xref: /illumos-gate/usr/src/uts/common/rpc/rpcmod.c (revision d321a33cdd896e6b211d113a33698dd76e89b861)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * Kernel RPC filtering module
34  */
35 
36 #include <sys/param.h>
37 #include <sys/types.h>
38 #include <sys/stream.h>
39 #include <sys/stropts.h>
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/tiuser.h>
43 #include <sys/debug.h>
44 #include <sys/signal.h>
45 #include <sys/pcb.h>
46 #include <sys/user.h>
47 #include <sys/errno.h>
48 #include <sys/cred.h>
49 #include <sys/policy.h>
50 #include <sys/inline.h>
51 #include <sys/cmn_err.h>
52 #include <sys/kmem.h>
53 #include <sys/file.h>
54 #include <sys/sysmacros.h>
55 #include <sys/systm.h>
56 #include <sys/t_lock.h>
57 #include <sys/ddi.h>
58 #include <sys/vtrace.h>
59 #include <sys/callb.h>
60 #include <sys/strsun.h>
61 
62 #include <sys/strlog.h>
63 #include <rpc/rpc_com.h>
64 #include <inet/common.h>
65 #include <rpc/types.h>
66 #include <sys/time.h>
67 #include <rpc/xdr.h>
68 #include <rpc/auth.h>
69 #include <rpc/clnt.h>
70 #include <rpc/rpc_msg.h>
71 #include <rpc/clnt.h>
72 #include <rpc/svc.h>
73 #include <rpc/rpcsys.h>
74 #include <rpc/rpc_rdma.h>
75 
76 /*
77  * This is the loadable module wrapper.
78  */
79 #include <sys/conf.h>
80 #include <sys/modctl.h>
81 #include <sys/syscall.h>
82 
83 extern struct streamtab rpcinfo;
84 
85 static struct fmodsw fsw = {
86 	"rpcmod",
87 	&rpcinfo,
88 	D_NEW|D_MP,
89 };
90 
91 /*
92  * Module linkage information for the kernel.
93  */
94 
95 static struct modlstrmod modlstrmod = {
96 	&mod_strmodops, "rpc interface str mod", &fsw
97 };
98 
99 /*
100  * For the RPC system call.
101  */
102 static struct sysent rpcsysent = {
103 	2,
104 	SE_32RVAL1 | SE_ARGC | SE_NOUNLOAD,
105 	rpcsys
106 };
107 
108 static struct modlsys modlsys = {
109 	&mod_syscallops,
110 	"RPC syscall",
111 	&rpcsysent
112 };
113 
114 #ifdef _SYSCALL32_IMPL
115 static struct modlsys modlsys32 = {
116 	&mod_syscallops32,
117 	"32-bit RPC syscall",
118 	&rpcsysent
119 };
120 #endif /* _SYSCALL32_IMPL */
121 
122 static struct modlinkage modlinkage = {
123 	MODREV_1,
124 	{
125 		&modlsys,
126 #ifdef _SYSCALL32_IMPL
127 		&modlsys32,
128 #endif
129 		&modlstrmod,
130 		NULL
131 	}
132 };
133 
134 int
135 _init(void)
136 {
137 	int error = 0;
138 	callb_id_t cid;
139 	int status;
140 
141 	svc_init();
142 	clnt_init();
143 	cid = callb_add(connmgr_cpr_reset, 0, CB_CL_CPR_RPC, "rpc");
144 
145 	if (error = mod_install(&modlinkage)) {
146 		/*
147 		 * Could not install module, cleanup previous
148 		 * initialization work.
149 		 */
150 		clnt_fini();
151 		if (cid != NULL)
152 			(void) callb_delete(cid);
153 
154 		return (error);
155 	}
156 
157 	/*
158 	 * Load up the RDMA plugins and initialize the stats. Even if the
159 	 * plugins loadup fails, but rpcmod was successfully installed the
160 	 * counters still get initialized.
161 	 */
162 	rw_init(&rdma_lock, NULL, RW_DEFAULT, NULL);
163 	mutex_init(&rdma_modload_lock, NULL, MUTEX_DEFAULT, NULL);
164 	mt_kstat_init();
165 
166 	/*
167 	 * Get our identification into ldi.  This is used for loading
168 	 * other modules, e.g. rpcib.
169 	 */
170 	status = ldi_ident_from_mod(&modlinkage, &rpcmod_li);
171 	if (status != 0) {
172 		cmn_err(CE_WARN, "ldi_ident_from_mod fails with %d", status);
173 		rpcmod_li = NULL;
174 	}
175 
176 	return (error);
177 }
178 
179 /*
180  * The unload entry point fails, because we advertise entry points into
181  * rpcmod from the rest of kRPC: rpcmod_release().
182  */
183 int
184 _fini(void)
185 {
186 	return (EBUSY);
187 }
188 
189 int
190 _info(struct modinfo *modinfop)
191 {
192 	return (mod_info(&modlinkage, modinfop));
193 }
194 
195 extern int nulldev();
196 
197 #define	RPCMOD_ID	2049
198 
199 int rmm_open(), rmm_close();
200 
201 /*
202  * To save instructions, since STREAMS ignores the return value
203  * from these functions, they are defined as void here. Kind of icky, but...
204  */
205 void rmm_rput(queue_t *, mblk_t *);
206 void rmm_wput(queue_t *, mblk_t *);
207 void rmm_rsrv(queue_t *);
208 void rmm_wsrv(queue_t *);
209 
210 int rpcmodopen(), rpcmodclose();
211 void rpcmodrput(), rpcmodwput();
212 void rpcmodrsrv(), rpcmodwsrv();
213 
214 static	void	rpcmodwput_other(queue_t *, mblk_t *);
215 static	int	mir_close(queue_t *q);
216 static	int	mir_open(queue_t *q, dev_t *devp, int flag, int sflag,
217 		    cred_t *credp);
218 static	void	mir_rput(queue_t *q, mblk_t *mp);
219 static	void	mir_rsrv(queue_t *q);
220 static	void	mir_wput(queue_t *q, mblk_t *mp);
221 static	void	mir_wsrv(queue_t *q);
222 
223 static struct module_info rpcmod_info =
224 	{RPCMOD_ID, "rpcmod", 0, INFPSZ, 256*1024, 1024};
225 
226 /*
227  * Read side has no service procedure.
228  */
229 static struct qinit rpcmodrinit = {
230 	(int (*)())rmm_rput,
231 	(int (*)())rmm_rsrv,
232 	rmm_open,
233 	rmm_close,
234 	nulldev,
235 	&rpcmod_info,
236 	NULL
237 };
238 
239 /*
240  * The write put procedure is simply putnext to conserve stack space.
241  * The write service procedure is not used to queue data, but instead to
242  * synchronize with flow control.
243  */
244 static struct qinit rpcmodwinit = {
245 	(int (*)())rmm_wput,
246 	(int (*)())rmm_wsrv,
247 	rmm_open,
248 	rmm_close,
249 	nulldev,
250 	&rpcmod_info,
251 	NULL
252 };
253 struct streamtab rpcinfo = { &rpcmodrinit, &rpcmodwinit, NULL, NULL };
254 
255 struct xprt_style_ops {
256 	int (*xo_open)();
257 	int (*xo_close)();
258 	void (*xo_wput)();
259 	void (*xo_wsrv)();
260 	void (*xo_rput)();
261 	void (*xo_rsrv)();
262 };
263 
264 static struct xprt_style_ops xprt_clts_ops = {
265 	rpcmodopen,
266 	rpcmodclose,
267 	rpcmodwput,
268 	rpcmodwsrv,
269 	rpcmodrput,
270 	NULL
271 };
272 
273 static struct xprt_style_ops xprt_cots_ops = {
274 	mir_open,
275 	mir_close,
276 	mir_wput,
277 	mir_wsrv,
278 	mir_rput,
279 	mir_rsrv
280 };
281 
282 /*
283  * Per rpcmod "slot" data structure. q->q_ptr points to one of these.
284  */
285 struct rpcm {
286 	void		*rm_krpc_cell;	/* Reserved for use by KRPC */
287 	struct		xprt_style_ops	*rm_ops;
288 	int		rm_type;	/* Client or server side stream */
289 #define	RM_CLOSING	0x1		/* somebody is trying to close slot */
290 	uint_t		rm_state;	/* state of the slot. see above */
291 	uint_t		rm_ref;		/* cnt of external references to slot */
292 	kmutex_t	rm_lock;	/* mutex protecting above fields */
293 	kcondvar_t	rm_cwait;	/* condition for closing */
294 	zoneid_t	rm_zoneid;	/* zone which pushed rpcmod */
295 };
296 
297 struct temp_slot {
298 	void *cell;
299 	struct xprt_style_ops *ops;
300 	int type;
301 	mblk_t *info_ack;
302 	kmutex_t lock;
303 	kcondvar_t wait;
304 };
305 
306 typedef struct mir_s {
307 	void	*mir_krpc_cell;	/* Reserved for KRPC use. This field */
308 					/* must be first in the structure. */
309 	struct xprt_style_ops	*rm_ops;
310 	int	mir_type;		/* Client or server side stream */
311 
312 	mblk_t	*mir_head_mp;		/* RPC msg in progress */
313 		/*
314 		 * mir_head_mp points the first mblk being collected in
315 		 * the current RPC message.  Record headers are removed
316 		 * before data is linked into mir_head_mp.
317 		 */
318 	mblk_t	*mir_tail_mp;		/* Last mblk in mir_head_mp */
319 		/*
320 		 * mir_tail_mp points to the last mblk in the message
321 		 * chain starting at mir_head_mp.  It is only valid
322 		 * if mir_head_mp is non-NULL and is used to add new
323 		 * data blocks to the end of chain quickly.
324 		 */
325 
326 	int32_t	mir_frag_len;		/* Bytes seen in the current frag */
327 		/*
328 		 * mir_frag_len starts at -4 for beginning of each fragment.
329 		 * When this length is negative, it indicates the number of
330 		 * bytes that rpcmod needs to complete the record marker
331 		 * header.  When it is positive or zero, it holds the number
332 		 * of bytes that have arrived for the current fragment and
333 		 * are held in mir_header_mp.
334 		 */
335 
336 	int32_t	mir_frag_header;
337 		/*
338 		 * Fragment header as collected for the current fragment.
339 		 * It holds the last-fragment indicator and the number
340 		 * of bytes in the fragment.
341 		 */
342 
343 	unsigned int
344 		mir_ordrel_pending : 1,	/* Sent T_ORDREL_REQ */
345 		mir_hold_inbound : 1,	/* Hold inbound messages on server */
346 					/* side until outbound flow control */
347 					/* is relieved. */
348 		mir_closing : 1,	/* The stream is being closed */
349 		mir_inrservice : 1,	/* data queued or rd srv proc running */
350 		mir_inwservice : 1,	/* data queued or wr srv proc running */
351 		mir_inwflushdata : 1,	/* flush M_DATAs when srv runs */
352 		/*
353 		 * On client streams, mir_clntreq is 0 or 1; it is set
354 		 * to 1 whenever a new request is sent out (mir_wput)
355 		 * and cleared when the timer fires (mir_timer).  If
356 		 * the timer fires with this value equal to 0, then the
357 		 * stream is considered idle and KRPC is notified.
358 		 */
359 		mir_clntreq : 1,
360 		/*
361 		 * On server streams, stop accepting messages
362 		 */
363 		mir_svc_no_more_msgs : 1,
364 		mir_listen_stream : 1,	/* listen end point */
365 		mir_unused : 1,	/* no longer used */
366 		mir_timer_call : 1,
367 		mir_junk_fill_thru_bit_31 : 21;
368 
369 	int	mir_setup_complete;	/* server has initialized everything */
370 	timeout_id_t mir_timer_id;	/* Timer for idle checks */
371 	clock_t	mir_idle_timeout;	/* Allowed idle time before shutdown */
372 		/*
373 		 * This value is copied from clnt_idle_timeout or
374 		 * svc_idle_timeout during the appropriate ioctl.
375 		 * Kept in milliseconds
376 		 */
377 	clock_t	mir_use_timestamp;	/* updated on client with each use */
378 		/*
379 		 * This value is set to lbolt
380 		 * every time a client stream sends or receives data.
381 		 * Even if the timer message arrives, we don't shutdown
382 		 * client unless:
383 		 *    lbolt >= MSEC_TO_TICK(mir_idle_timeout)+mir_use_timestamp.
384 		 * This value is kept in HZ.
385 		 */
386 
387 	uint_t	*mir_max_msg_sizep;	/* Reference to sanity check size */
388 		/*
389 		 * This pointer is set to &clnt_max_msg_size or
390 		 * &svc_max_msg_size during the appropriate ioctl.
391 		 */
392 	zoneid_t mir_zoneid;	/* zone which pushed rpcmod */
393 	/* Server-side fields. */
394 	int	mir_ref_cnt;		/* Reference count: server side only */
395 					/* counts the number of references */
396 					/* that a kernel RPC server thread */
397 					/* (see svc_run()) has on this rpcmod */
398 					/* slot. Effectively, it is the */
399 					/* number * of unprocessed messages */
400 					/* that have been passed up to the */
401 					/* KRPC layer */
402 
403 	mblk_t	*mir_svc_pend_mp;	/* Pending T_ORDREL_IND or */
404 					/* T_DISCON_IND */
405 
406 	/*
407 	 * these fields are for both client and server, but for debugging,
408 	 * it is easier to have these last in the structure.
409 	 */
410 	kmutex_t	mir_mutex;	/* Mutex and condvar for close */
411 	kcondvar_t	mir_condvar;	/* synchronization. */
412 	kcondvar_t	mir_timer_cv;	/* Timer routine sync. */
413 } mir_t;
414 
415 void tmp_rput(queue_t *q, mblk_t *mp);
416 
417 struct xprt_style_ops tmpops = {
418 	NULL,
419 	NULL,
420 	putnext,
421 	NULL,
422 	tmp_rput,
423 	NULL
424 };
425 
426 void
427 tmp_rput(queue_t *q, mblk_t *mp)
428 {
429 	struct temp_slot *t = (struct temp_slot *)(q->q_ptr);
430 	struct T_info_ack *pptr;
431 
432 	switch (mp->b_datap->db_type) {
433 	case M_PCPROTO:
434 		pptr = (struct T_info_ack *)mp->b_rptr;
435 		switch (pptr->PRIM_type) {
436 		case T_INFO_ACK:
437 			mutex_enter(&t->lock);
438 			t->info_ack = mp;
439 			cv_signal(&t->wait);
440 			mutex_exit(&t->lock);
441 			return;
442 		default:
443 			break;
444 		}
445 	default:
446 		break;
447 	}
448 
449 	/*
450 	 * Not an info-ack, so free it. This is ok because we should
451 	 * not be receiving data until the open finishes: rpcmod
452 	 * is pushed well before the end-point is bound to an address.
453 	 */
454 	freemsg(mp);
455 }
456 
457 int
458 rmm_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp)
459 {
460 	mblk_t *bp;
461 	struct temp_slot ts, *t;
462 	struct T_info_ack *pptr;
463 	int error = 0;
464 
465 	ASSERT(q != NULL);
466 	/*
467 	 * Check for re-opens.
468 	 */
469 	if (q->q_ptr) {
470 		TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END,
471 		    "rpcmodopen_end:(%s)", "q->qptr");
472 		return (0);
473 	}
474 
475 	t = &ts;
476 	bzero(t, sizeof (*t));
477 	q->q_ptr = (void *)t;
478 	WR(q)->q_ptr = (void *)t;
479 
480 	/*
481 	 * Allocate the required messages upfront.
482 	 */
483 	if ((bp = allocb(sizeof (struct T_info_req) +
484 	    sizeof (struct T_info_ack), BPRI_LO)) == (mblk_t *)NULL) {
485 		return (ENOBUFS);
486 	}
487 
488 	mutex_init(&t->lock, NULL, MUTEX_DEFAULT, NULL);
489 	cv_init(&t->wait, NULL, CV_DEFAULT, NULL);
490 
491 	t->ops = &tmpops;
492 
493 	qprocson(q);
494 	bp->b_datap->db_type = M_PCPROTO;
495 	*(int32_t *)bp->b_wptr = (int32_t)T_INFO_REQ;
496 	bp->b_wptr += sizeof (struct T_info_req);
497 	putnext(WR(q), bp);
498 
499 	mutex_enter(&t->lock);
500 	while (t->info_ack == NULL) {
501 		if (cv_wait_sig(&t->wait, &t->lock) == 0) {
502 			error = EINTR;
503 			break;
504 		}
505 	}
506 	mutex_exit(&t->lock);
507 
508 	if (error)
509 		goto out;
510 
511 	pptr = (struct T_info_ack *)t->info_ack->b_rptr;
512 
513 	if (pptr->SERV_type == T_CLTS) {
514 		if ((error = rpcmodopen(q, devp, flag, sflag, crp)) == 0)
515 			((struct rpcm *)q->q_ptr)->rm_ops = &xprt_clts_ops;
516 	} else {
517 		if ((error = mir_open(q, devp, flag, sflag, crp)) == 0)
518 			((mir_t *)q->q_ptr)->rm_ops = &xprt_cots_ops;
519 	}
520 
521 out:
522 	if (error)
523 		qprocsoff(q);
524 
525 	freemsg(t->info_ack);
526 	mutex_destroy(&t->lock);
527 	cv_destroy(&t->wait);
528 
529 	return (error);
530 }
531 
532 void
533 rmm_rput(queue_t *q, mblk_t  *mp)
534 {
535 	(*((struct temp_slot *)q->q_ptr)->ops->xo_rput)(q, mp);
536 }
537 
538 void
539 rmm_rsrv(queue_t *q)
540 {
541 	(*((struct temp_slot *)q->q_ptr)->ops->xo_rsrv)(q);
542 }
543 
544 void
545 rmm_wput(queue_t *q, mblk_t *mp)
546 {
547 	(*((struct temp_slot *)q->q_ptr)->ops->xo_wput)(q, mp);
548 }
549 
550 void
551 rmm_wsrv(queue_t *q)
552 {
553 	(*((struct temp_slot *)q->q_ptr)->ops->xo_wsrv)(q);
554 }
555 
556 int
557 rmm_close(queue_t *q, int flag, cred_t *crp)
558 {
559 	return ((*((struct temp_slot *)q->q_ptr)->ops->xo_close)(q, flag, crp));
560 }
561 
562 /*
563  * rpcmodopen -	open routine gets called when the module gets pushed
564  *		onto the stream.
565  */
566 /*ARGSUSED*/
567 int
568 rpcmodopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp)
569 {
570 	struct rpcm *rmp;
571 
572 	extern void (*rpc_rele)(queue_t *, mblk_t *);
573 	static void rpcmod_release(queue_t *, mblk_t *);
574 
575 	TRACE_0(TR_FAC_KRPC, TR_RPCMODOPEN_START, "rpcmodopen_start:");
576 
577 	/*
578 	 * Initialize entry points to release a rpcmod slot (and an input
579 	 * message if supplied) and to send an output message to the module
580 	 * below rpcmod.
581 	 */
582 	if (rpc_rele == NULL)
583 		rpc_rele = rpcmod_release;
584 
585 	/*
586 	 * Only sufficiently privileged users can use this module, and it
587 	 * is assumed that they will use this module properly, and NOT send
588 	 * bulk data from downstream.
589 	 */
590 	if (secpolicy_rpcmod_open(crp) != 0)
591 		return (EPERM);
592 
593 	/*
594 	 * Allocate slot data structure.
595 	 */
596 	rmp = kmem_zalloc(sizeof (*rmp), KM_SLEEP);
597 
598 	mutex_init(&rmp->rm_lock, NULL, MUTEX_DEFAULT, NULL);
599 	cv_init(&rmp->rm_cwait, NULL, CV_DEFAULT, NULL);
600 	rmp->rm_zoneid = rpc_zoneid();
601 	/*
602 	 * slot type will be set by kRPC client and server ioctl's
603 	 */
604 	rmp->rm_type = 0;
605 
606 	q->q_ptr = (void *)rmp;
607 	WR(q)->q_ptr = (void *)rmp;
608 
609 	TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END, "rpcmodopen_end:(%s)", "end");
610 	return (0);
611 }
612 
613 /*
614  * rpcmodclose - This routine gets called when the module gets popped
615  * off of the stream.
616  */
617 /*ARGSUSED*/
618 int
619 rpcmodclose(queue_t *q, int flag, cred_t *crp)
620 {
621 	struct rpcm *rmp;
622 
623 	ASSERT(q != NULL);
624 	rmp = (struct rpcm *)q->q_ptr;
625 
626 	/*
627 	 * Mark our state as closing.
628 	 */
629 	mutex_enter(&rmp->rm_lock);
630 	rmp->rm_state |= RM_CLOSING;
631 
632 	/*
633 	 * Check and see if there are any messages on the queue.  If so, send
634 	 * the messages, regardless whether the downstream module is ready to
635 	 * accept data.
636 	 */
637 	if (rmp->rm_type == RPC_SERVER) {
638 		flushq(q, FLUSHDATA);
639 
640 		qenable(WR(q));
641 
642 		if (rmp->rm_ref) {
643 			mutex_exit(&rmp->rm_lock);
644 			/*
645 			 * call into SVC to clean the queue
646 			 */
647 			svc_queueclean(q);
648 			mutex_enter(&rmp->rm_lock);
649 
650 			/*
651 			 * Block while there are kRPC threads with a reference
652 			 * to this message.
653 			 */
654 			while (rmp->rm_ref)
655 				cv_wait(&rmp->rm_cwait, &rmp->rm_lock);
656 		}
657 
658 		mutex_exit(&rmp->rm_lock);
659 
660 		/*
661 		 * It is now safe to remove this queue from the stream. No kRPC
662 		 * threads have a reference to the stream, and none ever will,
663 		 * because RM_CLOSING is set.
664 		 */
665 		qprocsoff(q);
666 
667 		/* Notify kRPC that this stream is going away. */
668 		svc_queueclose(q);
669 	} else {
670 		mutex_exit(&rmp->rm_lock);
671 		qprocsoff(q);
672 	}
673 
674 	q->q_ptr = NULL;
675 	WR(q)->q_ptr = NULL;
676 	mutex_destroy(&rmp->rm_lock);
677 	cv_destroy(&rmp->rm_cwait);
678 	kmem_free(rmp, sizeof (*rmp));
679 	return (0);
680 }
681 
682 #ifdef	DEBUG
683 int	rpcmod_send_msg_up = 0;
684 int	rpcmod_send_uderr = 0;
685 int	rpcmod_send_dup = 0;
686 int	rpcmod_send_dup_cnt = 0;
687 #endif
688 
689 /*
690  * rpcmodrput -	Module read put procedure.  This is called from
691  *		the module, driver, or stream head downstream.
692  */
693 void
694 rpcmodrput(queue_t *q, mblk_t *mp)
695 {
696 	struct rpcm *rmp;
697 	union T_primitives *pptr;
698 	int hdrsz;
699 
700 	TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_START, "rpcmodrput_start:");
701 
702 	ASSERT(q != NULL);
703 	rmp = (struct rpcm *)q->q_ptr;
704 
705 	if (rmp->rm_type == 0) {
706 		freemsg(mp);
707 		return;
708 	}
709 
710 #ifdef DEBUG
711 	if (rpcmod_send_msg_up > 0) {
712 		mblk_t *nmp = copymsg(mp);
713 		if (nmp) {
714 			putnext(q, nmp);
715 			rpcmod_send_msg_up--;
716 		}
717 	}
718 	if ((rpcmod_send_uderr > 0) && mp->b_datap->db_type == M_PROTO) {
719 		mblk_t *nmp;
720 		struct T_unitdata_ind *data;
721 		struct T_uderror_ind *ud;
722 		int d;
723 		data = (struct T_unitdata_ind *)mp->b_rptr;
724 		if (data->PRIM_type == T_UNITDATA_IND) {
725 			d = sizeof (*ud) - sizeof (*data);
726 			nmp = allocb(mp->b_wptr - mp->b_rptr + d, BPRI_HI);
727 			if (nmp) {
728 				ud = (struct T_uderror_ind *)nmp->b_rptr;
729 				ud->PRIM_type = T_UDERROR_IND;
730 				ud->DEST_length = data->SRC_length;
731 				ud->DEST_offset = data->SRC_offset + d;
732 				ud->OPT_length = data->OPT_length;
733 				ud->OPT_offset = data->OPT_offset + d;
734 				ud->ERROR_type = ENETDOWN;
735 				if (data->SRC_length) {
736 					bcopy(mp->b_rptr +
737 					    data->SRC_offset,
738 					    nmp->b_rptr +
739 					    ud->DEST_offset,
740 					    data->SRC_length);
741 				}
742 				if (data->OPT_length) {
743 					bcopy(mp->b_rptr +
744 					    data->OPT_offset,
745 					    nmp->b_rptr +
746 					    ud->OPT_offset,
747 					    data->OPT_length);
748 				}
749 				nmp->b_wptr += d;
750 				nmp->b_wptr += (mp->b_wptr - mp->b_rptr);
751 				nmp->b_datap->db_type = M_PROTO;
752 				putnext(q, nmp);
753 				rpcmod_send_uderr--;
754 			}
755 		}
756 	}
757 #endif
758 	switch (mp->b_datap->db_type) {
759 	default:
760 		putnext(q, mp);
761 		break;
762 
763 	case M_PROTO:
764 	case M_PCPROTO:
765 		ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (int32_t));
766 		pptr = (union T_primitives *)mp->b_rptr;
767 
768 		/*
769 		 * Forward this message to krpc if it is data.
770 		 */
771 		if (pptr->type == T_UNITDATA_IND) {
772 			mblk_t *nmp;
773 
774 		/*
775 		 * Check if the module is being popped.
776 		 */
777 			mutex_enter(&rmp->rm_lock);
778 			if (rmp->rm_state & RM_CLOSING) {
779 				mutex_exit(&rmp->rm_lock);
780 				putnext(q, mp);
781 				break;
782 			}
783 
784 			switch (rmp->rm_type) {
785 			case RPC_CLIENT:
786 				mutex_exit(&rmp->rm_lock);
787 				hdrsz = mp->b_wptr - mp->b_rptr;
788 
789 				/*
790 				 * Make sure the header is sane.
791 				 */
792 				if (hdrsz < TUNITDATAINDSZ ||
793 				    hdrsz < (pptr->unitdata_ind.OPT_length +
794 				    pptr->unitdata_ind.OPT_offset) ||
795 				    hdrsz < (pptr->unitdata_ind.SRC_length +
796 				    pptr->unitdata_ind.SRC_offset)) {
797 					freemsg(mp);
798 					return;
799 				}
800 
801 				/*
802 				 * Call clnt_clts_dispatch_notify, so that it
803 				 * can pass the message to the proper caller.
804 				 * Don't discard the header just yet since the
805 				 * client may need the sender's address.
806 				 */
807 				clnt_clts_dispatch_notify(mp, hdrsz,
808 				    rmp->rm_zoneid);
809 				return;
810 			case RPC_SERVER:
811 				/*
812 				 * rm_krpc_cell is exclusively used by the kRPC
813 				 * CLTS server
814 				 */
815 				if (rmp->rm_krpc_cell) {
816 #ifdef DEBUG
817 					/*
818 					 * Test duplicate request cache and
819 					 * rm_ref count handling by sending a
820 					 * duplicate every so often, if
821 					 * desired.
822 					 */
823 					if (rpcmod_send_dup &&
824 					    rpcmod_send_dup_cnt++ %
825 					    rpcmod_send_dup)
826 						nmp = copymsg(mp);
827 					else
828 						nmp = NULL;
829 #endif
830 					/*
831 					 * Raise the reference count on this
832 					 * module to prevent it from being
833 					 * popped before krpc generates the
834 					 * reply.
835 					 */
836 					rmp->rm_ref++;
837 					mutex_exit(&rmp->rm_lock);
838 
839 					/*
840 					 * Submit the message to krpc.
841 					 */
842 					svc_queuereq(q, mp);
843 #ifdef DEBUG
844 					/*
845 					 * Send duplicate if we created one.
846 					 */
847 					if (nmp) {
848 						mutex_enter(&rmp->rm_lock);
849 						rmp->rm_ref++;
850 						mutex_exit(&rmp->rm_lock);
851 						svc_queuereq(q, nmp);
852 					}
853 #endif
854 				} else {
855 					mutex_exit(&rmp->rm_lock);
856 					freemsg(mp);
857 				}
858 				return;
859 			default:
860 				mutex_exit(&rmp->rm_lock);
861 				freemsg(mp);
862 				return;
863 			} /* end switch(rmp->rm_type) */
864 		} else if (pptr->type == T_UDERROR_IND) {
865 			mutex_enter(&rmp->rm_lock);
866 			hdrsz = mp->b_wptr - mp->b_rptr;
867 
868 			/*
869 			 * Make sure the header is sane
870 			 */
871 			if (hdrsz < TUDERRORINDSZ ||
872 			    hdrsz < (pptr->uderror_ind.OPT_length +
873 			    pptr->uderror_ind.OPT_offset) ||
874 			    hdrsz < (pptr->uderror_ind.DEST_length +
875 			    pptr->uderror_ind.DEST_offset)) {
876 				mutex_exit(&rmp->rm_lock);
877 				freemsg(mp);
878 				return;
879 			}
880 
881 			/*
882 			 * In the case where a unit data error has been
883 			 * received, all we need to do is clear the message from
884 			 * the queue.
885 			 */
886 			mutex_exit(&rmp->rm_lock);
887 			freemsg(mp);
888 			RPCLOG(32, "rpcmodrput: unitdata error received at "
889 			    "%ld\n", gethrestime_sec());
890 			return;
891 		} /* end else if (pptr->type == T_UDERROR_IND) */
892 
893 		putnext(q, mp);
894 		break;
895 	} /* end switch (mp->b_datap->db_type) */
896 
897 	TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_END,
898 	    "rpcmodrput_end:");
899 	/*
900 	 * Return codes are not looked at by the STREAMS framework.
901 	 */
902 }
903 
904 /*
905  * write put procedure
906  */
907 void
908 rpcmodwput(queue_t *q, mblk_t *mp)
909 {
910 	struct rpcm	*rmp;
911 
912 	ASSERT(q != NULL);
913 
914 	switch (mp->b_datap->db_type) {
915 		case M_PROTO:
916 		case M_PCPROTO:
917 			break;
918 		default:
919 			rpcmodwput_other(q, mp);
920 			return;
921 	}
922 
923 	/*
924 	 * Check to see if we can send the message downstream.
925 	 */
926 	if (canputnext(q)) {
927 		putnext(q, mp);
928 		return;
929 	}
930 
931 	rmp = (struct rpcm *)q->q_ptr;
932 	ASSERT(rmp != NULL);
933 
934 	/*
935 	 * The first canputnext failed.  Try again except this time with the
936 	 * lock held, so that we can check the state of the stream to see if
937 	 * it is closing.  If either of these conditions evaluate to true
938 	 * then send the meesage.
939 	 */
940 	mutex_enter(&rmp->rm_lock);
941 	if (canputnext(q) || (rmp->rm_state & RM_CLOSING)) {
942 		mutex_exit(&rmp->rm_lock);
943 		putnext(q, mp);
944 	} else {
945 		/*
946 		 * canputnext failed again and the stream is not closing.
947 		 * Place the message on the queue and let the service
948 		 * procedure handle the message.
949 		 */
950 		mutex_exit(&rmp->rm_lock);
951 		(void) putq(q, mp);
952 	}
953 }
954 
955 static void
956 rpcmodwput_other(queue_t *q, mblk_t *mp)
957 {
958 	struct rpcm	*rmp;
959 	struct iocblk	*iocp;
960 
961 	rmp = (struct rpcm *)q->q_ptr;
962 	ASSERT(rmp != NULL);
963 
964 	switch (mp->b_datap->db_type) {
965 		case M_IOCTL:
966 			iocp = (struct iocblk *)mp->b_rptr;
967 			ASSERT(iocp != NULL);
968 			switch (iocp->ioc_cmd) {
969 				case RPC_CLIENT:
970 				case RPC_SERVER:
971 					mutex_enter(&rmp->rm_lock);
972 					rmp->rm_type = iocp->ioc_cmd;
973 					mutex_exit(&rmp->rm_lock);
974 					mp->b_datap->db_type = M_IOCACK;
975 					qreply(q, mp);
976 					return;
977 				default:
978 				/*
979 				 * pass the ioctl downstream and hope someone
980 				 * down there knows how to handle it.
981 				 */
982 					putnext(q, mp);
983 					return;
984 			}
985 		default:
986 			break;
987 	}
988 	/*
989 	 * This is something we definitely do not know how to handle, just
990 	 * pass the message downstream
991 	 */
992 	putnext(q, mp);
993 }
994 
995 /*
996  * Module write service procedure. This is called by downstream modules
997  * for back enabling during flow control.
998  */
999 void
1000 rpcmodwsrv(queue_t *q)
1001 {
1002 	struct rpcm	*rmp;
1003 	mblk_t		*mp = NULL;
1004 
1005 	rmp = (struct rpcm *)q->q_ptr;
1006 	ASSERT(rmp != NULL);
1007 
1008 	/*
1009 	 * Get messages that may be queued and send them down stream
1010 	 */
1011 	while ((mp = getq(q)) != NULL) {
1012 		/*
1013 		 * Optimize the service procedure for the server-side, by
1014 		 * avoiding a call to canputnext().
1015 		 */
1016 		if (rmp->rm_type == RPC_SERVER || canputnext(q)) {
1017 			putnext(q, mp);
1018 			continue;
1019 		}
1020 		(void) putbq(q, mp);
1021 		return;
1022 	}
1023 }
1024 
1025 static void
1026 rpcmod_release(queue_t *q, mblk_t *bp)
1027 {
1028 	struct rpcm *rmp;
1029 
1030 	/*
1031 	 * For now, just free the message.
1032 	 */
1033 	if (bp)
1034 		freemsg(bp);
1035 	rmp = (struct rpcm *)q->q_ptr;
1036 
1037 	mutex_enter(&rmp->rm_lock);
1038 	rmp->rm_ref--;
1039 
1040 	if (rmp->rm_ref == 0 && (rmp->rm_state & RM_CLOSING)) {
1041 		cv_broadcast(&rmp->rm_cwait);
1042 	}
1043 
1044 	mutex_exit(&rmp->rm_lock);
1045 }
1046 
1047 /*
1048  * This part of rpcmod is pushed on a connection-oriented transport for use
1049  * by RPC.  It serves to bypass the Stream head, implements
1050  * the record marking protocol, and dispatches incoming RPC messages.
1051  */
1052 
1053 /* Default idle timer values */
1054 #define	MIR_CLNT_IDLE_TIMEOUT	(5 * (60 * 1000L))	/* 5 minutes */
1055 #define	MIR_SVC_IDLE_TIMEOUT	(6 * (60 * 1000L))	/* 6 minutes */
1056 #define	MIR_SVC_ORDREL_TIMEOUT	(10 * (60 * 1000L))	/* 10 minutes */
1057 #define	MIR_LASTFRAG	0x80000000	/* Record marker */
1058 
1059 #define	DLEN(mp) (mp->b_cont ? msgdsize(mp) : (mp->b_wptr - mp->b_rptr))
1060 
1061 #define	MIR_SVC_QUIESCED(mir)	\
1062 	(mir->mir_ref_cnt == 0 && mir->mir_inrservice == 0)
1063 
1064 #define	MIR_CLEAR_INRSRV(mir_ptr)	{	\
1065 	(mir_ptr)->mir_inrservice = 0;	\
1066 	if ((mir_ptr)->mir_type == RPC_SERVER &&	\
1067 		(mir_ptr)->mir_closing)	\
1068 		cv_signal(&(mir_ptr)->mir_condvar);	\
1069 }
1070 
1071 /*
1072  * Don't block service procedure (and mir_close) if
1073  * we are in the process of closing.
1074  */
1075 #define	MIR_WCANPUTNEXT(mir_ptr, write_q)	\
1076 	(canputnext(write_q) || ((mir_ptr)->mir_svc_no_more_msgs == 1))
1077 
1078 static int	mir_clnt_dup_request(queue_t *q, mblk_t *mp);
1079 static void	mir_rput_proto(queue_t *q, mblk_t *mp);
1080 static int	mir_svc_policy_notify(queue_t *q, int event);
1081 static void	mir_svc_release(queue_t *wq, mblk_t *mp);
1082 static void	mir_svc_start(queue_t *wq);
1083 static void	mir_svc_idle_start(queue_t *, mir_t *);
1084 static void	mir_svc_idle_stop(queue_t *, mir_t *);
1085 static void	mir_svc_start_close(queue_t *, mir_t *);
1086 static void	mir_clnt_idle_do_stop(queue_t *);
1087 static void	mir_clnt_idle_stop(queue_t *, mir_t *);
1088 static void	mir_clnt_idle_start(queue_t *, mir_t *);
1089 static void	mir_wput(queue_t *q, mblk_t *mp);
1090 static void	mir_wput_other(queue_t *q, mblk_t *mp);
1091 static void	mir_wsrv(queue_t *q);
1092 static	void	mir_disconnect(queue_t *, mir_t *ir);
1093 static	int	mir_check_len(queue_t *, int32_t, mblk_t *);
1094 static	void	mir_timer(void *);
1095 
1096 extern void	(*mir_rele)(queue_t *, mblk_t *);
1097 extern void	(*mir_start)(queue_t *);
1098 extern void	(*clnt_stop_idle)(queue_t *);
1099 
1100 clock_t	clnt_idle_timeout = MIR_CLNT_IDLE_TIMEOUT;
1101 clock_t	svc_idle_timeout = MIR_SVC_IDLE_TIMEOUT;
1102 
1103 /*
1104  * Timeout for subsequent notifications of idle connection.  This is
1105  * typically used to clean up after a wedged orderly release.
1106  */
1107 clock_t	svc_ordrel_timeout = MIR_SVC_ORDREL_TIMEOUT; /* milliseconds */
1108 
1109 extern	uint_t	*clnt_max_msg_sizep;
1110 extern	uint_t	*svc_max_msg_sizep;
1111 uint_t	clnt_max_msg_size = RPC_MAXDATASIZE;
1112 uint_t	svc_max_msg_size = RPC_MAXDATASIZE;
1113 uint_t	mir_krpc_cell_null;
1114 
1115 static void
1116 mir_timer_stop(mir_t *mir)
1117 {
1118 	timeout_id_t tid;
1119 
1120 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1121 
1122 	/*
1123 	 * Since the mir_mutex lock needs to be released to call
1124 	 * untimeout(), we need to make sure that no other thread
1125 	 * can start/stop the timer (changing mir_timer_id) during
1126 	 * that time.  The mir_timer_call bit and the mir_timer_cv
1127 	 * condition variable are used to synchronize this.  Setting
1128 	 * mir_timer_call also tells mir_timer() (refer to the comments
1129 	 * in mir_timer()) that it does not need to do anything.
1130 	 */
1131 	while (mir->mir_timer_call)
1132 		cv_wait(&mir->mir_timer_cv, &mir->mir_mutex);
1133 	mir->mir_timer_call = B_TRUE;
1134 
1135 	if ((tid = mir->mir_timer_id) != 0) {
1136 		mir->mir_timer_id = 0;
1137 		mutex_exit(&mir->mir_mutex);
1138 		(void) untimeout(tid);
1139 		mutex_enter(&mir->mir_mutex);
1140 	}
1141 	mir->mir_timer_call = B_FALSE;
1142 	cv_broadcast(&mir->mir_timer_cv);
1143 }
1144 
1145 static void
1146 mir_timer_start(queue_t *q, mir_t *mir, clock_t intrvl)
1147 {
1148 	timeout_id_t tid;
1149 
1150 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1151 
1152 	while (mir->mir_timer_call)
1153 		cv_wait(&mir->mir_timer_cv, &mir->mir_mutex);
1154 	mir->mir_timer_call = B_TRUE;
1155 
1156 	if ((tid = mir->mir_timer_id) != 0) {
1157 		mutex_exit(&mir->mir_mutex);
1158 		(void) untimeout(tid);
1159 		mutex_enter(&mir->mir_mutex);
1160 	}
1161 	/* Only start the timer when it is not closing. */
1162 	if (!mir->mir_closing) {
1163 		mir->mir_timer_id = timeout(mir_timer, q,
1164 		    MSEC_TO_TICK(intrvl));
1165 	}
1166 	mir->mir_timer_call = B_FALSE;
1167 	cv_broadcast(&mir->mir_timer_cv);
1168 }
1169 
1170 static int
1171 mir_clnt_dup_request(queue_t *q, mblk_t *mp)
1172 {
1173 	mblk_t  *mp1;
1174 	uint32_t  new_xid;
1175 	uint32_t  old_xid;
1176 
1177 	ASSERT(MUTEX_HELD(&((mir_t *)q->q_ptr)->mir_mutex));
1178 	new_xid = BE32_TO_U32(&mp->b_rptr[4]);
1179 	/*
1180 	 * This loop is a bit tacky -- it walks the STREAMS list of
1181 	 * flow-controlled messages.
1182 	 */
1183 	if ((mp1 = q->q_first) != NULL) {
1184 		do {
1185 			old_xid = BE32_TO_U32(&mp1->b_rptr[4]);
1186 			if (new_xid == old_xid)
1187 				return (1);
1188 		} while ((mp1 = mp1->b_next) != NULL);
1189 	}
1190 	return (0);
1191 }
1192 
1193 static int
1194 mir_close(queue_t *q)
1195 {
1196 	mir_t	*mir = q->q_ptr;
1197 	mblk_t	*mp;
1198 	bool_t queue_cleaned = FALSE;
1199 
1200 	RPCLOG(32, "rpcmod: mir_close of q 0x%p\n", (void *)q);
1201 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1202 	mutex_enter(&mir->mir_mutex);
1203 	if ((mp = mir->mir_head_mp) != NULL) {
1204 		mir->mir_head_mp = NULL;
1205 		mir->mir_tail_mp = NULL;
1206 		freemsg(mp);
1207 	}
1208 	/*
1209 	 * Set mir_closing so we get notified when MIR_SVC_QUIESCED()
1210 	 * is TRUE.  And mir_timer_start() won't start the timer again.
1211 	 */
1212 	mir->mir_closing = B_TRUE;
1213 	mir_timer_stop(mir);
1214 
1215 	if (mir->mir_type == RPC_SERVER) {
1216 		flushq(q, FLUSHDATA);	/* Ditch anything waiting on read q */
1217 
1218 		/*
1219 		 * This will prevent more requests from arriving and
1220 		 * will force rpcmod to ignore flow control.
1221 		 */
1222 		mir_svc_start_close(WR(q), mir);
1223 
1224 		while ((!MIR_SVC_QUIESCED(mir)) || mir->mir_inwservice == 1) {
1225 
1226 			if (mir->mir_ref_cnt && !mir->mir_inrservice &&
1227 			    (queue_cleaned == FALSE)) {
1228 				/*
1229 				 * call into SVC to clean the queue
1230 				 */
1231 				mutex_exit(&mir->mir_mutex);
1232 				svc_queueclean(q);
1233 				queue_cleaned = TRUE;
1234 				mutex_enter(&mir->mir_mutex);
1235 				continue;
1236 			}
1237 
1238 			/*
1239 			 * Bugid 1253810 - Force the write service
1240 			 * procedure to send its messages, regardless
1241 			 * whether the downstream  module is ready
1242 			 * to accept data.
1243 			 */
1244 			if (mir->mir_inwservice == 1)
1245 				qenable(WR(q));
1246 
1247 			cv_wait(&mir->mir_condvar, &mir->mir_mutex);
1248 		}
1249 
1250 		mutex_exit(&mir->mir_mutex);
1251 		qprocsoff(q);
1252 
1253 		/* Notify KRPC that this stream is going away. */
1254 		svc_queueclose(q);
1255 	} else {
1256 		mutex_exit(&mir->mir_mutex);
1257 		qprocsoff(q);
1258 	}
1259 
1260 	mutex_destroy(&mir->mir_mutex);
1261 	cv_destroy(&mir->mir_condvar);
1262 	cv_destroy(&mir->mir_timer_cv);
1263 	kmem_free(mir, sizeof (mir_t));
1264 	return (0);
1265 }
1266 
1267 /*
1268  * This is server side only (RPC_SERVER).
1269  *
1270  * Exit idle mode.
1271  */
1272 static void
1273 mir_svc_idle_stop(queue_t *q, mir_t *mir)
1274 {
1275 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1276 	ASSERT((q->q_flag & QREADR) == 0);
1277 	ASSERT(mir->mir_type == RPC_SERVER);
1278 	RPCLOG(16, "rpcmod: mir_svc_idle_stop of q 0x%p\n", (void *)q);
1279 
1280 	mir_timer_stop(mir);
1281 }
1282 
1283 /*
1284  * This is server side only (RPC_SERVER).
1285  *
1286  * Start idle processing, which will include setting idle timer if the
1287  * stream is not being closed.
1288  */
1289 static void
1290 mir_svc_idle_start(queue_t *q, mir_t *mir)
1291 {
1292 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1293 	ASSERT((q->q_flag & QREADR) == 0);
1294 	ASSERT(mir->mir_type == RPC_SERVER);
1295 	RPCLOG(16, "rpcmod: mir_svc_idle_start q 0x%p\n", (void *)q);
1296 
1297 	/*
1298 	 * Don't re-start idle timer if we are closing queues.
1299 	 */
1300 	if (mir->mir_closing) {
1301 		RPCLOG(16, "mir_svc_idle_start - closing: 0x%p\n",
1302 		    (void *)q);
1303 
1304 		/*
1305 		 * We will call mir_svc_idle_start() whenever MIR_SVC_QUIESCED()
1306 		 * is true.  When it is true, and we are in the process of
1307 		 * closing the stream, signal any thread waiting in
1308 		 * mir_close().
1309 		 */
1310 		if (mir->mir_inwservice == 0)
1311 			cv_signal(&mir->mir_condvar);
1312 
1313 	} else {
1314 		RPCLOG(16, "mir_svc_idle_start - reset %s timer\n",
1315 		    mir->mir_ordrel_pending ? "ordrel" : "normal");
1316 		/*
1317 		 * Normal condition, start the idle timer.  If an orderly
1318 		 * release has been sent, set the timeout to wait for the
1319 		 * client to close its side of the connection.  Otherwise,
1320 		 * use the normal idle timeout.
1321 		 */
1322 		mir_timer_start(q, mir, mir->mir_ordrel_pending ?
1323 		    svc_ordrel_timeout : mir->mir_idle_timeout);
1324 	}
1325 }
1326 
1327 /* ARGSUSED */
1328 static int
1329 mir_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
1330 {
1331 	mir_t	*mir;
1332 
1333 	RPCLOG(32, "rpcmod: mir_open of q 0x%p\n", (void *)q);
1334 	/* Set variables used directly by KRPC. */
1335 	if (!mir_rele)
1336 		mir_rele = mir_svc_release;
1337 	if (!mir_start)
1338 		mir_start = mir_svc_start;
1339 	if (!clnt_stop_idle)
1340 		clnt_stop_idle = mir_clnt_idle_do_stop;
1341 	if (!clnt_max_msg_sizep)
1342 		clnt_max_msg_sizep = &clnt_max_msg_size;
1343 	if (!svc_max_msg_sizep)
1344 		svc_max_msg_sizep = &svc_max_msg_size;
1345 
1346 	/* Allocate a zero'ed out mir structure for this stream. */
1347 	mir = kmem_zalloc(sizeof (mir_t), KM_SLEEP);
1348 
1349 	/*
1350 	 * We set hold inbound here so that incoming messages will
1351 	 * be held on the read-side queue until the stream is completely
1352 	 * initialized with a RPC_CLIENT or RPC_SERVER ioctl.  During
1353 	 * the ioctl processing, the flag is cleared and any messages that
1354 	 * arrived between the open and the ioctl are delivered to KRPC.
1355 	 *
1356 	 * Early data should never arrive on a client stream since
1357 	 * servers only respond to our requests and we do not send any.
1358 	 * until after the stream is initialized.  Early data is
1359 	 * very common on a server stream where the client will start
1360 	 * sending data as soon as the connection is made (and this
1361 	 * is especially true with TCP where the protocol accepts the
1362 	 * connection before nfsd or KRPC is notified about it).
1363 	 */
1364 
1365 	mir->mir_hold_inbound = 1;
1366 
1367 	/*
1368 	 * Start the record marker looking for a 4-byte header.  When
1369 	 * this length is negative, it indicates that rpcmod is looking
1370 	 * for bytes to consume for the record marker header.  When it
1371 	 * is positive, it holds the number of bytes that have arrived
1372 	 * for the current fragment and are being held in mir_header_mp.
1373 	 */
1374 
1375 	mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
1376 
1377 	mir->mir_zoneid = rpc_zoneid();
1378 	mutex_init(&mir->mir_mutex, NULL, MUTEX_DEFAULT, NULL);
1379 	cv_init(&mir->mir_condvar, NULL, CV_DRIVER, NULL);
1380 	cv_init(&mir->mir_timer_cv, NULL, CV_DRIVER, NULL);
1381 
1382 	q->q_ptr = (char *)mir;
1383 	WR(q)->q_ptr = (char *)mir;
1384 
1385 	/*
1386 	 * We noenable the read-side queue because we don't want it
1387 	 * automatically enabled by putq.  We enable it explicitly
1388 	 * in mir_wsrv when appropriate. (See additional comments on
1389 	 * flow control at the beginning of mir_rsrv.)
1390 	 */
1391 	noenable(q);
1392 
1393 	qprocson(q);
1394 	return (0);
1395 }
1396 
1397 /*
1398  * Read-side put routine for both the client and server side.  Does the
1399  * record marking for incoming RPC messages, and when complete, dispatches
1400  * the message to either the client or server.
1401  */
1402 static void
1403 mir_rput(queue_t *q, mblk_t *mp)
1404 {
1405 	int	excess;
1406 	int32_t	frag_len, frag_header;
1407 	mblk_t	*cont_mp, *head_mp, *tail_mp, *mp1;
1408 	mir_t	*mir = q->q_ptr;
1409 	boolean_t stop_timer = B_FALSE;
1410 
1411 	ASSERT(mir != NULL);
1412 
1413 	/*
1414 	 * If the stream has not been set up as a RPC_CLIENT or RPC_SERVER
1415 	 * with the corresponding ioctl, then don't accept
1416 	 * any inbound data.  This should never happen for streams
1417 	 * created by nfsd or client-side KRPC because they are careful
1418 	 * to set the mode of the stream before doing anything else.
1419 	 */
1420 	if (mir->mir_type == 0) {
1421 		freemsg(mp);
1422 		return;
1423 	}
1424 
1425 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1426 
1427 	switch (mp->b_datap->db_type) {
1428 	case M_DATA:
1429 		break;
1430 	case M_PROTO:
1431 	case M_PCPROTO:
1432 		if (MBLKL(mp) < sizeof (t_scalar_t)) {
1433 			RPCLOG(1, "mir_rput: runt TPI message (%d bytes)\n",
1434 			    (int)MBLKL(mp));
1435 			freemsg(mp);
1436 			return;
1437 		}
1438 		if (((union T_primitives *)mp->b_rptr)->type != T_DATA_IND) {
1439 			mir_rput_proto(q, mp);
1440 			return;
1441 		}
1442 
1443 		/* Throw away the T_DATA_IND block and continue with data. */
1444 		mp1 = mp;
1445 		mp = mp->b_cont;
1446 		freeb(mp1);
1447 		break;
1448 	case M_SETOPTS:
1449 		/*
1450 		 * If a module on the stream is trying set the Stream head's
1451 		 * high water mark, then set our hiwater to the requested
1452 		 * value.  We are the "stream head" for all inbound
1453 		 * data messages since messages are passed directly to KRPC.
1454 		 */
1455 		if (MBLKL(mp) >= sizeof (struct stroptions)) {
1456 			struct stroptions	*stropts;
1457 
1458 			stropts = (struct stroptions *)mp->b_rptr;
1459 			if ((stropts->so_flags & SO_HIWAT) &&
1460 			    !(stropts->so_flags & SO_BAND)) {
1461 				(void) strqset(q, QHIWAT, 0, stropts->so_hiwat);
1462 			}
1463 		}
1464 		putnext(q, mp);
1465 		return;
1466 	case M_FLUSH:
1467 		RPCLOG(32, "mir_rput: ignoring M_FLUSH %x ", *mp->b_rptr);
1468 		RPCLOG(32, "on q 0x%p\n", (void *)q);
1469 		putnext(q, mp);
1470 		return;
1471 	default:
1472 		putnext(q, mp);
1473 		return;
1474 	}
1475 
1476 	mutex_enter(&mir->mir_mutex);
1477 
1478 	/*
1479 	 * If this connection is closing, don't accept any new messages.
1480 	 */
1481 	if (mir->mir_svc_no_more_msgs) {
1482 		ASSERT(mir->mir_type == RPC_SERVER);
1483 		mutex_exit(&mir->mir_mutex);
1484 		freemsg(mp);
1485 		return;
1486 	}
1487 
1488 	/* Get local copies for quicker access. */
1489 	frag_len = mir->mir_frag_len;
1490 	frag_header = mir->mir_frag_header;
1491 	head_mp = mir->mir_head_mp;
1492 	tail_mp = mir->mir_tail_mp;
1493 
1494 	/* Loop, processing each message block in the mp chain separately. */
1495 	do {
1496 		cont_mp = mp->b_cont;
1497 		mp->b_cont = NULL;
1498 
1499 		/*
1500 		 * If frag_len is negative, we're still in the process of
1501 		 * building frag_header -- try to complete it with this mblk.
1502 		 */
1503 		while (frag_len < 0 && mp->b_rptr < mp->b_wptr) {
1504 			frag_len++;
1505 			frag_header <<= 8;
1506 			frag_header += *mp->b_rptr++;
1507 		}
1508 
1509 		if (MBLKL(mp) == 0) {
1510 			/*
1511 			 * This was either a zero-length mblk or we consumed
1512 			 * it while trying to complete the fragment header.
1513 			 * In either case, free it and move on.
1514 			 */
1515 			freeb(mp);
1516 			continue;
1517 		}
1518 
1519 		ASSERT(frag_len >= 0);
1520 
1521 		/*
1522 		 * Now frag_header has the number of bytes in this fragment
1523 		 * and we're just waiting to collect them all.  Chain our
1524 		 * latest mblk onto the list and see if we now have enough
1525 		 * bytes to complete the fragment.
1526 		 */
1527 		if (head_mp == NULL) {
1528 			ASSERT(tail_mp == NULL);
1529 			head_mp = tail_mp = mp;
1530 		} else {
1531 			tail_mp->b_cont = mp;
1532 			tail_mp = mp;
1533 		}
1534 
1535 		frag_len += MBLKL(mp);
1536 		excess = frag_len - (frag_header & ~MIR_LASTFRAG);
1537 		if (excess < 0) {
1538 			/*
1539 			 * We still haven't received enough data to complete
1540 			 * the fragment, so continue on to the next mblk.
1541 			 */
1542 			continue;
1543 		}
1544 
1545 		/*
1546 		 * We've got a complete fragment.  If there are excess bytes,
1547 		 * then they're part of the next fragment's header (of either
1548 		 * this RPC message or the next RPC message).  Split that part
1549 		 * into its own mblk so that we can safely freeb() it when
1550 		 * building frag_header above.
1551 		 */
1552 		if (excess > 0) {
1553 			if ((mp1 = dupb(mp)) == NULL &&
1554 			    (mp1 = copyb(mp)) == NULL) {
1555 				freemsg(head_mp);
1556 				freemsg(cont_mp);
1557 				RPCLOG0(1, "mir_rput: dupb/copyb failed\n");
1558 				mir->mir_frag_header = 0;
1559 				mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
1560 				mir->mir_head_mp = NULL;
1561 				mir->mir_tail_mp = NULL;
1562 				mir_disconnect(q, mir);	/* drops mir_mutex */
1563 				return;
1564 			}
1565 
1566 			/*
1567 			 * Relink the message chain so that the next mblk is
1568 			 * the next fragment header, followed by the rest of
1569 			 * the message chain.
1570 			 */
1571 			mp1->b_cont = cont_mp;
1572 			cont_mp = mp1;
1573 
1574 			/*
1575 			 * Data in the new mblk begins at the next fragment,
1576 			 * and data in the old mblk ends at the next fragment.
1577 			 */
1578 			mp1->b_rptr = mp1->b_wptr - excess;
1579 			mp->b_wptr -= excess;
1580 		}
1581 
1582 		/*
1583 		 * Reset frag_len and frag_header for the next fragment.
1584 		 */
1585 		frag_len = -(int32_t)sizeof (uint32_t);
1586 		if (!(frag_header & MIR_LASTFRAG)) {
1587 			/*
1588 			 * The current fragment is complete, but more
1589 			 * fragments need to be processed before we can
1590 			 * pass along the RPC message headed at head_mp.
1591 			 */
1592 			frag_header = 0;
1593 			continue;
1594 		}
1595 		frag_header = 0;
1596 
1597 		/*
1598 		 * We've got a complete RPC message; pass it to the
1599 		 * appropriate consumer.
1600 		 */
1601 		switch (mir->mir_type) {
1602 		case RPC_CLIENT:
1603 			if (clnt_dispatch_notify(head_mp, mir->mir_zoneid)) {
1604 				/*
1605 				 * Mark this stream as active.  This marker
1606 				 * is used in mir_timer().
1607 				 */
1608 				mir->mir_clntreq = 1;
1609 				mir->mir_use_timestamp = lbolt;
1610 			} else {
1611 				freemsg(head_mp);
1612 			}
1613 			break;
1614 
1615 		case RPC_SERVER:
1616 			/*
1617 			 * Check for flow control before passing the
1618 			 * message to KRPC.
1619 			 */
1620 			if (!mir->mir_hold_inbound) {
1621 				if (mir->mir_krpc_cell) {
1622 					/*
1623 					 * If the reference count is 0
1624 					 * (not including this request),
1625 					 * then the stream is transitioning
1626 					 * from idle to non-idle.  In this case,
1627 					 * we cancel the idle timer.
1628 					 */
1629 					if (mir->mir_ref_cnt++ == 0)
1630 						stop_timer = B_TRUE;
1631 					if (mir_check_len(q,
1632 					    (int32_t)msgdsize(mp), mp))
1633 						return;
1634 					svc_queuereq(q, head_mp); /* to KRPC */
1635 				} else {
1636 					/*
1637 					 * Count # of times this happens. Should
1638 					 * be never, but experience shows
1639 					 * otherwise.
1640 					 */
1641 					mir_krpc_cell_null++;
1642 					freemsg(head_mp);
1643 				}
1644 			} else {
1645 				/*
1646 				 * If the outbound side of the stream is
1647 				 * flow controlled, then hold this message
1648 				 * until client catches up. mir_hold_inbound
1649 				 * is set in mir_wput and cleared in mir_wsrv.
1650 				 */
1651 				(void) putq(q, head_mp);
1652 				mir->mir_inrservice = B_TRUE;
1653 			}
1654 			break;
1655 		default:
1656 			RPCLOG(1, "mir_rput: unknown mir_type %d\n",
1657 			    mir->mir_type);
1658 			freemsg(head_mp);
1659 			break;
1660 		}
1661 
1662 		/*
1663 		 * Reset the chain since we're starting on a new RPC message.
1664 		 */
1665 		head_mp = tail_mp = NULL;
1666 	} while ((mp = cont_mp) != NULL);
1667 
1668 	/*
1669 	 * Sanity check the message length; if it's too large mir_check_len()
1670 	 * will shutdown the connection, drop mir_mutex, and return non-zero.
1671 	 */
1672 	if (head_mp != NULL && mir->mir_setup_complete &&
1673 	    mir_check_len(q, frag_len, head_mp))
1674 		return;
1675 
1676 	/* Save our local copies back in the mir structure. */
1677 	mir->mir_frag_header = frag_header;
1678 	mir->mir_frag_len = frag_len;
1679 	mir->mir_head_mp = head_mp;
1680 	mir->mir_tail_mp = tail_mp;
1681 
1682 	/*
1683 	 * The timer is stopped after the whole message chain is processed.
1684 	 * The reason is that stopping the timer releases the mir_mutex
1685 	 * lock temporarily.  This means that the request can be serviced
1686 	 * while we are still processing the message chain.  This is not
1687 	 * good.  So we stop the timer here instead.
1688 	 *
1689 	 * Note that if the timer fires before we stop it, it will not
1690 	 * do any harm as MIR_SVC_QUIESCED() is false and mir_timer()
1691 	 * will just return.
1692 	 */
1693 	if (stop_timer) {
1694 		RPCLOG(16, "mir_rput: stopping idle timer on 0x%p because "
1695 		    "ref cnt going to non zero\n", (void *)WR(q));
1696 		mir_svc_idle_stop(WR(q), mir);
1697 	}
1698 	mutex_exit(&mir->mir_mutex);
1699 }
1700 
1701 static void
1702 mir_rput_proto(queue_t *q, mblk_t *mp)
1703 {
1704 	mir_t	*mir = (mir_t *)q->q_ptr;
1705 	uint32_t	type;
1706 	uint32_t reason = 0;
1707 
1708 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1709 
1710 	type = ((union T_primitives *)mp->b_rptr)->type;
1711 	switch (mir->mir_type) {
1712 	case RPC_CLIENT:
1713 		switch (type) {
1714 		case T_DISCON_IND:
1715 			reason = ((struct T_discon_ind *)
1716 			    (mp->b_rptr))->DISCON_reason;
1717 			/*FALLTHROUGH*/
1718 		case T_ORDREL_IND:
1719 			mutex_enter(&mir->mir_mutex);
1720 			if (mir->mir_head_mp) {
1721 				freemsg(mir->mir_head_mp);
1722 				mir->mir_head_mp = (mblk_t *)0;
1723 				mir->mir_tail_mp = (mblk_t *)0;
1724 			}
1725 			/*
1726 			 * We are disconnecting, but not necessarily
1727 			 * closing. By not closing, we will fail to
1728 			 * pick up a possibly changed global timeout value,
1729 			 * unless we store it now.
1730 			 */
1731 			mir->mir_idle_timeout = clnt_idle_timeout;
1732 			mir_clnt_idle_stop(WR(q), mir);
1733 
1734 			/*
1735 			 * Even though we are unconnected, we still
1736 			 * leave the idle timer going on the client. The
1737 			 * reason for is that if we've disconnected due
1738 			 * to a server-side disconnect, reset, or connection
1739 			 * timeout, there is a possibility the client may
1740 			 * retry the RPC request. This retry needs to done on
1741 			 * the same bound address for the server to interpret
1742 			 * it as such. However, we don't want
1743 			 * to wait forever for that possibility. If the
1744 			 * end-point stays unconnected for mir_idle_timeout
1745 			 * units of time, then that is a signal to the
1746 			 * connection manager to give up waiting for the
1747 			 * application (eg. NFS) to send a retry.
1748 			 */
1749 			mir_clnt_idle_start(WR(q), mir);
1750 			mutex_exit(&mir->mir_mutex);
1751 			clnt_dispatch_notifyall(WR(q), type, reason);
1752 			freemsg(mp);
1753 			return;
1754 		case T_ERROR_ACK:
1755 		{
1756 			struct T_error_ack	*terror;
1757 
1758 			terror = (struct T_error_ack *)mp->b_rptr;
1759 			RPCLOG(1, "mir_rput_proto T_ERROR_ACK for queue 0x%p",
1760 			    (void *)q);
1761 			RPCLOG(1, " ERROR_prim: %s,",
1762 			    rpc_tpiprim2name(terror->ERROR_prim));
1763 			RPCLOG(1, " TLI_error: %s,",
1764 			    rpc_tpierr2name(terror->TLI_error));
1765 			RPCLOG(1, " UNIX_error: %d\n", terror->UNIX_error);
1766 			if (terror->ERROR_prim == T_DISCON_REQ)  {
1767 				clnt_dispatch_notifyall(WR(q), type, reason);
1768 				freemsg(mp);
1769 				return;
1770 			} else {
1771 				if (clnt_dispatch_notifyconn(WR(q), mp))
1772 					return;
1773 			}
1774 			break;
1775 		}
1776 		case T_OK_ACK:
1777 		{
1778 			struct T_ok_ack	*tok = (struct T_ok_ack *)mp->b_rptr;
1779 
1780 			if (tok->CORRECT_prim == T_DISCON_REQ) {
1781 				clnt_dispatch_notifyall(WR(q), type, reason);
1782 				freemsg(mp);
1783 				return;
1784 			} else {
1785 				if (clnt_dispatch_notifyconn(WR(q), mp))
1786 					return;
1787 			}
1788 			break;
1789 		}
1790 		case T_CONN_CON:
1791 		case T_INFO_ACK:
1792 		case T_OPTMGMT_ACK:
1793 			if (clnt_dispatch_notifyconn(WR(q), mp))
1794 				return;
1795 			break;
1796 		case T_BIND_ACK:
1797 			break;
1798 		default:
1799 			RPCLOG(1, "mir_rput: unexpected message %d "
1800 			    "for KRPC client\n",
1801 			    ((union T_primitives *)mp->b_rptr)->type);
1802 			break;
1803 		}
1804 		break;
1805 
1806 	case RPC_SERVER:
1807 		switch (type) {
1808 		case T_BIND_ACK:
1809 		{
1810 			struct T_bind_ack	*tbind;
1811 
1812 			/*
1813 			 * If this is a listening stream, then shut
1814 			 * off the idle timer.
1815 			 */
1816 			tbind = (struct T_bind_ack *)mp->b_rptr;
1817 			if (tbind->CONIND_number > 0) {
1818 				mutex_enter(&mir->mir_mutex);
1819 				mir_svc_idle_stop(WR(q), mir);
1820 
1821 				/*
1822 				 * mark this as a listen endpoint
1823 				 * for special handling.
1824 				 */
1825 
1826 				mir->mir_listen_stream = 1;
1827 				mutex_exit(&mir->mir_mutex);
1828 			}
1829 			break;
1830 		}
1831 		case T_DISCON_IND:
1832 		case T_ORDREL_IND:
1833 			RPCLOG(16, "mir_rput_proto: got %s indication\n",
1834 			    type == T_DISCON_IND ? "disconnect"
1835 			    : "orderly release");
1836 
1837 			/*
1838 			 * For listen endpoint just pass
1839 			 * on the message.
1840 			 */
1841 
1842 			if (mir->mir_listen_stream)
1843 				break;
1844 
1845 			mutex_enter(&mir->mir_mutex);
1846 
1847 			/*
1848 			 * If client wants to break off connection, record
1849 			 * that fact.
1850 			 */
1851 			mir_svc_start_close(WR(q), mir);
1852 
1853 			/*
1854 			 * If we are idle, then send the orderly release
1855 			 * or disconnect indication to nfsd.
1856 			 */
1857 			if (MIR_SVC_QUIESCED(mir)) {
1858 				mutex_exit(&mir->mir_mutex);
1859 				break;
1860 			}
1861 
1862 			RPCLOG(16, "mir_rput_proto: not idle, so "
1863 			    "disconnect/ord rel indication not passed "
1864 			    "upstream on 0x%p\n", (void *)q);
1865 
1866 			/*
1867 			 * Hold the indication until we get idle
1868 			 * If there already is an indication stored,
1869 			 * replace it if the new one is a disconnect. The
1870 			 * reasoning is that disconnection takes less time
1871 			 * to process, and once a client decides to
1872 			 * disconnect, we should do that.
1873 			 */
1874 			if (mir->mir_svc_pend_mp) {
1875 				if (type == T_DISCON_IND) {
1876 					RPCLOG(16, "mir_rput_proto: replacing"
1877 					    " held disconnect/ord rel"
1878 					    " indication with disconnect on"
1879 					    " 0x%p\n", (void *)q);
1880 
1881 					freemsg(mir->mir_svc_pend_mp);
1882 					mir->mir_svc_pend_mp = mp;
1883 				} else {
1884 					RPCLOG(16, "mir_rput_proto: already "
1885 					    "held a disconnect/ord rel "
1886 					    "indication. freeing ord rel "
1887 					    "ind on 0x%p\n", (void *)q);
1888 					freemsg(mp);
1889 				}
1890 			} else
1891 				mir->mir_svc_pend_mp = mp;
1892 
1893 			mutex_exit(&mir->mir_mutex);
1894 			return;
1895 
1896 		default:
1897 			/* nfsd handles server-side non-data messages. */
1898 			break;
1899 		}
1900 		break;
1901 
1902 	default:
1903 		break;
1904 	}
1905 
1906 	putnext(q, mp);
1907 }
1908 
1909 /*
1910  * The server-side read queues are used to hold inbound messages while
1911  * outbound flow control is exerted.  When outbound flow control is
1912  * relieved, mir_wsrv qenables the read-side queue.  Read-side queues
1913  * are not enabled by STREAMS and are explicitly noenable'ed in mir_open.
1914  *
1915  * For the server side,  we have two types of messages queued. The first type
1916  * are messages that are ready to be XDR decoded and and then sent to the
1917  * RPC program's dispatch routine. The second type are "raw" messages that
1918  * haven't been processed, i.e. assembled from rpc record fragements into
1919  * full requests. The only time we will see the second type of message
1920  * queued is if we have a memory allocation failure while processing a
1921  * a raw message. The field mir_first_non_processed_mblk will mark the
1922  * first such raw message. So the flow for server side is:
1923  *
1924  *	- send processed queued messages to kRPC until we run out or find
1925  *	  one that needs additional processing because we were short on memory
1926  *	  earlier
1927  *	- process a message that was deferred because of lack of
1928  *	  memory
1929  *	- continue processing messages until the queue empties or we
1930  *	  have to stop because of lack of memory
1931  *	- during each of the above phase, if the queue is empty and
1932  *	  there are no pending messages that were passed to the RPC
1933  *	  layer, send upstream the pending disconnect/ordrel indication if
1934  *	  there is one
1935  *
1936  * The read-side queue is also enabled by a bufcall callback if dupmsg
1937  * fails in mir_rput.
1938  */
1939 static void
1940 mir_rsrv(queue_t *q)
1941 {
1942 	mir_t	*mir;
1943 	mblk_t	*mp;
1944 	mblk_t	*cmp = NULL;
1945 	boolean_t stop_timer = B_FALSE;
1946 
1947 	mir = (mir_t *)q->q_ptr;
1948 	mutex_enter(&mir->mir_mutex);
1949 
1950 	mp = NULL;
1951 	switch (mir->mir_type) {
1952 	case RPC_SERVER:
1953 		if (mir->mir_ref_cnt == 0)
1954 			mir->mir_hold_inbound = 0;
1955 		if (mir->mir_hold_inbound) {
1956 
1957 			ASSERT(cmp == NULL);
1958 			if (q->q_first == NULL) {
1959 
1960 				MIR_CLEAR_INRSRV(mir);
1961 
1962 				if (MIR_SVC_QUIESCED(mir)) {
1963 					cmp = mir->mir_svc_pend_mp;
1964 					mir->mir_svc_pend_mp = NULL;
1965 				}
1966 			}
1967 
1968 			mutex_exit(&mir->mir_mutex);
1969 
1970 			if (cmp != NULL) {
1971 				RPCLOG(16, "mir_rsrv: line %d: sending a held "
1972 				    "disconnect/ord rel indication upstream\n",
1973 				    __LINE__);
1974 				putnext(q, cmp);
1975 			}
1976 
1977 			return;
1978 		}
1979 		while (mp = getq(q)) {
1980 			if (mir->mir_krpc_cell &&
1981 			    (mir->mir_svc_no_more_msgs == 0)) {
1982 				/*
1983 				 * If we were idle, turn off idle timer since
1984 				 * we aren't idle any more.
1985 				 */
1986 				if (mir->mir_ref_cnt++ == 0)
1987 					stop_timer = B_TRUE;
1988 				if (mir_check_len(q,
1989 				    (int32_t)msgdsize(mp), mp))
1990 					return;
1991 				svc_queuereq(q, mp);
1992 			} else {
1993 				/*
1994 				 * Count # of times this happens. Should be
1995 				 * never, but experience shows otherwise.
1996 				 */
1997 				if (mir->mir_krpc_cell == NULL)
1998 					mir_krpc_cell_null++;
1999 				freemsg(mp);
2000 			}
2001 		}
2002 		break;
2003 	case RPC_CLIENT:
2004 		break;
2005 	default:
2006 		RPCLOG(1, "mir_rsrv: unexpected mir_type %d\n", mir->mir_type);
2007 
2008 		if (q->q_first == NULL)
2009 			MIR_CLEAR_INRSRV(mir);
2010 
2011 		mutex_exit(&mir->mir_mutex);
2012 
2013 		return;
2014 	}
2015 
2016 	/*
2017 	 * The timer is stopped after all the messages are processed.
2018 	 * The reason is that stopping the timer releases the mir_mutex
2019 	 * lock temporarily.  This means that the request can be serviced
2020 	 * while we are still processing the message queue.  This is not
2021 	 * good.  So we stop the timer here instead.
2022 	 */
2023 	if (stop_timer)  {
2024 		RPCLOG(16, "mir_rsrv stopping idle timer on 0x%p because ref "
2025 		    "cnt going to non zero\n", (void *)WR(q));
2026 		mir_svc_idle_stop(WR(q), mir);
2027 	}
2028 
2029 	if (q->q_first == NULL) {
2030 
2031 		MIR_CLEAR_INRSRV(mir);
2032 
2033 		ASSERT(cmp == NULL);
2034 		if (mir->mir_type == RPC_SERVER && MIR_SVC_QUIESCED(mir)) {
2035 			cmp = mir->mir_svc_pend_mp;
2036 			mir->mir_svc_pend_mp = NULL;
2037 		}
2038 
2039 		mutex_exit(&mir->mir_mutex);
2040 
2041 		if (cmp != NULL) {
2042 			RPCLOG(16, "mir_rsrv: line %d: sending a held "
2043 			    "disconnect/ord rel indication upstream\n",
2044 			    __LINE__);
2045 			putnext(q, cmp);
2046 		}
2047 
2048 		return;
2049 	}
2050 	mutex_exit(&mir->mir_mutex);
2051 }
2052 
2053 static int mir_svc_policy_fails;
2054 
2055 /*
2056  * Called to send an event code to nfsd/lockd so that it initiates
2057  * connection close.
2058  */
2059 static int
2060 mir_svc_policy_notify(queue_t *q, int event)
2061 {
2062 	mblk_t	*mp;
2063 #ifdef DEBUG
2064 	mir_t *mir = (mir_t *)q->q_ptr;
2065 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2066 #endif
2067 	ASSERT(q->q_flag & QREADR);
2068 
2069 	/*
2070 	 * Create an M_DATA message with the event code and pass it to the
2071 	 * Stream head (nfsd or whoever created the stream will consume it).
2072 	 */
2073 	mp = allocb(sizeof (int), BPRI_HI);
2074 
2075 	if (!mp) {
2076 
2077 		mir_svc_policy_fails++;
2078 		RPCLOG(16, "mir_svc_policy_notify: could not allocate event "
2079 		    "%d\n", event);
2080 		return (ENOMEM);
2081 	}
2082 
2083 	U32_TO_BE32(event, mp->b_rptr);
2084 	mp->b_wptr = mp->b_rptr + sizeof (int);
2085 	putnext(q, mp);
2086 	return (0);
2087 }
2088 
2089 /*
2090  * Server side: start the close phase. We want to get this rpcmod slot in an
2091  * idle state before mir_close() is called.
2092  */
2093 static void
2094 mir_svc_start_close(queue_t *wq, mir_t *mir)
2095 {
2096 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2097 	ASSERT((wq->q_flag & QREADR) == 0);
2098 	ASSERT(mir->mir_type == RPC_SERVER);
2099 
2100 
2101 	/*
2102 	 * Do not accept any more messages.
2103 	 */
2104 	mir->mir_svc_no_more_msgs = 1;
2105 
2106 	/*
2107 	 * Next two statements will make the read service procedure invoke
2108 	 * svc_queuereq() on everything stuck in the streams read queue.
2109 	 * It's not necessary because enabling the write queue will
2110 	 * have the same effect, but why not speed the process along?
2111 	 */
2112 	mir->mir_hold_inbound = 0;
2113 	qenable(RD(wq));
2114 
2115 	/*
2116 	 * Meanwhile force the write service procedure to send the
2117 	 * responses downstream, regardless of flow control.
2118 	 */
2119 	qenable(wq);
2120 }
2121 
2122 /*
2123  * This routine is called directly by KRPC after a request is completed,
2124  * whether a reply was sent or the request was dropped.
2125  */
2126 static void
2127 mir_svc_release(queue_t *wq, mblk_t *mp)
2128 {
2129 	mir_t   *mir = (mir_t *)wq->q_ptr;
2130 	mblk_t	*cmp = NULL;
2131 
2132 	ASSERT((wq->q_flag & QREADR) == 0);
2133 	if (mp)
2134 		freemsg(mp);
2135 
2136 	mutex_enter(&mir->mir_mutex);
2137 
2138 	/*
2139 	 * Start idle processing if this is the last reference.
2140 	 */
2141 	if ((mir->mir_ref_cnt == 1) && (mir->mir_inrservice == 0)) {
2142 
2143 		RPCLOG(16, "mir_svc_release starting idle timer on 0x%p "
2144 		    "because ref cnt is zero\n", (void *) wq);
2145 
2146 		cmp = mir->mir_svc_pend_mp;
2147 		mir->mir_svc_pend_mp = NULL;
2148 		mir_svc_idle_start(wq, mir);
2149 	}
2150 
2151 	mir->mir_ref_cnt--;
2152 	ASSERT(mir->mir_ref_cnt >= 0);
2153 
2154 	/*
2155 	 * Wake up the thread waiting to close.
2156 	 */
2157 
2158 	if ((mir->mir_ref_cnt == 0) && mir->mir_closing)
2159 		cv_signal(&mir->mir_condvar);
2160 
2161 	mutex_exit(&mir->mir_mutex);
2162 
2163 	if (cmp) {
2164 		RPCLOG(16, "mir_svc_release: sending a held "
2165 		    "disconnect/ord rel indication upstream on queue 0x%p\n",
2166 		    (void *)RD(wq));
2167 
2168 		putnext(RD(wq), cmp);
2169 	}
2170 }
2171 
2172 /*
2173  * This routine is called by server-side KRPC when it is ready to
2174  * handle inbound messages on the stream.
2175  */
2176 static void
2177 mir_svc_start(queue_t *wq)
2178 {
2179 	mir_t   *mir = (mir_t *)wq->q_ptr;
2180 
2181 	/*
2182 	 * no longer need to take the mir_mutex because the
2183 	 * mir_setup_complete field has been moved out of
2184 	 * the binary field protected by the mir_mutex.
2185 	 */
2186 
2187 	mir->mir_setup_complete = 1;
2188 	qenable(RD(wq));
2189 }
2190 
2191 /*
2192  * client side wrapper for stopping timer with normal idle timeout.
2193  */
2194 static void
2195 mir_clnt_idle_stop(queue_t *wq, mir_t *mir)
2196 {
2197 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2198 	ASSERT((wq->q_flag & QREADR) == 0);
2199 	ASSERT(mir->mir_type == RPC_CLIENT);
2200 
2201 	mir_timer_stop(mir);
2202 }
2203 
2204 /*
2205  * client side wrapper for stopping timer with normal idle timeout.
2206  */
2207 static void
2208 mir_clnt_idle_start(queue_t *wq, mir_t *mir)
2209 {
2210 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2211 	ASSERT((wq->q_flag & QREADR) == 0);
2212 	ASSERT(mir->mir_type == RPC_CLIENT);
2213 
2214 	mir_timer_start(wq, mir, mir->mir_idle_timeout);
2215 }
2216 
2217 /*
2218  * client side only. Forces rpcmod to stop sending T_ORDREL_REQs on
2219  * end-points that aren't connected.
2220  */
2221 static void
2222 mir_clnt_idle_do_stop(queue_t *wq)
2223 {
2224 	mir_t   *mir = (mir_t *)wq->q_ptr;
2225 
2226 	RPCLOG(1, "mir_clnt_idle_do_stop: wq 0x%p\n", (void *)wq);
2227 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2228 	mutex_enter(&mir->mir_mutex);
2229 	mir_clnt_idle_stop(wq, mir);
2230 	mutex_exit(&mir->mir_mutex);
2231 }
2232 
2233 /*
2234  * Timer handler.  It handles idle timeout and memory shortage problem.
2235  */
2236 static void
2237 mir_timer(void *arg)
2238 {
2239 	queue_t *wq = (queue_t *)arg;
2240 	mir_t *mir = (mir_t *)wq->q_ptr;
2241 	boolean_t notify;
2242 
2243 	mutex_enter(&mir->mir_mutex);
2244 
2245 	/*
2246 	 * mir_timer_call is set only when either mir_timer_[start|stop]
2247 	 * is progressing.  And mir_timer() can only be run while they
2248 	 * are progressing if the timer is being stopped.  So just
2249 	 * return.
2250 	 */
2251 	if (mir->mir_timer_call) {
2252 		mutex_exit(&mir->mir_mutex);
2253 		return;
2254 	}
2255 	mir->mir_timer_id = 0;
2256 
2257 	switch (mir->mir_type) {
2258 	case RPC_CLIENT:
2259 
2260 		/*
2261 		 * For clients, the timer fires at clnt_idle_timeout
2262 		 * intervals.  If the activity marker (mir_clntreq) is
2263 		 * zero, then the stream has been idle since the last
2264 		 * timer event and we notify KRPC.  If mir_clntreq is
2265 		 * non-zero, then the stream is active and we just
2266 		 * restart the timer for another interval.  mir_clntreq
2267 		 * is set to 1 in mir_wput for every request passed
2268 		 * downstream.
2269 		 *
2270 		 * If this was a memory shortage timer reset the idle
2271 		 * timeout regardless; the mir_clntreq will not be a
2272 		 * valid indicator.
2273 		 *
2274 		 * The timer is initially started in mir_wput during
2275 		 * RPC_CLIENT ioctl processing.
2276 		 *
2277 		 * The timer interval can be changed for individual
2278 		 * streams with the ND variable "mir_idle_timeout".
2279 		 */
2280 		if (mir->mir_clntreq > 0 && mir->mir_use_timestamp +
2281 		    MSEC_TO_TICK(mir->mir_idle_timeout) - lbolt >= 0) {
2282 			clock_t tout;
2283 
2284 			tout = mir->mir_idle_timeout -
2285 			    TICK_TO_MSEC(lbolt - mir->mir_use_timestamp);
2286 			if (tout < 0)
2287 				tout = 1000;
2288 #if 0
2289 			printf("mir_timer[%d < %d + %d]: reset client timer "
2290 			    "to %d (ms)\n", TICK_TO_MSEC(lbolt),
2291 			    TICK_TO_MSEC(mir->mir_use_timestamp),
2292 			    mir->mir_idle_timeout, tout);
2293 #endif
2294 			mir->mir_clntreq = 0;
2295 			mir_timer_start(wq, mir, tout);
2296 			mutex_exit(&mir->mir_mutex);
2297 			return;
2298 		}
2299 #if 0
2300 printf("mir_timer[%d]: doing client timeout\n", lbolt / hz);
2301 #endif
2302 		/*
2303 		 * We are disconnecting, but not necessarily
2304 		 * closing. By not closing, we will fail to
2305 		 * pick up a possibly changed global timeout value,
2306 		 * unless we store it now.
2307 		 */
2308 		mir->mir_idle_timeout = clnt_idle_timeout;
2309 		mir_clnt_idle_start(wq, mir);
2310 
2311 		mutex_exit(&mir->mir_mutex);
2312 		/*
2313 		 * We pass T_ORDREL_REQ as an integer value
2314 		 * to KRPC as the indication that the stream
2315 		 * is idle.  This is not a T_ORDREL_REQ message,
2316 		 * it is just a convenient value since we call
2317 		 * the same KRPC routine for T_ORDREL_INDs and
2318 		 * T_DISCON_INDs.
2319 		 */
2320 		clnt_dispatch_notifyall(wq, T_ORDREL_REQ, 0);
2321 		return;
2322 
2323 	case RPC_SERVER:
2324 
2325 		/*
2326 		 * For servers, the timer is only running when the stream
2327 		 * is really idle or memory is short.  The timer is started
2328 		 * by mir_wput when mir_type is set to RPC_SERVER and
2329 		 * by mir_svc_idle_start whenever the stream goes idle
2330 		 * (mir_ref_cnt == 0).  The timer is cancelled in
2331 		 * mir_rput whenever a new inbound request is passed to KRPC
2332 		 * and the stream was previously idle.
2333 		 *
2334 		 * The timer interval can be changed for individual
2335 		 * streams with the ND variable "mir_idle_timeout".
2336 		 *
2337 		 * If the stream is not idle do nothing.
2338 		 */
2339 		if (!MIR_SVC_QUIESCED(mir)) {
2340 			mutex_exit(&mir->mir_mutex);
2341 			return;
2342 		}
2343 
2344 		notify = !mir->mir_inrservice;
2345 		mutex_exit(&mir->mir_mutex);
2346 
2347 		/*
2348 		 * If there is no packet queued up in read queue, the stream
2349 		 * is really idle so notify nfsd to close it.
2350 		 */
2351 		if (notify) {
2352 			RPCLOG(16, "mir_timer: telling stream head listener "
2353 			    "to close stream (0x%p)\n", (void *) RD(wq));
2354 			(void) mir_svc_policy_notify(RD(wq), 1);
2355 		}
2356 		return;
2357 	default:
2358 		RPCLOG(1, "mir_timer: unexpected mir_type %d\n",
2359 		    mir->mir_type);
2360 		mutex_exit(&mir->mir_mutex);
2361 		return;
2362 	}
2363 }
2364 
2365 /*
2366  * Called by the RPC package to send either a call or a return, or a
2367  * transport connection request.  Adds the record marking header.
2368  */
2369 static void
2370 mir_wput(queue_t *q, mblk_t *mp)
2371 {
2372 	uint_t	frag_header;
2373 	mir_t	*mir = (mir_t *)q->q_ptr;
2374 	uchar_t	*rptr = mp->b_rptr;
2375 
2376 	if (!mir) {
2377 		freemsg(mp);
2378 		return;
2379 	}
2380 
2381 	if (mp->b_datap->db_type != M_DATA) {
2382 		mir_wput_other(q, mp);
2383 		return;
2384 	}
2385 
2386 	if (mir->mir_ordrel_pending == 1) {
2387 		freemsg(mp);
2388 		RPCLOG(16, "mir_wput wq 0x%p: got data after T_ORDREL_REQ\n",
2389 		    (void *)q);
2390 		return;
2391 	}
2392 
2393 	frag_header = (uint_t)DLEN(mp);
2394 	frag_header |= MIR_LASTFRAG;
2395 
2396 	/* Stick in the 4 byte record marking header. */
2397 	if ((rptr - mp->b_datap->db_base) < sizeof (uint32_t) ||
2398 	    !IS_P2ALIGNED(mp->b_rptr, sizeof (uint32_t))) {
2399 		/*
2400 		 * Since we know that M_DATA messages are created exclusively
2401 		 * by KRPC, we expect that KRPC will leave room for our header
2402 		 * and 4 byte align which is normal for XDR.
2403 		 * If KRPC (or someone else) does not cooperate, then we
2404 		 * just throw away the message.
2405 		 */
2406 		RPCLOG(1, "mir_wput: KRPC did not leave space for record "
2407 		    "fragment header (%d bytes left)\n",
2408 		    (int)(rptr - mp->b_datap->db_base));
2409 		freemsg(mp);
2410 		return;
2411 	}
2412 	rptr -= sizeof (uint32_t);
2413 	*(uint32_t *)rptr = htonl(frag_header);
2414 	mp->b_rptr = rptr;
2415 
2416 	mutex_enter(&mir->mir_mutex);
2417 	if (mir->mir_type == RPC_CLIENT) {
2418 		/*
2419 		 * For the client, set mir_clntreq to indicate that the
2420 		 * connection is active.
2421 		 */
2422 		mir->mir_clntreq = 1;
2423 		mir->mir_use_timestamp = lbolt;
2424 	}
2425 
2426 	/*
2427 	 * If we haven't already queued some data and the downstream module
2428 	 * can accept more data, send it on, otherwise we queue the message
2429 	 * and take other actions depending on mir_type.
2430 	 */
2431 	if (!mir->mir_inwservice && MIR_WCANPUTNEXT(mir, q)) {
2432 		mutex_exit(&mir->mir_mutex);
2433 
2434 		/*
2435 		 * Now we pass the RPC message downstream.
2436 		 */
2437 		putnext(q, mp);
2438 		return;
2439 	}
2440 
2441 	switch (mir->mir_type) {
2442 	case RPC_CLIENT:
2443 		/*
2444 		 * Check for a previous duplicate request on the
2445 		 * queue.  If there is one, then we throw away
2446 		 * the current message and let the previous one
2447 		 * go through.  If we can't find a duplicate, then
2448 		 * send this one.  This tap dance is an effort
2449 		 * to reduce traffic and processing requirements
2450 		 * under load conditions.
2451 		 */
2452 		if (mir_clnt_dup_request(q, mp)) {
2453 			mutex_exit(&mir->mir_mutex);
2454 			freemsg(mp);
2455 			return;
2456 		}
2457 		break;
2458 	case RPC_SERVER:
2459 		/*
2460 		 * Set mir_hold_inbound so that new inbound RPC
2461 		 * messages will be held until the client catches
2462 		 * up on the earlier replies.  This flag is cleared
2463 		 * in mir_wsrv after flow control is relieved;
2464 		 * the read-side queue is also enabled at that time.
2465 		 */
2466 		mir->mir_hold_inbound = 1;
2467 		break;
2468 	default:
2469 		RPCLOG(1, "mir_wput: unexpected mir_type %d\n", mir->mir_type);
2470 		break;
2471 	}
2472 	mir->mir_inwservice = 1;
2473 	(void) putq(q, mp);
2474 	mutex_exit(&mir->mir_mutex);
2475 }
2476 
2477 static void
2478 mir_wput_other(queue_t *q, mblk_t *mp)
2479 {
2480 	mir_t	*mir = (mir_t *)q->q_ptr;
2481 	struct iocblk	*iocp;
2482 	uchar_t	*rptr = mp->b_rptr;
2483 	bool_t	flush_in_svc = FALSE;
2484 
2485 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2486 	switch (mp->b_datap->db_type) {
2487 	case M_IOCTL:
2488 		iocp = (struct iocblk *)rptr;
2489 		switch (iocp->ioc_cmd) {
2490 		case RPC_CLIENT:
2491 			mutex_enter(&mir->mir_mutex);
2492 			if (mir->mir_type != 0 &&
2493 			    mir->mir_type != iocp->ioc_cmd) {
2494 ioc_eperm:
2495 				mutex_exit(&mir->mir_mutex);
2496 				iocp->ioc_error = EPERM;
2497 				iocp->ioc_count = 0;
2498 				mp->b_datap->db_type = M_IOCACK;
2499 				qreply(q, mp);
2500 				return;
2501 			}
2502 
2503 			mir->mir_type = iocp->ioc_cmd;
2504 
2505 			/*
2506 			 * Clear mir_hold_inbound which was set to 1 by
2507 			 * mir_open.  This flag is not used on client
2508 			 * streams.
2509 			 */
2510 			mir->mir_hold_inbound = 0;
2511 			mir->mir_max_msg_sizep = &clnt_max_msg_size;
2512 
2513 			/*
2514 			 * Start the idle timer.  See mir_timer() for more
2515 			 * information on how client timers work.
2516 			 */
2517 			mir->mir_idle_timeout = clnt_idle_timeout;
2518 			mir_clnt_idle_start(q, mir);
2519 			mutex_exit(&mir->mir_mutex);
2520 
2521 			mp->b_datap->db_type = M_IOCACK;
2522 			qreply(q, mp);
2523 			return;
2524 		case RPC_SERVER:
2525 			mutex_enter(&mir->mir_mutex);
2526 			if (mir->mir_type != 0 &&
2527 			    mir->mir_type != iocp->ioc_cmd)
2528 				goto ioc_eperm;
2529 
2530 			/*
2531 			 * We don't clear mir_hold_inbound here because
2532 			 * mir_hold_inbound is used in the flow control
2533 			 * model. If we cleared it here, then we'd commit
2534 			 * a small violation to the model where the transport
2535 			 * might immediately block downstream flow.
2536 			 */
2537 
2538 			mir->mir_type = iocp->ioc_cmd;
2539 			mir->mir_max_msg_sizep = &svc_max_msg_size;
2540 
2541 			/*
2542 			 * Start the idle timer.  See mir_timer() for more
2543 			 * information on how server timers work.
2544 			 *
2545 			 * Note that it is important to start the idle timer
2546 			 * here so that connections time out even if we
2547 			 * never receive any data on them.
2548 			 */
2549 			mir->mir_idle_timeout = svc_idle_timeout;
2550 			RPCLOG(16, "mir_wput_other starting idle timer on 0x%p "
2551 			    "because we got RPC_SERVER ioctl\n", (void *)q);
2552 			mir_svc_idle_start(q, mir);
2553 			mutex_exit(&mir->mir_mutex);
2554 
2555 			mp->b_datap->db_type = M_IOCACK;
2556 			qreply(q, mp);
2557 			return;
2558 		default:
2559 			break;
2560 		}
2561 		break;
2562 
2563 	case M_PROTO:
2564 		if (mir->mir_type == RPC_CLIENT) {
2565 			/*
2566 			 * We are likely being called from the context of a
2567 			 * service procedure. So we need to enqueue. However
2568 			 * enqueing may put our message behind data messages.
2569 			 * So flush the data first.
2570 			 */
2571 			flush_in_svc = TRUE;
2572 		}
2573 		if ((mp->b_wptr - rptr) < sizeof (uint32_t) ||
2574 		    !IS_P2ALIGNED(rptr, sizeof (uint32_t)))
2575 			break;
2576 
2577 		switch (((union T_primitives *)rptr)->type) {
2578 		case T_DATA_REQ:
2579 			/* Don't pass T_DATA_REQ messages downstream. */
2580 			freemsg(mp);
2581 			return;
2582 		case T_ORDREL_REQ:
2583 			RPCLOG(8, "mir_wput_other wq 0x%p: got T_ORDREL_REQ\n",
2584 			    (void *)q);
2585 			mutex_enter(&mir->mir_mutex);
2586 			if (mir->mir_type != RPC_SERVER) {
2587 				/*
2588 				 * We are likely being called from
2589 				 * clnt_dispatch_notifyall(). Sending
2590 				 * a T_ORDREL_REQ will result in
2591 				 * a some kind of _IND message being sent,
2592 				 * will be another call to
2593 				 * clnt_dispatch_notifyall(). To keep the stack
2594 				 * lean, queue this message.
2595 				 */
2596 				mir->mir_inwservice = 1;
2597 				(void) putq(q, mp);
2598 				mutex_exit(&mir->mir_mutex);
2599 				return;
2600 			}
2601 
2602 			/*
2603 			 * Mark the structure such that we don't accept any
2604 			 * more requests from client. We could defer this
2605 			 * until we actually send the orderly release
2606 			 * request downstream, but all that does is delay
2607 			 * the closing of this stream.
2608 			 */
2609 			RPCLOG(16, "mir_wput_other wq 0x%p: got T_ORDREL_REQ "
2610 			    " so calling mir_svc_start_close\n", (void *)q);
2611 
2612 			mir_svc_start_close(q, mir);
2613 
2614 			/*
2615 			 * If we have sent down a T_ORDREL_REQ, don't send
2616 			 * any more.
2617 			 */
2618 			if (mir->mir_ordrel_pending) {
2619 				freemsg(mp);
2620 				mutex_exit(&mir->mir_mutex);
2621 				return;
2622 			}
2623 
2624 			/*
2625 			 * If the stream is not idle, then we hold the
2626 			 * orderly release until it becomes idle.  This
2627 			 * ensures that KRPC will be able to reply to
2628 			 * all requests that we have passed to it.
2629 			 *
2630 			 * We also queue the request if there is data already
2631 			 * queued, because we cannot allow the T_ORDREL_REQ
2632 			 * to go before data. When we had a separate reply
2633 			 * count, this was not a problem, because the
2634 			 * reply count was reconciled when mir_wsrv()
2635 			 * completed.
2636 			 */
2637 			if (!MIR_SVC_QUIESCED(mir) ||
2638 			    mir->mir_inwservice == 1) {
2639 				mir->mir_inwservice = 1;
2640 				(void) putq(q, mp);
2641 
2642 				RPCLOG(16, "mir_wput_other: queuing "
2643 				    "T_ORDREL_REQ on 0x%p\n", (void *)q);
2644 
2645 				mutex_exit(&mir->mir_mutex);
2646 				return;
2647 			}
2648 
2649 			/*
2650 			 * Mark the structure so that we know we sent
2651 			 * an orderly release request, and reset the idle timer.
2652 			 */
2653 			mir->mir_ordrel_pending = 1;
2654 
2655 			RPCLOG(16, "mir_wput_other: calling mir_svc_idle_start"
2656 			    " on 0x%p because we got T_ORDREL_REQ\n",
2657 			    (void *)q);
2658 
2659 			mir_svc_idle_start(q, mir);
2660 			mutex_exit(&mir->mir_mutex);
2661 
2662 			/*
2663 			 * When we break, we will putnext the T_ORDREL_REQ.
2664 			 */
2665 			break;
2666 
2667 		case T_CONN_REQ:
2668 			mutex_enter(&mir->mir_mutex);
2669 			if (mir->mir_head_mp != NULL) {
2670 				freemsg(mir->mir_head_mp);
2671 				mir->mir_head_mp = NULL;
2672 				mir->mir_tail_mp = NULL;
2673 			}
2674 			mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
2675 			/*
2676 			 * Restart timer in case mir_clnt_idle_do_stop() was
2677 			 * called.
2678 			 */
2679 			mir->mir_idle_timeout = clnt_idle_timeout;
2680 			mir_clnt_idle_stop(q, mir);
2681 			mir_clnt_idle_start(q, mir);
2682 			mutex_exit(&mir->mir_mutex);
2683 			break;
2684 
2685 		default:
2686 			/*
2687 			 * T_DISCON_REQ is one of the interesting default
2688 			 * cases here. Ideally, an M_FLUSH is done before
2689 			 * T_DISCON_REQ is done. However, that is somewhat
2690 			 * cumbersome for clnt_cots.c to do. So we queue
2691 			 * T_DISCON_REQ, and let the service procedure
2692 			 * flush all M_DATA.
2693 			 */
2694 			break;
2695 		}
2696 		/* fallthru */;
2697 	default:
2698 		if (mp->b_datap->db_type >= QPCTL) {
2699 			if (mp->b_datap->db_type == M_FLUSH) {
2700 				if (mir->mir_type == RPC_CLIENT &&
2701 				    *mp->b_rptr & FLUSHW) {
2702 					RPCLOG(32, "mir_wput_other: flushing "
2703 					    "wq 0x%p\n", (void *)q);
2704 					if (*mp->b_rptr & FLUSHBAND) {
2705 						flushband(q, *(mp->b_rptr + 1),
2706 						    FLUSHDATA);
2707 					} else {
2708 						flushq(q, FLUSHDATA);
2709 					}
2710 				} else {
2711 					RPCLOG(32, "mir_wput_other: ignoring "
2712 					    "M_FLUSH on wq 0x%p\n", (void *)q);
2713 				}
2714 			}
2715 			break;
2716 		}
2717 
2718 		mutex_enter(&mir->mir_mutex);
2719 		if (mir->mir_inwservice == 0 && MIR_WCANPUTNEXT(mir, q)) {
2720 			mutex_exit(&mir->mir_mutex);
2721 			break;
2722 		}
2723 		mir->mir_inwservice = 1;
2724 		mir->mir_inwflushdata = flush_in_svc;
2725 		(void) putq(q, mp);
2726 		mutex_exit(&mir->mir_mutex);
2727 		qenable(q);
2728 
2729 		return;
2730 	}
2731 	putnext(q, mp);
2732 }
2733 
2734 static void
2735 mir_wsrv(queue_t *q)
2736 {
2737 	mblk_t	*mp;
2738 	mir_t	*mir;
2739 	bool_t flushdata;
2740 
2741 	mir = (mir_t *)q->q_ptr;
2742 	mutex_enter(&mir->mir_mutex);
2743 
2744 	flushdata = mir->mir_inwflushdata;
2745 	mir->mir_inwflushdata = 0;
2746 
2747 	while (mp = getq(q)) {
2748 		if (mp->b_datap->db_type == M_DATA) {
2749 			/*
2750 			 * Do not send any more data if we have sent
2751 			 * a T_ORDREL_REQ.
2752 			 */
2753 			if (flushdata || mir->mir_ordrel_pending == 1) {
2754 				freemsg(mp);
2755 				continue;
2756 			}
2757 
2758 			/*
2759 			 * Make sure that the stream can really handle more
2760 			 * data.
2761 			 */
2762 			if (!MIR_WCANPUTNEXT(mir, q)) {
2763 				(void) putbq(q, mp);
2764 				mutex_exit(&mir->mir_mutex);
2765 				return;
2766 			}
2767 
2768 			/*
2769 			 * Now we pass the RPC message downstream.
2770 			 */
2771 			mutex_exit(&mir->mir_mutex);
2772 			putnext(q, mp);
2773 			mutex_enter(&mir->mir_mutex);
2774 			continue;
2775 		}
2776 
2777 		/*
2778 		 * This is not an RPC message, pass it downstream
2779 		 * (ignoring flow control) if the server side is not sending a
2780 		 * T_ORDREL_REQ downstream.
2781 		 */
2782 		if (mir->mir_type != RPC_SERVER ||
2783 		    ((union T_primitives *)mp->b_rptr)->type !=
2784 		    T_ORDREL_REQ) {
2785 			mutex_exit(&mir->mir_mutex);
2786 			putnext(q, mp);
2787 			mutex_enter(&mir->mir_mutex);
2788 			continue;
2789 		}
2790 
2791 		if (mir->mir_ordrel_pending == 1) {
2792 			/*
2793 			 * Don't send two T_ORDRELs
2794 			 */
2795 			freemsg(mp);
2796 			continue;
2797 		}
2798 
2799 		/*
2800 		 * Mark the structure so that we know we sent an orderly
2801 		 * release request.  We will check to see slot is idle at the
2802 		 * end of this routine, and if so, reset the idle timer to
2803 		 * handle orderly release timeouts.
2804 		 */
2805 		mir->mir_ordrel_pending = 1;
2806 		RPCLOG(16, "mir_wsrv: sending ordrel req on q 0x%p\n",
2807 		    (void *)q);
2808 		/*
2809 		 * Send the orderly release downstream. If there are other
2810 		 * pending replies we won't be able to send them.  However,
2811 		 * the only reason we should send the orderly release is if
2812 		 * we were idle, or if an unusual event occurred.
2813 		 */
2814 		mutex_exit(&mir->mir_mutex);
2815 		putnext(q, mp);
2816 		mutex_enter(&mir->mir_mutex);
2817 	}
2818 
2819 	if (q->q_first == NULL)
2820 		/*
2821 		 * If we call mir_svc_idle_start() below, then
2822 		 * clearing mir_inwservice here will also result in
2823 		 * any thread waiting in mir_close() to be signaled.
2824 		 */
2825 		mir->mir_inwservice = 0;
2826 
2827 	if (mir->mir_type != RPC_SERVER) {
2828 		mutex_exit(&mir->mir_mutex);
2829 		return;
2830 	}
2831 
2832 	/*
2833 	 * If idle we call mir_svc_idle_start to start the timer (or wakeup
2834 	 * a close). Also make sure not to start the idle timer on the
2835 	 * listener stream. This can cause nfsd to send an orderly release
2836 	 * command on the listener stream.
2837 	 */
2838 	if (MIR_SVC_QUIESCED(mir) && !(mir->mir_listen_stream)) {
2839 		RPCLOG(16, "mir_wsrv: calling mir_svc_idle_start on 0x%p "
2840 		    "because mir slot is idle\n", (void *)q);
2841 		mir_svc_idle_start(q, mir);
2842 	}
2843 
2844 	/*
2845 	 * If outbound flow control has been relieved, then allow new
2846 	 * inbound requests to be processed.
2847 	 */
2848 	if (mir->mir_hold_inbound) {
2849 		mir->mir_hold_inbound = 0;
2850 		qenable(RD(q));
2851 	}
2852 	mutex_exit(&mir->mir_mutex);
2853 }
2854 
2855 static void
2856 mir_disconnect(queue_t *q, mir_t *mir)
2857 {
2858 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2859 
2860 	switch (mir->mir_type) {
2861 	case RPC_CLIENT:
2862 		/*
2863 		 * We are disconnecting, but not necessarily
2864 		 * closing. By not closing, we will fail to
2865 		 * pick up a possibly changed global timeout value,
2866 		 * unless we store it now.
2867 		 */
2868 		mir->mir_idle_timeout = clnt_idle_timeout;
2869 		mir_clnt_idle_start(WR(q), mir);
2870 		mutex_exit(&mir->mir_mutex);
2871 
2872 		/*
2873 		 * T_DISCON_REQ is passed to KRPC as an integer value
2874 		 * (this is not a TPI message).  It is used as a
2875 		 * convenient value to indicate a sanity check
2876 		 * failure -- the same KRPC routine is also called
2877 		 * for T_DISCON_INDs and T_ORDREL_INDs.
2878 		 */
2879 		clnt_dispatch_notifyall(WR(q), T_DISCON_REQ, 0);
2880 		break;
2881 
2882 	case RPC_SERVER:
2883 		mir->mir_svc_no_more_msgs = 1;
2884 		mir_svc_idle_stop(WR(q), mir);
2885 		mutex_exit(&mir->mir_mutex);
2886 		RPCLOG(16, "mir_disconnect: telling "
2887 		    "stream head listener to disconnect stream "
2888 		    "(0x%p)\n", (void *) q);
2889 		(void) mir_svc_policy_notify(q, 2);
2890 		break;
2891 
2892 	default:
2893 		mutex_exit(&mir->mir_mutex);
2894 		break;
2895 	}
2896 }
2897 
2898 /*
2899  * Sanity check the message length, and if it's too large, shutdown the
2900  * connection.  Returns 1 if the connection is shutdown; 0 otherwise.
2901  */
2902 static int
2903 mir_check_len(queue_t *q, int32_t frag_len, mblk_t *head_mp)
2904 {
2905 	mir_t *mir = q->q_ptr;
2906 	uint_t maxsize = 0;
2907 
2908 	if (mir->mir_max_msg_sizep != NULL)
2909 		maxsize = *mir->mir_max_msg_sizep;
2910 
2911 	if (maxsize == 0 || frag_len <= (int)maxsize)
2912 		return (0);
2913 
2914 	freemsg(head_mp);
2915 	mir->mir_head_mp = NULL;
2916 	mir->mir_tail_mp = NULL;
2917 	mir->mir_frag_header = 0;
2918 	mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
2919 	if (mir->mir_type != RPC_SERVER || mir->mir_setup_complete) {
2920 		cmn_err(CE_NOTE,
2921 		    "KRPC: record fragment from %s of size(%d) exceeds "
2922 		    "maximum (%u). Disconnecting",
2923 		    (mir->mir_type == RPC_CLIENT) ? "server" :
2924 		    (mir->mir_type == RPC_SERVER) ? "client" :
2925 		    "test tool", frag_len, maxsize);
2926 	}
2927 
2928 	mir_disconnect(q, mir);
2929 	return (1);
2930 }
2931