539 pool->p_closing = TRUE;
540 if (svc_pool_tryexit(pool))
541 return;
542 mutex_exit(&pool->p_thread_lock);
543 }
544
545 /*
546 * Register a pool with a given id in the global doubly linked pool list.
547 * - if there is a pool with the same id in the list then unregister it
548 * - insert the new pool into the list.
549 */
550 static void
svc_pool_register(struct svc_globals * svc,SVCPOOL * pool,int id)551 svc_pool_register(struct svc_globals *svc, SVCPOOL *pool, int id)
552 {
553 SVCPOOL *old_pool;
554
555 /*
556 * If there is a pool with the same id then remove it from
557 * the list and mark the pool as closing.
558 */
559 mutex_enter(&svc->svc_plock);
560
561 if (old_pool = svc_pool_find(svc, id))
562 svc_pool_unregister(svc, old_pool);
563
564 /* Insert into the doubly linked list */
565 pool->p_id = id;
566 pool->p_next = svc->svc_pools;
567 pool->p_prev = NULL;
568 if (svc->svc_pools)
569 svc->svc_pools->p_prev = pool;
570 svc->svc_pools = pool;
571
572 mutex_exit(&svc->svc_plock);
573 }
574
575 /*
576 * Initialize a newly created pool structure
577 */
578 static int
svc_pool_init(SVCPOOL * pool,uint_t maxthreads,uint_t redline,uint_t qsize,uint_t timeout,uint_t stksize,uint_t max_same_xprt)579 svc_pool_init(SVCPOOL *pool, uint_t maxthreads, uint_t redline,
580 uint_t qsize, uint_t timeout, uint_t stksize, uint_t max_same_xprt)
581 {
582 klwp_t *lwp = ttolwp(curthread);
583
584 ASSERT(pool);
585
586 if (maxthreads == 0)
587 maxthreads = svc_default_maxthreads;
588 if (redline == 0)
589 redline = svc_default_redline;
590 if (qsize == 0)
591 qsize = svc_default_qsize;
592 if (timeout == 0)
593 timeout = svc_default_timeout;
594 if (stksize == 0)
595 stksize = svc_default_stksize;
596 if (max_same_xprt == 0)
597 max_same_xprt = svc_default_max_same_xprt;
598
599 if (maxthreads < redline)
600 return (EINVAL);
601
602 /* Allocate and initialize the `xprt-ready' queue */
603 svc_xprt_qinit(pool, qsize);
604
605 /* Initialize doubly-linked xprt list */
606 rw_init(&pool->p_lrwlock, NULL, RW_DEFAULT, NULL);
607
608 /*
609 * Setting lwp_childstksz on the current lwp so that
610 * descendants of this lwp get the modified stacksize, if
611 * it is defined. It is important that either this lwp or
612 * one of its descendants do the actual servicepool thread
613 * creation to maintain the stacksize inheritance.
614 */
615 if (lwp != NULL)
616 lwp->lwp_childstksz = stksize;
617
618 /* Initialize thread limits, locks and condition variables */
619 pool->p_maxthreads = maxthreads;
620 pool->p_redline = redline;
621 pool->p_timeout = timeout * hz;
622 pool->p_stksize = stksize;
623 pool->p_max_same_xprt = max_same_xprt;
624 mutex_init(&pool->p_thread_lock, NULL, MUTEX_DEFAULT, NULL);
625 mutex_init(&pool->p_req_lock, NULL, MUTEX_DEFAULT, NULL);
626 cv_init(&pool->p_req_cv, NULL, CV_DEFAULT, NULL);
627
628 /* Initialize userland creator */
629 pool->p_user_exit = FALSE;
630 pool->p_signal_create_thread = FALSE;
631 pool->p_user_waiting = FALSE;
632 mutex_init(&pool->p_user_lock, NULL, MUTEX_DEFAULT, NULL);
633 cv_init(&pool->p_user_cv, NULL, CV_DEFAULT, NULL);
634
635 /* Initialize the creator and start the creator thread */
636 pool->p_creator_exit = FALSE;
637 mutex_init(&pool->p_creator_lock, NULL, MUTEX_DEFAULT, NULL);
638 cv_init(&pool->p_creator_cv, NULL, CV_DEFAULT, NULL);
639
640 (void) zthread_create(NULL, pool->p_stksize, svc_thread_creator,
641 pool, 0, minclsyspri);
642
643 return (0);
644 }
645
646 /*
647 * PSARC 2003/523 Contract Private Interface
648 * svc_pool_create
649 * Changes must be reviewed by Solaris File Sharing
650 * Changes must be communicated to contract-2003-523@sun.com
651 *
652 * Create an kernel RPC server-side thread/transport pool.
653 *
654 * This is public interface for creation of a server RPC thread pool
655 * for a given service provider. Transports registered with the pool's id
656 * will be served by a pool's threads. This function is called from the
657 * nfssys() system call.
658 */
659 int
svc_pool_create(struct svcpool_args * args)660 svc_pool_create(struct svcpool_args *args)
661 {
662 SVCPOOL *pool;
663 int error;
664 struct svc_globals *svc;
665
666 /*
667 * Caller should check credentials in a way appropriate
668 * in the context of the call.
669 */
670
671 svc = zone_getspecific(svc_zone_key, curproc->p_zone);
672 /* Allocate a new pool */
673 pool = kmem_zalloc(sizeof (SVCPOOL), KM_SLEEP);
674
675 /*
676 * Initialize the pool structure and create a creator thread.
677 */
678 error = svc_pool_init(pool, args->maxthreads, args->redline,
679 args->qsize, args->timeout, args->stksize, args->max_same_xprt);
680
681 if (error) {
682 kmem_free(pool, sizeof (SVCPOOL));
683 return (error);
684 }
685
686 /* Register the pool with the global pool list */
687 svc_pool_register(svc, pool, args->id);
688
689 return (0);
690 }
691
692 int
svc_pool_control(int id,int cmd,void * arg)693 svc_pool_control(int id, int cmd, void *arg)
694 {
695 SVCPOOL *pool;
696 struct svc_globals *svc;
697
698 svc = zone_getspecific(svc_zone_key, curproc->p_zone);
699
700 switch (cmd) {
701 case SVCPSET_SHUTDOWN_PROC:
702 /*
703 * Search the list for a pool with a matching id
704 * and register the transport handle with that pool.
705 */
706 mutex_enter(&svc->svc_plock);
707
708 if ((pool = svc_pool_find(svc, id)) == NULL) {
709 mutex_exit(&svc->svc_plock);
710 return (ENOENT);
711 }
712 /*
713 * Grab the transport list lock before releasing the
714 * pool list lock
715 */
716 rw_enter(&pool->p_lrwlock, RW_WRITER);
717 mutex_exit(&svc->svc_plock);
718
719 pool->p_shutdown = *((void (*)())arg);
720
721 rw_exit(&pool->p_lrwlock);
722
723 return (0);
724 case SVCPSET_UNREGISTER_PROC:
725 /*
726 * Search the list for a pool with a matching id
727 * and register the unregister callback handle with that pool.
728 */
729 mutex_enter(&svc->svc_plock);
730
731 if ((pool = svc_pool_find(svc, id)) == NULL) {
732 mutex_exit(&svc->svc_plock);
733 return (ENOENT);
734 }
735 /*
736 * Grab the transport list lock before releasing the
737 * pool list lock
738 */
739 rw_enter(&pool->p_lrwlock, RW_WRITER);
740 mutex_exit(&svc->svc_plock);
741
742 pool->p_offline = *((void (*)())arg);
743
744 rw_exit(&pool->p_lrwlock);
745
746 return (0);
747 default:
748 return (EINVAL);
749 }
750 }
751
752 /*
753 * Pool's transport list manipulation routines.
754 * - svc_xprt_register()
755 * - svc_xprt_unregister()
756 *
757 * svc_xprt_register() is called from svc_tli_kcreate() to
758 * insert a new master transport handle into the doubly linked
759 * list of server transport handles (one list per pool).
760 *
761 * The list is used by svc_poll(), when it operates in `drain'
762 * mode, to search for a next transport with a pending request.
763 */
764
765 int
svc_xprt_register(SVCMASTERXPRT * xprt,int id)766 svc_xprt_register(SVCMASTERXPRT *xprt, int id)
767 {
768 SVCMASTERXPRT *prev, *next;
769 SVCPOOL *pool;
770 struct svc_globals *svc;
771
772 svc = zone_getspecific(svc_zone_key, curproc->p_zone);
773 /*
774 * Search the list for a pool with a matching id
775 * and register the transport handle with that pool.
776 */
777 mutex_enter(&svc->svc_plock);
778
779 if ((pool = svc_pool_find(svc, id)) == NULL) {
780 mutex_exit(&svc->svc_plock);
781 return (ENOENT);
782 }
783
784 /* Grab the transport list lock before releasing the pool list lock */
785 rw_enter(&pool->p_lrwlock, RW_WRITER);
786 mutex_exit(&svc->svc_plock);
787
788 /* Don't register new transports when the pool is in closing state */
789 if (pool->p_closing) {
790 rw_exit(&pool->p_lrwlock);
791 return (EBUSY);
792 }
793
794 /*
795 * Initialize xp_pool to point to the pool.
796 * We don't want to go through the pool list every time.
797 */
798 xprt->xp_pool = pool;
799
800 /*
801 * Insert a transport handle into the list.
802 * The list head points to the most recently inserted transport.
803 */
804 if (pool->p_lhead == NULL)
805 pool->p_lhead = xprt->xp_prev = xprt->xp_next = xprt;
806 else {
807 next = pool->p_lhead;
808 prev = pool->p_lhead->xp_prev;
809
810 xprt->xp_next = next;
811 xprt->xp_prev = prev;
812
813 pool->p_lhead = prev->xp_next = next->xp_prev = xprt;
814 }
815
816 /* Increment the transports count */
817 pool->p_lcount++;
818
819 rw_exit(&pool->p_lrwlock);
820 return (0);
821 }
822
823 /*
824 * Called from svc_xprt_cleanup() to remove a master transport handle
825 * from the pool's list of server transports (when a transport is
826 * being destroyed).
827 */
828 void
svc_xprt_unregister(SVCMASTERXPRT * xprt)829 svc_xprt_unregister(SVCMASTERXPRT *xprt)
830 {
831 SVCPOOL *pool = xprt->xp_pool;
832
833 /*
834 * Unlink xprt from the list.
835 * If the list head points to this xprt then move it
836 * to the next xprt or reset to NULL if this is the last
837 * xprt in the list.
838 */
839 rw_enter(&pool->p_lrwlock, RW_WRITER);
840
841 if (xprt == xprt->xp_next)
842 pool->p_lhead = NULL;
843 else {
844 SVCMASTERXPRT *next = xprt->xp_next;
845 SVCMASTERXPRT *prev = xprt->xp_prev;
846
847 next->xp_prev = prev;
848 prev->xp_next = next;
849
850 if (pool->p_lhead == xprt)
851 pool->p_lhead = next;
852 }
853
854 xprt->xp_next = xprt->xp_prev = NULL;
855
856 /* Decrement list count */
857 pool->p_lcount--;
858
859 rw_exit(&pool->p_lrwlock);
860 }
861
862 static void
svc_xprt_qdestroy(SVCPOOL * pool)863 svc_xprt_qdestroy(SVCPOOL *pool)
864 {
865 mutex_destroy(&pool->p_qend_lock);
866 kmem_free(pool->p_qbody, pool->p_qsize * sizeof (__SVCXPRT_QNODE));
867 }
868
869 /*
870 * Initialize an `xprt-ready' queue for a given pool.
871 */
872 static void
svc_xprt_qinit(SVCPOOL * pool,size_t qsize)873 svc_xprt_qinit(SVCPOOL *pool, size_t qsize)
874 {
875 int i;
876
877 pool->p_qsize = qsize;
878 pool->p_qbody = kmem_zalloc(pool->p_qsize * sizeof (__SVCXPRT_QNODE),
879 KM_SLEEP);
880
881 for (i = 0; i < pool->p_qsize - 1; i++)
882 pool->p_qbody[i].q_next = &(pool->p_qbody[i+1]);
883
884 pool->p_qbody[pool->p_qsize-1].q_next = &(pool->p_qbody[0]);
885 pool->p_qtop = &(pool->p_qbody[0]);
886 pool->p_qend = &(pool->p_qbody[0]);
887
888 mutex_init(&pool->p_qend_lock, NULL, MUTEX_DEFAULT, NULL);
889 }
890
891 /*
892 * Called from the svc_queuereq() interrupt routine to queue
893 * a hint for svc_poll() which transport has a pending request.
894 * - insert a pointer to xprt into the xprt-ready queue (FIFO)
895 * - if the xprt-ready queue is full turn the overflow flag on.
896 *
897 * NOTICE: pool->p_qtop is protected by the pool's request lock
898 * and the caller (svc_queuereq()) must hold the lock.
899 */
900 static void
svc_xprt_qput(SVCPOOL * pool,SVCMASTERXPRT * xprt)901 svc_xprt_qput(SVCPOOL *pool, SVCMASTERXPRT *xprt)
902 {
903 ASSERT(MUTEX_HELD(&pool->p_req_lock));
904
905 /* If the overflow flag is on there is nothing we can do */
906 if (pool->p_qoverflow)
907 return;
908
909 /* If the queue is full turn the overflow flag on and exit */
910 if (pool->p_qtop->q_next == pool->p_qend) {
911 mutex_enter(&pool->p_qend_lock);
912 if (pool->p_qtop->q_next == pool->p_qend) {
913 pool->p_qoverflow = TRUE;
914 mutex_exit(&pool->p_qend_lock);
915 return;
916 }
917 mutex_exit(&pool->p_qend_lock);
918 }
919
920 /* Insert a hint and move pool->p_qtop */
921 pool->p_qtop->q_xprt = xprt;
922 pool->p_qtop = pool->p_qtop->q_next;
923 }
924
925 /*
926 * Called from svc_poll() to get a hint which transport has a
927 * pending request. Returns a pointer to a transport or NULL if the
928 * `xprt-ready' queue is empty.
929 *
930 * Since we do not acquire the pool's request lock while checking if
931 * the queue is empty we may miss a request that is just being delivered.
932 * However this is ok since svc_poll() will retry again until the
933 * count indicates that there are pending requests for this pool.
934 */
935 static SVCMASTERXPRT *
svc_xprt_qget(SVCPOOL * pool)936 svc_xprt_qget(SVCPOOL *pool)
937 {
938 SVCMASTERXPRT *xprt;
939
940 mutex_enter(&pool->p_qend_lock);
941 do {
942 /*
943 * If the queue is empty return NULL.
944 * Since we do not acquire the pool's request lock which
945 * protects pool->p_qtop this is not exact check. However,
946 * this is safe - if we miss a request here svc_poll()
947 * will retry again.
948 */
949 if (pool->p_qend == pool->p_qtop) {
950 mutex_exit(&pool->p_qend_lock);
951 return (NULL);
952 }
953
954 /* Get a hint and move pool->p_qend */
955 xprt = pool->p_qend->q_xprt;
956 pool->p_qend = pool->p_qend->q_next;
957
958 /* Skip fields deleted by svc_xprt_qdelete() */
959 } while (xprt == NULL);
960 mutex_exit(&pool->p_qend_lock);
961
962 return (xprt);
963 }
964
965 /*
966 * Delete all the references to a transport handle that
967 * is being destroyed from the xprt-ready queue.
968 * Deleted pointers are replaced with NULLs.
969 */
970 static void
svc_xprt_qdelete(SVCPOOL * pool,SVCMASTERXPRT * xprt)971 svc_xprt_qdelete(SVCPOOL *pool, SVCMASTERXPRT *xprt)
972 {
973 __SVCXPRT_QNODE *q;
974
975 mutex_enter(&pool->p_req_lock);
976 for (q = pool->p_qend; q != pool->p_qtop; q = q->q_next) {
977 if (q->q_xprt == xprt)
978 q->q_xprt = NULL;
979 }
980 mutex_exit(&pool->p_req_lock);
981 }
982
983 /*
984 * Destructor for a master server transport handle.
985 * - if there are no more non-detached threads linked to this transport
986 * then, if requested, call xp_closeproc (we don't wait for detached
987 * threads linked to this transport to complete).
988 * - if there are no more threads linked to this
989 * transport then
990 * a) remove references to this transport from the xprt-ready queue
991 * b) remove a reference to this transport from the pool's transport list
992 * c) call a transport specific `destroy' function
993 * d) cancel remaining thread reservations.
994 *
995 * NOTICE: Caller must hold the transport's thread lock.
996 */
997 static void
svc_xprt_cleanup(SVCMASTERXPRT * xprt,bool_t detached)998 svc_xprt_cleanup(SVCMASTERXPRT *xprt, bool_t detached)
999 {
1000 ASSERT(MUTEX_HELD(&xprt->xp_thread_lock));
1001 ASSERT(xprt->xp_wq == NULL);
1002
1003 /*
1004 * If called from the last non-detached thread
1005 * it should call the closeproc on this transport.
1006 */
1007 if (!detached && xprt->xp_threads == 0 && xprt->xp_closeproc) {
1008 (*(xprt->xp_closeproc)) (xprt);
1009 }
1010
1011 if (xprt->xp_threads + xprt->xp_detached_threads > 0)
1012 mutex_exit(&xprt->xp_thread_lock);
1013 else {
1014 /* Remove references to xprt from the `xprt-ready' queue */
1015 svc_xprt_qdelete(xprt->xp_pool, xprt);
1016
1017 /* Unregister xprt from the pool's transport list */
1018 svc_xprt_unregister(xprt);
1019 svc_callout_free(xprt);
1020 SVC_DESTROY(xprt);
1021 }
1022 }
1023
1024 /*
1025 * Find a dispatch routine for a given prog/vers pair.
1026 * This function is called from svc_getreq() to search the callout
1027 * table for an entry with a matching RPC program number `prog'
1028 * and a version range that covers `vers'.
1029 * - if it finds a matching entry it returns pointer to the dispatch routine
1030 * - otherwise it returns NULL and fills both vers_min and vers_max
1031 * with, respectively, lowest version and highest version
1032 * supported for the program `prog'
1033 */
1034 static SVC_DISPATCH *
svc_callout_find(SVCXPRT * xprt,rpcprog_t prog,rpcvers_t vers,rpcvers_t * vers_min,rpcvers_t * vers_max)1035 svc_callout_find(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers,
1036 rpcvers_t *vers_min, rpcvers_t *vers_max)
1037 {
1038 SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1039 int i;
1040
1041 *vers_min = ~(rpcvers_t)0;
1042 *vers_max = 0;
1043
1044 for (i = 0; i < sct->sct_size; i++) {
1045 SVC_CALLOUT *sc = &sct->sct_sc[i];
1046
1047 if (prog == sc->sc_prog) {
1048 if (vers >= sc->sc_versmin && vers <= sc->sc_versmax)
1049 return (sc->sc_dispatch);
1050
1051 if (*vers_max < sc->sc_versmax)
1052 *vers_max = sc->sc_versmax;
1053 if (*vers_min > sc->sc_versmin)
1054 *vers_min = sc->sc_versmin;
1055 }
1056 }
1057
1058 return (NULL);
1059 }
1060
1061 /*
1062 * Optionally free callout table allocated for this transport by
1063 * the service provider.
1064 */
1065 static void
svc_callout_free(SVCMASTERXPRT * xprt)1066 svc_callout_free(SVCMASTERXPRT *xprt)
1067 {
1068 SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1069
1070 if (sct->sct_free) {
1071 kmem_free(sct->sct_sc, sct->sct_size * sizeof (SVC_CALLOUT));
1072 kmem_free(sct, sizeof (SVC_CALLOUT_TABLE));
1073 }
1074 }
1075
1076 /*
1077 * Send a reply to an RPC request
1078 *
1079 * PSARC 2003/523 Contract Private Interface
1080 * svc_sendreply
1081 * Changes must be reviewed by Solaris File Sharing
1082 * Changes must be communicated to contract-2003-523@sun.com
1083 */
1084 bool_t
svc_sendreply(const SVCXPRT * clone_xprt,const xdrproc_t xdr_results,const caddr_t xdr_location)1085 svc_sendreply(const SVCXPRT *clone_xprt, const xdrproc_t xdr_results,
1086 const caddr_t xdr_location)
1087 {
1088 struct rpc_msg rply;
1089
1090 rply.rm_direction = REPLY;
1091 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1092 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1093 rply.acpted_rply.ar_stat = SUCCESS;
1094 rply.acpted_rply.ar_results.where = xdr_location;
1095 rply.acpted_rply.ar_results.proc = xdr_results;
1096
1097 return (SVC_REPLY((SVCXPRT *)clone_xprt, &rply));
1098 }
1099
1100 /*
1101 * No procedure error reply
1102 *
1103 * PSARC 2003/523 Contract Private Interface
1104 * svcerr_noproc
1105 * Changes must be reviewed by Solaris File Sharing
1106 * Changes must be communicated to contract-2003-523@sun.com
1107 */
1108 void
svcerr_noproc(const SVCXPRT * clone_xprt)1109 svcerr_noproc(const SVCXPRT *clone_xprt)
1110 {
1111 struct rpc_msg rply;
1112
1113 rply.rm_direction = REPLY;
1114 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1115 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1116 rply.acpted_rply.ar_stat = PROC_UNAVAIL;
1117 SVC_FREERES((SVCXPRT *)clone_xprt);
1118 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1119 }
1120
1121 /*
1122 * Can't decode arguments error reply
1123 *
1124 * PSARC 2003/523 Contract Private Interface
1125 * svcerr_decode
1126 * Changes must be reviewed by Solaris File Sharing
1127 * Changes must be communicated to contract-2003-523@sun.com
1128 */
1129 void
svcerr_decode(const SVCXPRT * clone_xprt)1130 svcerr_decode(const SVCXPRT *clone_xprt)
1131 {
1132 struct rpc_msg rply;
1133
1134 rply.rm_direction = REPLY;
1135 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1136 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1137 rply.acpted_rply.ar_stat = GARBAGE_ARGS;
1138 SVC_FREERES((SVCXPRT *)clone_xprt);
1139 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1140 }
1141
1142 /*
1143 * Some system error
1144 */
1145 void
svcerr_systemerr(const SVCXPRT * clone_xprt)1146 svcerr_systemerr(const SVCXPRT *clone_xprt)
1147 {
1148 struct rpc_msg rply;
1149
1150 rply.rm_direction = REPLY;
1151 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1152 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1153 rply.acpted_rply.ar_stat = SYSTEM_ERR;
1154 SVC_FREERES((SVCXPRT *)clone_xprt);
1155 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1156 }
1157
1158 /*
1159 * Authentication error reply
1160 */
1161 void
svcerr_auth(const SVCXPRT * clone_xprt,const enum auth_stat why)1162 svcerr_auth(const SVCXPRT *clone_xprt, const enum auth_stat why)
1163 {
1164 struct rpc_msg rply;
1165
1166 rply.rm_direction = REPLY;
1167 rply.rm_reply.rp_stat = MSG_DENIED;
1168 rply.rjcted_rply.rj_stat = AUTH_ERROR;
1169 rply.rjcted_rply.rj_why = why;
1170 SVC_FREERES((SVCXPRT *)clone_xprt);
1171 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1172 }
1173
1174 /*
1175 * Authentication too weak error reply
1176 */
1177 void
svcerr_weakauth(const SVCXPRT * clone_xprt)1178 svcerr_weakauth(const SVCXPRT *clone_xprt)
1179 {
1180 svcerr_auth((SVCXPRT *)clone_xprt, AUTH_TOOWEAK);
1181 }
1182
1183 /*
1184 * Authentication error; bad credentials
1185 */
1186 void
svcerr_badcred(const SVCXPRT * clone_xprt)1187 svcerr_badcred(const SVCXPRT *clone_xprt)
1188 {
1189 struct rpc_msg rply;
1190
1191 rply.rm_direction = REPLY;
1192 rply.rm_reply.rp_stat = MSG_DENIED;
1193 rply.rjcted_rply.rj_stat = AUTH_ERROR;
1194 rply.rjcted_rply.rj_why = AUTH_BADCRED;
1195 SVC_FREERES((SVCXPRT *)clone_xprt);
1196 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1197 }
1198
1199 /*
1200 * Program unavailable error reply
1201 *
1202 * PSARC 2003/523 Contract Private Interface
1203 * svcerr_noprog
1204 * Changes must be reviewed by Solaris File Sharing
1205 * Changes must be communicated to contract-2003-523@sun.com
1206 */
1207 void
svcerr_noprog(const SVCXPRT * clone_xprt)1208 svcerr_noprog(const SVCXPRT *clone_xprt)
1209 {
1210 struct rpc_msg rply;
1211
1212 rply.rm_direction = REPLY;
1213 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1214 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1215 rply.acpted_rply.ar_stat = PROG_UNAVAIL;
1216 SVC_FREERES((SVCXPRT *)clone_xprt);
1217 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1218 }
1219
1220 /*
1221 * Program version mismatch error reply
1222 *
1223 * PSARC 2003/523 Contract Private Interface
1224 * svcerr_progvers
1225 * Changes must be reviewed by Solaris File Sharing
1226 * Changes must be communicated to contract-2003-523@sun.com
1227 */
1228 void
svcerr_progvers(const SVCXPRT * clone_xprt,const rpcvers_t low_vers,const rpcvers_t high_vers)1229 svcerr_progvers(const SVCXPRT *clone_xprt,
1230 const rpcvers_t low_vers, const rpcvers_t high_vers)
1231 {
1232 struct rpc_msg rply;
1233
1234 rply.rm_direction = REPLY;
1235 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1236 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1237 rply.acpted_rply.ar_stat = PROG_MISMATCH;
1238 rply.acpted_rply.ar_vers.low = low_vers;
1239 rply.acpted_rply.ar_vers.high = high_vers;
1240 SVC_FREERES((SVCXPRT *)clone_xprt);
1241 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1242 }
1243
1244 /*
1245 * Get server side input from some transport.
1246 *
1247 * Statement of authentication parameters management:
1248 * This function owns and manages all authentication parameters, specifically
1249 * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
1250 * the "cooked" credentials (rqst->rq_clntcred).
1251 * However, this function does not know the structure of the cooked
1252 * credentials, so it make the following assumptions:
1253 * a) the structure is contiguous (no pointers), and
1254 * b) the cred structure size does not exceed RQCRED_SIZE bytes.
1255 * In all events, all three parameters are freed upon exit from this routine.
1256 * The storage is trivially managed on the call stack in user land, but
1257 * is malloced in kernel land.
1258 *
1259 * Note: the xprt's xp_svc_lock is not held while the service's dispatch
1260 * routine is running. If we decide to implement svc_unregister(), we'll
1261 * need to decide whether it's okay for a thread to unregister a service
1262 * while a request is being processed. If we decide that this is a
1263 * problem, we can probably use some sort of reference counting scheme to
1264 * keep the callout entry from going away until the request has completed.
1265 */
1266 static void
svc_getreq(SVCXPRT * clone_xprt,mblk_t * mp)1267 svc_getreq(
1268 SVCXPRT *clone_xprt, /* clone transport handle */
1269 mblk_t *mp)
1270 {
1271 struct rpc_msg msg;
1272 struct svc_req r;
1273 char *cred_area; /* too big to allocate on call stack */
1274
1275 TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_START,
1276 "svc_getreq_start:");
1277
1278 ASSERT(clone_xprt->xp_master != NULL);
1279 ASSERT(!is_system_labeled() || msg_getcred(mp, NULL) != NULL ||
1280 mp->b_datap->db_type != M_DATA);
1281
1282 /*
1283 * Firstly, allocate the authentication parameters' storage
1284 */
1285 mutex_enter(&rqcred_lock);
1286 if (rqcred_head) {
1287 cred_area = rqcred_head;
1288
1289 /* LINTED pointer alignment */
1290 rqcred_head = *(caddr_t *)rqcred_head;
1291 mutex_exit(&rqcred_lock);
1292 } else {
1293 mutex_exit(&rqcred_lock);
1294 cred_area = kmem_alloc(2 * MAX_AUTH_BYTES + RQCRED_SIZE,
1295 KM_SLEEP);
1296 }
1297 msg.rm_call.cb_cred.oa_base = cred_area;
1298 msg.rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
1299 r.rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]);
1300
1301 /*
1302 * underlying transport recv routine may modify mblk data
1303 * and make it difficult to extract label afterwards. So
1304 * get the label from the raw mblk data now.
1305 */
1306 if (is_system_labeled()) {
1307 cred_t *cr;
1308
1309 r.rq_label = kmem_alloc(sizeof (bslabel_t), KM_SLEEP);
1310 cr = msg_getcred(mp, NULL);
1311 ASSERT(cr != NULL);
1312
1313 bcopy(label2bslabel(crgetlabel(cr)), r.rq_label,
1314 sizeof (bslabel_t));
1315 } else {
1316 r.rq_label = NULL;
1317 }
1318
1319 /*
1320 * Now receive a message from the transport.
1321 */
1322 if (SVC_RECV(clone_xprt, mp, &msg)) {
1323 void (*dispatchroutine) (struct svc_req *, SVCXPRT *);
1324 rpcvers_t vers_min;
1325 rpcvers_t vers_max;
1326 bool_t no_dispatch;
1327 enum auth_stat why;
1328
1329 /*
1330 * Find the registered program and call its
1331 * dispatch routine.
1332 */
1333 r.rq_xprt = clone_xprt;
1334 r.rq_prog = msg.rm_call.cb_prog;
1335 r.rq_vers = msg.rm_call.cb_vers;
1336 r.rq_proc = msg.rm_call.cb_proc;
1337 r.rq_cred = msg.rm_call.cb_cred;
1338
1339 /*
1340 * First authenticate the message.
1341 */
1342 TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_START,
1343 "svc_getreq_auth_start:");
1344 if ((why = sec_svc_msg(&r, &msg, &no_dispatch)) != AUTH_OK) {
1345 TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1346 "svc_getreq_auth_end:(%S)", "failed");
1347 svcerr_auth(clone_xprt, why);
1348 /*
1349 * Free the arguments.
1350 */
1351 (void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1352 } else if (no_dispatch) {
1353 /*
1354 * XXX - when bug id 4053736 is done, remove
1355 * the SVC_FREEARGS() call.
1356 */
1357 (void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1358 } else {
1359 TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1360 "svc_getreq_auth_end:(%S)", "good");
1361
1362 dispatchroutine = svc_callout_find(clone_xprt,
1363 r.rq_prog, r.rq_vers, &vers_min, &vers_max);
1364
1365 if (dispatchroutine) {
1366 (*dispatchroutine) (&r, clone_xprt);
1367 } else {
1368 /*
1369 * If we got here, the program or version
1370 * is not served ...
1371 */
1372 if (vers_max == 0 ||
1373 version_keepquiet(clone_xprt))
1374 svcerr_noprog(clone_xprt);
1375 else
1376 svcerr_progvers(clone_xprt, vers_min,
1377 vers_max);
1378
1379 /*
1380 * Free the arguments. For successful calls
1381 * this is done by the dispatch routine.
1382 */
1383 (void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1384 /* Fall through to ... */
1385 }
1386 /*
1387 * Call cleanup procedure for RPCSEC_GSS.
1388 * This is a hack since there is currently no
1389 * op, such as SVC_CLEANAUTH. rpc_gss_cleanup
1390 * should only be called for a non null proc.
1391 * Null procs in RPC GSS are overloaded to
1392 * provide context setup and control. The main
1393 * purpose of rpc_gss_cleanup is to decrement the
1394 * reference count associated with the cached
1395 * GSS security context. We should never get here
1396 * for an RPCSEC_GSS null proc since *no_dispatch
1397 * would have been set to true from sec_svc_msg above.
1398 */
1399 if (r.rq_cred.oa_flavor == RPCSEC_GSS)
1400 rpc_gss_cleanup(clone_xprt);
1401 }
1402 }
1403
1404 if (r.rq_label != NULL)
1405 kmem_free(r.rq_label, sizeof (bslabel_t));
1406
1407 /*
1408 * Free authentication parameters' storage
1409 */
1410 mutex_enter(&rqcred_lock);
1411 /* LINTED pointer alignment */
1412 *(caddr_t *)cred_area = rqcred_head;
1413 rqcred_head = cred_area;
1414 mutex_exit(&rqcred_lock);
1415 }
1416
1417 /*
1418 * Allocate new clone transport handle.
1419 */
1420 SVCXPRT *
svc_clone_init(void)1421 svc_clone_init(void)
1422 {
1423 SVCXPRT *clone_xprt;
1424
1425 clone_xprt = kmem_zalloc(sizeof (SVCXPRT), KM_SLEEP);
1426 clone_xprt->xp_cred = crget();
1427 return (clone_xprt);
1428 }
1429
1430 /*
1431 * Free memory allocated by svc_clone_init.
1432 */
1433 void
svc_clone_free(SVCXPRT * clone_xprt)1434 svc_clone_free(SVCXPRT *clone_xprt)
1435 {
1436 /* Fre credentials from crget() */
1437 if (clone_xprt->xp_cred)
1438 crfree(clone_xprt->xp_cred);
1439 kmem_free(clone_xprt, sizeof (SVCXPRT));
1440 }
1441
1442 /*
1443 * Link a per-thread clone transport handle to a master
1444 * - increment a thread reference count on the master
1445 * - copy some of the master's fields to the clone
1446 * - call a transport specific clone routine.
1447 */
1448 void
svc_clone_link(SVCMASTERXPRT * xprt,SVCXPRT * clone_xprt,SVCXPRT * clone_xprt2)1449 svc_clone_link(SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt, SVCXPRT *clone_xprt2)
1450 {
1451 cred_t *cred = clone_xprt->xp_cred;
1452
1453 ASSERT(cred);
1454
1455 /*
1456 * Bump up master's thread count.
1457 * Linking a per-thread clone transport handle to a master
1458 * associates a service thread with the master.
1459 */
1460 mutex_enter(&xprt->xp_thread_lock);
1461 xprt->xp_threads++;
1462 mutex_exit(&xprt->xp_thread_lock);
1463
1464 /* Clear everything */
1465 bzero(clone_xprt, sizeof (SVCXPRT));
1466
1467 /* Set pointer to the master transport stucture */
1468 clone_xprt->xp_master = xprt;
1469
1470 /* Structure copy of all the common fields */
1471 clone_xprt->xp_xpc = xprt->xp_xpc;
1472
1473 /* Restore per-thread fields (xp_cred) */
1474 clone_xprt->xp_cred = cred;
1475
1476 if (clone_xprt2)
1477 SVC_CLONE_XPRT(clone_xprt2, clone_xprt);
1478 }
1479
1480 /*
1481 * Unlink a non-detached clone transport handle from a master
1482 * - decrement a thread reference count on the master
1483 * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1484 * if this is the last non-detached/absolute thread on this transport
1485 * then it will close/destroy the transport
1486 * - call transport specific function to destroy the clone handle
1487 * - clear xp_master to avoid recursion.
1488 */
1489 void
svc_clone_unlink(SVCXPRT * clone_xprt)1490 svc_clone_unlink(SVCXPRT *clone_xprt)
1491 {
1492 SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1493
1494 /* This cannot be a detached thread */
1495 ASSERT(!clone_xprt->xp_detached);
1496 ASSERT(xprt->xp_threads > 0);
1497
1498 /* Decrement a reference count on the transport */
1499 mutex_enter(&xprt->xp_thread_lock);
1500 xprt->xp_threads--;
1501
1502 /* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1503 if (xprt->xp_wq)
1504 mutex_exit(&xprt->xp_thread_lock);
1505 else
1506 svc_xprt_cleanup(xprt, FALSE);
1507
1508 /* Call a transport specific clone `destroy' function */
1509 SVC_CLONE_DESTROY(clone_xprt);
1510
1511 /* Clear xp_master */
1512 clone_xprt->xp_master = NULL;
1513 }
1514
1515 /*
1516 * Unlink a detached clone transport handle from a master
1517 * - decrement the thread count on the master
1518 * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1519 * if this is the last thread on this transport then it will destroy
1520 * the transport.
1521 * - call a transport specific function to destroy the clone handle
1522 * - clear xp_master to avoid recursion.
1523 */
1524 static void
svc_clone_unlinkdetached(SVCXPRT * clone_xprt)1525 svc_clone_unlinkdetached(SVCXPRT *clone_xprt)
1526 {
1527 SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1528
1529 /* This must be a detached thread */
1530 ASSERT(clone_xprt->xp_detached);
1531 ASSERT(xprt->xp_detached_threads > 0);
1532 ASSERT(xprt->xp_threads + xprt->xp_detached_threads > 0);
1533
1534 /* Grab xprt->xp_thread_lock and decrement link counts */
1535 mutex_enter(&xprt->xp_thread_lock);
1536 xprt->xp_detached_threads--;
1537
1538 /* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1539 if (xprt->xp_wq)
1540 mutex_exit(&xprt->xp_thread_lock);
1541 else
1542 svc_xprt_cleanup(xprt, TRUE);
1543
1544 /* Call transport specific clone `destroy' function */
1545 SVC_CLONE_DESTROY(clone_xprt);
1546
1547 /* Clear xp_master */
1548 clone_xprt->xp_master = NULL;
1549 }
1550
1551 /*
1552 * Try to exit a non-detached service thread
1553 * - check if there are enough threads left
1554 * - if this thread (ie its clone transport handle) are linked
1555 * to a master transport then unlink it
1556 * - free the clone structure
1557 * - return to userland for thread exit
1558 *
1559 * If this is the last non-detached or the last thread on this
1560 * transport then the call to svc_clone_unlink() will, respectively,
1561 * close and/or destroy the transport.
1562 */
1563 static void
svc_thread_exit(SVCPOOL * pool,SVCXPRT * clone_xprt)1564 svc_thread_exit(SVCPOOL *pool, SVCXPRT *clone_xprt)
1565 {
1566 if (clone_xprt->xp_master)
1567 svc_clone_unlink(clone_xprt);
1568 svc_clone_free(clone_xprt);
1569
1570 mutex_enter(&pool->p_thread_lock);
1571 pool->p_threads--;
1572 if (pool->p_closing && svc_pool_tryexit(pool))
1573 /* return - thread exit will be handled at user level */
1574 return;
1575 mutex_exit(&pool->p_thread_lock);
1576
1577 /* return - thread exit will be handled at user level */
1578 }
1579
1580 /*
1581 * Exit a detached service thread that returned to svc_run
1582 * - decrement the `detached thread' count for the pool
1583 * - unlink the detached clone transport handle from the master
1584 * - free the clone structure
1585 * - return to userland for thread exit
1586 *
1587 * If this is the last thread on this transport then the call
1588 * to svc_clone_unlinkdetached() will destroy the transport.
1589 */
1590 static void
svc_thread_exitdetached(SVCPOOL * pool,SVCXPRT * clone_xprt)1591 svc_thread_exitdetached(SVCPOOL *pool, SVCXPRT *clone_xprt)
1592 {
1593 /* This must be a detached thread */
1594 ASSERT(clone_xprt->xp_master);
1595 ASSERT(clone_xprt->xp_detached);
1596 ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
1597
1598 svc_clone_unlinkdetached(clone_xprt);
1599 svc_clone_free(clone_xprt);
1600
1601 mutex_enter(&pool->p_thread_lock);
1602
1603 ASSERT(pool->p_reserved_threads >= 0);
1604 ASSERT(pool->p_detached_threads > 0);
1605
1606 pool->p_detached_threads--;
1607 if (pool->p_closing && svc_pool_tryexit(pool))
1608 /* return - thread exit will be handled at user level */
1609 return;
1610 mutex_exit(&pool->p_thread_lock);
1611
1612 /* return - thread exit will be handled at user level */
1613 }
1614
1615 /*
1616 * PSARC 2003/523 Contract Private Interface
1617 * svc_wait
1618 * Changes must be reviewed by Solaris File Sharing
1619 * Changes must be communicated to contract-2003-523@sun.com
1620 */
1621 int
svc_wait(int id)1622 svc_wait(int id)
1623 {
1624 SVCPOOL *pool;
1625 int err = 0;
1626 struct svc_globals *svc;
1627
1628 svc = zone_getspecific(svc_zone_key, curproc->p_zone);
1629 mutex_enter(&svc->svc_plock);
1630 pool = svc_pool_find(svc, id);
1631 mutex_exit(&svc->svc_plock);
1632
1633 if (pool == NULL)
1634 return (ENOENT);
1635
1636 mutex_enter(&pool->p_user_lock);
1637
1638 /* Check if there's already a user thread waiting on this pool */
1639 if (pool->p_user_waiting) {
1640 mutex_exit(&pool->p_user_lock);
1641 return (EBUSY);
1642 }
1643
1644 pool->p_user_waiting = TRUE;
1645
1646 /* Go to sleep, waiting for the signaled flag. */
1647 while (!pool->p_signal_create_thread && !pool->p_user_exit) {
1648 if (cv_wait_sig(&pool->p_user_cv, &pool->p_user_lock) == 0) {
1649 /* Interrupted, return to handle exit or signal */
1650 pool->p_user_waiting = FALSE;
1651 pool->p_signal_create_thread = FALSE;
1652 mutex_exit(&pool->p_user_lock);
1653
1654 /*
1655 * Thread has been interrupted and therefore
1656 * the service daemon is leaving as well so
1657 * let's go ahead and remove the service
1658 * pool at this time.
1659 */
1660 mutex_enter(&svc->svc_plock);
1661 svc_pool_unregister(svc, pool);
1662 mutex_exit(&svc->svc_plock);
1663
1664 return (EINTR);
1665 }
1666 }
1667
1668 pool->p_signal_create_thread = FALSE;
1669 pool->p_user_waiting = FALSE;
1670
1671 /*
1672 * About to exit the service pool. Set return value
1673 * to let the userland code know our intent. Signal
1674 * svc_thread_creator() so that it can clean up the
1675 * pool structure.
1676 */
1677 if (pool->p_user_exit) {
1678 err = ECANCELED;
1679 cv_signal(&pool->p_user_cv);
1680 }
1681
1682 mutex_exit(&pool->p_user_lock);
1683
1684 /* Return to userland with error code, for possible thread creation. */
1685 return (err);
1686 }
1687
1688 /*
1689 * `Service threads' creator thread.
1690 * The creator thread waits for a signal to create new thread.
1691 */
1692 static void
svc_thread_creator(SVCPOOL * pool)1693 svc_thread_creator(SVCPOOL *pool)
1694 {
1695 callb_cpr_t cpr_info; /* CPR info for the creator thread */
1696
1697 CALLB_CPR_INIT(&cpr_info, &pool->p_creator_lock, callb_generic_cpr,
1698 "svc_thread_creator");
1699
1700 for (;;) {
1701 mutex_enter(&pool->p_creator_lock);
1702
1703 /* Check if someone set the exit flag */
1704 if (pool->p_creator_exit)
1705 break;
1706
1707 /* Clear the `signaled' flag and go asleep */
1708 pool->p_creator_signaled = FALSE;
1709
1710 CALLB_CPR_SAFE_BEGIN(&cpr_info);
1711 cv_wait(&pool->p_creator_cv, &pool->p_creator_lock);
1712 CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1713
1714 /* Check if someone signaled to exit */
1715 if (pool->p_creator_exit)
1716 break;
1717
1718 mutex_exit(&pool->p_creator_lock);
1719
1720 mutex_enter(&pool->p_thread_lock);
1721
1722 /*
1723 * When the pool is in closing state and all the transports
1724 * are gone the creator should not create any new threads.
1725 */
1726 if (pool->p_closing) {
1727 rw_enter(&pool->p_lrwlock, RW_READER);
1728 if (pool->p_lcount == 0) {
1729 rw_exit(&pool->p_lrwlock);
1730 mutex_exit(&pool->p_thread_lock);
1731 continue;
1732 }
1733 rw_exit(&pool->p_lrwlock);
1734 }
1735
1736 /*
1737 * Create a new service thread now.
1738 */
1739 ASSERT(pool->p_reserved_threads >= 0);
1740 ASSERT(pool->p_detached_threads >= 0);
1741
1742 if (pool->p_threads + pool->p_detached_threads <
1743 pool->p_maxthreads) {
1744 /*
1745 * Signal the service pool wait thread
1746 * only if it hasn't already been signaled.
1747 */
1748 mutex_enter(&pool->p_user_lock);
1749 if (pool->p_signal_create_thread == FALSE) {
1750 pool->p_signal_create_thread = TRUE;
1751 cv_signal(&pool->p_user_cv);
1752 }
1753 mutex_exit(&pool->p_user_lock);
1754
1755 }
1756
1757 mutex_exit(&pool->p_thread_lock);
1758 }
1759
1760 /*
1761 * Pool is closed. Cleanup and exit.
1762 */
1763
1764 /* Signal userland creator thread that it can stop now. */
1765 mutex_enter(&pool->p_user_lock);
1766 pool->p_user_exit = TRUE;
1767 cv_broadcast(&pool->p_user_cv);
1768 mutex_exit(&pool->p_user_lock);
1769
1770 /* Wait for svc_wait() to be done with the pool */
1771 mutex_enter(&pool->p_user_lock);
1772 while (pool->p_user_waiting) {
1773 CALLB_CPR_SAFE_BEGIN(&cpr_info);
1774 cv_wait(&pool->p_user_cv, &pool->p_user_lock);
1775 CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1776 }
1777 mutex_exit(&pool->p_user_lock);
1778
1779 CALLB_CPR_EXIT(&cpr_info);
1780 svc_pool_cleanup(pool);
1781 zthread_exit();
1782 }
1783
1784 /*
1785 * If the creator thread is idle signal it to create
1786 * a new service thread.
1787 */
1788 static void
svc_creator_signal(SVCPOOL * pool)1789 svc_creator_signal(SVCPOOL *pool)
1790 {
1791 mutex_enter(&pool->p_creator_lock);
1792 if (pool->p_creator_signaled == FALSE) {
1793 pool->p_creator_signaled = TRUE;
1794 cv_signal(&pool->p_creator_cv);
1795 }
1796 mutex_exit(&pool->p_creator_lock);
1797 }
1798
1799 /*
1800 * Notify the creator thread to clean up and exit.
1801 */
1802 static void
svc_creator_signalexit(SVCPOOL * pool)1803 svc_creator_signalexit(SVCPOOL *pool)
1804 {
1805 mutex_enter(&pool->p_creator_lock);
1806 pool->p_creator_exit = TRUE;
1807 cv_signal(&pool->p_creator_cv);
1808 mutex_exit(&pool->p_creator_lock);
1809 }
1810
1811 /*
1812 * Polling part of the svc_run().
1813 * - search for a transport with a pending request
1814 * - when one is found then latch the request lock and return to svc_run()
1815 * - if there is no request go asleep and wait for a signal
1816 * - handle two exceptions:
1817 * a) current transport is closing
1818 * b) timeout waiting for a new request
1819 * in both cases return to svc_run()
1820 */
1821 static SVCMASTERXPRT *
svc_poll(SVCPOOL * pool,SVCMASTERXPRT * xprt,SVCXPRT * clone_xprt)1822 svc_poll(SVCPOOL *pool, SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt)
1823 {
1824 /*
1825 * Main loop iterates until
1826 * a) we find a pending request,
1827 * b) detect that the current transport is closing
1828 * c) time out waiting for a new request.
1829 */
1830 for (;;) {
1831 SVCMASTERXPRT *next;
1832 clock_t timeleft;
1833
1834 /*
1835 * Step 1.
1836 * Check if there is a pending request on the current
1837 * transport handle so that we can avoid cloning.
1838 * If so then decrement the `pending-request' count for
1839 * the pool and return to svc_run().
1840 *
1841 * We need to prevent a potential starvation. When
1842 * a selected transport has all pending requests coming in
1843 * all the time then the service threads will never switch to
1844 * another transport. With a limited number of service
1845 * threads some transports may be never serviced.
1846 * To prevent such a scenario we pick up at most
1847 * pool->p_max_same_xprt requests from the same transport
1848 * and then take a hint from the xprt-ready queue or walk
1849 * the transport list.
1850 */
1851 if (xprt && xprt->xp_req_head && (!pool->p_qoverflow ||
1852 clone_xprt->xp_same_xprt++ < pool->p_max_same_xprt)) {
1853 mutex_enter(&xprt->xp_req_lock);
1854 if (xprt->xp_req_head)
1855 return (xprt);
1856 mutex_exit(&xprt->xp_req_lock);
1857 }
1858 clone_xprt->xp_same_xprt = 0;
1859
1860 /*
1861 * Step 2.
1862 * If there is no request on the current transport try to
1863 * find another transport with a pending request.
1864 */
1865 mutex_enter(&pool->p_req_lock);
1866 pool->p_walkers++;
1867 mutex_exit(&pool->p_req_lock);
1868
1869 /*
1870 * Make sure that transports will not be destroyed just
1871 * while we are checking them.
1872 */
1873 rw_enter(&pool->p_lrwlock, RW_READER);
1874
1875 for (;;) {
1876 SVCMASTERXPRT *hint;
1877
1878 /*
1879 * Get the next transport from the xprt-ready queue.
1880 * This is a hint. There is no guarantee that the
1881 * transport still has a pending request since it
1882 * could be picked up by another thread in step 1.
1883 *
1884 * If the transport has a pending request then keep
1885 * it locked. Decrement the `pending-requests' for
1886 * the pool and `walking-threads' counts, and return
1887 * to svc_run().
1888 */
1889 hint = svc_xprt_qget(pool);
1890
1891 if (hint && hint->xp_req_head) {
1892 mutex_enter(&hint->xp_req_lock);
1893 if (hint->xp_req_head) {
1894 rw_exit(&pool->p_lrwlock);
1895
1896 mutex_enter(&pool->p_req_lock);
1897 pool->p_walkers--;
1898 mutex_exit(&pool->p_req_lock);
1899
1900 return (hint);
1901 }
1902 mutex_exit(&hint->xp_req_lock);
1903 }
1904
1905 /*
1906 * If there was no hint in the xprt-ready queue then
1907 * - if there is less pending requests than polling
1908 * threads go asleep
1909 * - otherwise check if there was an overflow in the
1910 * xprt-ready queue; if so, then we need to break
1911 * the `drain' mode
1912 */
1913 if (hint == NULL) {
1914 if (pool->p_reqs < pool->p_walkers) {
1915 mutex_enter(&pool->p_req_lock);
1916 if (pool->p_reqs < pool->p_walkers)
1917 goto sleep;
1918 mutex_exit(&pool->p_req_lock);
1919 }
1920 if (pool->p_qoverflow) {
1921 break;
1922 }
1923 }
1924 }
1925
1926 /*
1927 * If there was an overflow in the xprt-ready queue then we
1928 * need to switch to the `drain' mode, i.e. walk through the
1929 * pool's transport list and search for a transport with a
1930 * pending request. If we manage to drain all the pending
1931 * requests then we can clear the overflow flag. This will
1932 * switch svc_poll() back to taking hints from the xprt-ready
1933 * queue (which is generally more efficient).
1934 *
1935 * If there are no registered transports simply go asleep.
1936 */
1937 if (xprt == NULL && pool->p_lhead == NULL) {
1938 mutex_enter(&pool->p_req_lock);
1939 goto sleep;
1940 }
1941
1942 /*
1943 * `Walk' through the pool's list of master server
1944 * transport handles. Continue to loop until there are less
1945 * looping threads then pending requests.
1946 */
1947 next = xprt ? xprt->xp_next : pool->p_lhead;
1948
1949 for (;;) {
1950 /*
1951 * Check if there is a request on this transport.
1952 *
1953 * Since blocking on a locked mutex is very expensive
1954 * check for a request without a lock first. If we miss
1955 * a request that is just being delivered but this will
1956 * cost at most one full walk through the list.
1957 */
1958 if (next->xp_req_head) {
1959 /*
1960 * Check again, now with a lock.
1961 */
1962 mutex_enter(&next->xp_req_lock);
1963 if (next->xp_req_head) {
1964 rw_exit(&pool->p_lrwlock);
1965
1966 mutex_enter(&pool->p_req_lock);
1967 pool->p_walkers--;
1968 mutex_exit(&pool->p_req_lock);
1969
1970 return (next);
1971 }
1972 mutex_exit(&next->xp_req_lock);
1973 }
1974
1975 /*
1976 * Continue to `walk' through the pool's
1977 * transport list until there is less requests
1978 * than walkers. Check this condition without
1979 * a lock first to avoid contention on a mutex.
1980 */
1981 if (pool->p_reqs < pool->p_walkers) {
1982 /* Check again, now with the lock. */
1983 mutex_enter(&pool->p_req_lock);
1984 if (pool->p_reqs < pool->p_walkers)
1985 break; /* goto sleep */
1986 mutex_exit(&pool->p_req_lock);
1987 }
1988
1989 next = next->xp_next;
1990 }
1991
1992 sleep:
1993 /*
1994 * No work to do. Stop the `walk' and go asleep.
1995 * Decrement the `walking-threads' count for the pool.
1996 */
1997 pool->p_walkers--;
1998 rw_exit(&pool->p_lrwlock);
1999
2000 /*
2001 * Count us as asleep, mark this thread as safe
2002 * for suspend and wait for a request.
2003 */
2004 pool->p_asleep++;
2005 timeleft = cv_reltimedwait_sig(&pool->p_req_cv,
2006 &pool->p_req_lock, pool->p_timeout, TR_CLOCK_TICK);
2007
2008 /*
2009 * If the drowsy flag is on this means that
2010 * someone has signaled a wakeup. In such a case
2011 * the `asleep-threads' count has already updated
2012 * so just clear the flag.
2013 *
2014 * If the drowsy flag is off then we need to update
2015 * the `asleep-threads' count.
2016 */
2017 if (pool->p_drowsy) {
2018 pool->p_drowsy = FALSE;
2019 /*
2020 * If the thread is here because it timedout,
2021 * instead of returning SVC_ETIMEDOUT, it is
2022 * time to do some more work.
2023 */
2024 if (timeleft == -1)
2025 timeleft = 1;
2026 } else {
2027 pool->p_asleep--;
2028 }
2029 mutex_exit(&pool->p_req_lock);
2030
2031 /*
2032 * If we received a signal while waiting for a
2033 * request, inform svc_run(), so that we can return
2034 * to user level and exit.
2035 */
2036 if (timeleft == 0)
2037 return (SVC_EINTR);
2038
2039 /*
2040 * If the current transport is gone then notify
2041 * svc_run() to unlink from it.
2042 */
2043 if (xprt && xprt->xp_wq == NULL)
2044 return (SVC_EXPRTGONE);
2045
2046 /*
2047 * If we have timed out waiting for a request inform
2048 * svc_run() that we probably don't need this thread.
2049 */
2050 if (timeleft == -1)
2051 return (SVC_ETIMEDOUT);
2052 }
2053 }
2054
2055 /*
2056 * calculate memory space used by message
2057 */
2058 static size_t
svc_msgsize(mblk_t * mp)2059 svc_msgsize(mblk_t *mp)
2060 {
2061 size_t count = 0;
2062
2063 for (; mp; mp = mp->b_cont)
2064 count += MBLKSIZE(mp);
2065
2066 return (count);
2067 }
2068
2069 /*
2070 * svc_flowcontrol() attempts to turn the flow control on or off for the
2071 * transport.
2072 *
2073 * On input the xprt->xp_full determines whether the flow control is currently
2074 * off (FALSE) or on (TRUE). If it is off we do tests to see whether we should
2075 * turn it on, and vice versa.
2076 *
2077 * There are two conditions considered for the flow control. Both conditions
2078 * have the low and the high watermark. Once the high watermark is reached in
2079 * EITHER condition the flow control is turned on. For turning the flow
2080 * control off BOTH conditions must be below the low watermark.
2081 *
2082 * Condition #1 - Number of requests queued:
2083 *
2084 * The max number of threads working on the pool is roughly pool->p_maxthreads.
2085 * Every thread could handle up to pool->p_max_same_xprt requests from one
2086 * transport before it moves to another transport. See svc_poll() for details.
2087 * In case all threads in the pool are working on a transport they will handle
2088 * no more than enough_reqs (pool->p_maxthreads * pool->p_max_same_xprt)
2089 * requests in one shot from that transport. We are turning the flow control
2090 * on once the high watermark is reached for a transport so that the underlying
2091 * queue knows the rate of incoming requests is higher than we are able to
2092 * handle.
2093 *
2094 * The high watermark: 2 * enough_reqs
2095 * The low watermark: enough_reqs
2096 *
2097 * Condition #2 - Length of the data payload for the queued messages/requests:
2098 *
2099 * We want to prevent a particular pool exhausting the memory, so once the
2100 * total length of queued requests for the whole pool reaches the high
2101 * watermark we start to turn on the flow control for significant memory
2102 * consumers (individual transports). To keep the implementation simple
2103 * enough, this condition is not exact, because we count only the data part of
2104 * the queued requests and we ignore the overhead. For our purposes this
2105 * should be enough. We should also consider that up to pool->p_maxthreads
2106 * threads for the pool might work on large requests (this is not counted for
2107 * this condition). We need to leave some space for rest of the system and for
2108 * other big memory consumers (like ZFS). Also, after the flow control is
2109 * turned on (on cots transports) we can start to accumulate a few megabytes in
2110 * queues for each transport.
2111 *
2112 * Usually, the big memory consumers are NFS WRITE requests, so we do not
2113 * expect to see this condition met for other than NFS pools.
2114 *
2115 * The high watermark: 1/5 of available memory
2116 * The low watermark: 1/6 of available memory
2117 *
2118 * Once the high watermark is reached we turn the flow control on only for
2119 * transports exceeding a per-transport memory limit. The per-transport
2120 * fraction of memory is calculated as:
2121 *
2122 * the high watermark / number of transports
2123 *
2124 * For transports with less than the per-transport fraction of memory consumed,
2125 * the flow control is not turned on, so they are not blocked by a few "hungry"
2126 * transports. Because of this, the total memory consumption for the
2127 * particular pool might grow up to 2 * the high watermark.
2128 *
2129 * The individual transports are unblocked once their consumption is below:
2130 *
2131 * per-transport fraction of memory / 2
2132 *
2133 * or once the total memory consumption for the whole pool falls below the low
2134 * watermark.
2135 *
2136 */
2137 static void
svc_flowcontrol(SVCMASTERXPRT * xprt)2138 svc_flowcontrol(SVCMASTERXPRT *xprt)
2139 {
2140 SVCPOOL *pool = xprt->xp_pool;
2141 size_t totalmem = ptob(physmem);
2142 int enough_reqs = pool->p_maxthreads * pool->p_max_same_xprt;
2143
2144 ASSERT(MUTEX_HELD(&xprt->xp_req_lock));
2145
2146 /* Should we turn the flow control on? */
2147 if (xprt->xp_full == FALSE) {
2148 /* Is flow control disabled? */
2149 if (svc_flowcontrol_disable != 0)
2150 return;
2151
2152 /* Is there enough requests queued? */
2153 if (xprt->xp_reqs >= enough_reqs * 2) {
2154 xprt->xp_full = TRUE;
2155 return;
2156 }
2157
2158 /*
2159 * If this pool uses over 20% of memory and this transport is
2160 * significant memory consumer then we are full
2161 */
2162 if (pool->p_size >= totalmem / 5 &&
2163 xprt->xp_size >= totalmem / 5 / pool->p_lcount)
2164 xprt->xp_full = TRUE;
2165
2166 return;
2167 }
2168
2169 /* We might want to turn the flow control off */
2170
2171 /* Do we still have enough requests? */
2172 if (xprt->xp_reqs > enough_reqs)
2173 return;
2174
2175 /*
2176 * If this pool still uses over 16% of memory and this transport is
2177 * still significant memory consumer then we are still full
2178 */
2179 if (pool->p_size >= totalmem / 6 &&
2180 xprt->xp_size >= totalmem / 5 / pool->p_lcount / 2)
2181 return;
2182
2183 /* Turn the flow control off and make sure rpcmod is notified */
2184 xprt->xp_full = FALSE;
2185 xprt->xp_enable = TRUE;
2186 }
2187
2188 /*
2189 * Main loop of the kernel RPC server
2190 * - wait for input (find a transport with a pending request).
2191 * - dequeue the request
2192 * - call a registered server routine to process the requests
2193 *
2194 * There can many threads running concurrently in this loop
2195 * on the same or on different transports.
2196 */
2197 static int
svc_run(SVCPOOL * pool)2198 svc_run(SVCPOOL *pool)
2199 {
2200 SVCMASTERXPRT *xprt = NULL; /* master transport handle */
2201 SVCXPRT *clone_xprt; /* clone for this thread */
2202 proc_t *p = ttoproc(curthread);
2203
2204 /* Allocate a clone transport handle for this thread */
2205 clone_xprt = svc_clone_init();
2206
2207 /*
2208 * The loop iterates until the thread becomes
2209 * idle too long or the transport is gone.
2210 */
2211 for (;;) {
2212 SVCMASTERXPRT *next;
2213 mblk_t *mp;
2214 bool_t enable;
2215 size_t size;
2216
2217 TRACE_0(TR_FAC_KRPC, TR_SVC_RUN, "svc_run");
2218
2219 /*
2220 * If the process is exiting/killed, return
2221 * immediately without processing any more
2222 * requests.
2223 */
2224 if (p->p_flag & (SEXITING | SKILLED)) {
2225 svc_thread_exit(pool, clone_xprt);
2226 return (EINTR);
2227 }
2228
2229 /* Find a transport with a pending request */
2230 next = svc_poll(pool, xprt, clone_xprt);
2231
2232 /*
2233 * If svc_poll() finds a transport with a request
2234 * it latches xp_req_lock on it. Therefore we need
2235 * to dequeue the request and release the lock as
2236 * soon as possible.
2237 */
2238 ASSERT(next != NULL &&
2239 (next == SVC_EXPRTGONE ||
2240 next == SVC_ETIMEDOUT ||
2241 next == SVC_EINTR ||
2242 MUTEX_HELD(&next->xp_req_lock)));
2243
2244 /* Ooops! Current transport is closing. Unlink now */
2245 if (next == SVC_EXPRTGONE) {
2246 svc_clone_unlink(clone_xprt);
2247 xprt = NULL;
2248 continue;
2249 }
2250
2251 /* Ooops! Timeout while waiting for a request. Exit */
2252 if (next == SVC_ETIMEDOUT) {
2253 svc_thread_exit(pool, clone_xprt);
2254 return (0);
2255 }
2256
2257 /*
2258 * Interrupted by a signal while waiting for a
2259 * request. Return to userspace and exit.
2260 */
2261 if (next == SVC_EINTR) {
2262 svc_thread_exit(pool, clone_xprt);
2263 return (EINTR);
2264 }
2265
2266 /*
2267 * De-queue the request and release the request lock
2268 * on this transport (latched by svc_poll()).
2269 */
2270 mp = next->xp_req_head;
2271 next->xp_req_head = mp->b_next;
2272 mp->b_next = (mblk_t *)0;
2273 size = svc_msgsize(mp);
2274
2275 mutex_enter(&pool->p_req_lock);
2276 pool->p_reqs--;
2277 if (pool->p_reqs == 0)
2278 pool->p_qoverflow = FALSE;
2279 pool->p_size -= size;
2280 mutex_exit(&pool->p_req_lock);
2281
2282 next->xp_reqs--;
2283 next->xp_size -= size;
2284
2285 if (next->xp_full)
2286 svc_flowcontrol(next);
2287
2288 TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_DEQ,
2289 "rpc_que_req_deq:pool %p mp %p", pool, mp);
2290 mutex_exit(&next->xp_req_lock);
2291
2292 /*
2293 * If this is a new request on a current transport then
2294 * the clone structure is already properly initialized.
2295 * Otherwise, if the request is on a different transport,
2296 * unlink from the current master and link to
2297 * the one we got a request on.
2298 */
2299 if (next != xprt) {
2300 if (xprt)
2301 svc_clone_unlink(clone_xprt);
2302 svc_clone_link(next, clone_xprt, NULL);
2303 xprt = next;
2304 }
2305
2306 /*
2307 * If there are more requests and req_cv hasn't
2308 * been signaled yet then wake up one more thread now.
2309 *
2310 * We avoid signaling req_cv until the most recently
2311 * signaled thread wakes up and gets CPU to clear
2312 * the `drowsy' flag.
2313 */
2314 if (!(pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2315 pool->p_asleep == 0)) {
2316 mutex_enter(&pool->p_req_lock);
2317
2318 if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2319 pool->p_asleep == 0)
2320 mutex_exit(&pool->p_req_lock);
2321 else {
2322 pool->p_asleep--;
2323 pool->p_drowsy = TRUE;
2324
2325 cv_signal(&pool->p_req_cv);
2326 mutex_exit(&pool->p_req_lock);
2327 }
2328 }
2329
2330 /*
2331 * If there are no asleep/signaled threads, we are
2332 * still below pool->p_maxthreads limit, and no thread is
2333 * currently being created then signal the creator
2334 * for one more service thread.
2335 *
2336 * The asleep and drowsy checks are not protected
2337 * by a lock since it hurts performance and a wrong
2338 * decision is not essential.
2339 */
2340 if (pool->p_asleep == 0 && !pool->p_drowsy &&
2341 pool->p_threads + pool->p_detached_threads <
2342 pool->p_maxthreads)
2343 svc_creator_signal(pool);
2344
2345 /*
2346 * Process the request.
2347 */
2348 svc_getreq(clone_xprt, mp);
2349
2350 /* If thread had a reservation it should have been canceled */
2351 ASSERT(!clone_xprt->xp_reserved);
2352
2353 /*
2354 * If the clone is marked detached then exit.
2355 * The rpcmod slot has already been released
2356 * when we detached this thread.
2357 */
2358 if (clone_xprt->xp_detached) {
2359 svc_thread_exitdetached(pool, clone_xprt);
2360 return (0);
2361 }
2362
2363 /*
2364 * Release our reference on the rpcmod
2365 * slot attached to xp_wq->q_ptr.
2366 */
2367 mutex_enter(&xprt->xp_req_lock);
2368 enable = xprt->xp_enable;
2369 if (enable)
2370 xprt->xp_enable = FALSE;
2371 mutex_exit(&xprt->xp_req_lock);
2372 SVC_RELE(clone_xprt, NULL, enable);
2373 }
2374 /* NOTREACHED */
2375 }
2376
2377 /*
2378 * Flush any pending requests for the queue and
2379 * free the associated mblks.
2380 */
2381 void
svc_queueclean(queue_t * q)2382 svc_queueclean(queue_t *q)
2383 {
2384 SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2385 mblk_t *mp;
2386 SVCPOOL *pool;
2387
2388 /*
2389 * clean up the requests
2390 */
2391 mutex_enter(&xprt->xp_req_lock);
2392 pool = xprt->xp_pool;
2393 while ((mp = xprt->xp_req_head) != NULL) {
2394 /* remove the request from the list */
2395 xprt->xp_req_head = mp->b_next;
2396 mp->b_next = (mblk_t *)0;
2397 SVC_RELE(xprt, mp, FALSE);
2398 }
2399
2400 mutex_enter(&pool->p_req_lock);
2401 pool->p_reqs -= xprt->xp_reqs;
2402 pool->p_size -= xprt->xp_size;
2403 mutex_exit(&pool->p_req_lock);
2404
2405 xprt->xp_reqs = 0;
2406 xprt->xp_size = 0;
2407 xprt->xp_full = FALSE;
2408 xprt->xp_enable = FALSE;
2409 mutex_exit(&xprt->xp_req_lock);
2410 }
2411
2412 /*
2413 * This routine is called by rpcmod to inform kernel RPC that a
2414 * queue is closing. It is called after all the requests have been
2415 * picked up (that is after all the slots on the queue have
2416 * been released by kernel RPC). It is also guaranteed that no more
2417 * request will be delivered on this transport.
2418 *
2419 * - clear xp_wq to mark the master server transport handle as closing
2420 * - if there are no more threads on this transport close/destroy it
2421 * - otherwise, leave the linked threads to close/destroy the transport
2422 * later.
2423 */
2424 void
svc_queueclose(queue_t * q)2425 svc_queueclose(queue_t *q)
2426 {
2427 SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2428
2429 if (xprt == NULL) {
2430 /*
2431 * If there is no master xprt associated with this stream,
2432 * then there is nothing to do. This happens regularly
2433 * with connection-oriented listening streams created by
2434 * nfsd.
2435 */
2436 return;
2437 }
2438
2439 mutex_enter(&xprt->xp_thread_lock);
2440
2441 ASSERT(xprt->xp_req_head == NULL);
2442 ASSERT(xprt->xp_wq != NULL);
2443
2444 xprt->xp_wq = NULL;
2445
2446 if (xprt->xp_threads == 0) {
2447 SVCPOOL *pool = xprt->xp_pool;
2448
2449 /*
2450 * svc_xprt_cleanup() destroys the transport
2451 * or releases the transport thread lock
2452 */
2453 svc_xprt_cleanup(xprt, FALSE);
2454
2455 mutex_enter(&pool->p_thread_lock);
2456
2457 /*
2458 * If the pool is in closing state and this was
2459 * the last transport in the pool then signal the creator
2460 * thread to clean up and exit.
2461 */
2462 if (pool->p_closing && svc_pool_tryexit(pool)) {
2463 return;
2464 }
2465 mutex_exit(&pool->p_thread_lock);
2466 } else {
2467 /*
2468 * There are still some threads linked to the transport. They
2469 * are very likely sleeping in svc_poll(). We could wake up
2470 * them by broadcasting on the p_req_cv condition variable, but
2471 * that might give us a performance penalty if there are too
2472 * many sleeping threads.
2473 *
2474 * Instead, we do nothing here. The linked threads will unlink
2475 * themselves and destroy the transport once they are woken up
2476 * on timeout, or by new request. There is no reason to hurry
2477 * up now with the thread wake up.
2478 */
2479
2480 /*
2481 * NOTICE: No references to the master transport structure
2482 * beyond this point!
2483 */
2484 mutex_exit(&xprt->xp_thread_lock);
2485 }
2486 }
2487
2488 /*
2489 * Interrupt `request delivery' routine called from rpcmod
2490 * - put a request at the tail of the transport request queue
2491 * - insert a hint for svc_poll() into the xprt-ready queue
2492 * - increment the `pending-requests' count for the pool
2493 * - handle flow control
2494 * - wake up a thread sleeping in svc_poll() if necessary
2495 * - if all the threads are running ask the creator for a new one.
2496 */
2497 bool_t
svc_queuereq(queue_t * q,mblk_t * mp,bool_t flowcontrol)2498 svc_queuereq(queue_t *q, mblk_t *mp, bool_t flowcontrol)
2499 {
2500 SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2501 SVCPOOL *pool = xprt->xp_pool;
2502 size_t size;
2503
2504 TRACE_0(TR_FAC_KRPC, TR_SVC_QUEUEREQ_START, "svc_queuereq_start");
2505
2506 ASSERT(!is_system_labeled() || msg_getcred(mp, NULL) != NULL ||
2507 mp->b_datap->db_type != M_DATA);
2508
2509 /*
2510 * Step 1.
2511 * Grab the transport's request lock and the
2512 * pool's request lock so that when we put
2513 * the request at the tail of the transport's
2514 * request queue, possibly put the request on
2515 * the xprt ready queue and increment the
2516 * pending request count it looks atomic.
2517 */
2518 mutex_enter(&xprt->xp_req_lock);
2519 if (flowcontrol && xprt->xp_full) {
2520 mutex_exit(&xprt->xp_req_lock);
2521
2522 return (FALSE);
2523 }
2524 ASSERT(xprt->xp_full == FALSE);
2525 mutex_enter(&pool->p_req_lock);
2526 if (xprt->xp_req_head == NULL)
2527 xprt->xp_req_head = mp;
2528 else
2529 xprt->xp_req_tail->b_next = mp;
2530 xprt->xp_req_tail = mp;
2531
2532 /*
2533 * Step 2.
2534 * Insert a hint into the xprt-ready queue, increment
2535 * counters, handle flow control, and wake up
2536 * a thread sleeping in svc_poll() if necessary.
2537 */
2538
2539 /* Insert pointer to this transport into the xprt-ready queue */
2540 svc_xprt_qput(pool, xprt);
2541
2542 /* Increment counters */
2543 pool->p_reqs++;
2544 xprt->xp_reqs++;
2545
2546 size = svc_msgsize(mp);
2547 xprt->xp_size += size;
2548 pool->p_size += size;
2549
2550 /* Handle flow control */
2551 if (flowcontrol)
2552 svc_flowcontrol(xprt);
2553
2554 TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_ENQ,
2555 "rpc_que_req_enq:pool %p mp %p", pool, mp);
2556
2557 /*
2558 * If there are more requests and req_cv hasn't
2559 * been signaled yet then wake up one more thread now.
2560 *
2561 * We avoid signaling req_cv until the most recently
2562 * signaled thread wakes up and gets CPU to clear
2563 * the `drowsy' flag.
2564 */
2565 if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2566 pool->p_asleep == 0) {
2567 mutex_exit(&pool->p_req_lock);
2568 } else {
2569 pool->p_drowsy = TRUE;
2570 pool->p_asleep--;
2571
2572 /*
2573 * Signal wakeup and drop the request lock.
2574 */
2575 cv_signal(&pool->p_req_cv);
2576 mutex_exit(&pool->p_req_lock);
2577 }
2578 mutex_exit(&xprt->xp_req_lock);
2579
2580 /*
2581 * Step 3.
2582 * If there are no asleep/signaled threads, we are
2583 * still below pool->p_maxthreads limit, and no thread is
2584 * currently being created then signal the creator
2585 * for one more service thread.
2586 *
2587 * The asleep and drowsy checks are not not protected
2588 * by a lock since it hurts performance and a wrong
2589 * decision is not essential.
2590 */
2591 if (pool->p_asleep == 0 && !pool->p_drowsy &&
2592 pool->p_threads + pool->p_detached_threads < pool->p_maxthreads)
2593 svc_creator_signal(pool);
2594
2595 TRACE_1(TR_FAC_KRPC, TR_SVC_QUEUEREQ_END,
2596 "svc_queuereq_end:(%S)", "end");
2597
2598 return (TRUE);
2599 }
2600
2601 /*
2602 * Reserve a service thread so that it can be detached later.
2603 * This reservation is required to make sure that when it tries to
2604 * detach itself the total number of detached threads does not exceed
2605 * pool->p_maxthreads - pool->p_redline (i.e. that we can have
2606 * up to pool->p_redline non-detached threads).
2607 *
2608 * If the thread does not detach itself later, it should cancel the
2609 * reservation before returning to svc_run().
2610 *
2611 * - check if there is room for more reserved/detached threads
2612 * - if so, then increment the `reserved threads' count for the pool
2613 * - mark the thread as reserved (setting the flag in the clone transport
2614 * handle for this thread
2615 * - returns 1 if the reservation succeeded, 0 if it failed.
2616 */
2617 int
svc_reserve_thread(SVCXPRT * clone_xprt)2618 svc_reserve_thread(SVCXPRT *clone_xprt)
2619 {
2620 SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2621
2622 /* Recursive reservations are not allowed */
2623 ASSERT(!clone_xprt->xp_reserved);
2624 ASSERT(!clone_xprt->xp_detached);
2625
2626 /* Check pool counts if there is room for reservation */
2627 mutex_enter(&pool->p_thread_lock);
2628 if (pool->p_reserved_threads + pool->p_detached_threads >=
2629 pool->p_maxthreads - pool->p_redline) {
2630 mutex_exit(&pool->p_thread_lock);
2631 return (0);
2632 }
2633 pool->p_reserved_threads++;
2634 mutex_exit(&pool->p_thread_lock);
2635
2636 /* Mark the thread (clone handle) as reserved */
2637 clone_xprt->xp_reserved = TRUE;
2638
2639 return (1);
2640 }
2641
2642 /*
2643 * Cancel a reservation for a thread.
2644 * - decrement the `reserved threads' count for the pool
2645 * - clear the flag in the clone transport handle for this thread.
2646 */
2647 void
svc_unreserve_thread(SVCXPRT * clone_xprt)2648 svc_unreserve_thread(SVCXPRT *clone_xprt)
2649 {
2650 SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2651
2652 /* Thread must have a reservation */
2653 ASSERT(clone_xprt->xp_reserved);
2654 ASSERT(!clone_xprt->xp_detached);
2655
2656 /* Decrement global count */
2657 mutex_enter(&pool->p_thread_lock);
2658 pool->p_reserved_threads--;
2659 mutex_exit(&pool->p_thread_lock);
2660
2661 /* Clear reservation flag */
2662 clone_xprt->xp_reserved = FALSE;
2663 }
2664
2665 /*
2666 * Detach a thread from its transport, so that it can block for an
2667 * extended time. Because the transport can be closed after the thread is
2668 * detached, the thread should have already sent off a reply if it was
2669 * going to send one.
2670 *
2671 * - decrement `non-detached threads' count and increment `detached threads'
2672 * counts for the transport
2673 * - decrement the `non-detached threads' and `reserved threads'
2674 * counts and increment the `detached threads' count for the pool
2675 * - release the rpcmod slot
2676 * - mark the clone (thread) as detached.
2677 *
2678 * No need to return a pointer to the thread's CPR information, since
2679 * the thread has a userland identity.
2680 *
2681 * NOTICE: a thread must not detach itself without making a prior reservation
2682 * through svc_thread_reserve().
2683 */
2684 callb_cpr_t *
svc_detach_thread(SVCXPRT * clone_xprt)2685 svc_detach_thread(SVCXPRT *clone_xprt)
2686 {
2687 SVCMASTERXPRT *xprt = clone_xprt->xp_master;
2688 SVCPOOL *pool = xprt->xp_pool;
2689 bool_t enable;
2690
2691 /* Thread must have a reservation */
2692 ASSERT(clone_xprt->xp_reserved);
2693 ASSERT(!clone_xprt->xp_detached);
2694
2695 /* Bookkeeping for this transport */
2696 mutex_enter(&xprt->xp_thread_lock);
2697 xprt->xp_threads--;
2698 xprt->xp_detached_threads++;
2699 mutex_exit(&xprt->xp_thread_lock);
2700
2701 /* Bookkeeping for the pool */
2702 mutex_enter(&pool->p_thread_lock);
2703 pool->p_threads--;
2704 pool->p_reserved_threads--;
2705 pool->p_detached_threads++;
2706 mutex_exit(&pool->p_thread_lock);
2707
2708 /* Release an rpcmod slot for this request */
2709 mutex_enter(&xprt->xp_req_lock);
2710 enable = xprt->xp_enable;
2711 if (enable)
2712 xprt->xp_enable = FALSE;
2713 mutex_exit(&xprt->xp_req_lock);
2714 SVC_RELE(clone_xprt, NULL, enable);
2715
2716 /* Mark the clone (thread) as detached */
2717 clone_xprt->xp_reserved = FALSE;
2718 clone_xprt->xp_detached = TRUE;
2719
2720 return (NULL);
2721 }
2722
2723 /*
2724 * This routine is responsible for extracting RDMA plugin master XPRT,
2725 * unregister from the SVCPOOL and initiate plugin specific cleanup.
2726 * It is passed a list/group of rdma transports as records which are
2727 * active in a given registered or unregistered kRPC thread pool. Its shuts
2728 * all active rdma transports in that pool. If the thread active on the trasport
2729 * happens to be last thread for that pool, it will signal the creater thread
2730 * to cleanup the pool and destroy the xprt in svc_queueclose()
2731 */
2732 void
rdma_stop(rdma_xprt_group_t * rdma_xprts)2733 rdma_stop(rdma_xprt_group_t *rdma_xprts)
2734 {
2735 SVCMASTERXPRT *xprt;
2736 rdma_xprt_record_t *curr_rec;
2737 queue_t *q;
2738 mblk_t *mp;
2739 int i, rtg_count;
2740 SVCPOOL *pool;
2741
2742 if (rdma_xprts->rtg_count == 0)
2743 return;
2744
2745 rtg_count = rdma_xprts->rtg_count;
2746
2747 for (i = 0; i < rtg_count; i++) {
2748 curr_rec = rdma_xprts->rtg_listhead;
2749 rdma_xprts->rtg_listhead = curr_rec->rtr_next;
2750 rdma_xprts->rtg_count--;
2751 curr_rec->rtr_next = NULL;
2752 xprt = curr_rec->rtr_xprt_ptr;
2753 q = xprt->xp_wq;
2754 svc_rdma_kstop(xprt);
2755
2756 mutex_enter(&xprt->xp_req_lock);
2757 pool = xprt->xp_pool;
2758 while ((mp = xprt->xp_req_head) != NULL) {
2759 rdma_recv_data_t *rdp = (rdma_recv_data_t *)mp->b_rptr;
2760
2761 /* remove the request from the list */
2762 xprt->xp_req_head = mp->b_next;
2763 mp->b_next = (mblk_t *)0;
2764
2765 RDMA_BUF_FREE(rdp->conn, &rdp->rpcmsg);
2766 RDMA_REL_CONN(rdp->conn);
2767 freemsg(mp);
2768 }
2769 mutex_enter(&pool->p_req_lock);
2770 pool->p_reqs -= xprt->xp_reqs;
2771 pool->p_size -= xprt->xp_size;
2772 mutex_exit(&pool->p_req_lock);
2773 xprt->xp_reqs = 0;
2774 xprt->xp_size = 0;
2775 xprt->xp_full = FALSE;
2776 xprt->xp_enable = FALSE;
2777 mutex_exit(&xprt->xp_req_lock);
2778 svc_queueclose(q);
2779 #ifdef DEBUG
2780 if (rdma_check)
2781 cmn_err(CE_NOTE, "rdma_stop: Exited svc_queueclose\n");
2782 #endif
2783 /*
2784 * Free the rdma transport record for the expunged rdma
2785 * based master transport handle.
2786 */
2787 kmem_free(curr_rec, sizeof (rdma_xprt_record_t));
2788 if (!rdma_xprts->rtg_listhead)
2789 break;
2790 }
2791 }
2792
2793
2794 /*
2795 * rpc_msg_dup/rpc_msg_free
2796 * Currently only used by svc_rpcsec_gss.c but put in this file as it
2797 * may be useful to others in the future.
2798 * But future consumers should be careful cuz so far
2799 * - only tested/used for call msgs (not reply)
2800 * - only tested/used with call verf oa_length==0
2801 */
2802 struct rpc_msg *
rpc_msg_dup(struct rpc_msg * src)2803 rpc_msg_dup(struct rpc_msg *src)
2804 {
2805 struct rpc_msg *dst;
2806 struct opaque_auth oa_src, oa_dst;
2807
2808 dst = kmem_alloc(sizeof (*dst), KM_SLEEP);
2809
2810 dst->rm_xid = src->rm_xid;
2811 dst->rm_direction = src->rm_direction;
2812
2813 dst->rm_call.cb_rpcvers = src->rm_call.cb_rpcvers;
2814 dst->rm_call.cb_prog = src->rm_call.cb_prog;
2815 dst->rm_call.cb_vers = src->rm_call.cb_vers;
2816 dst->rm_call.cb_proc = src->rm_call.cb_proc;
2817
2818 /* dup opaque auth call body cred */
2819 oa_src = src->rm_call.cb_cred;
2820
2821 oa_dst.oa_flavor = oa_src.oa_flavor;
2822 oa_dst.oa_base = kmem_alloc(oa_src.oa_length, KM_SLEEP);
2823
2824 bcopy(oa_src.oa_base, oa_dst.oa_base, oa_src.oa_length);
2825 oa_dst.oa_length = oa_src.oa_length;
2826
2827 dst->rm_call.cb_cred = oa_dst;
2828
2829 /* dup or just alloc opaque auth call body verifier */
2830 if (src->rm_call.cb_verf.oa_length > 0) {
2831 oa_src = src->rm_call.cb_verf;
2832
2833 oa_dst.oa_flavor = oa_src.oa_flavor;
2834 oa_dst.oa_base = kmem_alloc(oa_src.oa_length, KM_SLEEP);
2835
2836 bcopy(oa_src.oa_base, oa_dst.oa_base, oa_src.oa_length);
2837 oa_dst.oa_length = oa_src.oa_length;
2838
2839 dst->rm_call.cb_verf = oa_dst;
2840 } else {
2841 oa_dst.oa_flavor = -1; /* will be set later */
2842 oa_dst.oa_base = kmem_alloc(MAX_AUTH_BYTES, KM_SLEEP);
2843
2844 oa_dst.oa_length = 0; /* will be set later */
2845
2846 dst->rm_call.cb_verf = oa_dst;
2847 }
2848 return (dst);
2849
2850 error:
2851 kmem_free(dst->rm_call.cb_cred.oa_base, dst->rm_call.cb_cred.oa_length);
2852 kmem_free(dst, sizeof (*dst));
2853 return (NULL);
2854 }
2855
2856 void
rpc_msg_free(struct rpc_msg ** msg,int cb_verf_oa_length)2857 rpc_msg_free(struct rpc_msg **msg, int cb_verf_oa_length)
2858 {
2859 struct rpc_msg *m = *msg;
2860
2861 kmem_free(m->rm_call.cb_cred.oa_base, m->rm_call.cb_cred.oa_length);
2862 m->rm_call.cb_cred.oa_base = NULL;
2863 m->rm_call.cb_cred.oa_length = 0;
2864
2865 kmem_free(m->rm_call.cb_verf.oa_base, cb_verf_oa_length);
2866 m->rm_call.cb_verf.oa_base = NULL;
2867 m->rm_call.cb_verf.oa_length = 0;
2868
2869 kmem_free(m, sizeof (*m));
2870 m = NULL;
2871 }
2872
2873 /*
2874 * Generally 'cr_ref' should be 1, otherwise reference is kept
2875 * in underlying calls, so reset it.
2876 */
2877 cred_t *
svc_xprt_cred(SVCXPRT * xprt)2878 svc_xprt_cred(SVCXPRT *xprt)
2879 {
2880 cred_t *cr = xprt->xp_cred;
2881
2882 ASSERT(cr != NULL);
2883
2884 if (crgetref(cr) != 1) {
2885 crfree(cr);
2886 cr = crget();
2887 xprt->xp_cred = cr;
2888 }
2889 return (cr);
2890 }
2891