xref: /illumos-gate/usr/src/uts/common/rpc/rpcmod.c (revision e34d8872f4a713d904a4b34fb081060d1a7eba62)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 Milan Jurik. All rights reserved.
27  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
28  */
29 /* Copyright (c) 1990 Mentat Inc. */
30 
31 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
32 /*	  All Rights Reserved  	*/
33 
34 /*
35  * Kernel RPC filtering module
36  */
37 
38 #include <sys/param.h>
39 #include <sys/types.h>
40 #include <sys/stream.h>
41 #include <sys/stropts.h>
42 #include <sys/strsubr.h>
43 #include <sys/tihdr.h>
44 #include <sys/timod.h>
45 #include <sys/tiuser.h>
46 #include <sys/debug.h>
47 #include <sys/signal.h>
48 #include <sys/pcb.h>
49 #include <sys/user.h>
50 #include <sys/errno.h>
51 #include <sys/cred.h>
52 #include <sys/policy.h>
53 #include <sys/inline.h>
54 #include <sys/cmn_err.h>
55 #include <sys/kmem.h>
56 #include <sys/file.h>
57 #include <sys/sysmacros.h>
58 #include <sys/systm.h>
59 #include <sys/t_lock.h>
60 #include <sys/ddi.h>
61 #include <sys/vtrace.h>
62 #include <sys/callb.h>
63 #include <sys/strsun.h>
64 
65 #include <sys/strlog.h>
66 #include <rpc/rpc_com.h>
67 #include <inet/common.h>
68 #include <rpc/types.h>
69 #include <sys/time.h>
70 #include <rpc/xdr.h>
71 #include <rpc/auth.h>
72 #include <rpc/clnt.h>
73 #include <rpc/rpc_msg.h>
74 #include <rpc/clnt.h>
75 #include <rpc/svc.h>
76 #include <rpc/rpcsys.h>
77 #include <rpc/rpc_rdma.h>
78 
79 /*
80  * This is the loadable module wrapper.
81  */
82 #include <sys/conf.h>
83 #include <sys/modctl.h>
84 #include <sys/syscall.h>
85 
86 extern struct streamtab rpcinfo;
87 
88 static struct fmodsw fsw = {
89 	"rpcmod",
90 	&rpcinfo,
91 	D_NEW|D_MP,
92 };
93 
94 /*
95  * Module linkage information for the kernel.
96  */
97 
98 static struct modlstrmod modlstrmod = {
99 	&mod_strmodops, "rpc interface str mod", &fsw
100 };
101 
102 /*
103  * For the RPC system call.
104  */
105 static struct sysent rpcsysent = {
106 	2,
107 	SE_32RVAL1 | SE_ARGC | SE_NOUNLOAD,
108 	rpcsys
109 };
110 
111 static struct modlsys modlsys = {
112 	&mod_syscallops,
113 	"RPC syscall",
114 	&rpcsysent
115 };
116 
117 #ifdef _SYSCALL32_IMPL
118 static struct modlsys modlsys32 = {
119 	&mod_syscallops32,
120 	"32-bit RPC syscall",
121 	&rpcsysent
122 };
123 #endif /* _SYSCALL32_IMPL */
124 
125 static struct modlinkage modlinkage = {
126 	MODREV_1,
127 	{
128 		&modlsys,
129 #ifdef _SYSCALL32_IMPL
130 		&modlsys32,
131 #endif
132 		&modlstrmod,
133 		NULL
134 	}
135 };
136 
137 int
138 _init(void)
139 {
140 	int error = 0;
141 	callb_id_t cid;
142 	int status;
143 
144 	svc_init();
145 	clnt_init();
146 	cid = callb_add(connmgr_cpr_reset, 0, CB_CL_CPR_RPC, "rpc");
147 
148 	if (error = mod_install(&modlinkage)) {
149 		/*
150 		 * Could not install module, cleanup previous
151 		 * initialization work.
152 		 */
153 		clnt_fini();
154 		if (cid != NULL)
155 			(void) callb_delete(cid);
156 
157 		return (error);
158 	}
159 
160 	/*
161 	 * Load up the RDMA plugins and initialize the stats. Even if the
162 	 * plugins loadup fails, but rpcmod was successfully installed the
163 	 * counters still get initialized.
164 	 */
165 	rw_init(&rdma_lock, NULL, RW_DEFAULT, NULL);
166 	mutex_init(&rdma_modload_lock, NULL, MUTEX_DEFAULT, NULL);
167 
168 	cv_init(&rdma_wait.svc_cv, NULL, CV_DEFAULT, NULL);
169 	mutex_init(&rdma_wait.svc_lock, NULL, MUTEX_DEFAULT, NULL);
170 
171 	mt_kstat_init();
172 
173 	/*
174 	 * Get our identification into ldi.  This is used for loading
175 	 * other modules, e.g. rpcib.
176 	 */
177 	status = ldi_ident_from_mod(&modlinkage, &rpcmod_li);
178 	if (status != 0) {
179 		cmn_err(CE_WARN, "ldi_ident_from_mod fails with %d", status);
180 		rpcmod_li = NULL;
181 	}
182 
183 	return (error);
184 }
185 
186 /*
187  * The unload entry point fails, because we advertise entry points into
188  * rpcmod from the rest of kRPC: rpcmod_release().
189  */
190 int
191 _fini(void)
192 {
193 	return (EBUSY);
194 }
195 
196 int
197 _info(struct modinfo *modinfop)
198 {
199 	return (mod_info(&modlinkage, modinfop));
200 }
201 
202 extern int nulldev();
203 
204 #define	RPCMOD_ID	2049
205 
206 int rmm_open(queue_t *, dev_t *, int, int, cred_t *);
207 int rmm_close(queue_t *, int, cred_t *);
208 
209 /*
210  * To save instructions, since STREAMS ignores the return value
211  * from these functions, they are defined as void here. Kind of icky, but...
212  */
213 void rmm_rput(queue_t *, mblk_t *);
214 void rmm_wput(queue_t *, mblk_t *);
215 void rmm_rsrv(queue_t *);
216 void rmm_wsrv(queue_t *);
217 
218 int rpcmodopen(queue_t *, dev_t *, int, int, cred_t *);
219 int rpcmodclose(queue_t *, int, cred_t *);
220 void rpcmodrput(queue_t *, mblk_t *);
221 void rpcmodwput(queue_t *, mblk_t *);
222 void rpcmodrsrv();
223 void rpcmodwsrv(queue_t *);
224 
225 static	void	rpcmodwput_other(queue_t *, mblk_t *);
226 static	int	mir_close(queue_t *q);
227 static	int	mir_open(queue_t *q, dev_t *devp, int flag, int sflag,
228 		    cred_t *credp);
229 static	void	mir_rput(queue_t *q, mblk_t *mp);
230 static	void	mir_rsrv(queue_t *q);
231 static	void	mir_wput(queue_t *q, mblk_t *mp);
232 static	void	mir_wsrv(queue_t *q);
233 
234 static struct module_info rpcmod_info =
235 	{RPCMOD_ID, "rpcmod", 0, INFPSZ, 256*1024, 1024};
236 
237 static struct qinit rpcmodrinit = {
238 	(int (*)())rmm_rput,
239 	(int (*)())rmm_rsrv,
240 	rmm_open,
241 	rmm_close,
242 	nulldev,
243 	&rpcmod_info,
244 	NULL
245 };
246 
247 /*
248  * The write put procedure is simply putnext to conserve stack space.
249  * The write service procedure is not used to queue data, but instead to
250  * synchronize with flow control.
251  */
252 static struct qinit rpcmodwinit = {
253 	(int (*)())rmm_wput,
254 	(int (*)())rmm_wsrv,
255 	rmm_open,
256 	rmm_close,
257 	nulldev,
258 	&rpcmod_info,
259 	NULL
260 };
261 struct streamtab rpcinfo = { &rpcmodrinit, &rpcmodwinit, NULL, NULL };
262 
263 struct xprt_style_ops {
264 	int (*xo_open)();
265 	int (*xo_close)();
266 	void (*xo_wput)();
267 	void (*xo_wsrv)();
268 	void (*xo_rput)();
269 	void (*xo_rsrv)();
270 };
271 
272 /*
273  * Read side has no service procedure.
274  */
275 static struct xprt_style_ops xprt_clts_ops = {
276 	rpcmodopen,
277 	rpcmodclose,
278 	rpcmodwput,
279 	rpcmodwsrv,
280 	rpcmodrput,
281 	NULL
282 };
283 
284 static struct xprt_style_ops xprt_cots_ops = {
285 	mir_open,
286 	mir_close,
287 	mir_wput,
288 	mir_wsrv,
289 	mir_rput,
290 	mir_rsrv
291 };
292 
293 /*
294  * Per rpcmod "slot" data structure. q->q_ptr points to one of these.
295  */
296 struct rpcm {
297 	void		*rm_krpc_cell;	/* Reserved for use by kRPC */
298 	struct		xprt_style_ops	*rm_ops;
299 	int		rm_type;	/* Client or server side stream */
300 #define	RM_CLOSING	0x1		/* somebody is trying to close slot */
301 	uint_t		rm_state;	/* state of the slot. see above */
302 	uint_t		rm_ref;		/* cnt of external references to slot */
303 	kmutex_t	rm_lock;	/* mutex protecting above fields */
304 	kcondvar_t	rm_cwait;	/* condition for closing */
305 	zoneid_t	rm_zoneid;	/* zone which pushed rpcmod */
306 };
307 
308 struct temp_slot {
309 	void *cell;
310 	struct xprt_style_ops *ops;
311 	int type;
312 	mblk_t *info_ack;
313 	kmutex_t lock;
314 	kcondvar_t wait;
315 };
316 
317 typedef struct mir_s {
318 	void	*mir_krpc_cell;	/* Reserved for kRPC use. This field */
319 					/* must be first in the structure. */
320 	struct xprt_style_ops	*rm_ops;
321 	int	mir_type;		/* Client or server side stream */
322 
323 	mblk_t	*mir_head_mp;		/* RPC msg in progress */
324 		/*
325 		 * mir_head_mp points the first mblk being collected in
326 		 * the current RPC message.  Record headers are removed
327 		 * before data is linked into mir_head_mp.
328 		 */
329 	mblk_t	*mir_tail_mp;		/* Last mblk in mir_head_mp */
330 		/*
331 		 * mir_tail_mp points to the last mblk in the message
332 		 * chain starting at mir_head_mp.  It is only valid
333 		 * if mir_head_mp is non-NULL and is used to add new
334 		 * data blocks to the end of chain quickly.
335 		 */
336 
337 	int32_t	mir_frag_len;		/* Bytes seen in the current frag */
338 		/*
339 		 * mir_frag_len starts at -4 for beginning of each fragment.
340 		 * When this length is negative, it indicates the number of
341 		 * bytes that rpcmod needs to complete the record marker
342 		 * header.  When it is positive or zero, it holds the number
343 		 * of bytes that have arrived for the current fragment and
344 		 * are held in mir_header_mp.
345 		 */
346 
347 	int32_t	mir_frag_header;
348 		/*
349 		 * Fragment header as collected for the current fragment.
350 		 * It holds the last-fragment indicator and the number
351 		 * of bytes in the fragment.
352 		 */
353 
354 	unsigned int
355 		mir_ordrel_pending : 1,	/* Sent T_ORDREL_REQ */
356 		mir_hold_inbound : 1,	/* Hold inbound messages on server */
357 					/* side until outbound flow control */
358 					/* is relieved. */
359 		mir_closing : 1,	/* The stream is being closed */
360 		mir_inrservice : 1,	/* data queued or rd srv proc running */
361 		mir_inwservice : 1,	/* data queued or wr srv proc running */
362 		mir_inwflushdata : 1,	/* flush M_DATAs when srv runs */
363 		/*
364 		 * On client streams, mir_clntreq is 0 or 1; it is set
365 		 * to 1 whenever a new request is sent out (mir_wput)
366 		 * and cleared when the timer fires (mir_timer).  If
367 		 * the timer fires with this value equal to 0, then the
368 		 * stream is considered idle and kRPC is notified.
369 		 */
370 		mir_clntreq : 1,
371 		/*
372 		 * On server streams, stop accepting messages
373 		 */
374 		mir_svc_no_more_msgs : 1,
375 		mir_listen_stream : 1,	/* listen end point */
376 		mir_unused : 1,	/* no longer used */
377 		mir_timer_call : 1,
378 		mir_junk_fill_thru_bit_31 : 21;
379 
380 	int	mir_setup_complete;	/* server has initialized everything */
381 	timeout_id_t mir_timer_id;	/* Timer for idle checks */
382 	clock_t	mir_idle_timeout;	/* Allowed idle time before shutdown */
383 		/*
384 		 * This value is copied from clnt_idle_timeout or
385 		 * svc_idle_timeout during the appropriate ioctl.
386 		 * Kept in milliseconds
387 		 */
388 	clock_t	mir_use_timestamp;	/* updated on client with each use */
389 		/*
390 		 * This value is set to lbolt
391 		 * every time a client stream sends or receives data.
392 		 * Even if the timer message arrives, we don't shutdown
393 		 * client unless:
394 		 *    lbolt >= MSEC_TO_TICK(mir_idle_timeout)+mir_use_timestamp.
395 		 * This value is kept in HZ.
396 		 */
397 
398 	uint_t	*mir_max_msg_sizep;	/* Reference to sanity check size */
399 		/*
400 		 * This pointer is set to &clnt_max_msg_size or
401 		 * &svc_max_msg_size during the appropriate ioctl.
402 		 */
403 	zoneid_t mir_zoneid;	/* zone which pushed rpcmod */
404 	/* Server-side fields. */
405 	int	mir_ref_cnt;		/* Reference count: server side only */
406 					/* counts the number of references */
407 					/* that a kernel RPC server thread */
408 					/* (see svc_run()) has on this rpcmod */
409 					/* slot. Effectively, it is the */
410 					/* number of unprocessed messages */
411 					/* that have been passed up to the */
412 					/* kRPC layer */
413 
414 	mblk_t	*mir_svc_pend_mp;	/* Pending T_ORDREL_IND or */
415 					/* T_DISCON_IND */
416 
417 	/*
418 	 * these fields are for both client and server, but for debugging,
419 	 * it is easier to have these last in the structure.
420 	 */
421 	kmutex_t	mir_mutex;	/* Mutex and condvar for close */
422 	kcondvar_t	mir_condvar;	/* synchronization. */
423 	kcondvar_t	mir_timer_cv;	/* Timer routine sync. */
424 } mir_t;
425 
426 void tmp_rput(queue_t *q, mblk_t *mp);
427 
428 struct xprt_style_ops tmpops = {
429 	NULL,
430 	NULL,
431 	putnext,
432 	NULL,
433 	tmp_rput,
434 	NULL
435 };
436 
437 void
438 tmp_rput(queue_t *q, mblk_t *mp)
439 {
440 	struct temp_slot *t = (struct temp_slot *)(q->q_ptr);
441 	struct T_info_ack *pptr;
442 
443 	switch (mp->b_datap->db_type) {
444 	case M_PCPROTO:
445 		pptr = (struct T_info_ack *)mp->b_rptr;
446 		switch (pptr->PRIM_type) {
447 		case T_INFO_ACK:
448 			mutex_enter(&t->lock);
449 			t->info_ack = mp;
450 			cv_signal(&t->wait);
451 			mutex_exit(&t->lock);
452 			return;
453 		default:
454 			break;
455 		}
456 	default:
457 		break;
458 	}
459 
460 	/*
461 	 * Not an info-ack, so free it. This is ok because we should
462 	 * not be receiving data until the open finishes: rpcmod
463 	 * is pushed well before the end-point is bound to an address.
464 	 */
465 	freemsg(mp);
466 }
467 
468 int
469 rmm_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp)
470 {
471 	mblk_t *bp;
472 	struct temp_slot ts, *t;
473 	struct T_info_ack *pptr;
474 	int error = 0;
475 
476 	ASSERT(q != NULL);
477 	/*
478 	 * Check for re-opens.
479 	 */
480 	if (q->q_ptr) {
481 		TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END,
482 		    "rpcmodopen_end:(%s)", "q->qptr");
483 		return (0);
484 	}
485 
486 	t = &ts;
487 	bzero(t, sizeof (*t));
488 	q->q_ptr = (void *)t;
489 	WR(q)->q_ptr = (void *)t;
490 
491 	/*
492 	 * Allocate the required messages upfront.
493 	 */
494 	if ((bp = allocb_cred(sizeof (struct T_info_req) +
495 	    sizeof (struct T_info_ack), crp, curproc->p_pid)) == NULL) {
496 		return (ENOBUFS);
497 	}
498 
499 	mutex_init(&t->lock, NULL, MUTEX_DEFAULT, NULL);
500 	cv_init(&t->wait, NULL, CV_DEFAULT, NULL);
501 
502 	t->ops = &tmpops;
503 
504 	qprocson(q);
505 	bp->b_datap->db_type = M_PCPROTO;
506 	*(int32_t *)bp->b_wptr = (int32_t)T_INFO_REQ;
507 	bp->b_wptr += sizeof (struct T_info_req);
508 	putnext(WR(q), bp);
509 
510 	mutex_enter(&t->lock);
511 	while (t->info_ack == NULL) {
512 		if (cv_wait_sig(&t->wait, &t->lock) == 0) {
513 			error = EINTR;
514 			break;
515 		}
516 	}
517 	mutex_exit(&t->lock);
518 
519 	if (error)
520 		goto out;
521 
522 	pptr = (struct T_info_ack *)t->info_ack->b_rptr;
523 
524 	if (pptr->SERV_type == T_CLTS) {
525 		if ((error = rpcmodopen(q, devp, flag, sflag, crp)) == 0)
526 			((struct rpcm *)q->q_ptr)->rm_ops = &xprt_clts_ops;
527 	} else {
528 		if ((error = mir_open(q, devp, flag, sflag, crp)) == 0)
529 			((mir_t *)q->q_ptr)->rm_ops = &xprt_cots_ops;
530 	}
531 
532 out:
533 	if (error)
534 		qprocsoff(q);
535 
536 	freemsg(t->info_ack);
537 	mutex_destroy(&t->lock);
538 	cv_destroy(&t->wait);
539 
540 	return (error);
541 }
542 
543 void
544 rmm_rput(queue_t *q, mblk_t  *mp)
545 {
546 	(*((struct temp_slot *)q->q_ptr)->ops->xo_rput)(q, mp);
547 }
548 
549 void
550 rmm_rsrv(queue_t *q)
551 {
552 	(*((struct temp_slot *)q->q_ptr)->ops->xo_rsrv)(q);
553 }
554 
555 void
556 rmm_wput(queue_t *q, mblk_t *mp)
557 {
558 	(*((struct temp_slot *)q->q_ptr)->ops->xo_wput)(q, mp);
559 }
560 
561 void
562 rmm_wsrv(queue_t *q)
563 {
564 	(*((struct temp_slot *)q->q_ptr)->ops->xo_wsrv)(q);
565 }
566 
567 int
568 rmm_close(queue_t *q, int flag, cred_t *crp)
569 {
570 	return ((*((struct temp_slot *)q->q_ptr)->ops->xo_close)(q, flag, crp));
571 }
572 
573 static void rpcmod_release(queue_t *, mblk_t *, bool_t);
574 /*
575  * rpcmodopen -	open routine gets called when the module gets pushed
576  *		onto the stream.
577  */
578 /*ARGSUSED*/
579 int
580 rpcmodopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp)
581 {
582 	struct rpcm *rmp;
583 
584 	extern void (*rpc_rele)(queue_t *, mblk_t *, bool_t);
585 
586 	TRACE_0(TR_FAC_KRPC, TR_RPCMODOPEN_START, "rpcmodopen_start:");
587 
588 	/*
589 	 * Initialize entry points to release a rpcmod slot (and an input
590 	 * message if supplied) and to send an output message to the module
591 	 * below rpcmod.
592 	 */
593 	if (rpc_rele == NULL)
594 		rpc_rele = rpcmod_release;
595 
596 	/*
597 	 * Only sufficiently privileged users can use this module, and it
598 	 * is assumed that they will use this module properly, and NOT send
599 	 * bulk data from downstream.
600 	 */
601 	if (secpolicy_rpcmod_open(crp) != 0)
602 		return (EPERM);
603 
604 	/*
605 	 * Allocate slot data structure.
606 	 */
607 	rmp = kmem_zalloc(sizeof (*rmp), KM_SLEEP);
608 
609 	mutex_init(&rmp->rm_lock, NULL, MUTEX_DEFAULT, NULL);
610 	cv_init(&rmp->rm_cwait, NULL, CV_DEFAULT, NULL);
611 	rmp->rm_zoneid = rpc_zoneid();
612 	/*
613 	 * slot type will be set by kRPC client and server ioctl's
614 	 */
615 	rmp->rm_type = 0;
616 
617 	q->q_ptr = (void *)rmp;
618 	WR(q)->q_ptr = (void *)rmp;
619 
620 	TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END, "rpcmodopen_end:(%s)", "end");
621 	return (0);
622 }
623 
624 /*
625  * rpcmodclose - This routine gets called when the module gets popped
626  * off of the stream.
627  */
628 /*ARGSUSED*/
629 int
630 rpcmodclose(queue_t *q, int flag, cred_t *crp)
631 {
632 	struct rpcm *rmp;
633 
634 	ASSERT(q != NULL);
635 	rmp = (struct rpcm *)q->q_ptr;
636 
637 	/*
638 	 * Mark our state as closing.
639 	 */
640 	mutex_enter(&rmp->rm_lock);
641 	rmp->rm_state |= RM_CLOSING;
642 
643 	/*
644 	 * Check and see if there are any messages on the queue.  If so, send
645 	 * the messages, regardless whether the downstream module is ready to
646 	 * accept data.
647 	 */
648 	if (rmp->rm_type == RPC_SERVER) {
649 		flushq(q, FLUSHDATA);
650 
651 		qenable(WR(q));
652 
653 		if (rmp->rm_ref) {
654 			mutex_exit(&rmp->rm_lock);
655 			/*
656 			 * call into SVC to clean the queue
657 			 */
658 			svc_queueclean(q);
659 			mutex_enter(&rmp->rm_lock);
660 
661 			/*
662 			 * Block while there are kRPC threads with a reference
663 			 * to this message.
664 			 */
665 			while (rmp->rm_ref)
666 				cv_wait(&rmp->rm_cwait, &rmp->rm_lock);
667 		}
668 
669 		mutex_exit(&rmp->rm_lock);
670 
671 		/*
672 		 * It is now safe to remove this queue from the stream. No kRPC
673 		 * threads have a reference to the stream, and none ever will,
674 		 * because RM_CLOSING is set.
675 		 */
676 		qprocsoff(q);
677 
678 		/* Notify kRPC that this stream is going away. */
679 		svc_queueclose(q);
680 	} else {
681 		mutex_exit(&rmp->rm_lock);
682 		qprocsoff(q);
683 	}
684 
685 	q->q_ptr = NULL;
686 	WR(q)->q_ptr = NULL;
687 	mutex_destroy(&rmp->rm_lock);
688 	cv_destroy(&rmp->rm_cwait);
689 	kmem_free(rmp, sizeof (*rmp));
690 	return (0);
691 }
692 
693 /*
694  * rpcmodrput -	Module read put procedure.  This is called from
695  *		the module, driver, or stream head downstream.
696  */
697 void
698 rpcmodrput(queue_t *q, mblk_t *mp)
699 {
700 	struct rpcm *rmp;
701 	union T_primitives *pptr;
702 	int hdrsz;
703 
704 	TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_START, "rpcmodrput_start:");
705 
706 	ASSERT(q != NULL);
707 	rmp = (struct rpcm *)q->q_ptr;
708 
709 	if (rmp->rm_type == 0) {
710 		freemsg(mp);
711 		return;
712 	}
713 
714 	switch (mp->b_datap->db_type) {
715 	default:
716 		putnext(q, mp);
717 		break;
718 
719 	case M_PROTO:
720 	case M_PCPROTO:
721 		ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (int32_t));
722 		pptr = (union T_primitives *)mp->b_rptr;
723 
724 		/*
725 		 * Forward this message to kRPC if it is data.
726 		 */
727 		if (pptr->type == T_UNITDATA_IND) {
728 			/*
729 			 * Check if the module is being popped.
730 			 */
731 			mutex_enter(&rmp->rm_lock);
732 			if (rmp->rm_state & RM_CLOSING) {
733 				mutex_exit(&rmp->rm_lock);
734 				putnext(q, mp);
735 				break;
736 			}
737 
738 			switch (rmp->rm_type) {
739 			case RPC_CLIENT:
740 				mutex_exit(&rmp->rm_lock);
741 				hdrsz = mp->b_wptr - mp->b_rptr;
742 
743 				/*
744 				 * Make sure the header is sane.
745 				 */
746 				if (hdrsz < TUNITDATAINDSZ ||
747 				    hdrsz < (pptr->unitdata_ind.OPT_length +
748 				    pptr->unitdata_ind.OPT_offset) ||
749 				    hdrsz < (pptr->unitdata_ind.SRC_length +
750 				    pptr->unitdata_ind.SRC_offset)) {
751 					freemsg(mp);
752 					return;
753 				}
754 
755 				/*
756 				 * Call clnt_clts_dispatch_notify, so that it
757 				 * can pass the message to the proper caller.
758 				 * Don't discard the header just yet since the
759 				 * client may need the sender's address.
760 				 */
761 				clnt_clts_dispatch_notify(mp, hdrsz,
762 				    rmp->rm_zoneid);
763 				return;
764 			case RPC_SERVER:
765 				/*
766 				 * rm_krpc_cell is exclusively used by the kRPC
767 				 * CLTS server. Try to submit the message to
768 				 * kRPC. Since this is an unreliable channel, we
769 				 * can just free the message in case the kRPC
770 				 * does not accept new messages.
771 				 */
772 				if (rmp->rm_krpc_cell &&
773 				    svc_queuereq(q, mp, TRUE)) {
774 					/*
775 					 * Raise the reference count on this
776 					 * module to prevent it from being
777 					 * popped before kRPC generates the
778 					 * reply.
779 					 */
780 					rmp->rm_ref++;
781 					mutex_exit(&rmp->rm_lock);
782 				} else {
783 					mutex_exit(&rmp->rm_lock);
784 					freemsg(mp);
785 				}
786 				return;
787 			default:
788 				mutex_exit(&rmp->rm_lock);
789 				freemsg(mp);
790 				return;
791 			} /* end switch(rmp->rm_type) */
792 		} else if (pptr->type == T_UDERROR_IND) {
793 			mutex_enter(&rmp->rm_lock);
794 			hdrsz = mp->b_wptr - mp->b_rptr;
795 
796 			/*
797 			 * Make sure the header is sane
798 			 */
799 			if (hdrsz < TUDERRORINDSZ ||
800 			    hdrsz < (pptr->uderror_ind.OPT_length +
801 			    pptr->uderror_ind.OPT_offset) ||
802 			    hdrsz < (pptr->uderror_ind.DEST_length +
803 			    pptr->uderror_ind.DEST_offset)) {
804 				mutex_exit(&rmp->rm_lock);
805 				freemsg(mp);
806 				return;
807 			}
808 
809 			/*
810 			 * In the case where a unit data error has been
811 			 * received, all we need to do is clear the message from
812 			 * the queue.
813 			 */
814 			mutex_exit(&rmp->rm_lock);
815 			freemsg(mp);
816 			RPCLOG(32, "rpcmodrput: unitdata error received at "
817 			    "%ld\n", gethrestime_sec());
818 			return;
819 		} /* end else if (pptr->type == T_UDERROR_IND) */
820 
821 		putnext(q, mp);
822 		break;
823 	} /* end switch (mp->b_datap->db_type) */
824 
825 	TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_END,
826 	    "rpcmodrput_end:");
827 	/*
828 	 * Return codes are not looked at by the STREAMS framework.
829 	 */
830 }
831 
832 /*
833  * write put procedure
834  */
835 void
836 rpcmodwput(queue_t *q, mblk_t *mp)
837 {
838 	struct rpcm	*rmp;
839 
840 	ASSERT(q != NULL);
841 
842 	switch (mp->b_datap->db_type) {
843 		case M_PROTO:
844 		case M_PCPROTO:
845 			break;
846 		default:
847 			rpcmodwput_other(q, mp);
848 			return;
849 	}
850 
851 	/*
852 	 * Check to see if we can send the message downstream.
853 	 */
854 	if (canputnext(q)) {
855 		putnext(q, mp);
856 		return;
857 	}
858 
859 	rmp = (struct rpcm *)q->q_ptr;
860 	ASSERT(rmp != NULL);
861 
862 	/*
863 	 * The first canputnext failed.  Try again except this time with the
864 	 * lock held, so that we can check the state of the stream to see if
865 	 * it is closing.  If either of these conditions evaluate to true
866 	 * then send the meesage.
867 	 */
868 	mutex_enter(&rmp->rm_lock);
869 	if (canputnext(q) || (rmp->rm_state & RM_CLOSING)) {
870 		mutex_exit(&rmp->rm_lock);
871 		putnext(q, mp);
872 	} else {
873 		/*
874 		 * canputnext failed again and the stream is not closing.
875 		 * Place the message on the queue and let the service
876 		 * procedure handle the message.
877 		 */
878 		mutex_exit(&rmp->rm_lock);
879 		(void) putq(q, mp);
880 	}
881 }
882 
883 static void
884 rpcmodwput_other(queue_t *q, mblk_t *mp)
885 {
886 	struct rpcm	*rmp;
887 	struct iocblk	*iocp;
888 
889 	rmp = (struct rpcm *)q->q_ptr;
890 	ASSERT(rmp != NULL);
891 
892 	switch (mp->b_datap->db_type) {
893 		case M_IOCTL:
894 			iocp = (struct iocblk *)mp->b_rptr;
895 			ASSERT(iocp != NULL);
896 			switch (iocp->ioc_cmd) {
897 				case RPC_CLIENT:
898 				case RPC_SERVER:
899 					mutex_enter(&rmp->rm_lock);
900 					rmp->rm_type = iocp->ioc_cmd;
901 					mutex_exit(&rmp->rm_lock);
902 					mp->b_datap->db_type = M_IOCACK;
903 					qreply(q, mp);
904 					return;
905 				default:
906 				/*
907 				 * pass the ioctl downstream and hope someone
908 				 * down there knows how to handle it.
909 				 */
910 					putnext(q, mp);
911 					return;
912 			}
913 		default:
914 			break;
915 	}
916 	/*
917 	 * This is something we definitely do not know how to handle, just
918 	 * pass the message downstream
919 	 */
920 	putnext(q, mp);
921 }
922 
923 /*
924  * Module write service procedure. This is called by downstream modules
925  * for back enabling during flow control.
926  */
927 void
928 rpcmodwsrv(queue_t *q)
929 {
930 	struct rpcm	*rmp;
931 	mblk_t		*mp = NULL;
932 
933 	rmp = (struct rpcm *)q->q_ptr;
934 	ASSERT(rmp != NULL);
935 
936 	/*
937 	 * Get messages that may be queued and send them down stream
938 	 */
939 	while ((mp = getq(q)) != NULL) {
940 		/*
941 		 * Optimize the service procedure for the server-side, by
942 		 * avoiding a call to canputnext().
943 		 */
944 		if (rmp->rm_type == RPC_SERVER || canputnext(q)) {
945 			putnext(q, mp);
946 			continue;
947 		}
948 		(void) putbq(q, mp);
949 		return;
950 	}
951 }
952 
953 /* ARGSUSED */
954 static void
955 rpcmod_release(queue_t *q, mblk_t *bp, bool_t enable)
956 {
957 	struct rpcm *rmp;
958 
959 	/*
960 	 * For now, just free the message.
961 	 */
962 	if (bp)
963 		freemsg(bp);
964 	rmp = (struct rpcm *)q->q_ptr;
965 
966 	mutex_enter(&rmp->rm_lock);
967 	rmp->rm_ref--;
968 
969 	if (rmp->rm_ref == 0 && (rmp->rm_state & RM_CLOSING)) {
970 		cv_broadcast(&rmp->rm_cwait);
971 	}
972 
973 	mutex_exit(&rmp->rm_lock);
974 }
975 
976 /*
977  * This part of rpcmod is pushed on a connection-oriented transport for use
978  * by RPC.  It serves to bypass the Stream head, implements
979  * the record marking protocol, and dispatches incoming RPC messages.
980  */
981 
982 /* Default idle timer values */
983 #define	MIR_CLNT_IDLE_TIMEOUT	(5 * (60 * 1000L))	/* 5 minutes */
984 #define	MIR_SVC_IDLE_TIMEOUT	(6 * (60 * 1000L))	/* 6 minutes */
985 #define	MIR_SVC_ORDREL_TIMEOUT	(10 * (60 * 1000L))	/* 10 minutes */
986 #define	MIR_LASTFRAG	0x80000000	/* Record marker */
987 
988 #define	MIR_SVC_QUIESCED(mir)	\
989 	(mir->mir_ref_cnt == 0 && mir->mir_inrservice == 0)
990 
991 #define	MIR_CLEAR_INRSRV(mir_ptr)	{	\
992 	(mir_ptr)->mir_inrservice = 0;	\
993 	if ((mir_ptr)->mir_type == RPC_SERVER &&	\
994 		(mir_ptr)->mir_closing)	\
995 		cv_signal(&(mir_ptr)->mir_condvar);	\
996 }
997 
998 /*
999  * Don't block service procedure (and mir_close) if
1000  * we are in the process of closing.
1001  */
1002 #define	MIR_WCANPUTNEXT(mir_ptr, write_q)	\
1003 	(canputnext(write_q) || ((mir_ptr)->mir_svc_no_more_msgs == 1))
1004 
1005 static int	mir_clnt_dup_request(queue_t *q, mblk_t *mp);
1006 static void	mir_rput_proto(queue_t *q, mblk_t *mp);
1007 static int	mir_svc_policy_notify(queue_t *q, int event);
1008 static void	mir_svc_release(queue_t *wq, mblk_t *mp, bool_t);
1009 static void	mir_svc_start(queue_t *wq);
1010 static void	mir_svc_idle_start(queue_t *, mir_t *);
1011 static void	mir_svc_idle_stop(queue_t *, mir_t *);
1012 static void	mir_svc_start_close(queue_t *, mir_t *);
1013 static void	mir_clnt_idle_do_stop(queue_t *);
1014 static void	mir_clnt_idle_stop(queue_t *, mir_t *);
1015 static void	mir_clnt_idle_start(queue_t *, mir_t *);
1016 static void	mir_wput(queue_t *q, mblk_t *mp);
1017 static void	mir_wput_other(queue_t *q, mblk_t *mp);
1018 static void	mir_wsrv(queue_t *q);
1019 static	void	mir_disconnect(queue_t *, mir_t *ir);
1020 static	int	mir_check_len(queue_t *, mblk_t *);
1021 static	void	mir_timer(void *);
1022 
1023 extern void	(*mir_rele)(queue_t *, mblk_t *, bool_t);
1024 extern void	(*mir_start)(queue_t *);
1025 extern void	(*clnt_stop_idle)(queue_t *);
1026 
1027 clock_t	clnt_idle_timeout = MIR_CLNT_IDLE_TIMEOUT;
1028 clock_t	svc_idle_timeout = MIR_SVC_IDLE_TIMEOUT;
1029 
1030 /*
1031  * Timeout for subsequent notifications of idle connection.  This is
1032  * typically used to clean up after a wedged orderly release.
1033  */
1034 clock_t	svc_ordrel_timeout = MIR_SVC_ORDREL_TIMEOUT; /* milliseconds */
1035 
1036 extern	uint_t	*clnt_max_msg_sizep;
1037 extern	uint_t	*svc_max_msg_sizep;
1038 uint_t	clnt_max_msg_size = RPC_MAXDATASIZE;
1039 uint_t	svc_max_msg_size = RPC_MAXDATASIZE;
1040 uint_t	mir_krpc_cell_null;
1041 
1042 static void
1043 mir_timer_stop(mir_t *mir)
1044 {
1045 	timeout_id_t tid;
1046 
1047 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1048 
1049 	/*
1050 	 * Since the mir_mutex lock needs to be released to call
1051 	 * untimeout(), we need to make sure that no other thread
1052 	 * can start/stop the timer (changing mir_timer_id) during
1053 	 * that time.  The mir_timer_call bit and the mir_timer_cv
1054 	 * condition variable are used to synchronize this.  Setting
1055 	 * mir_timer_call also tells mir_timer() (refer to the comments
1056 	 * in mir_timer()) that it does not need to do anything.
1057 	 */
1058 	while (mir->mir_timer_call)
1059 		cv_wait(&mir->mir_timer_cv, &mir->mir_mutex);
1060 	mir->mir_timer_call = B_TRUE;
1061 
1062 	if ((tid = mir->mir_timer_id) != 0) {
1063 		mir->mir_timer_id = 0;
1064 		mutex_exit(&mir->mir_mutex);
1065 		(void) untimeout(tid);
1066 		mutex_enter(&mir->mir_mutex);
1067 	}
1068 	mir->mir_timer_call = B_FALSE;
1069 	cv_broadcast(&mir->mir_timer_cv);
1070 }
1071 
1072 static void
1073 mir_timer_start(queue_t *q, mir_t *mir, clock_t intrvl)
1074 {
1075 	timeout_id_t tid;
1076 
1077 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1078 
1079 	while (mir->mir_timer_call)
1080 		cv_wait(&mir->mir_timer_cv, &mir->mir_mutex);
1081 	mir->mir_timer_call = B_TRUE;
1082 
1083 	if ((tid = mir->mir_timer_id) != 0) {
1084 		mutex_exit(&mir->mir_mutex);
1085 		(void) untimeout(tid);
1086 		mutex_enter(&mir->mir_mutex);
1087 	}
1088 	/* Only start the timer when it is not closing. */
1089 	if (!mir->mir_closing) {
1090 		mir->mir_timer_id = timeout(mir_timer, q,
1091 		    MSEC_TO_TICK(intrvl));
1092 	}
1093 	mir->mir_timer_call = B_FALSE;
1094 	cv_broadcast(&mir->mir_timer_cv);
1095 }
1096 
1097 static int
1098 mir_clnt_dup_request(queue_t *q, mblk_t *mp)
1099 {
1100 	mblk_t  *mp1;
1101 	uint32_t  new_xid;
1102 	uint32_t  old_xid;
1103 
1104 	ASSERT(MUTEX_HELD(&((mir_t *)q->q_ptr)->mir_mutex));
1105 	new_xid = BE32_TO_U32(&mp->b_rptr[4]);
1106 	/*
1107 	 * This loop is a bit tacky -- it walks the STREAMS list of
1108 	 * flow-controlled messages.
1109 	 */
1110 	if ((mp1 = q->q_first) != NULL) {
1111 		do {
1112 			old_xid = BE32_TO_U32(&mp1->b_rptr[4]);
1113 			if (new_xid == old_xid)
1114 				return (1);
1115 		} while ((mp1 = mp1->b_next) != NULL);
1116 	}
1117 	return (0);
1118 }
1119 
1120 static int
1121 mir_close(queue_t *q)
1122 {
1123 	mir_t	*mir = q->q_ptr;
1124 	mblk_t	*mp;
1125 	bool_t queue_cleaned = FALSE;
1126 
1127 	RPCLOG(32, "rpcmod: mir_close of q 0x%p\n", (void *)q);
1128 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1129 	mutex_enter(&mir->mir_mutex);
1130 	if ((mp = mir->mir_head_mp) != NULL) {
1131 		mir->mir_head_mp = NULL;
1132 		mir->mir_tail_mp = NULL;
1133 		freemsg(mp);
1134 	}
1135 	/*
1136 	 * Set mir_closing so we get notified when MIR_SVC_QUIESCED()
1137 	 * is TRUE.  And mir_timer_start() won't start the timer again.
1138 	 */
1139 	mir->mir_closing = B_TRUE;
1140 	mir_timer_stop(mir);
1141 
1142 	if (mir->mir_type == RPC_SERVER) {
1143 		flushq(q, FLUSHDATA);	/* Ditch anything waiting on read q */
1144 
1145 		/*
1146 		 * This will prevent more requests from arriving and
1147 		 * will force rpcmod to ignore flow control.
1148 		 */
1149 		mir_svc_start_close(WR(q), mir);
1150 
1151 		while ((!MIR_SVC_QUIESCED(mir)) || mir->mir_inwservice == 1) {
1152 
1153 			if (mir->mir_ref_cnt && !mir->mir_inrservice &&
1154 			    (queue_cleaned == FALSE)) {
1155 				/*
1156 				 * call into SVC to clean the queue
1157 				 */
1158 				mutex_exit(&mir->mir_mutex);
1159 				svc_queueclean(q);
1160 				queue_cleaned = TRUE;
1161 				mutex_enter(&mir->mir_mutex);
1162 				continue;
1163 			}
1164 
1165 			/*
1166 			 * Bugid 1253810 - Force the write service
1167 			 * procedure to send its messages, regardless
1168 			 * whether the downstream  module is ready
1169 			 * to accept data.
1170 			 */
1171 			if (mir->mir_inwservice == 1)
1172 				qenable(WR(q));
1173 
1174 			cv_wait(&mir->mir_condvar, &mir->mir_mutex);
1175 		}
1176 
1177 		mutex_exit(&mir->mir_mutex);
1178 		qprocsoff(q);
1179 
1180 		/* Notify kRPC that this stream is going away. */
1181 		svc_queueclose(q);
1182 	} else {
1183 		mutex_exit(&mir->mir_mutex);
1184 		qprocsoff(q);
1185 	}
1186 
1187 	mutex_destroy(&mir->mir_mutex);
1188 	cv_destroy(&mir->mir_condvar);
1189 	cv_destroy(&mir->mir_timer_cv);
1190 	kmem_free(mir, sizeof (mir_t));
1191 	return (0);
1192 }
1193 
1194 /*
1195  * This is server side only (RPC_SERVER).
1196  *
1197  * Exit idle mode.
1198  */
1199 static void
1200 mir_svc_idle_stop(queue_t *q, mir_t *mir)
1201 {
1202 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1203 	ASSERT((q->q_flag & QREADR) == 0);
1204 	ASSERT(mir->mir_type == RPC_SERVER);
1205 	RPCLOG(16, "rpcmod: mir_svc_idle_stop of q 0x%p\n", (void *)q);
1206 
1207 	mir_timer_stop(mir);
1208 }
1209 
1210 /*
1211  * This is server side only (RPC_SERVER).
1212  *
1213  * Start idle processing, which will include setting idle timer if the
1214  * stream is not being closed.
1215  */
1216 static void
1217 mir_svc_idle_start(queue_t *q, mir_t *mir)
1218 {
1219 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1220 	ASSERT((q->q_flag & QREADR) == 0);
1221 	ASSERT(mir->mir_type == RPC_SERVER);
1222 	RPCLOG(16, "rpcmod: mir_svc_idle_start q 0x%p\n", (void *)q);
1223 
1224 	/*
1225 	 * Don't re-start idle timer if we are closing queues.
1226 	 */
1227 	if (mir->mir_closing) {
1228 		RPCLOG(16, "mir_svc_idle_start - closing: 0x%p\n",
1229 		    (void *)q);
1230 
1231 		/*
1232 		 * We will call mir_svc_idle_start() whenever MIR_SVC_QUIESCED()
1233 		 * is true.  When it is true, and we are in the process of
1234 		 * closing the stream, signal any thread waiting in
1235 		 * mir_close().
1236 		 */
1237 		if (mir->mir_inwservice == 0)
1238 			cv_signal(&mir->mir_condvar);
1239 
1240 	} else {
1241 		RPCLOG(16, "mir_svc_idle_start - reset %s timer\n",
1242 		    mir->mir_ordrel_pending ? "ordrel" : "normal");
1243 		/*
1244 		 * Normal condition, start the idle timer.  If an orderly
1245 		 * release has been sent, set the timeout to wait for the
1246 		 * client to close its side of the connection.  Otherwise,
1247 		 * use the normal idle timeout.
1248 		 */
1249 		mir_timer_start(q, mir, mir->mir_ordrel_pending ?
1250 		    svc_ordrel_timeout : mir->mir_idle_timeout);
1251 	}
1252 }
1253 
1254 /* ARGSUSED */
1255 static int
1256 mir_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
1257 {
1258 	mir_t	*mir;
1259 
1260 	RPCLOG(32, "rpcmod: mir_open of q 0x%p\n", (void *)q);
1261 	/* Set variables used directly by kRPC. */
1262 	if (!mir_rele)
1263 		mir_rele = mir_svc_release;
1264 	if (!mir_start)
1265 		mir_start = mir_svc_start;
1266 	if (!clnt_stop_idle)
1267 		clnt_stop_idle = mir_clnt_idle_do_stop;
1268 	if (!clnt_max_msg_sizep)
1269 		clnt_max_msg_sizep = &clnt_max_msg_size;
1270 	if (!svc_max_msg_sizep)
1271 		svc_max_msg_sizep = &svc_max_msg_size;
1272 
1273 	/* Allocate a zero'ed out mir structure for this stream. */
1274 	mir = kmem_zalloc(sizeof (mir_t), KM_SLEEP);
1275 
1276 	/*
1277 	 * We set hold inbound here so that incoming messages will
1278 	 * be held on the read-side queue until the stream is completely
1279 	 * initialized with a RPC_CLIENT or RPC_SERVER ioctl.  During
1280 	 * the ioctl processing, the flag is cleared and any messages that
1281 	 * arrived between the open and the ioctl are delivered to kRPC.
1282 	 *
1283 	 * Early data should never arrive on a client stream since
1284 	 * servers only respond to our requests and we do not send any.
1285 	 * until after the stream is initialized.  Early data is
1286 	 * very common on a server stream where the client will start
1287 	 * sending data as soon as the connection is made (and this
1288 	 * is especially true with TCP where the protocol accepts the
1289 	 * connection before nfsd or kRPC is notified about it).
1290 	 */
1291 
1292 	mir->mir_hold_inbound = 1;
1293 
1294 	/*
1295 	 * Start the record marker looking for a 4-byte header.  When
1296 	 * this length is negative, it indicates that rpcmod is looking
1297 	 * for bytes to consume for the record marker header.  When it
1298 	 * is positive, it holds the number of bytes that have arrived
1299 	 * for the current fragment and are being held in mir_header_mp.
1300 	 */
1301 
1302 	mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
1303 
1304 	mir->mir_zoneid = rpc_zoneid();
1305 	mutex_init(&mir->mir_mutex, NULL, MUTEX_DEFAULT, NULL);
1306 	cv_init(&mir->mir_condvar, NULL, CV_DRIVER, NULL);
1307 	cv_init(&mir->mir_timer_cv, NULL, CV_DRIVER, NULL);
1308 
1309 	q->q_ptr = (char *)mir;
1310 	WR(q)->q_ptr = (char *)mir;
1311 
1312 	/*
1313 	 * We noenable the read-side queue because we don't want it
1314 	 * automatically enabled by putq.  We enable it explicitly
1315 	 * in mir_wsrv when appropriate. (See additional comments on
1316 	 * flow control at the beginning of mir_rsrv.)
1317 	 */
1318 	noenable(q);
1319 
1320 	qprocson(q);
1321 	return (0);
1322 }
1323 
1324 /*
1325  * Read-side put routine for both the client and server side.  Does the
1326  * record marking for incoming RPC messages, and when complete, dispatches
1327  * the message to either the client or server.
1328  */
1329 static void
1330 mir_rput(queue_t *q, mblk_t *mp)
1331 {
1332 	int	excess;
1333 	int32_t	frag_len, frag_header;
1334 	mblk_t	*cont_mp, *head_mp, *tail_mp, *mp1;
1335 	mir_t	*mir = q->q_ptr;
1336 	boolean_t stop_timer = B_FALSE;
1337 
1338 	ASSERT(mir != NULL);
1339 
1340 	/*
1341 	 * If the stream has not been set up as a RPC_CLIENT or RPC_SERVER
1342 	 * with the corresponding ioctl, then don't accept
1343 	 * any inbound data.  This should never happen for streams
1344 	 * created by nfsd or client-side kRPC because they are careful
1345 	 * to set the mode of the stream before doing anything else.
1346 	 */
1347 	if (mir->mir_type == 0) {
1348 		freemsg(mp);
1349 		return;
1350 	}
1351 
1352 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1353 
1354 	switch (mp->b_datap->db_type) {
1355 	case M_DATA:
1356 		break;
1357 	case M_PROTO:
1358 	case M_PCPROTO:
1359 		if (MBLKL(mp) < sizeof (t_scalar_t)) {
1360 			RPCLOG(1, "mir_rput: runt TPI message (%d bytes)\n",
1361 			    (int)MBLKL(mp));
1362 			freemsg(mp);
1363 			return;
1364 		}
1365 		if (((union T_primitives *)mp->b_rptr)->type != T_DATA_IND) {
1366 			mir_rput_proto(q, mp);
1367 			return;
1368 		}
1369 
1370 		/* Throw away the T_DATA_IND block and continue with data. */
1371 		mp1 = mp;
1372 		mp = mp->b_cont;
1373 		freeb(mp1);
1374 		break;
1375 	case M_SETOPTS:
1376 		/*
1377 		 * If a module on the stream is trying set the Stream head's
1378 		 * high water mark, then set our hiwater to the requested
1379 		 * value.  We are the "stream head" for all inbound
1380 		 * data messages since messages are passed directly to kRPC.
1381 		 */
1382 		if (MBLKL(mp) >= sizeof (struct stroptions)) {
1383 			struct stroptions	*stropts;
1384 
1385 			stropts = (struct stroptions *)mp->b_rptr;
1386 			if ((stropts->so_flags & SO_HIWAT) &&
1387 			    !(stropts->so_flags & SO_BAND)) {
1388 				(void) strqset(q, QHIWAT, 0, stropts->so_hiwat);
1389 			}
1390 		}
1391 		putnext(q, mp);
1392 		return;
1393 	case M_FLUSH:
1394 		RPCLOG(32, "mir_rput: ignoring M_FLUSH %x ", *mp->b_rptr);
1395 		RPCLOG(32, "on q 0x%p\n", (void *)q);
1396 		putnext(q, mp);
1397 		return;
1398 	default:
1399 		putnext(q, mp);
1400 		return;
1401 	}
1402 
1403 	mutex_enter(&mir->mir_mutex);
1404 
1405 	/*
1406 	 * If this connection is closing, don't accept any new messages.
1407 	 */
1408 	if (mir->mir_svc_no_more_msgs) {
1409 		ASSERT(mir->mir_type == RPC_SERVER);
1410 		mutex_exit(&mir->mir_mutex);
1411 		freemsg(mp);
1412 		return;
1413 	}
1414 
1415 	/* Get local copies for quicker access. */
1416 	frag_len = mir->mir_frag_len;
1417 	frag_header = mir->mir_frag_header;
1418 	head_mp = mir->mir_head_mp;
1419 	tail_mp = mir->mir_tail_mp;
1420 
1421 	/* Loop, processing each message block in the mp chain separately. */
1422 	do {
1423 		cont_mp = mp->b_cont;
1424 		mp->b_cont = NULL;
1425 
1426 		/*
1427 		 * Drop zero-length mblks to prevent unbounded kernel memory
1428 		 * consumption.
1429 		 */
1430 		if (MBLKL(mp) == 0) {
1431 			freeb(mp);
1432 			continue;
1433 		}
1434 
1435 		/*
1436 		 * If frag_len is negative, we're still in the process of
1437 		 * building frag_header -- try to complete it with this mblk.
1438 		 */
1439 		while (frag_len < 0 && mp->b_rptr < mp->b_wptr) {
1440 			frag_len++;
1441 			frag_header <<= 8;
1442 			frag_header += *mp->b_rptr++;
1443 		}
1444 
1445 		if (MBLKL(mp) == 0 && frag_len < 0) {
1446 			/*
1447 			 * We consumed this mblk while trying to complete the
1448 			 * fragment header.  Free it and move on.
1449 			 */
1450 			freeb(mp);
1451 			continue;
1452 		}
1453 
1454 		ASSERT(frag_len >= 0);
1455 
1456 		/*
1457 		 * Now frag_header has the number of bytes in this fragment
1458 		 * and we're just waiting to collect them all.  Chain our
1459 		 * latest mblk onto the list and see if we now have enough
1460 		 * bytes to complete the fragment.
1461 		 */
1462 		if (head_mp == NULL) {
1463 			ASSERT(tail_mp == NULL);
1464 			head_mp = tail_mp = mp;
1465 		} else {
1466 			tail_mp->b_cont = mp;
1467 			tail_mp = mp;
1468 		}
1469 
1470 		frag_len += MBLKL(mp);
1471 		excess = frag_len - (frag_header & ~MIR_LASTFRAG);
1472 		if (excess < 0) {
1473 			/*
1474 			 * We still haven't received enough data to complete
1475 			 * the fragment, so continue on to the next mblk.
1476 			 */
1477 			continue;
1478 		}
1479 
1480 		/*
1481 		 * We've got a complete fragment.  If there are excess bytes,
1482 		 * then they're part of the next fragment's header (of either
1483 		 * this RPC message or the next RPC message).  Split that part
1484 		 * into its own mblk so that we can safely freeb() it when
1485 		 * building frag_header above.
1486 		 */
1487 		if (excess > 0) {
1488 			if ((mp1 = dupb(mp)) == NULL &&
1489 			    (mp1 = copyb(mp)) == NULL) {
1490 				freemsg(head_mp);
1491 				freemsg(cont_mp);
1492 				RPCLOG0(1, "mir_rput: dupb/copyb failed\n");
1493 				mir->mir_frag_header = 0;
1494 				mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
1495 				mir->mir_head_mp = NULL;
1496 				mir->mir_tail_mp = NULL;
1497 				mir_disconnect(q, mir);	/* drops mir_mutex */
1498 				return;
1499 			}
1500 
1501 			/*
1502 			 * Relink the message chain so that the next mblk is
1503 			 * the next fragment header, followed by the rest of
1504 			 * the message chain.
1505 			 */
1506 			mp1->b_cont = cont_mp;
1507 			cont_mp = mp1;
1508 
1509 			/*
1510 			 * Data in the new mblk begins at the next fragment,
1511 			 * and data in the old mblk ends at the next fragment.
1512 			 */
1513 			mp1->b_rptr = mp1->b_wptr - excess;
1514 			mp->b_wptr -= excess;
1515 		}
1516 
1517 		/*
1518 		 * Reset frag_len and frag_header for the next fragment.
1519 		 */
1520 		frag_len = -(int32_t)sizeof (uint32_t);
1521 		if (!(frag_header & MIR_LASTFRAG)) {
1522 			/*
1523 			 * The current fragment is complete, but more
1524 			 * fragments need to be processed before we can
1525 			 * pass along the RPC message headed at head_mp.
1526 			 */
1527 			frag_header = 0;
1528 			continue;
1529 		}
1530 		frag_header = 0;
1531 
1532 		/*
1533 		 * We've got a complete RPC message; pass it to the
1534 		 * appropriate consumer.
1535 		 */
1536 		switch (mir->mir_type) {
1537 		case RPC_CLIENT:
1538 			if (clnt_dispatch_notify(head_mp, mir->mir_zoneid)) {
1539 				/*
1540 				 * Mark this stream as active.  This marker
1541 				 * is used in mir_timer().
1542 				 */
1543 				mir->mir_clntreq = 1;
1544 				mir->mir_use_timestamp = ddi_get_lbolt();
1545 			} else {
1546 				freemsg(head_mp);
1547 			}
1548 			break;
1549 
1550 		case RPC_SERVER:
1551 			/*
1552 			 * Check for flow control before passing the
1553 			 * message to kRPC.
1554 			 */
1555 			if (!mir->mir_hold_inbound) {
1556 				if (mir->mir_krpc_cell) {
1557 
1558 					if (mir_check_len(q, head_mp))
1559 						return;
1560 
1561 					if (q->q_first == NULL &&
1562 					    svc_queuereq(q, head_mp, TRUE)) {
1563 						/*
1564 						 * If the reference count is 0
1565 						 * (not including this
1566 						 * request), then the stream is
1567 						 * transitioning from idle to
1568 						 * non-idle.  In this case, we
1569 						 * cancel the idle timer.
1570 						 */
1571 						if (mir->mir_ref_cnt++ == 0)
1572 							stop_timer = B_TRUE;
1573 					} else {
1574 						(void) putq(q, head_mp);
1575 						mir->mir_inrservice = B_TRUE;
1576 					}
1577 				} else {
1578 					/*
1579 					 * Count # of times this happens. Should
1580 					 * be never, but experience shows
1581 					 * otherwise.
1582 					 */
1583 					mir_krpc_cell_null++;
1584 					freemsg(head_mp);
1585 				}
1586 			} else {
1587 				/*
1588 				 * If the outbound side of the stream is
1589 				 * flow controlled, then hold this message
1590 				 * until client catches up. mir_hold_inbound
1591 				 * is set in mir_wput and cleared in mir_wsrv.
1592 				 */
1593 				(void) putq(q, head_mp);
1594 				mir->mir_inrservice = B_TRUE;
1595 			}
1596 			break;
1597 		default:
1598 			RPCLOG(1, "mir_rput: unknown mir_type %d\n",
1599 			    mir->mir_type);
1600 			freemsg(head_mp);
1601 			break;
1602 		}
1603 
1604 		/*
1605 		 * Reset the chain since we're starting on a new RPC message.
1606 		 */
1607 		head_mp = tail_mp = NULL;
1608 	} while ((mp = cont_mp) != NULL);
1609 
1610 	/*
1611 	 * Sanity check the message length; if it's too large mir_check_len()
1612 	 * will shutdown the connection, drop mir_mutex, and return non-zero.
1613 	 */
1614 	if (head_mp != NULL && mir->mir_setup_complete &&
1615 	    mir_check_len(q, head_mp))
1616 		return;
1617 
1618 	/* Save our local copies back in the mir structure. */
1619 	mir->mir_frag_header = frag_header;
1620 	mir->mir_frag_len = frag_len;
1621 	mir->mir_head_mp = head_mp;
1622 	mir->mir_tail_mp = tail_mp;
1623 
1624 	/*
1625 	 * The timer is stopped after the whole message chain is processed.
1626 	 * The reason is that stopping the timer releases the mir_mutex
1627 	 * lock temporarily.  This means that the request can be serviced
1628 	 * while we are still processing the message chain.  This is not
1629 	 * good.  So we stop the timer here instead.
1630 	 *
1631 	 * Note that if the timer fires before we stop it, it will not
1632 	 * do any harm as MIR_SVC_QUIESCED() is false and mir_timer()
1633 	 * will just return.
1634 	 */
1635 	if (stop_timer) {
1636 		RPCLOG(16, "mir_rput: stopping idle timer on 0x%p because "
1637 		    "ref cnt going to non zero\n", (void *)WR(q));
1638 		mir_svc_idle_stop(WR(q), mir);
1639 	}
1640 	mutex_exit(&mir->mir_mutex);
1641 }
1642 
1643 static void
1644 mir_rput_proto(queue_t *q, mblk_t *mp)
1645 {
1646 	mir_t	*mir = (mir_t *)q->q_ptr;
1647 	uint32_t	type;
1648 	uint32_t reason = 0;
1649 
1650 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1651 
1652 	type = ((union T_primitives *)mp->b_rptr)->type;
1653 	switch (mir->mir_type) {
1654 	case RPC_CLIENT:
1655 		switch (type) {
1656 		case T_DISCON_IND:
1657 			reason = ((struct T_discon_ind *)
1658 			    (mp->b_rptr))->DISCON_reason;
1659 			/*FALLTHROUGH*/
1660 		case T_ORDREL_IND:
1661 			mutex_enter(&mir->mir_mutex);
1662 			if (mir->mir_head_mp) {
1663 				freemsg(mir->mir_head_mp);
1664 				mir->mir_head_mp = (mblk_t *)0;
1665 				mir->mir_tail_mp = (mblk_t *)0;
1666 			}
1667 			/*
1668 			 * We are disconnecting, but not necessarily
1669 			 * closing. By not closing, we will fail to
1670 			 * pick up a possibly changed global timeout value,
1671 			 * unless we store it now.
1672 			 */
1673 			mir->mir_idle_timeout = clnt_idle_timeout;
1674 			mir_clnt_idle_stop(WR(q), mir);
1675 
1676 			/*
1677 			 * Even though we are unconnected, we still
1678 			 * leave the idle timer going on the client. The
1679 			 * reason for is that if we've disconnected due
1680 			 * to a server-side disconnect, reset, or connection
1681 			 * timeout, there is a possibility the client may
1682 			 * retry the RPC request. This retry needs to done on
1683 			 * the same bound address for the server to interpret
1684 			 * it as such. However, we don't want
1685 			 * to wait forever for that possibility. If the
1686 			 * end-point stays unconnected for mir_idle_timeout
1687 			 * units of time, then that is a signal to the
1688 			 * connection manager to give up waiting for the
1689 			 * application (eg. NFS) to send a retry.
1690 			 */
1691 			mir_clnt_idle_start(WR(q), mir);
1692 			mutex_exit(&mir->mir_mutex);
1693 			clnt_dispatch_notifyall(WR(q), type, reason);
1694 			freemsg(mp);
1695 			return;
1696 		case T_ERROR_ACK:
1697 		{
1698 			struct T_error_ack	*terror;
1699 
1700 			terror = (struct T_error_ack *)mp->b_rptr;
1701 			RPCLOG(1, "mir_rput_proto T_ERROR_ACK for queue 0x%p",
1702 			    (void *)q);
1703 			RPCLOG(1, " ERROR_prim: %s,",
1704 			    rpc_tpiprim2name(terror->ERROR_prim));
1705 			RPCLOG(1, " TLI_error: %s,",
1706 			    rpc_tpierr2name(terror->TLI_error));
1707 			RPCLOG(1, " UNIX_error: %d\n", terror->UNIX_error);
1708 			if (terror->ERROR_prim == T_DISCON_REQ)  {
1709 				clnt_dispatch_notifyall(WR(q), type, reason);
1710 				freemsg(mp);
1711 				return;
1712 			} else {
1713 				if (clnt_dispatch_notifyconn(WR(q), mp))
1714 					return;
1715 			}
1716 			break;
1717 		}
1718 		case T_OK_ACK:
1719 		{
1720 			struct T_ok_ack	*tok = (struct T_ok_ack *)mp->b_rptr;
1721 
1722 			if (tok->CORRECT_prim == T_DISCON_REQ) {
1723 				clnt_dispatch_notifyall(WR(q), type, reason);
1724 				freemsg(mp);
1725 				return;
1726 			} else {
1727 				if (clnt_dispatch_notifyconn(WR(q), mp))
1728 					return;
1729 			}
1730 			break;
1731 		}
1732 		case T_CONN_CON:
1733 		case T_INFO_ACK:
1734 		case T_OPTMGMT_ACK:
1735 			if (clnt_dispatch_notifyconn(WR(q), mp))
1736 				return;
1737 			break;
1738 		case T_BIND_ACK:
1739 			break;
1740 		default:
1741 			RPCLOG(1, "mir_rput: unexpected message %d "
1742 			    "for kRPC client\n",
1743 			    ((union T_primitives *)mp->b_rptr)->type);
1744 			break;
1745 		}
1746 		break;
1747 
1748 	case RPC_SERVER:
1749 		switch (type) {
1750 		case T_BIND_ACK:
1751 		{
1752 			struct T_bind_ack	*tbind;
1753 
1754 			/*
1755 			 * If this is a listening stream, then shut
1756 			 * off the idle timer.
1757 			 */
1758 			tbind = (struct T_bind_ack *)mp->b_rptr;
1759 			if (tbind->CONIND_number > 0) {
1760 				mutex_enter(&mir->mir_mutex);
1761 				mir_svc_idle_stop(WR(q), mir);
1762 
1763 				/*
1764 				 * mark this as a listen endpoint
1765 				 * for special handling.
1766 				 */
1767 
1768 				mir->mir_listen_stream = 1;
1769 				mutex_exit(&mir->mir_mutex);
1770 			}
1771 			break;
1772 		}
1773 		case T_DISCON_IND:
1774 		case T_ORDREL_IND:
1775 			RPCLOG(16, "mir_rput_proto: got %s indication\n",
1776 			    type == T_DISCON_IND ? "disconnect"
1777 			    : "orderly release");
1778 
1779 			/*
1780 			 * For listen endpoint just pass
1781 			 * on the message.
1782 			 */
1783 
1784 			if (mir->mir_listen_stream)
1785 				break;
1786 
1787 			mutex_enter(&mir->mir_mutex);
1788 
1789 			/*
1790 			 * If client wants to break off connection, record
1791 			 * that fact.
1792 			 */
1793 			mir_svc_start_close(WR(q), mir);
1794 
1795 			/*
1796 			 * If we are idle, then send the orderly release
1797 			 * or disconnect indication to nfsd.
1798 			 */
1799 			if (MIR_SVC_QUIESCED(mir)) {
1800 				mutex_exit(&mir->mir_mutex);
1801 				break;
1802 			}
1803 
1804 			RPCLOG(16, "mir_rput_proto: not idle, so "
1805 			    "disconnect/ord rel indication not passed "
1806 			    "upstream on 0x%p\n", (void *)q);
1807 
1808 			/*
1809 			 * Hold the indication until we get idle
1810 			 * If there already is an indication stored,
1811 			 * replace it if the new one is a disconnect. The
1812 			 * reasoning is that disconnection takes less time
1813 			 * to process, and once a client decides to
1814 			 * disconnect, we should do that.
1815 			 */
1816 			if (mir->mir_svc_pend_mp) {
1817 				if (type == T_DISCON_IND) {
1818 					RPCLOG(16, "mir_rput_proto: replacing"
1819 					    " held disconnect/ord rel"
1820 					    " indication with disconnect on"
1821 					    " 0x%p\n", (void *)q);
1822 
1823 					freemsg(mir->mir_svc_pend_mp);
1824 					mir->mir_svc_pend_mp = mp;
1825 				} else {
1826 					RPCLOG(16, "mir_rput_proto: already "
1827 					    "held a disconnect/ord rel "
1828 					    "indication. freeing ord rel "
1829 					    "ind on 0x%p\n", (void *)q);
1830 					freemsg(mp);
1831 				}
1832 			} else
1833 				mir->mir_svc_pend_mp = mp;
1834 
1835 			mutex_exit(&mir->mir_mutex);
1836 			return;
1837 
1838 		default:
1839 			/* nfsd handles server-side non-data messages. */
1840 			break;
1841 		}
1842 		break;
1843 
1844 	default:
1845 		break;
1846 	}
1847 
1848 	putnext(q, mp);
1849 }
1850 
1851 /*
1852  * The server-side read queues are used to hold inbound messages while
1853  * outbound flow control is exerted.  When outbound flow control is
1854  * relieved, mir_wsrv qenables the read-side queue.  Read-side queues
1855  * are not enabled by STREAMS and are explicitly noenable'ed in mir_open.
1856  */
1857 static void
1858 mir_rsrv(queue_t *q)
1859 {
1860 	mir_t	*mir;
1861 	mblk_t	*mp;
1862 	boolean_t stop_timer = B_FALSE;
1863 
1864 	mir = (mir_t *)q->q_ptr;
1865 	mutex_enter(&mir->mir_mutex);
1866 
1867 	mp = NULL;
1868 	switch (mir->mir_type) {
1869 	case RPC_SERVER:
1870 		if (mir->mir_ref_cnt == 0)
1871 			mir->mir_hold_inbound = 0;
1872 		if (mir->mir_hold_inbound)
1873 			break;
1874 
1875 		while (mp = getq(q)) {
1876 			if (mir->mir_krpc_cell &&
1877 			    (mir->mir_svc_no_more_msgs == 0)) {
1878 
1879 				if (mir_check_len(q, mp))
1880 					return;
1881 
1882 				if (svc_queuereq(q, mp, TRUE)) {
1883 					/*
1884 					 * If we were idle, turn off idle timer
1885 					 * since we aren't idle any more.
1886 					 */
1887 					if (mir->mir_ref_cnt++ == 0)
1888 						stop_timer = B_TRUE;
1889 				} else {
1890 					(void) putbq(q, mp);
1891 					break;
1892 				}
1893 			} else {
1894 				/*
1895 				 * Count # of times this happens. Should be
1896 				 * never, but experience shows otherwise.
1897 				 */
1898 				if (mir->mir_krpc_cell == NULL)
1899 					mir_krpc_cell_null++;
1900 				freemsg(mp);
1901 			}
1902 		}
1903 		break;
1904 	case RPC_CLIENT:
1905 		break;
1906 	default:
1907 		RPCLOG(1, "mir_rsrv: unexpected mir_type %d\n", mir->mir_type);
1908 
1909 		if (q->q_first == NULL)
1910 			MIR_CLEAR_INRSRV(mir);
1911 
1912 		mutex_exit(&mir->mir_mutex);
1913 
1914 		return;
1915 	}
1916 
1917 	/*
1918 	 * The timer is stopped after all the messages are processed.
1919 	 * The reason is that stopping the timer releases the mir_mutex
1920 	 * lock temporarily.  This means that the request can be serviced
1921 	 * while we are still processing the message queue.  This is not
1922 	 * good.  So we stop the timer here instead.
1923 	 */
1924 	if (stop_timer)  {
1925 		RPCLOG(16, "mir_rsrv stopping idle timer on 0x%p because ref "
1926 		    "cnt going to non zero\n", (void *)WR(q));
1927 		mir_svc_idle_stop(WR(q), mir);
1928 	}
1929 
1930 	if (q->q_first == NULL) {
1931 		mblk_t	*cmp = NULL;
1932 
1933 		MIR_CLEAR_INRSRV(mir);
1934 
1935 		if (mir->mir_type == RPC_SERVER && MIR_SVC_QUIESCED(mir)) {
1936 			cmp = mir->mir_svc_pend_mp;
1937 			mir->mir_svc_pend_mp = NULL;
1938 		}
1939 
1940 		mutex_exit(&mir->mir_mutex);
1941 
1942 		if (cmp != NULL) {
1943 			RPCLOG(16, "mir_rsrv: line %d: sending a held "
1944 			    "disconnect/ord rel indication upstream\n",
1945 			    __LINE__);
1946 			putnext(q, cmp);
1947 		}
1948 
1949 		return;
1950 	}
1951 	mutex_exit(&mir->mir_mutex);
1952 }
1953 
1954 static int mir_svc_policy_fails;
1955 
1956 /*
1957  * Called to send an event code to nfsd/lockd so that it initiates
1958  * connection close.
1959  */
1960 static int
1961 mir_svc_policy_notify(queue_t *q, int event)
1962 {
1963 	mblk_t	*mp;
1964 #ifdef DEBUG
1965 	mir_t *mir = (mir_t *)q->q_ptr;
1966 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1967 #endif
1968 	ASSERT(q->q_flag & QREADR);
1969 
1970 	/*
1971 	 * Create an M_DATA message with the event code and pass it to the
1972 	 * Stream head (nfsd or whoever created the stream will consume it).
1973 	 */
1974 	mp = allocb(sizeof (int), BPRI_HI);
1975 
1976 	if (!mp) {
1977 
1978 		mir_svc_policy_fails++;
1979 		RPCLOG(16, "mir_svc_policy_notify: could not allocate event "
1980 		    "%d\n", event);
1981 		return (ENOMEM);
1982 	}
1983 
1984 	U32_TO_BE32(event, mp->b_rptr);
1985 	mp->b_wptr = mp->b_rptr + sizeof (int);
1986 	putnext(q, mp);
1987 	return (0);
1988 }
1989 
1990 /*
1991  * Server side: start the close phase. We want to get this rpcmod slot in an
1992  * idle state before mir_close() is called.
1993  */
1994 static void
1995 mir_svc_start_close(queue_t *wq, mir_t *mir)
1996 {
1997 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1998 	ASSERT((wq->q_flag & QREADR) == 0);
1999 	ASSERT(mir->mir_type == RPC_SERVER);
2000 
2001 	/*
2002 	 * Do not accept any more messages.
2003 	 */
2004 	mir->mir_svc_no_more_msgs = 1;
2005 
2006 	/*
2007 	 * Next two statements will make the read service procedure
2008 	 * free everything stuck in the streams read queue.
2009 	 * It's not necessary because enabling the write queue will
2010 	 * have the same effect, but why not speed the process along?
2011 	 */
2012 	mir->mir_hold_inbound = 0;
2013 	qenable(RD(wq));
2014 
2015 	/*
2016 	 * Meanwhile force the write service procedure to send the
2017 	 * responses downstream, regardless of flow control.
2018 	 */
2019 	qenable(wq);
2020 }
2021 
2022 /*
2023  * This routine is called directly by kRPC after a request is completed,
2024  * whether a reply was sent or the request was dropped.
2025  */
2026 static void
2027 mir_svc_release(queue_t *wq, mblk_t *mp, bool_t enable)
2028 {
2029 	mir_t   *mir = (mir_t *)wq->q_ptr;
2030 	mblk_t	*cmp = NULL;
2031 
2032 	ASSERT((wq->q_flag & QREADR) == 0);
2033 	if (mp)
2034 		freemsg(mp);
2035 
2036 	if (enable)
2037 		qenable(RD(wq));
2038 
2039 	mutex_enter(&mir->mir_mutex);
2040 
2041 	/*
2042 	 * Start idle processing if this is the last reference.
2043 	 */
2044 	if ((mir->mir_ref_cnt == 1) && (mir->mir_inrservice == 0)) {
2045 		cmp = mir->mir_svc_pend_mp;
2046 		mir->mir_svc_pend_mp = NULL;
2047 	}
2048 
2049 	if (cmp) {
2050 		RPCLOG(16, "mir_svc_release: sending a held "
2051 		    "disconnect/ord rel indication upstream on queue 0x%p\n",
2052 		    (void *)RD(wq));
2053 
2054 		mutex_exit(&mir->mir_mutex);
2055 
2056 		putnext(RD(wq), cmp);
2057 
2058 		mutex_enter(&mir->mir_mutex);
2059 	}
2060 
2061 	/*
2062 	 * Start idle processing if this is the last reference.
2063 	 */
2064 	if (mir->mir_ref_cnt == 1 && mir->mir_inrservice == 0) {
2065 
2066 		RPCLOG(16, "mir_svc_release starting idle timer on 0x%p "
2067 		    "because ref cnt is zero\n", (void *) wq);
2068 
2069 		mir_svc_idle_start(wq, mir);
2070 	}
2071 
2072 	mir->mir_ref_cnt--;
2073 	ASSERT(mir->mir_ref_cnt >= 0);
2074 
2075 	/*
2076 	 * Wake up the thread waiting to close.
2077 	 */
2078 
2079 	if ((mir->mir_ref_cnt == 0) && mir->mir_closing)
2080 		cv_signal(&mir->mir_condvar);
2081 
2082 	mutex_exit(&mir->mir_mutex);
2083 }
2084 
2085 /*
2086  * This routine is called by server-side kRPC when it is ready to
2087  * handle inbound messages on the stream.
2088  */
2089 static void
2090 mir_svc_start(queue_t *wq)
2091 {
2092 	mir_t   *mir = (mir_t *)wq->q_ptr;
2093 
2094 	/*
2095 	 * no longer need to take the mir_mutex because the
2096 	 * mir_setup_complete field has been moved out of
2097 	 * the binary field protected by the mir_mutex.
2098 	 */
2099 
2100 	mir->mir_setup_complete = 1;
2101 	qenable(RD(wq));
2102 }
2103 
2104 /*
2105  * client side wrapper for stopping timer with normal idle timeout.
2106  */
2107 static void
2108 mir_clnt_idle_stop(queue_t *wq, mir_t *mir)
2109 {
2110 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2111 	ASSERT((wq->q_flag & QREADR) == 0);
2112 	ASSERT(mir->mir_type == RPC_CLIENT);
2113 
2114 	mir_timer_stop(mir);
2115 }
2116 
2117 /*
2118  * client side wrapper for stopping timer with normal idle timeout.
2119  */
2120 static void
2121 mir_clnt_idle_start(queue_t *wq, mir_t *mir)
2122 {
2123 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2124 	ASSERT((wq->q_flag & QREADR) == 0);
2125 	ASSERT(mir->mir_type == RPC_CLIENT);
2126 
2127 	mir_timer_start(wq, mir, mir->mir_idle_timeout);
2128 }
2129 
2130 /*
2131  * client side only. Forces rpcmod to stop sending T_ORDREL_REQs on
2132  * end-points that aren't connected.
2133  */
2134 static void
2135 mir_clnt_idle_do_stop(queue_t *wq)
2136 {
2137 	mir_t   *mir = (mir_t *)wq->q_ptr;
2138 
2139 	RPCLOG(1, "mir_clnt_idle_do_stop: wq 0x%p\n", (void *)wq);
2140 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2141 	mutex_enter(&mir->mir_mutex);
2142 	mir_clnt_idle_stop(wq, mir);
2143 	mutex_exit(&mir->mir_mutex);
2144 }
2145 
2146 /*
2147  * Timer handler.  It handles idle timeout and memory shortage problem.
2148  */
2149 static void
2150 mir_timer(void *arg)
2151 {
2152 	queue_t *wq = (queue_t *)arg;
2153 	mir_t *mir = (mir_t *)wq->q_ptr;
2154 	boolean_t notify;
2155 	clock_t now;
2156 
2157 	mutex_enter(&mir->mir_mutex);
2158 
2159 	/*
2160 	 * mir_timer_call is set only when either mir_timer_[start|stop]
2161 	 * is progressing.  And mir_timer() can only be run while they
2162 	 * are progressing if the timer is being stopped.  So just
2163 	 * return.
2164 	 */
2165 	if (mir->mir_timer_call) {
2166 		mutex_exit(&mir->mir_mutex);
2167 		return;
2168 	}
2169 	mir->mir_timer_id = 0;
2170 
2171 	switch (mir->mir_type) {
2172 	case RPC_CLIENT:
2173 
2174 		/*
2175 		 * For clients, the timer fires at clnt_idle_timeout
2176 		 * intervals.  If the activity marker (mir_clntreq) is
2177 		 * zero, then the stream has been idle since the last
2178 		 * timer event and we notify kRPC.  If mir_clntreq is
2179 		 * non-zero, then the stream is active and we just
2180 		 * restart the timer for another interval.  mir_clntreq
2181 		 * is set to 1 in mir_wput for every request passed
2182 		 * downstream.
2183 		 *
2184 		 * If this was a memory shortage timer reset the idle
2185 		 * timeout regardless; the mir_clntreq will not be a
2186 		 * valid indicator.
2187 		 *
2188 		 * The timer is initially started in mir_wput during
2189 		 * RPC_CLIENT ioctl processing.
2190 		 *
2191 		 * The timer interval can be changed for individual
2192 		 * streams with the ND variable "mir_idle_timeout".
2193 		 */
2194 		now = ddi_get_lbolt();
2195 		if (mir->mir_clntreq > 0 && mir->mir_use_timestamp +
2196 		    MSEC_TO_TICK(mir->mir_idle_timeout) - now >= 0) {
2197 			clock_t tout;
2198 
2199 			tout = mir->mir_idle_timeout -
2200 			    TICK_TO_MSEC(now - mir->mir_use_timestamp);
2201 			if (tout < 0)
2202 				tout = 1000;
2203 #if 0
2204 			printf("mir_timer[%d < %d + %d]: reset client timer "
2205 			    "to %d (ms)\n", TICK_TO_MSEC(now),
2206 			    TICK_TO_MSEC(mir->mir_use_timestamp),
2207 			    mir->mir_idle_timeout, tout);
2208 #endif
2209 			mir->mir_clntreq = 0;
2210 			mir_timer_start(wq, mir, tout);
2211 			mutex_exit(&mir->mir_mutex);
2212 			return;
2213 		}
2214 #if 0
2215 printf("mir_timer[%d]: doing client timeout\n", now / hz);
2216 #endif
2217 		/*
2218 		 * We are disconnecting, but not necessarily
2219 		 * closing. By not closing, we will fail to
2220 		 * pick up a possibly changed global timeout value,
2221 		 * unless we store it now.
2222 		 */
2223 		mir->mir_idle_timeout = clnt_idle_timeout;
2224 		mir_clnt_idle_start(wq, mir);
2225 
2226 		mutex_exit(&mir->mir_mutex);
2227 		/*
2228 		 * We pass T_ORDREL_REQ as an integer value
2229 		 * to kRPC as the indication that the stream
2230 		 * is idle.  This is not a T_ORDREL_REQ message,
2231 		 * it is just a convenient value since we call
2232 		 * the same kRPC routine for T_ORDREL_INDs and
2233 		 * T_DISCON_INDs.
2234 		 */
2235 		clnt_dispatch_notifyall(wq, T_ORDREL_REQ, 0);
2236 		return;
2237 
2238 	case RPC_SERVER:
2239 
2240 		/*
2241 		 * For servers, the timer is only running when the stream
2242 		 * is really idle or memory is short.  The timer is started
2243 		 * by mir_wput when mir_type is set to RPC_SERVER and
2244 		 * by mir_svc_idle_start whenever the stream goes idle
2245 		 * (mir_ref_cnt == 0).  The timer is cancelled in
2246 		 * mir_rput whenever a new inbound request is passed to kRPC
2247 		 * and the stream was previously idle.
2248 		 *
2249 		 * The timer interval can be changed for individual
2250 		 * streams with the ND variable "mir_idle_timeout".
2251 		 *
2252 		 * If the stream is not idle do nothing.
2253 		 */
2254 		if (!MIR_SVC_QUIESCED(mir)) {
2255 			mutex_exit(&mir->mir_mutex);
2256 			return;
2257 		}
2258 
2259 		notify = !mir->mir_inrservice;
2260 		mutex_exit(&mir->mir_mutex);
2261 
2262 		/*
2263 		 * If there is no packet queued up in read queue, the stream
2264 		 * is really idle so notify nfsd to close it.
2265 		 */
2266 		if (notify) {
2267 			RPCLOG(16, "mir_timer: telling stream head listener "
2268 			    "to close stream (0x%p)\n", (void *) RD(wq));
2269 			(void) mir_svc_policy_notify(RD(wq), 1);
2270 		}
2271 		return;
2272 	default:
2273 		RPCLOG(1, "mir_timer: unexpected mir_type %d\n",
2274 		    mir->mir_type);
2275 		mutex_exit(&mir->mir_mutex);
2276 		return;
2277 	}
2278 }
2279 
2280 /*
2281  * Called by the RPC package to send either a call or a return, or a
2282  * transport connection request.  Adds the record marking header.
2283  */
2284 static void
2285 mir_wput(queue_t *q, mblk_t *mp)
2286 {
2287 	uint_t	frag_header;
2288 	mir_t	*mir = (mir_t *)q->q_ptr;
2289 	uchar_t	*rptr = mp->b_rptr;
2290 
2291 	if (!mir) {
2292 		freemsg(mp);
2293 		return;
2294 	}
2295 
2296 	if (mp->b_datap->db_type != M_DATA) {
2297 		mir_wput_other(q, mp);
2298 		return;
2299 	}
2300 
2301 	if (mir->mir_ordrel_pending == 1) {
2302 		freemsg(mp);
2303 		RPCLOG(16, "mir_wput wq 0x%p: got data after T_ORDREL_REQ\n",
2304 		    (void *)q);
2305 		return;
2306 	}
2307 
2308 	frag_header = (uint_t)DLEN(mp);
2309 	frag_header |= MIR_LASTFRAG;
2310 
2311 	/* Stick in the 4 byte record marking header. */
2312 	if ((rptr - mp->b_datap->db_base) < sizeof (uint32_t) ||
2313 	    !IS_P2ALIGNED(mp->b_rptr, sizeof (uint32_t))) {
2314 		/*
2315 		 * Since we know that M_DATA messages are created exclusively
2316 		 * by kRPC, we expect that kRPC will leave room for our header
2317 		 * and 4 byte align which is normal for XDR.
2318 		 * If kRPC (or someone else) does not cooperate, then we
2319 		 * just throw away the message.
2320 		 */
2321 		RPCLOG(1, "mir_wput: kRPC did not leave space for record "
2322 		    "fragment header (%d bytes left)\n",
2323 		    (int)(rptr - mp->b_datap->db_base));
2324 		freemsg(mp);
2325 		return;
2326 	}
2327 	rptr -= sizeof (uint32_t);
2328 	*(uint32_t *)rptr = htonl(frag_header);
2329 	mp->b_rptr = rptr;
2330 
2331 	mutex_enter(&mir->mir_mutex);
2332 	if (mir->mir_type == RPC_CLIENT) {
2333 		/*
2334 		 * For the client, set mir_clntreq to indicate that the
2335 		 * connection is active.
2336 		 */
2337 		mir->mir_clntreq = 1;
2338 		mir->mir_use_timestamp = ddi_get_lbolt();
2339 	}
2340 
2341 	/*
2342 	 * If we haven't already queued some data and the downstream module
2343 	 * can accept more data, send it on, otherwise we queue the message
2344 	 * and take other actions depending on mir_type.
2345 	 */
2346 	if (!mir->mir_inwservice && MIR_WCANPUTNEXT(mir, q)) {
2347 		mutex_exit(&mir->mir_mutex);
2348 
2349 		/*
2350 		 * Now we pass the RPC message downstream.
2351 		 */
2352 		putnext(q, mp);
2353 		return;
2354 	}
2355 
2356 	switch (mir->mir_type) {
2357 	case RPC_CLIENT:
2358 		/*
2359 		 * Check for a previous duplicate request on the
2360 		 * queue.  If there is one, then we throw away
2361 		 * the current message and let the previous one
2362 		 * go through.  If we can't find a duplicate, then
2363 		 * send this one.  This tap dance is an effort
2364 		 * to reduce traffic and processing requirements
2365 		 * under load conditions.
2366 		 */
2367 		if (mir_clnt_dup_request(q, mp)) {
2368 			mutex_exit(&mir->mir_mutex);
2369 			freemsg(mp);
2370 			return;
2371 		}
2372 		break;
2373 	case RPC_SERVER:
2374 		/*
2375 		 * Set mir_hold_inbound so that new inbound RPC
2376 		 * messages will be held until the client catches
2377 		 * up on the earlier replies.  This flag is cleared
2378 		 * in mir_wsrv after flow control is relieved;
2379 		 * the read-side queue is also enabled at that time.
2380 		 */
2381 		mir->mir_hold_inbound = 1;
2382 		break;
2383 	default:
2384 		RPCLOG(1, "mir_wput: unexpected mir_type %d\n", mir->mir_type);
2385 		break;
2386 	}
2387 	mir->mir_inwservice = 1;
2388 	(void) putq(q, mp);
2389 	mutex_exit(&mir->mir_mutex);
2390 }
2391 
2392 static void
2393 mir_wput_other(queue_t *q, mblk_t *mp)
2394 {
2395 	mir_t	*mir = (mir_t *)q->q_ptr;
2396 	struct iocblk	*iocp;
2397 	uchar_t	*rptr = mp->b_rptr;
2398 	bool_t	flush_in_svc = FALSE;
2399 
2400 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2401 	switch (mp->b_datap->db_type) {
2402 	case M_IOCTL:
2403 		iocp = (struct iocblk *)rptr;
2404 		switch (iocp->ioc_cmd) {
2405 		case RPC_CLIENT:
2406 			mutex_enter(&mir->mir_mutex);
2407 			if (mir->mir_type != 0 &&
2408 			    mir->mir_type != iocp->ioc_cmd) {
2409 ioc_eperm:
2410 				mutex_exit(&mir->mir_mutex);
2411 				iocp->ioc_error = EPERM;
2412 				iocp->ioc_count = 0;
2413 				mp->b_datap->db_type = M_IOCACK;
2414 				qreply(q, mp);
2415 				return;
2416 			}
2417 
2418 			mir->mir_type = iocp->ioc_cmd;
2419 
2420 			/*
2421 			 * Clear mir_hold_inbound which was set to 1 by
2422 			 * mir_open.  This flag is not used on client
2423 			 * streams.
2424 			 */
2425 			mir->mir_hold_inbound = 0;
2426 			mir->mir_max_msg_sizep = &clnt_max_msg_size;
2427 
2428 			/*
2429 			 * Start the idle timer.  See mir_timer() for more
2430 			 * information on how client timers work.
2431 			 */
2432 			mir->mir_idle_timeout = clnt_idle_timeout;
2433 			mir_clnt_idle_start(q, mir);
2434 			mutex_exit(&mir->mir_mutex);
2435 
2436 			mp->b_datap->db_type = M_IOCACK;
2437 			qreply(q, mp);
2438 			return;
2439 		case RPC_SERVER:
2440 			mutex_enter(&mir->mir_mutex);
2441 			if (mir->mir_type != 0 &&
2442 			    mir->mir_type != iocp->ioc_cmd)
2443 				goto ioc_eperm;
2444 
2445 			/*
2446 			 * We don't clear mir_hold_inbound here because
2447 			 * mir_hold_inbound is used in the flow control
2448 			 * model. If we cleared it here, then we'd commit
2449 			 * a small violation to the model where the transport
2450 			 * might immediately block downstream flow.
2451 			 */
2452 
2453 			mir->mir_type = iocp->ioc_cmd;
2454 			mir->mir_max_msg_sizep = &svc_max_msg_size;
2455 
2456 			/*
2457 			 * Start the idle timer.  See mir_timer() for more
2458 			 * information on how server timers work.
2459 			 *
2460 			 * Note that it is important to start the idle timer
2461 			 * here so that connections time out even if we
2462 			 * never receive any data on them.
2463 			 */
2464 			mir->mir_idle_timeout = svc_idle_timeout;
2465 			RPCLOG(16, "mir_wput_other starting idle timer on 0x%p "
2466 			    "because we got RPC_SERVER ioctl\n", (void *)q);
2467 			mir_svc_idle_start(q, mir);
2468 			mutex_exit(&mir->mir_mutex);
2469 
2470 			mp->b_datap->db_type = M_IOCACK;
2471 			qreply(q, mp);
2472 			return;
2473 		default:
2474 			break;
2475 		}
2476 		break;
2477 
2478 	case M_PROTO:
2479 		if (mir->mir_type == RPC_CLIENT) {
2480 			/*
2481 			 * We are likely being called from the context of a
2482 			 * service procedure. So we need to enqueue. However
2483 			 * enqueing may put our message behind data messages.
2484 			 * So flush the data first.
2485 			 */
2486 			flush_in_svc = TRUE;
2487 		}
2488 		if ((mp->b_wptr - rptr) < sizeof (uint32_t) ||
2489 		    !IS_P2ALIGNED(rptr, sizeof (uint32_t)))
2490 			break;
2491 
2492 		switch (((union T_primitives *)rptr)->type) {
2493 		case T_DATA_REQ:
2494 			/* Don't pass T_DATA_REQ messages downstream. */
2495 			freemsg(mp);
2496 			return;
2497 		case T_ORDREL_REQ:
2498 			RPCLOG(8, "mir_wput_other wq 0x%p: got T_ORDREL_REQ\n",
2499 			    (void *)q);
2500 			mutex_enter(&mir->mir_mutex);
2501 			if (mir->mir_type != RPC_SERVER) {
2502 				/*
2503 				 * We are likely being called from
2504 				 * clnt_dispatch_notifyall(). Sending
2505 				 * a T_ORDREL_REQ will result in
2506 				 * a some kind of _IND message being sent,
2507 				 * will be another call to
2508 				 * clnt_dispatch_notifyall(). To keep the stack
2509 				 * lean, queue this message.
2510 				 */
2511 				mir->mir_inwservice = 1;
2512 				(void) putq(q, mp);
2513 				mutex_exit(&mir->mir_mutex);
2514 				return;
2515 			}
2516 
2517 			/*
2518 			 * Mark the structure such that we don't accept any
2519 			 * more requests from client. We could defer this
2520 			 * until we actually send the orderly release
2521 			 * request downstream, but all that does is delay
2522 			 * the closing of this stream.
2523 			 */
2524 			RPCLOG(16, "mir_wput_other wq 0x%p: got T_ORDREL_REQ "
2525 			    " so calling mir_svc_start_close\n", (void *)q);
2526 
2527 			mir_svc_start_close(q, mir);
2528 
2529 			/*
2530 			 * If we have sent down a T_ORDREL_REQ, don't send
2531 			 * any more.
2532 			 */
2533 			if (mir->mir_ordrel_pending) {
2534 				freemsg(mp);
2535 				mutex_exit(&mir->mir_mutex);
2536 				return;
2537 			}
2538 
2539 			/*
2540 			 * If the stream is not idle, then we hold the
2541 			 * orderly release until it becomes idle.  This
2542 			 * ensures that kRPC will be able to reply to
2543 			 * all requests that we have passed to it.
2544 			 *
2545 			 * We also queue the request if there is data already
2546 			 * queued, because we cannot allow the T_ORDREL_REQ
2547 			 * to go before data. When we had a separate reply
2548 			 * count, this was not a problem, because the
2549 			 * reply count was reconciled when mir_wsrv()
2550 			 * completed.
2551 			 */
2552 			if (!MIR_SVC_QUIESCED(mir) ||
2553 			    mir->mir_inwservice == 1) {
2554 				mir->mir_inwservice = 1;
2555 				(void) putq(q, mp);
2556 
2557 				RPCLOG(16, "mir_wput_other: queuing "
2558 				    "T_ORDREL_REQ on 0x%p\n", (void *)q);
2559 
2560 				mutex_exit(&mir->mir_mutex);
2561 				return;
2562 			}
2563 
2564 			/*
2565 			 * Mark the structure so that we know we sent
2566 			 * an orderly release request, and reset the idle timer.
2567 			 */
2568 			mir->mir_ordrel_pending = 1;
2569 
2570 			RPCLOG(16, "mir_wput_other: calling mir_svc_idle_start"
2571 			    " on 0x%p because we got T_ORDREL_REQ\n",
2572 			    (void *)q);
2573 
2574 			mir_svc_idle_start(q, mir);
2575 			mutex_exit(&mir->mir_mutex);
2576 
2577 			/*
2578 			 * When we break, we will putnext the T_ORDREL_REQ.
2579 			 */
2580 			break;
2581 
2582 		case T_CONN_REQ:
2583 			mutex_enter(&mir->mir_mutex);
2584 			if (mir->mir_head_mp != NULL) {
2585 				freemsg(mir->mir_head_mp);
2586 				mir->mir_head_mp = NULL;
2587 				mir->mir_tail_mp = NULL;
2588 			}
2589 			mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
2590 			/*
2591 			 * Restart timer in case mir_clnt_idle_do_stop() was
2592 			 * called.
2593 			 */
2594 			mir->mir_idle_timeout = clnt_idle_timeout;
2595 			mir_clnt_idle_stop(q, mir);
2596 			mir_clnt_idle_start(q, mir);
2597 			mutex_exit(&mir->mir_mutex);
2598 			break;
2599 
2600 		default:
2601 			/*
2602 			 * T_DISCON_REQ is one of the interesting default
2603 			 * cases here. Ideally, an M_FLUSH is done before
2604 			 * T_DISCON_REQ is done. However, that is somewhat
2605 			 * cumbersome for clnt_cots.c to do. So we queue
2606 			 * T_DISCON_REQ, and let the service procedure
2607 			 * flush all M_DATA.
2608 			 */
2609 			break;
2610 		}
2611 		/* fallthru */;
2612 	default:
2613 		if (mp->b_datap->db_type >= QPCTL) {
2614 			if (mp->b_datap->db_type == M_FLUSH) {
2615 				if (mir->mir_type == RPC_CLIENT &&
2616 				    *mp->b_rptr & FLUSHW) {
2617 					RPCLOG(32, "mir_wput_other: flushing "
2618 					    "wq 0x%p\n", (void *)q);
2619 					if (*mp->b_rptr & FLUSHBAND) {
2620 						flushband(q, *(mp->b_rptr + 1),
2621 						    FLUSHDATA);
2622 					} else {
2623 						flushq(q, FLUSHDATA);
2624 					}
2625 				} else {
2626 					RPCLOG(32, "mir_wput_other: ignoring "
2627 					    "M_FLUSH on wq 0x%p\n", (void *)q);
2628 				}
2629 			}
2630 			break;
2631 		}
2632 
2633 		mutex_enter(&mir->mir_mutex);
2634 		if (mir->mir_inwservice == 0 && MIR_WCANPUTNEXT(mir, q)) {
2635 			mutex_exit(&mir->mir_mutex);
2636 			break;
2637 		}
2638 		mir->mir_inwservice = 1;
2639 		mir->mir_inwflushdata = flush_in_svc;
2640 		(void) putq(q, mp);
2641 		mutex_exit(&mir->mir_mutex);
2642 		qenable(q);
2643 
2644 		return;
2645 	}
2646 	putnext(q, mp);
2647 }
2648 
2649 static void
2650 mir_wsrv(queue_t *q)
2651 {
2652 	mblk_t	*mp;
2653 	mir_t	*mir;
2654 	bool_t flushdata;
2655 
2656 	mir = (mir_t *)q->q_ptr;
2657 	mutex_enter(&mir->mir_mutex);
2658 
2659 	flushdata = mir->mir_inwflushdata;
2660 	mir->mir_inwflushdata = 0;
2661 
2662 	while (mp = getq(q)) {
2663 		if (mp->b_datap->db_type == M_DATA) {
2664 			/*
2665 			 * Do not send any more data if we have sent
2666 			 * a T_ORDREL_REQ.
2667 			 */
2668 			if (flushdata || mir->mir_ordrel_pending == 1) {
2669 				freemsg(mp);
2670 				continue;
2671 			}
2672 
2673 			/*
2674 			 * Make sure that the stream can really handle more
2675 			 * data.
2676 			 */
2677 			if (!MIR_WCANPUTNEXT(mir, q)) {
2678 				(void) putbq(q, mp);
2679 				mutex_exit(&mir->mir_mutex);
2680 				return;
2681 			}
2682 
2683 			/*
2684 			 * Now we pass the RPC message downstream.
2685 			 */
2686 			mutex_exit(&mir->mir_mutex);
2687 			putnext(q, mp);
2688 			mutex_enter(&mir->mir_mutex);
2689 			continue;
2690 		}
2691 
2692 		/*
2693 		 * This is not an RPC message, pass it downstream
2694 		 * (ignoring flow control) if the server side is not sending a
2695 		 * T_ORDREL_REQ downstream.
2696 		 */
2697 		if (mir->mir_type != RPC_SERVER ||
2698 		    ((union T_primitives *)mp->b_rptr)->type !=
2699 		    T_ORDREL_REQ) {
2700 			mutex_exit(&mir->mir_mutex);
2701 			putnext(q, mp);
2702 			mutex_enter(&mir->mir_mutex);
2703 			continue;
2704 		}
2705 
2706 		if (mir->mir_ordrel_pending == 1) {
2707 			/*
2708 			 * Don't send two T_ORDRELs
2709 			 */
2710 			freemsg(mp);
2711 			continue;
2712 		}
2713 
2714 		/*
2715 		 * Mark the structure so that we know we sent an orderly
2716 		 * release request.  We will check to see slot is idle at the
2717 		 * end of this routine, and if so, reset the idle timer to
2718 		 * handle orderly release timeouts.
2719 		 */
2720 		mir->mir_ordrel_pending = 1;
2721 		RPCLOG(16, "mir_wsrv: sending ordrel req on q 0x%p\n",
2722 		    (void *)q);
2723 		/*
2724 		 * Send the orderly release downstream. If there are other
2725 		 * pending replies we won't be able to send them.  However,
2726 		 * the only reason we should send the orderly release is if
2727 		 * we were idle, or if an unusual event occurred.
2728 		 */
2729 		mutex_exit(&mir->mir_mutex);
2730 		putnext(q, mp);
2731 		mutex_enter(&mir->mir_mutex);
2732 	}
2733 
2734 	if (q->q_first == NULL)
2735 		/*
2736 		 * If we call mir_svc_idle_start() below, then
2737 		 * clearing mir_inwservice here will also result in
2738 		 * any thread waiting in mir_close() to be signaled.
2739 		 */
2740 		mir->mir_inwservice = 0;
2741 
2742 	if (mir->mir_type != RPC_SERVER) {
2743 		mutex_exit(&mir->mir_mutex);
2744 		return;
2745 	}
2746 
2747 	/*
2748 	 * If idle we call mir_svc_idle_start to start the timer (or wakeup
2749 	 * a close). Also make sure not to start the idle timer on the
2750 	 * listener stream. This can cause nfsd to send an orderly release
2751 	 * command on the listener stream.
2752 	 */
2753 	if (MIR_SVC_QUIESCED(mir) && !(mir->mir_listen_stream)) {
2754 		RPCLOG(16, "mir_wsrv: calling mir_svc_idle_start on 0x%p "
2755 		    "because mir slot is idle\n", (void *)q);
2756 		mir_svc_idle_start(q, mir);
2757 	}
2758 
2759 	/*
2760 	 * If outbound flow control has been relieved, then allow new
2761 	 * inbound requests to be processed.
2762 	 */
2763 	if (mir->mir_hold_inbound) {
2764 		mir->mir_hold_inbound = 0;
2765 		qenable(RD(q));
2766 	}
2767 	mutex_exit(&mir->mir_mutex);
2768 }
2769 
2770 static void
2771 mir_disconnect(queue_t *q, mir_t *mir)
2772 {
2773 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2774 
2775 	switch (mir->mir_type) {
2776 	case RPC_CLIENT:
2777 		/*
2778 		 * We are disconnecting, but not necessarily
2779 		 * closing. By not closing, we will fail to
2780 		 * pick up a possibly changed global timeout value,
2781 		 * unless we store it now.
2782 		 */
2783 		mir->mir_idle_timeout = clnt_idle_timeout;
2784 		mir_clnt_idle_start(WR(q), mir);
2785 		mutex_exit(&mir->mir_mutex);
2786 
2787 		/*
2788 		 * T_DISCON_REQ is passed to kRPC as an integer value
2789 		 * (this is not a TPI message).  It is used as a
2790 		 * convenient value to indicate a sanity check
2791 		 * failure -- the same kRPC routine is also called
2792 		 * for T_DISCON_INDs and T_ORDREL_INDs.
2793 		 */
2794 		clnt_dispatch_notifyall(WR(q), T_DISCON_REQ, 0);
2795 		break;
2796 
2797 	case RPC_SERVER:
2798 		mir->mir_svc_no_more_msgs = 1;
2799 		mir_svc_idle_stop(WR(q), mir);
2800 		mutex_exit(&mir->mir_mutex);
2801 		RPCLOG(16, "mir_disconnect: telling "
2802 		    "stream head listener to disconnect stream "
2803 		    "(0x%p)\n", (void *) q);
2804 		(void) mir_svc_policy_notify(q, 2);
2805 		break;
2806 
2807 	default:
2808 		mutex_exit(&mir->mir_mutex);
2809 		break;
2810 	}
2811 }
2812 
2813 /*
2814  * Sanity check the message length, and if it's too large, shutdown the
2815  * connection.  Returns 1 if the connection is shutdown; 0 otherwise.
2816  */
2817 static int
2818 mir_check_len(queue_t *q, mblk_t *head_mp)
2819 {
2820 	mir_t *mir = q->q_ptr;
2821 	uint_t maxsize = 0;
2822 	size_t msg_len = msgdsize(head_mp);
2823 
2824 	if (mir->mir_max_msg_sizep != NULL)
2825 		maxsize = *mir->mir_max_msg_sizep;
2826 
2827 	if (maxsize == 0 || msg_len <= maxsize)
2828 		return (0);
2829 
2830 	freemsg(head_mp);
2831 	mir->mir_head_mp = NULL;
2832 	mir->mir_tail_mp = NULL;
2833 	mir->mir_frag_header = 0;
2834 	mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
2835 	if (mir->mir_type != RPC_SERVER || mir->mir_setup_complete) {
2836 		cmn_err(CE_NOTE,
2837 		    "kRPC: record fragment from %s of size(%lu) exceeds "
2838 		    "maximum (%u). Disconnecting",
2839 		    (mir->mir_type == RPC_CLIENT) ? "server" :
2840 		    (mir->mir_type == RPC_SERVER) ? "client" :
2841 		    "test tool", msg_len, maxsize);
2842 	}
2843 
2844 	mir_disconnect(q, mir);
2845 	return (1);
2846 }
2847