xref: /illumos-gate/usr/src/uts/common/rpc/rpcmod.c (revision 0cd13cbfb4270b840b4bd22ec5f673b2b6a2c02b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * Kernel RPC filtering module
34  */
35 
36 #include <sys/param.h>
37 #include <sys/types.h>
38 #include <sys/stream.h>
39 #include <sys/stropts.h>
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/tiuser.h>
43 #include <sys/debug.h>
44 #include <sys/signal.h>
45 #include <sys/pcb.h>
46 #include <sys/user.h>
47 #include <sys/errno.h>
48 #include <sys/cred.h>
49 #include <sys/policy.h>
50 #include <sys/inline.h>
51 #include <sys/cmn_err.h>
52 #include <sys/kmem.h>
53 #include <sys/file.h>
54 #include <sys/sysmacros.h>
55 #include <sys/systm.h>
56 #include <sys/t_lock.h>
57 #include <sys/ddi.h>
58 #include <sys/vtrace.h>
59 #include <sys/callb.h>
60 #include <sys/strsun.h>
61 
62 #include <sys/strlog.h>
63 #include <rpc/rpc_com.h>
64 #include <inet/common.h>
65 #include <rpc/types.h>
66 #include <sys/time.h>
67 #include <rpc/xdr.h>
68 #include <rpc/auth.h>
69 #include <rpc/clnt.h>
70 #include <rpc/rpc_msg.h>
71 #include <rpc/clnt.h>
72 #include <rpc/svc.h>
73 #include <rpc/rpcsys.h>
74 #include <rpc/rpc_rdma.h>
75 
76 /*
77  * This is the loadable module wrapper.
78  */
79 #include <sys/conf.h>
80 #include <sys/modctl.h>
81 #include <sys/syscall.h>
82 
83 extern struct streamtab rpcinfo;
84 
85 static struct fmodsw fsw = {
86 	"rpcmod",
87 	&rpcinfo,
88 	D_NEW|D_MP,
89 };
90 
91 /*
92  * Module linkage information for the kernel.
93  */
94 
95 static struct modlstrmod modlstrmod = {
96 	&mod_strmodops, "rpc interface str mod", &fsw
97 };
98 
99 /*
100  * For the RPC system call.
101  */
102 static struct sysent rpcsysent = {
103 	2,
104 	SE_32RVAL1 | SE_ARGC | SE_NOUNLOAD,
105 	rpcsys
106 };
107 
108 static struct modlsys modlsys = {
109 	&mod_syscallops,
110 	"RPC syscall",
111 	&rpcsysent
112 };
113 
114 #ifdef _SYSCALL32_IMPL
115 static struct modlsys modlsys32 = {
116 	&mod_syscallops32,
117 	"32-bit RPC syscall",
118 	&rpcsysent
119 };
120 #endif /* _SYSCALL32_IMPL */
121 
122 static struct modlinkage modlinkage = {
123 	MODREV_1,
124 	{
125 		&modlsys,
126 #ifdef _SYSCALL32_IMPL
127 		&modlsys32,
128 #endif
129 		&modlstrmod,
130 		NULL
131 	}
132 };
133 
134 int
135 _init(void)
136 {
137 	int error = 0;
138 	callb_id_t cid;
139 	int status;
140 
141 	svc_init();
142 	clnt_init();
143 	cid = callb_add(connmgr_cpr_reset, 0, CB_CL_CPR_RPC, "rpc");
144 
145 	if (error = mod_install(&modlinkage)) {
146 		/*
147 		 * Could not install module, cleanup previous
148 		 * initialization work.
149 		 */
150 		clnt_fini();
151 		if (cid != NULL)
152 			(void) callb_delete(cid);
153 
154 		return (error);
155 	}
156 
157 	/*
158 	 * Load up the RDMA plugins and initialize the stats. Even if the
159 	 * plugins loadup fails, but rpcmod was successfully installed the
160 	 * counters still get initialized.
161 	 */
162 	rw_init(&rdma_lock, NULL, RW_DEFAULT, NULL);
163 	mutex_init(&rdma_modload_lock, NULL, MUTEX_DEFAULT, NULL);
164 	mt_kstat_init();
165 
166 	/*
167 	 * Get our identification into ldi.  This is used for loading
168 	 * other modules, e.g. rpcib.
169 	 */
170 	status = ldi_ident_from_mod(&modlinkage, &rpcmod_li);
171 	if (status != 0) {
172 		cmn_err(CE_WARN, "ldi_ident_from_mod fails with %d", status);
173 		rpcmod_li = NULL;
174 	}
175 
176 	return (error);
177 }
178 
179 /*
180  * The unload entry point fails, because we advertise entry points into
181  * rpcmod from the rest of kRPC: rpcmod_release().
182  */
183 int
184 _fini(void)
185 {
186 	return (EBUSY);
187 }
188 
189 int
190 _info(struct modinfo *modinfop)
191 {
192 	return (mod_info(&modlinkage, modinfop));
193 }
194 
195 extern int nulldev();
196 
197 #define	RPCMOD_ID	2049
198 
199 int rmm_open(), rmm_close();
200 
201 /*
202  * To save instructions, since STREAMS ignores the return value
203  * from these functions, they are defined as void here. Kind of icky, but...
204  */
205 void rmm_rput(queue_t *, mblk_t *);
206 void rmm_wput(queue_t *, mblk_t *);
207 void rmm_rsrv(queue_t *);
208 void rmm_wsrv(queue_t *);
209 
210 int rpcmodopen(), rpcmodclose();
211 void rpcmodrput(), rpcmodwput();
212 void rpcmodrsrv(), rpcmodwsrv();
213 
214 static	void	rpcmodwput_other(queue_t *, mblk_t *);
215 static	int	mir_close(queue_t *q);
216 static	int	mir_open(queue_t *q, dev_t *devp, int flag, int sflag,
217 		    cred_t *credp);
218 static	void	mir_rput(queue_t *q, mblk_t *mp);
219 static	void	mir_rsrv(queue_t *q);
220 static	void	mir_wput(queue_t *q, mblk_t *mp);
221 static	void	mir_wsrv(queue_t *q);
222 
223 static struct module_info rpcmod_info =
224 	{RPCMOD_ID, "rpcmod", 0, INFPSZ, 256*1024, 1024};
225 
226 /*
227  * Read side has no service procedure.
228  */
229 static struct qinit rpcmodrinit = {
230 	(int (*)())rmm_rput,
231 	(int (*)())rmm_rsrv,
232 	rmm_open,
233 	rmm_close,
234 	nulldev,
235 	&rpcmod_info,
236 	NULL
237 };
238 
239 /*
240  * The write put procedure is simply putnext to conserve stack space.
241  * The write service procedure is not used to queue data, but instead to
242  * synchronize with flow control.
243  */
244 static struct qinit rpcmodwinit = {
245 	(int (*)())rmm_wput,
246 	(int (*)())rmm_wsrv,
247 	rmm_open,
248 	rmm_close,
249 	nulldev,
250 	&rpcmod_info,
251 	NULL
252 };
253 struct streamtab rpcinfo = { &rpcmodrinit, &rpcmodwinit, NULL, NULL };
254 
255 struct xprt_style_ops {
256 	int (*xo_open)();
257 	int (*xo_close)();
258 	void (*xo_wput)();
259 	void (*xo_wsrv)();
260 	void (*xo_rput)();
261 	void (*xo_rsrv)();
262 };
263 
264 static struct xprt_style_ops xprt_clts_ops = {
265 	rpcmodopen,
266 	rpcmodclose,
267 	rpcmodwput,
268 	rpcmodwsrv,
269 	rpcmodrput,
270 	NULL
271 };
272 
273 static struct xprt_style_ops xprt_cots_ops = {
274 	mir_open,
275 	mir_close,
276 	mir_wput,
277 	mir_wsrv,
278 	mir_rput,
279 	mir_rsrv
280 };
281 
282 /*
283  * Per rpcmod "slot" data structure. q->q_ptr points to one of these.
284  */
285 struct rpcm {
286 	void		*rm_krpc_cell;	/* Reserved for use by KRPC */
287 	struct		xprt_style_ops	*rm_ops;
288 	int		rm_type;	/* Client or server side stream */
289 #define	RM_CLOSING	0x1		/* somebody is trying to close slot */
290 	uint_t		rm_state;	/* state of the slot. see above */
291 	uint_t		rm_ref;		/* cnt of external references to slot */
292 	kmutex_t	rm_lock;	/* mutex protecting above fields */
293 	kcondvar_t	rm_cwait;	/* condition for closing */
294 	zoneid_t	rm_zoneid;	/* zone which pushed rpcmod */
295 };
296 
297 struct temp_slot {
298 	void *cell;
299 	struct xprt_style_ops *ops;
300 	int type;
301 	mblk_t *info_ack;
302 	kmutex_t lock;
303 	kcondvar_t wait;
304 };
305 
306 typedef struct mir_s {
307 	void	*mir_krpc_cell;	/* Reserved for KRPC use. This field */
308 					/* must be first in the structure. */
309 	struct xprt_style_ops	*rm_ops;
310 	int	mir_type;		/* Client or server side stream */
311 
312 	mblk_t	*mir_head_mp;		/* RPC msg in progress */
313 		/*
314 		 * mir_head_mp points the first mblk being collected in
315 		 * the current RPC message.  Record headers are removed
316 		 * before data is linked into mir_head_mp.
317 		 */
318 	mblk_t	*mir_tail_mp;		/* Last mblk in mir_head_mp */
319 		/*
320 		 * mir_tail_mp points to the last mblk in the message
321 		 * chain starting at mir_head_mp.  It is only valid
322 		 * if mir_head_mp is non-NULL and is used to add new
323 		 * data blocks to the end of chain quickly.
324 		 */
325 
326 	int32_t	mir_frag_len;		/* Bytes seen in the current frag */
327 		/*
328 		 * mir_frag_len starts at -4 for beginning of each fragment.
329 		 * When this length is negative, it indicates the number of
330 		 * bytes that rpcmod needs to complete the record marker
331 		 * header.  When it is positive or zero, it holds the number
332 		 * of bytes that have arrived for the current fragment and
333 		 * are held in mir_header_mp.
334 		 */
335 
336 	int32_t	mir_frag_header;
337 		/*
338 		 * Fragment header as collected for the current fragment.
339 		 * It holds the last-fragment indicator and the number
340 		 * of bytes in the fragment.
341 		 */
342 
343 	unsigned int
344 		mir_ordrel_pending : 1,	/* Sent T_ORDREL_REQ */
345 		mir_hold_inbound : 1,	/* Hold inbound messages on server */
346 					/* side until outbound flow control */
347 					/* is relieved. */
348 		mir_closing : 1,	/* The stream is being closed */
349 		mir_inrservice : 1,	/* data queued or rd srv proc running */
350 		mir_inwservice : 1,	/* data queued or wr srv proc running */
351 		mir_inwflushdata : 1,	/* flush M_DATAs when srv runs */
352 		/*
353 		 * On client streams, mir_clntreq is 0 or 1; it is set
354 		 * to 1 whenever a new request is sent out (mir_wput)
355 		 * and cleared when the timer fires (mir_timer).  If
356 		 * the timer fires with this value equal to 0, then the
357 		 * stream is considered idle and KRPC is notified.
358 		 */
359 		mir_clntreq : 1,
360 		/*
361 		 * On server streams, stop accepting messages
362 		 */
363 		mir_svc_no_more_msgs : 1,
364 		mir_listen_stream : 1,	/* listen end point */
365 		mir_unused : 1,	/* no longer used */
366 		mir_timer_call : 1,
367 		mir_junk_fill_thru_bit_31 : 21;
368 
369 	int	mir_setup_complete;	/* server has initialized everything */
370 	timeout_id_t mir_timer_id;	/* Timer for idle checks */
371 	clock_t	mir_idle_timeout;	/* Allowed idle time before shutdown */
372 		/*
373 		 * This value is copied from clnt_idle_timeout or
374 		 * svc_idle_timeout during the appropriate ioctl.
375 		 * Kept in milliseconds
376 		 */
377 	clock_t	mir_use_timestamp;	/* updated on client with each use */
378 		/*
379 		 * This value is set to lbolt
380 		 * every time a client stream sends or receives data.
381 		 * Even if the timer message arrives, we don't shutdown
382 		 * client unless:
383 		 *    lbolt >= MSEC_TO_TICK(mir_idle_timeout)+mir_use_timestamp.
384 		 * This value is kept in HZ.
385 		 */
386 
387 	uint_t	*mir_max_msg_sizep;	/* Reference to sanity check size */
388 		/*
389 		 * This pointer is set to &clnt_max_msg_size or
390 		 * &svc_max_msg_size during the appropriate ioctl.
391 		 */
392 	zoneid_t mir_zoneid;	/* zone which pushed rpcmod */
393 	/* Server-side fields. */
394 	int	mir_ref_cnt;		/* Reference count: server side only */
395 					/* counts the number of references */
396 					/* that a kernel RPC server thread */
397 					/* (see svc_run()) has on this rpcmod */
398 					/* slot. Effectively, it is the */
399 					/* number * of unprocessed messages */
400 					/* that have been passed up to the */
401 					/* KRPC layer */
402 
403 	mblk_t	*mir_svc_pend_mp;	/* Pending T_ORDREL_IND or */
404 					/* T_DISCON_IND */
405 
406 	/*
407 	 * these fields are for both client and server, but for debugging,
408 	 * it is easier to have these last in the structure.
409 	 */
410 	kmutex_t	mir_mutex;	/* Mutex and condvar for close */
411 	kcondvar_t	mir_condvar;	/* synchronization. */
412 	kcondvar_t	mir_timer_cv;	/* Timer routine sync. */
413 } mir_t;
414 
415 void tmp_rput(queue_t *q, mblk_t *mp);
416 
417 struct xprt_style_ops tmpops = {
418 	NULL,
419 	NULL,
420 	putnext,
421 	NULL,
422 	tmp_rput,
423 	NULL
424 };
425 
426 void
427 tmp_rput(queue_t *q, mblk_t *mp)
428 {
429 	struct temp_slot *t = (struct temp_slot *)(q->q_ptr);
430 	struct T_info_ack *pptr;
431 
432 	switch (mp->b_datap->db_type) {
433 	case M_PCPROTO:
434 		pptr = (struct T_info_ack *)mp->b_rptr;
435 		switch (pptr->PRIM_type) {
436 		case T_INFO_ACK:
437 			mutex_enter(&t->lock);
438 			t->info_ack = mp;
439 			cv_signal(&t->wait);
440 			mutex_exit(&t->lock);
441 			return;
442 		default:
443 			break;
444 		}
445 	default:
446 		break;
447 	}
448 
449 	/*
450 	 * Not an info-ack, so free it. This is ok because we should
451 	 * not be receiving data until the open finishes: rpcmod
452 	 * is pushed well before the end-point is bound to an address.
453 	 */
454 	freemsg(mp);
455 }
456 
457 int
458 rmm_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp)
459 {
460 	mblk_t *bp;
461 	struct temp_slot ts, *t;
462 	struct T_info_ack *pptr;
463 	int error = 0;
464 
465 	ASSERT(q != NULL);
466 	/*
467 	 * Check for re-opens.
468 	 */
469 	if (q->q_ptr) {
470 		TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END,
471 		    "rpcmodopen_end:(%s)", "q->qptr");
472 		return (0);
473 	}
474 
475 	t = &ts;
476 	bzero(t, sizeof (*t));
477 	q->q_ptr = (void *)t;
478 	WR(q)->q_ptr = (void *)t;
479 
480 	/*
481 	 * Allocate the required messages upfront.
482 	 */
483 	if ((bp = allocb(sizeof (struct T_info_req) +
484 	    sizeof (struct T_info_ack), BPRI_LO)) == (mblk_t *)NULL) {
485 		return (ENOBUFS);
486 	}
487 
488 	mutex_init(&t->lock, NULL, MUTEX_DEFAULT, NULL);
489 	cv_init(&t->wait, NULL, CV_DEFAULT, NULL);
490 
491 	t->ops = &tmpops;
492 
493 	qprocson(q);
494 	bp->b_datap->db_type = M_PCPROTO;
495 	*(int32_t *)bp->b_wptr = (int32_t)T_INFO_REQ;
496 	bp->b_wptr += sizeof (struct T_info_req);
497 	putnext(WR(q), bp);
498 
499 	mutex_enter(&t->lock);
500 	while (t->info_ack == NULL) {
501 		if (cv_wait_sig(&t->wait, &t->lock) == 0) {
502 			error = EINTR;
503 			break;
504 		}
505 	}
506 	mutex_exit(&t->lock);
507 
508 	if (error)
509 		goto out;
510 
511 	pptr = (struct T_info_ack *)t->info_ack->b_rptr;
512 
513 	if (pptr->SERV_type == T_CLTS) {
514 		if ((error = rpcmodopen(q, devp, flag, sflag, crp)) == 0)
515 			((struct rpcm *)q->q_ptr)->rm_ops = &xprt_clts_ops;
516 	} else {
517 		if ((error = mir_open(q, devp, flag, sflag, crp)) == 0)
518 			((mir_t *)q->q_ptr)->rm_ops = &xprt_cots_ops;
519 	}
520 
521 out:
522 	if (error)
523 		qprocsoff(q);
524 
525 	freemsg(t->info_ack);
526 	mutex_destroy(&t->lock);
527 	cv_destroy(&t->wait);
528 
529 	return (error);
530 }
531 
532 void
533 rmm_rput(queue_t *q, mblk_t  *mp)
534 {
535 	(*((struct temp_slot *)q->q_ptr)->ops->xo_rput)(q, mp);
536 }
537 
538 void
539 rmm_rsrv(queue_t *q)
540 {
541 	(*((struct temp_slot *)q->q_ptr)->ops->xo_rsrv)(q);
542 }
543 
544 void
545 rmm_wput(queue_t *q, mblk_t *mp)
546 {
547 	(*((struct temp_slot *)q->q_ptr)->ops->xo_wput)(q, mp);
548 }
549 
550 void
551 rmm_wsrv(queue_t *q)
552 {
553 	(*((struct temp_slot *)q->q_ptr)->ops->xo_wsrv)(q);
554 }
555 
556 int
557 rmm_close(queue_t *q, int flag, cred_t *crp)
558 {
559 	return ((*((struct temp_slot *)q->q_ptr)->ops->xo_close)(q, flag, crp));
560 }
561 
562 /*
563  * rpcmodopen -	open routine gets called when the module gets pushed
564  *		onto the stream.
565  */
566 /*ARGSUSED*/
567 int
568 rpcmodopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp)
569 {
570 	struct rpcm *rmp;
571 
572 	extern void (*rpc_rele)(queue_t *, mblk_t *);
573 	static void rpcmod_release(queue_t *, mblk_t *);
574 
575 	TRACE_0(TR_FAC_KRPC, TR_RPCMODOPEN_START, "rpcmodopen_start:");
576 
577 	/*
578 	 * Initialize entry points to release a rpcmod slot (and an input
579 	 * message if supplied) and to send an output message to the module
580 	 * below rpcmod.
581 	 */
582 	if (rpc_rele == NULL)
583 		rpc_rele = rpcmod_release;
584 
585 	/*
586 	 * Only sufficiently privileged users can use this module, and it
587 	 * is assumed that they will use this module properly, and NOT send
588 	 * bulk data from downstream.
589 	 */
590 	if (secpolicy_rpcmod_open(crp) != 0)
591 		return (EPERM);
592 
593 	/*
594 	 * Allocate slot data structure.
595 	 */
596 	rmp = kmem_zalloc(sizeof (*rmp), KM_SLEEP);
597 
598 	mutex_init(&rmp->rm_lock, NULL, MUTEX_DEFAULT, NULL);
599 	cv_init(&rmp->rm_cwait, NULL, CV_DEFAULT, NULL);
600 	rmp->rm_zoneid = rpc_zoneid();
601 	/*
602 	 * slot type will be set by kRPC client and server ioctl's
603 	 */
604 	rmp->rm_type = 0;
605 
606 	q->q_ptr = (void *)rmp;
607 	WR(q)->q_ptr = (void *)rmp;
608 
609 	TRACE_1(TR_FAC_KRPC, TR_RPCMODOPEN_END, "rpcmodopen_end:(%s)", "end");
610 	return (0);
611 }
612 
613 /*
614  * rpcmodclose - This routine gets called when the module gets popped
615  * off of the stream.
616  */
617 /*ARGSUSED*/
618 int
619 rpcmodclose(queue_t *q, int flag, cred_t *crp)
620 {
621 	struct rpcm *rmp;
622 
623 	ASSERT(q != NULL);
624 	rmp = (struct rpcm *)q->q_ptr;
625 
626 	/*
627 	 * Mark our state as closing.
628 	 */
629 	mutex_enter(&rmp->rm_lock);
630 	rmp->rm_state |= RM_CLOSING;
631 
632 	/*
633 	 * Check and see if there are any messages on the queue.  If so, send
634 	 * the messages, regardless whether the downstream module is ready to
635 	 * accept data.
636 	 */
637 	if (rmp->rm_type == RPC_SERVER) {
638 		flushq(q, FLUSHDATA);
639 
640 		qenable(WR(q));
641 
642 		if (rmp->rm_ref) {
643 			mutex_exit(&rmp->rm_lock);
644 			/*
645 			 * call into SVC to clean the queue
646 			 */
647 			svc_queueclean(q);
648 			mutex_enter(&rmp->rm_lock);
649 
650 			/*
651 			 * Block while there are kRPC threads with a reference
652 			 * to this message.
653 			 */
654 			while (rmp->rm_ref)
655 				cv_wait(&rmp->rm_cwait, &rmp->rm_lock);
656 		}
657 
658 		mutex_exit(&rmp->rm_lock);
659 
660 		/*
661 		 * It is now safe to remove this queue from the stream. No kRPC
662 		 * threads have a reference to the stream, and none ever will,
663 		 * because RM_CLOSING is set.
664 		 */
665 		qprocsoff(q);
666 
667 		/* Notify kRPC that this stream is going away. */
668 		svc_queueclose(q);
669 	} else {
670 		mutex_exit(&rmp->rm_lock);
671 		qprocsoff(q);
672 	}
673 
674 	q->q_ptr = NULL;
675 	WR(q)->q_ptr = NULL;
676 	mutex_destroy(&rmp->rm_lock);
677 	cv_destroy(&rmp->rm_cwait);
678 	kmem_free(rmp, sizeof (*rmp));
679 	return (0);
680 }
681 
682 #ifdef	DEBUG
683 int	rpcmod_send_msg_up = 0;
684 int	rpcmod_send_uderr = 0;
685 int	rpcmod_send_dup = 0;
686 int	rpcmod_send_dup_cnt = 0;
687 #endif
688 
689 /*
690  * rpcmodrput -	Module read put procedure.  This is called from
691  *		the module, driver, or stream head downstream.
692  */
693 void
694 rpcmodrput(queue_t *q, mblk_t *mp)
695 {
696 	struct rpcm *rmp;
697 	union T_primitives *pptr;
698 	int hdrsz;
699 
700 	TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_START, "rpcmodrput_start:");
701 
702 	ASSERT(q != NULL);
703 	rmp = (struct rpcm *)q->q_ptr;
704 
705 	if (rmp->rm_type == 0) {
706 		freemsg(mp);
707 		return;
708 	}
709 
710 #ifdef DEBUG
711 	if (rpcmod_send_msg_up > 0) {
712 		mblk_t *nmp = copymsg(mp);
713 		if (nmp) {
714 			putnext(q, nmp);
715 			rpcmod_send_msg_up--;
716 		}
717 	}
718 	if ((rpcmod_send_uderr > 0) && mp->b_datap->db_type == M_PROTO) {
719 		mblk_t *nmp;
720 		struct T_unitdata_ind *data;
721 		struct T_uderror_ind *ud;
722 		int d;
723 		data = (struct T_unitdata_ind *)mp->b_rptr;
724 		if (data->PRIM_type == T_UNITDATA_IND) {
725 			d = sizeof (*ud) - sizeof (*data);
726 			nmp = allocb(mp->b_wptr - mp->b_rptr + d, BPRI_HI);
727 			if (nmp) {
728 				ud = (struct T_uderror_ind *)nmp->b_rptr;
729 				ud->PRIM_type = T_UDERROR_IND;
730 				ud->DEST_length = data->SRC_length;
731 				ud->DEST_offset = data->SRC_offset + d;
732 				ud->OPT_length = data->OPT_length;
733 				ud->OPT_offset = data->OPT_offset + d;
734 				ud->ERROR_type = ENETDOWN;
735 				if (data->SRC_length) {
736 					bcopy(mp->b_rptr +
737 					    data->SRC_offset,
738 					    nmp->b_rptr +
739 					    ud->DEST_offset,
740 					    data->SRC_length);
741 				}
742 				if (data->OPT_length) {
743 					bcopy(mp->b_rptr +
744 					    data->OPT_offset,
745 					    nmp->b_rptr +
746 					    ud->OPT_offset,
747 					    data->OPT_length);
748 				}
749 				nmp->b_wptr += d;
750 				nmp->b_wptr += (mp->b_wptr - mp->b_rptr);
751 				nmp->b_datap->db_type = M_PROTO;
752 				putnext(q, nmp);
753 				rpcmod_send_uderr--;
754 			}
755 		}
756 	}
757 #endif
758 	switch (mp->b_datap->db_type) {
759 	default:
760 		putnext(q, mp);
761 		break;
762 
763 	case M_PROTO:
764 	case M_PCPROTO:
765 		ASSERT((mp->b_wptr - mp->b_rptr) >= sizeof (int32_t));
766 		pptr = (union T_primitives *)mp->b_rptr;
767 
768 		/*
769 		 * Forward this message to krpc if it is data.
770 		 */
771 		if (pptr->type == T_UNITDATA_IND) {
772 			mblk_t *nmp;
773 
774 		/*
775 		 * Check if the module is being popped.
776 		 */
777 			mutex_enter(&rmp->rm_lock);
778 			if (rmp->rm_state & RM_CLOSING) {
779 				mutex_exit(&rmp->rm_lock);
780 				putnext(q, mp);
781 				break;
782 			}
783 
784 			switch (rmp->rm_type) {
785 			case RPC_CLIENT:
786 				mutex_exit(&rmp->rm_lock);
787 				hdrsz = mp->b_wptr - mp->b_rptr;
788 
789 				/*
790 				 * Make sure the header is sane.
791 				 */
792 				if (hdrsz < TUNITDATAINDSZ ||
793 				    hdrsz < (pptr->unitdata_ind.OPT_length +
794 				    pptr->unitdata_ind.OPT_offset) ||
795 				    hdrsz < (pptr->unitdata_ind.SRC_length +
796 				    pptr->unitdata_ind.SRC_offset)) {
797 					freemsg(mp);
798 					return;
799 				}
800 
801 				/*
802 				 * Call clnt_clts_dispatch_notify, so that it
803 				 * can pass the message to the proper caller.
804 				 * Don't discard the header just yet since the
805 				 * client may need the sender's address.
806 				 */
807 				clnt_clts_dispatch_notify(mp, hdrsz,
808 				    rmp->rm_zoneid);
809 				return;
810 			case RPC_SERVER:
811 				/*
812 				 * rm_krpc_cell is exclusively used by the kRPC
813 				 * CLTS server
814 				 */
815 				if (rmp->rm_krpc_cell) {
816 #ifdef DEBUG
817 					/*
818 					 * Test duplicate request cache and
819 					 * rm_ref count handling by sending a
820 					 * duplicate every so often, if
821 					 * desired.
822 					 */
823 					if (rpcmod_send_dup &&
824 					    rpcmod_send_dup_cnt++ %
825 					    rpcmod_send_dup)
826 						nmp = copymsg(mp);
827 					else
828 						nmp = NULL;
829 #endif
830 					/*
831 					 * Raise the reference count on this
832 					 * module to prevent it from being
833 					 * popped before krpc generates the
834 					 * reply.
835 					 */
836 					rmp->rm_ref++;
837 					mutex_exit(&rmp->rm_lock);
838 
839 					/*
840 					 * Submit the message to krpc.
841 					 */
842 					svc_queuereq(q, mp);
843 #ifdef DEBUG
844 					/*
845 					 * Send duplicate if we created one.
846 					 */
847 					if (nmp) {
848 						mutex_enter(&rmp->rm_lock);
849 						rmp->rm_ref++;
850 						mutex_exit(&rmp->rm_lock);
851 						svc_queuereq(q, nmp);
852 					}
853 #endif
854 				} else {
855 					mutex_exit(&rmp->rm_lock);
856 					freemsg(mp);
857 				}
858 				return;
859 			default:
860 				mutex_exit(&rmp->rm_lock);
861 				freemsg(mp);
862 				return;
863 			} /* end switch(rmp->rm_type) */
864 		} else if (pptr->type == T_UDERROR_IND) {
865 			mutex_enter(&rmp->rm_lock);
866 			hdrsz = mp->b_wptr - mp->b_rptr;
867 
868 			/*
869 			 * Make sure the header is sane
870 			 */
871 			if (hdrsz < TUDERRORINDSZ ||
872 			    hdrsz < (pptr->uderror_ind.OPT_length +
873 			    pptr->uderror_ind.OPT_offset) ||
874 			    hdrsz < (pptr->uderror_ind.DEST_length +
875 			    pptr->uderror_ind.DEST_offset)) {
876 				mutex_exit(&rmp->rm_lock);
877 				freemsg(mp);
878 				return;
879 			}
880 
881 			/*
882 			 * In the case where a unit data error has been
883 			 * received, all we need to do is clear the message from
884 			 * the queue.
885 			 */
886 			mutex_exit(&rmp->rm_lock);
887 			freemsg(mp);
888 			RPCLOG(32, "rpcmodrput: unitdata error received at "
889 			    "%ld\n", gethrestime_sec());
890 			return;
891 		} /* end else if (pptr->type == T_UDERROR_IND) */
892 
893 		putnext(q, mp);
894 		break;
895 	} /* end switch (mp->b_datap->db_type) */
896 
897 	TRACE_0(TR_FAC_KRPC, TR_RPCMODRPUT_END,
898 	    "rpcmodrput_end:");
899 	/*
900 	 * Return codes are not looked at by the STREAMS framework.
901 	 */
902 }
903 
904 /*
905  * write put procedure
906  */
907 void
908 rpcmodwput(queue_t *q, mblk_t *mp)
909 {
910 	struct rpcm	*rmp;
911 
912 	ASSERT(q != NULL);
913 
914 	switch (mp->b_datap->db_type) {
915 		case M_PROTO:
916 		case M_PCPROTO:
917 			break;
918 		default:
919 			rpcmodwput_other(q, mp);
920 			return;
921 	}
922 
923 	/*
924 	 * Check to see if we can send the message downstream.
925 	 */
926 	if (canputnext(q)) {
927 		putnext(q, mp);
928 		return;
929 	}
930 
931 	rmp = (struct rpcm *)q->q_ptr;
932 	ASSERT(rmp != NULL);
933 
934 	/*
935 	 * The first canputnext failed.  Try again except this time with the
936 	 * lock held, so that we can check the state of the stream to see if
937 	 * it is closing.  If either of these conditions evaluate to true
938 	 * then send the meesage.
939 	 */
940 	mutex_enter(&rmp->rm_lock);
941 	if (canputnext(q) || (rmp->rm_state & RM_CLOSING)) {
942 		mutex_exit(&rmp->rm_lock);
943 		putnext(q, mp);
944 	} else {
945 		/*
946 		 * canputnext failed again and the stream is not closing.
947 		 * Place the message on the queue and let the service
948 		 * procedure handle the message.
949 		 */
950 		mutex_exit(&rmp->rm_lock);
951 		(void) putq(q, mp);
952 	}
953 }
954 
955 static void
956 rpcmodwput_other(queue_t *q, mblk_t *mp)
957 {
958 	struct rpcm	*rmp;
959 	struct iocblk	*iocp;
960 
961 	rmp = (struct rpcm *)q->q_ptr;
962 	ASSERT(rmp != NULL);
963 
964 	switch (mp->b_datap->db_type) {
965 		case M_IOCTL:
966 			iocp = (struct iocblk *)mp->b_rptr;
967 			ASSERT(iocp != NULL);
968 			switch (iocp->ioc_cmd) {
969 				case RPC_CLIENT:
970 				case RPC_SERVER:
971 					mutex_enter(&rmp->rm_lock);
972 					rmp->rm_type = iocp->ioc_cmd;
973 					mutex_exit(&rmp->rm_lock);
974 					mp->b_datap->db_type = M_IOCACK;
975 					qreply(q, mp);
976 					return;
977 				default:
978 				/*
979 				 * pass the ioctl downstream and hope someone
980 				 * down there knows how to handle it.
981 				 */
982 					putnext(q, mp);
983 					return;
984 			}
985 		default:
986 			break;
987 	}
988 	/*
989 	 * This is something we definitely do not know how to handle, just
990 	 * pass the message downstream
991 	 */
992 	putnext(q, mp);
993 }
994 
995 /*
996  * Module write service procedure. This is called by downstream modules
997  * for back enabling during flow control.
998  */
999 void
1000 rpcmodwsrv(queue_t *q)
1001 {
1002 	struct rpcm	*rmp;
1003 	mblk_t		*mp = NULL;
1004 
1005 	rmp = (struct rpcm *)q->q_ptr;
1006 	ASSERT(rmp != NULL);
1007 
1008 	/*
1009 	 * Get messages that may be queued and send them down stream
1010 	 */
1011 	while ((mp = getq(q)) != NULL) {
1012 		/*
1013 		 * Optimize the service procedure for the server-side, by
1014 		 * avoiding a call to canputnext().
1015 		 */
1016 		if (rmp->rm_type == RPC_SERVER || canputnext(q)) {
1017 			putnext(q, mp);
1018 			continue;
1019 		}
1020 		(void) putbq(q, mp);
1021 		return;
1022 	}
1023 }
1024 
1025 static void
1026 rpcmod_release(queue_t *q, mblk_t *bp)
1027 {
1028 	struct rpcm *rmp;
1029 
1030 	/*
1031 	 * For now, just free the message.
1032 	 */
1033 	if (bp)
1034 		freemsg(bp);
1035 	rmp = (struct rpcm *)q->q_ptr;
1036 
1037 	mutex_enter(&rmp->rm_lock);
1038 	rmp->rm_ref--;
1039 
1040 	if (rmp->rm_ref == 0 && (rmp->rm_state & RM_CLOSING)) {
1041 		cv_broadcast(&rmp->rm_cwait);
1042 	}
1043 
1044 	mutex_exit(&rmp->rm_lock);
1045 }
1046 
1047 /*
1048  * This part of rpcmod is pushed on a connection-oriented transport for use
1049  * by RPC.  It serves to bypass the Stream head, implements
1050  * the record marking protocol, and dispatches incoming RPC messages.
1051  */
1052 
1053 /* Default idle timer values */
1054 #define	MIR_CLNT_IDLE_TIMEOUT	(5 * (60 * 1000L))	/* 5 minutes */
1055 #define	MIR_SVC_IDLE_TIMEOUT	(6 * (60 * 1000L))	/* 6 minutes */
1056 #define	MIR_SVC_ORDREL_TIMEOUT	(10 * (60 * 1000L))	/* 10 minutes */
1057 #define	MIR_LASTFRAG	0x80000000	/* Record marker */
1058 
1059 #define	DLEN(mp) (mp->b_cont ? msgdsize(mp) : (mp->b_wptr - mp->b_rptr))
1060 
1061 #define	MIR_SVC_QUIESCED(mir)	\
1062 	(mir->mir_ref_cnt == 0 && mir->mir_inrservice == 0)
1063 
1064 #define	MIR_CLEAR_INRSRV(mir_ptr)	{	\
1065 	(mir_ptr)->mir_inrservice = 0;	\
1066 	if ((mir_ptr)->mir_type == RPC_SERVER &&	\
1067 		(mir_ptr)->mir_closing)	\
1068 		cv_signal(&(mir_ptr)->mir_condvar);	\
1069 }
1070 
1071 /*
1072  * Don't block service procedure (and mir_close) if
1073  * we are in the process of closing.
1074  */
1075 #define	MIR_WCANPUTNEXT(mir_ptr, write_q)	\
1076 	(canputnext(write_q) || ((mir_ptr)->mir_svc_no_more_msgs == 1))
1077 
1078 static int	mir_clnt_dup_request(queue_t *q, mblk_t *mp);
1079 static void	mir_rput_proto(queue_t *q, mblk_t *mp);
1080 static int	mir_svc_policy_notify(queue_t *q, int event);
1081 static void	mir_svc_release(queue_t *wq, mblk_t *mp);
1082 static void	mir_svc_start(queue_t *wq);
1083 static void	mir_svc_idle_start(queue_t *, mir_t *);
1084 static void	mir_svc_idle_stop(queue_t *, mir_t *);
1085 static void	mir_svc_start_close(queue_t *, mir_t *);
1086 static void	mir_clnt_idle_do_stop(queue_t *);
1087 static void	mir_clnt_idle_stop(queue_t *, mir_t *);
1088 static void	mir_clnt_idle_start(queue_t *, mir_t *);
1089 static void	mir_wput(queue_t *q, mblk_t *mp);
1090 static void	mir_wput_other(queue_t *q, mblk_t *mp);
1091 static void	mir_wsrv(queue_t *q);
1092 static	void	mir_disconnect(queue_t *, mir_t *ir);
1093 static	int	mir_check_len(queue_t *, int32_t, mblk_t *);
1094 static	void	mir_timer(void *);
1095 
1096 extern void	(*mir_rele)(queue_t *, mblk_t *);
1097 extern void	(*mir_start)(queue_t *);
1098 extern void	(*clnt_stop_idle)(queue_t *);
1099 
1100 clock_t	clnt_idle_timeout = MIR_CLNT_IDLE_TIMEOUT;
1101 clock_t	svc_idle_timeout = MIR_SVC_IDLE_TIMEOUT;
1102 
1103 /*
1104  * Timeout for subsequent notifications of idle connection.  This is
1105  * typically used to clean up after a wedged orderly release.
1106  */
1107 clock_t	svc_ordrel_timeout = MIR_SVC_ORDREL_TIMEOUT; /* milliseconds */
1108 
1109 extern	uint_t	*clnt_max_msg_sizep;
1110 extern	uint_t	*svc_max_msg_sizep;
1111 uint_t	clnt_max_msg_size = RPC_MAXDATASIZE;
1112 uint_t	svc_max_msg_size = RPC_MAXDATASIZE;
1113 uint_t	mir_krpc_cell_null;
1114 
1115 static void
1116 mir_timer_stop(mir_t *mir)
1117 {
1118 	timeout_id_t tid;
1119 
1120 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1121 
1122 	/*
1123 	 * Since the mir_mutex lock needs to be released to call
1124 	 * untimeout(), we need to make sure that no other thread
1125 	 * can start/stop the timer (changing mir_timer_id) during
1126 	 * that time.  The mir_timer_call bit and the mir_timer_cv
1127 	 * condition variable are used to synchronize this.  Setting
1128 	 * mir_timer_call also tells mir_timer() (refer to the comments
1129 	 * in mir_timer()) that it does not need to do anything.
1130 	 */
1131 	while (mir->mir_timer_call)
1132 		cv_wait(&mir->mir_timer_cv, &mir->mir_mutex);
1133 	mir->mir_timer_call = B_TRUE;
1134 
1135 	if ((tid = mir->mir_timer_id) != 0) {
1136 		mir->mir_timer_id = 0;
1137 		mutex_exit(&mir->mir_mutex);
1138 		(void) untimeout(tid);
1139 		mutex_enter(&mir->mir_mutex);
1140 	}
1141 	mir->mir_timer_call = B_FALSE;
1142 	cv_broadcast(&mir->mir_timer_cv);
1143 }
1144 
1145 static void
1146 mir_timer_start(queue_t *q, mir_t *mir, clock_t intrvl)
1147 {
1148 	timeout_id_t tid;
1149 
1150 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1151 
1152 	while (mir->mir_timer_call)
1153 		cv_wait(&mir->mir_timer_cv, &mir->mir_mutex);
1154 	mir->mir_timer_call = B_TRUE;
1155 
1156 	if ((tid = mir->mir_timer_id) != 0) {
1157 		mutex_exit(&mir->mir_mutex);
1158 		(void) untimeout(tid);
1159 		mutex_enter(&mir->mir_mutex);
1160 	}
1161 	/* Only start the timer when it is not closing. */
1162 	if (!mir->mir_closing) {
1163 		mir->mir_timer_id = timeout(mir_timer, q,
1164 		    MSEC_TO_TICK(intrvl));
1165 	}
1166 	mir->mir_timer_call = B_FALSE;
1167 	cv_broadcast(&mir->mir_timer_cv);
1168 }
1169 
1170 static int
1171 mir_clnt_dup_request(queue_t *q, mblk_t *mp)
1172 {
1173 	mblk_t  *mp1;
1174 	uint32_t  new_xid;
1175 	uint32_t  old_xid;
1176 
1177 	ASSERT(MUTEX_HELD(&((mir_t *)q->q_ptr)->mir_mutex));
1178 	new_xid = BE32_TO_U32(&mp->b_rptr[4]);
1179 	/*
1180 	 * This loop is a bit tacky -- it walks the STREAMS list of
1181 	 * flow-controlled messages.
1182 	 */
1183 	if ((mp1 = q->q_first) != NULL) {
1184 		do {
1185 			old_xid = BE32_TO_U32(&mp1->b_rptr[4]);
1186 			if (new_xid == old_xid)
1187 				return (1);
1188 		} while ((mp1 = mp1->b_next) != NULL);
1189 	}
1190 	return (0);
1191 }
1192 
1193 static int
1194 mir_close(queue_t *q)
1195 {
1196 	mir_t	*mir = q->q_ptr;
1197 	mblk_t	*mp;
1198 	bool_t queue_cleaned = FALSE;
1199 
1200 	RPCLOG(32, "rpcmod: mir_close of q 0x%p\n", (void *)q);
1201 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1202 	mutex_enter(&mir->mir_mutex);
1203 	if ((mp = mir->mir_head_mp) != NULL) {
1204 		mir->mir_head_mp = NULL;
1205 		mir->mir_tail_mp = NULL;
1206 		freemsg(mp);
1207 	}
1208 	/*
1209 	 * Set mir_closing so we get notified when MIR_SVC_QUIESCED()
1210 	 * is TRUE.  And mir_timer_start() won't start the timer again.
1211 	 */
1212 	mir->mir_closing = B_TRUE;
1213 	mir_timer_stop(mir);
1214 
1215 	if (mir->mir_type == RPC_SERVER) {
1216 		flushq(q, FLUSHDATA);	/* Ditch anything waiting on read q */
1217 
1218 		/*
1219 		 * This will prevent more requests from arriving and
1220 		 * will force rpcmod to ignore flow control.
1221 		 */
1222 		mir_svc_start_close(WR(q), mir);
1223 
1224 		while ((!MIR_SVC_QUIESCED(mir)) || mir->mir_inwservice == 1) {
1225 
1226 			if (mir->mir_ref_cnt && !mir->mir_inrservice &&
1227 			    (queue_cleaned == FALSE)) {
1228 				/*
1229 				 * call into SVC to clean the queue
1230 				 */
1231 				mutex_exit(&mir->mir_mutex);
1232 				svc_queueclean(q);
1233 				queue_cleaned = TRUE;
1234 				mutex_enter(&mir->mir_mutex);
1235 				continue;
1236 			}
1237 
1238 			/*
1239 			 * Bugid 1253810 - Force the write service
1240 			 * procedure to send its messages, regardless
1241 			 * whether the downstream  module is ready
1242 			 * to accept data.
1243 			 */
1244 			if (mir->mir_inwservice == 1)
1245 				qenable(WR(q));
1246 
1247 			cv_wait(&mir->mir_condvar, &mir->mir_mutex);
1248 		}
1249 
1250 		mutex_exit(&mir->mir_mutex);
1251 		qprocsoff(q);
1252 
1253 		/* Notify KRPC that this stream is going away. */
1254 		svc_queueclose(q);
1255 	} else {
1256 		mutex_exit(&mir->mir_mutex);
1257 		qprocsoff(q);
1258 	}
1259 
1260 	mutex_destroy(&mir->mir_mutex);
1261 	cv_destroy(&mir->mir_condvar);
1262 	cv_destroy(&mir->mir_timer_cv);
1263 	kmem_free(mir, sizeof (mir_t));
1264 	return (0);
1265 }
1266 
1267 /*
1268  * This is server side only (RPC_SERVER).
1269  *
1270  * Exit idle mode.
1271  */
1272 static void
1273 mir_svc_idle_stop(queue_t *q, mir_t *mir)
1274 {
1275 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1276 	ASSERT((q->q_flag & QREADR) == 0);
1277 	ASSERT(mir->mir_type == RPC_SERVER);
1278 	RPCLOG(16, "rpcmod: mir_svc_idle_stop of q 0x%p\n", (void *)q);
1279 
1280 	mir_timer_stop(mir);
1281 }
1282 
1283 /*
1284  * This is server side only (RPC_SERVER).
1285  *
1286  * Start idle processing, which will include setting idle timer if the
1287  * stream is not being closed.
1288  */
1289 static void
1290 mir_svc_idle_start(queue_t *q, mir_t *mir)
1291 {
1292 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
1293 	ASSERT((q->q_flag & QREADR) == 0);
1294 	ASSERT(mir->mir_type == RPC_SERVER);
1295 	RPCLOG(16, "rpcmod: mir_svc_idle_start q 0x%p\n", (void *)q);
1296 
1297 	/*
1298 	 * Don't re-start idle timer if we are closing queues.
1299 	 */
1300 	if (mir->mir_closing) {
1301 		RPCLOG(16, "mir_svc_idle_start - closing: 0x%p\n",
1302 		    (void *)q);
1303 
1304 		/*
1305 		 * We will call mir_svc_idle_start() whenever MIR_SVC_QUIESCED()
1306 		 * is true.  When it is true, and we are in the process of
1307 		 * closing the stream, signal any thread waiting in
1308 		 * mir_close().
1309 		 */
1310 		if (mir->mir_inwservice == 0)
1311 			cv_signal(&mir->mir_condvar);
1312 
1313 	} else {
1314 		RPCLOG(16, "mir_svc_idle_start - reset %s timer\n",
1315 		    mir->mir_ordrel_pending ? "ordrel" : "normal");
1316 		/*
1317 		 * Normal condition, start the idle timer.  If an orderly
1318 		 * release has been sent, set the timeout to wait for the
1319 		 * client to close its side of the connection.  Otherwise,
1320 		 * use the normal idle timeout.
1321 		 */
1322 		mir_timer_start(q, mir, mir->mir_ordrel_pending ?
1323 		    svc_ordrel_timeout : mir->mir_idle_timeout);
1324 	}
1325 }
1326 
1327 /* ARGSUSED */
1328 static int
1329 mir_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
1330 {
1331 	mir_t	*mir;
1332 
1333 	RPCLOG(32, "rpcmod: mir_open of q 0x%p\n", (void *)q);
1334 	/* Set variables used directly by KRPC. */
1335 	if (!mir_rele)
1336 		mir_rele = mir_svc_release;
1337 	if (!mir_start)
1338 		mir_start = mir_svc_start;
1339 	if (!clnt_stop_idle)
1340 		clnt_stop_idle = mir_clnt_idle_do_stop;
1341 	if (!clnt_max_msg_sizep)
1342 		clnt_max_msg_sizep = &clnt_max_msg_size;
1343 	if (!svc_max_msg_sizep)
1344 		svc_max_msg_sizep = &svc_max_msg_size;
1345 
1346 	/* Allocate a zero'ed out mir structure for this stream. */
1347 	mir = kmem_zalloc(sizeof (mir_t), KM_SLEEP);
1348 
1349 	/*
1350 	 * We set hold inbound here so that incoming messages will
1351 	 * be held on the read-side queue until the stream is completely
1352 	 * initialized with a RPC_CLIENT or RPC_SERVER ioctl.  During
1353 	 * the ioctl processing, the flag is cleared and any messages that
1354 	 * arrived between the open and the ioctl are delivered to KRPC.
1355 	 *
1356 	 * Early data should never arrive on a client stream since
1357 	 * servers only respond to our requests and we do not send any.
1358 	 * until after the stream is initialized.  Early data is
1359 	 * very common on a server stream where the client will start
1360 	 * sending data as soon as the connection is made (and this
1361 	 * is especially true with TCP where the protocol accepts the
1362 	 * connection before nfsd or KRPC is notified about it).
1363 	 */
1364 
1365 	mir->mir_hold_inbound = 1;
1366 
1367 	/*
1368 	 * Start the record marker looking for a 4-byte header.  When
1369 	 * this length is negative, it indicates that rpcmod is looking
1370 	 * for bytes to consume for the record marker header.  When it
1371 	 * is positive, it holds the number of bytes that have arrived
1372 	 * for the current fragment and are being held in mir_header_mp.
1373 	 */
1374 
1375 	mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
1376 
1377 	mir->mir_zoneid = rpc_zoneid();
1378 	mutex_init(&mir->mir_mutex, NULL, MUTEX_DEFAULT, NULL);
1379 	cv_init(&mir->mir_condvar, NULL, CV_DRIVER, NULL);
1380 	cv_init(&mir->mir_timer_cv, NULL, CV_DRIVER, NULL);
1381 
1382 	q->q_ptr = (char *)mir;
1383 	WR(q)->q_ptr = (char *)mir;
1384 
1385 	/*
1386 	 * We noenable the read-side queue because we don't want it
1387 	 * automatically enabled by putq.  We enable it explicitly
1388 	 * in mir_wsrv when appropriate. (See additional comments on
1389 	 * flow control at the beginning of mir_rsrv.)
1390 	 */
1391 	noenable(q);
1392 
1393 	qprocson(q);
1394 	return (0);
1395 }
1396 
1397 /*
1398  * Read-side put routine for both the client and server side.  Does the
1399  * record marking for incoming RPC messages, and when complete, dispatches
1400  * the message to either the client or server.
1401  */
1402 static void
1403 mir_rput(queue_t *q, mblk_t *mp)
1404 {
1405 	int	excess;
1406 	int32_t	frag_len, frag_header;
1407 	mblk_t	*cont_mp, *head_mp, *tail_mp, *mp1;
1408 	mir_t	*mir = q->q_ptr;
1409 	boolean_t stop_timer = B_FALSE;
1410 
1411 	ASSERT(mir != NULL);
1412 
1413 	/*
1414 	 * If the stream has not been set up as a RPC_CLIENT or RPC_SERVER
1415 	 * with the corresponding ioctl, then don't accept
1416 	 * any inbound data.  This should never happen for streams
1417 	 * created by nfsd or client-side KRPC because they are careful
1418 	 * to set the mode of the stream before doing anything else.
1419 	 */
1420 	if (mir->mir_type == 0) {
1421 		freemsg(mp);
1422 		return;
1423 	}
1424 
1425 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1426 
1427 	switch (mp->b_datap->db_type) {
1428 	case M_DATA:
1429 		break;
1430 	case M_PROTO:
1431 	case M_PCPROTO:
1432 		if (MBLKL(mp) < sizeof (t_scalar_t)) {
1433 			RPCLOG(1, "mir_rput: runt TPI message (%d bytes)\n",
1434 			    (int)MBLKL(mp));
1435 			freemsg(mp);
1436 			return;
1437 		}
1438 		if (((union T_primitives *)mp->b_rptr)->type != T_DATA_IND) {
1439 			mir_rput_proto(q, mp);
1440 			return;
1441 		}
1442 
1443 		/* Throw away the T_DATA_IND block and continue with data. */
1444 		mp1 = mp;
1445 		mp = mp->b_cont;
1446 		freeb(mp1);
1447 		break;
1448 	case M_SETOPTS:
1449 		/*
1450 		 * If a module on the stream is trying set the Stream head's
1451 		 * high water mark, then set our hiwater to the requested
1452 		 * value.  We are the "stream head" for all inbound
1453 		 * data messages since messages are passed directly to KRPC.
1454 		 */
1455 		if (MBLKL(mp) >= sizeof (struct stroptions)) {
1456 			struct stroptions	*stropts;
1457 
1458 			stropts = (struct stroptions *)mp->b_rptr;
1459 			if ((stropts->so_flags & SO_HIWAT) &&
1460 			    !(stropts->so_flags & SO_BAND)) {
1461 				(void) strqset(q, QHIWAT, 0, stropts->so_hiwat);
1462 			}
1463 		}
1464 		putnext(q, mp);
1465 		return;
1466 	case M_FLUSH:
1467 		RPCLOG(32, "mir_rput: ignoring M_FLUSH %x ", *mp->b_rptr);
1468 		RPCLOG(32, "on q 0x%p\n", (void *)q);
1469 		putnext(q, mp);
1470 		return;
1471 	default:
1472 		putnext(q, mp);
1473 		return;
1474 	}
1475 
1476 	mutex_enter(&mir->mir_mutex);
1477 
1478 	/*
1479 	 * If this connection is closing, don't accept any new messages.
1480 	 */
1481 	if (mir->mir_svc_no_more_msgs) {
1482 		ASSERT(mir->mir_type == RPC_SERVER);
1483 		mutex_exit(&mir->mir_mutex);
1484 		freemsg(mp);
1485 		return;
1486 	}
1487 
1488 	/* Get local copies for quicker access. */
1489 	frag_len = mir->mir_frag_len;
1490 	frag_header = mir->mir_frag_header;
1491 	head_mp = mir->mir_head_mp;
1492 	tail_mp = mir->mir_tail_mp;
1493 
1494 	/* Loop, processing each message block in the mp chain separately. */
1495 	do {
1496 		cont_mp = mp->b_cont;
1497 		mp->b_cont = NULL;
1498 
1499 		/*
1500 		 * Drop zero-length mblks to prevent unbounded kernel memory
1501 		 * consumption.
1502 		 */
1503 		if (MBLKL(mp) == 0) {
1504 			freeb(mp);
1505 			continue;
1506 		}
1507 
1508 		/*
1509 		 * If frag_len is negative, we're still in the process of
1510 		 * building frag_header -- try to complete it with this mblk.
1511 		 */
1512 		while (frag_len < 0 && mp->b_rptr < mp->b_wptr) {
1513 			frag_len++;
1514 			frag_header <<= 8;
1515 			frag_header += *mp->b_rptr++;
1516 		}
1517 
1518 		if (MBLKL(mp) == 0 && frag_len < 0) {
1519 			/*
1520 			 * We consumed this mblk while trying to complete the
1521 			 * fragment header.  Free it and move on.
1522 			 */
1523 			freeb(mp);
1524 			continue;
1525 		}
1526 
1527 		ASSERT(frag_len >= 0);
1528 
1529 		/*
1530 		 * Now frag_header has the number of bytes in this fragment
1531 		 * and we're just waiting to collect them all.  Chain our
1532 		 * latest mblk onto the list and see if we now have enough
1533 		 * bytes to complete the fragment.
1534 		 */
1535 		if (head_mp == NULL) {
1536 			ASSERT(tail_mp == NULL);
1537 			head_mp = tail_mp = mp;
1538 		} else {
1539 			tail_mp->b_cont = mp;
1540 			tail_mp = mp;
1541 		}
1542 
1543 		frag_len += MBLKL(mp);
1544 		excess = frag_len - (frag_header & ~MIR_LASTFRAG);
1545 		if (excess < 0) {
1546 			/*
1547 			 * We still haven't received enough data to complete
1548 			 * the fragment, so continue on to the next mblk.
1549 			 */
1550 			continue;
1551 		}
1552 
1553 		/*
1554 		 * We've got a complete fragment.  If there are excess bytes,
1555 		 * then they're part of the next fragment's header (of either
1556 		 * this RPC message or the next RPC message).  Split that part
1557 		 * into its own mblk so that we can safely freeb() it when
1558 		 * building frag_header above.
1559 		 */
1560 		if (excess > 0) {
1561 			if ((mp1 = dupb(mp)) == NULL &&
1562 			    (mp1 = copyb(mp)) == NULL) {
1563 				freemsg(head_mp);
1564 				freemsg(cont_mp);
1565 				RPCLOG0(1, "mir_rput: dupb/copyb failed\n");
1566 				mir->mir_frag_header = 0;
1567 				mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
1568 				mir->mir_head_mp = NULL;
1569 				mir->mir_tail_mp = NULL;
1570 				mir_disconnect(q, mir);	/* drops mir_mutex */
1571 				return;
1572 			}
1573 
1574 			/*
1575 			 * Relink the message chain so that the next mblk is
1576 			 * the next fragment header, followed by the rest of
1577 			 * the message chain.
1578 			 */
1579 			mp1->b_cont = cont_mp;
1580 			cont_mp = mp1;
1581 
1582 			/*
1583 			 * Data in the new mblk begins at the next fragment,
1584 			 * and data in the old mblk ends at the next fragment.
1585 			 */
1586 			mp1->b_rptr = mp1->b_wptr - excess;
1587 			mp->b_wptr -= excess;
1588 		}
1589 
1590 		/*
1591 		 * Reset frag_len and frag_header for the next fragment.
1592 		 */
1593 		frag_len = -(int32_t)sizeof (uint32_t);
1594 		if (!(frag_header & MIR_LASTFRAG)) {
1595 			/*
1596 			 * The current fragment is complete, but more
1597 			 * fragments need to be processed before we can
1598 			 * pass along the RPC message headed at head_mp.
1599 			 */
1600 			frag_header = 0;
1601 			continue;
1602 		}
1603 		frag_header = 0;
1604 
1605 		/*
1606 		 * We've got a complete RPC message; pass it to the
1607 		 * appropriate consumer.
1608 		 */
1609 		switch (mir->mir_type) {
1610 		case RPC_CLIENT:
1611 			if (clnt_dispatch_notify(head_mp, mir->mir_zoneid)) {
1612 				/*
1613 				 * Mark this stream as active.  This marker
1614 				 * is used in mir_timer().
1615 				 */
1616 				mir->mir_clntreq = 1;
1617 				mir->mir_use_timestamp = lbolt;
1618 			} else {
1619 				freemsg(head_mp);
1620 			}
1621 			break;
1622 
1623 		case RPC_SERVER:
1624 			/*
1625 			 * Check for flow control before passing the
1626 			 * message to KRPC.
1627 			 */
1628 			if (!mir->mir_hold_inbound) {
1629 				if (mir->mir_krpc_cell) {
1630 					/*
1631 					 * If the reference count is 0
1632 					 * (not including this request),
1633 					 * then the stream is transitioning
1634 					 * from idle to non-idle.  In this case,
1635 					 * we cancel the idle timer.
1636 					 */
1637 					if (mir->mir_ref_cnt++ == 0)
1638 						stop_timer = B_TRUE;
1639 					if (mir_check_len(q,
1640 					    (int32_t)msgdsize(mp), mp))
1641 						return;
1642 					svc_queuereq(q, head_mp); /* to KRPC */
1643 				} else {
1644 					/*
1645 					 * Count # of times this happens. Should
1646 					 * be never, but experience shows
1647 					 * otherwise.
1648 					 */
1649 					mir_krpc_cell_null++;
1650 					freemsg(head_mp);
1651 				}
1652 			} else {
1653 				/*
1654 				 * If the outbound side of the stream is
1655 				 * flow controlled, then hold this message
1656 				 * until client catches up. mir_hold_inbound
1657 				 * is set in mir_wput and cleared in mir_wsrv.
1658 				 */
1659 				(void) putq(q, head_mp);
1660 				mir->mir_inrservice = B_TRUE;
1661 			}
1662 			break;
1663 		default:
1664 			RPCLOG(1, "mir_rput: unknown mir_type %d\n",
1665 			    mir->mir_type);
1666 			freemsg(head_mp);
1667 			break;
1668 		}
1669 
1670 		/*
1671 		 * Reset the chain since we're starting on a new RPC message.
1672 		 */
1673 		head_mp = tail_mp = NULL;
1674 	} while ((mp = cont_mp) != NULL);
1675 
1676 	/*
1677 	 * Sanity check the message length; if it's too large mir_check_len()
1678 	 * will shutdown the connection, drop mir_mutex, and return non-zero.
1679 	 */
1680 	if (head_mp != NULL && mir->mir_setup_complete &&
1681 	    mir_check_len(q, frag_len, head_mp))
1682 		return;
1683 
1684 	/* Save our local copies back in the mir structure. */
1685 	mir->mir_frag_header = frag_header;
1686 	mir->mir_frag_len = frag_len;
1687 	mir->mir_head_mp = head_mp;
1688 	mir->mir_tail_mp = tail_mp;
1689 
1690 	/*
1691 	 * The timer is stopped after the whole message chain is processed.
1692 	 * The reason is that stopping the timer releases the mir_mutex
1693 	 * lock temporarily.  This means that the request can be serviced
1694 	 * while we are still processing the message chain.  This is not
1695 	 * good.  So we stop the timer here instead.
1696 	 *
1697 	 * Note that if the timer fires before we stop it, it will not
1698 	 * do any harm as MIR_SVC_QUIESCED() is false and mir_timer()
1699 	 * will just return.
1700 	 */
1701 	if (stop_timer) {
1702 		RPCLOG(16, "mir_rput: stopping idle timer on 0x%p because "
1703 		    "ref cnt going to non zero\n", (void *)WR(q));
1704 		mir_svc_idle_stop(WR(q), mir);
1705 	}
1706 	mutex_exit(&mir->mir_mutex);
1707 }
1708 
1709 static void
1710 mir_rput_proto(queue_t *q, mblk_t *mp)
1711 {
1712 	mir_t	*mir = (mir_t *)q->q_ptr;
1713 	uint32_t	type;
1714 	uint32_t reason = 0;
1715 
1716 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
1717 
1718 	type = ((union T_primitives *)mp->b_rptr)->type;
1719 	switch (mir->mir_type) {
1720 	case RPC_CLIENT:
1721 		switch (type) {
1722 		case T_DISCON_IND:
1723 			reason = ((struct T_discon_ind *)
1724 			    (mp->b_rptr))->DISCON_reason;
1725 			/*FALLTHROUGH*/
1726 		case T_ORDREL_IND:
1727 			mutex_enter(&mir->mir_mutex);
1728 			if (mir->mir_head_mp) {
1729 				freemsg(mir->mir_head_mp);
1730 				mir->mir_head_mp = (mblk_t *)0;
1731 				mir->mir_tail_mp = (mblk_t *)0;
1732 			}
1733 			/*
1734 			 * We are disconnecting, but not necessarily
1735 			 * closing. By not closing, we will fail to
1736 			 * pick up a possibly changed global timeout value,
1737 			 * unless we store it now.
1738 			 */
1739 			mir->mir_idle_timeout = clnt_idle_timeout;
1740 			mir_clnt_idle_stop(WR(q), mir);
1741 
1742 			/*
1743 			 * Even though we are unconnected, we still
1744 			 * leave the idle timer going on the client. The
1745 			 * reason for is that if we've disconnected due
1746 			 * to a server-side disconnect, reset, or connection
1747 			 * timeout, there is a possibility the client may
1748 			 * retry the RPC request. This retry needs to done on
1749 			 * the same bound address for the server to interpret
1750 			 * it as such. However, we don't want
1751 			 * to wait forever for that possibility. If the
1752 			 * end-point stays unconnected for mir_idle_timeout
1753 			 * units of time, then that is a signal to the
1754 			 * connection manager to give up waiting for the
1755 			 * application (eg. NFS) to send a retry.
1756 			 */
1757 			mir_clnt_idle_start(WR(q), mir);
1758 			mutex_exit(&mir->mir_mutex);
1759 			clnt_dispatch_notifyall(WR(q), type, reason);
1760 			freemsg(mp);
1761 			return;
1762 		case T_ERROR_ACK:
1763 		{
1764 			struct T_error_ack	*terror;
1765 
1766 			terror = (struct T_error_ack *)mp->b_rptr;
1767 			RPCLOG(1, "mir_rput_proto T_ERROR_ACK for queue 0x%p",
1768 			    (void *)q);
1769 			RPCLOG(1, " ERROR_prim: %s,",
1770 			    rpc_tpiprim2name(terror->ERROR_prim));
1771 			RPCLOG(1, " TLI_error: %s,",
1772 			    rpc_tpierr2name(terror->TLI_error));
1773 			RPCLOG(1, " UNIX_error: %d\n", terror->UNIX_error);
1774 			if (terror->ERROR_prim == T_DISCON_REQ)  {
1775 				clnt_dispatch_notifyall(WR(q), type, reason);
1776 				freemsg(mp);
1777 				return;
1778 			} else {
1779 				if (clnt_dispatch_notifyconn(WR(q), mp))
1780 					return;
1781 			}
1782 			break;
1783 		}
1784 		case T_OK_ACK:
1785 		{
1786 			struct T_ok_ack	*tok = (struct T_ok_ack *)mp->b_rptr;
1787 
1788 			if (tok->CORRECT_prim == T_DISCON_REQ) {
1789 				clnt_dispatch_notifyall(WR(q), type, reason);
1790 				freemsg(mp);
1791 				return;
1792 			} else {
1793 				if (clnt_dispatch_notifyconn(WR(q), mp))
1794 					return;
1795 			}
1796 			break;
1797 		}
1798 		case T_CONN_CON:
1799 		case T_INFO_ACK:
1800 		case T_OPTMGMT_ACK:
1801 			if (clnt_dispatch_notifyconn(WR(q), mp))
1802 				return;
1803 			break;
1804 		case T_BIND_ACK:
1805 			break;
1806 		default:
1807 			RPCLOG(1, "mir_rput: unexpected message %d "
1808 			    "for KRPC client\n",
1809 			    ((union T_primitives *)mp->b_rptr)->type);
1810 			break;
1811 		}
1812 		break;
1813 
1814 	case RPC_SERVER:
1815 		switch (type) {
1816 		case T_BIND_ACK:
1817 		{
1818 			struct T_bind_ack	*tbind;
1819 
1820 			/*
1821 			 * If this is a listening stream, then shut
1822 			 * off the idle timer.
1823 			 */
1824 			tbind = (struct T_bind_ack *)mp->b_rptr;
1825 			if (tbind->CONIND_number > 0) {
1826 				mutex_enter(&mir->mir_mutex);
1827 				mir_svc_idle_stop(WR(q), mir);
1828 
1829 				/*
1830 				 * mark this as a listen endpoint
1831 				 * for special handling.
1832 				 */
1833 
1834 				mir->mir_listen_stream = 1;
1835 				mutex_exit(&mir->mir_mutex);
1836 			}
1837 			break;
1838 		}
1839 		case T_DISCON_IND:
1840 		case T_ORDREL_IND:
1841 			RPCLOG(16, "mir_rput_proto: got %s indication\n",
1842 			    type == T_DISCON_IND ? "disconnect"
1843 			    : "orderly release");
1844 
1845 			/*
1846 			 * For listen endpoint just pass
1847 			 * on the message.
1848 			 */
1849 
1850 			if (mir->mir_listen_stream)
1851 				break;
1852 
1853 			mutex_enter(&mir->mir_mutex);
1854 
1855 			/*
1856 			 * If client wants to break off connection, record
1857 			 * that fact.
1858 			 */
1859 			mir_svc_start_close(WR(q), mir);
1860 
1861 			/*
1862 			 * If we are idle, then send the orderly release
1863 			 * or disconnect indication to nfsd.
1864 			 */
1865 			if (MIR_SVC_QUIESCED(mir)) {
1866 				mutex_exit(&mir->mir_mutex);
1867 				break;
1868 			}
1869 
1870 			RPCLOG(16, "mir_rput_proto: not idle, so "
1871 			    "disconnect/ord rel indication not passed "
1872 			    "upstream on 0x%p\n", (void *)q);
1873 
1874 			/*
1875 			 * Hold the indication until we get idle
1876 			 * If there already is an indication stored,
1877 			 * replace it if the new one is a disconnect. The
1878 			 * reasoning is that disconnection takes less time
1879 			 * to process, and once a client decides to
1880 			 * disconnect, we should do that.
1881 			 */
1882 			if (mir->mir_svc_pend_mp) {
1883 				if (type == T_DISCON_IND) {
1884 					RPCLOG(16, "mir_rput_proto: replacing"
1885 					    " held disconnect/ord rel"
1886 					    " indication with disconnect on"
1887 					    " 0x%p\n", (void *)q);
1888 
1889 					freemsg(mir->mir_svc_pend_mp);
1890 					mir->mir_svc_pend_mp = mp;
1891 				} else {
1892 					RPCLOG(16, "mir_rput_proto: already "
1893 					    "held a disconnect/ord rel "
1894 					    "indication. freeing ord rel "
1895 					    "ind on 0x%p\n", (void *)q);
1896 					freemsg(mp);
1897 				}
1898 			} else
1899 				mir->mir_svc_pend_mp = mp;
1900 
1901 			mutex_exit(&mir->mir_mutex);
1902 			return;
1903 
1904 		default:
1905 			/* nfsd handles server-side non-data messages. */
1906 			break;
1907 		}
1908 		break;
1909 
1910 	default:
1911 		break;
1912 	}
1913 
1914 	putnext(q, mp);
1915 }
1916 
1917 /*
1918  * The server-side read queues are used to hold inbound messages while
1919  * outbound flow control is exerted.  When outbound flow control is
1920  * relieved, mir_wsrv qenables the read-side queue.  Read-side queues
1921  * are not enabled by STREAMS and are explicitly noenable'ed in mir_open.
1922  *
1923  * For the server side,  we have two types of messages queued. The first type
1924  * are messages that are ready to be XDR decoded and and then sent to the
1925  * RPC program's dispatch routine. The second type are "raw" messages that
1926  * haven't been processed, i.e. assembled from rpc record fragements into
1927  * full requests. The only time we will see the second type of message
1928  * queued is if we have a memory allocation failure while processing a
1929  * a raw message. The field mir_first_non_processed_mblk will mark the
1930  * first such raw message. So the flow for server side is:
1931  *
1932  *	- send processed queued messages to kRPC until we run out or find
1933  *	  one that needs additional processing because we were short on memory
1934  *	  earlier
1935  *	- process a message that was deferred because of lack of
1936  *	  memory
1937  *	- continue processing messages until the queue empties or we
1938  *	  have to stop because of lack of memory
1939  *	- during each of the above phase, if the queue is empty and
1940  *	  there are no pending messages that were passed to the RPC
1941  *	  layer, send upstream the pending disconnect/ordrel indication if
1942  *	  there is one
1943  *
1944  * The read-side queue is also enabled by a bufcall callback if dupmsg
1945  * fails in mir_rput.
1946  */
1947 static void
1948 mir_rsrv(queue_t *q)
1949 {
1950 	mir_t	*mir;
1951 	mblk_t	*mp;
1952 	mblk_t	*cmp = NULL;
1953 	boolean_t stop_timer = B_FALSE;
1954 
1955 	mir = (mir_t *)q->q_ptr;
1956 	mutex_enter(&mir->mir_mutex);
1957 
1958 	mp = NULL;
1959 	switch (mir->mir_type) {
1960 	case RPC_SERVER:
1961 		if (mir->mir_ref_cnt == 0)
1962 			mir->mir_hold_inbound = 0;
1963 		if (mir->mir_hold_inbound) {
1964 
1965 			ASSERT(cmp == NULL);
1966 			if (q->q_first == NULL) {
1967 
1968 				MIR_CLEAR_INRSRV(mir);
1969 
1970 				if (MIR_SVC_QUIESCED(mir)) {
1971 					cmp = mir->mir_svc_pend_mp;
1972 					mir->mir_svc_pend_mp = NULL;
1973 				}
1974 			}
1975 
1976 			mutex_exit(&mir->mir_mutex);
1977 
1978 			if (cmp != NULL) {
1979 				RPCLOG(16, "mir_rsrv: line %d: sending a held "
1980 				    "disconnect/ord rel indication upstream\n",
1981 				    __LINE__);
1982 				putnext(q, cmp);
1983 			}
1984 
1985 			return;
1986 		}
1987 		while (mp = getq(q)) {
1988 			if (mir->mir_krpc_cell &&
1989 			    (mir->mir_svc_no_more_msgs == 0)) {
1990 				/*
1991 				 * If we were idle, turn off idle timer since
1992 				 * we aren't idle any more.
1993 				 */
1994 				if (mir->mir_ref_cnt++ == 0)
1995 					stop_timer = B_TRUE;
1996 				if (mir_check_len(q,
1997 				    (int32_t)msgdsize(mp), mp))
1998 					return;
1999 				svc_queuereq(q, mp);
2000 			} else {
2001 				/*
2002 				 * Count # of times this happens. Should be
2003 				 * never, but experience shows otherwise.
2004 				 */
2005 				if (mir->mir_krpc_cell == NULL)
2006 					mir_krpc_cell_null++;
2007 				freemsg(mp);
2008 			}
2009 		}
2010 		break;
2011 	case RPC_CLIENT:
2012 		break;
2013 	default:
2014 		RPCLOG(1, "mir_rsrv: unexpected mir_type %d\n", mir->mir_type);
2015 
2016 		if (q->q_first == NULL)
2017 			MIR_CLEAR_INRSRV(mir);
2018 
2019 		mutex_exit(&mir->mir_mutex);
2020 
2021 		return;
2022 	}
2023 
2024 	/*
2025 	 * The timer is stopped after all the messages are processed.
2026 	 * The reason is that stopping the timer releases the mir_mutex
2027 	 * lock temporarily.  This means that the request can be serviced
2028 	 * while we are still processing the message queue.  This is not
2029 	 * good.  So we stop the timer here instead.
2030 	 */
2031 	if (stop_timer)  {
2032 		RPCLOG(16, "mir_rsrv stopping idle timer on 0x%p because ref "
2033 		    "cnt going to non zero\n", (void *)WR(q));
2034 		mir_svc_idle_stop(WR(q), mir);
2035 	}
2036 
2037 	if (q->q_first == NULL) {
2038 
2039 		MIR_CLEAR_INRSRV(mir);
2040 
2041 		ASSERT(cmp == NULL);
2042 		if (mir->mir_type == RPC_SERVER && MIR_SVC_QUIESCED(mir)) {
2043 			cmp = mir->mir_svc_pend_mp;
2044 			mir->mir_svc_pend_mp = NULL;
2045 		}
2046 
2047 		mutex_exit(&mir->mir_mutex);
2048 
2049 		if (cmp != NULL) {
2050 			RPCLOG(16, "mir_rsrv: line %d: sending a held "
2051 			    "disconnect/ord rel indication upstream\n",
2052 			    __LINE__);
2053 			putnext(q, cmp);
2054 		}
2055 
2056 		return;
2057 	}
2058 	mutex_exit(&mir->mir_mutex);
2059 }
2060 
2061 static int mir_svc_policy_fails;
2062 
2063 /*
2064  * Called to send an event code to nfsd/lockd so that it initiates
2065  * connection close.
2066  */
2067 static int
2068 mir_svc_policy_notify(queue_t *q, int event)
2069 {
2070 	mblk_t	*mp;
2071 #ifdef DEBUG
2072 	mir_t *mir = (mir_t *)q->q_ptr;
2073 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2074 #endif
2075 	ASSERT(q->q_flag & QREADR);
2076 
2077 	/*
2078 	 * Create an M_DATA message with the event code and pass it to the
2079 	 * Stream head (nfsd or whoever created the stream will consume it).
2080 	 */
2081 	mp = allocb(sizeof (int), BPRI_HI);
2082 
2083 	if (!mp) {
2084 
2085 		mir_svc_policy_fails++;
2086 		RPCLOG(16, "mir_svc_policy_notify: could not allocate event "
2087 		    "%d\n", event);
2088 		return (ENOMEM);
2089 	}
2090 
2091 	U32_TO_BE32(event, mp->b_rptr);
2092 	mp->b_wptr = mp->b_rptr + sizeof (int);
2093 	putnext(q, mp);
2094 	return (0);
2095 }
2096 
2097 /*
2098  * Server side: start the close phase. We want to get this rpcmod slot in an
2099  * idle state before mir_close() is called.
2100  */
2101 static void
2102 mir_svc_start_close(queue_t *wq, mir_t *mir)
2103 {
2104 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2105 	ASSERT((wq->q_flag & QREADR) == 0);
2106 	ASSERT(mir->mir_type == RPC_SERVER);
2107 
2108 
2109 	/*
2110 	 * Do not accept any more messages.
2111 	 */
2112 	mir->mir_svc_no_more_msgs = 1;
2113 
2114 	/*
2115 	 * Next two statements will make the read service procedure invoke
2116 	 * svc_queuereq() on everything stuck in the streams read queue.
2117 	 * It's not necessary because enabling the write queue will
2118 	 * have the same effect, but why not speed the process along?
2119 	 */
2120 	mir->mir_hold_inbound = 0;
2121 	qenable(RD(wq));
2122 
2123 	/*
2124 	 * Meanwhile force the write service procedure to send the
2125 	 * responses downstream, regardless of flow control.
2126 	 */
2127 	qenable(wq);
2128 }
2129 
2130 /*
2131  * This routine is called directly by KRPC after a request is completed,
2132  * whether a reply was sent or the request was dropped.
2133  */
2134 static void
2135 mir_svc_release(queue_t *wq, mblk_t *mp)
2136 {
2137 	mir_t   *mir = (mir_t *)wq->q_ptr;
2138 	mblk_t	*cmp = NULL;
2139 
2140 	ASSERT((wq->q_flag & QREADR) == 0);
2141 	if (mp)
2142 		freemsg(mp);
2143 
2144 	mutex_enter(&mir->mir_mutex);
2145 
2146 	/*
2147 	 * Start idle processing if this is the last reference.
2148 	 */
2149 	if ((mir->mir_ref_cnt == 1) && (mir->mir_inrservice == 0)) {
2150 
2151 		RPCLOG(16, "mir_svc_release starting idle timer on 0x%p "
2152 		    "because ref cnt is zero\n", (void *) wq);
2153 
2154 		cmp = mir->mir_svc_pend_mp;
2155 		mir->mir_svc_pend_mp = NULL;
2156 		mir_svc_idle_start(wq, mir);
2157 	}
2158 
2159 	mir->mir_ref_cnt--;
2160 	ASSERT(mir->mir_ref_cnt >= 0);
2161 
2162 	/*
2163 	 * Wake up the thread waiting to close.
2164 	 */
2165 
2166 	if ((mir->mir_ref_cnt == 0) && mir->mir_closing)
2167 		cv_signal(&mir->mir_condvar);
2168 
2169 	mutex_exit(&mir->mir_mutex);
2170 
2171 	if (cmp) {
2172 		RPCLOG(16, "mir_svc_release: sending a held "
2173 		    "disconnect/ord rel indication upstream on queue 0x%p\n",
2174 		    (void *)RD(wq));
2175 
2176 		putnext(RD(wq), cmp);
2177 	}
2178 }
2179 
2180 /*
2181  * This routine is called by server-side KRPC when it is ready to
2182  * handle inbound messages on the stream.
2183  */
2184 static void
2185 mir_svc_start(queue_t *wq)
2186 {
2187 	mir_t   *mir = (mir_t *)wq->q_ptr;
2188 
2189 	/*
2190 	 * no longer need to take the mir_mutex because the
2191 	 * mir_setup_complete field has been moved out of
2192 	 * the binary field protected by the mir_mutex.
2193 	 */
2194 
2195 	mir->mir_setup_complete = 1;
2196 	qenable(RD(wq));
2197 }
2198 
2199 /*
2200  * client side wrapper for stopping timer with normal idle timeout.
2201  */
2202 static void
2203 mir_clnt_idle_stop(queue_t *wq, mir_t *mir)
2204 {
2205 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2206 	ASSERT((wq->q_flag & QREADR) == 0);
2207 	ASSERT(mir->mir_type == RPC_CLIENT);
2208 
2209 	mir_timer_stop(mir);
2210 }
2211 
2212 /*
2213  * client side wrapper for stopping timer with normal idle timeout.
2214  */
2215 static void
2216 mir_clnt_idle_start(queue_t *wq, mir_t *mir)
2217 {
2218 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2219 	ASSERT((wq->q_flag & QREADR) == 0);
2220 	ASSERT(mir->mir_type == RPC_CLIENT);
2221 
2222 	mir_timer_start(wq, mir, mir->mir_idle_timeout);
2223 }
2224 
2225 /*
2226  * client side only. Forces rpcmod to stop sending T_ORDREL_REQs on
2227  * end-points that aren't connected.
2228  */
2229 static void
2230 mir_clnt_idle_do_stop(queue_t *wq)
2231 {
2232 	mir_t   *mir = (mir_t *)wq->q_ptr;
2233 
2234 	RPCLOG(1, "mir_clnt_idle_do_stop: wq 0x%p\n", (void *)wq);
2235 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2236 	mutex_enter(&mir->mir_mutex);
2237 	mir_clnt_idle_stop(wq, mir);
2238 	mutex_exit(&mir->mir_mutex);
2239 }
2240 
2241 /*
2242  * Timer handler.  It handles idle timeout and memory shortage problem.
2243  */
2244 static void
2245 mir_timer(void *arg)
2246 {
2247 	queue_t *wq = (queue_t *)arg;
2248 	mir_t *mir = (mir_t *)wq->q_ptr;
2249 	boolean_t notify;
2250 
2251 	mutex_enter(&mir->mir_mutex);
2252 
2253 	/*
2254 	 * mir_timer_call is set only when either mir_timer_[start|stop]
2255 	 * is progressing.  And mir_timer() can only be run while they
2256 	 * are progressing if the timer is being stopped.  So just
2257 	 * return.
2258 	 */
2259 	if (mir->mir_timer_call) {
2260 		mutex_exit(&mir->mir_mutex);
2261 		return;
2262 	}
2263 	mir->mir_timer_id = 0;
2264 
2265 	switch (mir->mir_type) {
2266 	case RPC_CLIENT:
2267 
2268 		/*
2269 		 * For clients, the timer fires at clnt_idle_timeout
2270 		 * intervals.  If the activity marker (mir_clntreq) is
2271 		 * zero, then the stream has been idle since the last
2272 		 * timer event and we notify KRPC.  If mir_clntreq is
2273 		 * non-zero, then the stream is active and we just
2274 		 * restart the timer for another interval.  mir_clntreq
2275 		 * is set to 1 in mir_wput for every request passed
2276 		 * downstream.
2277 		 *
2278 		 * If this was a memory shortage timer reset the idle
2279 		 * timeout regardless; the mir_clntreq will not be a
2280 		 * valid indicator.
2281 		 *
2282 		 * The timer is initially started in mir_wput during
2283 		 * RPC_CLIENT ioctl processing.
2284 		 *
2285 		 * The timer interval can be changed for individual
2286 		 * streams with the ND variable "mir_idle_timeout".
2287 		 */
2288 		if (mir->mir_clntreq > 0 && mir->mir_use_timestamp +
2289 		    MSEC_TO_TICK(mir->mir_idle_timeout) - lbolt >= 0) {
2290 			clock_t tout;
2291 
2292 			tout = mir->mir_idle_timeout -
2293 			    TICK_TO_MSEC(lbolt - mir->mir_use_timestamp);
2294 			if (tout < 0)
2295 				tout = 1000;
2296 #if 0
2297 			printf("mir_timer[%d < %d + %d]: reset client timer "
2298 			    "to %d (ms)\n", TICK_TO_MSEC(lbolt),
2299 			    TICK_TO_MSEC(mir->mir_use_timestamp),
2300 			    mir->mir_idle_timeout, tout);
2301 #endif
2302 			mir->mir_clntreq = 0;
2303 			mir_timer_start(wq, mir, tout);
2304 			mutex_exit(&mir->mir_mutex);
2305 			return;
2306 		}
2307 #if 0
2308 printf("mir_timer[%d]: doing client timeout\n", lbolt / hz);
2309 #endif
2310 		/*
2311 		 * We are disconnecting, but not necessarily
2312 		 * closing. By not closing, we will fail to
2313 		 * pick up a possibly changed global timeout value,
2314 		 * unless we store it now.
2315 		 */
2316 		mir->mir_idle_timeout = clnt_idle_timeout;
2317 		mir_clnt_idle_start(wq, mir);
2318 
2319 		mutex_exit(&mir->mir_mutex);
2320 		/*
2321 		 * We pass T_ORDREL_REQ as an integer value
2322 		 * to KRPC as the indication that the stream
2323 		 * is idle.  This is not a T_ORDREL_REQ message,
2324 		 * it is just a convenient value since we call
2325 		 * the same KRPC routine for T_ORDREL_INDs and
2326 		 * T_DISCON_INDs.
2327 		 */
2328 		clnt_dispatch_notifyall(wq, T_ORDREL_REQ, 0);
2329 		return;
2330 
2331 	case RPC_SERVER:
2332 
2333 		/*
2334 		 * For servers, the timer is only running when the stream
2335 		 * is really idle or memory is short.  The timer is started
2336 		 * by mir_wput when mir_type is set to RPC_SERVER and
2337 		 * by mir_svc_idle_start whenever the stream goes idle
2338 		 * (mir_ref_cnt == 0).  The timer is cancelled in
2339 		 * mir_rput whenever a new inbound request is passed to KRPC
2340 		 * and the stream was previously idle.
2341 		 *
2342 		 * The timer interval can be changed for individual
2343 		 * streams with the ND variable "mir_idle_timeout".
2344 		 *
2345 		 * If the stream is not idle do nothing.
2346 		 */
2347 		if (!MIR_SVC_QUIESCED(mir)) {
2348 			mutex_exit(&mir->mir_mutex);
2349 			return;
2350 		}
2351 
2352 		notify = !mir->mir_inrservice;
2353 		mutex_exit(&mir->mir_mutex);
2354 
2355 		/*
2356 		 * If there is no packet queued up in read queue, the stream
2357 		 * is really idle so notify nfsd to close it.
2358 		 */
2359 		if (notify) {
2360 			RPCLOG(16, "mir_timer: telling stream head listener "
2361 			    "to close stream (0x%p)\n", (void *) RD(wq));
2362 			(void) mir_svc_policy_notify(RD(wq), 1);
2363 		}
2364 		return;
2365 	default:
2366 		RPCLOG(1, "mir_timer: unexpected mir_type %d\n",
2367 		    mir->mir_type);
2368 		mutex_exit(&mir->mir_mutex);
2369 		return;
2370 	}
2371 }
2372 
2373 /*
2374  * Called by the RPC package to send either a call or a return, or a
2375  * transport connection request.  Adds the record marking header.
2376  */
2377 static void
2378 mir_wput(queue_t *q, mblk_t *mp)
2379 {
2380 	uint_t	frag_header;
2381 	mir_t	*mir = (mir_t *)q->q_ptr;
2382 	uchar_t	*rptr = mp->b_rptr;
2383 
2384 	if (!mir) {
2385 		freemsg(mp);
2386 		return;
2387 	}
2388 
2389 	if (mp->b_datap->db_type != M_DATA) {
2390 		mir_wput_other(q, mp);
2391 		return;
2392 	}
2393 
2394 	if (mir->mir_ordrel_pending == 1) {
2395 		freemsg(mp);
2396 		RPCLOG(16, "mir_wput wq 0x%p: got data after T_ORDREL_REQ\n",
2397 		    (void *)q);
2398 		return;
2399 	}
2400 
2401 	frag_header = (uint_t)DLEN(mp);
2402 	frag_header |= MIR_LASTFRAG;
2403 
2404 	/* Stick in the 4 byte record marking header. */
2405 	if ((rptr - mp->b_datap->db_base) < sizeof (uint32_t) ||
2406 	    !IS_P2ALIGNED(mp->b_rptr, sizeof (uint32_t))) {
2407 		/*
2408 		 * Since we know that M_DATA messages are created exclusively
2409 		 * by KRPC, we expect that KRPC will leave room for our header
2410 		 * and 4 byte align which is normal for XDR.
2411 		 * If KRPC (or someone else) does not cooperate, then we
2412 		 * just throw away the message.
2413 		 */
2414 		RPCLOG(1, "mir_wput: KRPC did not leave space for record "
2415 		    "fragment header (%d bytes left)\n",
2416 		    (int)(rptr - mp->b_datap->db_base));
2417 		freemsg(mp);
2418 		return;
2419 	}
2420 	rptr -= sizeof (uint32_t);
2421 	*(uint32_t *)rptr = htonl(frag_header);
2422 	mp->b_rptr = rptr;
2423 
2424 	mutex_enter(&mir->mir_mutex);
2425 	if (mir->mir_type == RPC_CLIENT) {
2426 		/*
2427 		 * For the client, set mir_clntreq to indicate that the
2428 		 * connection is active.
2429 		 */
2430 		mir->mir_clntreq = 1;
2431 		mir->mir_use_timestamp = lbolt;
2432 	}
2433 
2434 	/*
2435 	 * If we haven't already queued some data and the downstream module
2436 	 * can accept more data, send it on, otherwise we queue the message
2437 	 * and take other actions depending on mir_type.
2438 	 */
2439 	if (!mir->mir_inwservice && MIR_WCANPUTNEXT(mir, q)) {
2440 		mutex_exit(&mir->mir_mutex);
2441 
2442 		/*
2443 		 * Now we pass the RPC message downstream.
2444 		 */
2445 		putnext(q, mp);
2446 		return;
2447 	}
2448 
2449 	switch (mir->mir_type) {
2450 	case RPC_CLIENT:
2451 		/*
2452 		 * Check for a previous duplicate request on the
2453 		 * queue.  If there is one, then we throw away
2454 		 * the current message and let the previous one
2455 		 * go through.  If we can't find a duplicate, then
2456 		 * send this one.  This tap dance is an effort
2457 		 * to reduce traffic and processing requirements
2458 		 * under load conditions.
2459 		 */
2460 		if (mir_clnt_dup_request(q, mp)) {
2461 			mutex_exit(&mir->mir_mutex);
2462 			freemsg(mp);
2463 			return;
2464 		}
2465 		break;
2466 	case RPC_SERVER:
2467 		/*
2468 		 * Set mir_hold_inbound so that new inbound RPC
2469 		 * messages will be held until the client catches
2470 		 * up on the earlier replies.  This flag is cleared
2471 		 * in mir_wsrv after flow control is relieved;
2472 		 * the read-side queue is also enabled at that time.
2473 		 */
2474 		mir->mir_hold_inbound = 1;
2475 		break;
2476 	default:
2477 		RPCLOG(1, "mir_wput: unexpected mir_type %d\n", mir->mir_type);
2478 		break;
2479 	}
2480 	mir->mir_inwservice = 1;
2481 	(void) putq(q, mp);
2482 	mutex_exit(&mir->mir_mutex);
2483 }
2484 
2485 static void
2486 mir_wput_other(queue_t *q, mblk_t *mp)
2487 {
2488 	mir_t	*mir = (mir_t *)q->q_ptr;
2489 	struct iocblk	*iocp;
2490 	uchar_t	*rptr = mp->b_rptr;
2491 	bool_t	flush_in_svc = FALSE;
2492 
2493 	ASSERT(MUTEX_NOT_HELD(&mir->mir_mutex));
2494 	switch (mp->b_datap->db_type) {
2495 	case M_IOCTL:
2496 		iocp = (struct iocblk *)rptr;
2497 		switch (iocp->ioc_cmd) {
2498 		case RPC_CLIENT:
2499 			mutex_enter(&mir->mir_mutex);
2500 			if (mir->mir_type != 0 &&
2501 			    mir->mir_type != iocp->ioc_cmd) {
2502 ioc_eperm:
2503 				mutex_exit(&mir->mir_mutex);
2504 				iocp->ioc_error = EPERM;
2505 				iocp->ioc_count = 0;
2506 				mp->b_datap->db_type = M_IOCACK;
2507 				qreply(q, mp);
2508 				return;
2509 			}
2510 
2511 			mir->mir_type = iocp->ioc_cmd;
2512 
2513 			/*
2514 			 * Clear mir_hold_inbound which was set to 1 by
2515 			 * mir_open.  This flag is not used on client
2516 			 * streams.
2517 			 */
2518 			mir->mir_hold_inbound = 0;
2519 			mir->mir_max_msg_sizep = &clnt_max_msg_size;
2520 
2521 			/*
2522 			 * Start the idle timer.  See mir_timer() for more
2523 			 * information on how client timers work.
2524 			 */
2525 			mir->mir_idle_timeout = clnt_idle_timeout;
2526 			mir_clnt_idle_start(q, mir);
2527 			mutex_exit(&mir->mir_mutex);
2528 
2529 			mp->b_datap->db_type = M_IOCACK;
2530 			qreply(q, mp);
2531 			return;
2532 		case RPC_SERVER:
2533 			mutex_enter(&mir->mir_mutex);
2534 			if (mir->mir_type != 0 &&
2535 			    mir->mir_type != iocp->ioc_cmd)
2536 				goto ioc_eperm;
2537 
2538 			/*
2539 			 * We don't clear mir_hold_inbound here because
2540 			 * mir_hold_inbound is used in the flow control
2541 			 * model. If we cleared it here, then we'd commit
2542 			 * a small violation to the model where the transport
2543 			 * might immediately block downstream flow.
2544 			 */
2545 
2546 			mir->mir_type = iocp->ioc_cmd;
2547 			mir->mir_max_msg_sizep = &svc_max_msg_size;
2548 
2549 			/*
2550 			 * Start the idle timer.  See mir_timer() for more
2551 			 * information on how server timers work.
2552 			 *
2553 			 * Note that it is important to start the idle timer
2554 			 * here so that connections time out even if we
2555 			 * never receive any data on them.
2556 			 */
2557 			mir->mir_idle_timeout = svc_idle_timeout;
2558 			RPCLOG(16, "mir_wput_other starting idle timer on 0x%p "
2559 			    "because we got RPC_SERVER ioctl\n", (void *)q);
2560 			mir_svc_idle_start(q, mir);
2561 			mutex_exit(&mir->mir_mutex);
2562 
2563 			mp->b_datap->db_type = M_IOCACK;
2564 			qreply(q, mp);
2565 			return;
2566 		default:
2567 			break;
2568 		}
2569 		break;
2570 
2571 	case M_PROTO:
2572 		if (mir->mir_type == RPC_CLIENT) {
2573 			/*
2574 			 * We are likely being called from the context of a
2575 			 * service procedure. So we need to enqueue. However
2576 			 * enqueing may put our message behind data messages.
2577 			 * So flush the data first.
2578 			 */
2579 			flush_in_svc = TRUE;
2580 		}
2581 		if ((mp->b_wptr - rptr) < sizeof (uint32_t) ||
2582 		    !IS_P2ALIGNED(rptr, sizeof (uint32_t)))
2583 			break;
2584 
2585 		switch (((union T_primitives *)rptr)->type) {
2586 		case T_DATA_REQ:
2587 			/* Don't pass T_DATA_REQ messages downstream. */
2588 			freemsg(mp);
2589 			return;
2590 		case T_ORDREL_REQ:
2591 			RPCLOG(8, "mir_wput_other wq 0x%p: got T_ORDREL_REQ\n",
2592 			    (void *)q);
2593 			mutex_enter(&mir->mir_mutex);
2594 			if (mir->mir_type != RPC_SERVER) {
2595 				/*
2596 				 * We are likely being called from
2597 				 * clnt_dispatch_notifyall(). Sending
2598 				 * a T_ORDREL_REQ will result in
2599 				 * a some kind of _IND message being sent,
2600 				 * will be another call to
2601 				 * clnt_dispatch_notifyall(). To keep the stack
2602 				 * lean, queue this message.
2603 				 */
2604 				mir->mir_inwservice = 1;
2605 				(void) putq(q, mp);
2606 				mutex_exit(&mir->mir_mutex);
2607 				return;
2608 			}
2609 
2610 			/*
2611 			 * Mark the structure such that we don't accept any
2612 			 * more requests from client. We could defer this
2613 			 * until we actually send the orderly release
2614 			 * request downstream, but all that does is delay
2615 			 * the closing of this stream.
2616 			 */
2617 			RPCLOG(16, "mir_wput_other wq 0x%p: got T_ORDREL_REQ "
2618 			    " so calling mir_svc_start_close\n", (void *)q);
2619 
2620 			mir_svc_start_close(q, mir);
2621 
2622 			/*
2623 			 * If we have sent down a T_ORDREL_REQ, don't send
2624 			 * any more.
2625 			 */
2626 			if (mir->mir_ordrel_pending) {
2627 				freemsg(mp);
2628 				mutex_exit(&mir->mir_mutex);
2629 				return;
2630 			}
2631 
2632 			/*
2633 			 * If the stream is not idle, then we hold the
2634 			 * orderly release until it becomes idle.  This
2635 			 * ensures that KRPC will be able to reply to
2636 			 * all requests that we have passed to it.
2637 			 *
2638 			 * We also queue the request if there is data already
2639 			 * queued, because we cannot allow the T_ORDREL_REQ
2640 			 * to go before data. When we had a separate reply
2641 			 * count, this was not a problem, because the
2642 			 * reply count was reconciled when mir_wsrv()
2643 			 * completed.
2644 			 */
2645 			if (!MIR_SVC_QUIESCED(mir) ||
2646 			    mir->mir_inwservice == 1) {
2647 				mir->mir_inwservice = 1;
2648 				(void) putq(q, mp);
2649 
2650 				RPCLOG(16, "mir_wput_other: queuing "
2651 				    "T_ORDREL_REQ on 0x%p\n", (void *)q);
2652 
2653 				mutex_exit(&mir->mir_mutex);
2654 				return;
2655 			}
2656 
2657 			/*
2658 			 * Mark the structure so that we know we sent
2659 			 * an orderly release request, and reset the idle timer.
2660 			 */
2661 			mir->mir_ordrel_pending = 1;
2662 
2663 			RPCLOG(16, "mir_wput_other: calling mir_svc_idle_start"
2664 			    " on 0x%p because we got T_ORDREL_REQ\n",
2665 			    (void *)q);
2666 
2667 			mir_svc_idle_start(q, mir);
2668 			mutex_exit(&mir->mir_mutex);
2669 
2670 			/*
2671 			 * When we break, we will putnext the T_ORDREL_REQ.
2672 			 */
2673 			break;
2674 
2675 		case T_CONN_REQ:
2676 			mutex_enter(&mir->mir_mutex);
2677 			if (mir->mir_head_mp != NULL) {
2678 				freemsg(mir->mir_head_mp);
2679 				mir->mir_head_mp = NULL;
2680 				mir->mir_tail_mp = NULL;
2681 			}
2682 			mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
2683 			/*
2684 			 * Restart timer in case mir_clnt_idle_do_stop() was
2685 			 * called.
2686 			 */
2687 			mir->mir_idle_timeout = clnt_idle_timeout;
2688 			mir_clnt_idle_stop(q, mir);
2689 			mir_clnt_idle_start(q, mir);
2690 			mutex_exit(&mir->mir_mutex);
2691 			break;
2692 
2693 		default:
2694 			/*
2695 			 * T_DISCON_REQ is one of the interesting default
2696 			 * cases here. Ideally, an M_FLUSH is done before
2697 			 * T_DISCON_REQ is done. However, that is somewhat
2698 			 * cumbersome for clnt_cots.c to do. So we queue
2699 			 * T_DISCON_REQ, and let the service procedure
2700 			 * flush all M_DATA.
2701 			 */
2702 			break;
2703 		}
2704 		/* fallthru */;
2705 	default:
2706 		if (mp->b_datap->db_type >= QPCTL) {
2707 			if (mp->b_datap->db_type == M_FLUSH) {
2708 				if (mir->mir_type == RPC_CLIENT &&
2709 				    *mp->b_rptr & FLUSHW) {
2710 					RPCLOG(32, "mir_wput_other: flushing "
2711 					    "wq 0x%p\n", (void *)q);
2712 					if (*mp->b_rptr & FLUSHBAND) {
2713 						flushband(q, *(mp->b_rptr + 1),
2714 						    FLUSHDATA);
2715 					} else {
2716 						flushq(q, FLUSHDATA);
2717 					}
2718 				} else {
2719 					RPCLOG(32, "mir_wput_other: ignoring "
2720 					    "M_FLUSH on wq 0x%p\n", (void *)q);
2721 				}
2722 			}
2723 			break;
2724 		}
2725 
2726 		mutex_enter(&mir->mir_mutex);
2727 		if (mir->mir_inwservice == 0 && MIR_WCANPUTNEXT(mir, q)) {
2728 			mutex_exit(&mir->mir_mutex);
2729 			break;
2730 		}
2731 		mir->mir_inwservice = 1;
2732 		mir->mir_inwflushdata = flush_in_svc;
2733 		(void) putq(q, mp);
2734 		mutex_exit(&mir->mir_mutex);
2735 		qenable(q);
2736 
2737 		return;
2738 	}
2739 	putnext(q, mp);
2740 }
2741 
2742 static void
2743 mir_wsrv(queue_t *q)
2744 {
2745 	mblk_t	*mp;
2746 	mir_t	*mir;
2747 	bool_t flushdata;
2748 
2749 	mir = (mir_t *)q->q_ptr;
2750 	mutex_enter(&mir->mir_mutex);
2751 
2752 	flushdata = mir->mir_inwflushdata;
2753 	mir->mir_inwflushdata = 0;
2754 
2755 	while (mp = getq(q)) {
2756 		if (mp->b_datap->db_type == M_DATA) {
2757 			/*
2758 			 * Do not send any more data if we have sent
2759 			 * a T_ORDREL_REQ.
2760 			 */
2761 			if (flushdata || mir->mir_ordrel_pending == 1) {
2762 				freemsg(mp);
2763 				continue;
2764 			}
2765 
2766 			/*
2767 			 * Make sure that the stream can really handle more
2768 			 * data.
2769 			 */
2770 			if (!MIR_WCANPUTNEXT(mir, q)) {
2771 				(void) putbq(q, mp);
2772 				mutex_exit(&mir->mir_mutex);
2773 				return;
2774 			}
2775 
2776 			/*
2777 			 * Now we pass the RPC message downstream.
2778 			 */
2779 			mutex_exit(&mir->mir_mutex);
2780 			putnext(q, mp);
2781 			mutex_enter(&mir->mir_mutex);
2782 			continue;
2783 		}
2784 
2785 		/*
2786 		 * This is not an RPC message, pass it downstream
2787 		 * (ignoring flow control) if the server side is not sending a
2788 		 * T_ORDREL_REQ downstream.
2789 		 */
2790 		if (mir->mir_type != RPC_SERVER ||
2791 		    ((union T_primitives *)mp->b_rptr)->type !=
2792 		    T_ORDREL_REQ) {
2793 			mutex_exit(&mir->mir_mutex);
2794 			putnext(q, mp);
2795 			mutex_enter(&mir->mir_mutex);
2796 			continue;
2797 		}
2798 
2799 		if (mir->mir_ordrel_pending == 1) {
2800 			/*
2801 			 * Don't send two T_ORDRELs
2802 			 */
2803 			freemsg(mp);
2804 			continue;
2805 		}
2806 
2807 		/*
2808 		 * Mark the structure so that we know we sent an orderly
2809 		 * release request.  We will check to see slot is idle at the
2810 		 * end of this routine, and if so, reset the idle timer to
2811 		 * handle orderly release timeouts.
2812 		 */
2813 		mir->mir_ordrel_pending = 1;
2814 		RPCLOG(16, "mir_wsrv: sending ordrel req on q 0x%p\n",
2815 		    (void *)q);
2816 		/*
2817 		 * Send the orderly release downstream. If there are other
2818 		 * pending replies we won't be able to send them.  However,
2819 		 * the only reason we should send the orderly release is if
2820 		 * we were idle, or if an unusual event occurred.
2821 		 */
2822 		mutex_exit(&mir->mir_mutex);
2823 		putnext(q, mp);
2824 		mutex_enter(&mir->mir_mutex);
2825 	}
2826 
2827 	if (q->q_first == NULL)
2828 		/*
2829 		 * If we call mir_svc_idle_start() below, then
2830 		 * clearing mir_inwservice here will also result in
2831 		 * any thread waiting in mir_close() to be signaled.
2832 		 */
2833 		mir->mir_inwservice = 0;
2834 
2835 	if (mir->mir_type != RPC_SERVER) {
2836 		mutex_exit(&mir->mir_mutex);
2837 		return;
2838 	}
2839 
2840 	/*
2841 	 * If idle we call mir_svc_idle_start to start the timer (or wakeup
2842 	 * a close). Also make sure not to start the idle timer on the
2843 	 * listener stream. This can cause nfsd to send an orderly release
2844 	 * command on the listener stream.
2845 	 */
2846 	if (MIR_SVC_QUIESCED(mir) && !(mir->mir_listen_stream)) {
2847 		RPCLOG(16, "mir_wsrv: calling mir_svc_idle_start on 0x%p "
2848 		    "because mir slot is idle\n", (void *)q);
2849 		mir_svc_idle_start(q, mir);
2850 	}
2851 
2852 	/*
2853 	 * If outbound flow control has been relieved, then allow new
2854 	 * inbound requests to be processed.
2855 	 */
2856 	if (mir->mir_hold_inbound) {
2857 		mir->mir_hold_inbound = 0;
2858 		qenable(RD(q));
2859 	}
2860 	mutex_exit(&mir->mir_mutex);
2861 }
2862 
2863 static void
2864 mir_disconnect(queue_t *q, mir_t *mir)
2865 {
2866 	ASSERT(MUTEX_HELD(&mir->mir_mutex));
2867 
2868 	switch (mir->mir_type) {
2869 	case RPC_CLIENT:
2870 		/*
2871 		 * We are disconnecting, but not necessarily
2872 		 * closing. By not closing, we will fail to
2873 		 * pick up a possibly changed global timeout value,
2874 		 * unless we store it now.
2875 		 */
2876 		mir->mir_idle_timeout = clnt_idle_timeout;
2877 		mir_clnt_idle_start(WR(q), mir);
2878 		mutex_exit(&mir->mir_mutex);
2879 
2880 		/*
2881 		 * T_DISCON_REQ is passed to KRPC as an integer value
2882 		 * (this is not a TPI message).  It is used as a
2883 		 * convenient value to indicate a sanity check
2884 		 * failure -- the same KRPC routine is also called
2885 		 * for T_DISCON_INDs and T_ORDREL_INDs.
2886 		 */
2887 		clnt_dispatch_notifyall(WR(q), T_DISCON_REQ, 0);
2888 		break;
2889 
2890 	case RPC_SERVER:
2891 		mir->mir_svc_no_more_msgs = 1;
2892 		mir_svc_idle_stop(WR(q), mir);
2893 		mutex_exit(&mir->mir_mutex);
2894 		RPCLOG(16, "mir_disconnect: telling "
2895 		    "stream head listener to disconnect stream "
2896 		    "(0x%p)\n", (void *) q);
2897 		(void) mir_svc_policy_notify(q, 2);
2898 		break;
2899 
2900 	default:
2901 		mutex_exit(&mir->mir_mutex);
2902 		break;
2903 	}
2904 }
2905 
2906 /*
2907  * Sanity check the message length, and if it's too large, shutdown the
2908  * connection.  Returns 1 if the connection is shutdown; 0 otherwise.
2909  */
2910 static int
2911 mir_check_len(queue_t *q, int32_t frag_len, mblk_t *head_mp)
2912 {
2913 	mir_t *mir = q->q_ptr;
2914 	uint_t maxsize = 0;
2915 
2916 	if (mir->mir_max_msg_sizep != NULL)
2917 		maxsize = *mir->mir_max_msg_sizep;
2918 
2919 	if (maxsize == 0 || frag_len <= (int)maxsize)
2920 		return (0);
2921 
2922 	freemsg(head_mp);
2923 	mir->mir_head_mp = NULL;
2924 	mir->mir_tail_mp = NULL;
2925 	mir->mir_frag_header = 0;
2926 	mir->mir_frag_len = -(int32_t)sizeof (uint32_t);
2927 	if (mir->mir_type != RPC_SERVER || mir->mir_setup_complete) {
2928 		cmn_err(CE_NOTE,
2929 		    "KRPC: record fragment from %s of size(%d) exceeds "
2930 		    "maximum (%u). Disconnecting",
2931 		    (mir->mir_type == RPC_CLIENT) ? "server" :
2932 		    (mir->mir_type == RPC_SERVER) ? "client" :
2933 		    "test tool", frag_len, maxsize);
2934 	}
2935 
2936 	mir_disconnect(q, mir);
2937 	return (1);
2938 }
2939