1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. All rights reserved. 25 * Copyright (c) 2016 by Delphix. All rights reserved. 26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 27 */ 28 29 /* 30 * Zones 31 * 32 * A zone is a named collection of processes, namespace constraints, 33 * and other system resources which comprise a secure and manageable 34 * application containment facility. 35 * 36 * Zones (represented by the reference counted zone_t) are tracked in 37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 38 * (zoneid_t) are used to track zone association. Zone IDs are 39 * dynamically generated when the zone is created; if a persistent 40 * identifier is needed (core files, accounting logs, audit trail, 41 * etc.), the zone name should be used. 42 * 43 * 44 * Global Zone: 45 * 46 * The global zone (zoneid 0) is automatically associated with all 47 * system resources that have not been bound to a user-created zone. 48 * This means that even systems where zones are not in active use 49 * have a global zone, and all processes, mounts, etc. are 50 * associated with that zone. The global zone is generally 51 * unconstrained in terms of privileges and access, though the usual 52 * credential and privilege based restrictions apply. 53 * 54 * 55 * Zone States: 56 * 57 * The states in which a zone may be in and the transitions are as 58 * follows: 59 * 60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 61 * initialized zone is added to the list of active zones on the system but 62 * isn't accessible. 63 * 64 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 65 * not yet completed. Not possible to enter the zone, but attributes can 66 * be retrieved. 67 * 68 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 69 * ready. The zone is made visible after the ZSD constructor callbacks are 70 * executed. A zone remains in this state until it transitions into 71 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 72 * 73 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 74 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 75 * state. 76 * 77 * ZONE_IS_RUNNING: The zone is open for business: zsched has 78 * successfully started init. A zone remains in this state until 79 * zone_shutdown() is called. 80 * 81 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 82 * killing all processes running in the zone. The zone remains 83 * in this state until there are no more user processes running in the zone. 84 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 85 * Since zone_shutdown() is restartable, it may be called successfully 86 * multiple times for the same zone_t. Setting of the zone's state to 87 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 88 * the zone's status without worrying about it being a moving target. 89 * 90 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 91 * are no more user processes in the zone. The zone remains in this 92 * state until there are no more kernel threads associated with the 93 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 94 * fail. 95 * 96 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 97 * have exited. zone_shutdown() returns. Henceforth it is not possible to 98 * join the zone or create kernel threads therein. 99 * 100 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 101 * remains in this state until zsched exits. Calls to zone_find_by_*() 102 * return NULL from now on. 103 * 104 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 105 * processes or threads doing work on behalf of the zone. The zone is 106 * removed from the list of active zones. zone_destroy() returns, and 107 * the zone can be recreated. 108 * 109 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 110 * callbacks are executed, and all memory associated with the zone is 111 * freed. 112 * 113 * Threads can wait for the zone to enter a requested state by using 114 * zone_status_wait() or zone_status_timedwait() with the desired 115 * state passed in as an argument. Zone state transitions are 116 * uni-directional; it is not possible to move back to an earlier state. 117 * 118 * 119 * Zone-Specific Data: 120 * 121 * Subsystems needing to maintain zone-specific data can store that 122 * data using the ZSD mechanism. This provides a zone-specific data 123 * store, similar to thread-specific data (see pthread_getspecific(3C) 124 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 125 * to register callbacks to be invoked when a zone is created, shut 126 * down, or destroyed. This can be used to initialize zone-specific 127 * data for new zones and to clean up when zones go away. 128 * 129 * 130 * Data Structures: 131 * 132 * The per-zone structure (zone_t) is reference counted, and freed 133 * when all references are released. zone_hold and zone_rele can be 134 * used to adjust the reference count. In addition, reference counts 135 * associated with the cred_t structure are tracked separately using 136 * zone_cred_hold and zone_cred_rele. 137 * 138 * Pointers to active zone_t's are stored in two hash tables; one 139 * for searching by id, the other for searching by name. Lookups 140 * can be performed on either basis, using zone_find_by_id and 141 * zone_find_by_name. Both return zone_t pointers with the zone 142 * held, so zone_rele should be called when the pointer is no longer 143 * needed. Zones can also be searched by path; zone_find_by_path 144 * returns the zone with which a path name is associated (global 145 * zone if the path is not within some other zone's file system 146 * hierarchy). This currently requires iterating through each zone, 147 * so it is slower than an id or name search via a hash table. 148 * 149 * 150 * Locking: 151 * 152 * zonehash_lock: This is a top-level global lock used to protect the 153 * zone hash tables and lists. Zones cannot be created or destroyed 154 * while this lock is held. 155 * zone_status_lock: This is a global lock protecting zone state. 156 * Zones cannot change state while this lock is held. It also 157 * protects the list of kernel threads associated with a zone. 158 * zone_lock: This is a per-zone lock used to protect several fields of 159 * the zone_t (see <sys/zone.h> for details). In addition, holding 160 * this lock means that the zone cannot go away. 161 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-lwps rctl. 163 * zone_mem_lock: This is a per-zone lock used to protect the fields 164 * related to the zone.max-locked-memory and zone.max-swap rctls. 165 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 166 * currently just max_lofi 167 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 168 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 169 * list (a list of zones in the ZONE_IS_DEAD state). 170 * 171 * Ordering requirements: 172 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 173 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 174 * 175 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 176 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 177 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 178 * 179 * Blocking memory allocations are permitted while holding any of the 180 * zone locks. 181 * 182 * 183 * System Call Interface: 184 * 185 * The zone subsystem can be managed and queried from user level with 186 * the following system calls (all subcodes of the primary "zone" 187 * system call): 188 * - zone_create: creates a zone with selected attributes (name, 189 * root path, privileges, resource controls, ZFS datasets) 190 * - zone_enter: allows the current process to enter a zone 191 * - zone_getattr: reports attributes of a zone 192 * - zone_setattr: set attributes of a zone 193 * - zone_boot: set 'init' running for the zone 194 * - zone_list: lists all zones active in the system 195 * - zone_lookup: looks up zone id based on name 196 * - zone_shutdown: initiates shutdown process (see states above) 197 * - zone_destroy: completes shutdown process (see states above) 198 * 199 */ 200 201 #include <sys/priv_impl.h> 202 #include <sys/cred.h> 203 #include <c2/audit.h> 204 #include <sys/debug.h> 205 #include <sys/file.h> 206 #include <sys/kmem.h> 207 #include <sys/kstat.h> 208 #include <sys/mutex.h> 209 #include <sys/note.h> 210 #include <sys/pathname.h> 211 #include <sys/proc.h> 212 #include <sys/project.h> 213 #include <sys/sysevent.h> 214 #include <sys/task.h> 215 #include <sys/systm.h> 216 #include <sys/types.h> 217 #include <sys/utsname.h> 218 #include <sys/vnode.h> 219 #include <sys/vfs.h> 220 #include <sys/systeminfo.h> 221 #include <sys/policy.h> 222 #include <sys/cred_impl.h> 223 #include <sys/contract_impl.h> 224 #include <sys/contract/process_impl.h> 225 #include <sys/class.h> 226 #include <sys/pool.h> 227 #include <sys/pool_pset.h> 228 #include <sys/pset.h> 229 #include <sys/strlog.h> 230 #include <sys/sysmacros.h> 231 #include <sys/callb.h> 232 #include <sys/vmparam.h> 233 #include <sys/corectl.h> 234 #include <sys/ipc_impl.h> 235 #include <sys/klpd.h> 236 237 #include <sys/door.h> 238 #include <sys/cpuvar.h> 239 #include <sys/sdt.h> 240 241 #include <sys/uadmin.h> 242 #include <sys/session.h> 243 #include <sys/cmn_err.h> 244 #include <sys/modhash.h> 245 #include <sys/sunddi.h> 246 #include <sys/nvpair.h> 247 #include <sys/rctl.h> 248 #include <sys/fss.h> 249 #include <sys/brand.h> 250 #include <sys/zone.h> 251 #include <net/if.h> 252 #include <sys/cpucaps.h> 253 #include <vm/seg.h> 254 #include <sys/mac.h> 255 256 /* 257 * This constant specifies the number of seconds that threads waiting for 258 * subsystems to release a zone's general-purpose references will wait before 259 * they log the zone's reference counts. The constant's value shouldn't 260 * be so small that reference counts are unnecessarily reported for zones 261 * whose references are slowly released. On the other hand, it shouldn't be so 262 * large that users reboot their systems out of frustration over hung zones 263 * before the system logs the zones' reference counts. 264 */ 265 #define ZONE_DESTROY_TIMEOUT_SECS 60 266 267 /* List of data link IDs which are accessible from the zone */ 268 typedef struct zone_dl { 269 datalink_id_t zdl_id; 270 nvlist_t *zdl_net; 271 list_node_t zdl_linkage; 272 } zone_dl_t; 273 274 /* 275 * cv used to signal that all references to the zone have been released. This 276 * needs to be global since there may be multiple waiters, and the first to 277 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 278 */ 279 static kcondvar_t zone_destroy_cv; 280 /* 281 * Lock used to serialize access to zone_cv. This could have been per-zone, 282 * but then we'd need another lock for zone_destroy_cv, and why bother? 283 */ 284 static kmutex_t zone_status_lock; 285 286 /* 287 * ZSD-related global variables. 288 */ 289 static kmutex_t zsd_key_lock; /* protects the following two */ 290 /* 291 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 292 */ 293 static zone_key_t zsd_keyval = 0; 294 /* 295 * Global list of registered keys. We use this when a new zone is created. 296 */ 297 static list_t zsd_registered_keys; 298 299 int zone_hash_size = 256; 300 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 301 static kmutex_t zonehash_lock; 302 static uint_t zonecount; 303 static id_space_t *zoneid_space; 304 305 /* 306 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 307 * kernel proper runs, and which manages all other zones. 308 * 309 * Although not declared as static, the variable "zone0" should not be used 310 * except for by code that needs to reference the global zone early on in boot, 311 * before it is fully initialized. All other consumers should use 312 * 'global_zone'. 313 */ 314 zone_t zone0; 315 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 316 317 /* 318 * List of active zones, protected by zonehash_lock. 319 */ 320 static list_t zone_active; 321 322 /* 323 * List of destroyed zones that still have outstanding cred references. 324 * Used for debugging. Uses a separate lock to avoid lock ordering 325 * problems in zone_free. 326 */ 327 static list_t zone_deathrow; 328 static kmutex_t zone_deathrow_lock; 329 330 /* number of zones is limited by virtual interface limit in IP */ 331 uint_t maxzones = 8192; 332 333 /* Event channel to sent zone state change notifications */ 334 evchan_t *zone_event_chan; 335 336 /* 337 * This table holds the mapping from kernel zone states to 338 * states visible in the state notification API. 339 * The idea is that we only expose "obvious" states and 340 * do not expose states which are just implementation details. 341 */ 342 const char *zone_status_table[] = { 343 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 344 ZONE_EVENT_INITIALIZED, /* initialized */ 345 ZONE_EVENT_READY, /* ready */ 346 ZONE_EVENT_READY, /* booting */ 347 ZONE_EVENT_RUNNING, /* running */ 348 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 350 ZONE_EVENT_SHUTTING_DOWN, /* down */ 351 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 352 ZONE_EVENT_UNINITIALIZED, /* dead */ 353 }; 354 355 /* 356 * This array contains the names of the subsystems listed in zone_ref_subsys_t 357 * (see sys/zone.h). 358 */ 359 static char *zone_ref_subsys_names[] = { 360 "NFS", /* ZONE_REF_NFS */ 361 "NFSv4", /* ZONE_REF_NFSV4 */ 362 "SMBFS", /* ZONE_REF_SMBFS */ 363 "MNTFS", /* ZONE_REF_MNTFS */ 364 "LOFI", /* ZONE_REF_LOFI */ 365 "VFS", /* ZONE_REF_VFS */ 366 "IPC" /* ZONE_REF_IPC */ 367 }; 368 369 /* 370 * This isn't static so lint doesn't complain. 371 */ 372 rctl_hndl_t rc_zone_cpu_shares; 373 rctl_hndl_t rc_zone_locked_mem; 374 rctl_hndl_t rc_zone_max_swap; 375 rctl_hndl_t rc_zone_max_lofi; 376 rctl_hndl_t rc_zone_cpu_cap; 377 rctl_hndl_t rc_zone_nlwps; 378 rctl_hndl_t rc_zone_nprocs; 379 rctl_hndl_t rc_zone_shmmax; 380 rctl_hndl_t rc_zone_shmmni; 381 rctl_hndl_t rc_zone_semmni; 382 rctl_hndl_t rc_zone_msgmni; 383 384 const char * const zone_default_initname = "/sbin/init"; 385 static char * const zone_prefix = "/zone/"; 386 static int zone_shutdown(zoneid_t zoneid); 387 static int zone_add_datalink(zoneid_t, datalink_id_t); 388 static int zone_remove_datalink(zoneid_t, datalink_id_t); 389 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 390 static int zone_set_network(zoneid_t, zone_net_data_t *); 391 static int zone_get_network(zoneid_t, zone_net_data_t *); 392 393 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 394 395 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 396 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 397 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 398 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 399 zone_key_t); 400 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 401 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 402 kmutex_t *); 403 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 404 kmutex_t *); 405 406 /* 407 * Bump this number when you alter the zone syscall interfaces; this is 408 * because we need to have support for previous API versions in libc 409 * to support patching; libc calls into the kernel to determine this number. 410 * 411 * Version 1 of the API is the version originally shipped with Solaris 10 412 * Version 2 alters the zone_create system call in order to support more 413 * arguments by moving the args into a structure; and to do better 414 * error reporting when zone_create() fails. 415 * Version 3 alters the zone_create system call in order to support the 416 * import of ZFS datasets to zones. 417 * Version 4 alters the zone_create system call in order to support 418 * Trusted Extensions. 419 * Version 5 alters the zone_boot system call, and converts its old 420 * bootargs parameter to be set by the zone_setattr API instead. 421 * Version 6 adds the flag argument to zone_create. 422 */ 423 static const int ZONE_SYSCALL_API_VERSION = 6; 424 425 /* 426 * Certain filesystems (such as NFS and autofs) need to know which zone 427 * the mount is being placed in. Because of this, we need to be able to 428 * ensure that a zone isn't in the process of being created/destroyed such 429 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time 430 * it gets added the list of mounted zones, it ends up on the wrong zone's 431 * mount list. Since a zone can't reside on an NFS file system, we don't 432 * have to worry about the zonepath itself. 433 * 434 * The following functions: block_mounts()/resume_mounts() and 435 * mount_in_progress()/mount_completed() are used by zones and the VFS 436 * layer (respectively) to synchronize zone state transitions and new 437 * mounts within a zone. This syncronization is on a per-zone basis, so 438 * activity for one zone will not interfere with activity for another zone. 439 * 440 * The semantics are like a reader-reader lock such that there may 441 * either be multiple mounts (or zone state transitions, if that weren't 442 * serialized by zonehash_lock) in progress at the same time, but not 443 * both. 444 * 445 * We use cv's so the user can ctrl-C out of the operation if it's 446 * taking too long. 447 * 448 * The semantics are such that there is unfair bias towards the 449 * "current" operation. This means that zone halt may starve if 450 * there is a rapid succession of new mounts coming in to the zone. 451 */ 452 /* 453 * Prevent new mounts from progressing to the point of calling 454 * VFS_MOUNT(). If there are already mounts in this "region", wait for 455 * them to complete. 456 */ 457 static int 458 block_mounts(zone_t *zp) 459 { 460 int retval = 0; 461 462 /* 463 * Since it may block for a long time, block_mounts() shouldn't be 464 * called with zonehash_lock held. 465 */ 466 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 467 mutex_enter(&zp->zone_mount_lock); 468 while (zp->zone_mounts_in_progress > 0) { 469 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0) 470 goto signaled; 471 } 472 /* 473 * A negative value of mounts_in_progress indicates that mounts 474 * have been blocked by (-mounts_in_progress) different callers 475 * (remotely possible if two threads enter zone_shutdown at the same 476 * time). 477 */ 478 zp->zone_mounts_in_progress--; 479 retval = 1; 480 signaled: 481 mutex_exit(&zp->zone_mount_lock); 482 return (retval); 483 } 484 485 /* 486 * The VFS layer may progress with new mounts as far as we're concerned. 487 * Allow them to progress if we were the last obstacle. 488 */ 489 static void 490 resume_mounts(zone_t *zp) 491 { 492 mutex_enter(&zp->zone_mount_lock); 493 if (++zp->zone_mounts_in_progress == 0) 494 cv_broadcast(&zp->zone_mount_cv); 495 mutex_exit(&zp->zone_mount_lock); 496 } 497 498 /* 499 * The VFS layer is busy with a mount; this zone should wait until all 500 * of its mounts are completed to progress. 501 */ 502 void 503 mount_in_progress(zone_t *zp) 504 { 505 mutex_enter(&zp->zone_mount_lock); 506 while (zp->zone_mounts_in_progress < 0) 507 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock); 508 zp->zone_mounts_in_progress++; 509 mutex_exit(&zp->zone_mount_lock); 510 } 511 512 /* 513 * VFS is done with one mount; wake up any waiting block_mounts() 514 * callers if this is the last mount. 515 */ 516 void 517 mount_completed(zone_t *zp) 518 { 519 mutex_enter(&zp->zone_mount_lock); 520 if (--zp->zone_mounts_in_progress == 0) 521 cv_broadcast(&zp->zone_mount_cv); 522 mutex_exit(&zp->zone_mount_lock); 523 } 524 525 /* 526 * ZSD routines. 527 * 528 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 529 * defined by the pthread_key_create() and related interfaces. 530 * 531 * Kernel subsystems may register one or more data items and/or 532 * callbacks to be executed when a zone is created, shutdown, or 533 * destroyed. 534 * 535 * Unlike the thread counterpart, destructor callbacks will be executed 536 * even if the data pointer is NULL and/or there are no constructor 537 * callbacks, so it is the responsibility of such callbacks to check for 538 * NULL data values if necessary. 539 * 540 * The locking strategy and overall picture is as follows: 541 * 542 * When someone calls zone_key_create(), a template ZSD entry is added to the 543 * global list "zsd_registered_keys", protected by zsd_key_lock. While 544 * holding that lock all the existing zones are marked as 545 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 546 * zone_zsd list (protected by zone_lock). The global list is updated first 547 * (under zone_key_lock) to make sure that newly created zones use the 548 * most recent list of keys. Then under zonehash_lock we walk the zones 549 * and mark them. Similar locking is used in zone_key_delete(). 550 * 551 * The actual create, shutdown, and destroy callbacks are done without 552 * holding any lock. And zsd_flags are used to ensure that the operations 553 * completed so that when zone_key_create (and zone_create) is done, as well as 554 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 555 * are completed. 556 * 557 * When new zones are created constructor callbacks for all registered ZSD 558 * entries will be called. That also uses the above two phases of marking 559 * what needs to be done, and then running the callbacks without holding 560 * any locks. 561 * 562 * The framework does not provide any locking around zone_getspecific() and 563 * zone_setspecific() apart from that needed for internal consistency, so 564 * callers interested in atomic "test-and-set" semantics will need to provide 565 * their own locking. 566 */ 567 568 /* 569 * Helper function to find the zsd_entry associated with the key in the 570 * given list. 571 */ 572 static struct zsd_entry * 573 zsd_find(list_t *l, zone_key_t key) 574 { 575 struct zsd_entry *zsd; 576 577 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 578 if (zsd->zsd_key == key) { 579 return (zsd); 580 } 581 } 582 return (NULL); 583 } 584 585 /* 586 * Helper function to find the zsd_entry associated with the key in the 587 * given list. Move it to the front of the list. 588 */ 589 static struct zsd_entry * 590 zsd_find_mru(list_t *l, zone_key_t key) 591 { 592 struct zsd_entry *zsd; 593 594 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 595 if (zsd->zsd_key == key) { 596 /* 597 * Move to head of list to keep list in MRU order. 598 */ 599 if (zsd != list_head(l)) { 600 list_remove(l, zsd); 601 list_insert_head(l, zsd); 602 } 603 return (zsd); 604 } 605 } 606 return (NULL); 607 } 608 609 void 610 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 611 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 612 { 613 struct zsd_entry *zsdp; 614 struct zsd_entry *t; 615 struct zone *zone; 616 zone_key_t key; 617 618 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 619 zsdp->zsd_data = NULL; 620 zsdp->zsd_create = create; 621 zsdp->zsd_shutdown = shutdown; 622 zsdp->zsd_destroy = destroy; 623 624 /* 625 * Insert in global list of callbacks. Makes future zone creations 626 * see it. 627 */ 628 mutex_enter(&zsd_key_lock); 629 key = zsdp->zsd_key = ++zsd_keyval; 630 ASSERT(zsd_keyval != 0); 631 list_insert_tail(&zsd_registered_keys, zsdp); 632 mutex_exit(&zsd_key_lock); 633 634 /* 635 * Insert for all existing zones and mark them as needing 636 * a create callback. 637 */ 638 mutex_enter(&zonehash_lock); /* stop the world */ 639 for (zone = list_head(&zone_active); zone != NULL; 640 zone = list_next(&zone_active, zone)) { 641 zone_status_t status; 642 643 mutex_enter(&zone->zone_lock); 644 645 /* Skip zones that are on the way down or not yet up */ 646 status = zone_status_get(zone); 647 if (status >= ZONE_IS_DOWN || 648 status == ZONE_IS_UNINITIALIZED) { 649 mutex_exit(&zone->zone_lock); 650 continue; 651 } 652 653 t = zsd_find_mru(&zone->zone_zsd, key); 654 if (t != NULL) { 655 /* 656 * A zsd_configure already inserted it after 657 * we dropped zsd_key_lock above. 658 */ 659 mutex_exit(&zone->zone_lock); 660 continue; 661 } 662 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 663 t->zsd_key = key; 664 t->zsd_create = create; 665 t->zsd_shutdown = shutdown; 666 t->zsd_destroy = destroy; 667 if (create != NULL) { 668 t->zsd_flags = ZSD_CREATE_NEEDED; 669 DTRACE_PROBE2(zsd__create__needed, 670 zone_t *, zone, zone_key_t, key); 671 } 672 list_insert_tail(&zone->zone_zsd, t); 673 mutex_exit(&zone->zone_lock); 674 } 675 mutex_exit(&zonehash_lock); 676 677 if (create != NULL) { 678 /* Now call the create callback for this key */ 679 zsd_apply_all_zones(zsd_apply_create, key); 680 } 681 /* 682 * It is safe for consumers to use the key now, make it 683 * globally visible. Specifically zone_getspecific() will 684 * always successfully return the zone specific data associated 685 * with the key. 686 */ 687 *keyp = key; 688 689 } 690 691 /* 692 * Function called when a module is being unloaded, or otherwise wishes 693 * to unregister its ZSD key and callbacks. 694 * 695 * Remove from the global list and determine the functions that need to 696 * be called under a global lock. Then call the functions without 697 * holding any locks. Finally free up the zone_zsd entries. (The apply 698 * functions need to access the zone_zsd entries to find zsd_data etc.) 699 */ 700 int 701 zone_key_delete(zone_key_t key) 702 { 703 struct zsd_entry *zsdp = NULL; 704 zone_t *zone; 705 706 mutex_enter(&zsd_key_lock); 707 zsdp = zsd_find_mru(&zsd_registered_keys, key); 708 if (zsdp == NULL) { 709 mutex_exit(&zsd_key_lock); 710 return (-1); 711 } 712 list_remove(&zsd_registered_keys, zsdp); 713 mutex_exit(&zsd_key_lock); 714 715 mutex_enter(&zonehash_lock); 716 for (zone = list_head(&zone_active); zone != NULL; 717 zone = list_next(&zone_active, zone)) { 718 struct zsd_entry *del; 719 720 mutex_enter(&zone->zone_lock); 721 del = zsd_find_mru(&zone->zone_zsd, key); 722 if (del == NULL) { 723 /* 724 * Somebody else got here first e.g the zone going 725 * away. 726 */ 727 mutex_exit(&zone->zone_lock); 728 continue; 729 } 730 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 731 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 732 if (del->zsd_shutdown != NULL && 733 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 734 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 735 DTRACE_PROBE2(zsd__shutdown__needed, 736 zone_t *, zone, zone_key_t, key); 737 } 738 if (del->zsd_destroy != NULL && 739 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 740 del->zsd_flags |= ZSD_DESTROY_NEEDED; 741 DTRACE_PROBE2(zsd__destroy__needed, 742 zone_t *, zone, zone_key_t, key); 743 } 744 mutex_exit(&zone->zone_lock); 745 } 746 mutex_exit(&zonehash_lock); 747 kmem_free(zsdp, sizeof (*zsdp)); 748 749 /* Now call the shutdown and destroy callback for this key */ 750 zsd_apply_all_zones(zsd_apply_shutdown, key); 751 zsd_apply_all_zones(zsd_apply_destroy, key); 752 753 /* Now we can free up the zsdp structures in each zone */ 754 mutex_enter(&zonehash_lock); 755 for (zone = list_head(&zone_active); zone != NULL; 756 zone = list_next(&zone_active, zone)) { 757 struct zsd_entry *del; 758 759 mutex_enter(&zone->zone_lock); 760 del = zsd_find(&zone->zone_zsd, key); 761 if (del != NULL) { 762 list_remove(&zone->zone_zsd, del); 763 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 764 kmem_free(del, sizeof (*del)); 765 } 766 mutex_exit(&zone->zone_lock); 767 } 768 mutex_exit(&zonehash_lock); 769 770 return (0); 771 } 772 773 /* 774 * ZSD counterpart of pthread_setspecific(). 775 * 776 * Since all zsd callbacks, including those with no create function, 777 * have an entry in zone_zsd, if the key is registered it is part of 778 * the zone_zsd list. 779 * Return an error if the key wasn't registerd. 780 */ 781 int 782 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 783 { 784 struct zsd_entry *t; 785 786 mutex_enter(&zone->zone_lock); 787 t = zsd_find_mru(&zone->zone_zsd, key); 788 if (t != NULL) { 789 /* 790 * Replace old value with new 791 */ 792 t->zsd_data = (void *)data; 793 mutex_exit(&zone->zone_lock); 794 return (0); 795 } 796 mutex_exit(&zone->zone_lock); 797 return (-1); 798 } 799 800 /* 801 * ZSD counterpart of pthread_getspecific(). 802 */ 803 void * 804 zone_getspecific(zone_key_t key, zone_t *zone) 805 { 806 struct zsd_entry *t; 807 void *data; 808 809 mutex_enter(&zone->zone_lock); 810 t = zsd_find_mru(&zone->zone_zsd, key); 811 data = (t == NULL ? NULL : t->zsd_data); 812 mutex_exit(&zone->zone_lock); 813 return (data); 814 } 815 816 /* 817 * Function used to initialize a zone's list of ZSD callbacks and data 818 * when the zone is being created. The callbacks are initialized from 819 * the template list (zsd_registered_keys). The constructor callback is 820 * executed later (once the zone exists and with locks dropped). 821 */ 822 static void 823 zone_zsd_configure(zone_t *zone) 824 { 825 struct zsd_entry *zsdp; 826 struct zsd_entry *t; 827 828 ASSERT(MUTEX_HELD(&zonehash_lock)); 829 ASSERT(list_head(&zone->zone_zsd) == NULL); 830 mutex_enter(&zone->zone_lock); 831 mutex_enter(&zsd_key_lock); 832 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 833 zsdp = list_next(&zsd_registered_keys, zsdp)) { 834 /* 835 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 836 * should not have added anything to it. 837 */ 838 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 839 840 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 841 t->zsd_key = zsdp->zsd_key; 842 t->zsd_create = zsdp->zsd_create; 843 t->zsd_shutdown = zsdp->zsd_shutdown; 844 t->zsd_destroy = zsdp->zsd_destroy; 845 if (zsdp->zsd_create != NULL) { 846 t->zsd_flags = ZSD_CREATE_NEEDED; 847 DTRACE_PROBE2(zsd__create__needed, 848 zone_t *, zone, zone_key_t, zsdp->zsd_key); 849 } 850 list_insert_tail(&zone->zone_zsd, t); 851 } 852 mutex_exit(&zsd_key_lock); 853 mutex_exit(&zone->zone_lock); 854 } 855 856 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 857 858 /* 859 * Helper function to execute shutdown or destructor callbacks. 860 */ 861 static void 862 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 863 { 864 struct zsd_entry *t; 865 866 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 867 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 868 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 869 870 /* 871 * Run the callback solely based on what is registered for the zone 872 * in zone_zsd. The global list can change independently of this 873 * as keys are registered and unregistered and we don't register new 874 * callbacks for a zone that is in the process of going away. 875 */ 876 mutex_enter(&zone->zone_lock); 877 for (t = list_head(&zone->zone_zsd); t != NULL; 878 t = list_next(&zone->zone_zsd, t)) { 879 zone_key_t key = t->zsd_key; 880 881 /* Skip if no callbacks registered */ 882 883 if (ct == ZSD_SHUTDOWN) { 884 if (t->zsd_shutdown != NULL && 885 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 886 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 887 DTRACE_PROBE2(zsd__shutdown__needed, 888 zone_t *, zone, zone_key_t, key); 889 } 890 } else { 891 if (t->zsd_destroy != NULL && 892 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 893 t->zsd_flags |= ZSD_DESTROY_NEEDED; 894 DTRACE_PROBE2(zsd__destroy__needed, 895 zone_t *, zone, zone_key_t, key); 896 } 897 } 898 } 899 mutex_exit(&zone->zone_lock); 900 901 /* Now call the shutdown and destroy callback for this key */ 902 zsd_apply_all_keys(zsd_apply_shutdown, zone); 903 zsd_apply_all_keys(zsd_apply_destroy, zone); 904 905 } 906 907 /* 908 * Called when the zone is going away; free ZSD-related memory, and 909 * destroy the zone_zsd list. 910 */ 911 static void 912 zone_free_zsd(zone_t *zone) 913 { 914 struct zsd_entry *t, *next; 915 916 /* 917 * Free all the zsd_entry's we had on this zone. 918 */ 919 mutex_enter(&zone->zone_lock); 920 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 921 next = list_next(&zone->zone_zsd, t); 922 list_remove(&zone->zone_zsd, t); 923 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 924 kmem_free(t, sizeof (*t)); 925 } 926 list_destroy(&zone->zone_zsd); 927 mutex_exit(&zone->zone_lock); 928 929 } 930 931 /* 932 * Apply a function to all zones for particular key value. 933 * 934 * The applyfn has to drop zonehash_lock if it does some work, and 935 * then reacquire it before it returns. 936 * When the lock is dropped we don't follow list_next even 937 * if it is possible to do so without any hazards. This is 938 * because we want the design to allow for the list of zones 939 * to change in any arbitrary way during the time the 940 * lock was dropped. 941 * 942 * It is safe to restart the loop at list_head since the applyfn 943 * changes the zsd_flags as it does work, so a subsequent 944 * pass through will have no effect in applyfn, hence the loop will terminate 945 * in at worst O(N^2). 946 */ 947 static void 948 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 949 { 950 zone_t *zone; 951 952 mutex_enter(&zonehash_lock); 953 zone = list_head(&zone_active); 954 while (zone != NULL) { 955 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 956 /* Lock dropped - restart at head */ 957 zone = list_head(&zone_active); 958 } else { 959 zone = list_next(&zone_active, zone); 960 } 961 } 962 mutex_exit(&zonehash_lock); 963 } 964 965 /* 966 * Apply a function to all keys for a particular zone. 967 * 968 * The applyfn has to drop zonehash_lock if it does some work, and 969 * then reacquire it before it returns. 970 * When the lock is dropped we don't follow list_next even 971 * if it is possible to do so without any hazards. This is 972 * because we want the design to allow for the list of zsd callbacks 973 * to change in any arbitrary way during the time the 974 * lock was dropped. 975 * 976 * It is safe to restart the loop at list_head since the applyfn 977 * changes the zsd_flags as it does work, so a subsequent 978 * pass through will have no effect in applyfn, hence the loop will terminate 979 * in at worst O(N^2). 980 */ 981 static void 982 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 983 { 984 struct zsd_entry *t; 985 986 mutex_enter(&zone->zone_lock); 987 t = list_head(&zone->zone_zsd); 988 while (t != NULL) { 989 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 990 /* Lock dropped - restart at head */ 991 t = list_head(&zone->zone_zsd); 992 } else { 993 t = list_next(&zone->zone_zsd, t); 994 } 995 } 996 mutex_exit(&zone->zone_lock); 997 } 998 999 /* 1000 * Call the create function for the zone and key if CREATE_NEEDED 1001 * is set. 1002 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1003 * we wait for that thread to complete so that we can ensure that 1004 * all the callbacks are done when we've looped over all zones/keys. 1005 * 1006 * When we call the create function, we drop the global held by the 1007 * caller, and return true to tell the caller it needs to re-evalute the 1008 * state. 1009 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1010 * remains held on exit. 1011 */ 1012 static boolean_t 1013 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1014 zone_t *zone, zone_key_t key) 1015 { 1016 void *result; 1017 struct zsd_entry *t; 1018 boolean_t dropped; 1019 1020 if (lockp != NULL) { 1021 ASSERT(MUTEX_HELD(lockp)); 1022 } 1023 if (zone_lock_held) { 1024 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1025 } else { 1026 mutex_enter(&zone->zone_lock); 1027 } 1028 1029 t = zsd_find(&zone->zone_zsd, key); 1030 if (t == NULL) { 1031 /* 1032 * Somebody else got here first e.g the zone going 1033 * away. 1034 */ 1035 if (!zone_lock_held) 1036 mutex_exit(&zone->zone_lock); 1037 return (B_FALSE); 1038 } 1039 dropped = B_FALSE; 1040 if (zsd_wait_for_inprogress(zone, t, lockp)) 1041 dropped = B_TRUE; 1042 1043 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1044 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1045 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1046 DTRACE_PROBE2(zsd__create__inprogress, 1047 zone_t *, zone, zone_key_t, key); 1048 mutex_exit(&zone->zone_lock); 1049 if (lockp != NULL) 1050 mutex_exit(lockp); 1051 1052 dropped = B_TRUE; 1053 ASSERT(t->zsd_create != NULL); 1054 DTRACE_PROBE2(zsd__create__start, 1055 zone_t *, zone, zone_key_t, key); 1056 1057 result = (*t->zsd_create)(zone->zone_id); 1058 1059 DTRACE_PROBE2(zsd__create__end, 1060 zone_t *, zone, voidn *, result); 1061 1062 ASSERT(result != NULL); 1063 if (lockp != NULL) 1064 mutex_enter(lockp); 1065 mutex_enter(&zone->zone_lock); 1066 t->zsd_data = result; 1067 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1068 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1069 cv_broadcast(&t->zsd_cv); 1070 DTRACE_PROBE2(zsd__create__completed, 1071 zone_t *, zone, zone_key_t, key); 1072 } 1073 if (!zone_lock_held) 1074 mutex_exit(&zone->zone_lock); 1075 return (dropped); 1076 } 1077 1078 /* 1079 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1080 * is set. 1081 * If some other thread gets here first and sets *_INPROGRESS, then 1082 * we wait for that thread to complete so that we can ensure that 1083 * all the callbacks are done when we've looped over all zones/keys. 1084 * 1085 * When we call the shutdown function, we drop the global held by the 1086 * caller, and return true to tell the caller it needs to re-evalute the 1087 * state. 1088 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1089 * remains held on exit. 1090 */ 1091 static boolean_t 1092 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1093 zone_t *zone, zone_key_t key) 1094 { 1095 struct zsd_entry *t; 1096 void *data; 1097 boolean_t dropped; 1098 1099 if (lockp != NULL) { 1100 ASSERT(MUTEX_HELD(lockp)); 1101 } 1102 if (zone_lock_held) { 1103 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1104 } else { 1105 mutex_enter(&zone->zone_lock); 1106 } 1107 1108 t = zsd_find(&zone->zone_zsd, key); 1109 if (t == NULL) { 1110 /* 1111 * Somebody else got here first e.g the zone going 1112 * away. 1113 */ 1114 if (!zone_lock_held) 1115 mutex_exit(&zone->zone_lock); 1116 return (B_FALSE); 1117 } 1118 dropped = B_FALSE; 1119 if (zsd_wait_for_creator(zone, t, lockp)) 1120 dropped = B_TRUE; 1121 1122 if (zsd_wait_for_inprogress(zone, t, lockp)) 1123 dropped = B_TRUE; 1124 1125 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1126 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1127 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1128 DTRACE_PROBE2(zsd__shutdown__inprogress, 1129 zone_t *, zone, zone_key_t, key); 1130 mutex_exit(&zone->zone_lock); 1131 if (lockp != NULL) 1132 mutex_exit(lockp); 1133 dropped = B_TRUE; 1134 1135 ASSERT(t->zsd_shutdown != NULL); 1136 data = t->zsd_data; 1137 1138 DTRACE_PROBE2(zsd__shutdown__start, 1139 zone_t *, zone, zone_key_t, key); 1140 1141 (t->zsd_shutdown)(zone->zone_id, data); 1142 DTRACE_PROBE2(zsd__shutdown__end, 1143 zone_t *, zone, zone_key_t, key); 1144 1145 if (lockp != NULL) 1146 mutex_enter(lockp); 1147 mutex_enter(&zone->zone_lock); 1148 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1149 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1150 cv_broadcast(&t->zsd_cv); 1151 DTRACE_PROBE2(zsd__shutdown__completed, 1152 zone_t *, zone, zone_key_t, key); 1153 } 1154 if (!zone_lock_held) 1155 mutex_exit(&zone->zone_lock); 1156 return (dropped); 1157 } 1158 1159 /* 1160 * Call the destroy function for the zone and key if DESTROY_NEEDED 1161 * is set. 1162 * If some other thread gets here first and sets *_INPROGRESS, then 1163 * we wait for that thread to complete so that we can ensure that 1164 * all the callbacks are done when we've looped over all zones/keys. 1165 * 1166 * When we call the destroy function, we drop the global held by the 1167 * caller, and return true to tell the caller it needs to re-evalute the 1168 * state. 1169 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1170 * remains held on exit. 1171 */ 1172 static boolean_t 1173 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1174 zone_t *zone, zone_key_t key) 1175 { 1176 struct zsd_entry *t; 1177 void *data; 1178 boolean_t dropped; 1179 1180 if (lockp != NULL) { 1181 ASSERT(MUTEX_HELD(lockp)); 1182 } 1183 if (zone_lock_held) { 1184 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1185 } else { 1186 mutex_enter(&zone->zone_lock); 1187 } 1188 1189 t = zsd_find(&zone->zone_zsd, key); 1190 if (t == NULL) { 1191 /* 1192 * Somebody else got here first e.g the zone going 1193 * away. 1194 */ 1195 if (!zone_lock_held) 1196 mutex_exit(&zone->zone_lock); 1197 return (B_FALSE); 1198 } 1199 dropped = B_FALSE; 1200 if (zsd_wait_for_creator(zone, t, lockp)) 1201 dropped = B_TRUE; 1202 1203 if (zsd_wait_for_inprogress(zone, t, lockp)) 1204 dropped = B_TRUE; 1205 1206 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1207 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1208 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1209 DTRACE_PROBE2(zsd__destroy__inprogress, 1210 zone_t *, zone, zone_key_t, key); 1211 mutex_exit(&zone->zone_lock); 1212 if (lockp != NULL) 1213 mutex_exit(lockp); 1214 dropped = B_TRUE; 1215 1216 ASSERT(t->zsd_destroy != NULL); 1217 data = t->zsd_data; 1218 DTRACE_PROBE2(zsd__destroy__start, 1219 zone_t *, zone, zone_key_t, key); 1220 1221 (t->zsd_destroy)(zone->zone_id, data); 1222 DTRACE_PROBE2(zsd__destroy__end, 1223 zone_t *, zone, zone_key_t, key); 1224 1225 if (lockp != NULL) 1226 mutex_enter(lockp); 1227 mutex_enter(&zone->zone_lock); 1228 t->zsd_data = NULL; 1229 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1230 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1231 cv_broadcast(&t->zsd_cv); 1232 DTRACE_PROBE2(zsd__destroy__completed, 1233 zone_t *, zone, zone_key_t, key); 1234 } 1235 if (!zone_lock_held) 1236 mutex_exit(&zone->zone_lock); 1237 return (dropped); 1238 } 1239 1240 /* 1241 * Wait for any CREATE_NEEDED flag to be cleared. 1242 * Returns true if lockp was temporarily dropped while waiting. 1243 */ 1244 static boolean_t 1245 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1246 { 1247 boolean_t dropped = B_FALSE; 1248 1249 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1250 DTRACE_PROBE2(zsd__wait__for__creator, 1251 zone_t *, zone, struct zsd_entry *, t); 1252 if (lockp != NULL) { 1253 dropped = B_TRUE; 1254 mutex_exit(lockp); 1255 } 1256 cv_wait(&t->zsd_cv, &zone->zone_lock); 1257 if (lockp != NULL) { 1258 /* First drop zone_lock to preserve order */ 1259 mutex_exit(&zone->zone_lock); 1260 mutex_enter(lockp); 1261 mutex_enter(&zone->zone_lock); 1262 } 1263 } 1264 return (dropped); 1265 } 1266 1267 /* 1268 * Wait for any INPROGRESS flag to be cleared. 1269 * Returns true if lockp was temporarily dropped while waiting. 1270 */ 1271 static boolean_t 1272 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1273 { 1274 boolean_t dropped = B_FALSE; 1275 1276 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1277 DTRACE_PROBE2(zsd__wait__for__inprogress, 1278 zone_t *, zone, struct zsd_entry *, t); 1279 if (lockp != NULL) { 1280 dropped = B_TRUE; 1281 mutex_exit(lockp); 1282 } 1283 cv_wait(&t->zsd_cv, &zone->zone_lock); 1284 if (lockp != NULL) { 1285 /* First drop zone_lock to preserve order */ 1286 mutex_exit(&zone->zone_lock); 1287 mutex_enter(lockp); 1288 mutex_enter(&zone->zone_lock); 1289 } 1290 } 1291 return (dropped); 1292 } 1293 1294 /* 1295 * Frees memory associated with the zone dataset list. 1296 */ 1297 static void 1298 zone_free_datasets(zone_t *zone) 1299 { 1300 zone_dataset_t *t, *next; 1301 1302 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1303 next = list_next(&zone->zone_datasets, t); 1304 list_remove(&zone->zone_datasets, t); 1305 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1306 kmem_free(t, sizeof (*t)); 1307 } 1308 list_destroy(&zone->zone_datasets); 1309 } 1310 1311 /* 1312 * zone.cpu-shares resource control support. 1313 */ 1314 /*ARGSUSED*/ 1315 static rctl_qty_t 1316 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1317 { 1318 ASSERT(MUTEX_HELD(&p->p_lock)); 1319 return (p->p_zone->zone_shares); 1320 } 1321 1322 /*ARGSUSED*/ 1323 static int 1324 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1325 rctl_qty_t nv) 1326 { 1327 ASSERT(MUTEX_HELD(&p->p_lock)); 1328 ASSERT(e->rcep_t == RCENTITY_ZONE); 1329 if (e->rcep_p.zone == NULL) 1330 return (0); 1331 1332 e->rcep_p.zone->zone_shares = nv; 1333 return (0); 1334 } 1335 1336 static rctl_ops_t zone_cpu_shares_ops = { 1337 rcop_no_action, 1338 zone_cpu_shares_usage, 1339 zone_cpu_shares_set, 1340 rcop_no_test 1341 }; 1342 1343 /* 1344 * zone.cpu-cap resource control support. 1345 */ 1346 /*ARGSUSED*/ 1347 static rctl_qty_t 1348 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1349 { 1350 ASSERT(MUTEX_HELD(&p->p_lock)); 1351 return (cpucaps_zone_get(p->p_zone)); 1352 } 1353 1354 /*ARGSUSED*/ 1355 static int 1356 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1357 rctl_qty_t nv) 1358 { 1359 zone_t *zone = e->rcep_p.zone; 1360 1361 ASSERT(MUTEX_HELD(&p->p_lock)); 1362 ASSERT(e->rcep_t == RCENTITY_ZONE); 1363 1364 if (zone == NULL) 1365 return (0); 1366 1367 /* 1368 * set cap to the new value. 1369 */ 1370 return (cpucaps_zone_set(zone, nv)); 1371 } 1372 1373 static rctl_ops_t zone_cpu_cap_ops = { 1374 rcop_no_action, 1375 zone_cpu_cap_get, 1376 zone_cpu_cap_set, 1377 rcop_no_test 1378 }; 1379 1380 /*ARGSUSED*/ 1381 static rctl_qty_t 1382 zone_lwps_usage(rctl_t *r, proc_t *p) 1383 { 1384 rctl_qty_t nlwps; 1385 zone_t *zone = p->p_zone; 1386 1387 ASSERT(MUTEX_HELD(&p->p_lock)); 1388 1389 mutex_enter(&zone->zone_nlwps_lock); 1390 nlwps = zone->zone_nlwps; 1391 mutex_exit(&zone->zone_nlwps_lock); 1392 1393 return (nlwps); 1394 } 1395 1396 /*ARGSUSED*/ 1397 static int 1398 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1399 rctl_qty_t incr, uint_t flags) 1400 { 1401 rctl_qty_t nlwps; 1402 1403 ASSERT(MUTEX_HELD(&p->p_lock)); 1404 ASSERT(e->rcep_t == RCENTITY_ZONE); 1405 if (e->rcep_p.zone == NULL) 1406 return (0); 1407 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1408 nlwps = e->rcep_p.zone->zone_nlwps; 1409 1410 if (nlwps + incr > rcntl->rcv_value) 1411 return (1); 1412 1413 return (0); 1414 } 1415 1416 /*ARGSUSED*/ 1417 static int 1418 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1419 { 1420 ASSERT(MUTEX_HELD(&p->p_lock)); 1421 ASSERT(e->rcep_t == RCENTITY_ZONE); 1422 if (e->rcep_p.zone == NULL) 1423 return (0); 1424 e->rcep_p.zone->zone_nlwps_ctl = nv; 1425 return (0); 1426 } 1427 1428 static rctl_ops_t zone_lwps_ops = { 1429 rcop_no_action, 1430 zone_lwps_usage, 1431 zone_lwps_set, 1432 zone_lwps_test, 1433 }; 1434 1435 /*ARGSUSED*/ 1436 static rctl_qty_t 1437 zone_procs_usage(rctl_t *r, proc_t *p) 1438 { 1439 rctl_qty_t nprocs; 1440 zone_t *zone = p->p_zone; 1441 1442 ASSERT(MUTEX_HELD(&p->p_lock)); 1443 1444 mutex_enter(&zone->zone_nlwps_lock); 1445 nprocs = zone->zone_nprocs; 1446 mutex_exit(&zone->zone_nlwps_lock); 1447 1448 return (nprocs); 1449 } 1450 1451 /*ARGSUSED*/ 1452 static int 1453 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1454 rctl_qty_t incr, uint_t flags) 1455 { 1456 rctl_qty_t nprocs; 1457 1458 ASSERT(MUTEX_HELD(&p->p_lock)); 1459 ASSERT(e->rcep_t == RCENTITY_ZONE); 1460 if (e->rcep_p.zone == NULL) 1461 return (0); 1462 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1463 nprocs = e->rcep_p.zone->zone_nprocs; 1464 1465 if (nprocs + incr > rcntl->rcv_value) 1466 return (1); 1467 1468 return (0); 1469 } 1470 1471 /*ARGSUSED*/ 1472 static int 1473 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1474 { 1475 ASSERT(MUTEX_HELD(&p->p_lock)); 1476 ASSERT(e->rcep_t == RCENTITY_ZONE); 1477 if (e->rcep_p.zone == NULL) 1478 return (0); 1479 e->rcep_p.zone->zone_nprocs_ctl = nv; 1480 return (0); 1481 } 1482 1483 static rctl_ops_t zone_procs_ops = { 1484 rcop_no_action, 1485 zone_procs_usage, 1486 zone_procs_set, 1487 zone_procs_test, 1488 }; 1489 1490 /*ARGSUSED*/ 1491 static rctl_qty_t 1492 zone_shmmax_usage(rctl_t *rctl, struct proc *p) 1493 { 1494 ASSERT(MUTEX_HELD(&p->p_lock)); 1495 return (p->p_zone->zone_shmmax); 1496 } 1497 1498 /*ARGSUSED*/ 1499 static int 1500 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1501 rctl_qty_t incr, uint_t flags) 1502 { 1503 rctl_qty_t v; 1504 ASSERT(MUTEX_HELD(&p->p_lock)); 1505 ASSERT(e->rcep_t == RCENTITY_ZONE); 1506 v = e->rcep_p.zone->zone_shmmax + incr; 1507 if (v > rval->rcv_value) 1508 return (1); 1509 return (0); 1510 } 1511 1512 static rctl_ops_t zone_shmmax_ops = { 1513 rcop_no_action, 1514 zone_shmmax_usage, 1515 rcop_no_set, 1516 zone_shmmax_test 1517 }; 1518 1519 /*ARGSUSED*/ 1520 static rctl_qty_t 1521 zone_shmmni_usage(rctl_t *rctl, struct proc *p) 1522 { 1523 ASSERT(MUTEX_HELD(&p->p_lock)); 1524 return (p->p_zone->zone_ipc.ipcq_shmmni); 1525 } 1526 1527 /*ARGSUSED*/ 1528 static int 1529 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1530 rctl_qty_t incr, uint_t flags) 1531 { 1532 rctl_qty_t v; 1533 ASSERT(MUTEX_HELD(&p->p_lock)); 1534 ASSERT(e->rcep_t == RCENTITY_ZONE); 1535 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1536 if (v > rval->rcv_value) 1537 return (1); 1538 return (0); 1539 } 1540 1541 static rctl_ops_t zone_shmmni_ops = { 1542 rcop_no_action, 1543 zone_shmmni_usage, 1544 rcop_no_set, 1545 zone_shmmni_test 1546 }; 1547 1548 /*ARGSUSED*/ 1549 static rctl_qty_t 1550 zone_semmni_usage(rctl_t *rctl, struct proc *p) 1551 { 1552 ASSERT(MUTEX_HELD(&p->p_lock)); 1553 return (p->p_zone->zone_ipc.ipcq_semmni); 1554 } 1555 1556 /*ARGSUSED*/ 1557 static int 1558 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1559 rctl_qty_t incr, uint_t flags) 1560 { 1561 rctl_qty_t v; 1562 ASSERT(MUTEX_HELD(&p->p_lock)); 1563 ASSERT(e->rcep_t == RCENTITY_ZONE); 1564 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1565 if (v > rval->rcv_value) 1566 return (1); 1567 return (0); 1568 } 1569 1570 static rctl_ops_t zone_semmni_ops = { 1571 rcop_no_action, 1572 zone_semmni_usage, 1573 rcop_no_set, 1574 zone_semmni_test 1575 }; 1576 1577 /*ARGSUSED*/ 1578 static rctl_qty_t 1579 zone_msgmni_usage(rctl_t *rctl, struct proc *p) 1580 { 1581 ASSERT(MUTEX_HELD(&p->p_lock)); 1582 return (p->p_zone->zone_ipc.ipcq_msgmni); 1583 } 1584 1585 /*ARGSUSED*/ 1586 static int 1587 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1588 rctl_qty_t incr, uint_t flags) 1589 { 1590 rctl_qty_t v; 1591 ASSERT(MUTEX_HELD(&p->p_lock)); 1592 ASSERT(e->rcep_t == RCENTITY_ZONE); 1593 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1594 if (v > rval->rcv_value) 1595 return (1); 1596 return (0); 1597 } 1598 1599 static rctl_ops_t zone_msgmni_ops = { 1600 rcop_no_action, 1601 zone_msgmni_usage, 1602 rcop_no_set, 1603 zone_msgmni_test 1604 }; 1605 1606 /*ARGSUSED*/ 1607 static rctl_qty_t 1608 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1609 { 1610 rctl_qty_t q; 1611 ASSERT(MUTEX_HELD(&p->p_lock)); 1612 mutex_enter(&p->p_zone->zone_mem_lock); 1613 q = p->p_zone->zone_locked_mem; 1614 mutex_exit(&p->p_zone->zone_mem_lock); 1615 return (q); 1616 } 1617 1618 /*ARGSUSED*/ 1619 static int 1620 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1621 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1622 { 1623 rctl_qty_t q; 1624 zone_t *z; 1625 1626 z = e->rcep_p.zone; 1627 ASSERT(MUTEX_HELD(&p->p_lock)); 1628 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1629 q = z->zone_locked_mem; 1630 if (q + incr > rcntl->rcv_value) 1631 return (1); 1632 return (0); 1633 } 1634 1635 /*ARGSUSED*/ 1636 static int 1637 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1638 rctl_qty_t nv) 1639 { 1640 ASSERT(MUTEX_HELD(&p->p_lock)); 1641 ASSERT(e->rcep_t == RCENTITY_ZONE); 1642 if (e->rcep_p.zone == NULL) 1643 return (0); 1644 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1645 return (0); 1646 } 1647 1648 static rctl_ops_t zone_locked_mem_ops = { 1649 rcop_no_action, 1650 zone_locked_mem_usage, 1651 zone_locked_mem_set, 1652 zone_locked_mem_test 1653 }; 1654 1655 /*ARGSUSED*/ 1656 static rctl_qty_t 1657 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1658 { 1659 rctl_qty_t q; 1660 zone_t *z = p->p_zone; 1661 1662 ASSERT(MUTEX_HELD(&p->p_lock)); 1663 mutex_enter(&z->zone_mem_lock); 1664 q = z->zone_max_swap; 1665 mutex_exit(&z->zone_mem_lock); 1666 return (q); 1667 } 1668 1669 /*ARGSUSED*/ 1670 static int 1671 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1672 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1673 { 1674 rctl_qty_t q; 1675 zone_t *z; 1676 1677 z = e->rcep_p.zone; 1678 ASSERT(MUTEX_HELD(&p->p_lock)); 1679 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1680 q = z->zone_max_swap; 1681 if (q + incr > rcntl->rcv_value) 1682 return (1); 1683 return (0); 1684 } 1685 1686 /*ARGSUSED*/ 1687 static int 1688 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1689 rctl_qty_t nv) 1690 { 1691 ASSERT(MUTEX_HELD(&p->p_lock)); 1692 ASSERT(e->rcep_t == RCENTITY_ZONE); 1693 if (e->rcep_p.zone == NULL) 1694 return (0); 1695 e->rcep_p.zone->zone_max_swap_ctl = nv; 1696 return (0); 1697 } 1698 1699 static rctl_ops_t zone_max_swap_ops = { 1700 rcop_no_action, 1701 zone_max_swap_usage, 1702 zone_max_swap_set, 1703 zone_max_swap_test 1704 }; 1705 1706 /*ARGSUSED*/ 1707 static rctl_qty_t 1708 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1709 { 1710 rctl_qty_t q; 1711 zone_t *z = p->p_zone; 1712 1713 ASSERT(MUTEX_HELD(&p->p_lock)); 1714 mutex_enter(&z->zone_rctl_lock); 1715 q = z->zone_max_lofi; 1716 mutex_exit(&z->zone_rctl_lock); 1717 return (q); 1718 } 1719 1720 /*ARGSUSED*/ 1721 static int 1722 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1723 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1724 { 1725 rctl_qty_t q; 1726 zone_t *z; 1727 1728 z = e->rcep_p.zone; 1729 ASSERT(MUTEX_HELD(&p->p_lock)); 1730 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1731 q = z->zone_max_lofi; 1732 if (q + incr > rcntl->rcv_value) 1733 return (1); 1734 return (0); 1735 } 1736 1737 /*ARGSUSED*/ 1738 static int 1739 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1740 rctl_qty_t nv) 1741 { 1742 ASSERT(MUTEX_HELD(&p->p_lock)); 1743 ASSERT(e->rcep_t == RCENTITY_ZONE); 1744 if (e->rcep_p.zone == NULL) 1745 return (0); 1746 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1747 return (0); 1748 } 1749 1750 static rctl_ops_t zone_max_lofi_ops = { 1751 rcop_no_action, 1752 zone_max_lofi_usage, 1753 zone_max_lofi_set, 1754 zone_max_lofi_test 1755 }; 1756 1757 /* 1758 * Helper function to brand the zone with a unique ID. 1759 */ 1760 static void 1761 zone_uniqid(zone_t *zone) 1762 { 1763 static uint64_t uniqid = 0; 1764 1765 ASSERT(MUTEX_HELD(&zonehash_lock)); 1766 zone->zone_uniqid = uniqid++; 1767 } 1768 1769 /* 1770 * Returns a held pointer to the "kcred" for the specified zone. 1771 */ 1772 struct cred * 1773 zone_get_kcred(zoneid_t zoneid) 1774 { 1775 zone_t *zone; 1776 cred_t *cr; 1777 1778 if ((zone = zone_find_by_id(zoneid)) == NULL) 1779 return (NULL); 1780 cr = zone->zone_kcred; 1781 crhold(cr); 1782 zone_rele(zone); 1783 return (cr); 1784 } 1785 1786 static int 1787 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1788 { 1789 zone_t *zone = ksp->ks_private; 1790 zone_kstat_t *zk = ksp->ks_data; 1791 1792 if (rw == KSTAT_WRITE) 1793 return (EACCES); 1794 1795 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1796 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1797 return (0); 1798 } 1799 1800 static int 1801 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1802 { 1803 zone_t *zone = ksp->ks_private; 1804 zone_kstat_t *zk = ksp->ks_data; 1805 1806 if (rw == KSTAT_WRITE) 1807 return (EACCES); 1808 1809 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1810 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1811 return (0); 1812 } 1813 1814 static int 1815 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1816 { 1817 zone_t *zone = ksp->ks_private; 1818 zone_kstat_t *zk = ksp->ks_data; 1819 1820 if (rw == KSTAT_WRITE) 1821 return (EACCES); 1822 1823 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1824 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1825 return (0); 1826 } 1827 1828 static kstat_t * 1829 zone_kstat_create_common(zone_t *zone, char *name, 1830 int (*updatefunc) (kstat_t *, int)) 1831 { 1832 kstat_t *ksp; 1833 zone_kstat_t *zk; 1834 1835 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1836 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1837 KSTAT_FLAG_VIRTUAL); 1838 1839 if (ksp == NULL) 1840 return (NULL); 1841 1842 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1843 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1844 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1845 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1846 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1847 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1848 ksp->ks_update = updatefunc; 1849 ksp->ks_private = zone; 1850 kstat_install(ksp); 1851 return (ksp); 1852 } 1853 1854 1855 static int 1856 zone_mcap_kstat_update(kstat_t *ksp, int rw) 1857 { 1858 zone_t *zone = ksp->ks_private; 1859 zone_mcap_kstat_t *zmp = ksp->ks_data; 1860 1861 if (rw == KSTAT_WRITE) 1862 return (EACCES); 1863 1864 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin; 1865 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin; 1866 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin; 1867 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin; 1868 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail; 1869 1870 return (0); 1871 } 1872 1873 static kstat_t * 1874 zone_mcap_kstat_create(zone_t *zone) 1875 { 1876 kstat_t *ksp; 1877 zone_mcap_kstat_t *zmp; 1878 1879 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id, 1880 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED, 1881 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t), 1882 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1883 return (NULL); 1884 1885 if (zone->zone_id != GLOBAL_ZONEID) 1886 kstat_zone_add(ksp, GLOBAL_ZONEID); 1887 1888 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP); 1889 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1890 ksp->ks_lock = &zone->zone_mcap_lock; 1891 zone->zone_mcap_stats = zmp; 1892 1893 /* The kstat "name" field is not large enough for a full zonename */ 1894 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1895 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1896 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64); 1897 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64); 1898 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64); 1899 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64); 1900 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail", 1901 KSTAT_DATA_UINT64); 1902 1903 ksp->ks_update = zone_mcap_kstat_update; 1904 ksp->ks_private = zone; 1905 1906 kstat_install(ksp); 1907 return (ksp); 1908 } 1909 1910 static int 1911 zone_misc_kstat_update(kstat_t *ksp, int rw) 1912 { 1913 zone_t *zone = ksp->ks_private; 1914 zone_misc_kstat_t *zmp = ksp->ks_data; 1915 hrtime_t hrtime; 1916 uint64_t tmp; 1917 1918 if (rw == KSTAT_WRITE) 1919 return (EACCES); 1920 1921 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_STIME); 1922 hrtime = UINT64_OVERFLOW_TO_INT64(tmp); 1923 scalehrtime(&hrtime); 1924 zmp->zm_stime.value.ui64 = hrtime; 1925 1926 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_UTIME); 1927 hrtime = UINT64_OVERFLOW_TO_INT64(tmp); 1928 scalehrtime(&hrtime); 1929 zmp->zm_utime.value.ui64 = hrtime; 1930 1931 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_WTIME); 1932 hrtime = UINT64_OVERFLOW_TO_INT64(tmp); 1933 scalehrtime(&hrtime); 1934 zmp->zm_wtime.value.ui64 = hrtime; 1935 1936 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1937 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1938 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1939 1940 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1941 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1942 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1943 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1944 1945 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp; 1946 1947 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid; 1948 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time; 1949 1950 return (0); 1951 } 1952 1953 static kstat_t * 1954 zone_misc_kstat_create(zone_t *zone) 1955 { 1956 kstat_t *ksp; 1957 zone_misc_kstat_t *zmp; 1958 1959 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1960 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1961 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1962 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1963 return (NULL); 1964 1965 if (zone->zone_id != GLOBAL_ZONEID) 1966 kstat_zone_add(ksp, GLOBAL_ZONEID); 1967 1968 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1969 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1970 ksp->ks_lock = &zone->zone_misc_lock; 1971 zone->zone_misc_stats = zmp; 1972 1973 /* The kstat "name" field is not large enough for a full zonename */ 1974 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1975 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1976 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1977 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1978 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1979 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1980 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1981 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1982 KSTAT_DATA_UINT32); 1983 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1984 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1985 KSTAT_DATA_UINT32); 1986 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1987 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1988 kstat_named_init(&zmp->zm_nested_intp, "nested_interp", 1989 KSTAT_DATA_UINT32); 1990 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32); 1991 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64); 1992 1993 ksp->ks_update = zone_misc_kstat_update; 1994 ksp->ks_private = zone; 1995 1996 kstat_install(ksp); 1997 return (ksp); 1998 } 1999 2000 static void 2001 zone_kstat_create(zone_t *zone) 2002 { 2003 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 2004 "lockedmem", zone_lockedmem_kstat_update); 2005 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 2006 "swapresv", zone_swapresv_kstat_update); 2007 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 2008 "nprocs", zone_nprocs_kstat_update); 2009 2010 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) { 2011 zone->zone_mcap_stats = kmem_zalloc( 2012 sizeof (zone_mcap_kstat_t), KM_SLEEP); 2013 } 2014 2015 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 2016 zone->zone_misc_stats = kmem_zalloc( 2017 sizeof (zone_misc_kstat_t), KM_SLEEP); 2018 } 2019 } 2020 2021 static void 2022 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 2023 { 2024 void *data; 2025 2026 if (*pkstat != NULL) { 2027 data = (*pkstat)->ks_data; 2028 kstat_delete(*pkstat); 2029 kmem_free(data, datasz); 2030 *pkstat = NULL; 2031 } 2032 } 2033 2034 static void 2035 zone_kstat_delete(zone_t *zone) 2036 { 2037 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 2038 sizeof (zone_kstat_t)); 2039 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 2040 sizeof (zone_kstat_t)); 2041 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 2042 sizeof (zone_kstat_t)); 2043 zone_kstat_delete_common(&zone->zone_mcap_ksp, 2044 sizeof (zone_mcap_kstat_t)); 2045 zone_kstat_delete_common(&zone->zone_misc_ksp, 2046 sizeof (zone_misc_kstat_t)); 2047 } 2048 2049 /* 2050 * Called very early on in boot to initialize the ZSD list so that 2051 * zone_key_create() can be called before zone_init(). It also initializes 2052 * portions of zone0 which may be used before zone_init() is called. The 2053 * variable "global_zone" will be set when zone0 is fully initialized by 2054 * zone_init(). 2055 */ 2056 void 2057 zone_zsd_init(void) 2058 { 2059 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 2060 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 2061 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 2062 offsetof(struct zsd_entry, zsd_linkage)); 2063 list_create(&zone_active, sizeof (zone_t), 2064 offsetof(zone_t, zone_linkage)); 2065 list_create(&zone_deathrow, sizeof (zone_t), 2066 offsetof(zone_t, zone_linkage)); 2067 2068 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 2069 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2070 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 2071 zone0.zone_shares = 1; 2072 zone0.zone_nlwps = 0; 2073 zone0.zone_nlwps_ctl = INT_MAX; 2074 zone0.zone_nprocs = 0; 2075 zone0.zone_nprocs_ctl = INT_MAX; 2076 zone0.zone_locked_mem = 0; 2077 zone0.zone_locked_mem_ctl = UINT64_MAX; 2078 ASSERT(zone0.zone_max_swap == 0); 2079 zone0.zone_max_swap_ctl = UINT64_MAX; 2080 zone0.zone_max_lofi = 0; 2081 zone0.zone_max_lofi_ctl = UINT64_MAX; 2082 zone0.zone_shmmax = 0; 2083 zone0.zone_ipc.ipcq_shmmni = 0; 2084 zone0.zone_ipc.ipcq_semmni = 0; 2085 zone0.zone_ipc.ipcq_msgmni = 0; 2086 zone0.zone_name = GLOBAL_ZONENAME; 2087 zone0.zone_nodename = utsname.nodename; 2088 zone0.zone_domain = srpc_domain; 2089 zone0.zone_hostid = HW_INVALID_HOSTID; 2090 zone0.zone_fs_allowed = NULL; 2091 psecflags_default(&zone0.zone_secflags); 2092 zone0.zone_ref = 1; 2093 zone0.zone_id = GLOBAL_ZONEID; 2094 zone0.zone_status = ZONE_IS_RUNNING; 2095 zone0.zone_rootpath = "/"; 2096 zone0.zone_rootpathlen = 2; 2097 zone0.zone_psetid = ZONE_PS_INVAL; 2098 zone0.zone_ncpus = 0; 2099 zone0.zone_ncpus_online = 0; 2100 zone0.zone_proc_initpid = 1; 2101 zone0.zone_initname = initname; 2102 zone0.zone_lockedmem_kstat = NULL; 2103 zone0.zone_swapresv_kstat = NULL; 2104 zone0.zone_nprocs_kstat = NULL; 2105 2106 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 2107 offsetof(zone_ref_t, zref_linkage)); 2108 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2109 offsetof(struct zsd_entry, zsd_linkage)); 2110 list_insert_head(&zone_active, &zone0); 2111 2112 /* 2113 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2114 * to anything meaningful. It is assigned to be 'rootdir' in 2115 * vfs_mountroot(). 2116 */ 2117 zone0.zone_rootvp = NULL; 2118 zone0.zone_vfslist = NULL; 2119 zone0.zone_bootargs = initargs; 2120 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2121 /* 2122 * The global zone has all privileges 2123 */ 2124 priv_fillset(zone0.zone_privset); 2125 /* 2126 * Add p0 to the global zone 2127 */ 2128 zone0.zone_zsched = &p0; 2129 p0.p_zone = &zone0; 2130 } 2131 2132 /* 2133 * Compute a hash value based on the contents of the label and the DOI. The 2134 * hash algorithm is somewhat arbitrary, but is based on the observation that 2135 * humans will likely pick labels that differ by amounts that work out to be 2136 * multiples of the number of hash chains, and thus stirring in some primes 2137 * should help. 2138 */ 2139 static uint_t 2140 hash_bylabel(void *hdata, mod_hash_key_t key) 2141 { 2142 const ts_label_t *lab = (ts_label_t *)key; 2143 const uint32_t *up, *ue; 2144 uint_t hash; 2145 int i; 2146 2147 _NOTE(ARGUNUSED(hdata)); 2148 2149 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2150 /* we depend on alignment of label, but not representation */ 2151 up = (const uint32_t *)&lab->tsl_label; 2152 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2153 i = 1; 2154 while (up < ue) { 2155 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2156 hash += *up + (*up << ((i % 16) + 1)); 2157 up++; 2158 i++; 2159 } 2160 return (hash); 2161 } 2162 2163 /* 2164 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2165 * equal). This may need to be changed if less than / greater than is ever 2166 * needed. 2167 */ 2168 static int 2169 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2170 { 2171 ts_label_t *lab1 = (ts_label_t *)key1; 2172 ts_label_t *lab2 = (ts_label_t *)key2; 2173 2174 return (label_equal(lab1, lab2) ? 0 : 1); 2175 } 2176 2177 /* 2178 * Called by main() to initialize the zones framework. 2179 */ 2180 void 2181 zone_init(void) 2182 { 2183 rctl_dict_entry_t *rde; 2184 rctl_val_t *dval; 2185 rctl_set_t *set; 2186 rctl_alloc_gp_t *gp; 2187 rctl_entity_p_t e; 2188 int res; 2189 2190 ASSERT(curproc == &p0); 2191 2192 /* 2193 * Create ID space for zone IDs. ID 0 is reserved for the 2194 * global zone. 2195 */ 2196 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2197 2198 /* 2199 * Initialize generic zone resource controls, if any. 2200 */ 2201 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2202 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2203 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2204 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2205 2206 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2207 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2208 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2209 RCTL_GLOBAL_INFINITE, 2210 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2211 2212 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2213 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2214 INT_MAX, INT_MAX, &zone_lwps_ops); 2215 2216 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2217 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2218 INT_MAX, INT_MAX, &zone_procs_ops); 2219 2220 /* 2221 * System V IPC resource controls 2222 */ 2223 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2224 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2225 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2226 2227 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2228 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2229 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2230 2231 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2232 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2233 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2234 2235 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2236 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2237 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2238 2239 /* 2240 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2241 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2242 */ 2243 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2244 bzero(dval, sizeof (rctl_val_t)); 2245 dval->rcv_value = 1; 2246 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2247 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2248 dval->rcv_action_recip_pid = -1; 2249 2250 rde = rctl_dict_lookup("zone.cpu-shares"); 2251 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2252 2253 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2254 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2255 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2256 &zone_locked_mem_ops); 2257 2258 rc_zone_max_swap = rctl_register("zone.max-swap", 2259 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2260 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2261 &zone_max_swap_ops); 2262 2263 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2264 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2265 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2266 &zone_max_lofi_ops); 2267 2268 /* 2269 * Initialize the ``global zone''. 2270 */ 2271 set = rctl_set_create(); 2272 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2273 mutex_enter(&p0.p_lock); 2274 e.rcep_p.zone = &zone0; 2275 e.rcep_t = RCENTITY_ZONE; 2276 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2277 gp); 2278 2279 zone0.zone_nlwps = p0.p_lwpcnt; 2280 zone0.zone_nprocs = 1; 2281 zone0.zone_ntasks = 1; 2282 mutex_exit(&p0.p_lock); 2283 zone0.zone_restart_init = B_TRUE; 2284 zone0.zone_reboot_on_init_exit = B_FALSE; 2285 zone0.zone_restart_init_0 = B_FALSE; 2286 zone0.zone_brand = &native_brand; 2287 rctl_prealloc_destroy(gp); 2288 /* 2289 * pool_default hasn't been initialized yet, so we let pool_init() 2290 * take care of making sure the global zone is in the default pool. 2291 */ 2292 2293 /* 2294 * Initialize global zone kstats 2295 */ 2296 zone_kstat_create(&zone0); 2297 2298 /* 2299 * Initialize zone label. 2300 * mlp are initialized when tnzonecfg is loaded. 2301 */ 2302 zone0.zone_slabel = l_admin_low; 2303 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2304 label_hold(l_admin_low); 2305 2306 /* 2307 * Initialise the lock for the database structure used by mntfs. 2308 */ 2309 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2310 2311 zone0.zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP); 2312 2313 mutex_enter(&zonehash_lock); 2314 zone_uniqid(&zone0); 2315 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2316 2317 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2318 mod_hash_null_valdtor); 2319 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2320 zone_hash_size, mod_hash_null_valdtor); 2321 /* 2322 * maintain zonehashbylabel only for labeled systems 2323 */ 2324 if (is_system_labeled()) 2325 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2326 zone_hash_size, mod_hash_null_keydtor, 2327 mod_hash_null_valdtor, hash_bylabel, NULL, 2328 hash_labelkey_cmp, KM_SLEEP); 2329 zonecount = 1; 2330 2331 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2332 (mod_hash_val_t)&zone0); 2333 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2334 (mod_hash_val_t)&zone0); 2335 if (is_system_labeled()) { 2336 zone0.zone_flags |= ZF_HASHED_LABEL; 2337 (void) mod_hash_insert(zonehashbylabel, 2338 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2339 } 2340 mutex_exit(&zonehash_lock); 2341 2342 /* 2343 * We avoid setting zone_kcred until now, since kcred is initialized 2344 * sometime after zone_zsd_init() and before zone_init(). 2345 */ 2346 zone0.zone_kcred = kcred; 2347 /* 2348 * The global zone is fully initialized (except for zone_rootvp which 2349 * will be set when the root filesystem is mounted). 2350 */ 2351 global_zone = &zone0; 2352 2353 /* 2354 * Setup an event channel to send zone status change notifications on 2355 */ 2356 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2357 EVCH_CREAT); 2358 2359 if (res) 2360 panic("Sysevent_evc_bind failed during zone setup.\n"); 2361 2362 } 2363 2364 static void 2365 zone_free(zone_t *zone) 2366 { 2367 zone_dl_t *zdl; 2368 2369 ASSERT(zone != global_zone); 2370 ASSERT(zone->zone_ntasks == 0); 2371 ASSERT(zone->zone_nlwps == 0); 2372 ASSERT(zone->zone_nprocs == 0); 2373 ASSERT(zone->zone_cred_ref == 0); 2374 ASSERT(zone->zone_kcred == NULL); 2375 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2376 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2377 ASSERT(list_is_empty(&zone->zone_ref_list)); 2378 2379 /* 2380 * Remove any zone caps. 2381 */ 2382 cpucaps_zone_remove(zone); 2383 2384 ASSERT(zone->zone_cpucap == NULL); 2385 2386 /* remove from deathrow list */ 2387 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2388 ASSERT(zone->zone_ref == 0); 2389 mutex_enter(&zone_deathrow_lock); 2390 list_remove(&zone_deathrow, zone); 2391 mutex_exit(&zone_deathrow_lock); 2392 } 2393 2394 list_destroy(&zone->zone_ref_list); 2395 zone_free_zsd(zone); 2396 zone_free_datasets(zone); 2397 2398 /* 2399 * While dlmgmtd should have removed all of these, it could have left 2400 * something behind or crashed. In which case it's not safe for us to 2401 * assume that the list is empty which list_destroy() will ASSERT. We 2402 * clean up for our userland comrades which may have crashed, or worse, 2403 * been disabled by SMF. 2404 */ 2405 while ((zdl = list_remove_head(&zone->zone_dl_list)) != NULL) { 2406 if (zdl->zdl_net != NULL) 2407 nvlist_free(zdl->zdl_net); 2408 kmem_free(zdl, sizeof (zone_dl_t)); 2409 } 2410 list_destroy(&zone->zone_dl_list); 2411 2412 cpu_uarray_free(zone->zone_ustate); 2413 2414 if (zone->zone_rootvp != NULL) 2415 VN_RELE(zone->zone_rootvp); 2416 if (zone->zone_rootpath) 2417 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2418 if (zone->zone_name != NULL) 2419 kmem_free(zone->zone_name, ZONENAME_MAX); 2420 if (zone->zone_slabel != NULL) 2421 label_rele(zone->zone_slabel); 2422 if (zone->zone_nodename != NULL) 2423 kmem_free(zone->zone_nodename, _SYS_NMLN); 2424 if (zone->zone_domain != NULL) 2425 kmem_free(zone->zone_domain, _SYS_NMLN); 2426 if (zone->zone_privset != NULL) 2427 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2428 if (zone->zone_rctls != NULL) 2429 rctl_set_free(zone->zone_rctls); 2430 if (zone->zone_bootargs != NULL) 2431 strfree(zone->zone_bootargs); 2432 if (zone->zone_initname != NULL) 2433 strfree(zone->zone_initname); 2434 if (zone->zone_fs_allowed != NULL) 2435 strfree(zone->zone_fs_allowed); 2436 if (zone->zone_pfexecd != NULL) 2437 klpd_freelist(&zone->zone_pfexecd); 2438 id_free(zoneid_space, zone->zone_id); 2439 mutex_destroy(&zone->zone_lock); 2440 cv_destroy(&zone->zone_cv); 2441 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2442 rw_destroy(&zone->zone_mntfs_db_lock); 2443 kmem_free(zone, sizeof (zone_t)); 2444 } 2445 2446 /* 2447 * See block comment at the top of this file for information about zone 2448 * status values. 2449 */ 2450 /* 2451 * Convenience function for setting zone status. 2452 */ 2453 static void 2454 zone_status_set(zone_t *zone, zone_status_t status) 2455 { 2456 2457 nvlist_t *nvl = NULL; 2458 ASSERT(MUTEX_HELD(&zone_status_lock)); 2459 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2460 status >= zone_status_get(zone)); 2461 2462 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2463 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2464 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2465 zone_status_table[status]) || 2466 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2467 zone_status_table[zone->zone_status]) || 2468 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2469 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2470 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2471 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2472 #ifdef DEBUG 2473 (void) printf( 2474 "Failed to allocate and send zone state change event.\n"); 2475 #endif 2476 } 2477 nvlist_free(nvl); 2478 2479 zone->zone_status = status; 2480 2481 cv_broadcast(&zone->zone_cv); 2482 } 2483 2484 /* 2485 * Public function to retrieve the zone status. The zone status may 2486 * change after it is retrieved. 2487 */ 2488 zone_status_t 2489 zone_status_get(zone_t *zone) 2490 { 2491 return (zone->zone_status); 2492 } 2493 2494 static int 2495 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2496 { 2497 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2498 int err = 0; 2499 2500 ASSERT(zone != global_zone); 2501 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2502 goto done; /* EFAULT or ENAMETOOLONG */ 2503 2504 if (zone->zone_bootargs != NULL) 2505 strfree(zone->zone_bootargs); 2506 2507 zone->zone_bootargs = strdup(buf); 2508 2509 done: 2510 kmem_free(buf, BOOTARGS_MAX); 2511 return (err); 2512 } 2513 2514 static int 2515 zone_set_brand(zone_t *zone, const char *brand) 2516 { 2517 struct brand_attr *attrp; 2518 brand_t *bp; 2519 2520 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2521 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2522 kmem_free(attrp, sizeof (struct brand_attr)); 2523 return (EFAULT); 2524 } 2525 2526 bp = brand_register_zone(attrp); 2527 kmem_free(attrp, sizeof (struct brand_attr)); 2528 if (bp == NULL) 2529 return (EINVAL); 2530 2531 /* 2532 * This is the only place where a zone can change it's brand. 2533 * We already need to hold zone_status_lock to check the zone 2534 * status, so we'll just use that lock to serialize zone 2535 * branding requests as well. 2536 */ 2537 mutex_enter(&zone_status_lock); 2538 2539 /* Re-Branding is not allowed and the zone can't be booted yet */ 2540 if ((ZONE_IS_BRANDED(zone)) || 2541 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2542 mutex_exit(&zone_status_lock); 2543 brand_unregister_zone(bp); 2544 return (EINVAL); 2545 } 2546 2547 /* set up the brand specific data */ 2548 zone->zone_brand = bp; 2549 ZBROP(zone)->b_init_brand_data(zone); 2550 2551 mutex_exit(&zone_status_lock); 2552 return (0); 2553 } 2554 2555 static int 2556 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags) 2557 { 2558 int err = 0; 2559 psecflags_t psf; 2560 2561 ASSERT(zone != global_zone); 2562 2563 if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0) 2564 return (err); 2565 2566 if (zone_status_get(zone) > ZONE_IS_READY) 2567 return (EINVAL); 2568 2569 if (!psecflags_validate(&psf)) 2570 return (EINVAL); 2571 2572 (void) memcpy(&zone->zone_secflags, &psf, sizeof (psf)); 2573 2574 /* Set security flags on the zone's zsched */ 2575 (void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags, 2576 sizeof (zone->zone_zsched->p_secflags)); 2577 2578 return (0); 2579 } 2580 2581 static int 2582 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2583 { 2584 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2585 int err = 0; 2586 2587 ASSERT(zone != global_zone); 2588 if ((err = copyinstr(zone_fs_allowed, buf, 2589 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2590 goto done; 2591 2592 if (zone->zone_fs_allowed != NULL) 2593 strfree(zone->zone_fs_allowed); 2594 2595 zone->zone_fs_allowed = strdup(buf); 2596 2597 done: 2598 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2599 return (err); 2600 } 2601 2602 static int 2603 zone_set_initname(zone_t *zone, const char *zone_initname) 2604 { 2605 char initname[INITNAME_SZ]; 2606 size_t len; 2607 int err = 0; 2608 2609 ASSERT(zone != global_zone); 2610 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2611 return (err); /* EFAULT or ENAMETOOLONG */ 2612 2613 if (zone->zone_initname != NULL) 2614 strfree(zone->zone_initname); 2615 2616 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2617 (void) strcpy(zone->zone_initname, initname); 2618 return (0); 2619 } 2620 2621 static int 2622 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2623 { 2624 uint64_t mcap; 2625 int err = 0; 2626 2627 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2628 zone->zone_phys_mcap = mcap; 2629 2630 return (err); 2631 } 2632 2633 static int 2634 zone_set_sched_class(zone_t *zone, const char *new_class) 2635 { 2636 char sched_class[PC_CLNMSZ]; 2637 id_t classid; 2638 int err; 2639 2640 ASSERT(zone != global_zone); 2641 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2642 return (err); /* EFAULT or ENAMETOOLONG */ 2643 2644 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2645 return (set_errno(EINVAL)); 2646 zone->zone_defaultcid = classid; 2647 ASSERT(zone->zone_defaultcid > 0 && 2648 zone->zone_defaultcid < loaded_classes); 2649 2650 return (0); 2651 } 2652 2653 /* 2654 * Block indefinitely waiting for (zone_status >= status) 2655 */ 2656 void 2657 zone_status_wait(zone_t *zone, zone_status_t status) 2658 { 2659 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2660 2661 mutex_enter(&zone_status_lock); 2662 while (zone->zone_status < status) { 2663 cv_wait(&zone->zone_cv, &zone_status_lock); 2664 } 2665 mutex_exit(&zone_status_lock); 2666 } 2667 2668 /* 2669 * Private CPR-safe version of zone_status_wait(). 2670 */ 2671 static void 2672 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2673 { 2674 callb_cpr_t cprinfo; 2675 2676 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2677 2678 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2679 str); 2680 mutex_enter(&zone_status_lock); 2681 while (zone->zone_status < status) { 2682 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2683 cv_wait(&zone->zone_cv, &zone_status_lock); 2684 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2685 } 2686 /* 2687 * zone_status_lock is implicitly released by the following. 2688 */ 2689 CALLB_CPR_EXIT(&cprinfo); 2690 } 2691 2692 /* 2693 * Block until zone enters requested state or signal is received. Return (0) 2694 * if signaled, non-zero otherwise. 2695 */ 2696 int 2697 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2698 { 2699 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2700 2701 mutex_enter(&zone_status_lock); 2702 while (zone->zone_status < status) { 2703 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2704 mutex_exit(&zone_status_lock); 2705 return (0); 2706 } 2707 } 2708 mutex_exit(&zone_status_lock); 2709 return (1); 2710 } 2711 2712 /* 2713 * Block until the zone enters the requested state or the timeout expires, 2714 * whichever happens first. Return (-1) if operation timed out, time remaining 2715 * otherwise. 2716 */ 2717 clock_t 2718 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2719 { 2720 clock_t timeleft = 0; 2721 2722 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2723 2724 mutex_enter(&zone_status_lock); 2725 while (zone->zone_status < status && timeleft != -1) { 2726 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2727 } 2728 mutex_exit(&zone_status_lock); 2729 return (timeleft); 2730 } 2731 2732 /* 2733 * Block until the zone enters the requested state, the current process is 2734 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2735 * operation timed out, 0 if signaled, time remaining otherwise. 2736 */ 2737 clock_t 2738 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2739 { 2740 clock_t timeleft = tim - ddi_get_lbolt(); 2741 2742 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2743 2744 mutex_enter(&zone_status_lock); 2745 while (zone->zone_status < status) { 2746 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2747 tim); 2748 if (timeleft <= 0) 2749 break; 2750 } 2751 mutex_exit(&zone_status_lock); 2752 return (timeleft); 2753 } 2754 2755 /* 2756 * Zones have two reference counts: one for references from credential 2757 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2758 * This is so we can allow a zone to be rebooted while there are still 2759 * outstanding cred references, since certain drivers cache dblks (which 2760 * implicitly results in cached creds). We wait for zone_ref to drop to 2761 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2762 * later freed when the zone_cred_ref drops to 0, though nothing other 2763 * than the zone id and privilege set should be accessed once the zone 2764 * is "dead". 2765 * 2766 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2767 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2768 * to 0. This can be useful to flush out other sources of cached creds 2769 * that may be less innocuous than the driver case. 2770 * 2771 * Zones also provide a tracked reference counting mechanism in which zone 2772 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2773 * debuggers determine the sources of leaked zone references. See 2774 * zone_hold_ref() and zone_rele_ref() below for more information. 2775 */ 2776 2777 int zone_wait_for_cred = 0; 2778 2779 static void 2780 zone_hold_locked(zone_t *z) 2781 { 2782 ASSERT(MUTEX_HELD(&z->zone_lock)); 2783 z->zone_ref++; 2784 ASSERT(z->zone_ref != 0); 2785 } 2786 2787 /* 2788 * Increment the specified zone's reference count. The zone's zone_t structure 2789 * will not be freed as long as the zone's reference count is nonzero. 2790 * Decrement the zone's reference count via zone_rele(). 2791 * 2792 * NOTE: This function should only be used to hold zones for short periods of 2793 * time. Use zone_hold_ref() if the zone must be held for a long time. 2794 */ 2795 void 2796 zone_hold(zone_t *z) 2797 { 2798 mutex_enter(&z->zone_lock); 2799 zone_hold_locked(z); 2800 mutex_exit(&z->zone_lock); 2801 } 2802 2803 /* 2804 * If the non-cred ref count drops to 1 and either the cred ref count 2805 * is 0 or we aren't waiting for cred references, the zone is ready to 2806 * be destroyed. 2807 */ 2808 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2809 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2810 2811 /* 2812 * Common zone reference release function invoked by zone_rele() and 2813 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2814 * zone's subsystem-specific reference counters are not affected by the 2815 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2816 * removed from the specified zone's reference list. ref must be non-NULL iff 2817 * subsys is not ZONE_REF_NUM_SUBSYS. 2818 */ 2819 static void 2820 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2821 { 2822 boolean_t wakeup; 2823 2824 mutex_enter(&z->zone_lock); 2825 ASSERT(z->zone_ref != 0); 2826 z->zone_ref--; 2827 if (subsys != ZONE_REF_NUM_SUBSYS) { 2828 ASSERT(z->zone_subsys_ref[subsys] != 0); 2829 z->zone_subsys_ref[subsys]--; 2830 list_remove(&z->zone_ref_list, ref); 2831 } 2832 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2833 /* no more refs, free the structure */ 2834 mutex_exit(&z->zone_lock); 2835 zone_free(z); 2836 return; 2837 } 2838 /* signal zone_destroy so the zone can finish halting */ 2839 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2840 mutex_exit(&z->zone_lock); 2841 2842 if (wakeup) { 2843 /* 2844 * Grabbing zonehash_lock here effectively synchronizes with 2845 * zone_destroy() to avoid missed signals. 2846 */ 2847 mutex_enter(&zonehash_lock); 2848 cv_broadcast(&zone_destroy_cv); 2849 mutex_exit(&zonehash_lock); 2850 } 2851 } 2852 2853 /* 2854 * Decrement the specified zone's reference count. The specified zone will 2855 * cease to exist after this function returns if the reference count drops to 2856 * zero. This function should be paired with zone_hold(). 2857 */ 2858 void 2859 zone_rele(zone_t *z) 2860 { 2861 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2862 } 2863 2864 /* 2865 * Initialize a zone reference structure. This function must be invoked for 2866 * a reference structure before the structure is passed to zone_hold_ref(). 2867 */ 2868 void 2869 zone_init_ref(zone_ref_t *ref) 2870 { 2871 ref->zref_zone = NULL; 2872 list_link_init(&ref->zref_linkage); 2873 } 2874 2875 /* 2876 * Acquire a reference to zone z. The caller must specify the 2877 * zone_ref_subsys_t constant associated with its subsystem. The specified 2878 * zone_ref_t structure will represent a reference to the specified zone. Use 2879 * zone_rele_ref() to release the reference. 2880 * 2881 * The referenced zone_t structure will not be freed as long as the zone_t's 2882 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2883 * references. 2884 * 2885 * NOTE: The zone_ref_t structure must be initialized before it is used. 2886 * See zone_init_ref() above. 2887 */ 2888 void 2889 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2890 { 2891 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2892 2893 /* 2894 * Prevent consumers from reusing a reference structure before 2895 * releasing it. 2896 */ 2897 VERIFY(ref->zref_zone == NULL); 2898 2899 ref->zref_zone = z; 2900 mutex_enter(&z->zone_lock); 2901 zone_hold_locked(z); 2902 z->zone_subsys_ref[subsys]++; 2903 ASSERT(z->zone_subsys_ref[subsys] != 0); 2904 list_insert_head(&z->zone_ref_list, ref); 2905 mutex_exit(&z->zone_lock); 2906 } 2907 2908 /* 2909 * Release the zone reference represented by the specified zone_ref_t. 2910 * The reference is invalid after it's released; however, the zone_ref_t 2911 * structure can be reused without having to invoke zone_init_ref(). 2912 * subsys should be the same value that was passed to zone_hold_ref() 2913 * when the reference was acquired. 2914 */ 2915 void 2916 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2917 { 2918 zone_rele_common(ref->zref_zone, ref, subsys); 2919 2920 /* 2921 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2922 * when consumers dereference the reference. This helps us catch 2923 * consumers who use released references. Furthermore, this lets 2924 * consumers reuse the zone_ref_t structure without having to 2925 * invoke zone_init_ref(). 2926 */ 2927 ref->zref_zone = NULL; 2928 } 2929 2930 void 2931 zone_cred_hold(zone_t *z) 2932 { 2933 mutex_enter(&z->zone_lock); 2934 z->zone_cred_ref++; 2935 ASSERT(z->zone_cred_ref != 0); 2936 mutex_exit(&z->zone_lock); 2937 } 2938 2939 void 2940 zone_cred_rele(zone_t *z) 2941 { 2942 boolean_t wakeup; 2943 2944 mutex_enter(&z->zone_lock); 2945 ASSERT(z->zone_cred_ref != 0); 2946 z->zone_cred_ref--; 2947 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2948 /* no more refs, free the structure */ 2949 mutex_exit(&z->zone_lock); 2950 zone_free(z); 2951 return; 2952 } 2953 /* 2954 * If zone_destroy is waiting for the cred references to drain 2955 * out, and they have, signal it. 2956 */ 2957 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2958 zone_status_get(z) >= ZONE_IS_DEAD); 2959 mutex_exit(&z->zone_lock); 2960 2961 if (wakeup) { 2962 /* 2963 * Grabbing zonehash_lock here effectively synchronizes with 2964 * zone_destroy() to avoid missed signals. 2965 */ 2966 mutex_enter(&zonehash_lock); 2967 cv_broadcast(&zone_destroy_cv); 2968 mutex_exit(&zonehash_lock); 2969 } 2970 } 2971 2972 void 2973 zone_task_hold(zone_t *z) 2974 { 2975 mutex_enter(&z->zone_lock); 2976 z->zone_ntasks++; 2977 ASSERT(z->zone_ntasks != 0); 2978 mutex_exit(&z->zone_lock); 2979 } 2980 2981 void 2982 zone_task_rele(zone_t *zone) 2983 { 2984 uint_t refcnt; 2985 2986 mutex_enter(&zone->zone_lock); 2987 ASSERT(zone->zone_ntasks != 0); 2988 refcnt = --zone->zone_ntasks; 2989 if (refcnt > 1) { /* Common case */ 2990 mutex_exit(&zone->zone_lock); 2991 return; 2992 } 2993 zone_hold_locked(zone); /* so we can use the zone_t later */ 2994 mutex_exit(&zone->zone_lock); 2995 if (refcnt == 1) { 2996 /* 2997 * See if the zone is shutting down. 2998 */ 2999 mutex_enter(&zone_status_lock); 3000 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 3001 goto out; 3002 } 3003 3004 /* 3005 * Make sure the ntasks didn't change since we 3006 * dropped zone_lock. 3007 */ 3008 mutex_enter(&zone->zone_lock); 3009 if (refcnt != zone->zone_ntasks) { 3010 mutex_exit(&zone->zone_lock); 3011 goto out; 3012 } 3013 mutex_exit(&zone->zone_lock); 3014 3015 /* 3016 * No more user processes in the zone. The zone is empty. 3017 */ 3018 zone_status_set(zone, ZONE_IS_EMPTY); 3019 goto out; 3020 } 3021 3022 ASSERT(refcnt == 0); 3023 /* 3024 * zsched has exited; the zone is dead. 3025 */ 3026 zone->zone_zsched = NULL; /* paranoia */ 3027 mutex_enter(&zone_status_lock); 3028 zone_status_set(zone, ZONE_IS_DEAD); 3029 out: 3030 mutex_exit(&zone_status_lock); 3031 zone_rele(zone); 3032 } 3033 3034 zoneid_t 3035 getzoneid(void) 3036 { 3037 return (curproc->p_zone->zone_id); 3038 } 3039 3040 /* 3041 * Internal versions of zone_find_by_*(). These don't zone_hold() or 3042 * check the validity of a zone's state. 3043 */ 3044 static zone_t * 3045 zone_find_all_by_id(zoneid_t zoneid) 3046 { 3047 mod_hash_val_t hv; 3048 zone_t *zone = NULL; 3049 3050 ASSERT(MUTEX_HELD(&zonehash_lock)); 3051 3052 if (mod_hash_find(zonehashbyid, 3053 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 3054 zone = (zone_t *)hv; 3055 return (zone); 3056 } 3057 3058 static zone_t * 3059 zone_find_all_by_label(const ts_label_t *label) 3060 { 3061 mod_hash_val_t hv; 3062 zone_t *zone = NULL; 3063 3064 ASSERT(MUTEX_HELD(&zonehash_lock)); 3065 3066 /* 3067 * zonehashbylabel is not maintained for unlabeled systems 3068 */ 3069 if (!is_system_labeled()) 3070 return (NULL); 3071 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 3072 zone = (zone_t *)hv; 3073 return (zone); 3074 } 3075 3076 static zone_t * 3077 zone_find_all_by_name(char *name) 3078 { 3079 mod_hash_val_t hv; 3080 zone_t *zone = NULL; 3081 3082 ASSERT(MUTEX_HELD(&zonehash_lock)); 3083 3084 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 3085 zone = (zone_t *)hv; 3086 return (zone); 3087 } 3088 3089 /* 3090 * Public interface for looking up a zone by zoneid. Only returns the zone if 3091 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 3092 * Caller must call zone_rele() once it is done with the zone. 3093 * 3094 * The zone may begin the zone_destroy() sequence immediately after this 3095 * function returns, but may be safely used until zone_rele() is called. 3096 */ 3097 zone_t * 3098 zone_find_by_id(zoneid_t zoneid) 3099 { 3100 zone_t *zone; 3101 zone_status_t status; 3102 3103 mutex_enter(&zonehash_lock); 3104 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3105 mutex_exit(&zonehash_lock); 3106 return (NULL); 3107 } 3108 status = zone_status_get(zone); 3109 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3110 /* 3111 * For all practical purposes the zone doesn't exist. 3112 */ 3113 mutex_exit(&zonehash_lock); 3114 return (NULL); 3115 } 3116 zone_hold(zone); 3117 mutex_exit(&zonehash_lock); 3118 return (zone); 3119 } 3120 3121 /* 3122 * Similar to zone_find_by_id, but using zone label as the key. 3123 */ 3124 zone_t * 3125 zone_find_by_label(const ts_label_t *label) 3126 { 3127 zone_t *zone; 3128 zone_status_t status; 3129 3130 mutex_enter(&zonehash_lock); 3131 if ((zone = zone_find_all_by_label(label)) == NULL) { 3132 mutex_exit(&zonehash_lock); 3133 return (NULL); 3134 } 3135 3136 status = zone_status_get(zone); 3137 if (status > ZONE_IS_DOWN) { 3138 /* 3139 * For all practical purposes the zone doesn't exist. 3140 */ 3141 mutex_exit(&zonehash_lock); 3142 return (NULL); 3143 } 3144 zone_hold(zone); 3145 mutex_exit(&zonehash_lock); 3146 return (zone); 3147 } 3148 3149 /* 3150 * Similar to zone_find_by_id, but using zone name as the key. 3151 */ 3152 zone_t * 3153 zone_find_by_name(char *name) 3154 { 3155 zone_t *zone; 3156 zone_status_t status; 3157 3158 mutex_enter(&zonehash_lock); 3159 if ((zone = zone_find_all_by_name(name)) == NULL) { 3160 mutex_exit(&zonehash_lock); 3161 return (NULL); 3162 } 3163 status = zone_status_get(zone); 3164 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3165 /* 3166 * For all practical purposes the zone doesn't exist. 3167 */ 3168 mutex_exit(&zonehash_lock); 3169 return (NULL); 3170 } 3171 zone_hold(zone); 3172 mutex_exit(&zonehash_lock); 3173 return (zone); 3174 } 3175 3176 /* 3177 * Similar to zone_find_by_id(), using the path as a key. For instance, 3178 * if there is a zone "foo" rooted at /foo/root, and the path argument 3179 * is "/foo/root/proc", it will return the held zone_t corresponding to 3180 * zone "foo". 3181 * 3182 * zone_find_by_path() always returns a non-NULL value, since at the 3183 * very least every path will be contained in the global zone. 3184 * 3185 * As with the other zone_find_by_*() functions, the caller is 3186 * responsible for zone_rele()ing the return value of this function. 3187 */ 3188 zone_t * 3189 zone_find_by_path(const char *path) 3190 { 3191 zone_t *zone; 3192 zone_t *zret = NULL; 3193 zone_status_t status; 3194 3195 if (path == NULL) { 3196 /* 3197 * Call from rootconf(). 3198 */ 3199 zone_hold(global_zone); 3200 return (global_zone); 3201 } 3202 ASSERT(*path == '/'); 3203 mutex_enter(&zonehash_lock); 3204 for (zone = list_head(&zone_active); zone != NULL; 3205 zone = list_next(&zone_active, zone)) { 3206 if (ZONE_PATH_VISIBLE(path, zone)) 3207 zret = zone; 3208 } 3209 ASSERT(zret != NULL); 3210 status = zone_status_get(zret); 3211 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3212 /* 3213 * Zone practically doesn't exist. 3214 */ 3215 zret = global_zone; 3216 } 3217 zone_hold(zret); 3218 mutex_exit(&zonehash_lock); 3219 return (zret); 3220 } 3221 3222 /* 3223 * Public interface for updating per-zone load averages. Called once per 3224 * second. 3225 * 3226 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3227 */ 3228 void 3229 zone_loadavg_update(void) 3230 { 3231 zone_t *zp; 3232 zone_status_t status; 3233 struct loadavg_s *lavg; 3234 hrtime_t zone_total; 3235 uint64_t tmp; 3236 int i; 3237 hrtime_t hr_avg; 3238 int nrun; 3239 static int64_t f[3] = { 135, 27, 9 }; 3240 int64_t q, r; 3241 3242 mutex_enter(&zonehash_lock); 3243 for (zp = list_head(&zone_active); zp != NULL; 3244 zp = list_next(&zone_active, zp)) { 3245 mutex_enter(&zp->zone_lock); 3246 3247 /* Skip zones that are on the way down or not yet up */ 3248 status = zone_status_get(zp); 3249 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3250 /* For all practical purposes the zone doesn't exist. */ 3251 mutex_exit(&zp->zone_lock); 3252 continue; 3253 } 3254 3255 /* 3256 * Update the 10 second moving average data in zone_loadavg. 3257 */ 3258 lavg = &zp->zone_loadavg; 3259 3260 tmp = cpu_uarray_sum_all(zp->zone_ustate); 3261 zone_total = UINT64_OVERFLOW_TO_INT64(tmp); 3262 3263 scalehrtime(&zone_total); 3264 3265 /* The zone_total should always be increasing. */ 3266 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3267 zone_total - lavg->lg_total : 0; 3268 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3269 /* lg_total holds the prev. 1 sec. total */ 3270 lavg->lg_total = zone_total; 3271 3272 /* 3273 * To simplify the calculation, we don't calculate the load avg. 3274 * until the zone has been up for at least 10 seconds and our 3275 * moving average is thus full. 3276 */ 3277 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3278 lavg->lg_len++; 3279 mutex_exit(&zp->zone_lock); 3280 continue; 3281 } 3282 3283 /* Now calculate the 1min, 5min, 15 min load avg. */ 3284 hr_avg = 0; 3285 for (i = 0; i < S_LOADAVG_SZ; i++) 3286 hr_avg += lavg->lg_loads[i]; 3287 hr_avg = hr_avg / S_LOADAVG_SZ; 3288 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3289 3290 /* Compute load avg. See comment in calcloadavg() */ 3291 for (i = 0; i < 3; i++) { 3292 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3293 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3294 zp->zone_hp_avenrun[i] += 3295 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3296 3297 /* avenrun[] can only hold 31 bits of load avg. */ 3298 if (zp->zone_hp_avenrun[i] < 3299 ((uint64_t)1<<(31+16-FSHIFT))) 3300 zp->zone_avenrun[i] = (int32_t) 3301 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3302 else 3303 zp->zone_avenrun[i] = 0x7fffffff; 3304 } 3305 3306 mutex_exit(&zp->zone_lock); 3307 } 3308 mutex_exit(&zonehash_lock); 3309 } 3310 3311 /* 3312 * Get the number of cpus visible to this zone. The system-wide global 3313 * 'ncpus' is returned if pools are disabled, the caller is in the 3314 * global zone, or a NULL zone argument is passed in. 3315 */ 3316 int 3317 zone_ncpus_get(zone_t *zone) 3318 { 3319 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3320 3321 return (myncpus != 0 ? myncpus : ncpus); 3322 } 3323 3324 /* 3325 * Get the number of online cpus visible to this zone. The system-wide 3326 * global 'ncpus_online' is returned if pools are disabled, the caller 3327 * is in the global zone, or a NULL zone argument is passed in. 3328 */ 3329 int 3330 zone_ncpus_online_get(zone_t *zone) 3331 { 3332 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3333 3334 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3335 } 3336 3337 /* 3338 * Return the pool to which the zone is currently bound. 3339 */ 3340 pool_t * 3341 zone_pool_get(zone_t *zone) 3342 { 3343 ASSERT(pool_lock_held()); 3344 3345 return (zone->zone_pool); 3346 } 3347 3348 /* 3349 * Set the zone's pool pointer and update the zone's visibility to match 3350 * the resources in the new pool. 3351 */ 3352 void 3353 zone_pool_set(zone_t *zone, pool_t *pool) 3354 { 3355 ASSERT(pool_lock_held()); 3356 ASSERT(MUTEX_HELD(&cpu_lock)); 3357 3358 zone->zone_pool = pool; 3359 zone_pset_set(zone, pool->pool_pset->pset_id); 3360 } 3361 3362 /* 3363 * Return the cached value of the id of the processor set to which the 3364 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3365 * facility is disabled. 3366 */ 3367 psetid_t 3368 zone_pset_get(zone_t *zone) 3369 { 3370 ASSERT(MUTEX_HELD(&cpu_lock)); 3371 3372 return (zone->zone_psetid); 3373 } 3374 3375 /* 3376 * Set the cached value of the id of the processor set to which the zone 3377 * is currently bound. Also update the zone's visibility to match the 3378 * resources in the new processor set. 3379 */ 3380 void 3381 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3382 { 3383 psetid_t oldpsetid; 3384 3385 ASSERT(MUTEX_HELD(&cpu_lock)); 3386 oldpsetid = zone_pset_get(zone); 3387 3388 if (oldpsetid == newpsetid) 3389 return; 3390 /* 3391 * Global zone sees all. 3392 */ 3393 if (zone != global_zone) { 3394 zone->zone_psetid = newpsetid; 3395 if (newpsetid != ZONE_PS_INVAL) 3396 pool_pset_visibility_add(newpsetid, zone); 3397 if (oldpsetid != ZONE_PS_INVAL) 3398 pool_pset_visibility_remove(oldpsetid, zone); 3399 } 3400 /* 3401 * Disabling pools, so we should start using the global values 3402 * for ncpus and ncpus_online. 3403 */ 3404 if (newpsetid == ZONE_PS_INVAL) { 3405 zone->zone_ncpus = 0; 3406 zone->zone_ncpus_online = 0; 3407 } 3408 } 3409 3410 /* 3411 * Walk the list of active zones and issue the provided callback for 3412 * each of them. 3413 * 3414 * Caller must not be holding any locks that may be acquired under 3415 * zonehash_lock. See comment at the beginning of the file for a list of 3416 * common locks and their interactions with zones. 3417 */ 3418 int 3419 zone_walk(int (*cb)(zone_t *, void *), void *data) 3420 { 3421 zone_t *zone; 3422 int ret = 0; 3423 zone_status_t status; 3424 3425 mutex_enter(&zonehash_lock); 3426 for (zone = list_head(&zone_active); zone != NULL; 3427 zone = list_next(&zone_active, zone)) { 3428 /* 3429 * Skip zones that shouldn't be externally visible. 3430 */ 3431 status = zone_status_get(zone); 3432 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3433 continue; 3434 /* 3435 * Bail immediately if any callback invocation returns a 3436 * non-zero value. 3437 */ 3438 ret = (*cb)(zone, data); 3439 if (ret != 0) 3440 break; 3441 } 3442 mutex_exit(&zonehash_lock); 3443 return (ret); 3444 } 3445 3446 static int 3447 zone_set_root(zone_t *zone, const char *upath) 3448 { 3449 vnode_t *vp; 3450 int trycount; 3451 int error = 0; 3452 char *path; 3453 struct pathname upn, pn; 3454 size_t pathlen; 3455 3456 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3457 return (error); 3458 3459 pn_alloc(&pn); 3460 3461 /* prevent infinite loop */ 3462 trycount = 10; 3463 for (;;) { 3464 if (--trycount <= 0) { 3465 error = ESTALE; 3466 goto out; 3467 } 3468 3469 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3470 /* 3471 * VOP_ACCESS() may cover 'vp' with a new 3472 * filesystem, if 'vp' is an autoFS vnode. 3473 * Get the new 'vp' if so. 3474 */ 3475 if ((error = 3476 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3477 (!vn_ismntpt(vp) || 3478 (error = traverse(&vp)) == 0)) { 3479 pathlen = pn.pn_pathlen + 2; 3480 path = kmem_alloc(pathlen, KM_SLEEP); 3481 (void) strncpy(path, pn.pn_path, 3482 pn.pn_pathlen + 1); 3483 path[pathlen - 2] = '/'; 3484 path[pathlen - 1] = '\0'; 3485 pn_free(&pn); 3486 pn_free(&upn); 3487 3488 /* Success! */ 3489 break; 3490 } 3491 VN_RELE(vp); 3492 } 3493 if (error != ESTALE) 3494 goto out; 3495 } 3496 3497 ASSERT(error == 0); 3498 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3499 zone->zone_rootpath = path; 3500 zone->zone_rootpathlen = pathlen; 3501 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3502 zone->zone_flags |= ZF_IS_SCRATCH; 3503 return (0); 3504 3505 out: 3506 pn_free(&pn); 3507 pn_free(&upn); 3508 return (error); 3509 } 3510 3511 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3512 ((c) >= 'a' && (c) <= 'z') || \ 3513 ((c) >= 'A' && (c) <= 'Z')) 3514 3515 static int 3516 zone_set_name(zone_t *zone, const char *uname) 3517 { 3518 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3519 size_t len; 3520 int i, err; 3521 3522 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3523 kmem_free(kname, ZONENAME_MAX); 3524 return (err); /* EFAULT or ENAMETOOLONG */ 3525 } 3526 3527 /* must be less than ZONENAME_MAX */ 3528 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3529 kmem_free(kname, ZONENAME_MAX); 3530 return (EINVAL); 3531 } 3532 3533 /* 3534 * Name must start with an alphanumeric and must contain only 3535 * alphanumerics, '-', '_' and '.'. 3536 */ 3537 if (!isalnum(kname[0])) { 3538 kmem_free(kname, ZONENAME_MAX); 3539 return (EINVAL); 3540 } 3541 for (i = 1; i < len - 1; i++) { 3542 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3543 kname[i] != '.') { 3544 kmem_free(kname, ZONENAME_MAX); 3545 return (EINVAL); 3546 } 3547 } 3548 3549 zone->zone_name = kname; 3550 return (0); 3551 } 3552 3553 /* 3554 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3555 * is NULL or it points to a zone with no hostid emulation, then the machine's 3556 * hostid (i.e., the global zone's hostid) is returned. This function returns 3557 * zero if neither the zone nor the host machine (global zone) have hostids. It 3558 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3559 * hostid and the machine's hostid is invalid. 3560 */ 3561 uint32_t 3562 zone_get_hostid(zone_t *zonep) 3563 { 3564 unsigned long machine_hostid; 3565 3566 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3567 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3568 return (HW_INVALID_HOSTID); 3569 return ((uint32_t)machine_hostid); 3570 } 3571 return (zonep->zone_hostid); 3572 } 3573 3574 /* 3575 * Similar to thread_create(), but makes sure the thread is in the appropriate 3576 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3577 */ 3578 /*ARGSUSED*/ 3579 kthread_t * 3580 zthread_create( 3581 caddr_t stk, 3582 size_t stksize, 3583 void (*proc)(), 3584 void *arg, 3585 size_t len, 3586 pri_t pri) 3587 { 3588 kthread_t *t; 3589 zone_t *zone = curproc->p_zone; 3590 proc_t *pp = zone->zone_zsched; 3591 3592 zone_hold(zone); /* Reference to be dropped when thread exits */ 3593 3594 /* 3595 * No-one should be trying to create threads if the zone is shutting 3596 * down and there aren't any kernel threads around. See comment 3597 * in zthread_exit(). 3598 */ 3599 ASSERT(!(zone->zone_kthreads == NULL && 3600 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3601 /* 3602 * Create a thread, but don't let it run until we've finished setting 3603 * things up. 3604 */ 3605 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3606 ASSERT(t->t_forw == NULL); 3607 mutex_enter(&zone_status_lock); 3608 if (zone->zone_kthreads == NULL) { 3609 t->t_forw = t->t_back = t; 3610 } else { 3611 kthread_t *tx = zone->zone_kthreads; 3612 3613 t->t_forw = tx; 3614 t->t_back = tx->t_back; 3615 tx->t_back->t_forw = t; 3616 tx->t_back = t; 3617 } 3618 zone->zone_kthreads = t; 3619 mutex_exit(&zone_status_lock); 3620 3621 mutex_enter(&pp->p_lock); 3622 t->t_proc_flag |= TP_ZTHREAD; 3623 project_rele(t->t_proj); 3624 t->t_proj = project_hold(pp->p_task->tk_proj); 3625 3626 /* 3627 * Setup complete, let it run. 3628 */ 3629 thread_lock(t); 3630 t->t_schedflag |= TS_ALLSTART; 3631 setrun_locked(t); 3632 thread_unlock(t); 3633 3634 mutex_exit(&pp->p_lock); 3635 3636 return (t); 3637 } 3638 3639 /* 3640 * Similar to thread_exit(). Must be called by threads created via 3641 * zthread_exit(). 3642 */ 3643 void 3644 zthread_exit(void) 3645 { 3646 kthread_t *t = curthread; 3647 proc_t *pp = curproc; 3648 zone_t *zone = pp->p_zone; 3649 3650 mutex_enter(&zone_status_lock); 3651 3652 /* 3653 * Reparent to p0 3654 */ 3655 kpreempt_disable(); 3656 mutex_enter(&pp->p_lock); 3657 t->t_proc_flag &= ~TP_ZTHREAD; 3658 t->t_procp = &p0; 3659 hat_thread_exit(t); 3660 mutex_exit(&pp->p_lock); 3661 kpreempt_enable(); 3662 3663 if (t->t_back == t) { 3664 ASSERT(t->t_forw == t); 3665 /* 3666 * If the zone is empty, once the thread count 3667 * goes to zero no further kernel threads can be 3668 * created. This is because if the creator is a process 3669 * in the zone, then it must have exited before the zone 3670 * state could be set to ZONE_IS_EMPTY. 3671 * Otherwise, if the creator is a kernel thread in the 3672 * zone, the thread count is non-zero. 3673 * 3674 * This really means that non-zone kernel threads should 3675 * not create zone kernel threads. 3676 */ 3677 zone->zone_kthreads = NULL; 3678 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3679 zone_status_set(zone, ZONE_IS_DOWN); 3680 /* 3681 * Remove any CPU caps on this zone. 3682 */ 3683 cpucaps_zone_remove(zone); 3684 } 3685 } else { 3686 t->t_forw->t_back = t->t_back; 3687 t->t_back->t_forw = t->t_forw; 3688 if (zone->zone_kthreads == t) 3689 zone->zone_kthreads = t->t_forw; 3690 } 3691 mutex_exit(&zone_status_lock); 3692 zone_rele(zone); 3693 thread_exit(); 3694 /* NOTREACHED */ 3695 } 3696 3697 static void 3698 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3699 { 3700 vnode_t *oldvp; 3701 3702 /* we're going to hold a reference here to the directory */ 3703 VN_HOLD(vp); 3704 3705 /* update abs cwd/root path see c2/audit.c */ 3706 if (AU_AUDITING()) 3707 audit_chdirec(vp, vpp); 3708 3709 mutex_enter(&pp->p_lock); 3710 oldvp = *vpp; 3711 *vpp = vp; 3712 mutex_exit(&pp->p_lock); 3713 if (oldvp != NULL) 3714 VN_RELE(oldvp); 3715 } 3716 3717 /* 3718 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3719 */ 3720 static int 3721 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3722 { 3723 nvpair_t *nvp = NULL; 3724 boolean_t priv_set = B_FALSE; 3725 boolean_t limit_set = B_FALSE; 3726 boolean_t action_set = B_FALSE; 3727 3728 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3729 const char *name; 3730 uint64_t ui64; 3731 3732 name = nvpair_name(nvp); 3733 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3734 return (EINVAL); 3735 (void) nvpair_value_uint64(nvp, &ui64); 3736 if (strcmp(name, "privilege") == 0) { 3737 /* 3738 * Currently only privileged values are allowed, but 3739 * this may change in the future. 3740 */ 3741 if (ui64 != RCPRIV_PRIVILEGED) 3742 return (EINVAL); 3743 rv->rcv_privilege = ui64; 3744 priv_set = B_TRUE; 3745 } else if (strcmp(name, "limit") == 0) { 3746 rv->rcv_value = ui64; 3747 limit_set = B_TRUE; 3748 } else if (strcmp(name, "action") == 0) { 3749 if (ui64 != RCTL_LOCAL_NOACTION && 3750 ui64 != RCTL_LOCAL_DENY) 3751 return (EINVAL); 3752 rv->rcv_flagaction = ui64; 3753 action_set = B_TRUE; 3754 } else { 3755 return (EINVAL); 3756 } 3757 } 3758 3759 if (!(priv_set && limit_set && action_set)) 3760 return (EINVAL); 3761 rv->rcv_action_signal = 0; 3762 rv->rcv_action_recipient = NULL; 3763 rv->rcv_action_recip_pid = -1; 3764 rv->rcv_firing_time = 0; 3765 3766 return (0); 3767 } 3768 3769 /* 3770 * Non-global zone version of start_init. 3771 */ 3772 void 3773 zone_start_init(void) 3774 { 3775 proc_t *p = ttoproc(curthread); 3776 zone_t *z = p->p_zone; 3777 3778 ASSERT(!INGLOBALZONE(curproc)); 3779 3780 /* 3781 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3782 * storing just the pid of init is sufficient. 3783 */ 3784 z->zone_proc_initpid = p->p_pid; 3785 3786 /* 3787 * We maintain zone_boot_err so that we can return the cause of the 3788 * failure back to the caller of the zone_boot syscall. 3789 */ 3790 p->p_zone->zone_boot_err = start_init_common(); 3791 3792 /* 3793 * We will prevent booting zones from becoming running zones if the 3794 * global zone is shutting down. 3795 */ 3796 mutex_enter(&zone_status_lock); 3797 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3798 ZONE_IS_SHUTTING_DOWN) { 3799 /* 3800 * Make sure we are still in the booting state-- we could have 3801 * raced and already be shutting down, or even further along. 3802 */ 3803 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3804 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3805 } 3806 mutex_exit(&zone_status_lock); 3807 /* It's gone bad, dispose of the process */ 3808 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3809 mutex_enter(&p->p_lock); 3810 ASSERT(p->p_flag & SEXITLWPS); 3811 lwp_exit(); 3812 } 3813 } else { 3814 if (zone_status_get(z) == ZONE_IS_BOOTING) 3815 zone_status_set(z, ZONE_IS_RUNNING); 3816 mutex_exit(&zone_status_lock); 3817 /* cause the process to return to userland. */ 3818 lwp_rtt(); 3819 } 3820 } 3821 3822 struct zsched_arg { 3823 zone_t *zone; 3824 nvlist_t *nvlist; 3825 }; 3826 3827 /* 3828 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3829 * anything to do with scheduling, but rather with the fact that 3830 * per-zone kernel threads are parented to zsched, just like regular 3831 * kernel threads are parented to sched (p0). 3832 * 3833 * zsched is also responsible for launching init for the zone. 3834 */ 3835 static void 3836 zsched(void *arg) 3837 { 3838 struct zsched_arg *za = arg; 3839 proc_t *pp = curproc; 3840 proc_t *initp = proc_init; 3841 zone_t *zone = za->zone; 3842 cred_t *cr, *oldcred; 3843 rctl_set_t *set; 3844 rctl_alloc_gp_t *gp; 3845 contract_t *ct = NULL; 3846 task_t *tk, *oldtk; 3847 rctl_entity_p_t e; 3848 kproject_t *pj; 3849 3850 nvlist_t *nvl = za->nvlist; 3851 nvpair_t *nvp = NULL; 3852 3853 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3854 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3855 PTOU(pp)->u_argc = 0; 3856 PTOU(pp)->u_argv = 0; 3857 PTOU(pp)->u_envp = 0; 3858 PTOU(pp)->u_commpagep = 0; 3859 closeall(P_FINFO(pp)); 3860 3861 /* 3862 * We are this zone's "zsched" process. As the zone isn't generally 3863 * visible yet we don't need to grab any locks before initializing its 3864 * zone_proc pointer. 3865 */ 3866 zone_hold(zone); /* this hold is released by zone_destroy() */ 3867 zone->zone_zsched = pp; 3868 mutex_enter(&pp->p_lock); 3869 pp->p_zone = zone; 3870 mutex_exit(&pp->p_lock); 3871 3872 /* 3873 * Disassociate process from its 'parent'; parent ourselves to init 3874 * (pid 1) and change other values as needed. 3875 */ 3876 sess_create(); 3877 3878 mutex_enter(&pidlock); 3879 proc_detach(pp); 3880 pp->p_ppid = 1; 3881 pp->p_flag |= SZONETOP; 3882 pp->p_ancpid = 1; 3883 pp->p_parent = initp; 3884 pp->p_psibling = NULL; 3885 if (initp->p_child) 3886 initp->p_child->p_psibling = pp; 3887 pp->p_sibling = initp->p_child; 3888 initp->p_child = pp; 3889 3890 /* Decrement what newproc() incremented. */ 3891 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3892 /* 3893 * Our credentials are about to become kcred-like, so we don't care 3894 * about the caller's ruid. 3895 */ 3896 upcount_inc(crgetruid(kcred), zone->zone_id); 3897 mutex_exit(&pidlock); 3898 3899 /* 3900 * getting out of global zone, so decrement lwp and process counts 3901 */ 3902 pj = pp->p_task->tk_proj; 3903 mutex_enter(&global_zone->zone_nlwps_lock); 3904 pj->kpj_nlwps -= pp->p_lwpcnt; 3905 global_zone->zone_nlwps -= pp->p_lwpcnt; 3906 pj->kpj_nprocs--; 3907 global_zone->zone_nprocs--; 3908 mutex_exit(&global_zone->zone_nlwps_lock); 3909 3910 /* 3911 * Decrement locked memory counts on old zone and project. 3912 */ 3913 mutex_enter(&global_zone->zone_mem_lock); 3914 global_zone->zone_locked_mem -= pp->p_locked_mem; 3915 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3916 mutex_exit(&global_zone->zone_mem_lock); 3917 3918 /* 3919 * Create and join a new task in project '0' of this zone. 3920 * 3921 * We don't need to call holdlwps() since we know we're the only lwp in 3922 * this process. 3923 * 3924 * task_join() returns with p_lock held. 3925 */ 3926 tk = task_create(0, zone); 3927 mutex_enter(&cpu_lock); 3928 oldtk = task_join(tk, 0); 3929 3930 pj = pp->p_task->tk_proj; 3931 3932 mutex_enter(&zone->zone_mem_lock); 3933 zone->zone_locked_mem += pp->p_locked_mem; 3934 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3935 mutex_exit(&zone->zone_mem_lock); 3936 3937 /* 3938 * add lwp and process counts to zsched's zone, and increment 3939 * project's task and process count due to the task created in 3940 * the above task_create. 3941 */ 3942 mutex_enter(&zone->zone_nlwps_lock); 3943 pj->kpj_nlwps += pp->p_lwpcnt; 3944 pj->kpj_ntasks += 1; 3945 zone->zone_nlwps += pp->p_lwpcnt; 3946 pj->kpj_nprocs++; 3947 zone->zone_nprocs++; 3948 mutex_exit(&zone->zone_nlwps_lock); 3949 3950 mutex_exit(&curproc->p_lock); 3951 mutex_exit(&cpu_lock); 3952 task_rele(oldtk); 3953 3954 /* 3955 * The process was created by a process in the global zone, hence the 3956 * credentials are wrong. We might as well have kcred-ish credentials. 3957 */ 3958 cr = zone->zone_kcred; 3959 crhold(cr); 3960 mutex_enter(&pp->p_crlock); 3961 oldcred = pp->p_cred; 3962 pp->p_cred = cr; 3963 mutex_exit(&pp->p_crlock); 3964 crfree(oldcred); 3965 3966 /* 3967 * Hold credentials again (for thread) 3968 */ 3969 crhold(cr); 3970 3971 /* 3972 * p_lwpcnt can't change since this is a kernel process. 3973 */ 3974 crset(pp, cr); 3975 3976 /* 3977 * Chroot 3978 */ 3979 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3980 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3981 3982 /* 3983 * Initialize zone's rctl set. 3984 */ 3985 set = rctl_set_create(); 3986 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3987 mutex_enter(&pp->p_lock); 3988 e.rcep_p.zone = zone; 3989 e.rcep_t = RCENTITY_ZONE; 3990 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3991 mutex_exit(&pp->p_lock); 3992 rctl_prealloc_destroy(gp); 3993 3994 /* 3995 * Apply the rctls passed in to zone_create(). This is basically a list 3996 * assignment: all of the old values are removed and the new ones 3997 * inserted. That is, if an empty list is passed in, all values are 3998 * removed. 3999 */ 4000 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4001 rctl_dict_entry_t *rde; 4002 rctl_hndl_t hndl; 4003 char *name; 4004 nvlist_t **nvlarray; 4005 uint_t i, nelem; 4006 int error; /* For ASSERT()s */ 4007 4008 name = nvpair_name(nvp); 4009 hndl = rctl_hndl_lookup(name); 4010 ASSERT(hndl != -1); 4011 rde = rctl_dict_lookup_hndl(hndl); 4012 ASSERT(rde != NULL); 4013 4014 for (; /* ever */; ) { 4015 rctl_val_t oval; 4016 4017 mutex_enter(&pp->p_lock); 4018 error = rctl_local_get(hndl, NULL, &oval, pp); 4019 mutex_exit(&pp->p_lock); 4020 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 4021 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 4022 if (oval.rcv_privilege == RCPRIV_SYSTEM) 4023 break; 4024 mutex_enter(&pp->p_lock); 4025 error = rctl_local_delete(hndl, &oval, pp); 4026 mutex_exit(&pp->p_lock); 4027 ASSERT(error == 0); 4028 } 4029 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4030 ASSERT(error == 0); 4031 for (i = 0; i < nelem; i++) { 4032 rctl_val_t *nvalp; 4033 4034 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 4035 error = nvlist2rctlval(nvlarray[i], nvalp); 4036 ASSERT(error == 0); 4037 /* 4038 * rctl_local_insert can fail if the value being 4039 * inserted is a duplicate; this is OK. 4040 */ 4041 mutex_enter(&pp->p_lock); 4042 if (rctl_local_insert(hndl, nvalp, pp) != 0) 4043 kmem_cache_free(rctl_val_cache, nvalp); 4044 mutex_exit(&pp->p_lock); 4045 } 4046 } 4047 4048 /* 4049 * Tell the world that we're done setting up. 4050 * 4051 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 4052 * and atomically set the zone's processor set visibility. Once 4053 * we drop pool_lock() this zone will automatically get updated 4054 * to reflect any future changes to the pools configuration. 4055 * 4056 * Note that after we drop the locks below (zonehash_lock in 4057 * particular) other operations such as a zone_getattr call can 4058 * now proceed and observe the zone. That is the reason for doing a 4059 * state transition to the INITIALIZED state. 4060 */ 4061 pool_lock(); 4062 mutex_enter(&cpu_lock); 4063 mutex_enter(&zonehash_lock); 4064 zone_uniqid(zone); 4065 zone_zsd_configure(zone); 4066 if (pool_state == POOL_ENABLED) 4067 zone_pset_set(zone, pool_default->pool_pset->pset_id); 4068 mutex_enter(&zone_status_lock); 4069 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 4070 zone_status_set(zone, ZONE_IS_INITIALIZED); 4071 mutex_exit(&zone_status_lock); 4072 mutex_exit(&zonehash_lock); 4073 mutex_exit(&cpu_lock); 4074 pool_unlock(); 4075 4076 /* Now call the create callback for this key */ 4077 zsd_apply_all_keys(zsd_apply_create, zone); 4078 4079 /* The callbacks are complete. Mark ZONE_IS_READY */ 4080 mutex_enter(&zone_status_lock); 4081 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 4082 zone_status_set(zone, ZONE_IS_READY); 4083 mutex_exit(&zone_status_lock); 4084 4085 /* 4086 * Once we see the zone transition to the ZONE_IS_BOOTING state, 4087 * we launch init, and set the state to running. 4088 */ 4089 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 4090 4091 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 4092 id_t cid; 4093 4094 /* 4095 * Ok, this is a little complicated. We need to grab the 4096 * zone's pool's scheduling class ID; note that by now, we 4097 * are already bound to a pool if we need to be (zoneadmd 4098 * will have done that to us while we're in the READY 4099 * state). *But* the scheduling class for the zone's 'init' 4100 * must be explicitly passed to newproc, which doesn't 4101 * respect pool bindings. 4102 * 4103 * We hold the pool_lock across the call to newproc() to 4104 * close the obvious race: the pool's scheduling class 4105 * could change before we manage to create the LWP with 4106 * classid 'cid'. 4107 */ 4108 pool_lock(); 4109 if (zone->zone_defaultcid > 0) 4110 cid = zone->zone_defaultcid; 4111 else 4112 cid = pool_get_class(zone->zone_pool); 4113 if (cid == -1) 4114 cid = defaultcid; 4115 4116 /* 4117 * If this fails, zone_boot will ultimately fail. The 4118 * state of the zone will be set to SHUTTING_DOWN-- userland 4119 * will have to tear down the zone, and fail, or try again. 4120 */ 4121 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 4122 minclsyspri - 1, &ct, 0)) != 0) { 4123 mutex_enter(&zone_status_lock); 4124 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4125 mutex_exit(&zone_status_lock); 4126 } else { 4127 zone->zone_boot_time = gethrestime_sec(); 4128 } 4129 4130 pool_unlock(); 4131 } 4132 4133 /* 4134 * Wait for zone_destroy() to be called. This is what we spend 4135 * most of our life doing. 4136 */ 4137 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 4138 4139 if (ct) 4140 /* 4141 * At this point the process contract should be empty. 4142 * (Though if it isn't, it's not the end of the world.) 4143 */ 4144 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 4145 4146 /* 4147 * Allow kcred to be freed when all referring processes 4148 * (including this one) go away. We can't just do this in 4149 * zone_free because we need to wait for the zone_cred_ref to 4150 * drop to 0 before calling zone_free, and the existence of 4151 * zone_kcred will prevent that. Thus, we call crfree here to 4152 * balance the crdup in zone_create. The crhold calls earlier 4153 * in zsched will be dropped when the thread and process exit. 4154 */ 4155 crfree(zone->zone_kcred); 4156 zone->zone_kcred = NULL; 4157 4158 exit(CLD_EXITED, 0); 4159 } 4160 4161 /* 4162 * Helper function to determine if there are any submounts of the 4163 * provided path. Used to make sure the zone doesn't "inherit" any 4164 * mounts from before it is created. 4165 */ 4166 static uint_t 4167 zone_mount_count(const char *rootpath) 4168 { 4169 vfs_t *vfsp; 4170 uint_t count = 0; 4171 size_t rootpathlen = strlen(rootpath); 4172 4173 /* 4174 * Holding zonehash_lock prevents race conditions with 4175 * vfs_list_add()/vfs_list_remove() since we serialize with 4176 * zone_find_by_path(). 4177 */ 4178 ASSERT(MUTEX_HELD(&zonehash_lock)); 4179 /* 4180 * The rootpath must end with a '/' 4181 */ 4182 ASSERT(rootpath[rootpathlen - 1] == '/'); 4183 4184 /* 4185 * This intentionally does not count the rootpath itself if that 4186 * happens to be a mount point. 4187 */ 4188 vfs_list_read_lock(); 4189 vfsp = rootvfs; 4190 do { 4191 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4192 rootpathlen) == 0) 4193 count++; 4194 vfsp = vfsp->vfs_next; 4195 } while (vfsp != rootvfs); 4196 vfs_list_unlock(); 4197 return (count); 4198 } 4199 4200 /* 4201 * Helper function to make sure that a zone created on 'rootpath' 4202 * wouldn't end up containing other zones' rootpaths. 4203 */ 4204 static boolean_t 4205 zone_is_nested(const char *rootpath) 4206 { 4207 zone_t *zone; 4208 size_t rootpathlen = strlen(rootpath); 4209 size_t len; 4210 4211 ASSERT(MUTEX_HELD(&zonehash_lock)); 4212 4213 /* 4214 * zone_set_root() appended '/' and '\0' at the end of rootpath 4215 */ 4216 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4217 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4218 return (B_TRUE); 4219 4220 for (zone = list_head(&zone_active); zone != NULL; 4221 zone = list_next(&zone_active, zone)) { 4222 if (zone == global_zone) 4223 continue; 4224 len = strlen(zone->zone_rootpath); 4225 if (strncmp(rootpath, zone->zone_rootpath, 4226 MIN(rootpathlen, len)) == 0) 4227 return (B_TRUE); 4228 } 4229 return (B_FALSE); 4230 } 4231 4232 static int 4233 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4234 size_t zone_privssz) 4235 { 4236 priv_set_t *privs; 4237 4238 if (zone_privssz < sizeof (priv_set_t)) 4239 return (ENOMEM); 4240 4241 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4242 4243 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4244 kmem_free(privs, sizeof (priv_set_t)); 4245 return (EFAULT); 4246 } 4247 4248 zone->zone_privset = privs; 4249 return (0); 4250 } 4251 4252 /* 4253 * We make creative use of nvlists to pass in rctls from userland. The list is 4254 * a list of the following structures: 4255 * 4256 * (name = rctl_name, value = nvpair_list_array) 4257 * 4258 * Where each element of the nvpair_list_array is of the form: 4259 * 4260 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4261 * (name = "limit", value = uint64_t), 4262 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4263 */ 4264 static int 4265 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4266 { 4267 nvpair_t *nvp = NULL; 4268 nvlist_t *nvl = NULL; 4269 char *kbuf; 4270 int error; 4271 rctl_val_t rv; 4272 4273 *nvlp = NULL; 4274 4275 if (buflen == 0) 4276 return (0); 4277 4278 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4279 return (ENOMEM); 4280 if (copyin(ubuf, kbuf, buflen)) { 4281 error = EFAULT; 4282 goto out; 4283 } 4284 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4285 /* 4286 * nvl may have been allocated/free'd, but the value set to 4287 * non-NULL, so we reset it here. 4288 */ 4289 nvl = NULL; 4290 error = EINVAL; 4291 goto out; 4292 } 4293 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4294 rctl_dict_entry_t *rde; 4295 rctl_hndl_t hndl; 4296 nvlist_t **nvlarray; 4297 uint_t i, nelem; 4298 char *name; 4299 4300 error = EINVAL; 4301 name = nvpair_name(nvp); 4302 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4303 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4304 goto out; 4305 } 4306 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4307 goto out; 4308 } 4309 rde = rctl_dict_lookup_hndl(hndl); 4310 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4311 ASSERT(error == 0); 4312 for (i = 0; i < nelem; i++) { 4313 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4314 goto out; 4315 } 4316 if (rctl_invalid_value(rde, &rv)) { 4317 error = EINVAL; 4318 goto out; 4319 } 4320 } 4321 error = 0; 4322 *nvlp = nvl; 4323 out: 4324 kmem_free(kbuf, buflen); 4325 if (error && nvl != NULL) 4326 nvlist_free(nvl); 4327 return (error); 4328 } 4329 4330 int 4331 zone_create_error(int er_error, int er_ext, int *er_out) 4332 { 4333 if (er_out != NULL) { 4334 if (copyout(&er_ext, er_out, sizeof (int))) { 4335 return (set_errno(EFAULT)); 4336 } 4337 } 4338 return (set_errno(er_error)); 4339 } 4340 4341 static int 4342 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4343 { 4344 ts_label_t *tsl; 4345 bslabel_t blab; 4346 4347 /* Get label from user */ 4348 if (copyin(lab, &blab, sizeof (blab)) != 0) 4349 return (EFAULT); 4350 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4351 if (tsl == NULL) 4352 return (ENOMEM); 4353 4354 zone->zone_slabel = tsl; 4355 return (0); 4356 } 4357 4358 /* 4359 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4360 */ 4361 static int 4362 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4363 { 4364 char *kbuf; 4365 char *dataset, *next; 4366 zone_dataset_t *zd; 4367 size_t len; 4368 4369 if (ubuf == NULL || buflen == 0) 4370 return (0); 4371 4372 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4373 return (ENOMEM); 4374 4375 if (copyin(ubuf, kbuf, buflen) != 0) { 4376 kmem_free(kbuf, buflen); 4377 return (EFAULT); 4378 } 4379 4380 dataset = next = kbuf; 4381 for (;;) { 4382 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4383 4384 next = strchr(dataset, ','); 4385 4386 if (next == NULL) 4387 len = strlen(dataset); 4388 else 4389 len = next - dataset; 4390 4391 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4392 bcopy(dataset, zd->zd_dataset, len); 4393 zd->zd_dataset[len] = '\0'; 4394 4395 list_insert_head(&zone->zone_datasets, zd); 4396 4397 if (next == NULL) 4398 break; 4399 4400 dataset = next + 1; 4401 } 4402 4403 kmem_free(kbuf, buflen); 4404 return (0); 4405 } 4406 4407 /* 4408 * System call to create/initialize a new zone named 'zone_name', rooted 4409 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4410 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4411 * with labeling set by 'match', 'doi', and 'label'. 4412 * 4413 * If extended error is non-null, we may use it to return more detailed 4414 * error information. 4415 */ 4416 static zoneid_t 4417 zone_create(const char *zone_name, const char *zone_root, 4418 const priv_set_t *zone_privs, size_t zone_privssz, 4419 caddr_t rctlbuf, size_t rctlbufsz, 4420 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4421 int match, uint32_t doi, const bslabel_t *label, 4422 int flags) 4423 { 4424 struct zsched_arg zarg; 4425 nvlist_t *rctls = NULL; 4426 proc_t *pp = curproc; 4427 zone_t *zone, *ztmp; 4428 zoneid_t zoneid, start = GLOBAL_ZONEID; 4429 int error; 4430 int error2 = 0; 4431 char *str; 4432 cred_t *zkcr; 4433 boolean_t insert_label_hash; 4434 4435 if (secpolicy_zone_config(CRED()) != 0) 4436 return (set_errno(EPERM)); 4437 4438 /* can't boot zone from within chroot environment */ 4439 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4440 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4441 extended_error)); 4442 /* 4443 * As the first step of zone creation, we want to allocate a zoneid. 4444 * This allocation is complicated by the fact that netstacks use the 4445 * zoneid to determine their stackid, but netstacks themselves are 4446 * freed asynchronously with respect to zone destruction. This means 4447 * that a netstack reference leak (or in principle, an extraordinarily 4448 * long netstack reference hold) could result in a zoneid being 4449 * allocated that in fact corresponds to a stackid from an active 4450 * (referenced) netstack -- unleashing all sorts of havoc when that 4451 * netstack is actually (re)used. (In the abstract, we might wish a 4452 * zoneid to not be deallocated until its last referencing netstack 4453 * has been released, but netstacks lack a backpointer into their 4454 * referencing zone -- and changing them to have such a pointer would 4455 * be substantial, to put it euphemistically.) To avoid this, we 4456 * detect this condition on allocation: if we have allocated a zoneid 4457 * that corresponds to a netstack that's still in use, we warn about 4458 * it (as it is much more likely to be a reference leak than an actual 4459 * netstack reference), free it, and allocate another. That these 4460 * identifers are allocated out of an ID space assures that we won't 4461 * see the identifier we just allocated. 4462 */ 4463 for (;;) { 4464 zoneid = id_alloc(zoneid_space); 4465 4466 if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid))) 4467 break; 4468 4469 id_free(zoneid_space, zoneid); 4470 4471 if (start == GLOBAL_ZONEID) { 4472 start = zoneid; 4473 } else if (zoneid == start) { 4474 /* 4475 * We have managed to iterate over the entire available 4476 * zoneid space -- there are no identifiers available, 4477 * presumably due to some number of leaked netstack 4478 * references. While it's in principle possible for us 4479 * to continue to try, it seems wiser to give up at 4480 * this point to warn and fail explicitly with a 4481 * distinctive error. 4482 */ 4483 cmn_err(CE_WARN, "zone_create() failed: all available " 4484 "zone IDs have netstacks still in use"); 4485 return (set_errno(ENFILE)); 4486 } 4487 4488 cmn_err(CE_WARN, "unable to reuse zone ID %d; " 4489 "netstack still in use", zoneid); 4490 } 4491 4492 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4493 zone->zone_id = zoneid; 4494 zone->zone_status = ZONE_IS_UNINITIALIZED; 4495 zone->zone_pool = pool_default; 4496 zone->zone_pool_mod = gethrtime(); 4497 zone->zone_psetid = ZONE_PS_INVAL; 4498 zone->zone_ncpus = 0; 4499 zone->zone_ncpus_online = 0; 4500 zone->zone_restart_init = B_TRUE; 4501 zone->zone_reboot_on_init_exit = B_FALSE; 4502 zone->zone_restart_init_0 = B_FALSE; 4503 zone->zone_brand = &native_brand; 4504 zone->zone_initname = NULL; 4505 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4506 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4507 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4508 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4509 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4510 offsetof(zone_ref_t, zref_linkage)); 4511 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4512 offsetof(struct zsd_entry, zsd_linkage)); 4513 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4514 offsetof(zone_dataset_t, zd_linkage)); 4515 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4516 offsetof(zone_dl_t, zdl_linkage)); 4517 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4518 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4519 4520 if (flags & ZCF_NET_EXCL) { 4521 zone->zone_flags |= ZF_NET_EXCL; 4522 } 4523 4524 if ((error = zone_set_name(zone, zone_name)) != 0) { 4525 zone_free(zone); 4526 return (zone_create_error(error, 0, extended_error)); 4527 } 4528 4529 if ((error = zone_set_root(zone, zone_root)) != 0) { 4530 zone_free(zone); 4531 return (zone_create_error(error, 0, extended_error)); 4532 } 4533 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4534 zone_free(zone); 4535 return (zone_create_error(error, 0, extended_error)); 4536 } 4537 4538 /* initialize node name to be the same as zone name */ 4539 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4540 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4541 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4542 4543 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4544 zone->zone_domain[0] = '\0'; 4545 zone->zone_hostid = HW_INVALID_HOSTID; 4546 zone->zone_shares = 1; 4547 zone->zone_shmmax = 0; 4548 zone->zone_ipc.ipcq_shmmni = 0; 4549 zone->zone_ipc.ipcq_semmni = 0; 4550 zone->zone_ipc.ipcq_msgmni = 0; 4551 zone->zone_bootargs = NULL; 4552 zone->zone_fs_allowed = NULL; 4553 4554 psecflags_default(&zone->zone_secflags); 4555 4556 zone->zone_initname = 4557 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4558 (void) strcpy(zone->zone_initname, zone_default_initname); 4559 zone->zone_nlwps = 0; 4560 zone->zone_nlwps_ctl = INT_MAX; 4561 zone->zone_nprocs = 0; 4562 zone->zone_nprocs_ctl = INT_MAX; 4563 zone->zone_locked_mem = 0; 4564 zone->zone_locked_mem_ctl = UINT64_MAX; 4565 zone->zone_max_swap = 0; 4566 zone->zone_max_swap_ctl = UINT64_MAX; 4567 zone->zone_max_lofi = 0; 4568 zone->zone_max_lofi_ctl = UINT64_MAX; 4569 zone0.zone_lockedmem_kstat = NULL; 4570 zone0.zone_swapresv_kstat = NULL; 4571 4572 zone->zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP); 4573 4574 /* 4575 * Zsched initializes the rctls. 4576 */ 4577 zone->zone_rctls = NULL; 4578 4579 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4580 zone_free(zone); 4581 return (zone_create_error(error, 0, extended_error)); 4582 } 4583 4584 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4585 zone_free(zone); 4586 return (set_errno(error)); 4587 } 4588 4589 /* 4590 * Read in the trusted system parameters: 4591 * match flag and sensitivity label. 4592 */ 4593 zone->zone_match = match; 4594 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4595 /* Fail if requested to set doi to anything but system's doi */ 4596 if (doi != 0 && doi != default_doi) { 4597 zone_free(zone); 4598 return (set_errno(EINVAL)); 4599 } 4600 /* Always apply system's doi to the zone */ 4601 error = zone_set_label(zone, label, default_doi); 4602 if (error != 0) { 4603 zone_free(zone); 4604 return (set_errno(error)); 4605 } 4606 insert_label_hash = B_TRUE; 4607 } else { 4608 /* all zones get an admin_low label if system is not labeled */ 4609 zone->zone_slabel = l_admin_low; 4610 label_hold(l_admin_low); 4611 insert_label_hash = B_FALSE; 4612 } 4613 4614 /* 4615 * Stop all lwps since that's what normally happens as part of fork(). 4616 * This needs to happen before we grab any locks to avoid deadlock 4617 * (another lwp in the process could be waiting for the held lock). 4618 */ 4619 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4620 zone_free(zone); 4621 nvlist_free(rctls); 4622 return (zone_create_error(error, 0, extended_error)); 4623 } 4624 4625 if (block_mounts(zone) == 0) { 4626 mutex_enter(&pp->p_lock); 4627 if (curthread != pp->p_agenttp) 4628 continuelwps(pp); 4629 mutex_exit(&pp->p_lock); 4630 zone_free(zone); 4631 nvlist_free(rctls); 4632 return (zone_create_error(error, 0, extended_error)); 4633 } 4634 4635 /* 4636 * Set up credential for kernel access. After this, any errors 4637 * should go through the dance in errout rather than calling 4638 * zone_free directly. 4639 */ 4640 zone->zone_kcred = crdup(kcred); 4641 crsetzone(zone->zone_kcred, zone); 4642 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4643 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4644 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4645 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4646 4647 mutex_enter(&zonehash_lock); 4648 /* 4649 * Make sure zone doesn't already exist. 4650 * 4651 * If the system and zone are labeled, 4652 * make sure no other zone exists that has the same label. 4653 */ 4654 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4655 (insert_label_hash && 4656 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4657 zone_status_t status; 4658 4659 status = zone_status_get(ztmp); 4660 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4661 error = EEXIST; 4662 else 4663 error = EBUSY; 4664 4665 if (insert_label_hash) 4666 error2 = ZE_LABELINUSE; 4667 4668 goto errout; 4669 } 4670 4671 /* 4672 * Don't allow zone creations which would cause one zone's rootpath to 4673 * be accessible from that of another (non-global) zone. 4674 */ 4675 if (zone_is_nested(zone->zone_rootpath)) { 4676 error = EBUSY; 4677 goto errout; 4678 } 4679 4680 ASSERT(zonecount != 0); /* check for leaks */ 4681 if (zonecount + 1 > maxzones) { 4682 error = ENOMEM; 4683 goto errout; 4684 } 4685 4686 if (zone_mount_count(zone->zone_rootpath) != 0) { 4687 error = EBUSY; 4688 error2 = ZE_AREMOUNTS; 4689 goto errout; 4690 } 4691 4692 /* 4693 * Zone is still incomplete, but we need to drop all locks while 4694 * zsched() initializes this zone's kernel process. We 4695 * optimistically add the zone to the hashtable and associated 4696 * lists so a parallel zone_create() doesn't try to create the 4697 * same zone. 4698 */ 4699 zonecount++; 4700 (void) mod_hash_insert(zonehashbyid, 4701 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4702 (mod_hash_val_t)(uintptr_t)zone); 4703 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4704 (void) strcpy(str, zone->zone_name); 4705 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4706 (mod_hash_val_t)(uintptr_t)zone); 4707 if (insert_label_hash) { 4708 (void) mod_hash_insert(zonehashbylabel, 4709 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4710 zone->zone_flags |= ZF_HASHED_LABEL; 4711 } 4712 4713 /* 4714 * Insert into active list. At this point there are no 'hold's 4715 * on the zone, but everyone else knows not to use it, so we can 4716 * continue to use it. zsched() will do a zone_hold() if the 4717 * newproc() is successful. 4718 */ 4719 list_insert_tail(&zone_active, zone); 4720 mutex_exit(&zonehash_lock); 4721 4722 zarg.zone = zone; 4723 zarg.nvlist = rctls; 4724 /* 4725 * The process, task, and project rctls are probably wrong; 4726 * we need an interface to get the default values of all rctls, 4727 * and initialize zsched appropriately. I'm not sure that that 4728 * makes much of a difference, though. 4729 */ 4730 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4731 if (error != 0) { 4732 /* 4733 * We need to undo all globally visible state. 4734 */ 4735 mutex_enter(&zonehash_lock); 4736 list_remove(&zone_active, zone); 4737 if (zone->zone_flags & ZF_HASHED_LABEL) { 4738 ASSERT(zone->zone_slabel != NULL); 4739 (void) mod_hash_destroy(zonehashbylabel, 4740 (mod_hash_key_t)zone->zone_slabel); 4741 } 4742 (void) mod_hash_destroy(zonehashbyname, 4743 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4744 (void) mod_hash_destroy(zonehashbyid, 4745 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4746 ASSERT(zonecount > 1); 4747 zonecount--; 4748 goto errout; 4749 } 4750 4751 /* 4752 * Zone creation can't fail from now on. 4753 */ 4754 4755 /* 4756 * Create zone kstats 4757 */ 4758 zone_kstat_create(zone); 4759 4760 /* 4761 * Let the other lwps continue. 4762 */ 4763 mutex_enter(&pp->p_lock); 4764 if (curthread != pp->p_agenttp) 4765 continuelwps(pp); 4766 mutex_exit(&pp->p_lock); 4767 4768 /* 4769 * Wait for zsched to finish initializing the zone. 4770 */ 4771 zone_status_wait(zone, ZONE_IS_READY); 4772 /* 4773 * The zone is fully visible, so we can let mounts progress. 4774 */ 4775 resume_mounts(zone); 4776 nvlist_free(rctls); 4777 4778 return (zoneid); 4779 4780 errout: 4781 mutex_exit(&zonehash_lock); 4782 /* 4783 * Let the other lwps continue. 4784 */ 4785 mutex_enter(&pp->p_lock); 4786 if (curthread != pp->p_agenttp) 4787 continuelwps(pp); 4788 mutex_exit(&pp->p_lock); 4789 4790 resume_mounts(zone); 4791 nvlist_free(rctls); 4792 /* 4793 * There is currently one reference to the zone, a cred_ref from 4794 * zone_kcred. To free the zone, we call crfree, which will call 4795 * zone_cred_rele, which will call zone_free. 4796 */ 4797 ASSERT(zone->zone_cred_ref == 1); 4798 ASSERT(zone->zone_kcred->cr_ref == 1); 4799 ASSERT(zone->zone_ref == 0); 4800 zkcr = zone->zone_kcred; 4801 zone->zone_kcred = NULL; 4802 crfree(zkcr); /* triggers call to zone_free */ 4803 return (zone_create_error(error, error2, extended_error)); 4804 } 4805 4806 /* 4807 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4808 * the heavy lifting. initname is the path to the program to launch 4809 * at the "top" of the zone; if this is NULL, we use the system default, 4810 * which is stored at zone_default_initname. 4811 */ 4812 static int 4813 zone_boot(zoneid_t zoneid) 4814 { 4815 int err; 4816 zone_t *zone; 4817 4818 if (secpolicy_zone_config(CRED()) != 0) 4819 return (set_errno(EPERM)); 4820 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4821 return (set_errno(EINVAL)); 4822 4823 mutex_enter(&zonehash_lock); 4824 /* 4825 * Look for zone under hash lock to prevent races with calls to 4826 * zone_shutdown, zone_destroy, etc. 4827 */ 4828 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4829 mutex_exit(&zonehash_lock); 4830 return (set_errno(EINVAL)); 4831 } 4832 4833 mutex_enter(&zone_status_lock); 4834 if (zone_status_get(zone) != ZONE_IS_READY) { 4835 mutex_exit(&zone_status_lock); 4836 mutex_exit(&zonehash_lock); 4837 return (set_errno(EINVAL)); 4838 } 4839 zone_status_set(zone, ZONE_IS_BOOTING); 4840 mutex_exit(&zone_status_lock); 4841 4842 zone_hold(zone); /* so we can use the zone_t later */ 4843 mutex_exit(&zonehash_lock); 4844 4845 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4846 zone_rele(zone); 4847 return (set_errno(EINTR)); 4848 } 4849 4850 /* 4851 * Boot (starting init) might have failed, in which case the zone 4852 * will go to the SHUTTING_DOWN state; an appropriate errno will 4853 * be placed in zone->zone_boot_err, and so we return that. 4854 */ 4855 err = zone->zone_boot_err; 4856 zone_rele(zone); 4857 return (err ? set_errno(err) : 0); 4858 } 4859 4860 /* 4861 * Kills all user processes in the zone, waiting for them all to exit 4862 * before returning. 4863 */ 4864 static int 4865 zone_empty(zone_t *zone) 4866 { 4867 int waitstatus; 4868 4869 /* 4870 * We need to drop zonehash_lock before killing all 4871 * processes, otherwise we'll deadlock with zone_find_* 4872 * which can be called from the exit path. 4873 */ 4874 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4875 while ((waitstatus = zone_status_timedwait_sig(zone, 4876 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4877 killall(zone->zone_id); 4878 } 4879 /* 4880 * return EINTR if we were signaled 4881 */ 4882 if (waitstatus == 0) 4883 return (EINTR); 4884 return (0); 4885 } 4886 4887 /* 4888 * This function implements the policy for zone visibility. 4889 * 4890 * In standard Solaris, a non-global zone can only see itself. 4891 * 4892 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4893 * it dominates. For this test, the label of the global zone is treated as 4894 * admin_high so it is special-cased instead of being checked for dominance. 4895 * 4896 * Returns true if zone attributes are viewable, false otherwise. 4897 */ 4898 static boolean_t 4899 zone_list_access(zone_t *zone) 4900 { 4901 4902 if (curproc->p_zone == global_zone || 4903 curproc->p_zone == zone) { 4904 return (B_TRUE); 4905 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4906 bslabel_t *curproc_label; 4907 bslabel_t *zone_label; 4908 4909 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4910 zone_label = label2bslabel(zone->zone_slabel); 4911 4912 if (zone->zone_id != GLOBAL_ZONEID && 4913 bldominates(curproc_label, zone_label)) { 4914 return (B_TRUE); 4915 } else { 4916 return (B_FALSE); 4917 } 4918 } else { 4919 return (B_FALSE); 4920 } 4921 } 4922 4923 /* 4924 * Systemcall to start the zone's halt sequence. By the time this 4925 * function successfully returns, all user processes and kernel threads 4926 * executing in it will have exited, ZSD shutdown callbacks executed, 4927 * and the zone status set to ZONE_IS_DOWN. 4928 * 4929 * It is possible that the call will interrupt itself if the caller is the 4930 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4931 */ 4932 static int 4933 zone_shutdown(zoneid_t zoneid) 4934 { 4935 int error; 4936 zone_t *zone; 4937 zone_status_t status; 4938 4939 if (secpolicy_zone_config(CRED()) != 0) 4940 return (set_errno(EPERM)); 4941 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4942 return (set_errno(EINVAL)); 4943 4944 mutex_enter(&zonehash_lock); 4945 /* 4946 * Look for zone under hash lock to prevent races with other 4947 * calls to zone_shutdown and zone_destroy. 4948 */ 4949 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4950 mutex_exit(&zonehash_lock); 4951 return (set_errno(EINVAL)); 4952 } 4953 4954 /* 4955 * We have to drop zonehash_lock before calling block_mounts. 4956 * Hold the zone so we can continue to use the zone_t. 4957 */ 4958 zone_hold(zone); 4959 mutex_exit(&zonehash_lock); 4960 4961 /* 4962 * Block mounts so that VFS_MOUNT() can get an accurate view of 4963 * the zone's status with regards to ZONE_IS_SHUTTING down. 4964 * 4965 * e.g. NFS can fail the mount if it determines that the zone 4966 * has already begun the shutdown sequence. 4967 * 4968 */ 4969 if (block_mounts(zone) == 0) { 4970 zone_rele(zone); 4971 return (set_errno(EINTR)); 4972 } 4973 4974 mutex_enter(&zonehash_lock); 4975 mutex_enter(&zone_status_lock); 4976 status = zone_status_get(zone); 4977 /* 4978 * Fail if the zone isn't fully initialized yet. 4979 */ 4980 if (status < ZONE_IS_READY) { 4981 mutex_exit(&zone_status_lock); 4982 mutex_exit(&zonehash_lock); 4983 resume_mounts(zone); 4984 zone_rele(zone); 4985 return (set_errno(EINVAL)); 4986 } 4987 /* 4988 * If conditions required for zone_shutdown() to return have been met, 4989 * return success. 4990 */ 4991 if (status >= ZONE_IS_DOWN) { 4992 mutex_exit(&zone_status_lock); 4993 mutex_exit(&zonehash_lock); 4994 resume_mounts(zone); 4995 zone_rele(zone); 4996 return (0); 4997 } 4998 /* 4999 * If zone_shutdown() hasn't been called before, go through the motions. 5000 * If it has, there's nothing to do but wait for the kernel threads to 5001 * drain. 5002 */ 5003 if (status < ZONE_IS_EMPTY) { 5004 uint_t ntasks; 5005 5006 mutex_enter(&zone->zone_lock); 5007 if ((ntasks = zone->zone_ntasks) != 1) { 5008 /* 5009 * There's still stuff running. 5010 */ 5011 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 5012 } 5013 mutex_exit(&zone->zone_lock); 5014 if (ntasks == 1) { 5015 /* 5016 * The only way to create another task is through 5017 * zone_enter(), which will block until we drop 5018 * zonehash_lock. The zone is empty. 5019 */ 5020 if (zone->zone_kthreads == NULL) { 5021 /* 5022 * Skip ahead to ZONE_IS_DOWN 5023 */ 5024 zone_status_set(zone, ZONE_IS_DOWN); 5025 } else { 5026 zone_status_set(zone, ZONE_IS_EMPTY); 5027 } 5028 } 5029 } 5030 mutex_exit(&zone_status_lock); 5031 mutex_exit(&zonehash_lock); 5032 resume_mounts(zone); 5033 5034 if (error = zone_empty(zone)) { 5035 zone_rele(zone); 5036 return (set_errno(error)); 5037 } 5038 /* 5039 * After the zone status goes to ZONE_IS_DOWN this zone will no 5040 * longer be notified of changes to the pools configuration, so 5041 * in order to not end up with a stale pool pointer, we point 5042 * ourselves at the default pool and remove all resource 5043 * visibility. This is especially important as the zone_t may 5044 * languish on the deathrow for a very long time waiting for 5045 * cred's to drain out. 5046 * 5047 * This rebinding of the zone can happen multiple times 5048 * (presumably due to interrupted or parallel systemcalls) 5049 * without any adverse effects. 5050 */ 5051 if (pool_lock_intr() != 0) { 5052 zone_rele(zone); 5053 return (set_errno(EINTR)); 5054 } 5055 if (pool_state == POOL_ENABLED) { 5056 mutex_enter(&cpu_lock); 5057 zone_pool_set(zone, pool_default); 5058 /* 5059 * The zone no longer needs to be able to see any cpus. 5060 */ 5061 zone_pset_set(zone, ZONE_PS_INVAL); 5062 mutex_exit(&cpu_lock); 5063 } 5064 pool_unlock(); 5065 5066 /* 5067 * ZSD shutdown callbacks can be executed multiple times, hence 5068 * it is safe to not be holding any locks across this call. 5069 */ 5070 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 5071 5072 mutex_enter(&zone_status_lock); 5073 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 5074 zone_status_set(zone, ZONE_IS_DOWN); 5075 mutex_exit(&zone_status_lock); 5076 5077 /* 5078 * Wait for kernel threads to drain. 5079 */ 5080 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 5081 zone_rele(zone); 5082 return (set_errno(EINTR)); 5083 } 5084 5085 /* 5086 * Zone can be become down/destroyable even if the above wait 5087 * returns EINTR, so any code added here may never execute. 5088 * (i.e. don't add code here) 5089 */ 5090 5091 zone_rele(zone); 5092 return (0); 5093 } 5094 5095 /* 5096 * Log the specified zone's reference counts. The caller should not be 5097 * holding the zone's zone_lock. 5098 */ 5099 static void 5100 zone_log_refcounts(zone_t *zone) 5101 { 5102 char *buffer; 5103 char *buffer_position; 5104 uint32_t buffer_size; 5105 uint32_t index; 5106 uint_t ref; 5107 uint_t cred_ref; 5108 5109 /* 5110 * Construct a string representing the subsystem-specific reference 5111 * counts. The counts are printed in ascending order by index into the 5112 * zone_t::zone_subsys_ref array. The list will be surrounded by 5113 * square brackets [] and will only contain nonzero reference counts. 5114 * 5115 * The buffer will hold two square bracket characters plus ten digits, 5116 * one colon, one space, one comma, and some characters for a 5117 * subsystem name per subsystem-specific reference count. (Unsigned 32- 5118 * bit integers have at most ten decimal digits.) The last 5119 * reference count's comma is replaced by the closing square 5120 * bracket and a NULL character to terminate the string. 5121 * 5122 * NOTE: We have to grab the zone's zone_lock to create a consistent 5123 * snapshot of the zone's reference counters. 5124 * 5125 * First, figure out how much space the string buffer will need. 5126 * The buffer's size is stored in buffer_size. 5127 */ 5128 buffer_size = 2; /* for the square brackets */ 5129 mutex_enter(&zone->zone_lock); 5130 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 5131 ref = zone->zone_ref; 5132 cred_ref = zone->zone_cred_ref; 5133 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 5134 if (zone->zone_subsys_ref[index] != 0) 5135 buffer_size += strlen(zone_ref_subsys_names[index]) + 5136 13; 5137 if (buffer_size == 2) { 5138 /* 5139 * No subsystems had nonzero reference counts. Don't bother 5140 * with allocating a buffer; just log the general-purpose and 5141 * credential reference counts. 5142 */ 5143 mutex_exit(&zone->zone_lock); 5144 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5145 "Zone '%s' (ID: %d) is shutting down, but %u zone " 5146 "references and %u credential references are still extant", 5147 zone->zone_name, zone->zone_id, ref, cred_ref); 5148 return; 5149 } 5150 5151 /* 5152 * buffer_size contains the exact number of characters that the 5153 * buffer will need. Allocate the buffer and fill it with nonzero 5154 * subsystem-specific reference counts. Surround the results with 5155 * square brackets afterwards. 5156 */ 5157 buffer = kmem_alloc(buffer_size, KM_SLEEP); 5158 buffer_position = &buffer[1]; 5159 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 5160 /* 5161 * NOTE: The DDI's version of sprintf() returns a pointer to 5162 * the modified buffer rather than the number of bytes written 5163 * (as in snprintf(3C)). This is unfortunate and annoying. 5164 * Therefore, we'll use snprintf() with INT_MAX to get the 5165 * number of bytes written. Using INT_MAX is safe because 5166 * the buffer is perfectly sized for the data: we'll never 5167 * overrun the buffer. 5168 */ 5169 if (zone->zone_subsys_ref[index] != 0) 5170 buffer_position += snprintf(buffer_position, INT_MAX, 5171 "%s: %u,", zone_ref_subsys_names[index], 5172 zone->zone_subsys_ref[index]); 5173 } 5174 mutex_exit(&zone->zone_lock); 5175 buffer[0] = '['; 5176 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 5177 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 5178 buffer_position[-1] = ']'; 5179 5180 /* 5181 * Log the reference counts and free the message buffer. 5182 */ 5183 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5184 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 5185 "%u credential references are still extant %s", zone->zone_name, 5186 zone->zone_id, ref, cred_ref, buffer); 5187 kmem_free(buffer, buffer_size); 5188 } 5189 5190 /* 5191 * Systemcall entry point to finalize the zone halt process. The caller 5192 * must have already successfully called zone_shutdown(). 5193 * 5194 * Upon successful completion, the zone will have been fully destroyed: 5195 * zsched will have exited, destructor callbacks executed, and the zone 5196 * removed from the list of active zones. 5197 */ 5198 static int 5199 zone_destroy(zoneid_t zoneid) 5200 { 5201 uint64_t uniqid; 5202 zone_t *zone; 5203 zone_status_t status; 5204 clock_t wait_time; 5205 boolean_t log_refcounts; 5206 5207 if (secpolicy_zone_config(CRED()) != 0) 5208 return (set_errno(EPERM)); 5209 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5210 return (set_errno(EINVAL)); 5211 5212 mutex_enter(&zonehash_lock); 5213 /* 5214 * Look for zone under hash lock to prevent races with other 5215 * calls to zone_destroy. 5216 */ 5217 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5218 mutex_exit(&zonehash_lock); 5219 return (set_errno(EINVAL)); 5220 } 5221 5222 if (zone_mount_count(zone->zone_rootpath) != 0) { 5223 mutex_exit(&zonehash_lock); 5224 return (set_errno(EBUSY)); 5225 } 5226 mutex_enter(&zone_status_lock); 5227 status = zone_status_get(zone); 5228 if (status < ZONE_IS_DOWN) { 5229 mutex_exit(&zone_status_lock); 5230 mutex_exit(&zonehash_lock); 5231 return (set_errno(EBUSY)); 5232 } else if (status == ZONE_IS_DOWN) { 5233 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5234 } 5235 mutex_exit(&zone_status_lock); 5236 zone_hold(zone); 5237 mutex_exit(&zonehash_lock); 5238 5239 /* 5240 * wait for zsched to exit 5241 */ 5242 zone_status_wait(zone, ZONE_IS_DEAD); 5243 zone_zsd_callbacks(zone, ZSD_DESTROY); 5244 zone->zone_netstack = NULL; 5245 uniqid = zone->zone_uniqid; 5246 zone_rele(zone); 5247 zone = NULL; /* potentially free'd */ 5248 5249 log_refcounts = B_FALSE; 5250 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5251 mutex_enter(&zonehash_lock); 5252 for (; /* ever */; ) { 5253 boolean_t unref; 5254 boolean_t refs_have_been_logged; 5255 5256 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5257 zone->zone_uniqid != uniqid) { 5258 /* 5259 * The zone has gone away. Necessary conditions 5260 * are met, so we return success. 5261 */ 5262 mutex_exit(&zonehash_lock); 5263 return (0); 5264 } 5265 mutex_enter(&zone->zone_lock); 5266 unref = ZONE_IS_UNREF(zone); 5267 refs_have_been_logged = (zone->zone_flags & 5268 ZF_REFCOUNTS_LOGGED); 5269 mutex_exit(&zone->zone_lock); 5270 if (unref) { 5271 /* 5272 * There is only one reference to the zone -- that 5273 * added when the zone was added to the hashtables -- 5274 * and things will remain this way until we drop 5275 * zonehash_lock... we can go ahead and cleanup the 5276 * zone. 5277 */ 5278 break; 5279 } 5280 5281 /* 5282 * Wait for zone_rele_common() or zone_cred_rele() to signal 5283 * zone_destroy_cv. zone_destroy_cv is signaled only when 5284 * some zone's general-purpose reference count reaches one. 5285 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5286 * on zone_destroy_cv, then log the zone's reference counts and 5287 * continue to wait for zone_rele() and zone_cred_rele(). 5288 */ 5289 if (!refs_have_been_logged) { 5290 if (!log_refcounts) { 5291 /* 5292 * This thread hasn't timed out waiting on 5293 * zone_destroy_cv yet. Wait wait_time clock 5294 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5295 * seconds) for the zone's references to clear. 5296 */ 5297 ASSERT(wait_time > 0); 5298 wait_time = cv_reltimedwait_sig( 5299 &zone_destroy_cv, &zonehash_lock, wait_time, 5300 TR_SEC); 5301 if (wait_time > 0) { 5302 /* 5303 * A thread in zone_rele() or 5304 * zone_cred_rele() signaled 5305 * zone_destroy_cv before this thread's 5306 * wait timed out. The zone might have 5307 * only one reference left; find out! 5308 */ 5309 continue; 5310 } else if (wait_time == 0) { 5311 /* The thread's process was signaled. */ 5312 mutex_exit(&zonehash_lock); 5313 return (set_errno(EINTR)); 5314 } 5315 5316 /* 5317 * The thread timed out while waiting on 5318 * zone_destroy_cv. Even though the thread 5319 * timed out, it has to check whether another 5320 * thread woke up from zone_destroy_cv and 5321 * destroyed the zone. 5322 * 5323 * If the zone still exists and has more than 5324 * one unreleased general-purpose reference, 5325 * then log the zone's reference counts. 5326 */ 5327 log_refcounts = B_TRUE; 5328 continue; 5329 } 5330 5331 /* 5332 * The thread already timed out on zone_destroy_cv while 5333 * waiting for subsystems to release the zone's last 5334 * general-purpose references. Log the zone's reference 5335 * counts and wait indefinitely on zone_destroy_cv. 5336 */ 5337 zone_log_refcounts(zone); 5338 } 5339 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5340 /* The thread's process was signaled. */ 5341 mutex_exit(&zonehash_lock); 5342 return (set_errno(EINTR)); 5343 } 5344 } 5345 5346 /* 5347 * Remove CPU cap for this zone now since we're not going to 5348 * fail below this point. 5349 */ 5350 cpucaps_zone_remove(zone); 5351 5352 /* Get rid of the zone's kstats */ 5353 zone_kstat_delete(zone); 5354 5355 /* remove the pfexecd doors */ 5356 if (zone->zone_pfexecd != NULL) { 5357 klpd_freelist(&zone->zone_pfexecd); 5358 zone->zone_pfexecd = NULL; 5359 } 5360 5361 /* free brand specific data */ 5362 if (ZONE_IS_BRANDED(zone)) 5363 ZBROP(zone)->b_free_brand_data(zone); 5364 5365 /* Say goodbye to brand framework. */ 5366 brand_unregister_zone(zone->zone_brand); 5367 5368 /* 5369 * It is now safe to let the zone be recreated; remove it from the 5370 * lists. The memory will not be freed until the last cred 5371 * reference goes away. 5372 */ 5373 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5374 zonecount--; 5375 /* remove from active list and hash tables */ 5376 list_remove(&zone_active, zone); 5377 (void) mod_hash_destroy(zonehashbyname, 5378 (mod_hash_key_t)zone->zone_name); 5379 (void) mod_hash_destroy(zonehashbyid, 5380 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5381 if (zone->zone_flags & ZF_HASHED_LABEL) 5382 (void) mod_hash_destroy(zonehashbylabel, 5383 (mod_hash_key_t)zone->zone_slabel); 5384 mutex_exit(&zonehash_lock); 5385 5386 /* 5387 * Release the root vnode; we're not using it anymore. Nor should any 5388 * other thread that might access it exist. 5389 */ 5390 if (zone->zone_rootvp != NULL) { 5391 VN_RELE(zone->zone_rootvp); 5392 zone->zone_rootvp = NULL; 5393 } 5394 5395 /* add to deathrow list */ 5396 mutex_enter(&zone_deathrow_lock); 5397 list_insert_tail(&zone_deathrow, zone); 5398 mutex_exit(&zone_deathrow_lock); 5399 5400 /* 5401 * Drop last reference (which was added by zsched()), this will 5402 * free the zone unless there are outstanding cred references. 5403 */ 5404 zone_rele(zone); 5405 return (0); 5406 } 5407 5408 /* 5409 * Systemcall entry point for zone_getattr(2). 5410 */ 5411 static ssize_t 5412 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5413 { 5414 size_t size; 5415 int error = 0, err; 5416 zone_t *zone; 5417 char *zonepath; 5418 char *outstr; 5419 zone_status_t zone_status; 5420 pid_t initpid; 5421 boolean_t global = (curzone == global_zone); 5422 boolean_t inzone = (curzone->zone_id == zoneid); 5423 ushort_t flags; 5424 zone_net_data_t *zbuf; 5425 5426 mutex_enter(&zonehash_lock); 5427 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5428 mutex_exit(&zonehash_lock); 5429 return (set_errno(EINVAL)); 5430 } 5431 zone_status = zone_status_get(zone); 5432 if (zone_status < ZONE_IS_INITIALIZED) { 5433 mutex_exit(&zonehash_lock); 5434 return (set_errno(EINVAL)); 5435 } 5436 zone_hold(zone); 5437 mutex_exit(&zonehash_lock); 5438 5439 /* 5440 * If not in the global zone, don't show information about other zones, 5441 * unless the system is labeled and the local zone's label dominates 5442 * the other zone. 5443 */ 5444 if (!zone_list_access(zone)) { 5445 zone_rele(zone); 5446 return (set_errno(EINVAL)); 5447 } 5448 5449 switch (attr) { 5450 case ZONE_ATTR_ROOT: 5451 if (global) { 5452 /* 5453 * Copy the path to trim the trailing "/" (except for 5454 * the global zone). 5455 */ 5456 if (zone != global_zone) 5457 size = zone->zone_rootpathlen - 1; 5458 else 5459 size = zone->zone_rootpathlen; 5460 zonepath = kmem_alloc(size, KM_SLEEP); 5461 bcopy(zone->zone_rootpath, zonepath, size); 5462 zonepath[size - 1] = '\0'; 5463 } else { 5464 if (inzone || !is_system_labeled()) { 5465 /* 5466 * Caller is not in the global zone. 5467 * if the query is on the current zone 5468 * or the system is not labeled, 5469 * just return faked-up path for current zone. 5470 */ 5471 zonepath = "/"; 5472 size = 2; 5473 } else { 5474 /* 5475 * Return related path for current zone. 5476 */ 5477 int prefix_len = strlen(zone_prefix); 5478 int zname_len = strlen(zone->zone_name); 5479 5480 size = prefix_len + zname_len + 1; 5481 zonepath = kmem_alloc(size, KM_SLEEP); 5482 bcopy(zone_prefix, zonepath, prefix_len); 5483 bcopy(zone->zone_name, zonepath + 5484 prefix_len, zname_len); 5485 zonepath[size - 1] = '\0'; 5486 } 5487 } 5488 if (bufsize > size) 5489 bufsize = size; 5490 if (buf != NULL) { 5491 err = copyoutstr(zonepath, buf, bufsize, NULL); 5492 if (err != 0 && err != ENAMETOOLONG) 5493 error = EFAULT; 5494 } 5495 if (global || (is_system_labeled() && !inzone)) 5496 kmem_free(zonepath, size); 5497 break; 5498 5499 case ZONE_ATTR_NAME: 5500 size = strlen(zone->zone_name) + 1; 5501 if (bufsize > size) 5502 bufsize = size; 5503 if (buf != NULL) { 5504 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5505 if (err != 0 && err != ENAMETOOLONG) 5506 error = EFAULT; 5507 } 5508 break; 5509 5510 case ZONE_ATTR_STATUS: 5511 /* 5512 * Since we're not holding zonehash_lock, the zone status 5513 * may be anything; leave it up to userland to sort it out. 5514 */ 5515 size = sizeof (zone_status); 5516 if (bufsize > size) 5517 bufsize = size; 5518 zone_status = zone_status_get(zone); 5519 if (buf != NULL && 5520 copyout(&zone_status, buf, bufsize) != 0) 5521 error = EFAULT; 5522 break; 5523 case ZONE_ATTR_FLAGS: 5524 size = sizeof (zone->zone_flags); 5525 if (bufsize > size) 5526 bufsize = size; 5527 flags = zone->zone_flags; 5528 if (buf != NULL && 5529 copyout(&flags, buf, bufsize) != 0) 5530 error = EFAULT; 5531 break; 5532 case ZONE_ATTR_PRIVSET: 5533 size = sizeof (priv_set_t); 5534 if (bufsize > size) 5535 bufsize = size; 5536 if (buf != NULL && 5537 copyout(zone->zone_privset, buf, bufsize) != 0) 5538 error = EFAULT; 5539 break; 5540 case ZONE_ATTR_UNIQID: 5541 size = sizeof (zone->zone_uniqid); 5542 if (bufsize > size) 5543 bufsize = size; 5544 if (buf != NULL && 5545 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5546 error = EFAULT; 5547 break; 5548 case ZONE_ATTR_POOLID: 5549 { 5550 pool_t *pool; 5551 poolid_t poolid; 5552 5553 if (pool_lock_intr() != 0) { 5554 error = EINTR; 5555 break; 5556 } 5557 pool = zone_pool_get(zone); 5558 poolid = pool->pool_id; 5559 pool_unlock(); 5560 size = sizeof (poolid); 5561 if (bufsize > size) 5562 bufsize = size; 5563 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5564 error = EFAULT; 5565 } 5566 break; 5567 case ZONE_ATTR_SLBL: 5568 size = sizeof (bslabel_t); 5569 if (bufsize > size) 5570 bufsize = size; 5571 if (zone->zone_slabel == NULL) 5572 error = EINVAL; 5573 else if (buf != NULL && 5574 copyout(label2bslabel(zone->zone_slabel), buf, 5575 bufsize) != 0) 5576 error = EFAULT; 5577 break; 5578 case ZONE_ATTR_INITPID: 5579 size = sizeof (initpid); 5580 if (bufsize > size) 5581 bufsize = size; 5582 initpid = zone->zone_proc_initpid; 5583 if (initpid == -1) { 5584 error = ESRCH; 5585 break; 5586 } 5587 if (buf != NULL && 5588 copyout(&initpid, buf, bufsize) != 0) 5589 error = EFAULT; 5590 break; 5591 case ZONE_ATTR_BRAND: 5592 size = strlen(zone->zone_brand->b_name) + 1; 5593 5594 if (bufsize > size) 5595 bufsize = size; 5596 if (buf != NULL) { 5597 err = copyoutstr(zone->zone_brand->b_name, buf, 5598 bufsize, NULL); 5599 if (err != 0 && err != ENAMETOOLONG) 5600 error = EFAULT; 5601 } 5602 break; 5603 case ZONE_ATTR_INITNAME: 5604 size = strlen(zone->zone_initname) + 1; 5605 if (bufsize > size) 5606 bufsize = size; 5607 if (buf != NULL) { 5608 err = copyoutstr(zone->zone_initname, buf, bufsize, 5609 NULL); 5610 if (err != 0 && err != ENAMETOOLONG) 5611 error = EFAULT; 5612 } 5613 break; 5614 case ZONE_ATTR_BOOTARGS: 5615 if (zone->zone_bootargs == NULL) 5616 outstr = ""; 5617 else 5618 outstr = zone->zone_bootargs; 5619 size = strlen(outstr) + 1; 5620 if (bufsize > size) 5621 bufsize = size; 5622 if (buf != NULL) { 5623 err = copyoutstr(outstr, buf, bufsize, NULL); 5624 if (err != 0 && err != ENAMETOOLONG) 5625 error = EFAULT; 5626 } 5627 break; 5628 case ZONE_ATTR_PHYS_MCAP: 5629 size = sizeof (zone->zone_phys_mcap); 5630 if (bufsize > size) 5631 bufsize = size; 5632 if (buf != NULL && 5633 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5634 error = EFAULT; 5635 break; 5636 case ZONE_ATTR_SCHED_CLASS: 5637 mutex_enter(&class_lock); 5638 5639 if (zone->zone_defaultcid >= loaded_classes) 5640 outstr = ""; 5641 else 5642 outstr = sclass[zone->zone_defaultcid].cl_name; 5643 size = strlen(outstr) + 1; 5644 if (bufsize > size) 5645 bufsize = size; 5646 if (buf != NULL) { 5647 err = copyoutstr(outstr, buf, bufsize, NULL); 5648 if (err != 0 && err != ENAMETOOLONG) 5649 error = EFAULT; 5650 } 5651 5652 mutex_exit(&class_lock); 5653 break; 5654 case ZONE_ATTR_HOSTID: 5655 if (zone->zone_hostid != HW_INVALID_HOSTID && 5656 bufsize == sizeof (zone->zone_hostid)) { 5657 size = sizeof (zone->zone_hostid); 5658 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5659 bufsize) != 0) 5660 error = EFAULT; 5661 } else { 5662 error = EINVAL; 5663 } 5664 break; 5665 case ZONE_ATTR_FS_ALLOWED: 5666 if (zone->zone_fs_allowed == NULL) 5667 outstr = ""; 5668 else 5669 outstr = zone->zone_fs_allowed; 5670 size = strlen(outstr) + 1; 5671 if (bufsize > size) 5672 bufsize = size; 5673 if (buf != NULL) { 5674 err = copyoutstr(outstr, buf, bufsize, NULL); 5675 if (err != 0 && err != ENAMETOOLONG) 5676 error = EFAULT; 5677 } 5678 break; 5679 case ZONE_ATTR_SECFLAGS: 5680 size = sizeof (zone->zone_secflags); 5681 if (bufsize > size) 5682 bufsize = size; 5683 if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0) 5684 error = EFAULT; 5685 break; 5686 case ZONE_ATTR_NETWORK: 5687 bufsize = MIN(bufsize, PIPE_BUF + sizeof (zone_net_data_t)); 5688 size = bufsize; 5689 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5690 if (copyin(buf, zbuf, bufsize) != 0) { 5691 error = EFAULT; 5692 } else { 5693 error = zone_get_network(zoneid, zbuf); 5694 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5695 error = EFAULT; 5696 } 5697 kmem_free(zbuf, bufsize); 5698 break; 5699 default: 5700 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5701 size = bufsize; 5702 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5703 } else { 5704 error = EINVAL; 5705 } 5706 } 5707 zone_rele(zone); 5708 5709 if (error) 5710 return (set_errno(error)); 5711 return ((ssize_t)size); 5712 } 5713 5714 /* 5715 * Systemcall entry point for zone_setattr(2). 5716 */ 5717 /*ARGSUSED*/ 5718 static int 5719 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5720 { 5721 zone_t *zone; 5722 zone_status_t zone_status; 5723 int err = -1; 5724 zone_net_data_t *zbuf; 5725 5726 if (secpolicy_zone_config(CRED()) != 0) 5727 return (set_errno(EPERM)); 5728 5729 /* 5730 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5731 * global zone. 5732 */ 5733 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5734 return (set_errno(EINVAL)); 5735 } 5736 5737 mutex_enter(&zonehash_lock); 5738 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5739 mutex_exit(&zonehash_lock); 5740 return (set_errno(EINVAL)); 5741 } 5742 zone_hold(zone); 5743 mutex_exit(&zonehash_lock); 5744 5745 /* 5746 * At present most attributes can only be set on non-running, 5747 * non-global zones. 5748 */ 5749 zone_status = zone_status_get(zone); 5750 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5751 err = EINVAL; 5752 goto done; 5753 } 5754 5755 switch (attr) { 5756 case ZONE_ATTR_INITNAME: 5757 err = zone_set_initname(zone, (const char *)buf); 5758 break; 5759 case ZONE_ATTR_INITNORESTART: 5760 zone->zone_restart_init = B_FALSE; 5761 err = 0; 5762 break; 5763 case ZONE_ATTR_INITRESTART0: 5764 zone->zone_restart_init_0 = B_TRUE; 5765 err = 0; 5766 break; 5767 case ZONE_ATTR_INITREBOOT: 5768 zone->zone_reboot_on_init_exit = B_TRUE; 5769 err = 0; 5770 break; 5771 case ZONE_ATTR_BOOTARGS: 5772 err = zone_set_bootargs(zone, (const char *)buf); 5773 break; 5774 case ZONE_ATTR_BRAND: 5775 err = zone_set_brand(zone, (const char *)buf); 5776 break; 5777 case ZONE_ATTR_FS_ALLOWED: 5778 err = zone_set_fs_allowed(zone, (const char *)buf); 5779 break; 5780 case ZONE_ATTR_SECFLAGS: 5781 err = zone_set_secflags(zone, (psecflags_t *)buf); 5782 break; 5783 case ZONE_ATTR_PHYS_MCAP: 5784 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5785 break; 5786 case ZONE_ATTR_SCHED_CLASS: 5787 err = zone_set_sched_class(zone, (const char *)buf); 5788 break; 5789 case ZONE_ATTR_HOSTID: 5790 if (bufsize == sizeof (zone->zone_hostid)) { 5791 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5792 err = 0; 5793 else 5794 err = EFAULT; 5795 } else { 5796 err = EINVAL; 5797 } 5798 break; 5799 case ZONE_ATTR_NETWORK: 5800 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5801 err = EINVAL; 5802 break; 5803 } 5804 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5805 if (copyin(buf, zbuf, bufsize) != 0) { 5806 kmem_free(zbuf, bufsize); 5807 err = EFAULT; 5808 break; 5809 } 5810 err = zone_set_network(zoneid, zbuf); 5811 kmem_free(zbuf, bufsize); 5812 break; 5813 default: 5814 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5815 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5816 else 5817 err = EINVAL; 5818 } 5819 5820 done: 5821 zone_rele(zone); 5822 ASSERT(err != -1); 5823 return (err != 0 ? set_errno(err) : 0); 5824 } 5825 5826 /* 5827 * Return zero if the process has at least one vnode mapped in to its 5828 * address space which shouldn't be allowed to change zones. 5829 * 5830 * Also return zero if the process has any shared mappings which reserve 5831 * swap. This is because the counting for zone.max-swap does not allow swap 5832 * reservation to be shared between zones. zone swap reservation is counted 5833 * on zone->zone_max_swap. 5834 */ 5835 static int 5836 as_can_change_zones(void) 5837 { 5838 proc_t *pp = curproc; 5839 struct seg *seg; 5840 struct as *as = pp->p_as; 5841 vnode_t *vp; 5842 int allow = 1; 5843 5844 ASSERT(pp->p_as != &kas); 5845 AS_LOCK_ENTER(as, RW_READER); 5846 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5847 5848 /* 5849 * Cannot enter zone with shared anon memory which 5850 * reserves swap. See comment above. 5851 */ 5852 if (seg_can_change_zones(seg) == B_FALSE) { 5853 allow = 0; 5854 break; 5855 } 5856 /* 5857 * if we can't get a backing vnode for this segment then skip 5858 * it. 5859 */ 5860 vp = NULL; 5861 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5862 continue; 5863 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5864 allow = 0; 5865 break; 5866 } 5867 } 5868 AS_LOCK_EXIT(as); 5869 return (allow); 5870 } 5871 5872 /* 5873 * Count swap reserved by curproc's address space 5874 */ 5875 static size_t 5876 as_swresv(void) 5877 { 5878 proc_t *pp = curproc; 5879 struct seg *seg; 5880 struct as *as = pp->p_as; 5881 size_t swap = 0; 5882 5883 ASSERT(pp->p_as != &kas); 5884 ASSERT(AS_WRITE_HELD(as)); 5885 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5886 swap += seg_swresv(seg); 5887 5888 return (swap); 5889 } 5890 5891 /* 5892 * Systemcall entry point for zone_enter(). 5893 * 5894 * The current process is injected into said zone. In the process 5895 * it will change its project membership, privileges, rootdir/cwd, 5896 * zone-wide rctls, and pool association to match those of the zone. 5897 * 5898 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5899 * state will transition it to ZONE_IS_RUNNING. Processes may only 5900 * enter a zone that is "ready" or "running". 5901 */ 5902 static int 5903 zone_enter(zoneid_t zoneid) 5904 { 5905 zone_t *zone; 5906 vnode_t *vp; 5907 proc_t *pp = curproc; 5908 contract_t *ct; 5909 cont_process_t *ctp; 5910 task_t *tk, *oldtk; 5911 kproject_t *zone_proj0; 5912 cred_t *cr, *newcr; 5913 pool_t *oldpool, *newpool; 5914 sess_t *sp; 5915 uid_t uid; 5916 zone_status_t status; 5917 int err = 0; 5918 rctl_entity_p_t e; 5919 size_t swap; 5920 kthread_id_t t; 5921 5922 if (secpolicy_zone_config(CRED()) != 0) 5923 return (set_errno(EPERM)); 5924 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5925 return (set_errno(EINVAL)); 5926 5927 /* 5928 * Stop all lwps so we don't need to hold a lock to look at 5929 * curproc->p_zone. This needs to happen before we grab any 5930 * locks to avoid deadlock (another lwp in the process could 5931 * be waiting for the held lock). 5932 */ 5933 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5934 return (set_errno(EINTR)); 5935 5936 /* 5937 * Make sure we're not changing zones with files open or mapped in 5938 * to our address space which shouldn't be changing zones. 5939 */ 5940 if (!files_can_change_zones()) { 5941 err = EBADF; 5942 goto out; 5943 } 5944 if (!as_can_change_zones()) { 5945 err = EFAULT; 5946 goto out; 5947 } 5948 5949 mutex_enter(&zonehash_lock); 5950 if (pp->p_zone != global_zone) { 5951 mutex_exit(&zonehash_lock); 5952 err = EINVAL; 5953 goto out; 5954 } 5955 5956 zone = zone_find_all_by_id(zoneid); 5957 if (zone == NULL) { 5958 mutex_exit(&zonehash_lock); 5959 err = EINVAL; 5960 goto out; 5961 } 5962 5963 /* 5964 * To prevent processes in a zone from holding contracts on 5965 * extrazonal resources, and to avoid process contract 5966 * memberships which span zones, contract holders and processes 5967 * which aren't the sole members of their encapsulating process 5968 * contracts are not allowed to zone_enter. 5969 */ 5970 ctp = pp->p_ct_process; 5971 ct = &ctp->conp_contract; 5972 mutex_enter(&ct->ct_lock); 5973 mutex_enter(&pp->p_lock); 5974 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5975 mutex_exit(&pp->p_lock); 5976 mutex_exit(&ct->ct_lock); 5977 mutex_exit(&zonehash_lock); 5978 err = EINVAL; 5979 goto out; 5980 } 5981 5982 /* 5983 * Moreover, we don't allow processes whose encapsulating 5984 * process contracts have inherited extrazonal contracts. 5985 * While it would be easier to eliminate all process contracts 5986 * with inherited contracts, we need to be able to give a 5987 * restarted init (or other zone-penetrating process) its 5988 * predecessor's contracts. 5989 */ 5990 if (ctp->conp_ninherited != 0) { 5991 contract_t *next; 5992 for (next = list_head(&ctp->conp_inherited); next; 5993 next = list_next(&ctp->conp_inherited, next)) { 5994 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5995 mutex_exit(&pp->p_lock); 5996 mutex_exit(&ct->ct_lock); 5997 mutex_exit(&zonehash_lock); 5998 err = EINVAL; 5999 goto out; 6000 } 6001 } 6002 } 6003 6004 mutex_exit(&pp->p_lock); 6005 mutex_exit(&ct->ct_lock); 6006 6007 status = zone_status_get(zone); 6008 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 6009 /* 6010 * Can't join 6011 */ 6012 mutex_exit(&zonehash_lock); 6013 err = EINVAL; 6014 goto out; 6015 } 6016 6017 /* 6018 * Make sure new priv set is within the permitted set for caller 6019 */ 6020 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 6021 mutex_exit(&zonehash_lock); 6022 err = EPERM; 6023 goto out; 6024 } 6025 /* 6026 * We want to momentarily drop zonehash_lock while we optimistically 6027 * bind curproc to the pool it should be running in. This is safe 6028 * since the zone can't disappear (we have a hold on it). 6029 */ 6030 zone_hold(zone); 6031 mutex_exit(&zonehash_lock); 6032 6033 /* 6034 * Grab pool_lock to keep the pools configuration from changing 6035 * and to stop ourselves from getting rebound to another pool 6036 * until we join the zone. 6037 */ 6038 if (pool_lock_intr() != 0) { 6039 zone_rele(zone); 6040 err = EINTR; 6041 goto out; 6042 } 6043 ASSERT(secpolicy_pool(CRED()) == 0); 6044 /* 6045 * Bind ourselves to the pool currently associated with the zone. 6046 */ 6047 oldpool = curproc->p_pool; 6048 newpool = zone_pool_get(zone); 6049 if (pool_state == POOL_ENABLED && newpool != oldpool && 6050 (err = pool_do_bind(newpool, P_PID, P_MYID, 6051 POOL_BIND_ALL)) != 0) { 6052 pool_unlock(); 6053 zone_rele(zone); 6054 goto out; 6055 } 6056 6057 /* 6058 * Grab cpu_lock now; we'll need it later when we call 6059 * task_join(). 6060 */ 6061 mutex_enter(&cpu_lock); 6062 mutex_enter(&zonehash_lock); 6063 /* 6064 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 6065 */ 6066 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 6067 /* 6068 * Can't join anymore. 6069 */ 6070 mutex_exit(&zonehash_lock); 6071 mutex_exit(&cpu_lock); 6072 if (pool_state == POOL_ENABLED && 6073 newpool != oldpool) 6074 (void) pool_do_bind(oldpool, P_PID, P_MYID, 6075 POOL_BIND_ALL); 6076 pool_unlock(); 6077 zone_rele(zone); 6078 err = EINVAL; 6079 goto out; 6080 } 6081 6082 /* 6083 * a_lock must be held while transfering locked memory and swap 6084 * reservation from the global zone to the non global zone because 6085 * asynchronous faults on the processes' address space can lock 6086 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 6087 * segments respectively. 6088 */ 6089 AS_LOCK_ENTER(pp->p_as, RW_WRITER); 6090 swap = as_swresv(); 6091 mutex_enter(&pp->p_lock); 6092 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 6093 /* verify that we do not exceed and task or lwp limits */ 6094 mutex_enter(&zone->zone_nlwps_lock); 6095 /* add new lwps to zone and zone's proj0 */ 6096 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 6097 zone->zone_nlwps += pp->p_lwpcnt; 6098 /* add 1 task to zone's proj0 */ 6099 zone_proj0->kpj_ntasks += 1; 6100 6101 zone_proj0->kpj_nprocs++; 6102 zone->zone_nprocs++; 6103 mutex_exit(&zone->zone_nlwps_lock); 6104 6105 mutex_enter(&zone->zone_mem_lock); 6106 zone->zone_locked_mem += pp->p_locked_mem; 6107 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 6108 zone->zone_max_swap += swap; 6109 mutex_exit(&zone->zone_mem_lock); 6110 6111 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 6112 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 6113 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 6114 6115 /* remove lwps and process from proc's old zone and old project */ 6116 mutex_enter(&pp->p_zone->zone_nlwps_lock); 6117 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 6118 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 6119 pp->p_task->tk_proj->kpj_nprocs--; 6120 pp->p_zone->zone_nprocs--; 6121 mutex_exit(&pp->p_zone->zone_nlwps_lock); 6122 6123 mutex_enter(&pp->p_zone->zone_mem_lock); 6124 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 6125 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 6126 pp->p_zone->zone_max_swap -= swap; 6127 mutex_exit(&pp->p_zone->zone_mem_lock); 6128 6129 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6130 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 6131 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6132 6133 pp->p_flag |= SZONETOP; 6134 pp->p_zone = zone; 6135 mutex_exit(&pp->p_lock); 6136 AS_LOCK_EXIT(pp->p_as); 6137 6138 /* 6139 * Joining the zone cannot fail from now on. 6140 * 6141 * This means that a lot of the following code can be commonized and 6142 * shared with zsched(). 6143 */ 6144 6145 /* 6146 * If the process contract fmri was inherited, we need to 6147 * flag this so that any contract status will not leak 6148 * extra zone information, svc_fmri in this case 6149 */ 6150 if (ctp->conp_svc_ctid != ct->ct_id) { 6151 mutex_enter(&ct->ct_lock); 6152 ctp->conp_svc_zone_enter = ct->ct_id; 6153 mutex_exit(&ct->ct_lock); 6154 } 6155 6156 /* 6157 * Reset the encapsulating process contract's zone. 6158 */ 6159 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 6160 contract_setzuniqid(ct, zone->zone_uniqid); 6161 6162 /* 6163 * Create a new task and associate the process with the project keyed 6164 * by (projid,zoneid). 6165 * 6166 * We might as well be in project 0; the global zone's projid doesn't 6167 * make much sense in a zone anyhow. 6168 * 6169 * This also increments zone_ntasks, and returns with p_lock held. 6170 */ 6171 tk = task_create(0, zone); 6172 oldtk = task_join(tk, 0); 6173 mutex_exit(&cpu_lock); 6174 6175 /* 6176 * call RCTLOP_SET functions on this proc 6177 */ 6178 e.rcep_p.zone = zone; 6179 e.rcep_t = RCENTITY_ZONE; 6180 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 6181 RCD_CALLBACK); 6182 mutex_exit(&pp->p_lock); 6183 6184 /* 6185 * We don't need to hold any of zsched's locks here; not only do we know 6186 * the process and zone aren't going away, we know its session isn't 6187 * changing either. 6188 * 6189 * By joining zsched's session here, we mimic the behavior in the 6190 * global zone of init's sid being the pid of sched. We extend this 6191 * to all zlogin-like zone_enter()'ing processes as well. 6192 */ 6193 mutex_enter(&pidlock); 6194 sp = zone->zone_zsched->p_sessp; 6195 sess_hold(zone->zone_zsched); 6196 mutex_enter(&pp->p_lock); 6197 pgexit(pp); 6198 sess_rele(pp->p_sessp, B_TRUE); 6199 pp->p_sessp = sp; 6200 pgjoin(pp, zone->zone_zsched->p_pidp); 6201 6202 /* 6203 * If any threads are scheduled to be placed on zone wait queue they 6204 * should abandon the idea since the wait queue is changing. 6205 * We need to be holding pidlock & p_lock to do this. 6206 */ 6207 if ((t = pp->p_tlist) != NULL) { 6208 do { 6209 thread_lock(t); 6210 /* 6211 * Kick this thread so that it doesn't sit 6212 * on a wrong wait queue. 6213 */ 6214 if (ISWAITING(t)) 6215 setrun_locked(t); 6216 6217 if (t->t_schedflag & TS_ANYWAITQ) 6218 t->t_schedflag &= ~ TS_ANYWAITQ; 6219 6220 thread_unlock(t); 6221 } while ((t = t->t_forw) != pp->p_tlist); 6222 } 6223 6224 /* 6225 * If there is a default scheduling class for the zone and it is not 6226 * the class we are currently in, change all of the threads in the 6227 * process to the new class. We need to be holding pidlock & p_lock 6228 * when we call parmsset so this is a good place to do it. 6229 */ 6230 if (zone->zone_defaultcid > 0 && 6231 zone->zone_defaultcid != curthread->t_cid) { 6232 pcparms_t pcparms; 6233 6234 pcparms.pc_cid = zone->zone_defaultcid; 6235 pcparms.pc_clparms[0] = 0; 6236 6237 /* 6238 * If setting the class fails, we still want to enter the zone. 6239 */ 6240 if ((t = pp->p_tlist) != NULL) { 6241 do { 6242 (void) parmsset(&pcparms, t); 6243 } while ((t = t->t_forw) != pp->p_tlist); 6244 } 6245 } 6246 6247 mutex_exit(&pp->p_lock); 6248 mutex_exit(&pidlock); 6249 6250 mutex_exit(&zonehash_lock); 6251 /* 6252 * We're firmly in the zone; let pools progress. 6253 */ 6254 pool_unlock(); 6255 task_rele(oldtk); 6256 /* 6257 * We don't need to retain a hold on the zone since we already 6258 * incremented zone_ntasks, so the zone isn't going anywhere. 6259 */ 6260 zone_rele(zone); 6261 6262 /* 6263 * Chroot 6264 */ 6265 vp = zone->zone_rootvp; 6266 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6267 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6268 6269 /* 6270 * Change process security flags. Note that the _effective_ flags 6271 * cannot change 6272 */ 6273 secflags_copy(&pp->p_secflags.psf_lower, 6274 &zone->zone_secflags.psf_lower); 6275 secflags_copy(&pp->p_secflags.psf_upper, 6276 &zone->zone_secflags.psf_upper); 6277 secflags_copy(&pp->p_secflags.psf_inherit, 6278 &zone->zone_secflags.psf_inherit); 6279 6280 /* 6281 * Change process credentials 6282 */ 6283 newcr = cralloc(); 6284 mutex_enter(&pp->p_crlock); 6285 cr = pp->p_cred; 6286 crcopy_to(cr, newcr); 6287 crsetzone(newcr, zone); 6288 pp->p_cred = newcr; 6289 6290 /* 6291 * Restrict all process privilege sets to zone limit 6292 */ 6293 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6294 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6295 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6296 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6297 mutex_exit(&pp->p_crlock); 6298 crset(pp, newcr); 6299 6300 /* 6301 * Adjust upcount to reflect zone entry. 6302 */ 6303 uid = crgetruid(newcr); 6304 mutex_enter(&pidlock); 6305 upcount_dec(uid, GLOBAL_ZONEID); 6306 upcount_inc(uid, zoneid); 6307 mutex_exit(&pidlock); 6308 6309 /* 6310 * Set up core file path and content. 6311 */ 6312 set_core_defaults(); 6313 6314 out: 6315 /* 6316 * Let the other lwps continue. 6317 */ 6318 mutex_enter(&pp->p_lock); 6319 if (curthread != pp->p_agenttp) 6320 continuelwps(pp); 6321 mutex_exit(&pp->p_lock); 6322 6323 return (err != 0 ? set_errno(err) : 0); 6324 } 6325 6326 /* 6327 * Systemcall entry point for zone_list(2). 6328 * 6329 * Processes running in a (non-global) zone only see themselves. 6330 * On labeled systems, they see all zones whose label they dominate. 6331 */ 6332 static int 6333 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6334 { 6335 zoneid_t *zoneids; 6336 zone_t *zone, *myzone; 6337 uint_t user_nzones, real_nzones; 6338 uint_t domi_nzones; 6339 int error; 6340 6341 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6342 return (set_errno(EFAULT)); 6343 6344 myzone = curproc->p_zone; 6345 ASSERT(zonecount > 0); 6346 if (myzone != global_zone) { 6347 bslabel_t *mybslab; 6348 6349 if (!is_system_labeled()) { 6350 /* just return current zone */ 6351 real_nzones = domi_nzones = 1; 6352 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6353 zoneids[0] = myzone->zone_id; 6354 } else { 6355 /* return all zones that are dominated */ 6356 mutex_enter(&zonehash_lock); 6357 real_nzones = zonecount; 6358 domi_nzones = 0; 6359 zoneids = kmem_alloc(real_nzones * 6360 sizeof (zoneid_t), KM_SLEEP); 6361 mybslab = label2bslabel(myzone->zone_slabel); 6362 for (zone = list_head(&zone_active); 6363 zone != NULL; 6364 zone = list_next(&zone_active, zone)) { 6365 if (zone->zone_id == GLOBAL_ZONEID) 6366 continue; 6367 if (zone != myzone && 6368 (zone->zone_flags & ZF_IS_SCRATCH)) 6369 continue; 6370 /* 6371 * Note that a label always dominates 6372 * itself, so myzone is always included 6373 * in the list. 6374 */ 6375 if (bldominates(mybslab, 6376 label2bslabel(zone->zone_slabel))) { 6377 zoneids[domi_nzones++] = zone->zone_id; 6378 } 6379 } 6380 mutex_exit(&zonehash_lock); 6381 } 6382 } else { 6383 mutex_enter(&zonehash_lock); 6384 real_nzones = zonecount; 6385 domi_nzones = 0; 6386 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), KM_SLEEP); 6387 for (zone = list_head(&zone_active); zone != NULL; 6388 zone = list_next(&zone_active, zone)) 6389 zoneids[domi_nzones++] = zone->zone_id; 6390 6391 ASSERT(domi_nzones == real_nzones); 6392 mutex_exit(&zonehash_lock); 6393 } 6394 6395 /* 6396 * If user has allocated space for fewer entries than we found, then 6397 * return only up to their limit. Either way, tell them exactly how 6398 * many we found. 6399 */ 6400 if (domi_nzones < user_nzones) 6401 user_nzones = domi_nzones; 6402 error = 0; 6403 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6404 error = EFAULT; 6405 } else if (zoneidlist != NULL && user_nzones != 0) { 6406 if (copyout(zoneids, zoneidlist, 6407 user_nzones * sizeof (zoneid_t)) != 0) 6408 error = EFAULT; 6409 } 6410 6411 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6412 6413 if (error != 0) 6414 return (set_errno(error)); 6415 else 6416 return (0); 6417 } 6418 6419 /* 6420 * Systemcall entry point for zone_lookup(2). 6421 * 6422 * Non-global zones are only able to see themselves and (on labeled systems) 6423 * the zones they dominate. 6424 */ 6425 static zoneid_t 6426 zone_lookup(const char *zone_name) 6427 { 6428 char *kname; 6429 zone_t *zone; 6430 zoneid_t zoneid; 6431 int err; 6432 6433 if (zone_name == NULL) { 6434 /* return caller's zone id */ 6435 return (getzoneid()); 6436 } 6437 6438 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6439 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6440 kmem_free(kname, ZONENAME_MAX); 6441 return (set_errno(err)); 6442 } 6443 6444 mutex_enter(&zonehash_lock); 6445 zone = zone_find_all_by_name(kname); 6446 kmem_free(kname, ZONENAME_MAX); 6447 /* 6448 * In a non-global zone, can only lookup global and own name. 6449 * In Trusted Extensions zone label dominance rules apply. 6450 */ 6451 if (zone == NULL || 6452 zone_status_get(zone) < ZONE_IS_READY || 6453 !zone_list_access(zone)) { 6454 mutex_exit(&zonehash_lock); 6455 return (set_errno(EINVAL)); 6456 } else { 6457 zoneid = zone->zone_id; 6458 mutex_exit(&zonehash_lock); 6459 return (zoneid); 6460 } 6461 } 6462 6463 static int 6464 zone_version(int *version_arg) 6465 { 6466 int version = ZONE_SYSCALL_API_VERSION; 6467 6468 if (copyout(&version, version_arg, sizeof (int)) != 0) 6469 return (set_errno(EFAULT)); 6470 return (0); 6471 } 6472 6473 /* ARGSUSED */ 6474 long 6475 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6476 { 6477 zone_def zs; 6478 int err; 6479 6480 switch (cmd) { 6481 case ZONE_CREATE: 6482 if (get_udatamodel() == DATAMODEL_NATIVE) { 6483 if (copyin(arg1, &zs, sizeof (zone_def))) { 6484 return (set_errno(EFAULT)); 6485 } 6486 } else { 6487 #ifdef _SYSCALL32_IMPL 6488 zone_def32 zs32; 6489 6490 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6491 return (set_errno(EFAULT)); 6492 } 6493 zs.zone_name = 6494 (const char *)(unsigned long)zs32.zone_name; 6495 zs.zone_root = 6496 (const char *)(unsigned long)zs32.zone_root; 6497 zs.zone_privs = 6498 (const struct priv_set *) 6499 (unsigned long)zs32.zone_privs; 6500 zs.zone_privssz = zs32.zone_privssz; 6501 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6502 zs.rctlbufsz = zs32.rctlbufsz; 6503 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6504 zs.zfsbufsz = zs32.zfsbufsz; 6505 zs.extended_error = 6506 (int *)(unsigned long)zs32.extended_error; 6507 zs.match = zs32.match; 6508 zs.doi = zs32.doi; 6509 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6510 zs.flags = zs32.flags; 6511 #else 6512 panic("get_udatamodel() returned bogus result\n"); 6513 #endif 6514 } 6515 6516 return (zone_create(zs.zone_name, zs.zone_root, 6517 zs.zone_privs, zs.zone_privssz, 6518 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6519 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6520 zs.extended_error, zs.match, zs.doi, 6521 zs.label, zs.flags)); 6522 case ZONE_BOOT: 6523 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6524 case ZONE_DESTROY: 6525 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6526 case ZONE_GETATTR: 6527 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6528 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6529 case ZONE_SETATTR: 6530 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6531 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6532 case ZONE_ENTER: 6533 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6534 case ZONE_LIST: 6535 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6536 case ZONE_SHUTDOWN: 6537 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6538 case ZONE_LOOKUP: 6539 return (zone_lookup((const char *)arg1)); 6540 case ZONE_VERSION: 6541 return (zone_version((int *)arg1)); 6542 case ZONE_ADD_DATALINK: 6543 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6544 (datalink_id_t)(uintptr_t)arg2)); 6545 case ZONE_DEL_DATALINK: 6546 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6547 (datalink_id_t)(uintptr_t)arg2)); 6548 case ZONE_CHECK_DATALINK: { 6549 zoneid_t zoneid; 6550 boolean_t need_copyout; 6551 6552 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6553 return (EFAULT); 6554 need_copyout = (zoneid == ALL_ZONES); 6555 err = zone_check_datalink(&zoneid, 6556 (datalink_id_t)(uintptr_t)arg2); 6557 if (err == 0 && need_copyout) { 6558 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6559 err = EFAULT; 6560 } 6561 return (err == 0 ? 0 : set_errno(err)); 6562 } 6563 case ZONE_LIST_DATALINK: 6564 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6565 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6566 default: 6567 return (set_errno(EINVAL)); 6568 } 6569 } 6570 6571 struct zarg { 6572 zone_t *zone; 6573 zone_cmd_arg_t arg; 6574 }; 6575 6576 static int 6577 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6578 { 6579 char *buf; 6580 size_t buflen; 6581 int error; 6582 6583 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6584 buf = kmem_alloc(buflen, KM_SLEEP); 6585 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6586 error = door_ki_open(buf, doorp); 6587 kmem_free(buf, buflen); 6588 return (error); 6589 } 6590 6591 static void 6592 zone_release_door(door_handle_t *doorp) 6593 { 6594 door_ki_rele(*doorp); 6595 *doorp = NULL; 6596 } 6597 6598 static void 6599 zone_ki_call_zoneadmd(struct zarg *zargp) 6600 { 6601 door_handle_t door = NULL; 6602 door_arg_t darg, save_arg; 6603 char *zone_name; 6604 size_t zone_namelen; 6605 zoneid_t zoneid; 6606 zone_t *zone; 6607 zone_cmd_arg_t arg; 6608 uint64_t uniqid; 6609 size_t size; 6610 int error; 6611 int retry; 6612 6613 zone = zargp->zone; 6614 arg = zargp->arg; 6615 kmem_free(zargp, sizeof (*zargp)); 6616 6617 zone_namelen = strlen(zone->zone_name) + 1; 6618 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6619 bcopy(zone->zone_name, zone_name, zone_namelen); 6620 zoneid = zone->zone_id; 6621 uniqid = zone->zone_uniqid; 6622 /* 6623 * zoneadmd may be down, but at least we can empty out the zone. 6624 * We can ignore the return value of zone_empty() since we're called 6625 * from a kernel thread and know we won't be delivered any signals. 6626 */ 6627 ASSERT(curproc == &p0); 6628 (void) zone_empty(zone); 6629 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6630 zone_rele(zone); 6631 6632 size = sizeof (arg); 6633 darg.rbuf = (char *)&arg; 6634 darg.data_ptr = (char *)&arg; 6635 darg.rsize = size; 6636 darg.data_size = size; 6637 darg.desc_ptr = NULL; 6638 darg.desc_num = 0; 6639 6640 save_arg = darg; 6641 /* 6642 * Since we're not holding a reference to the zone, any number of 6643 * things can go wrong, including the zone disappearing before we get a 6644 * chance to talk to zoneadmd. 6645 */ 6646 for (retry = 0; /* forever */; retry++) { 6647 if (door == NULL && 6648 (error = zone_lookup_door(zone_name, &door)) != 0) { 6649 goto next; 6650 } 6651 ASSERT(door != NULL); 6652 6653 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6654 SIZE_MAX, 0)) == 0) { 6655 break; 6656 } 6657 switch (error) { 6658 case EINTR: 6659 /* FALLTHROUGH */ 6660 case EAGAIN: /* process may be forking */ 6661 /* 6662 * Back off for a bit 6663 */ 6664 break; 6665 case EBADF: 6666 zone_release_door(&door); 6667 if (zone_lookup_door(zone_name, &door) != 0) { 6668 /* 6669 * zoneadmd may be dead, but it may come back to 6670 * life later. 6671 */ 6672 break; 6673 } 6674 break; 6675 default: 6676 cmn_err(CE_WARN, 6677 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6678 error); 6679 goto out; 6680 } 6681 next: 6682 /* 6683 * If this isn't the same zone_t that we originally had in mind, 6684 * then this is the same as if two kadmin requests come in at 6685 * the same time: the first one wins. This means we lose, so we 6686 * bail. 6687 */ 6688 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6689 /* 6690 * Problem is solved. 6691 */ 6692 break; 6693 } 6694 if (zone->zone_uniqid != uniqid) { 6695 /* 6696 * zoneid recycled 6697 */ 6698 zone_rele(zone); 6699 break; 6700 } 6701 /* 6702 * We could zone_status_timedwait(), but there doesn't seem to 6703 * be much point in doing that (plus, it would mean that 6704 * zone_free() isn't called until this thread exits). 6705 */ 6706 zone_rele(zone); 6707 delay(hz); 6708 darg = save_arg; 6709 } 6710 out: 6711 if (door != NULL) { 6712 zone_release_door(&door); 6713 } 6714 kmem_free(zone_name, zone_namelen); 6715 thread_exit(); 6716 } 6717 6718 /* 6719 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6720 * kadmin(). The caller is a process in the zone. 6721 * 6722 * In order to shutdown the zone, we will hand off control to zoneadmd 6723 * (running in the global zone) via a door. We do a half-hearted job at 6724 * killing all processes in the zone, create a kernel thread to contact 6725 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6726 * a form of generation number used to let zoneadmd (as well as 6727 * zone_destroy()) know exactly which zone they're re talking about. 6728 */ 6729 int 6730 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6731 { 6732 struct zarg *zargp; 6733 zone_cmd_t zcmd; 6734 zone_t *zone; 6735 6736 zone = curproc->p_zone; 6737 ASSERT(getzoneid() != GLOBAL_ZONEID); 6738 6739 switch (cmd) { 6740 case A_SHUTDOWN: 6741 switch (fcn) { 6742 case AD_HALT: 6743 case AD_POWEROFF: 6744 zcmd = Z_HALT; 6745 break; 6746 case AD_BOOT: 6747 zcmd = Z_REBOOT; 6748 break; 6749 case AD_IBOOT: 6750 case AD_SBOOT: 6751 case AD_SIBOOT: 6752 case AD_NOSYNC: 6753 return (ENOTSUP); 6754 default: 6755 return (EINVAL); 6756 } 6757 break; 6758 case A_REBOOT: 6759 zcmd = Z_REBOOT; 6760 break; 6761 case A_FTRACE: 6762 case A_REMOUNT: 6763 case A_FREEZE: 6764 case A_DUMP: 6765 case A_CONFIG: 6766 return (ENOTSUP); 6767 default: 6768 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6769 return (EINVAL); 6770 } 6771 6772 if (secpolicy_zone_admin(credp, B_FALSE)) 6773 return (EPERM); 6774 mutex_enter(&zone_status_lock); 6775 6776 /* 6777 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6778 * is in the zone. 6779 */ 6780 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6781 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6782 /* 6783 * This zone is already on its way down. 6784 */ 6785 mutex_exit(&zone_status_lock); 6786 return (0); 6787 } 6788 /* 6789 * Prevent future zone_enter()s 6790 */ 6791 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6792 mutex_exit(&zone_status_lock); 6793 6794 /* 6795 * Kill everyone now and call zoneadmd later. 6796 * zone_ki_call_zoneadmd() will do a more thorough job of this 6797 * later. 6798 */ 6799 killall(zone->zone_id); 6800 /* 6801 * Now, create the thread to contact zoneadmd and do the rest of the 6802 * work. This thread can't be created in our zone otherwise 6803 * zone_destroy() would deadlock. 6804 */ 6805 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6806 zargp->arg.cmd = zcmd; 6807 zargp->arg.uniqid = zone->zone_uniqid; 6808 zargp->zone = zone; 6809 (void) strcpy(zargp->arg.locale, "C"); 6810 /* mdep was already copied in for us by uadmin */ 6811 if (mdep != NULL) 6812 (void) strlcpy(zargp->arg.bootbuf, mdep, 6813 sizeof (zargp->arg.bootbuf)); 6814 zone_hold(zone); 6815 6816 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6817 TS_RUN, minclsyspri); 6818 exit(CLD_EXITED, 0); 6819 6820 return (EINVAL); 6821 } 6822 6823 /* 6824 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6825 * status to ZONE_IS_SHUTTING_DOWN. 6826 * 6827 * This function also shuts down all running zones to ensure that they won't 6828 * fork new processes. 6829 */ 6830 void 6831 zone_shutdown_global(void) 6832 { 6833 zone_t *current_zonep; 6834 6835 ASSERT(INGLOBALZONE(curproc)); 6836 mutex_enter(&zonehash_lock); 6837 mutex_enter(&zone_status_lock); 6838 6839 /* Modify the global zone's status first. */ 6840 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6841 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6842 6843 /* 6844 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6845 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6846 * could cause assertions to fail (e.g., assertions about a zone's 6847 * state during initialization, readying, or booting) or produce races. 6848 * We'll let threads continue to initialize and ready new zones: they'll 6849 * fail to boot the new zones when they see that the global zone is 6850 * shutting down. 6851 */ 6852 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6853 current_zonep = list_next(&zone_active, current_zonep)) { 6854 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6855 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6856 } 6857 mutex_exit(&zone_status_lock); 6858 mutex_exit(&zonehash_lock); 6859 } 6860 6861 /* 6862 * Returns true if the named dataset is visible in the current zone. 6863 * The 'write' parameter is set to 1 if the dataset is also writable. 6864 */ 6865 int 6866 zone_dataset_visible(const char *dataset, int *write) 6867 { 6868 static int zfstype = -1; 6869 zone_dataset_t *zd; 6870 size_t len; 6871 zone_t *zone = curproc->p_zone; 6872 const char *name = NULL; 6873 vfs_t *vfsp = NULL; 6874 6875 if (dataset[0] == '\0') 6876 return (0); 6877 6878 /* 6879 * Walk the list once, looking for datasets which match exactly, or 6880 * specify a dataset underneath an exported dataset. If found, return 6881 * true and note that it is writable. 6882 */ 6883 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6884 zd = list_next(&zone->zone_datasets, zd)) { 6885 6886 len = strlen(zd->zd_dataset); 6887 if (strlen(dataset) >= len && 6888 bcmp(dataset, zd->zd_dataset, len) == 0 && 6889 (dataset[len] == '\0' || dataset[len] == '/' || 6890 dataset[len] == '@')) { 6891 if (write) 6892 *write = 1; 6893 return (1); 6894 } 6895 } 6896 6897 /* 6898 * Walk the list a second time, searching for datasets which are parents 6899 * of exported datasets. These should be visible, but read-only. 6900 * 6901 * Note that we also have to support forms such as 'pool/dataset/', with 6902 * a trailing slash. 6903 */ 6904 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6905 zd = list_next(&zone->zone_datasets, zd)) { 6906 6907 len = strlen(dataset); 6908 if (dataset[len - 1] == '/') 6909 len--; /* Ignore trailing slash */ 6910 if (len < strlen(zd->zd_dataset) && 6911 bcmp(dataset, zd->zd_dataset, len) == 0 && 6912 zd->zd_dataset[len] == '/') { 6913 if (write) 6914 *write = 0; 6915 return (1); 6916 } 6917 } 6918 6919 /* 6920 * We reach here if the given dataset is not found in the zone_dataset 6921 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6922 * instead of delegation. For this we search for the dataset in the 6923 * zone_vfslist of this zone. If found, return true and note that it is 6924 * not writable. 6925 */ 6926 6927 /* 6928 * Initialize zfstype if it is not initialized yet. 6929 */ 6930 if (zfstype == -1) { 6931 struct vfssw *vswp = vfs_getvfssw("zfs"); 6932 zfstype = vswp - vfssw; 6933 vfs_unrefvfssw(vswp); 6934 } 6935 6936 vfs_list_read_lock(); 6937 vfsp = zone->zone_vfslist; 6938 do { 6939 ASSERT(vfsp); 6940 if (vfsp->vfs_fstype == zfstype) { 6941 name = refstr_value(vfsp->vfs_resource); 6942 6943 /* 6944 * Check if we have an exact match. 6945 */ 6946 if (strcmp(dataset, name) == 0) { 6947 vfs_list_unlock(); 6948 if (write) 6949 *write = 0; 6950 return (1); 6951 } 6952 /* 6953 * We need to check if we are looking for parents of 6954 * a dataset. These should be visible, but read-only. 6955 */ 6956 len = strlen(dataset); 6957 if (dataset[len - 1] == '/') 6958 len--; 6959 6960 if (len < strlen(name) && 6961 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6962 vfs_list_unlock(); 6963 if (write) 6964 *write = 0; 6965 return (1); 6966 } 6967 } 6968 vfsp = vfsp->vfs_zone_next; 6969 } while (vfsp != zone->zone_vfslist); 6970 6971 vfs_list_unlock(); 6972 return (0); 6973 } 6974 6975 /* 6976 * zone_find_by_any_path() - 6977 * 6978 * kernel-private routine similar to zone_find_by_path(), but which 6979 * effectively compares against zone paths rather than zonerootpath 6980 * (i.e., the last component of zonerootpaths, which should be "root/", 6981 * are not compared.) This is done in order to accurately identify all 6982 * paths, whether zone-visible or not, including those which are parallel 6983 * to /root/, such as /dev/, /home/, etc... 6984 * 6985 * If the specified path does not fall under any zone path then global 6986 * zone is returned. 6987 * 6988 * The treat_abs parameter indicates whether the path should be treated as 6989 * an absolute path although it does not begin with "/". (This supports 6990 * nfs mount syntax such as host:any/path.) 6991 * 6992 * The caller is responsible for zone_rele of the returned zone. 6993 */ 6994 zone_t * 6995 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6996 { 6997 zone_t *zone; 6998 int path_offset = 0; 6999 7000 if (path == NULL) { 7001 zone_hold(global_zone); 7002 return (global_zone); 7003 } 7004 7005 if (*path != '/') { 7006 ASSERT(treat_abs); 7007 path_offset = 1; 7008 } 7009 7010 mutex_enter(&zonehash_lock); 7011 for (zone = list_head(&zone_active); zone != NULL; 7012 zone = list_next(&zone_active, zone)) { 7013 char *c; 7014 size_t pathlen; 7015 char *rootpath_start; 7016 7017 if (zone == global_zone) /* skip global zone */ 7018 continue; 7019 7020 /* scan backwards to find start of last component */ 7021 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 7022 do { 7023 c--; 7024 } while (*c != '/'); 7025 7026 pathlen = c - zone->zone_rootpath + 1 - path_offset; 7027 rootpath_start = (zone->zone_rootpath + path_offset); 7028 if (strncmp(path, rootpath_start, pathlen) == 0) 7029 break; 7030 } 7031 if (zone == NULL) 7032 zone = global_zone; 7033 zone_hold(zone); 7034 mutex_exit(&zonehash_lock); 7035 return (zone); 7036 } 7037 7038 /* 7039 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 7040 * zone_dl_t pointer if found, and NULL otherwise. 7041 */ 7042 static zone_dl_t * 7043 zone_find_dl(zone_t *zone, datalink_id_t linkid) 7044 { 7045 zone_dl_t *zdl; 7046 7047 ASSERT(mutex_owned(&zone->zone_lock)); 7048 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7049 zdl = list_next(&zone->zone_dl_list, zdl)) { 7050 if (zdl->zdl_id == linkid) 7051 break; 7052 } 7053 return (zdl); 7054 } 7055 7056 static boolean_t 7057 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 7058 { 7059 boolean_t exists; 7060 7061 mutex_enter(&zone->zone_lock); 7062 exists = (zone_find_dl(zone, linkid) != NULL); 7063 mutex_exit(&zone->zone_lock); 7064 return (exists); 7065 } 7066 7067 /* 7068 * Add an data link name for the zone. 7069 */ 7070 static int 7071 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 7072 { 7073 zone_dl_t *zdl; 7074 zone_t *zone; 7075 zone_t *thiszone; 7076 7077 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 7078 return (set_errno(ENXIO)); 7079 7080 /* Verify that the datalink ID doesn't already belong to a zone. */ 7081 mutex_enter(&zonehash_lock); 7082 for (zone = list_head(&zone_active); zone != NULL; 7083 zone = list_next(&zone_active, zone)) { 7084 if (zone_dl_exists(zone, linkid)) { 7085 mutex_exit(&zonehash_lock); 7086 zone_rele(thiszone); 7087 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 7088 } 7089 } 7090 7091 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 7092 zdl->zdl_id = linkid; 7093 zdl->zdl_net = NULL; 7094 mutex_enter(&thiszone->zone_lock); 7095 list_insert_head(&thiszone->zone_dl_list, zdl); 7096 mutex_exit(&thiszone->zone_lock); 7097 mutex_exit(&zonehash_lock); 7098 zone_rele(thiszone); 7099 return (0); 7100 } 7101 7102 static int 7103 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 7104 { 7105 zone_dl_t *zdl; 7106 zone_t *zone; 7107 int err = 0; 7108 7109 if ((zone = zone_find_by_id(zoneid)) == NULL) 7110 return (set_errno(EINVAL)); 7111 7112 mutex_enter(&zone->zone_lock); 7113 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7114 err = ENXIO; 7115 } else { 7116 list_remove(&zone->zone_dl_list, zdl); 7117 nvlist_free(zdl->zdl_net); 7118 kmem_free(zdl, sizeof (zone_dl_t)); 7119 } 7120 mutex_exit(&zone->zone_lock); 7121 zone_rele(zone); 7122 return (err == 0 ? 0 : set_errno(err)); 7123 } 7124 7125 /* 7126 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 7127 * the linkid. Otherwise we just check if the specified zoneidp has been 7128 * assigned the supplied linkid. 7129 */ 7130 int 7131 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 7132 { 7133 zone_t *zone; 7134 int err = ENXIO; 7135 7136 if (*zoneidp != ALL_ZONES) { 7137 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 7138 if (zone_dl_exists(zone, linkid)) 7139 err = 0; 7140 zone_rele(zone); 7141 } 7142 return (err); 7143 } 7144 7145 mutex_enter(&zonehash_lock); 7146 for (zone = list_head(&zone_active); zone != NULL; 7147 zone = list_next(&zone_active, zone)) { 7148 if (zone_dl_exists(zone, linkid)) { 7149 *zoneidp = zone->zone_id; 7150 err = 0; 7151 break; 7152 } 7153 } 7154 mutex_exit(&zonehash_lock); 7155 return (err); 7156 } 7157 7158 /* 7159 * Get the list of datalink IDs assigned to a zone. 7160 * 7161 * On input, *nump is the number of datalink IDs that can fit in the supplied 7162 * idarray. Upon return, *nump is either set to the number of datalink IDs 7163 * that were placed in the array if the array was large enough, or to the 7164 * number of datalink IDs that the function needs to place in the array if the 7165 * array is too small. 7166 */ 7167 static int 7168 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 7169 { 7170 uint_t num, dlcount; 7171 zone_t *zone; 7172 zone_dl_t *zdl; 7173 datalink_id_t *idptr = idarray; 7174 7175 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 7176 return (set_errno(EFAULT)); 7177 if ((zone = zone_find_by_id(zoneid)) == NULL) 7178 return (set_errno(ENXIO)); 7179 7180 num = 0; 7181 mutex_enter(&zone->zone_lock); 7182 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7183 zdl = list_next(&zone->zone_dl_list, zdl)) { 7184 /* 7185 * If the list is bigger than what the caller supplied, just 7186 * count, don't do copyout. 7187 */ 7188 if (++num > dlcount) 7189 continue; 7190 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 7191 mutex_exit(&zone->zone_lock); 7192 zone_rele(zone); 7193 return (set_errno(EFAULT)); 7194 } 7195 idptr++; 7196 } 7197 mutex_exit(&zone->zone_lock); 7198 zone_rele(zone); 7199 7200 /* 7201 * Prevent returning negative nump values -- we should never 7202 * have this many links anyways. 7203 */ 7204 if (num > INT_MAX) 7205 return (set_errno(EOVERFLOW)); 7206 7207 /* Increased or decreased, caller should be notified. */ 7208 if (num != dlcount) { 7209 if (copyout(&num, nump, sizeof (num)) != 0) 7210 return (set_errno(EFAULT)); 7211 } 7212 return (0); 7213 } 7214 7215 /* 7216 * Public interface for looking up a zone by zoneid. It's a customized version 7217 * for netstack_zone_create(). It can only be called from the zsd create 7218 * callbacks, since it doesn't have reference on the zone structure hence if 7219 * it is called elsewhere the zone could disappear after the zonehash_lock 7220 * is dropped. 7221 * 7222 * Furthermore it 7223 * 1. Doesn't check the status of the zone. 7224 * 2. It will be called even before zone_init is called, in that case the 7225 * address of zone0 is returned directly, and netstack_zone_create() 7226 * will only assign a value to zone0.zone_netstack, won't break anything. 7227 * 3. Returns without the zone being held. 7228 */ 7229 zone_t * 7230 zone_find_by_id_nolock(zoneid_t zoneid) 7231 { 7232 zone_t *zone; 7233 7234 mutex_enter(&zonehash_lock); 7235 if (zonehashbyid == NULL) 7236 zone = &zone0; 7237 else 7238 zone = zone_find_all_by_id(zoneid); 7239 mutex_exit(&zonehash_lock); 7240 return (zone); 7241 } 7242 7243 /* 7244 * Walk the datalinks for a given zone 7245 */ 7246 int 7247 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 7248 void *data) 7249 { 7250 zone_t *zone; 7251 zone_dl_t *zdl; 7252 datalink_id_t *idarray; 7253 uint_t idcount = 0; 7254 int i, ret = 0; 7255 7256 if ((zone = zone_find_by_id(zoneid)) == NULL) 7257 return (ENOENT); 7258 7259 /* 7260 * We first build an array of linkid's so that we can walk these and 7261 * execute the callback with the zone_lock dropped. 7262 */ 7263 mutex_enter(&zone->zone_lock); 7264 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7265 zdl = list_next(&zone->zone_dl_list, zdl)) { 7266 idcount++; 7267 } 7268 7269 if (idcount == 0) { 7270 mutex_exit(&zone->zone_lock); 7271 zone_rele(zone); 7272 return (0); 7273 } 7274 7275 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7276 if (idarray == NULL) { 7277 mutex_exit(&zone->zone_lock); 7278 zone_rele(zone); 7279 return (ENOMEM); 7280 } 7281 7282 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7283 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7284 idarray[i] = zdl->zdl_id; 7285 } 7286 7287 mutex_exit(&zone->zone_lock); 7288 7289 for (i = 0; i < idcount && ret == 0; i++) { 7290 if ((ret = (*cb)(idarray[i], data)) != 0) 7291 break; 7292 } 7293 7294 zone_rele(zone); 7295 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7296 return (ret); 7297 } 7298 7299 static char * 7300 zone_net_type2name(int type) 7301 { 7302 switch (type) { 7303 case ZONE_NETWORK_ADDRESS: 7304 return (ZONE_NET_ADDRNAME); 7305 case ZONE_NETWORK_DEFROUTER: 7306 return (ZONE_NET_RTRNAME); 7307 default: 7308 return (NULL); 7309 } 7310 } 7311 7312 static int 7313 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7314 { 7315 zone_t *zone; 7316 zone_dl_t *zdl; 7317 nvlist_t *nvl; 7318 int err = 0; 7319 uint8_t *new = NULL; 7320 char *nvname; 7321 int bufsize; 7322 datalink_id_t linkid = znbuf->zn_linkid; 7323 7324 if (secpolicy_zone_config(CRED()) != 0) 7325 return (set_errno(EPERM)); 7326 7327 if (zoneid == GLOBAL_ZONEID) 7328 return (set_errno(EINVAL)); 7329 7330 nvname = zone_net_type2name(znbuf->zn_type); 7331 bufsize = znbuf->zn_len; 7332 new = znbuf->zn_val; 7333 if (nvname == NULL) 7334 return (set_errno(EINVAL)); 7335 7336 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7337 return (set_errno(EINVAL)); 7338 } 7339 7340 mutex_enter(&zone->zone_lock); 7341 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7342 err = ENXIO; 7343 goto done; 7344 } 7345 if ((nvl = zdl->zdl_net) == NULL) { 7346 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7347 err = ENOMEM; 7348 goto done; 7349 } else { 7350 zdl->zdl_net = nvl; 7351 } 7352 } 7353 if (nvlist_exists(nvl, nvname)) { 7354 err = EINVAL; 7355 goto done; 7356 } 7357 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7358 ASSERT(err == 0); 7359 done: 7360 mutex_exit(&zone->zone_lock); 7361 zone_rele(zone); 7362 if (err != 0) 7363 return (set_errno(err)); 7364 else 7365 return (0); 7366 } 7367 7368 static int 7369 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7370 { 7371 zone_t *zone; 7372 zone_dl_t *zdl; 7373 nvlist_t *nvl; 7374 uint8_t *ptr; 7375 uint_t psize; 7376 int err = 0; 7377 char *nvname; 7378 int bufsize; 7379 void *buf; 7380 datalink_id_t linkid = znbuf->zn_linkid; 7381 7382 if (zoneid == GLOBAL_ZONEID) 7383 return (set_errno(EINVAL)); 7384 7385 nvname = zone_net_type2name(znbuf->zn_type); 7386 bufsize = znbuf->zn_len; 7387 buf = znbuf->zn_val; 7388 7389 if (nvname == NULL) 7390 return (set_errno(EINVAL)); 7391 if ((zone = zone_find_by_id(zoneid)) == NULL) 7392 return (set_errno(EINVAL)); 7393 7394 mutex_enter(&zone->zone_lock); 7395 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7396 err = ENXIO; 7397 goto done; 7398 } 7399 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7400 err = ENOENT; 7401 goto done; 7402 } 7403 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7404 ASSERT(err == 0); 7405 7406 if (psize > bufsize) { 7407 err = ENOBUFS; 7408 goto done; 7409 } 7410 znbuf->zn_len = psize; 7411 bcopy(ptr, buf, psize); 7412 done: 7413 mutex_exit(&zone->zone_lock); 7414 zone_rele(zone); 7415 if (err != 0) 7416 return (set_errno(err)); 7417 else 7418 return (0); 7419 } 7420