xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision 9d6ca3965c3358c32eb68544fe91ff8ad9c3fcde)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent Inc. All rights reserved.
25  * Copyright (c) 2016 by Delphix. All rights reserved.
26  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27  */
28 
29 /*
30  * Zones
31  *
32  *   A zone is a named collection of processes, namespace constraints,
33  *   and other system resources which comprise a secure and manageable
34  *   application containment facility.
35  *
36  *   Zones (represented by the reference counted zone_t) are tracked in
37  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
38  *   (zoneid_t) are used to track zone association.  Zone IDs are
39  *   dynamically generated when the zone is created; if a persistent
40  *   identifier is needed (core files, accounting logs, audit trail,
41  *   etc.), the zone name should be used.
42  *
43  *
44  *   Global Zone:
45  *
46  *   The global zone (zoneid 0) is automatically associated with all
47  *   system resources that have not been bound to a user-created zone.
48  *   This means that even systems where zones are not in active use
49  *   have a global zone, and all processes, mounts, etc. are
50  *   associated with that zone.  The global zone is generally
51  *   unconstrained in terms of privileges and access, though the usual
52  *   credential and privilege based restrictions apply.
53  *
54  *
55  *   Zone States:
56  *
57  *   The states in which a zone may be in and the transitions are as
58  *   follows:
59  *
60  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
61  *   initialized zone is added to the list of active zones on the system but
62  *   isn't accessible.
63  *
64  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
65  *   not yet completed. Not possible to enter the zone, but attributes can
66  *   be retrieved.
67  *
68  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
69  *   ready.  The zone is made visible after the ZSD constructor callbacks are
70  *   executed.  A zone remains in this state until it transitions into
71  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
72  *
73  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
74  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
75  *   state.
76  *
77  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
78  *   successfully started init.   A zone remains in this state until
79  *   zone_shutdown() is called.
80  *
81  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
82  *   killing all processes running in the zone. The zone remains
83  *   in this state until there are no more user processes running in the zone.
84  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
85  *   Since zone_shutdown() is restartable, it may be called successfully
86  *   multiple times for the same zone_t.  Setting of the zone's state to
87  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
88  *   the zone's status without worrying about it being a moving target.
89  *
90  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
91  *   are no more user processes in the zone.  The zone remains in this
92  *   state until there are no more kernel threads associated with the
93  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
94  *   fail.
95  *
96  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
97  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
98  *   join the zone or create kernel threads therein.
99  *
100  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
101  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
102  *   return NULL from now on.
103  *
104  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
105  *   processes or threads doing work on behalf of the zone.  The zone is
106  *   removed from the list of active zones.  zone_destroy() returns, and
107  *   the zone can be recreated.
108  *
109  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
110  *   callbacks are executed, and all memory associated with the zone is
111  *   freed.
112  *
113  *   Threads can wait for the zone to enter a requested state by using
114  *   zone_status_wait() or zone_status_timedwait() with the desired
115  *   state passed in as an argument.  Zone state transitions are
116  *   uni-directional; it is not possible to move back to an earlier state.
117  *
118  *
119  *   Zone-Specific Data:
120  *
121  *   Subsystems needing to maintain zone-specific data can store that
122  *   data using the ZSD mechanism.  This provides a zone-specific data
123  *   store, similar to thread-specific data (see pthread_getspecific(3C)
124  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
125  *   to register callbacks to be invoked when a zone is created, shut
126  *   down, or destroyed.  This can be used to initialize zone-specific
127  *   data for new zones and to clean up when zones go away.
128  *
129  *
130  *   Data Structures:
131  *
132  *   The per-zone structure (zone_t) is reference counted, and freed
133  *   when all references are released.  zone_hold and zone_rele can be
134  *   used to adjust the reference count.  In addition, reference counts
135  *   associated with the cred_t structure are tracked separately using
136  *   zone_cred_hold and zone_cred_rele.
137  *
138  *   Pointers to active zone_t's are stored in two hash tables; one
139  *   for searching by id, the other for searching by name.  Lookups
140  *   can be performed on either basis, using zone_find_by_id and
141  *   zone_find_by_name.  Both return zone_t pointers with the zone
142  *   held, so zone_rele should be called when the pointer is no longer
143  *   needed.  Zones can also be searched by path; zone_find_by_path
144  *   returns the zone with which a path name is associated (global
145  *   zone if the path is not within some other zone's file system
146  *   hierarchy).  This currently requires iterating through each zone,
147  *   so it is slower than an id or name search via a hash table.
148  *
149  *
150  *   Locking:
151  *
152  *   zonehash_lock: This is a top-level global lock used to protect the
153  *       zone hash tables and lists.  Zones cannot be created or destroyed
154  *       while this lock is held.
155  *   zone_status_lock: This is a global lock protecting zone state.
156  *       Zones cannot change state while this lock is held.  It also
157  *       protects the list of kernel threads associated with a zone.
158  *   zone_lock: This is a per-zone lock used to protect several fields of
159  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
160  *       this lock means that the zone cannot go away.
161  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-lwps rctl.
163  *   zone_mem_lock: This is a per-zone lock used to protect the fields
164  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
165  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
166  *       currently just max_lofi
167  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
168  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
169  *       list (a list of zones in the ZONE_IS_DEAD state).
170  *
171  *   Ordering requirements:
172  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
173  *       zone_lock --> zsd_key_lock --> pidlock --> p_lock
174  *
175  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
176  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
177  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
178  *
179  *   Blocking memory allocations are permitted while holding any of the
180  *   zone locks.
181  *
182  *
183  *   System Call Interface:
184  *
185  *   The zone subsystem can be managed and queried from user level with
186  *   the following system calls (all subcodes of the primary "zone"
187  *   system call):
188  *   - zone_create: creates a zone with selected attributes (name,
189  *     root path, privileges, resource controls, ZFS datasets)
190  *   - zone_enter: allows the current process to enter a zone
191  *   - zone_getattr: reports attributes of a zone
192  *   - zone_setattr: set attributes of a zone
193  *   - zone_boot: set 'init' running for the zone
194  *   - zone_list: lists all zones active in the system
195  *   - zone_lookup: looks up zone id based on name
196  *   - zone_shutdown: initiates shutdown process (see states above)
197  *   - zone_destroy: completes shutdown process (see states above)
198  *
199  */
200 
201 #include <sys/priv_impl.h>
202 #include <sys/cred.h>
203 #include <c2/audit.h>
204 #include <sys/debug.h>
205 #include <sys/file.h>
206 #include <sys/kmem.h>
207 #include <sys/kstat.h>
208 #include <sys/mutex.h>
209 #include <sys/note.h>
210 #include <sys/pathname.h>
211 #include <sys/proc.h>
212 #include <sys/project.h>
213 #include <sys/sysevent.h>
214 #include <sys/task.h>
215 #include <sys/systm.h>
216 #include <sys/types.h>
217 #include <sys/utsname.h>
218 #include <sys/vnode.h>
219 #include <sys/vfs.h>
220 #include <sys/systeminfo.h>
221 #include <sys/policy.h>
222 #include <sys/cred_impl.h>
223 #include <sys/contract_impl.h>
224 #include <sys/contract/process_impl.h>
225 #include <sys/class.h>
226 #include <sys/pool.h>
227 #include <sys/pool_pset.h>
228 #include <sys/pset.h>
229 #include <sys/strlog.h>
230 #include <sys/sysmacros.h>
231 #include <sys/callb.h>
232 #include <sys/vmparam.h>
233 #include <sys/corectl.h>
234 #include <sys/ipc_impl.h>
235 #include <sys/klpd.h>
236 
237 #include <sys/door.h>
238 #include <sys/cpuvar.h>
239 #include <sys/sdt.h>
240 
241 #include <sys/uadmin.h>
242 #include <sys/session.h>
243 #include <sys/cmn_err.h>
244 #include <sys/modhash.h>
245 #include <sys/sunddi.h>
246 #include <sys/nvpair.h>
247 #include <sys/rctl.h>
248 #include <sys/fss.h>
249 #include <sys/brand.h>
250 #include <sys/zone.h>
251 #include <net/if.h>
252 #include <sys/cpucaps.h>
253 #include <vm/seg.h>
254 #include <sys/mac.h>
255 
256 /*
257  * This constant specifies the number of seconds that threads waiting for
258  * subsystems to release a zone's general-purpose references will wait before
259  * they log the zone's reference counts.  The constant's value shouldn't
260  * be so small that reference counts are unnecessarily reported for zones
261  * whose references are slowly released.  On the other hand, it shouldn't be so
262  * large that users reboot their systems out of frustration over hung zones
263  * before the system logs the zones' reference counts.
264  */
265 #define	ZONE_DESTROY_TIMEOUT_SECS	60
266 
267 /* List of data link IDs which are accessible from the zone */
268 typedef struct zone_dl {
269 	datalink_id_t	zdl_id;
270 	nvlist_t	*zdl_net;
271 	list_node_t	zdl_linkage;
272 } zone_dl_t;
273 
274 /*
275  * cv used to signal that all references to the zone have been released.  This
276  * needs to be global since there may be multiple waiters, and the first to
277  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
278  */
279 static kcondvar_t zone_destroy_cv;
280 /*
281  * Lock used to serialize access to zone_cv.  This could have been per-zone,
282  * but then we'd need another lock for zone_destroy_cv, and why bother?
283  */
284 static kmutex_t zone_status_lock;
285 
286 /*
287  * ZSD-related global variables.
288  */
289 static kmutex_t zsd_key_lock;	/* protects the following two */
290 /*
291  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
292  */
293 static zone_key_t zsd_keyval = 0;
294 /*
295  * Global list of registered keys.  We use this when a new zone is created.
296  */
297 static list_t zsd_registered_keys;
298 
299 int zone_hash_size = 256;
300 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
301 static kmutex_t zonehash_lock;
302 static uint_t zonecount;
303 static id_space_t *zoneid_space;
304 
305 /*
306  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
307  * kernel proper runs, and which manages all other zones.
308  *
309  * Although not declared as static, the variable "zone0" should not be used
310  * except for by code that needs to reference the global zone early on in boot,
311  * before it is fully initialized.  All other consumers should use
312  * 'global_zone'.
313  */
314 zone_t zone0;
315 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
316 
317 /*
318  * List of active zones, protected by zonehash_lock.
319  */
320 static list_t zone_active;
321 
322 /*
323  * List of destroyed zones that still have outstanding cred references.
324  * Used for debugging.  Uses a separate lock to avoid lock ordering
325  * problems in zone_free.
326  */
327 static list_t zone_deathrow;
328 static kmutex_t zone_deathrow_lock;
329 
330 /* number of zones is limited by virtual interface limit in IP */
331 uint_t maxzones = 8192;
332 
333 /* Event channel to sent zone state change notifications */
334 evchan_t *zone_event_chan;
335 
336 /*
337  * This table holds the mapping from kernel zone states to
338  * states visible in the state notification API.
339  * The idea is that we only expose "obvious" states and
340  * do not expose states which are just implementation details.
341  */
342 const char  *zone_status_table[] = {
343 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
344 	ZONE_EVENT_INITIALIZED,		/* initialized */
345 	ZONE_EVENT_READY,		/* ready */
346 	ZONE_EVENT_READY,		/* booting */
347 	ZONE_EVENT_RUNNING,		/* running */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
350 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
351 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
352 	ZONE_EVENT_UNINITIALIZED,	/* dead */
353 };
354 
355 /*
356  * This array contains the names of the subsystems listed in zone_ref_subsys_t
357  * (see sys/zone.h).
358  */
359 static char *zone_ref_subsys_names[] = {
360 	"NFS",		/* ZONE_REF_NFS */
361 	"NFSv4",	/* ZONE_REF_NFSV4 */
362 	"SMBFS",	/* ZONE_REF_SMBFS */
363 	"MNTFS",	/* ZONE_REF_MNTFS */
364 	"LOFI",		/* ZONE_REF_LOFI */
365 	"VFS",		/* ZONE_REF_VFS */
366 	"IPC"		/* ZONE_REF_IPC */
367 };
368 
369 /*
370  * This isn't static so lint doesn't complain.
371  */
372 rctl_hndl_t rc_zone_cpu_shares;
373 rctl_hndl_t rc_zone_locked_mem;
374 rctl_hndl_t rc_zone_max_swap;
375 rctl_hndl_t rc_zone_max_lofi;
376 rctl_hndl_t rc_zone_cpu_cap;
377 rctl_hndl_t rc_zone_nlwps;
378 rctl_hndl_t rc_zone_nprocs;
379 rctl_hndl_t rc_zone_shmmax;
380 rctl_hndl_t rc_zone_shmmni;
381 rctl_hndl_t rc_zone_semmni;
382 rctl_hndl_t rc_zone_msgmni;
383 
384 const char * const zone_default_initname = "/sbin/init";
385 static char * const zone_prefix = "/zone/";
386 static int zone_shutdown(zoneid_t zoneid);
387 static int zone_add_datalink(zoneid_t, datalink_id_t);
388 static int zone_remove_datalink(zoneid_t, datalink_id_t);
389 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
390 static int zone_set_network(zoneid_t, zone_net_data_t *);
391 static int zone_get_network(zoneid_t, zone_net_data_t *);
392 
393 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
394 
395 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
396 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
397 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
398 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
399     zone_key_t);
400 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
401 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
402     kmutex_t *);
403 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
404     kmutex_t *);
405 
406 /*
407  * Bump this number when you alter the zone syscall interfaces; this is
408  * because we need to have support for previous API versions in libc
409  * to support patching; libc calls into the kernel to determine this number.
410  *
411  * Version 1 of the API is the version originally shipped with Solaris 10
412  * Version 2 alters the zone_create system call in order to support more
413  *     arguments by moving the args into a structure; and to do better
414  *     error reporting when zone_create() fails.
415  * Version 3 alters the zone_create system call in order to support the
416  *     import of ZFS datasets to zones.
417  * Version 4 alters the zone_create system call in order to support
418  *     Trusted Extensions.
419  * Version 5 alters the zone_boot system call, and converts its old
420  *     bootargs parameter to be set by the zone_setattr API instead.
421  * Version 6 adds the flag argument to zone_create.
422  */
423 static const int ZONE_SYSCALL_API_VERSION = 6;
424 
425 /*
426  * Certain filesystems (such as NFS and autofs) need to know which zone
427  * the mount is being placed in.  Because of this, we need to be able to
428  * ensure that a zone isn't in the process of being created/destroyed such
429  * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
430  * it gets added the list of mounted zones, it ends up on the wrong zone's
431  * mount list. Since a zone can't reside on an NFS file system, we don't
432  * have to worry about the zonepath itself.
433  *
434  * The following functions: block_mounts()/resume_mounts() and
435  * mount_in_progress()/mount_completed() are used by zones and the VFS
436  * layer (respectively) to synchronize zone state transitions and new
437  * mounts within a zone. This syncronization is on a per-zone basis, so
438  * activity for one zone will not interfere with activity for another zone.
439  *
440  * The semantics are like a reader-reader lock such that there may
441  * either be multiple mounts (or zone state transitions, if that weren't
442  * serialized by zonehash_lock) in progress at the same time, but not
443  * both.
444  *
445  * We use cv's so the user can ctrl-C out of the operation if it's
446  * taking too long.
447  *
448  * The semantics are such that there is unfair bias towards the
449  * "current" operation.  This means that zone halt may starve if
450  * there is a rapid succession of new mounts coming in to the zone.
451  */
452 /*
453  * Prevent new mounts from progressing to the point of calling
454  * VFS_MOUNT().  If there are already mounts in this "region", wait for
455  * them to complete.
456  */
457 static int
458 block_mounts(zone_t *zp)
459 {
460 	int retval = 0;
461 
462 	/*
463 	 * Since it may block for a long time, block_mounts() shouldn't be
464 	 * called with zonehash_lock held.
465 	 */
466 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
467 	mutex_enter(&zp->zone_mount_lock);
468 	while (zp->zone_mounts_in_progress > 0) {
469 		if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
470 			goto signaled;
471 	}
472 	/*
473 	 * A negative value of mounts_in_progress indicates that mounts
474 	 * have been blocked by (-mounts_in_progress) different callers
475 	 * (remotely possible if two threads enter zone_shutdown at the same
476 	 * time).
477 	 */
478 	zp->zone_mounts_in_progress--;
479 	retval = 1;
480 signaled:
481 	mutex_exit(&zp->zone_mount_lock);
482 	return (retval);
483 }
484 
485 /*
486  * The VFS layer may progress with new mounts as far as we're concerned.
487  * Allow them to progress if we were the last obstacle.
488  */
489 static void
490 resume_mounts(zone_t *zp)
491 {
492 	mutex_enter(&zp->zone_mount_lock);
493 	if (++zp->zone_mounts_in_progress == 0)
494 		cv_broadcast(&zp->zone_mount_cv);
495 	mutex_exit(&zp->zone_mount_lock);
496 }
497 
498 /*
499  * The VFS layer is busy with a mount; this zone should wait until all
500  * of its mounts are completed to progress.
501  */
502 void
503 mount_in_progress(zone_t *zp)
504 {
505 	mutex_enter(&zp->zone_mount_lock);
506 	while (zp->zone_mounts_in_progress < 0)
507 		cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
508 	zp->zone_mounts_in_progress++;
509 	mutex_exit(&zp->zone_mount_lock);
510 }
511 
512 /*
513  * VFS is done with one mount; wake up any waiting block_mounts()
514  * callers if this is the last mount.
515  */
516 void
517 mount_completed(zone_t *zp)
518 {
519 	mutex_enter(&zp->zone_mount_lock);
520 	if (--zp->zone_mounts_in_progress == 0)
521 		cv_broadcast(&zp->zone_mount_cv);
522 	mutex_exit(&zp->zone_mount_lock);
523 }
524 
525 /*
526  * ZSD routines.
527  *
528  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
529  * defined by the pthread_key_create() and related interfaces.
530  *
531  * Kernel subsystems may register one or more data items and/or
532  * callbacks to be executed when a zone is created, shutdown, or
533  * destroyed.
534  *
535  * Unlike the thread counterpart, destructor callbacks will be executed
536  * even if the data pointer is NULL and/or there are no constructor
537  * callbacks, so it is the responsibility of such callbacks to check for
538  * NULL data values if necessary.
539  *
540  * The locking strategy and overall picture is as follows:
541  *
542  * When someone calls zone_key_create(), a template ZSD entry is added to the
543  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
544  * holding that lock all the existing zones are marked as
545  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
546  * zone_zsd list (protected by zone_lock). The global list is updated first
547  * (under zone_key_lock) to make sure that newly created zones use the
548  * most recent list of keys. Then under zonehash_lock we walk the zones
549  * and mark them.  Similar locking is used in zone_key_delete().
550  *
551  * The actual create, shutdown, and destroy callbacks are done without
552  * holding any lock. And zsd_flags are used to ensure that the operations
553  * completed so that when zone_key_create (and zone_create) is done, as well as
554  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
555  * are completed.
556  *
557  * When new zones are created constructor callbacks for all registered ZSD
558  * entries will be called. That also uses the above two phases of marking
559  * what needs to be done, and then running the callbacks without holding
560  * any locks.
561  *
562  * The framework does not provide any locking around zone_getspecific() and
563  * zone_setspecific() apart from that needed for internal consistency, so
564  * callers interested in atomic "test-and-set" semantics will need to provide
565  * their own locking.
566  */
567 
568 /*
569  * Helper function to find the zsd_entry associated with the key in the
570  * given list.
571  */
572 static struct zsd_entry *
573 zsd_find(list_t *l, zone_key_t key)
574 {
575 	struct zsd_entry *zsd;
576 
577 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
578 		if (zsd->zsd_key == key) {
579 			return (zsd);
580 		}
581 	}
582 	return (NULL);
583 }
584 
585 /*
586  * Helper function to find the zsd_entry associated with the key in the
587  * given list. Move it to the front of the list.
588  */
589 static struct zsd_entry *
590 zsd_find_mru(list_t *l, zone_key_t key)
591 {
592 	struct zsd_entry *zsd;
593 
594 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
595 		if (zsd->zsd_key == key) {
596 			/*
597 			 * Move to head of list to keep list in MRU order.
598 			 */
599 			if (zsd != list_head(l)) {
600 				list_remove(l, zsd);
601 				list_insert_head(l, zsd);
602 			}
603 			return (zsd);
604 		}
605 	}
606 	return (NULL);
607 }
608 
609 void
610 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
611     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
612 {
613 	struct zsd_entry *zsdp;
614 	struct zsd_entry *t;
615 	struct zone *zone;
616 	zone_key_t  key;
617 
618 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
619 	zsdp->zsd_data = NULL;
620 	zsdp->zsd_create = create;
621 	zsdp->zsd_shutdown = shutdown;
622 	zsdp->zsd_destroy = destroy;
623 
624 	/*
625 	 * Insert in global list of callbacks. Makes future zone creations
626 	 * see it.
627 	 */
628 	mutex_enter(&zsd_key_lock);
629 	key = zsdp->zsd_key = ++zsd_keyval;
630 	ASSERT(zsd_keyval != 0);
631 	list_insert_tail(&zsd_registered_keys, zsdp);
632 	mutex_exit(&zsd_key_lock);
633 
634 	/*
635 	 * Insert for all existing zones and mark them as needing
636 	 * a create callback.
637 	 */
638 	mutex_enter(&zonehash_lock);	/* stop the world */
639 	for (zone = list_head(&zone_active); zone != NULL;
640 	    zone = list_next(&zone_active, zone)) {
641 		zone_status_t status;
642 
643 		mutex_enter(&zone->zone_lock);
644 
645 		/* Skip zones that are on the way down or not yet up */
646 		status = zone_status_get(zone);
647 		if (status >= ZONE_IS_DOWN ||
648 		    status == ZONE_IS_UNINITIALIZED) {
649 			mutex_exit(&zone->zone_lock);
650 			continue;
651 		}
652 
653 		t = zsd_find_mru(&zone->zone_zsd, key);
654 		if (t != NULL) {
655 			/*
656 			 * A zsd_configure already inserted it after
657 			 * we dropped zsd_key_lock above.
658 			 */
659 			mutex_exit(&zone->zone_lock);
660 			continue;
661 		}
662 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
663 		t->zsd_key = key;
664 		t->zsd_create = create;
665 		t->zsd_shutdown = shutdown;
666 		t->zsd_destroy = destroy;
667 		if (create != NULL) {
668 			t->zsd_flags = ZSD_CREATE_NEEDED;
669 			DTRACE_PROBE2(zsd__create__needed,
670 			    zone_t *, zone, zone_key_t, key);
671 		}
672 		list_insert_tail(&zone->zone_zsd, t);
673 		mutex_exit(&zone->zone_lock);
674 	}
675 	mutex_exit(&zonehash_lock);
676 
677 	if (create != NULL) {
678 		/* Now call the create callback for this key */
679 		zsd_apply_all_zones(zsd_apply_create, key);
680 	}
681 	/*
682 	 * It is safe for consumers to use the key now, make it
683 	 * globally visible. Specifically zone_getspecific() will
684 	 * always successfully return the zone specific data associated
685 	 * with the key.
686 	 */
687 	*keyp = key;
688 
689 }
690 
691 /*
692  * Function called when a module is being unloaded, or otherwise wishes
693  * to unregister its ZSD key and callbacks.
694  *
695  * Remove from the global list and determine the functions that need to
696  * be called under a global lock. Then call the functions without
697  * holding any locks. Finally free up the zone_zsd entries. (The apply
698  * functions need to access the zone_zsd entries to find zsd_data etc.)
699  */
700 int
701 zone_key_delete(zone_key_t key)
702 {
703 	struct zsd_entry *zsdp = NULL;
704 	zone_t *zone;
705 
706 	mutex_enter(&zsd_key_lock);
707 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
708 	if (zsdp == NULL) {
709 		mutex_exit(&zsd_key_lock);
710 		return (-1);
711 	}
712 	list_remove(&zsd_registered_keys, zsdp);
713 	mutex_exit(&zsd_key_lock);
714 
715 	mutex_enter(&zonehash_lock);
716 	for (zone = list_head(&zone_active); zone != NULL;
717 	    zone = list_next(&zone_active, zone)) {
718 		struct zsd_entry *del;
719 
720 		mutex_enter(&zone->zone_lock);
721 		del = zsd_find_mru(&zone->zone_zsd, key);
722 		if (del == NULL) {
723 			/*
724 			 * Somebody else got here first e.g the zone going
725 			 * away.
726 			 */
727 			mutex_exit(&zone->zone_lock);
728 			continue;
729 		}
730 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
731 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
732 		if (del->zsd_shutdown != NULL &&
733 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
734 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
735 			DTRACE_PROBE2(zsd__shutdown__needed,
736 			    zone_t *, zone, zone_key_t, key);
737 		}
738 		if (del->zsd_destroy != NULL &&
739 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
740 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
741 			DTRACE_PROBE2(zsd__destroy__needed,
742 			    zone_t *, zone, zone_key_t, key);
743 		}
744 		mutex_exit(&zone->zone_lock);
745 	}
746 	mutex_exit(&zonehash_lock);
747 	kmem_free(zsdp, sizeof (*zsdp));
748 
749 	/* Now call the shutdown and destroy callback for this key */
750 	zsd_apply_all_zones(zsd_apply_shutdown, key);
751 	zsd_apply_all_zones(zsd_apply_destroy, key);
752 
753 	/* Now we can free up the zsdp structures in each zone */
754 	mutex_enter(&zonehash_lock);
755 	for (zone = list_head(&zone_active); zone != NULL;
756 	    zone = list_next(&zone_active, zone)) {
757 		struct zsd_entry *del;
758 
759 		mutex_enter(&zone->zone_lock);
760 		del = zsd_find(&zone->zone_zsd, key);
761 		if (del != NULL) {
762 			list_remove(&zone->zone_zsd, del);
763 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
764 			kmem_free(del, sizeof (*del));
765 		}
766 		mutex_exit(&zone->zone_lock);
767 	}
768 	mutex_exit(&zonehash_lock);
769 
770 	return (0);
771 }
772 
773 /*
774  * ZSD counterpart of pthread_setspecific().
775  *
776  * Since all zsd callbacks, including those with no create function,
777  * have an entry in zone_zsd, if the key is registered it is part of
778  * the zone_zsd list.
779  * Return an error if the key wasn't registerd.
780  */
781 int
782 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
783 {
784 	struct zsd_entry *t;
785 
786 	mutex_enter(&zone->zone_lock);
787 	t = zsd_find_mru(&zone->zone_zsd, key);
788 	if (t != NULL) {
789 		/*
790 		 * Replace old value with new
791 		 */
792 		t->zsd_data = (void *)data;
793 		mutex_exit(&zone->zone_lock);
794 		return (0);
795 	}
796 	mutex_exit(&zone->zone_lock);
797 	return (-1);
798 }
799 
800 /*
801  * ZSD counterpart of pthread_getspecific().
802  */
803 void *
804 zone_getspecific(zone_key_t key, zone_t *zone)
805 {
806 	struct zsd_entry *t;
807 	void *data;
808 
809 	mutex_enter(&zone->zone_lock);
810 	t = zsd_find_mru(&zone->zone_zsd, key);
811 	data = (t == NULL ? NULL : t->zsd_data);
812 	mutex_exit(&zone->zone_lock);
813 	return (data);
814 }
815 
816 /*
817  * Function used to initialize a zone's list of ZSD callbacks and data
818  * when the zone is being created.  The callbacks are initialized from
819  * the template list (zsd_registered_keys). The constructor callback is
820  * executed later (once the zone exists and with locks dropped).
821  */
822 static void
823 zone_zsd_configure(zone_t *zone)
824 {
825 	struct zsd_entry *zsdp;
826 	struct zsd_entry *t;
827 
828 	ASSERT(MUTEX_HELD(&zonehash_lock));
829 	ASSERT(list_head(&zone->zone_zsd) == NULL);
830 	mutex_enter(&zone->zone_lock);
831 	mutex_enter(&zsd_key_lock);
832 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
833 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
834 		/*
835 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
836 		 * should not have added anything to it.
837 		 */
838 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
839 
840 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
841 		t->zsd_key = zsdp->zsd_key;
842 		t->zsd_create = zsdp->zsd_create;
843 		t->zsd_shutdown = zsdp->zsd_shutdown;
844 		t->zsd_destroy = zsdp->zsd_destroy;
845 		if (zsdp->zsd_create != NULL) {
846 			t->zsd_flags = ZSD_CREATE_NEEDED;
847 			DTRACE_PROBE2(zsd__create__needed,
848 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
849 		}
850 		list_insert_tail(&zone->zone_zsd, t);
851 	}
852 	mutex_exit(&zsd_key_lock);
853 	mutex_exit(&zone->zone_lock);
854 }
855 
856 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
857 
858 /*
859  * Helper function to execute shutdown or destructor callbacks.
860  */
861 static void
862 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
863 {
864 	struct zsd_entry *t;
865 
866 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
867 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
868 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
869 
870 	/*
871 	 * Run the callback solely based on what is registered for the zone
872 	 * in zone_zsd. The global list can change independently of this
873 	 * as keys are registered and unregistered and we don't register new
874 	 * callbacks for a zone that is in the process of going away.
875 	 */
876 	mutex_enter(&zone->zone_lock);
877 	for (t = list_head(&zone->zone_zsd); t != NULL;
878 	    t = list_next(&zone->zone_zsd, t)) {
879 		zone_key_t key = t->zsd_key;
880 
881 		/* Skip if no callbacks registered */
882 
883 		if (ct == ZSD_SHUTDOWN) {
884 			if (t->zsd_shutdown != NULL &&
885 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
886 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
887 				DTRACE_PROBE2(zsd__shutdown__needed,
888 				    zone_t *, zone, zone_key_t, key);
889 			}
890 		} else {
891 			if (t->zsd_destroy != NULL &&
892 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
893 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
894 				DTRACE_PROBE2(zsd__destroy__needed,
895 				    zone_t *, zone, zone_key_t, key);
896 			}
897 		}
898 	}
899 	mutex_exit(&zone->zone_lock);
900 
901 	/* Now call the shutdown and destroy callback for this key */
902 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
903 	zsd_apply_all_keys(zsd_apply_destroy, zone);
904 
905 }
906 
907 /*
908  * Called when the zone is going away; free ZSD-related memory, and
909  * destroy the zone_zsd list.
910  */
911 static void
912 zone_free_zsd(zone_t *zone)
913 {
914 	struct zsd_entry *t, *next;
915 
916 	/*
917 	 * Free all the zsd_entry's we had on this zone.
918 	 */
919 	mutex_enter(&zone->zone_lock);
920 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
921 		next = list_next(&zone->zone_zsd, t);
922 		list_remove(&zone->zone_zsd, t);
923 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
924 		kmem_free(t, sizeof (*t));
925 	}
926 	list_destroy(&zone->zone_zsd);
927 	mutex_exit(&zone->zone_lock);
928 
929 }
930 
931 /*
932  * Apply a function to all zones for particular key value.
933  *
934  * The applyfn has to drop zonehash_lock if it does some work, and
935  * then reacquire it before it returns.
936  * When the lock is dropped we don't follow list_next even
937  * if it is possible to do so without any hazards. This is
938  * because we want the design to allow for the list of zones
939  * to change in any arbitrary way during the time the
940  * lock was dropped.
941  *
942  * It is safe to restart the loop at list_head since the applyfn
943  * changes the zsd_flags as it does work, so a subsequent
944  * pass through will have no effect in applyfn, hence the loop will terminate
945  * in at worst O(N^2).
946  */
947 static void
948 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
949 {
950 	zone_t *zone;
951 
952 	mutex_enter(&zonehash_lock);
953 	zone = list_head(&zone_active);
954 	while (zone != NULL) {
955 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
956 			/* Lock dropped - restart at head */
957 			zone = list_head(&zone_active);
958 		} else {
959 			zone = list_next(&zone_active, zone);
960 		}
961 	}
962 	mutex_exit(&zonehash_lock);
963 }
964 
965 /*
966  * Apply a function to all keys for a particular zone.
967  *
968  * The applyfn has to drop zonehash_lock if it does some work, and
969  * then reacquire it before it returns.
970  * When the lock is dropped we don't follow list_next even
971  * if it is possible to do so without any hazards. This is
972  * because we want the design to allow for the list of zsd callbacks
973  * to change in any arbitrary way during the time the
974  * lock was dropped.
975  *
976  * It is safe to restart the loop at list_head since the applyfn
977  * changes the zsd_flags as it does work, so a subsequent
978  * pass through will have no effect in applyfn, hence the loop will terminate
979  * in at worst O(N^2).
980  */
981 static void
982 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
983 {
984 	struct zsd_entry *t;
985 
986 	mutex_enter(&zone->zone_lock);
987 	t = list_head(&zone->zone_zsd);
988 	while (t != NULL) {
989 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
990 			/* Lock dropped - restart at head */
991 			t = list_head(&zone->zone_zsd);
992 		} else {
993 			t = list_next(&zone->zone_zsd, t);
994 		}
995 	}
996 	mutex_exit(&zone->zone_lock);
997 }
998 
999 /*
1000  * Call the create function for the zone and key if CREATE_NEEDED
1001  * is set.
1002  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1003  * we wait for that thread to complete so that we can ensure that
1004  * all the callbacks are done when we've looped over all zones/keys.
1005  *
1006  * When we call the create function, we drop the global held by the
1007  * caller, and return true to tell the caller it needs to re-evalute the
1008  * state.
1009  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1010  * remains held on exit.
1011  */
1012 static boolean_t
1013 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1014     zone_t *zone, zone_key_t key)
1015 {
1016 	void *result;
1017 	struct zsd_entry *t;
1018 	boolean_t dropped;
1019 
1020 	if (lockp != NULL) {
1021 		ASSERT(MUTEX_HELD(lockp));
1022 	}
1023 	if (zone_lock_held) {
1024 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1025 	} else {
1026 		mutex_enter(&zone->zone_lock);
1027 	}
1028 
1029 	t = zsd_find(&zone->zone_zsd, key);
1030 	if (t == NULL) {
1031 		/*
1032 		 * Somebody else got here first e.g the zone going
1033 		 * away.
1034 		 */
1035 		if (!zone_lock_held)
1036 			mutex_exit(&zone->zone_lock);
1037 		return (B_FALSE);
1038 	}
1039 	dropped = B_FALSE;
1040 	if (zsd_wait_for_inprogress(zone, t, lockp))
1041 		dropped = B_TRUE;
1042 
1043 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1044 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1045 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1046 		DTRACE_PROBE2(zsd__create__inprogress,
1047 		    zone_t *, zone, zone_key_t, key);
1048 		mutex_exit(&zone->zone_lock);
1049 		if (lockp != NULL)
1050 			mutex_exit(lockp);
1051 
1052 		dropped = B_TRUE;
1053 		ASSERT(t->zsd_create != NULL);
1054 		DTRACE_PROBE2(zsd__create__start,
1055 		    zone_t *, zone, zone_key_t, key);
1056 
1057 		result = (*t->zsd_create)(zone->zone_id);
1058 
1059 		DTRACE_PROBE2(zsd__create__end,
1060 		    zone_t *, zone, voidn *, result);
1061 
1062 		ASSERT(result != NULL);
1063 		if (lockp != NULL)
1064 			mutex_enter(lockp);
1065 		mutex_enter(&zone->zone_lock);
1066 		t->zsd_data = result;
1067 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1068 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1069 		cv_broadcast(&t->zsd_cv);
1070 		DTRACE_PROBE2(zsd__create__completed,
1071 		    zone_t *, zone, zone_key_t, key);
1072 	}
1073 	if (!zone_lock_held)
1074 		mutex_exit(&zone->zone_lock);
1075 	return (dropped);
1076 }
1077 
1078 /*
1079  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1080  * is set.
1081  * If some other thread gets here first and sets *_INPROGRESS, then
1082  * we wait for that thread to complete so that we can ensure that
1083  * all the callbacks are done when we've looped over all zones/keys.
1084  *
1085  * When we call the shutdown function, we drop the global held by the
1086  * caller, and return true to tell the caller it needs to re-evalute the
1087  * state.
1088  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1089  * remains held on exit.
1090  */
1091 static boolean_t
1092 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1093     zone_t *zone, zone_key_t key)
1094 {
1095 	struct zsd_entry *t;
1096 	void *data;
1097 	boolean_t dropped;
1098 
1099 	if (lockp != NULL) {
1100 		ASSERT(MUTEX_HELD(lockp));
1101 	}
1102 	if (zone_lock_held) {
1103 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1104 	} else {
1105 		mutex_enter(&zone->zone_lock);
1106 	}
1107 
1108 	t = zsd_find(&zone->zone_zsd, key);
1109 	if (t == NULL) {
1110 		/*
1111 		 * Somebody else got here first e.g the zone going
1112 		 * away.
1113 		 */
1114 		if (!zone_lock_held)
1115 			mutex_exit(&zone->zone_lock);
1116 		return (B_FALSE);
1117 	}
1118 	dropped = B_FALSE;
1119 	if (zsd_wait_for_creator(zone, t, lockp))
1120 		dropped = B_TRUE;
1121 
1122 	if (zsd_wait_for_inprogress(zone, t, lockp))
1123 		dropped = B_TRUE;
1124 
1125 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1126 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1127 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1128 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1129 		    zone_t *, zone, zone_key_t, key);
1130 		mutex_exit(&zone->zone_lock);
1131 		if (lockp != NULL)
1132 			mutex_exit(lockp);
1133 		dropped = B_TRUE;
1134 
1135 		ASSERT(t->zsd_shutdown != NULL);
1136 		data = t->zsd_data;
1137 
1138 		DTRACE_PROBE2(zsd__shutdown__start,
1139 		    zone_t *, zone, zone_key_t, key);
1140 
1141 		(t->zsd_shutdown)(zone->zone_id, data);
1142 		DTRACE_PROBE2(zsd__shutdown__end,
1143 		    zone_t *, zone, zone_key_t, key);
1144 
1145 		if (lockp != NULL)
1146 			mutex_enter(lockp);
1147 		mutex_enter(&zone->zone_lock);
1148 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1149 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1150 		cv_broadcast(&t->zsd_cv);
1151 		DTRACE_PROBE2(zsd__shutdown__completed,
1152 		    zone_t *, zone, zone_key_t, key);
1153 	}
1154 	if (!zone_lock_held)
1155 		mutex_exit(&zone->zone_lock);
1156 	return (dropped);
1157 }
1158 
1159 /*
1160  * Call the destroy function for the zone and key if DESTROY_NEEDED
1161  * is set.
1162  * If some other thread gets here first and sets *_INPROGRESS, then
1163  * we wait for that thread to complete so that we can ensure that
1164  * all the callbacks are done when we've looped over all zones/keys.
1165  *
1166  * When we call the destroy function, we drop the global held by the
1167  * caller, and return true to tell the caller it needs to re-evalute the
1168  * state.
1169  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1170  * remains held on exit.
1171  */
1172 static boolean_t
1173 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1174     zone_t *zone, zone_key_t key)
1175 {
1176 	struct zsd_entry *t;
1177 	void *data;
1178 	boolean_t dropped;
1179 
1180 	if (lockp != NULL) {
1181 		ASSERT(MUTEX_HELD(lockp));
1182 	}
1183 	if (zone_lock_held) {
1184 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1185 	} else {
1186 		mutex_enter(&zone->zone_lock);
1187 	}
1188 
1189 	t = zsd_find(&zone->zone_zsd, key);
1190 	if (t == NULL) {
1191 		/*
1192 		 * Somebody else got here first e.g the zone going
1193 		 * away.
1194 		 */
1195 		if (!zone_lock_held)
1196 			mutex_exit(&zone->zone_lock);
1197 		return (B_FALSE);
1198 	}
1199 	dropped = B_FALSE;
1200 	if (zsd_wait_for_creator(zone, t, lockp))
1201 		dropped = B_TRUE;
1202 
1203 	if (zsd_wait_for_inprogress(zone, t, lockp))
1204 		dropped = B_TRUE;
1205 
1206 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1207 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1208 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1209 		DTRACE_PROBE2(zsd__destroy__inprogress,
1210 		    zone_t *, zone, zone_key_t, key);
1211 		mutex_exit(&zone->zone_lock);
1212 		if (lockp != NULL)
1213 			mutex_exit(lockp);
1214 		dropped = B_TRUE;
1215 
1216 		ASSERT(t->zsd_destroy != NULL);
1217 		data = t->zsd_data;
1218 		DTRACE_PROBE2(zsd__destroy__start,
1219 		    zone_t *, zone, zone_key_t, key);
1220 
1221 		(t->zsd_destroy)(zone->zone_id, data);
1222 		DTRACE_PROBE2(zsd__destroy__end,
1223 		    zone_t *, zone, zone_key_t, key);
1224 
1225 		if (lockp != NULL)
1226 			mutex_enter(lockp);
1227 		mutex_enter(&zone->zone_lock);
1228 		t->zsd_data = NULL;
1229 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1230 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1231 		cv_broadcast(&t->zsd_cv);
1232 		DTRACE_PROBE2(zsd__destroy__completed,
1233 		    zone_t *, zone, zone_key_t, key);
1234 	}
1235 	if (!zone_lock_held)
1236 		mutex_exit(&zone->zone_lock);
1237 	return (dropped);
1238 }
1239 
1240 /*
1241  * Wait for any CREATE_NEEDED flag to be cleared.
1242  * Returns true if lockp was temporarily dropped while waiting.
1243  */
1244 static boolean_t
1245 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1246 {
1247 	boolean_t dropped = B_FALSE;
1248 
1249 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1250 		DTRACE_PROBE2(zsd__wait__for__creator,
1251 		    zone_t *, zone, struct zsd_entry *, t);
1252 		if (lockp != NULL) {
1253 			dropped = B_TRUE;
1254 			mutex_exit(lockp);
1255 		}
1256 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1257 		if (lockp != NULL) {
1258 			/* First drop zone_lock to preserve order */
1259 			mutex_exit(&zone->zone_lock);
1260 			mutex_enter(lockp);
1261 			mutex_enter(&zone->zone_lock);
1262 		}
1263 	}
1264 	return (dropped);
1265 }
1266 
1267 /*
1268  * Wait for any INPROGRESS flag to be cleared.
1269  * Returns true if lockp was temporarily dropped while waiting.
1270  */
1271 static boolean_t
1272 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1273 {
1274 	boolean_t dropped = B_FALSE;
1275 
1276 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1277 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1278 		    zone_t *, zone, struct zsd_entry *, t);
1279 		if (lockp != NULL) {
1280 			dropped = B_TRUE;
1281 			mutex_exit(lockp);
1282 		}
1283 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1284 		if (lockp != NULL) {
1285 			/* First drop zone_lock to preserve order */
1286 			mutex_exit(&zone->zone_lock);
1287 			mutex_enter(lockp);
1288 			mutex_enter(&zone->zone_lock);
1289 		}
1290 	}
1291 	return (dropped);
1292 }
1293 
1294 /*
1295  * Frees memory associated with the zone dataset list.
1296  */
1297 static void
1298 zone_free_datasets(zone_t *zone)
1299 {
1300 	zone_dataset_t *t, *next;
1301 
1302 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1303 		next = list_next(&zone->zone_datasets, t);
1304 		list_remove(&zone->zone_datasets, t);
1305 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1306 		kmem_free(t, sizeof (*t));
1307 	}
1308 	list_destroy(&zone->zone_datasets);
1309 }
1310 
1311 /*
1312  * zone.cpu-shares resource control support.
1313  */
1314 /*ARGSUSED*/
1315 static rctl_qty_t
1316 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1317 {
1318 	ASSERT(MUTEX_HELD(&p->p_lock));
1319 	return (p->p_zone->zone_shares);
1320 }
1321 
1322 /*ARGSUSED*/
1323 static int
1324 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1325     rctl_qty_t nv)
1326 {
1327 	ASSERT(MUTEX_HELD(&p->p_lock));
1328 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1329 	if (e->rcep_p.zone == NULL)
1330 		return (0);
1331 
1332 	e->rcep_p.zone->zone_shares = nv;
1333 	return (0);
1334 }
1335 
1336 static rctl_ops_t zone_cpu_shares_ops = {
1337 	rcop_no_action,
1338 	zone_cpu_shares_usage,
1339 	zone_cpu_shares_set,
1340 	rcop_no_test
1341 };
1342 
1343 /*
1344  * zone.cpu-cap resource control support.
1345  */
1346 /*ARGSUSED*/
1347 static rctl_qty_t
1348 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1349 {
1350 	ASSERT(MUTEX_HELD(&p->p_lock));
1351 	return (cpucaps_zone_get(p->p_zone));
1352 }
1353 
1354 /*ARGSUSED*/
1355 static int
1356 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1357     rctl_qty_t nv)
1358 {
1359 	zone_t *zone = e->rcep_p.zone;
1360 
1361 	ASSERT(MUTEX_HELD(&p->p_lock));
1362 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1363 
1364 	if (zone == NULL)
1365 		return (0);
1366 
1367 	/*
1368 	 * set cap to the new value.
1369 	 */
1370 	return (cpucaps_zone_set(zone, nv));
1371 }
1372 
1373 static rctl_ops_t zone_cpu_cap_ops = {
1374 	rcop_no_action,
1375 	zone_cpu_cap_get,
1376 	zone_cpu_cap_set,
1377 	rcop_no_test
1378 };
1379 
1380 /*ARGSUSED*/
1381 static rctl_qty_t
1382 zone_lwps_usage(rctl_t *r, proc_t *p)
1383 {
1384 	rctl_qty_t nlwps;
1385 	zone_t *zone = p->p_zone;
1386 
1387 	ASSERT(MUTEX_HELD(&p->p_lock));
1388 
1389 	mutex_enter(&zone->zone_nlwps_lock);
1390 	nlwps = zone->zone_nlwps;
1391 	mutex_exit(&zone->zone_nlwps_lock);
1392 
1393 	return (nlwps);
1394 }
1395 
1396 /*ARGSUSED*/
1397 static int
1398 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1399     rctl_qty_t incr, uint_t flags)
1400 {
1401 	rctl_qty_t nlwps;
1402 
1403 	ASSERT(MUTEX_HELD(&p->p_lock));
1404 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1405 	if (e->rcep_p.zone == NULL)
1406 		return (0);
1407 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1408 	nlwps = e->rcep_p.zone->zone_nlwps;
1409 
1410 	if (nlwps + incr > rcntl->rcv_value)
1411 		return (1);
1412 
1413 	return (0);
1414 }
1415 
1416 /*ARGSUSED*/
1417 static int
1418 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1419 {
1420 	ASSERT(MUTEX_HELD(&p->p_lock));
1421 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1422 	if (e->rcep_p.zone == NULL)
1423 		return (0);
1424 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1425 	return (0);
1426 }
1427 
1428 static rctl_ops_t zone_lwps_ops = {
1429 	rcop_no_action,
1430 	zone_lwps_usage,
1431 	zone_lwps_set,
1432 	zone_lwps_test,
1433 };
1434 
1435 /*ARGSUSED*/
1436 static rctl_qty_t
1437 zone_procs_usage(rctl_t *r, proc_t *p)
1438 {
1439 	rctl_qty_t nprocs;
1440 	zone_t *zone = p->p_zone;
1441 
1442 	ASSERT(MUTEX_HELD(&p->p_lock));
1443 
1444 	mutex_enter(&zone->zone_nlwps_lock);
1445 	nprocs = zone->zone_nprocs;
1446 	mutex_exit(&zone->zone_nlwps_lock);
1447 
1448 	return (nprocs);
1449 }
1450 
1451 /*ARGSUSED*/
1452 static int
1453 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1454     rctl_qty_t incr, uint_t flags)
1455 {
1456 	rctl_qty_t nprocs;
1457 
1458 	ASSERT(MUTEX_HELD(&p->p_lock));
1459 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1460 	if (e->rcep_p.zone == NULL)
1461 		return (0);
1462 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1463 	nprocs = e->rcep_p.zone->zone_nprocs;
1464 
1465 	if (nprocs + incr > rcntl->rcv_value)
1466 		return (1);
1467 
1468 	return (0);
1469 }
1470 
1471 /*ARGSUSED*/
1472 static int
1473 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1474 {
1475 	ASSERT(MUTEX_HELD(&p->p_lock));
1476 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1477 	if (e->rcep_p.zone == NULL)
1478 		return (0);
1479 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1480 	return (0);
1481 }
1482 
1483 static rctl_ops_t zone_procs_ops = {
1484 	rcop_no_action,
1485 	zone_procs_usage,
1486 	zone_procs_set,
1487 	zone_procs_test,
1488 };
1489 
1490 /*ARGSUSED*/
1491 static rctl_qty_t
1492 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1493 {
1494 	ASSERT(MUTEX_HELD(&p->p_lock));
1495 	return (p->p_zone->zone_shmmax);
1496 }
1497 
1498 /*ARGSUSED*/
1499 static int
1500 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1501     rctl_qty_t incr, uint_t flags)
1502 {
1503 	rctl_qty_t v;
1504 	ASSERT(MUTEX_HELD(&p->p_lock));
1505 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1506 	v = e->rcep_p.zone->zone_shmmax + incr;
1507 	if (v > rval->rcv_value)
1508 		return (1);
1509 	return (0);
1510 }
1511 
1512 static rctl_ops_t zone_shmmax_ops = {
1513 	rcop_no_action,
1514 	zone_shmmax_usage,
1515 	rcop_no_set,
1516 	zone_shmmax_test
1517 };
1518 
1519 /*ARGSUSED*/
1520 static rctl_qty_t
1521 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1522 {
1523 	ASSERT(MUTEX_HELD(&p->p_lock));
1524 	return (p->p_zone->zone_ipc.ipcq_shmmni);
1525 }
1526 
1527 /*ARGSUSED*/
1528 static int
1529 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1530     rctl_qty_t incr, uint_t flags)
1531 {
1532 	rctl_qty_t v;
1533 	ASSERT(MUTEX_HELD(&p->p_lock));
1534 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1535 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1536 	if (v > rval->rcv_value)
1537 		return (1);
1538 	return (0);
1539 }
1540 
1541 static rctl_ops_t zone_shmmni_ops = {
1542 	rcop_no_action,
1543 	zone_shmmni_usage,
1544 	rcop_no_set,
1545 	zone_shmmni_test
1546 };
1547 
1548 /*ARGSUSED*/
1549 static rctl_qty_t
1550 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1551 {
1552 	ASSERT(MUTEX_HELD(&p->p_lock));
1553 	return (p->p_zone->zone_ipc.ipcq_semmni);
1554 }
1555 
1556 /*ARGSUSED*/
1557 static int
1558 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1559     rctl_qty_t incr, uint_t flags)
1560 {
1561 	rctl_qty_t v;
1562 	ASSERT(MUTEX_HELD(&p->p_lock));
1563 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1564 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1565 	if (v > rval->rcv_value)
1566 		return (1);
1567 	return (0);
1568 }
1569 
1570 static rctl_ops_t zone_semmni_ops = {
1571 	rcop_no_action,
1572 	zone_semmni_usage,
1573 	rcop_no_set,
1574 	zone_semmni_test
1575 };
1576 
1577 /*ARGSUSED*/
1578 static rctl_qty_t
1579 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1580 {
1581 	ASSERT(MUTEX_HELD(&p->p_lock));
1582 	return (p->p_zone->zone_ipc.ipcq_msgmni);
1583 }
1584 
1585 /*ARGSUSED*/
1586 static int
1587 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1588     rctl_qty_t incr, uint_t flags)
1589 {
1590 	rctl_qty_t v;
1591 	ASSERT(MUTEX_HELD(&p->p_lock));
1592 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1593 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1594 	if (v > rval->rcv_value)
1595 		return (1);
1596 	return (0);
1597 }
1598 
1599 static rctl_ops_t zone_msgmni_ops = {
1600 	rcop_no_action,
1601 	zone_msgmni_usage,
1602 	rcop_no_set,
1603 	zone_msgmni_test
1604 };
1605 
1606 /*ARGSUSED*/
1607 static rctl_qty_t
1608 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1609 {
1610 	rctl_qty_t q;
1611 	ASSERT(MUTEX_HELD(&p->p_lock));
1612 	mutex_enter(&p->p_zone->zone_mem_lock);
1613 	q = p->p_zone->zone_locked_mem;
1614 	mutex_exit(&p->p_zone->zone_mem_lock);
1615 	return (q);
1616 }
1617 
1618 /*ARGSUSED*/
1619 static int
1620 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1621     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1622 {
1623 	rctl_qty_t q;
1624 	zone_t *z;
1625 
1626 	z = e->rcep_p.zone;
1627 	ASSERT(MUTEX_HELD(&p->p_lock));
1628 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1629 	q = z->zone_locked_mem;
1630 	if (q + incr > rcntl->rcv_value)
1631 		return (1);
1632 	return (0);
1633 }
1634 
1635 /*ARGSUSED*/
1636 static int
1637 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1638     rctl_qty_t nv)
1639 {
1640 	ASSERT(MUTEX_HELD(&p->p_lock));
1641 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1642 	if (e->rcep_p.zone == NULL)
1643 		return (0);
1644 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1645 	return (0);
1646 }
1647 
1648 static rctl_ops_t zone_locked_mem_ops = {
1649 	rcop_no_action,
1650 	zone_locked_mem_usage,
1651 	zone_locked_mem_set,
1652 	zone_locked_mem_test
1653 };
1654 
1655 /*ARGSUSED*/
1656 static rctl_qty_t
1657 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1658 {
1659 	rctl_qty_t q;
1660 	zone_t *z = p->p_zone;
1661 
1662 	ASSERT(MUTEX_HELD(&p->p_lock));
1663 	mutex_enter(&z->zone_mem_lock);
1664 	q = z->zone_max_swap;
1665 	mutex_exit(&z->zone_mem_lock);
1666 	return (q);
1667 }
1668 
1669 /*ARGSUSED*/
1670 static int
1671 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1672     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1673 {
1674 	rctl_qty_t q;
1675 	zone_t *z;
1676 
1677 	z = e->rcep_p.zone;
1678 	ASSERT(MUTEX_HELD(&p->p_lock));
1679 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1680 	q = z->zone_max_swap;
1681 	if (q + incr > rcntl->rcv_value)
1682 		return (1);
1683 	return (0);
1684 }
1685 
1686 /*ARGSUSED*/
1687 static int
1688 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1689     rctl_qty_t nv)
1690 {
1691 	ASSERT(MUTEX_HELD(&p->p_lock));
1692 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1693 	if (e->rcep_p.zone == NULL)
1694 		return (0);
1695 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1696 	return (0);
1697 }
1698 
1699 static rctl_ops_t zone_max_swap_ops = {
1700 	rcop_no_action,
1701 	zone_max_swap_usage,
1702 	zone_max_swap_set,
1703 	zone_max_swap_test
1704 };
1705 
1706 /*ARGSUSED*/
1707 static rctl_qty_t
1708 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1709 {
1710 	rctl_qty_t q;
1711 	zone_t *z = p->p_zone;
1712 
1713 	ASSERT(MUTEX_HELD(&p->p_lock));
1714 	mutex_enter(&z->zone_rctl_lock);
1715 	q = z->zone_max_lofi;
1716 	mutex_exit(&z->zone_rctl_lock);
1717 	return (q);
1718 }
1719 
1720 /*ARGSUSED*/
1721 static int
1722 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1723     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1724 {
1725 	rctl_qty_t q;
1726 	zone_t *z;
1727 
1728 	z = e->rcep_p.zone;
1729 	ASSERT(MUTEX_HELD(&p->p_lock));
1730 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1731 	q = z->zone_max_lofi;
1732 	if (q + incr > rcntl->rcv_value)
1733 		return (1);
1734 	return (0);
1735 }
1736 
1737 /*ARGSUSED*/
1738 static int
1739 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1740     rctl_qty_t nv)
1741 {
1742 	ASSERT(MUTEX_HELD(&p->p_lock));
1743 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1744 	if (e->rcep_p.zone == NULL)
1745 		return (0);
1746 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1747 	return (0);
1748 }
1749 
1750 static rctl_ops_t zone_max_lofi_ops = {
1751 	rcop_no_action,
1752 	zone_max_lofi_usage,
1753 	zone_max_lofi_set,
1754 	zone_max_lofi_test
1755 };
1756 
1757 /*
1758  * Helper function to brand the zone with a unique ID.
1759  */
1760 static void
1761 zone_uniqid(zone_t *zone)
1762 {
1763 	static uint64_t uniqid = 0;
1764 
1765 	ASSERT(MUTEX_HELD(&zonehash_lock));
1766 	zone->zone_uniqid = uniqid++;
1767 }
1768 
1769 /*
1770  * Returns a held pointer to the "kcred" for the specified zone.
1771  */
1772 struct cred *
1773 zone_get_kcred(zoneid_t zoneid)
1774 {
1775 	zone_t *zone;
1776 	cred_t *cr;
1777 
1778 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1779 		return (NULL);
1780 	cr = zone->zone_kcred;
1781 	crhold(cr);
1782 	zone_rele(zone);
1783 	return (cr);
1784 }
1785 
1786 static int
1787 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1788 {
1789 	zone_t *zone = ksp->ks_private;
1790 	zone_kstat_t *zk = ksp->ks_data;
1791 
1792 	if (rw == KSTAT_WRITE)
1793 		return (EACCES);
1794 
1795 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1796 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1797 	return (0);
1798 }
1799 
1800 static int
1801 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1802 {
1803 	zone_t *zone = ksp->ks_private;
1804 	zone_kstat_t *zk = ksp->ks_data;
1805 
1806 	if (rw == KSTAT_WRITE)
1807 		return (EACCES);
1808 
1809 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1810 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1811 	return (0);
1812 }
1813 
1814 static int
1815 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1816 {
1817 	zone_t *zone = ksp->ks_private;
1818 	zone_kstat_t *zk = ksp->ks_data;
1819 
1820 	if (rw == KSTAT_WRITE)
1821 		return (EACCES);
1822 
1823 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1824 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1825 	return (0);
1826 }
1827 
1828 static kstat_t *
1829 zone_kstat_create_common(zone_t *zone, char *name,
1830     int (*updatefunc) (kstat_t *, int))
1831 {
1832 	kstat_t *ksp;
1833 	zone_kstat_t *zk;
1834 
1835 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1836 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1837 	    KSTAT_FLAG_VIRTUAL);
1838 
1839 	if (ksp == NULL)
1840 		return (NULL);
1841 
1842 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1843 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1844 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1845 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1846 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1847 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1848 	ksp->ks_update = updatefunc;
1849 	ksp->ks_private = zone;
1850 	kstat_install(ksp);
1851 	return (ksp);
1852 }
1853 
1854 
1855 static int
1856 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1857 {
1858 	zone_t *zone = ksp->ks_private;
1859 	zone_mcap_kstat_t *zmp = ksp->ks_data;
1860 
1861 	if (rw == KSTAT_WRITE)
1862 		return (EACCES);
1863 
1864 	zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1865 	zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1866 	zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1867 	zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1868 	zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1869 
1870 	return (0);
1871 }
1872 
1873 static kstat_t *
1874 zone_mcap_kstat_create(zone_t *zone)
1875 {
1876 	kstat_t *ksp;
1877 	zone_mcap_kstat_t *zmp;
1878 
1879 	if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1880 	    zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1881 	    sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1882 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1883 		return (NULL);
1884 
1885 	if (zone->zone_id != GLOBAL_ZONEID)
1886 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1887 
1888 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1889 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1890 	ksp->ks_lock = &zone->zone_mcap_lock;
1891 	zone->zone_mcap_stats = zmp;
1892 
1893 	/* The kstat "name" field is not large enough for a full zonename */
1894 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1895 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1896 	kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1897 	kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1898 	kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1899 	kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1900 	kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1901 	    KSTAT_DATA_UINT64);
1902 
1903 	ksp->ks_update = zone_mcap_kstat_update;
1904 	ksp->ks_private = zone;
1905 
1906 	kstat_install(ksp);
1907 	return (ksp);
1908 }
1909 
1910 static int
1911 zone_misc_kstat_update(kstat_t *ksp, int rw)
1912 {
1913 	zone_t *zone = ksp->ks_private;
1914 	zone_misc_kstat_t *zmp = ksp->ks_data;
1915 	hrtime_t hrtime;
1916 	uint64_t tmp;
1917 
1918 	if (rw == KSTAT_WRITE)
1919 		return (EACCES);
1920 
1921 	tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_STIME);
1922 	hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1923 	scalehrtime(&hrtime);
1924 	zmp->zm_stime.value.ui64 = hrtime;
1925 
1926 	tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_UTIME);
1927 	hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1928 	scalehrtime(&hrtime);
1929 	zmp->zm_utime.value.ui64 = hrtime;
1930 
1931 	tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_WTIME);
1932 	hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1933 	scalehrtime(&hrtime);
1934 	zmp->zm_wtime.value.ui64 = hrtime;
1935 
1936 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1937 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1938 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1939 
1940 	zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1941 	zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1942 	zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1943 	zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1944 
1945 	zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1946 
1947 	zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1948 	zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1949 
1950 	return (0);
1951 }
1952 
1953 static kstat_t *
1954 zone_misc_kstat_create(zone_t *zone)
1955 {
1956 	kstat_t *ksp;
1957 	zone_misc_kstat_t *zmp;
1958 
1959 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1960 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1961 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1962 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1963 		return (NULL);
1964 
1965 	if (zone->zone_id != GLOBAL_ZONEID)
1966 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1967 
1968 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1969 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1970 	ksp->ks_lock = &zone->zone_misc_lock;
1971 	zone->zone_misc_stats = zmp;
1972 
1973 	/* The kstat "name" field is not large enough for a full zonename */
1974 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1975 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1976 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1977 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1978 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1979 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1980 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1981 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1982 	    KSTAT_DATA_UINT32);
1983 	kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1984 	kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1985 	    KSTAT_DATA_UINT32);
1986 	kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1987 	kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1988 	kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1989 	    KSTAT_DATA_UINT32);
1990 	kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1991 	kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1992 
1993 	ksp->ks_update = zone_misc_kstat_update;
1994 	ksp->ks_private = zone;
1995 
1996 	kstat_install(ksp);
1997 	return (ksp);
1998 }
1999 
2000 static void
2001 zone_kstat_create(zone_t *zone)
2002 {
2003 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
2004 	    "lockedmem", zone_lockedmem_kstat_update);
2005 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
2006 	    "swapresv", zone_swapresv_kstat_update);
2007 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
2008 	    "nprocs", zone_nprocs_kstat_update);
2009 
2010 	if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2011 		zone->zone_mcap_stats = kmem_zalloc(
2012 		    sizeof (zone_mcap_kstat_t), KM_SLEEP);
2013 	}
2014 
2015 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2016 		zone->zone_misc_stats = kmem_zalloc(
2017 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
2018 	}
2019 }
2020 
2021 static void
2022 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2023 {
2024 	void *data;
2025 
2026 	if (*pkstat != NULL) {
2027 		data = (*pkstat)->ks_data;
2028 		kstat_delete(*pkstat);
2029 		kmem_free(data, datasz);
2030 		*pkstat = NULL;
2031 	}
2032 }
2033 
2034 static void
2035 zone_kstat_delete(zone_t *zone)
2036 {
2037 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2038 	    sizeof (zone_kstat_t));
2039 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2040 	    sizeof (zone_kstat_t));
2041 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2042 	    sizeof (zone_kstat_t));
2043 	zone_kstat_delete_common(&zone->zone_mcap_ksp,
2044 	    sizeof (zone_mcap_kstat_t));
2045 	zone_kstat_delete_common(&zone->zone_misc_ksp,
2046 	    sizeof (zone_misc_kstat_t));
2047 }
2048 
2049 /*
2050  * Called very early on in boot to initialize the ZSD list so that
2051  * zone_key_create() can be called before zone_init().  It also initializes
2052  * portions of zone0 which may be used before zone_init() is called.  The
2053  * variable "global_zone" will be set when zone0 is fully initialized by
2054  * zone_init().
2055  */
2056 void
2057 zone_zsd_init(void)
2058 {
2059 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2060 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2061 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2062 	    offsetof(struct zsd_entry, zsd_linkage));
2063 	list_create(&zone_active, sizeof (zone_t),
2064 	    offsetof(zone_t, zone_linkage));
2065 	list_create(&zone_deathrow, sizeof (zone_t),
2066 	    offsetof(zone_t, zone_linkage));
2067 
2068 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2069 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2070 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2071 	zone0.zone_shares = 1;
2072 	zone0.zone_nlwps = 0;
2073 	zone0.zone_nlwps_ctl = INT_MAX;
2074 	zone0.zone_nprocs = 0;
2075 	zone0.zone_nprocs_ctl = INT_MAX;
2076 	zone0.zone_locked_mem = 0;
2077 	zone0.zone_locked_mem_ctl = UINT64_MAX;
2078 	ASSERT(zone0.zone_max_swap == 0);
2079 	zone0.zone_max_swap_ctl = UINT64_MAX;
2080 	zone0.zone_max_lofi = 0;
2081 	zone0.zone_max_lofi_ctl = UINT64_MAX;
2082 	zone0.zone_shmmax = 0;
2083 	zone0.zone_ipc.ipcq_shmmni = 0;
2084 	zone0.zone_ipc.ipcq_semmni = 0;
2085 	zone0.zone_ipc.ipcq_msgmni = 0;
2086 	zone0.zone_name = GLOBAL_ZONENAME;
2087 	zone0.zone_nodename = utsname.nodename;
2088 	zone0.zone_domain = srpc_domain;
2089 	zone0.zone_hostid = HW_INVALID_HOSTID;
2090 	zone0.zone_fs_allowed = NULL;
2091 	psecflags_default(&zone0.zone_secflags);
2092 	zone0.zone_ref = 1;
2093 	zone0.zone_id = GLOBAL_ZONEID;
2094 	zone0.zone_status = ZONE_IS_RUNNING;
2095 	zone0.zone_rootpath = "/";
2096 	zone0.zone_rootpathlen = 2;
2097 	zone0.zone_psetid = ZONE_PS_INVAL;
2098 	zone0.zone_ncpus = 0;
2099 	zone0.zone_ncpus_online = 0;
2100 	zone0.zone_proc_initpid = 1;
2101 	zone0.zone_initname = initname;
2102 	zone0.zone_lockedmem_kstat = NULL;
2103 	zone0.zone_swapresv_kstat = NULL;
2104 	zone0.zone_nprocs_kstat = NULL;
2105 
2106 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2107 	    offsetof(zone_ref_t, zref_linkage));
2108 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2109 	    offsetof(struct zsd_entry, zsd_linkage));
2110 	list_insert_head(&zone_active, &zone0);
2111 
2112 	/*
2113 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2114 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2115 	 * vfs_mountroot().
2116 	 */
2117 	zone0.zone_rootvp = NULL;
2118 	zone0.zone_vfslist = NULL;
2119 	zone0.zone_bootargs = initargs;
2120 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2121 	/*
2122 	 * The global zone has all privileges
2123 	 */
2124 	priv_fillset(zone0.zone_privset);
2125 	/*
2126 	 * Add p0 to the global zone
2127 	 */
2128 	zone0.zone_zsched = &p0;
2129 	p0.p_zone = &zone0;
2130 }
2131 
2132 /*
2133  * Compute a hash value based on the contents of the label and the DOI.  The
2134  * hash algorithm is somewhat arbitrary, but is based on the observation that
2135  * humans will likely pick labels that differ by amounts that work out to be
2136  * multiples of the number of hash chains, and thus stirring in some primes
2137  * should help.
2138  */
2139 static uint_t
2140 hash_bylabel(void *hdata, mod_hash_key_t key)
2141 {
2142 	const ts_label_t *lab = (ts_label_t *)key;
2143 	const uint32_t *up, *ue;
2144 	uint_t hash;
2145 	int i;
2146 
2147 	_NOTE(ARGUNUSED(hdata));
2148 
2149 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2150 	/* we depend on alignment of label, but not representation */
2151 	up = (const uint32_t *)&lab->tsl_label;
2152 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2153 	i = 1;
2154 	while (up < ue) {
2155 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2156 		hash += *up + (*up << ((i % 16) + 1));
2157 		up++;
2158 		i++;
2159 	}
2160 	return (hash);
2161 }
2162 
2163 /*
2164  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2165  * equal).  This may need to be changed if less than / greater than is ever
2166  * needed.
2167  */
2168 static int
2169 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2170 {
2171 	ts_label_t *lab1 = (ts_label_t *)key1;
2172 	ts_label_t *lab2 = (ts_label_t *)key2;
2173 
2174 	return (label_equal(lab1, lab2) ? 0 : 1);
2175 }
2176 
2177 /*
2178  * Called by main() to initialize the zones framework.
2179  */
2180 void
2181 zone_init(void)
2182 {
2183 	rctl_dict_entry_t *rde;
2184 	rctl_val_t *dval;
2185 	rctl_set_t *set;
2186 	rctl_alloc_gp_t *gp;
2187 	rctl_entity_p_t e;
2188 	int res;
2189 
2190 	ASSERT(curproc == &p0);
2191 
2192 	/*
2193 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2194 	 * global zone.
2195 	 */
2196 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2197 
2198 	/*
2199 	 * Initialize generic zone resource controls, if any.
2200 	 */
2201 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2202 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2203 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2204 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2205 
2206 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2207 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2208 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2209 	    RCTL_GLOBAL_INFINITE,
2210 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2211 
2212 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2213 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2214 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2215 
2216 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2217 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2218 	    INT_MAX, INT_MAX, &zone_procs_ops);
2219 
2220 	/*
2221 	 * System V IPC resource controls
2222 	 */
2223 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2224 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2225 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2226 
2227 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2228 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2229 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2230 
2231 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2232 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2233 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2234 
2235 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2236 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2237 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2238 
2239 	/*
2240 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2241 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2242 	 */
2243 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2244 	bzero(dval, sizeof (rctl_val_t));
2245 	dval->rcv_value = 1;
2246 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2247 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2248 	dval->rcv_action_recip_pid = -1;
2249 
2250 	rde = rctl_dict_lookup("zone.cpu-shares");
2251 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2252 
2253 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2254 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2255 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2256 	    &zone_locked_mem_ops);
2257 
2258 	rc_zone_max_swap = rctl_register("zone.max-swap",
2259 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2260 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2261 	    &zone_max_swap_ops);
2262 
2263 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2264 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2265 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2266 	    &zone_max_lofi_ops);
2267 
2268 	/*
2269 	 * Initialize the ``global zone''.
2270 	 */
2271 	set = rctl_set_create();
2272 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2273 	mutex_enter(&p0.p_lock);
2274 	e.rcep_p.zone = &zone0;
2275 	e.rcep_t = RCENTITY_ZONE;
2276 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2277 	    gp);
2278 
2279 	zone0.zone_nlwps = p0.p_lwpcnt;
2280 	zone0.zone_nprocs = 1;
2281 	zone0.zone_ntasks = 1;
2282 	mutex_exit(&p0.p_lock);
2283 	zone0.zone_restart_init = B_TRUE;
2284 	zone0.zone_reboot_on_init_exit = B_FALSE;
2285 	zone0.zone_restart_init_0 = B_FALSE;
2286 	zone0.zone_brand = &native_brand;
2287 	rctl_prealloc_destroy(gp);
2288 	/*
2289 	 * pool_default hasn't been initialized yet, so we let pool_init()
2290 	 * take care of making sure the global zone is in the default pool.
2291 	 */
2292 
2293 	/*
2294 	 * Initialize global zone kstats
2295 	 */
2296 	zone_kstat_create(&zone0);
2297 
2298 	/*
2299 	 * Initialize zone label.
2300 	 * mlp are initialized when tnzonecfg is loaded.
2301 	 */
2302 	zone0.zone_slabel = l_admin_low;
2303 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2304 	label_hold(l_admin_low);
2305 
2306 	/*
2307 	 * Initialise the lock for the database structure used by mntfs.
2308 	 */
2309 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2310 
2311 	zone0.zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
2312 
2313 	mutex_enter(&zonehash_lock);
2314 	zone_uniqid(&zone0);
2315 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2316 
2317 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2318 	    mod_hash_null_valdtor);
2319 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2320 	    zone_hash_size, mod_hash_null_valdtor);
2321 	/*
2322 	 * maintain zonehashbylabel only for labeled systems
2323 	 */
2324 	if (is_system_labeled())
2325 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2326 		    zone_hash_size, mod_hash_null_keydtor,
2327 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2328 		    hash_labelkey_cmp, KM_SLEEP);
2329 	zonecount = 1;
2330 
2331 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2332 	    (mod_hash_val_t)&zone0);
2333 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2334 	    (mod_hash_val_t)&zone0);
2335 	if (is_system_labeled()) {
2336 		zone0.zone_flags |= ZF_HASHED_LABEL;
2337 		(void) mod_hash_insert(zonehashbylabel,
2338 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2339 	}
2340 	mutex_exit(&zonehash_lock);
2341 
2342 	/*
2343 	 * We avoid setting zone_kcred until now, since kcred is initialized
2344 	 * sometime after zone_zsd_init() and before zone_init().
2345 	 */
2346 	zone0.zone_kcred = kcred;
2347 	/*
2348 	 * The global zone is fully initialized (except for zone_rootvp which
2349 	 * will be set when the root filesystem is mounted).
2350 	 */
2351 	global_zone = &zone0;
2352 
2353 	/*
2354 	 * Setup an event channel to send zone status change notifications on
2355 	 */
2356 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2357 	    EVCH_CREAT);
2358 
2359 	if (res)
2360 		panic("Sysevent_evc_bind failed during zone setup.\n");
2361 
2362 }
2363 
2364 static void
2365 zone_free(zone_t *zone)
2366 {
2367 	ASSERT(zone != global_zone);
2368 	ASSERT(zone->zone_ntasks == 0);
2369 	ASSERT(zone->zone_nlwps == 0);
2370 	ASSERT(zone->zone_nprocs == 0);
2371 	ASSERT(zone->zone_cred_ref == 0);
2372 	ASSERT(zone->zone_kcred == NULL);
2373 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2374 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2375 	ASSERT(list_is_empty(&zone->zone_ref_list));
2376 
2377 	/*
2378 	 * Remove any zone caps.
2379 	 */
2380 	cpucaps_zone_remove(zone);
2381 
2382 	ASSERT(zone->zone_cpucap == NULL);
2383 
2384 	/* remove from deathrow list */
2385 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2386 		ASSERT(zone->zone_ref == 0);
2387 		mutex_enter(&zone_deathrow_lock);
2388 		list_remove(&zone_deathrow, zone);
2389 		mutex_exit(&zone_deathrow_lock);
2390 	}
2391 
2392 	list_destroy(&zone->zone_ref_list);
2393 	zone_free_zsd(zone);
2394 	zone_free_datasets(zone);
2395 	list_destroy(&zone->zone_dl_list);
2396 
2397 	cpu_uarray_free(zone->zone_ustate);
2398 
2399 	if (zone->zone_rootvp != NULL)
2400 		VN_RELE(zone->zone_rootvp);
2401 	if (zone->zone_rootpath)
2402 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2403 	if (zone->zone_name != NULL)
2404 		kmem_free(zone->zone_name, ZONENAME_MAX);
2405 	if (zone->zone_slabel != NULL)
2406 		label_rele(zone->zone_slabel);
2407 	if (zone->zone_nodename != NULL)
2408 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2409 	if (zone->zone_domain != NULL)
2410 		kmem_free(zone->zone_domain, _SYS_NMLN);
2411 	if (zone->zone_privset != NULL)
2412 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2413 	if (zone->zone_rctls != NULL)
2414 		rctl_set_free(zone->zone_rctls);
2415 	if (zone->zone_bootargs != NULL)
2416 		strfree(zone->zone_bootargs);
2417 	if (zone->zone_initname != NULL)
2418 		strfree(zone->zone_initname);
2419 	if (zone->zone_fs_allowed != NULL)
2420 		strfree(zone->zone_fs_allowed);
2421 	if (zone->zone_pfexecd != NULL)
2422 		klpd_freelist(&zone->zone_pfexecd);
2423 	id_free(zoneid_space, zone->zone_id);
2424 	mutex_destroy(&zone->zone_lock);
2425 	cv_destroy(&zone->zone_cv);
2426 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2427 	rw_destroy(&zone->zone_mntfs_db_lock);
2428 	kmem_free(zone, sizeof (zone_t));
2429 }
2430 
2431 /*
2432  * See block comment at the top of this file for information about zone
2433  * status values.
2434  */
2435 /*
2436  * Convenience function for setting zone status.
2437  */
2438 static void
2439 zone_status_set(zone_t *zone, zone_status_t status)
2440 {
2441 
2442 	nvlist_t *nvl = NULL;
2443 	ASSERT(MUTEX_HELD(&zone_status_lock));
2444 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2445 	    status >= zone_status_get(zone));
2446 
2447 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2448 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2449 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2450 	    zone_status_table[status]) ||
2451 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2452 	    zone_status_table[zone->zone_status]) ||
2453 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2454 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2455 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2456 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2457 #ifdef DEBUG
2458 		(void) printf(
2459 		    "Failed to allocate and send zone state change event.\n");
2460 #endif
2461 	}
2462 	nvlist_free(nvl);
2463 
2464 	zone->zone_status = status;
2465 
2466 	cv_broadcast(&zone->zone_cv);
2467 }
2468 
2469 /*
2470  * Public function to retrieve the zone status.  The zone status may
2471  * change after it is retrieved.
2472  */
2473 zone_status_t
2474 zone_status_get(zone_t *zone)
2475 {
2476 	return (zone->zone_status);
2477 }
2478 
2479 static int
2480 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2481 {
2482 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2483 	int err = 0;
2484 
2485 	ASSERT(zone != global_zone);
2486 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2487 		goto done;	/* EFAULT or ENAMETOOLONG */
2488 
2489 	if (zone->zone_bootargs != NULL)
2490 		strfree(zone->zone_bootargs);
2491 
2492 	zone->zone_bootargs = strdup(buf);
2493 
2494 done:
2495 	kmem_free(buf, BOOTARGS_MAX);
2496 	return (err);
2497 }
2498 
2499 static int
2500 zone_set_brand(zone_t *zone, const char *brand)
2501 {
2502 	struct brand_attr *attrp;
2503 	brand_t *bp;
2504 
2505 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2506 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2507 		kmem_free(attrp, sizeof (struct brand_attr));
2508 		return (EFAULT);
2509 	}
2510 
2511 	bp = brand_register_zone(attrp);
2512 	kmem_free(attrp, sizeof (struct brand_attr));
2513 	if (bp == NULL)
2514 		return (EINVAL);
2515 
2516 	/*
2517 	 * This is the only place where a zone can change it's brand.
2518 	 * We already need to hold zone_status_lock to check the zone
2519 	 * status, so we'll just use that lock to serialize zone
2520 	 * branding requests as well.
2521 	 */
2522 	mutex_enter(&zone_status_lock);
2523 
2524 	/* Re-Branding is not allowed and the zone can't be booted yet */
2525 	if ((ZONE_IS_BRANDED(zone)) ||
2526 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2527 		mutex_exit(&zone_status_lock);
2528 		brand_unregister_zone(bp);
2529 		return (EINVAL);
2530 	}
2531 
2532 	/* set up the brand specific data */
2533 	zone->zone_brand = bp;
2534 	ZBROP(zone)->b_init_brand_data(zone);
2535 
2536 	mutex_exit(&zone_status_lock);
2537 	return (0);
2538 }
2539 
2540 static int
2541 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags)
2542 {
2543 	int err = 0;
2544 	psecflags_t psf;
2545 
2546 	ASSERT(zone != global_zone);
2547 
2548 	if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0)
2549 		return (err);
2550 
2551 	if (zone_status_get(zone) > ZONE_IS_READY)
2552 		return (EINVAL);
2553 
2554 	if (!psecflags_validate(&psf))
2555 		return (EINVAL);
2556 
2557 	(void) memcpy(&zone->zone_secflags, &psf, sizeof (psf));
2558 
2559 	/* Set security flags on the zone's zsched */
2560 	(void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags,
2561 	    sizeof (zone->zone_zsched->p_secflags));
2562 
2563 	return (0);
2564 }
2565 
2566 static int
2567 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2568 {
2569 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2570 	int err = 0;
2571 
2572 	ASSERT(zone != global_zone);
2573 	if ((err = copyinstr(zone_fs_allowed, buf,
2574 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2575 		goto done;
2576 
2577 	if (zone->zone_fs_allowed != NULL)
2578 		strfree(zone->zone_fs_allowed);
2579 
2580 	zone->zone_fs_allowed = strdup(buf);
2581 
2582 done:
2583 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2584 	return (err);
2585 }
2586 
2587 static int
2588 zone_set_initname(zone_t *zone, const char *zone_initname)
2589 {
2590 	char initname[INITNAME_SZ];
2591 	size_t len;
2592 	int err = 0;
2593 
2594 	ASSERT(zone != global_zone);
2595 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2596 		return (err);	/* EFAULT or ENAMETOOLONG */
2597 
2598 	if (zone->zone_initname != NULL)
2599 		strfree(zone->zone_initname);
2600 
2601 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2602 	(void) strcpy(zone->zone_initname, initname);
2603 	return (0);
2604 }
2605 
2606 static int
2607 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2608 {
2609 	uint64_t mcap;
2610 	int err = 0;
2611 
2612 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2613 		zone->zone_phys_mcap = mcap;
2614 
2615 	return (err);
2616 }
2617 
2618 static int
2619 zone_set_sched_class(zone_t *zone, const char *new_class)
2620 {
2621 	char sched_class[PC_CLNMSZ];
2622 	id_t classid;
2623 	int err;
2624 
2625 	ASSERT(zone != global_zone);
2626 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2627 		return (err);	/* EFAULT or ENAMETOOLONG */
2628 
2629 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2630 		return (set_errno(EINVAL));
2631 	zone->zone_defaultcid = classid;
2632 	ASSERT(zone->zone_defaultcid > 0 &&
2633 	    zone->zone_defaultcid < loaded_classes);
2634 
2635 	return (0);
2636 }
2637 
2638 /*
2639  * Block indefinitely waiting for (zone_status >= status)
2640  */
2641 void
2642 zone_status_wait(zone_t *zone, zone_status_t status)
2643 {
2644 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2645 
2646 	mutex_enter(&zone_status_lock);
2647 	while (zone->zone_status < status) {
2648 		cv_wait(&zone->zone_cv, &zone_status_lock);
2649 	}
2650 	mutex_exit(&zone_status_lock);
2651 }
2652 
2653 /*
2654  * Private CPR-safe version of zone_status_wait().
2655  */
2656 static void
2657 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2658 {
2659 	callb_cpr_t cprinfo;
2660 
2661 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2662 
2663 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2664 	    str);
2665 	mutex_enter(&zone_status_lock);
2666 	while (zone->zone_status < status) {
2667 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2668 		cv_wait(&zone->zone_cv, &zone_status_lock);
2669 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2670 	}
2671 	/*
2672 	 * zone_status_lock is implicitly released by the following.
2673 	 */
2674 	CALLB_CPR_EXIT(&cprinfo);
2675 }
2676 
2677 /*
2678  * Block until zone enters requested state or signal is received.  Return (0)
2679  * if signaled, non-zero otherwise.
2680  */
2681 int
2682 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2683 {
2684 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2685 
2686 	mutex_enter(&zone_status_lock);
2687 	while (zone->zone_status < status) {
2688 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2689 			mutex_exit(&zone_status_lock);
2690 			return (0);
2691 		}
2692 	}
2693 	mutex_exit(&zone_status_lock);
2694 	return (1);
2695 }
2696 
2697 /*
2698  * Block until the zone enters the requested state or the timeout expires,
2699  * whichever happens first.  Return (-1) if operation timed out, time remaining
2700  * otherwise.
2701  */
2702 clock_t
2703 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2704 {
2705 	clock_t timeleft = 0;
2706 
2707 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2708 
2709 	mutex_enter(&zone_status_lock);
2710 	while (zone->zone_status < status && timeleft != -1) {
2711 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2712 	}
2713 	mutex_exit(&zone_status_lock);
2714 	return (timeleft);
2715 }
2716 
2717 /*
2718  * Block until the zone enters the requested state, the current process is
2719  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2720  * operation timed out, 0 if signaled, time remaining otherwise.
2721  */
2722 clock_t
2723 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2724 {
2725 	clock_t timeleft = tim - ddi_get_lbolt();
2726 
2727 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2728 
2729 	mutex_enter(&zone_status_lock);
2730 	while (zone->zone_status < status) {
2731 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2732 		    tim);
2733 		if (timeleft <= 0)
2734 			break;
2735 	}
2736 	mutex_exit(&zone_status_lock);
2737 	return (timeleft);
2738 }
2739 
2740 /*
2741  * Zones have two reference counts: one for references from credential
2742  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2743  * This is so we can allow a zone to be rebooted while there are still
2744  * outstanding cred references, since certain drivers cache dblks (which
2745  * implicitly results in cached creds).  We wait for zone_ref to drop to
2746  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2747  * later freed when the zone_cred_ref drops to 0, though nothing other
2748  * than the zone id and privilege set should be accessed once the zone
2749  * is "dead".
2750  *
2751  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2752  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2753  * to 0.  This can be useful to flush out other sources of cached creds
2754  * that may be less innocuous than the driver case.
2755  *
2756  * Zones also provide a tracked reference counting mechanism in which zone
2757  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2758  * debuggers determine the sources of leaked zone references.  See
2759  * zone_hold_ref() and zone_rele_ref() below for more information.
2760  */
2761 
2762 int zone_wait_for_cred = 0;
2763 
2764 static void
2765 zone_hold_locked(zone_t *z)
2766 {
2767 	ASSERT(MUTEX_HELD(&z->zone_lock));
2768 	z->zone_ref++;
2769 	ASSERT(z->zone_ref != 0);
2770 }
2771 
2772 /*
2773  * Increment the specified zone's reference count.  The zone's zone_t structure
2774  * will not be freed as long as the zone's reference count is nonzero.
2775  * Decrement the zone's reference count via zone_rele().
2776  *
2777  * NOTE: This function should only be used to hold zones for short periods of
2778  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2779  */
2780 void
2781 zone_hold(zone_t *z)
2782 {
2783 	mutex_enter(&z->zone_lock);
2784 	zone_hold_locked(z);
2785 	mutex_exit(&z->zone_lock);
2786 }
2787 
2788 /*
2789  * If the non-cred ref count drops to 1 and either the cred ref count
2790  * is 0 or we aren't waiting for cred references, the zone is ready to
2791  * be destroyed.
2792  */
2793 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2794 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2795 
2796 /*
2797  * Common zone reference release function invoked by zone_rele() and
2798  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2799  * zone's subsystem-specific reference counters are not affected by the
2800  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2801  * removed from the specified zone's reference list.  ref must be non-NULL iff
2802  * subsys is not ZONE_REF_NUM_SUBSYS.
2803  */
2804 static void
2805 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2806 {
2807 	boolean_t wakeup;
2808 
2809 	mutex_enter(&z->zone_lock);
2810 	ASSERT(z->zone_ref != 0);
2811 	z->zone_ref--;
2812 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2813 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2814 		z->zone_subsys_ref[subsys]--;
2815 		list_remove(&z->zone_ref_list, ref);
2816 	}
2817 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2818 		/* no more refs, free the structure */
2819 		mutex_exit(&z->zone_lock);
2820 		zone_free(z);
2821 		return;
2822 	}
2823 	/* signal zone_destroy so the zone can finish halting */
2824 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2825 	mutex_exit(&z->zone_lock);
2826 
2827 	if (wakeup) {
2828 		/*
2829 		 * Grabbing zonehash_lock here effectively synchronizes with
2830 		 * zone_destroy() to avoid missed signals.
2831 		 */
2832 		mutex_enter(&zonehash_lock);
2833 		cv_broadcast(&zone_destroy_cv);
2834 		mutex_exit(&zonehash_lock);
2835 	}
2836 }
2837 
2838 /*
2839  * Decrement the specified zone's reference count.  The specified zone will
2840  * cease to exist after this function returns if the reference count drops to
2841  * zero.  This function should be paired with zone_hold().
2842  */
2843 void
2844 zone_rele(zone_t *z)
2845 {
2846 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2847 }
2848 
2849 /*
2850  * Initialize a zone reference structure.  This function must be invoked for
2851  * a reference structure before the structure is passed to zone_hold_ref().
2852  */
2853 void
2854 zone_init_ref(zone_ref_t *ref)
2855 {
2856 	ref->zref_zone = NULL;
2857 	list_link_init(&ref->zref_linkage);
2858 }
2859 
2860 /*
2861  * Acquire a reference to zone z.  The caller must specify the
2862  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2863  * zone_ref_t structure will represent a reference to the specified zone.  Use
2864  * zone_rele_ref() to release the reference.
2865  *
2866  * The referenced zone_t structure will not be freed as long as the zone_t's
2867  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2868  * references.
2869  *
2870  * NOTE: The zone_ref_t structure must be initialized before it is used.
2871  * See zone_init_ref() above.
2872  */
2873 void
2874 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2875 {
2876 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2877 
2878 	/*
2879 	 * Prevent consumers from reusing a reference structure before
2880 	 * releasing it.
2881 	 */
2882 	VERIFY(ref->zref_zone == NULL);
2883 
2884 	ref->zref_zone = z;
2885 	mutex_enter(&z->zone_lock);
2886 	zone_hold_locked(z);
2887 	z->zone_subsys_ref[subsys]++;
2888 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2889 	list_insert_head(&z->zone_ref_list, ref);
2890 	mutex_exit(&z->zone_lock);
2891 }
2892 
2893 /*
2894  * Release the zone reference represented by the specified zone_ref_t.
2895  * The reference is invalid after it's released; however, the zone_ref_t
2896  * structure can be reused without having to invoke zone_init_ref().
2897  * subsys should be the same value that was passed to zone_hold_ref()
2898  * when the reference was acquired.
2899  */
2900 void
2901 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2902 {
2903 	zone_rele_common(ref->zref_zone, ref, subsys);
2904 
2905 	/*
2906 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2907 	 * when consumers dereference the reference.  This helps us catch
2908 	 * consumers who use released references.  Furthermore, this lets
2909 	 * consumers reuse the zone_ref_t structure without having to
2910 	 * invoke zone_init_ref().
2911 	 */
2912 	ref->zref_zone = NULL;
2913 }
2914 
2915 void
2916 zone_cred_hold(zone_t *z)
2917 {
2918 	mutex_enter(&z->zone_lock);
2919 	z->zone_cred_ref++;
2920 	ASSERT(z->zone_cred_ref != 0);
2921 	mutex_exit(&z->zone_lock);
2922 }
2923 
2924 void
2925 zone_cred_rele(zone_t *z)
2926 {
2927 	boolean_t wakeup;
2928 
2929 	mutex_enter(&z->zone_lock);
2930 	ASSERT(z->zone_cred_ref != 0);
2931 	z->zone_cred_ref--;
2932 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2933 		/* no more refs, free the structure */
2934 		mutex_exit(&z->zone_lock);
2935 		zone_free(z);
2936 		return;
2937 	}
2938 	/*
2939 	 * If zone_destroy is waiting for the cred references to drain
2940 	 * out, and they have, signal it.
2941 	 */
2942 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2943 	    zone_status_get(z) >= ZONE_IS_DEAD);
2944 	mutex_exit(&z->zone_lock);
2945 
2946 	if (wakeup) {
2947 		/*
2948 		 * Grabbing zonehash_lock here effectively synchronizes with
2949 		 * zone_destroy() to avoid missed signals.
2950 		 */
2951 		mutex_enter(&zonehash_lock);
2952 		cv_broadcast(&zone_destroy_cv);
2953 		mutex_exit(&zonehash_lock);
2954 	}
2955 }
2956 
2957 void
2958 zone_task_hold(zone_t *z)
2959 {
2960 	mutex_enter(&z->zone_lock);
2961 	z->zone_ntasks++;
2962 	ASSERT(z->zone_ntasks != 0);
2963 	mutex_exit(&z->zone_lock);
2964 }
2965 
2966 void
2967 zone_task_rele(zone_t *zone)
2968 {
2969 	uint_t refcnt;
2970 
2971 	mutex_enter(&zone->zone_lock);
2972 	ASSERT(zone->zone_ntasks != 0);
2973 	refcnt = --zone->zone_ntasks;
2974 	if (refcnt > 1)	{	/* Common case */
2975 		mutex_exit(&zone->zone_lock);
2976 		return;
2977 	}
2978 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2979 	mutex_exit(&zone->zone_lock);
2980 	if (refcnt == 1) {
2981 		/*
2982 		 * See if the zone is shutting down.
2983 		 */
2984 		mutex_enter(&zone_status_lock);
2985 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2986 			goto out;
2987 		}
2988 
2989 		/*
2990 		 * Make sure the ntasks didn't change since we
2991 		 * dropped zone_lock.
2992 		 */
2993 		mutex_enter(&zone->zone_lock);
2994 		if (refcnt != zone->zone_ntasks) {
2995 			mutex_exit(&zone->zone_lock);
2996 			goto out;
2997 		}
2998 		mutex_exit(&zone->zone_lock);
2999 
3000 		/*
3001 		 * No more user processes in the zone.  The zone is empty.
3002 		 */
3003 		zone_status_set(zone, ZONE_IS_EMPTY);
3004 		goto out;
3005 	}
3006 
3007 	ASSERT(refcnt == 0);
3008 	/*
3009 	 * zsched has exited; the zone is dead.
3010 	 */
3011 	zone->zone_zsched = NULL;		/* paranoia */
3012 	mutex_enter(&zone_status_lock);
3013 	zone_status_set(zone, ZONE_IS_DEAD);
3014 out:
3015 	mutex_exit(&zone_status_lock);
3016 	zone_rele(zone);
3017 }
3018 
3019 zoneid_t
3020 getzoneid(void)
3021 {
3022 	return (curproc->p_zone->zone_id);
3023 }
3024 
3025 /*
3026  * Internal versions of zone_find_by_*().  These don't zone_hold() or
3027  * check the validity of a zone's state.
3028  */
3029 static zone_t *
3030 zone_find_all_by_id(zoneid_t zoneid)
3031 {
3032 	mod_hash_val_t hv;
3033 	zone_t *zone = NULL;
3034 
3035 	ASSERT(MUTEX_HELD(&zonehash_lock));
3036 
3037 	if (mod_hash_find(zonehashbyid,
3038 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
3039 		zone = (zone_t *)hv;
3040 	return (zone);
3041 }
3042 
3043 static zone_t *
3044 zone_find_all_by_label(const ts_label_t *label)
3045 {
3046 	mod_hash_val_t hv;
3047 	zone_t *zone = NULL;
3048 
3049 	ASSERT(MUTEX_HELD(&zonehash_lock));
3050 
3051 	/*
3052 	 * zonehashbylabel is not maintained for unlabeled systems
3053 	 */
3054 	if (!is_system_labeled())
3055 		return (NULL);
3056 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
3057 		zone = (zone_t *)hv;
3058 	return (zone);
3059 }
3060 
3061 static zone_t *
3062 zone_find_all_by_name(char *name)
3063 {
3064 	mod_hash_val_t hv;
3065 	zone_t *zone = NULL;
3066 
3067 	ASSERT(MUTEX_HELD(&zonehash_lock));
3068 
3069 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3070 		zone = (zone_t *)hv;
3071 	return (zone);
3072 }
3073 
3074 /*
3075  * Public interface for looking up a zone by zoneid.  Only returns the zone if
3076  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3077  * Caller must call zone_rele() once it is done with the zone.
3078  *
3079  * The zone may begin the zone_destroy() sequence immediately after this
3080  * function returns, but may be safely used until zone_rele() is called.
3081  */
3082 zone_t *
3083 zone_find_by_id(zoneid_t zoneid)
3084 {
3085 	zone_t *zone;
3086 	zone_status_t status;
3087 
3088 	mutex_enter(&zonehash_lock);
3089 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3090 		mutex_exit(&zonehash_lock);
3091 		return (NULL);
3092 	}
3093 	status = zone_status_get(zone);
3094 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3095 		/*
3096 		 * For all practical purposes the zone doesn't exist.
3097 		 */
3098 		mutex_exit(&zonehash_lock);
3099 		return (NULL);
3100 	}
3101 	zone_hold(zone);
3102 	mutex_exit(&zonehash_lock);
3103 	return (zone);
3104 }
3105 
3106 /*
3107  * Similar to zone_find_by_id, but using zone label as the key.
3108  */
3109 zone_t *
3110 zone_find_by_label(const ts_label_t *label)
3111 {
3112 	zone_t *zone;
3113 	zone_status_t status;
3114 
3115 	mutex_enter(&zonehash_lock);
3116 	if ((zone = zone_find_all_by_label(label)) == NULL) {
3117 		mutex_exit(&zonehash_lock);
3118 		return (NULL);
3119 	}
3120 
3121 	status = zone_status_get(zone);
3122 	if (status > ZONE_IS_DOWN) {
3123 		/*
3124 		 * For all practical purposes the zone doesn't exist.
3125 		 */
3126 		mutex_exit(&zonehash_lock);
3127 		return (NULL);
3128 	}
3129 	zone_hold(zone);
3130 	mutex_exit(&zonehash_lock);
3131 	return (zone);
3132 }
3133 
3134 /*
3135  * Similar to zone_find_by_id, but using zone name as the key.
3136  */
3137 zone_t *
3138 zone_find_by_name(char *name)
3139 {
3140 	zone_t *zone;
3141 	zone_status_t status;
3142 
3143 	mutex_enter(&zonehash_lock);
3144 	if ((zone = zone_find_all_by_name(name)) == NULL) {
3145 		mutex_exit(&zonehash_lock);
3146 		return (NULL);
3147 	}
3148 	status = zone_status_get(zone);
3149 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3150 		/*
3151 		 * For all practical purposes the zone doesn't exist.
3152 		 */
3153 		mutex_exit(&zonehash_lock);
3154 		return (NULL);
3155 	}
3156 	zone_hold(zone);
3157 	mutex_exit(&zonehash_lock);
3158 	return (zone);
3159 }
3160 
3161 /*
3162  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3163  * if there is a zone "foo" rooted at /foo/root, and the path argument
3164  * is "/foo/root/proc", it will return the held zone_t corresponding to
3165  * zone "foo".
3166  *
3167  * zone_find_by_path() always returns a non-NULL value, since at the
3168  * very least every path will be contained in the global zone.
3169  *
3170  * As with the other zone_find_by_*() functions, the caller is
3171  * responsible for zone_rele()ing the return value of this function.
3172  */
3173 zone_t *
3174 zone_find_by_path(const char *path)
3175 {
3176 	zone_t *zone;
3177 	zone_t *zret = NULL;
3178 	zone_status_t status;
3179 
3180 	if (path == NULL) {
3181 		/*
3182 		 * Call from rootconf().
3183 		 */
3184 		zone_hold(global_zone);
3185 		return (global_zone);
3186 	}
3187 	ASSERT(*path == '/');
3188 	mutex_enter(&zonehash_lock);
3189 	for (zone = list_head(&zone_active); zone != NULL;
3190 	    zone = list_next(&zone_active, zone)) {
3191 		if (ZONE_PATH_VISIBLE(path, zone))
3192 			zret = zone;
3193 	}
3194 	ASSERT(zret != NULL);
3195 	status = zone_status_get(zret);
3196 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3197 		/*
3198 		 * Zone practically doesn't exist.
3199 		 */
3200 		zret = global_zone;
3201 	}
3202 	zone_hold(zret);
3203 	mutex_exit(&zonehash_lock);
3204 	return (zret);
3205 }
3206 
3207 /*
3208  * Public interface for updating per-zone load averages.  Called once per
3209  * second.
3210  *
3211  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3212  */
3213 void
3214 zone_loadavg_update(void)
3215 {
3216 	zone_t *zp;
3217 	zone_status_t status;
3218 	struct loadavg_s *lavg;
3219 	hrtime_t zone_total;
3220 	uint64_t tmp;
3221 	int i;
3222 	hrtime_t hr_avg;
3223 	int nrun;
3224 	static int64_t f[3] = { 135, 27, 9 };
3225 	int64_t q, r;
3226 
3227 	mutex_enter(&zonehash_lock);
3228 	for (zp = list_head(&zone_active); zp != NULL;
3229 	    zp = list_next(&zone_active, zp)) {
3230 		mutex_enter(&zp->zone_lock);
3231 
3232 		/* Skip zones that are on the way down or not yet up */
3233 		status = zone_status_get(zp);
3234 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3235 			/* For all practical purposes the zone doesn't exist. */
3236 			mutex_exit(&zp->zone_lock);
3237 			continue;
3238 		}
3239 
3240 		/*
3241 		 * Update the 10 second moving average data in zone_loadavg.
3242 		 */
3243 		lavg = &zp->zone_loadavg;
3244 
3245 		tmp = cpu_uarray_sum_all(zp->zone_ustate);
3246 		zone_total = UINT64_OVERFLOW_TO_INT64(tmp);
3247 
3248 		scalehrtime(&zone_total);
3249 
3250 		/* The zone_total should always be increasing. */
3251 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3252 		    zone_total - lavg->lg_total : 0;
3253 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3254 		/* lg_total holds the prev. 1 sec. total */
3255 		lavg->lg_total = zone_total;
3256 
3257 		/*
3258 		 * To simplify the calculation, we don't calculate the load avg.
3259 		 * until the zone has been up for at least 10 seconds and our
3260 		 * moving average is thus full.
3261 		 */
3262 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3263 			lavg->lg_len++;
3264 			mutex_exit(&zp->zone_lock);
3265 			continue;
3266 		}
3267 
3268 		/* Now calculate the 1min, 5min, 15 min load avg. */
3269 		hr_avg = 0;
3270 		for (i = 0; i < S_LOADAVG_SZ; i++)
3271 			hr_avg += lavg->lg_loads[i];
3272 		hr_avg = hr_avg / S_LOADAVG_SZ;
3273 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3274 
3275 		/* Compute load avg. See comment in calcloadavg() */
3276 		for (i = 0; i < 3; i++) {
3277 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3278 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3279 			zp->zone_hp_avenrun[i] +=
3280 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3281 
3282 			/* avenrun[] can only hold 31 bits of load avg. */
3283 			if (zp->zone_hp_avenrun[i] <
3284 			    ((uint64_t)1<<(31+16-FSHIFT)))
3285 				zp->zone_avenrun[i] = (int32_t)
3286 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3287 			else
3288 				zp->zone_avenrun[i] = 0x7fffffff;
3289 		}
3290 
3291 		mutex_exit(&zp->zone_lock);
3292 	}
3293 	mutex_exit(&zonehash_lock);
3294 }
3295 
3296 /*
3297  * Get the number of cpus visible to this zone.  The system-wide global
3298  * 'ncpus' is returned if pools are disabled, the caller is in the
3299  * global zone, or a NULL zone argument is passed in.
3300  */
3301 int
3302 zone_ncpus_get(zone_t *zone)
3303 {
3304 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3305 
3306 	return (myncpus != 0 ? myncpus : ncpus);
3307 }
3308 
3309 /*
3310  * Get the number of online cpus visible to this zone.  The system-wide
3311  * global 'ncpus_online' is returned if pools are disabled, the caller
3312  * is in the global zone, or a NULL zone argument is passed in.
3313  */
3314 int
3315 zone_ncpus_online_get(zone_t *zone)
3316 {
3317 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3318 
3319 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3320 }
3321 
3322 /*
3323  * Return the pool to which the zone is currently bound.
3324  */
3325 pool_t *
3326 zone_pool_get(zone_t *zone)
3327 {
3328 	ASSERT(pool_lock_held());
3329 
3330 	return (zone->zone_pool);
3331 }
3332 
3333 /*
3334  * Set the zone's pool pointer and update the zone's visibility to match
3335  * the resources in the new pool.
3336  */
3337 void
3338 zone_pool_set(zone_t *zone, pool_t *pool)
3339 {
3340 	ASSERT(pool_lock_held());
3341 	ASSERT(MUTEX_HELD(&cpu_lock));
3342 
3343 	zone->zone_pool = pool;
3344 	zone_pset_set(zone, pool->pool_pset->pset_id);
3345 }
3346 
3347 /*
3348  * Return the cached value of the id of the processor set to which the
3349  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3350  * facility is disabled.
3351  */
3352 psetid_t
3353 zone_pset_get(zone_t *zone)
3354 {
3355 	ASSERT(MUTEX_HELD(&cpu_lock));
3356 
3357 	return (zone->zone_psetid);
3358 }
3359 
3360 /*
3361  * Set the cached value of the id of the processor set to which the zone
3362  * is currently bound.  Also update the zone's visibility to match the
3363  * resources in the new processor set.
3364  */
3365 void
3366 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3367 {
3368 	psetid_t oldpsetid;
3369 
3370 	ASSERT(MUTEX_HELD(&cpu_lock));
3371 	oldpsetid = zone_pset_get(zone);
3372 
3373 	if (oldpsetid == newpsetid)
3374 		return;
3375 	/*
3376 	 * Global zone sees all.
3377 	 */
3378 	if (zone != global_zone) {
3379 		zone->zone_psetid = newpsetid;
3380 		if (newpsetid != ZONE_PS_INVAL)
3381 			pool_pset_visibility_add(newpsetid, zone);
3382 		if (oldpsetid != ZONE_PS_INVAL)
3383 			pool_pset_visibility_remove(oldpsetid, zone);
3384 	}
3385 	/*
3386 	 * Disabling pools, so we should start using the global values
3387 	 * for ncpus and ncpus_online.
3388 	 */
3389 	if (newpsetid == ZONE_PS_INVAL) {
3390 		zone->zone_ncpus = 0;
3391 		zone->zone_ncpus_online = 0;
3392 	}
3393 }
3394 
3395 /*
3396  * Walk the list of active zones and issue the provided callback for
3397  * each of them.
3398  *
3399  * Caller must not be holding any locks that may be acquired under
3400  * zonehash_lock.  See comment at the beginning of the file for a list of
3401  * common locks and their interactions with zones.
3402  */
3403 int
3404 zone_walk(int (*cb)(zone_t *, void *), void *data)
3405 {
3406 	zone_t *zone;
3407 	int ret = 0;
3408 	zone_status_t status;
3409 
3410 	mutex_enter(&zonehash_lock);
3411 	for (zone = list_head(&zone_active); zone != NULL;
3412 	    zone = list_next(&zone_active, zone)) {
3413 		/*
3414 		 * Skip zones that shouldn't be externally visible.
3415 		 */
3416 		status = zone_status_get(zone);
3417 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3418 			continue;
3419 		/*
3420 		 * Bail immediately if any callback invocation returns a
3421 		 * non-zero value.
3422 		 */
3423 		ret = (*cb)(zone, data);
3424 		if (ret != 0)
3425 			break;
3426 	}
3427 	mutex_exit(&zonehash_lock);
3428 	return (ret);
3429 }
3430 
3431 static int
3432 zone_set_root(zone_t *zone, const char *upath)
3433 {
3434 	vnode_t *vp;
3435 	int trycount;
3436 	int error = 0;
3437 	char *path;
3438 	struct pathname upn, pn;
3439 	size_t pathlen;
3440 
3441 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3442 		return (error);
3443 
3444 	pn_alloc(&pn);
3445 
3446 	/* prevent infinite loop */
3447 	trycount = 10;
3448 	for (;;) {
3449 		if (--trycount <= 0) {
3450 			error = ESTALE;
3451 			goto out;
3452 		}
3453 
3454 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3455 			/*
3456 			 * VOP_ACCESS() may cover 'vp' with a new
3457 			 * filesystem, if 'vp' is an autoFS vnode.
3458 			 * Get the new 'vp' if so.
3459 			 */
3460 			if ((error =
3461 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3462 			    (!vn_ismntpt(vp) ||
3463 			    (error = traverse(&vp)) == 0)) {
3464 				pathlen = pn.pn_pathlen + 2;
3465 				path = kmem_alloc(pathlen, KM_SLEEP);
3466 				(void) strncpy(path, pn.pn_path,
3467 				    pn.pn_pathlen + 1);
3468 				path[pathlen - 2] = '/';
3469 				path[pathlen - 1] = '\0';
3470 				pn_free(&pn);
3471 				pn_free(&upn);
3472 
3473 				/* Success! */
3474 				break;
3475 			}
3476 			VN_RELE(vp);
3477 		}
3478 		if (error != ESTALE)
3479 			goto out;
3480 	}
3481 
3482 	ASSERT(error == 0);
3483 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3484 	zone->zone_rootpath = path;
3485 	zone->zone_rootpathlen = pathlen;
3486 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3487 		zone->zone_flags |= ZF_IS_SCRATCH;
3488 	return (0);
3489 
3490 out:
3491 	pn_free(&pn);
3492 	pn_free(&upn);
3493 	return (error);
3494 }
3495 
3496 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3497 			((c) >= 'a' && (c) <= 'z') || \
3498 			((c) >= 'A' && (c) <= 'Z'))
3499 
3500 static int
3501 zone_set_name(zone_t *zone, const char *uname)
3502 {
3503 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3504 	size_t len;
3505 	int i, err;
3506 
3507 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3508 		kmem_free(kname, ZONENAME_MAX);
3509 		return (err);	/* EFAULT or ENAMETOOLONG */
3510 	}
3511 
3512 	/* must be less than ZONENAME_MAX */
3513 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3514 		kmem_free(kname, ZONENAME_MAX);
3515 		return (EINVAL);
3516 	}
3517 
3518 	/*
3519 	 * Name must start with an alphanumeric and must contain only
3520 	 * alphanumerics, '-', '_' and '.'.
3521 	 */
3522 	if (!isalnum(kname[0])) {
3523 		kmem_free(kname, ZONENAME_MAX);
3524 		return (EINVAL);
3525 	}
3526 	for (i = 1; i < len - 1; i++) {
3527 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3528 		    kname[i] != '.') {
3529 			kmem_free(kname, ZONENAME_MAX);
3530 			return (EINVAL);
3531 		}
3532 	}
3533 
3534 	zone->zone_name = kname;
3535 	return (0);
3536 }
3537 
3538 /*
3539  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3540  * is NULL or it points to a zone with no hostid emulation, then the machine's
3541  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3542  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3543  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3544  * hostid and the machine's hostid is invalid.
3545  */
3546 uint32_t
3547 zone_get_hostid(zone_t *zonep)
3548 {
3549 	unsigned long machine_hostid;
3550 
3551 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3552 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3553 			return (HW_INVALID_HOSTID);
3554 		return ((uint32_t)machine_hostid);
3555 	}
3556 	return (zonep->zone_hostid);
3557 }
3558 
3559 /*
3560  * Similar to thread_create(), but makes sure the thread is in the appropriate
3561  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3562  */
3563 /*ARGSUSED*/
3564 kthread_t *
3565 zthread_create(
3566     caddr_t stk,
3567     size_t stksize,
3568     void (*proc)(),
3569     void *arg,
3570     size_t len,
3571     pri_t pri)
3572 {
3573 	kthread_t *t;
3574 	zone_t *zone = curproc->p_zone;
3575 	proc_t *pp = zone->zone_zsched;
3576 
3577 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3578 
3579 	/*
3580 	 * No-one should be trying to create threads if the zone is shutting
3581 	 * down and there aren't any kernel threads around.  See comment
3582 	 * in zthread_exit().
3583 	 */
3584 	ASSERT(!(zone->zone_kthreads == NULL &&
3585 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3586 	/*
3587 	 * Create a thread, but don't let it run until we've finished setting
3588 	 * things up.
3589 	 */
3590 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3591 	ASSERT(t->t_forw == NULL);
3592 	mutex_enter(&zone_status_lock);
3593 	if (zone->zone_kthreads == NULL) {
3594 		t->t_forw = t->t_back = t;
3595 	} else {
3596 		kthread_t *tx = zone->zone_kthreads;
3597 
3598 		t->t_forw = tx;
3599 		t->t_back = tx->t_back;
3600 		tx->t_back->t_forw = t;
3601 		tx->t_back = t;
3602 	}
3603 	zone->zone_kthreads = t;
3604 	mutex_exit(&zone_status_lock);
3605 
3606 	mutex_enter(&pp->p_lock);
3607 	t->t_proc_flag |= TP_ZTHREAD;
3608 	project_rele(t->t_proj);
3609 	t->t_proj = project_hold(pp->p_task->tk_proj);
3610 
3611 	/*
3612 	 * Setup complete, let it run.
3613 	 */
3614 	thread_lock(t);
3615 	t->t_schedflag |= TS_ALLSTART;
3616 	setrun_locked(t);
3617 	thread_unlock(t);
3618 
3619 	mutex_exit(&pp->p_lock);
3620 
3621 	return (t);
3622 }
3623 
3624 /*
3625  * Similar to thread_exit().  Must be called by threads created via
3626  * zthread_exit().
3627  */
3628 void
3629 zthread_exit(void)
3630 {
3631 	kthread_t *t = curthread;
3632 	proc_t *pp = curproc;
3633 	zone_t *zone = pp->p_zone;
3634 
3635 	mutex_enter(&zone_status_lock);
3636 
3637 	/*
3638 	 * Reparent to p0
3639 	 */
3640 	kpreempt_disable();
3641 	mutex_enter(&pp->p_lock);
3642 	t->t_proc_flag &= ~TP_ZTHREAD;
3643 	t->t_procp = &p0;
3644 	hat_thread_exit(t);
3645 	mutex_exit(&pp->p_lock);
3646 	kpreempt_enable();
3647 
3648 	if (t->t_back == t) {
3649 		ASSERT(t->t_forw == t);
3650 		/*
3651 		 * If the zone is empty, once the thread count
3652 		 * goes to zero no further kernel threads can be
3653 		 * created.  This is because if the creator is a process
3654 		 * in the zone, then it must have exited before the zone
3655 		 * state could be set to ZONE_IS_EMPTY.
3656 		 * Otherwise, if the creator is a kernel thread in the
3657 		 * zone, the thread count is non-zero.
3658 		 *
3659 		 * This really means that non-zone kernel threads should
3660 		 * not create zone kernel threads.
3661 		 */
3662 		zone->zone_kthreads = NULL;
3663 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3664 			zone_status_set(zone, ZONE_IS_DOWN);
3665 			/*
3666 			 * Remove any CPU caps on this zone.
3667 			 */
3668 			cpucaps_zone_remove(zone);
3669 		}
3670 	} else {
3671 		t->t_forw->t_back = t->t_back;
3672 		t->t_back->t_forw = t->t_forw;
3673 		if (zone->zone_kthreads == t)
3674 			zone->zone_kthreads = t->t_forw;
3675 	}
3676 	mutex_exit(&zone_status_lock);
3677 	zone_rele(zone);
3678 	thread_exit();
3679 	/* NOTREACHED */
3680 }
3681 
3682 static void
3683 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3684 {
3685 	vnode_t *oldvp;
3686 
3687 	/* we're going to hold a reference here to the directory */
3688 	VN_HOLD(vp);
3689 
3690 	/* update abs cwd/root path see c2/audit.c */
3691 	if (AU_AUDITING())
3692 		audit_chdirec(vp, vpp);
3693 
3694 	mutex_enter(&pp->p_lock);
3695 	oldvp = *vpp;
3696 	*vpp = vp;
3697 	mutex_exit(&pp->p_lock);
3698 	if (oldvp != NULL)
3699 		VN_RELE(oldvp);
3700 }
3701 
3702 /*
3703  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3704  */
3705 static int
3706 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3707 {
3708 	nvpair_t *nvp = NULL;
3709 	boolean_t priv_set = B_FALSE;
3710 	boolean_t limit_set = B_FALSE;
3711 	boolean_t action_set = B_FALSE;
3712 
3713 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3714 		const char *name;
3715 		uint64_t ui64;
3716 
3717 		name = nvpair_name(nvp);
3718 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3719 			return (EINVAL);
3720 		(void) nvpair_value_uint64(nvp, &ui64);
3721 		if (strcmp(name, "privilege") == 0) {
3722 			/*
3723 			 * Currently only privileged values are allowed, but
3724 			 * this may change in the future.
3725 			 */
3726 			if (ui64 != RCPRIV_PRIVILEGED)
3727 				return (EINVAL);
3728 			rv->rcv_privilege = ui64;
3729 			priv_set = B_TRUE;
3730 		} else if (strcmp(name, "limit") == 0) {
3731 			rv->rcv_value = ui64;
3732 			limit_set = B_TRUE;
3733 		} else if (strcmp(name, "action") == 0) {
3734 			if (ui64 != RCTL_LOCAL_NOACTION &&
3735 			    ui64 != RCTL_LOCAL_DENY)
3736 				return (EINVAL);
3737 			rv->rcv_flagaction = ui64;
3738 			action_set = B_TRUE;
3739 		} else {
3740 			return (EINVAL);
3741 		}
3742 	}
3743 
3744 	if (!(priv_set && limit_set && action_set))
3745 		return (EINVAL);
3746 	rv->rcv_action_signal = 0;
3747 	rv->rcv_action_recipient = NULL;
3748 	rv->rcv_action_recip_pid = -1;
3749 	rv->rcv_firing_time = 0;
3750 
3751 	return (0);
3752 }
3753 
3754 /*
3755  * Non-global zone version of start_init.
3756  */
3757 void
3758 zone_start_init(void)
3759 {
3760 	proc_t *p = ttoproc(curthread);
3761 	zone_t *z = p->p_zone;
3762 
3763 	ASSERT(!INGLOBALZONE(curproc));
3764 
3765 	/*
3766 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3767 	 * storing just the pid of init is sufficient.
3768 	 */
3769 	z->zone_proc_initpid = p->p_pid;
3770 
3771 	/*
3772 	 * We maintain zone_boot_err so that we can return the cause of the
3773 	 * failure back to the caller of the zone_boot syscall.
3774 	 */
3775 	p->p_zone->zone_boot_err = start_init_common();
3776 
3777 	/*
3778 	 * We will prevent booting zones from becoming running zones if the
3779 	 * global zone is shutting down.
3780 	 */
3781 	mutex_enter(&zone_status_lock);
3782 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3783 	    ZONE_IS_SHUTTING_DOWN) {
3784 		/*
3785 		 * Make sure we are still in the booting state-- we could have
3786 		 * raced and already be shutting down, or even further along.
3787 		 */
3788 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3789 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3790 		}
3791 		mutex_exit(&zone_status_lock);
3792 		/* It's gone bad, dispose of the process */
3793 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3794 			mutex_enter(&p->p_lock);
3795 			ASSERT(p->p_flag & SEXITLWPS);
3796 			lwp_exit();
3797 		}
3798 	} else {
3799 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3800 			zone_status_set(z, ZONE_IS_RUNNING);
3801 		mutex_exit(&zone_status_lock);
3802 		/* cause the process to return to userland. */
3803 		lwp_rtt();
3804 	}
3805 }
3806 
3807 struct zsched_arg {
3808 	zone_t *zone;
3809 	nvlist_t *nvlist;
3810 };
3811 
3812 /*
3813  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3814  * anything to do with scheduling, but rather with the fact that
3815  * per-zone kernel threads are parented to zsched, just like regular
3816  * kernel threads are parented to sched (p0).
3817  *
3818  * zsched is also responsible for launching init for the zone.
3819  */
3820 static void
3821 zsched(void *arg)
3822 {
3823 	struct zsched_arg *za = arg;
3824 	proc_t *pp = curproc;
3825 	proc_t *initp = proc_init;
3826 	zone_t *zone = za->zone;
3827 	cred_t *cr, *oldcred;
3828 	rctl_set_t *set;
3829 	rctl_alloc_gp_t *gp;
3830 	contract_t *ct = NULL;
3831 	task_t *tk, *oldtk;
3832 	rctl_entity_p_t e;
3833 	kproject_t *pj;
3834 
3835 	nvlist_t *nvl = za->nvlist;
3836 	nvpair_t *nvp = NULL;
3837 
3838 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3839 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3840 	PTOU(pp)->u_argc = 0;
3841 	PTOU(pp)->u_argv = 0;
3842 	PTOU(pp)->u_envp = 0;
3843 	PTOU(pp)->u_commpagep = 0;
3844 	closeall(P_FINFO(pp));
3845 
3846 	/*
3847 	 * We are this zone's "zsched" process.  As the zone isn't generally
3848 	 * visible yet we don't need to grab any locks before initializing its
3849 	 * zone_proc pointer.
3850 	 */
3851 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3852 	zone->zone_zsched = pp;
3853 	mutex_enter(&pp->p_lock);
3854 	pp->p_zone = zone;
3855 	mutex_exit(&pp->p_lock);
3856 
3857 	/*
3858 	 * Disassociate process from its 'parent'; parent ourselves to init
3859 	 * (pid 1) and change other values as needed.
3860 	 */
3861 	sess_create();
3862 
3863 	mutex_enter(&pidlock);
3864 	proc_detach(pp);
3865 	pp->p_ppid = 1;
3866 	pp->p_flag |= SZONETOP;
3867 	pp->p_ancpid = 1;
3868 	pp->p_parent = initp;
3869 	pp->p_psibling = NULL;
3870 	if (initp->p_child)
3871 		initp->p_child->p_psibling = pp;
3872 	pp->p_sibling = initp->p_child;
3873 	initp->p_child = pp;
3874 
3875 	/* Decrement what newproc() incremented. */
3876 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3877 	/*
3878 	 * Our credentials are about to become kcred-like, so we don't care
3879 	 * about the caller's ruid.
3880 	 */
3881 	upcount_inc(crgetruid(kcred), zone->zone_id);
3882 	mutex_exit(&pidlock);
3883 
3884 	/*
3885 	 * getting out of global zone, so decrement lwp and process counts
3886 	 */
3887 	pj = pp->p_task->tk_proj;
3888 	mutex_enter(&global_zone->zone_nlwps_lock);
3889 	pj->kpj_nlwps -= pp->p_lwpcnt;
3890 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3891 	pj->kpj_nprocs--;
3892 	global_zone->zone_nprocs--;
3893 	mutex_exit(&global_zone->zone_nlwps_lock);
3894 
3895 	/*
3896 	 * Decrement locked memory counts on old zone and project.
3897 	 */
3898 	mutex_enter(&global_zone->zone_mem_lock);
3899 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3900 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3901 	mutex_exit(&global_zone->zone_mem_lock);
3902 
3903 	/*
3904 	 * Create and join a new task in project '0' of this zone.
3905 	 *
3906 	 * We don't need to call holdlwps() since we know we're the only lwp in
3907 	 * this process.
3908 	 *
3909 	 * task_join() returns with p_lock held.
3910 	 */
3911 	tk = task_create(0, zone);
3912 	mutex_enter(&cpu_lock);
3913 	oldtk = task_join(tk, 0);
3914 
3915 	pj = pp->p_task->tk_proj;
3916 
3917 	mutex_enter(&zone->zone_mem_lock);
3918 	zone->zone_locked_mem += pp->p_locked_mem;
3919 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3920 	mutex_exit(&zone->zone_mem_lock);
3921 
3922 	/*
3923 	 * add lwp and process counts to zsched's zone, and increment
3924 	 * project's task and process count due to the task created in
3925 	 * the above task_create.
3926 	 */
3927 	mutex_enter(&zone->zone_nlwps_lock);
3928 	pj->kpj_nlwps += pp->p_lwpcnt;
3929 	pj->kpj_ntasks += 1;
3930 	zone->zone_nlwps += pp->p_lwpcnt;
3931 	pj->kpj_nprocs++;
3932 	zone->zone_nprocs++;
3933 	mutex_exit(&zone->zone_nlwps_lock);
3934 
3935 	mutex_exit(&curproc->p_lock);
3936 	mutex_exit(&cpu_lock);
3937 	task_rele(oldtk);
3938 
3939 	/*
3940 	 * The process was created by a process in the global zone, hence the
3941 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3942 	 */
3943 	cr = zone->zone_kcred;
3944 	crhold(cr);
3945 	mutex_enter(&pp->p_crlock);
3946 	oldcred = pp->p_cred;
3947 	pp->p_cred = cr;
3948 	mutex_exit(&pp->p_crlock);
3949 	crfree(oldcred);
3950 
3951 	/*
3952 	 * Hold credentials again (for thread)
3953 	 */
3954 	crhold(cr);
3955 
3956 	/*
3957 	 * p_lwpcnt can't change since this is a kernel process.
3958 	 */
3959 	crset(pp, cr);
3960 
3961 	/*
3962 	 * Chroot
3963 	 */
3964 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3965 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3966 
3967 	/*
3968 	 * Initialize zone's rctl set.
3969 	 */
3970 	set = rctl_set_create();
3971 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3972 	mutex_enter(&pp->p_lock);
3973 	e.rcep_p.zone = zone;
3974 	e.rcep_t = RCENTITY_ZONE;
3975 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3976 	mutex_exit(&pp->p_lock);
3977 	rctl_prealloc_destroy(gp);
3978 
3979 	/*
3980 	 * Apply the rctls passed in to zone_create().  This is basically a list
3981 	 * assignment: all of the old values are removed and the new ones
3982 	 * inserted.  That is, if an empty list is passed in, all values are
3983 	 * removed.
3984 	 */
3985 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3986 		rctl_dict_entry_t *rde;
3987 		rctl_hndl_t hndl;
3988 		char *name;
3989 		nvlist_t **nvlarray;
3990 		uint_t i, nelem;
3991 		int error;	/* For ASSERT()s */
3992 
3993 		name = nvpair_name(nvp);
3994 		hndl = rctl_hndl_lookup(name);
3995 		ASSERT(hndl != -1);
3996 		rde = rctl_dict_lookup_hndl(hndl);
3997 		ASSERT(rde != NULL);
3998 
3999 		for (; /* ever */; ) {
4000 			rctl_val_t oval;
4001 
4002 			mutex_enter(&pp->p_lock);
4003 			error = rctl_local_get(hndl, NULL, &oval, pp);
4004 			mutex_exit(&pp->p_lock);
4005 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
4006 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
4007 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
4008 				break;
4009 			mutex_enter(&pp->p_lock);
4010 			error = rctl_local_delete(hndl, &oval, pp);
4011 			mutex_exit(&pp->p_lock);
4012 			ASSERT(error == 0);
4013 		}
4014 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4015 		ASSERT(error == 0);
4016 		for (i = 0; i < nelem; i++) {
4017 			rctl_val_t *nvalp;
4018 
4019 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
4020 			error = nvlist2rctlval(nvlarray[i], nvalp);
4021 			ASSERT(error == 0);
4022 			/*
4023 			 * rctl_local_insert can fail if the value being
4024 			 * inserted is a duplicate; this is OK.
4025 			 */
4026 			mutex_enter(&pp->p_lock);
4027 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
4028 				kmem_cache_free(rctl_val_cache, nvalp);
4029 			mutex_exit(&pp->p_lock);
4030 		}
4031 	}
4032 
4033 	/*
4034 	 * Tell the world that we're done setting up.
4035 	 *
4036 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
4037 	 * and atomically set the zone's processor set visibility.  Once
4038 	 * we drop pool_lock() this zone will automatically get updated
4039 	 * to reflect any future changes to the pools configuration.
4040 	 *
4041 	 * Note that after we drop the locks below (zonehash_lock in
4042 	 * particular) other operations such as a zone_getattr call can
4043 	 * now proceed and observe the zone. That is the reason for doing a
4044 	 * state transition to the INITIALIZED state.
4045 	 */
4046 	pool_lock();
4047 	mutex_enter(&cpu_lock);
4048 	mutex_enter(&zonehash_lock);
4049 	zone_uniqid(zone);
4050 	zone_zsd_configure(zone);
4051 	if (pool_state == POOL_ENABLED)
4052 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
4053 	mutex_enter(&zone_status_lock);
4054 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
4055 	zone_status_set(zone, ZONE_IS_INITIALIZED);
4056 	mutex_exit(&zone_status_lock);
4057 	mutex_exit(&zonehash_lock);
4058 	mutex_exit(&cpu_lock);
4059 	pool_unlock();
4060 
4061 	/* Now call the create callback for this key */
4062 	zsd_apply_all_keys(zsd_apply_create, zone);
4063 
4064 	/* The callbacks are complete. Mark ZONE_IS_READY */
4065 	mutex_enter(&zone_status_lock);
4066 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
4067 	zone_status_set(zone, ZONE_IS_READY);
4068 	mutex_exit(&zone_status_lock);
4069 
4070 	/*
4071 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
4072 	 * we launch init, and set the state to running.
4073 	 */
4074 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4075 
4076 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4077 		id_t cid;
4078 
4079 		/*
4080 		 * Ok, this is a little complicated.  We need to grab the
4081 		 * zone's pool's scheduling class ID; note that by now, we
4082 		 * are already bound to a pool if we need to be (zoneadmd
4083 		 * will have done that to us while we're in the READY
4084 		 * state).  *But* the scheduling class for the zone's 'init'
4085 		 * must be explicitly passed to newproc, which doesn't
4086 		 * respect pool bindings.
4087 		 *
4088 		 * We hold the pool_lock across the call to newproc() to
4089 		 * close the obvious race: the pool's scheduling class
4090 		 * could change before we manage to create the LWP with
4091 		 * classid 'cid'.
4092 		 */
4093 		pool_lock();
4094 		if (zone->zone_defaultcid > 0)
4095 			cid = zone->zone_defaultcid;
4096 		else
4097 			cid = pool_get_class(zone->zone_pool);
4098 		if (cid == -1)
4099 			cid = defaultcid;
4100 
4101 		/*
4102 		 * If this fails, zone_boot will ultimately fail.  The
4103 		 * state of the zone will be set to SHUTTING_DOWN-- userland
4104 		 * will have to tear down the zone, and fail, or try again.
4105 		 */
4106 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4107 		    minclsyspri - 1, &ct, 0)) != 0) {
4108 			mutex_enter(&zone_status_lock);
4109 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4110 			mutex_exit(&zone_status_lock);
4111 		} else {
4112 			zone->zone_boot_time = gethrestime_sec();
4113 		}
4114 
4115 		pool_unlock();
4116 	}
4117 
4118 	/*
4119 	 * Wait for zone_destroy() to be called.  This is what we spend
4120 	 * most of our life doing.
4121 	 */
4122 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4123 
4124 	if (ct)
4125 		/*
4126 		 * At this point the process contract should be empty.
4127 		 * (Though if it isn't, it's not the end of the world.)
4128 		 */
4129 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4130 
4131 	/*
4132 	 * Allow kcred to be freed when all referring processes
4133 	 * (including this one) go away.  We can't just do this in
4134 	 * zone_free because we need to wait for the zone_cred_ref to
4135 	 * drop to 0 before calling zone_free, and the existence of
4136 	 * zone_kcred will prevent that.  Thus, we call crfree here to
4137 	 * balance the crdup in zone_create.  The crhold calls earlier
4138 	 * in zsched will be dropped when the thread and process exit.
4139 	 */
4140 	crfree(zone->zone_kcred);
4141 	zone->zone_kcred = NULL;
4142 
4143 	exit(CLD_EXITED, 0);
4144 }
4145 
4146 /*
4147  * Helper function to determine if there are any submounts of the
4148  * provided path.  Used to make sure the zone doesn't "inherit" any
4149  * mounts from before it is created.
4150  */
4151 static uint_t
4152 zone_mount_count(const char *rootpath)
4153 {
4154 	vfs_t *vfsp;
4155 	uint_t count = 0;
4156 	size_t rootpathlen = strlen(rootpath);
4157 
4158 	/*
4159 	 * Holding zonehash_lock prevents race conditions with
4160 	 * vfs_list_add()/vfs_list_remove() since we serialize with
4161 	 * zone_find_by_path().
4162 	 */
4163 	ASSERT(MUTEX_HELD(&zonehash_lock));
4164 	/*
4165 	 * The rootpath must end with a '/'
4166 	 */
4167 	ASSERT(rootpath[rootpathlen - 1] == '/');
4168 
4169 	/*
4170 	 * This intentionally does not count the rootpath itself if that
4171 	 * happens to be a mount point.
4172 	 */
4173 	vfs_list_read_lock();
4174 	vfsp = rootvfs;
4175 	do {
4176 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4177 		    rootpathlen) == 0)
4178 			count++;
4179 		vfsp = vfsp->vfs_next;
4180 	} while (vfsp != rootvfs);
4181 	vfs_list_unlock();
4182 	return (count);
4183 }
4184 
4185 /*
4186  * Helper function to make sure that a zone created on 'rootpath'
4187  * wouldn't end up containing other zones' rootpaths.
4188  */
4189 static boolean_t
4190 zone_is_nested(const char *rootpath)
4191 {
4192 	zone_t *zone;
4193 	size_t rootpathlen = strlen(rootpath);
4194 	size_t len;
4195 
4196 	ASSERT(MUTEX_HELD(&zonehash_lock));
4197 
4198 	/*
4199 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
4200 	 */
4201 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4202 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
4203 		return (B_TRUE);
4204 
4205 	for (zone = list_head(&zone_active); zone != NULL;
4206 	    zone = list_next(&zone_active, zone)) {
4207 		if (zone == global_zone)
4208 			continue;
4209 		len = strlen(zone->zone_rootpath);
4210 		if (strncmp(rootpath, zone->zone_rootpath,
4211 		    MIN(rootpathlen, len)) == 0)
4212 			return (B_TRUE);
4213 	}
4214 	return (B_FALSE);
4215 }
4216 
4217 static int
4218 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4219     size_t zone_privssz)
4220 {
4221 	priv_set_t *privs;
4222 
4223 	if (zone_privssz < sizeof (priv_set_t))
4224 		return (ENOMEM);
4225 
4226 	privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4227 
4228 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4229 		kmem_free(privs, sizeof (priv_set_t));
4230 		return (EFAULT);
4231 	}
4232 
4233 	zone->zone_privset = privs;
4234 	return (0);
4235 }
4236 
4237 /*
4238  * We make creative use of nvlists to pass in rctls from userland.  The list is
4239  * a list of the following structures:
4240  *
4241  * (name = rctl_name, value = nvpair_list_array)
4242  *
4243  * Where each element of the nvpair_list_array is of the form:
4244  *
4245  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4246  *	(name = "limit", value = uint64_t),
4247  *	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4248  */
4249 static int
4250 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4251 {
4252 	nvpair_t *nvp = NULL;
4253 	nvlist_t *nvl = NULL;
4254 	char *kbuf;
4255 	int error;
4256 	rctl_val_t rv;
4257 
4258 	*nvlp = NULL;
4259 
4260 	if (buflen == 0)
4261 		return (0);
4262 
4263 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4264 		return (ENOMEM);
4265 	if (copyin(ubuf, kbuf, buflen)) {
4266 		error = EFAULT;
4267 		goto out;
4268 	}
4269 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4270 		/*
4271 		 * nvl may have been allocated/free'd, but the value set to
4272 		 * non-NULL, so we reset it here.
4273 		 */
4274 		nvl = NULL;
4275 		error = EINVAL;
4276 		goto out;
4277 	}
4278 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4279 		rctl_dict_entry_t *rde;
4280 		rctl_hndl_t hndl;
4281 		nvlist_t **nvlarray;
4282 		uint_t i, nelem;
4283 		char *name;
4284 
4285 		error = EINVAL;
4286 		name = nvpair_name(nvp);
4287 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4288 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4289 			goto out;
4290 		}
4291 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
4292 			goto out;
4293 		}
4294 		rde = rctl_dict_lookup_hndl(hndl);
4295 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4296 		ASSERT(error == 0);
4297 		for (i = 0; i < nelem; i++) {
4298 			if (error = nvlist2rctlval(nvlarray[i], &rv))
4299 				goto out;
4300 		}
4301 		if (rctl_invalid_value(rde, &rv)) {
4302 			error = EINVAL;
4303 			goto out;
4304 		}
4305 	}
4306 	error = 0;
4307 	*nvlp = nvl;
4308 out:
4309 	kmem_free(kbuf, buflen);
4310 	if (error && nvl != NULL)
4311 		nvlist_free(nvl);
4312 	return (error);
4313 }
4314 
4315 int
4316 zone_create_error(int er_error, int er_ext, int *er_out)
4317 {
4318 	if (er_out != NULL) {
4319 		if (copyout(&er_ext, er_out, sizeof (int))) {
4320 			return (set_errno(EFAULT));
4321 		}
4322 	}
4323 	return (set_errno(er_error));
4324 }
4325 
4326 static int
4327 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4328 {
4329 	ts_label_t *tsl;
4330 	bslabel_t blab;
4331 
4332 	/* Get label from user */
4333 	if (copyin(lab, &blab, sizeof (blab)) != 0)
4334 		return (EFAULT);
4335 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4336 	if (tsl == NULL)
4337 		return (ENOMEM);
4338 
4339 	zone->zone_slabel = tsl;
4340 	return (0);
4341 }
4342 
4343 /*
4344  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4345  */
4346 static int
4347 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4348 {
4349 	char *kbuf;
4350 	char *dataset, *next;
4351 	zone_dataset_t *zd;
4352 	size_t len;
4353 
4354 	if (ubuf == NULL || buflen == 0)
4355 		return (0);
4356 
4357 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4358 		return (ENOMEM);
4359 
4360 	if (copyin(ubuf, kbuf, buflen) != 0) {
4361 		kmem_free(kbuf, buflen);
4362 		return (EFAULT);
4363 	}
4364 
4365 	dataset = next = kbuf;
4366 	for (;;) {
4367 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4368 
4369 		next = strchr(dataset, ',');
4370 
4371 		if (next == NULL)
4372 			len = strlen(dataset);
4373 		else
4374 			len = next - dataset;
4375 
4376 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4377 		bcopy(dataset, zd->zd_dataset, len);
4378 		zd->zd_dataset[len] = '\0';
4379 
4380 		list_insert_head(&zone->zone_datasets, zd);
4381 
4382 		if (next == NULL)
4383 			break;
4384 
4385 		dataset = next + 1;
4386 	}
4387 
4388 	kmem_free(kbuf, buflen);
4389 	return (0);
4390 }
4391 
4392 /*
4393  * System call to create/initialize a new zone named 'zone_name', rooted
4394  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4395  * and initialized with the zone-wide rctls described in 'rctlbuf', and
4396  * with labeling set by 'match', 'doi', and 'label'.
4397  *
4398  * If extended error is non-null, we may use it to return more detailed
4399  * error information.
4400  */
4401 static zoneid_t
4402 zone_create(const char *zone_name, const char *zone_root,
4403     const priv_set_t *zone_privs, size_t zone_privssz,
4404     caddr_t rctlbuf, size_t rctlbufsz,
4405     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4406     int match, uint32_t doi, const bslabel_t *label,
4407     int flags)
4408 {
4409 	struct zsched_arg zarg;
4410 	nvlist_t *rctls = NULL;
4411 	proc_t *pp = curproc;
4412 	zone_t *zone, *ztmp;
4413 	zoneid_t zoneid, start = GLOBAL_ZONEID;
4414 	int error;
4415 	int error2 = 0;
4416 	char *str;
4417 	cred_t *zkcr;
4418 	boolean_t insert_label_hash;
4419 
4420 	if (secpolicy_zone_config(CRED()) != 0)
4421 		return (set_errno(EPERM));
4422 
4423 	/* can't boot zone from within chroot environment */
4424 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4425 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4426 		    extended_error));
4427 	/*
4428 	 * As the first step of zone creation, we want to allocate a zoneid.
4429 	 * This allocation is complicated by the fact that netstacks use the
4430 	 * zoneid to determine their stackid, but netstacks themselves are
4431 	 * freed asynchronously with respect to zone destruction.  This means
4432 	 * that a netstack reference leak (or in principle, an extraordinarily
4433 	 * long netstack reference hold) could result in a zoneid being
4434 	 * allocated that in fact corresponds to a stackid from an active
4435 	 * (referenced) netstack -- unleashing all sorts of havoc when that
4436 	 * netstack is actually (re)used.  (In the abstract, we might wish a
4437 	 * zoneid to not be deallocated until its last referencing netstack
4438 	 * has been released, but netstacks lack a backpointer into their
4439 	 * referencing zone -- and changing them to have such a pointer would
4440 	 * be substantial, to put it euphemistically.)  To avoid this, we
4441 	 * detect this condition on allocation: if we have allocated a zoneid
4442 	 * that corresponds to a netstack that's still in use, we warn about
4443 	 * it (as it is much more likely to be a reference leak than an actual
4444 	 * netstack reference), free it, and allocate another.  That these
4445 	 * identifers are allocated out of an ID space assures that we won't
4446 	 * see the identifier we just allocated.
4447 	 */
4448 	for (;;) {
4449 		zoneid = id_alloc(zoneid_space);
4450 
4451 		if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid)))
4452 			break;
4453 
4454 		id_free(zoneid_space, zoneid);
4455 
4456 		if (start == GLOBAL_ZONEID) {
4457 			start = zoneid;
4458 		} else if (zoneid == start) {
4459 			/*
4460 			 * We have managed to iterate over the entire available
4461 			 * zoneid space -- there are no identifiers available,
4462 			 * presumably due to some number of leaked netstack
4463 			 * references.  While it's in principle possible for us
4464 			 * to continue to try, it seems wiser to give up at
4465 			 * this point to warn and fail explicitly with a
4466 			 * distinctive error.
4467 			 */
4468 			cmn_err(CE_WARN, "zone_create() failed: all available "
4469 			    "zone IDs have netstacks still in use");
4470 			return (set_errno(ENFILE));
4471 		}
4472 
4473 		cmn_err(CE_WARN, "unable to reuse zone ID %d; "
4474 		    "netstack still in use", zoneid);
4475 	}
4476 
4477 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4478 	zone->zone_id = zoneid;
4479 	zone->zone_status = ZONE_IS_UNINITIALIZED;
4480 	zone->zone_pool = pool_default;
4481 	zone->zone_pool_mod = gethrtime();
4482 	zone->zone_psetid = ZONE_PS_INVAL;
4483 	zone->zone_ncpus = 0;
4484 	zone->zone_ncpus_online = 0;
4485 	zone->zone_restart_init = B_TRUE;
4486 	zone->zone_reboot_on_init_exit = B_FALSE;
4487 	zone->zone_restart_init_0 = B_FALSE;
4488 	zone->zone_brand = &native_brand;
4489 	zone->zone_initname = NULL;
4490 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4491 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4492 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4493 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4494 	list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4495 	    offsetof(zone_ref_t, zref_linkage));
4496 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4497 	    offsetof(struct zsd_entry, zsd_linkage));
4498 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4499 	    offsetof(zone_dataset_t, zd_linkage));
4500 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4501 	    offsetof(zone_dl_t, zdl_linkage));
4502 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4503 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4504 
4505 	if (flags & ZCF_NET_EXCL) {
4506 		zone->zone_flags |= ZF_NET_EXCL;
4507 	}
4508 
4509 	if ((error = zone_set_name(zone, zone_name)) != 0) {
4510 		zone_free(zone);
4511 		return (zone_create_error(error, 0, extended_error));
4512 	}
4513 
4514 	if ((error = zone_set_root(zone, zone_root)) != 0) {
4515 		zone_free(zone);
4516 		return (zone_create_error(error, 0, extended_error));
4517 	}
4518 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4519 		zone_free(zone);
4520 		return (zone_create_error(error, 0, extended_error));
4521 	}
4522 
4523 	/* initialize node name to be the same as zone name */
4524 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4525 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4526 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4527 
4528 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4529 	zone->zone_domain[0] = '\0';
4530 	zone->zone_hostid = HW_INVALID_HOSTID;
4531 	zone->zone_shares = 1;
4532 	zone->zone_shmmax = 0;
4533 	zone->zone_ipc.ipcq_shmmni = 0;
4534 	zone->zone_ipc.ipcq_semmni = 0;
4535 	zone->zone_ipc.ipcq_msgmni = 0;
4536 	zone->zone_bootargs = NULL;
4537 	zone->zone_fs_allowed = NULL;
4538 
4539 	psecflags_default(&zone->zone_secflags);
4540 
4541 	zone->zone_initname =
4542 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4543 	(void) strcpy(zone->zone_initname, zone_default_initname);
4544 	zone->zone_nlwps = 0;
4545 	zone->zone_nlwps_ctl = INT_MAX;
4546 	zone->zone_nprocs = 0;
4547 	zone->zone_nprocs_ctl = INT_MAX;
4548 	zone->zone_locked_mem = 0;
4549 	zone->zone_locked_mem_ctl = UINT64_MAX;
4550 	zone->zone_max_swap = 0;
4551 	zone->zone_max_swap_ctl = UINT64_MAX;
4552 	zone->zone_max_lofi = 0;
4553 	zone->zone_max_lofi_ctl = UINT64_MAX;
4554 	zone0.zone_lockedmem_kstat = NULL;
4555 	zone0.zone_swapresv_kstat = NULL;
4556 
4557 	zone->zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
4558 
4559 	/*
4560 	 * Zsched initializes the rctls.
4561 	 */
4562 	zone->zone_rctls = NULL;
4563 
4564 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4565 		zone_free(zone);
4566 		return (zone_create_error(error, 0, extended_error));
4567 	}
4568 
4569 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4570 		zone_free(zone);
4571 		return (set_errno(error));
4572 	}
4573 
4574 	/*
4575 	 * Read in the trusted system parameters:
4576 	 * match flag and sensitivity label.
4577 	 */
4578 	zone->zone_match = match;
4579 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4580 		/* Fail if requested to set doi to anything but system's doi */
4581 		if (doi != 0 && doi != default_doi) {
4582 			zone_free(zone);
4583 			return (set_errno(EINVAL));
4584 		}
4585 		/* Always apply system's doi to the zone */
4586 		error = zone_set_label(zone, label, default_doi);
4587 		if (error != 0) {
4588 			zone_free(zone);
4589 			return (set_errno(error));
4590 		}
4591 		insert_label_hash = B_TRUE;
4592 	} else {
4593 		/* all zones get an admin_low label if system is not labeled */
4594 		zone->zone_slabel = l_admin_low;
4595 		label_hold(l_admin_low);
4596 		insert_label_hash = B_FALSE;
4597 	}
4598 
4599 	/*
4600 	 * Stop all lwps since that's what normally happens as part of fork().
4601 	 * This needs to happen before we grab any locks to avoid deadlock
4602 	 * (another lwp in the process could be waiting for the held lock).
4603 	 */
4604 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4605 		zone_free(zone);
4606 		nvlist_free(rctls);
4607 		return (zone_create_error(error, 0, extended_error));
4608 	}
4609 
4610 	if (block_mounts(zone) == 0) {
4611 		mutex_enter(&pp->p_lock);
4612 		if (curthread != pp->p_agenttp)
4613 			continuelwps(pp);
4614 		mutex_exit(&pp->p_lock);
4615 		zone_free(zone);
4616 		nvlist_free(rctls);
4617 		return (zone_create_error(error, 0, extended_error));
4618 	}
4619 
4620 	/*
4621 	 * Set up credential for kernel access.  After this, any errors
4622 	 * should go through the dance in errout rather than calling
4623 	 * zone_free directly.
4624 	 */
4625 	zone->zone_kcred = crdup(kcred);
4626 	crsetzone(zone->zone_kcred, zone);
4627 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4628 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4629 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4630 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4631 
4632 	mutex_enter(&zonehash_lock);
4633 	/*
4634 	 * Make sure zone doesn't already exist.
4635 	 *
4636 	 * If the system and zone are labeled,
4637 	 * make sure no other zone exists that has the same label.
4638 	 */
4639 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4640 	    (insert_label_hash &&
4641 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4642 		zone_status_t status;
4643 
4644 		status = zone_status_get(ztmp);
4645 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4646 			error = EEXIST;
4647 		else
4648 			error = EBUSY;
4649 
4650 		if (insert_label_hash)
4651 			error2 = ZE_LABELINUSE;
4652 
4653 		goto errout;
4654 	}
4655 
4656 	/*
4657 	 * Don't allow zone creations which would cause one zone's rootpath to
4658 	 * be accessible from that of another (non-global) zone.
4659 	 */
4660 	if (zone_is_nested(zone->zone_rootpath)) {
4661 		error = EBUSY;
4662 		goto errout;
4663 	}
4664 
4665 	ASSERT(zonecount != 0);		/* check for leaks */
4666 	if (zonecount + 1 > maxzones) {
4667 		error = ENOMEM;
4668 		goto errout;
4669 	}
4670 
4671 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4672 		error = EBUSY;
4673 		error2 = ZE_AREMOUNTS;
4674 		goto errout;
4675 	}
4676 
4677 	/*
4678 	 * Zone is still incomplete, but we need to drop all locks while
4679 	 * zsched() initializes this zone's kernel process.  We
4680 	 * optimistically add the zone to the hashtable and associated
4681 	 * lists so a parallel zone_create() doesn't try to create the
4682 	 * same zone.
4683 	 */
4684 	zonecount++;
4685 	(void) mod_hash_insert(zonehashbyid,
4686 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4687 	    (mod_hash_val_t)(uintptr_t)zone);
4688 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4689 	(void) strcpy(str, zone->zone_name);
4690 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4691 	    (mod_hash_val_t)(uintptr_t)zone);
4692 	if (insert_label_hash) {
4693 		(void) mod_hash_insert(zonehashbylabel,
4694 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4695 		zone->zone_flags |= ZF_HASHED_LABEL;
4696 	}
4697 
4698 	/*
4699 	 * Insert into active list.  At this point there are no 'hold's
4700 	 * on the zone, but everyone else knows not to use it, so we can
4701 	 * continue to use it.  zsched() will do a zone_hold() if the
4702 	 * newproc() is successful.
4703 	 */
4704 	list_insert_tail(&zone_active, zone);
4705 	mutex_exit(&zonehash_lock);
4706 
4707 	zarg.zone = zone;
4708 	zarg.nvlist = rctls;
4709 	/*
4710 	 * The process, task, and project rctls are probably wrong;
4711 	 * we need an interface to get the default values of all rctls,
4712 	 * and initialize zsched appropriately.  I'm not sure that that
4713 	 * makes much of a difference, though.
4714 	 */
4715 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4716 	if (error != 0) {
4717 		/*
4718 		 * We need to undo all globally visible state.
4719 		 */
4720 		mutex_enter(&zonehash_lock);
4721 		list_remove(&zone_active, zone);
4722 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4723 			ASSERT(zone->zone_slabel != NULL);
4724 			(void) mod_hash_destroy(zonehashbylabel,
4725 			    (mod_hash_key_t)zone->zone_slabel);
4726 		}
4727 		(void) mod_hash_destroy(zonehashbyname,
4728 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4729 		(void) mod_hash_destroy(zonehashbyid,
4730 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4731 		ASSERT(zonecount > 1);
4732 		zonecount--;
4733 		goto errout;
4734 	}
4735 
4736 	/*
4737 	 * Zone creation can't fail from now on.
4738 	 */
4739 
4740 	/*
4741 	 * Create zone kstats
4742 	 */
4743 	zone_kstat_create(zone);
4744 
4745 	/*
4746 	 * Let the other lwps continue.
4747 	 */
4748 	mutex_enter(&pp->p_lock);
4749 	if (curthread != pp->p_agenttp)
4750 		continuelwps(pp);
4751 	mutex_exit(&pp->p_lock);
4752 
4753 	/*
4754 	 * Wait for zsched to finish initializing the zone.
4755 	 */
4756 	zone_status_wait(zone, ZONE_IS_READY);
4757 	/*
4758 	 * The zone is fully visible, so we can let mounts progress.
4759 	 */
4760 	resume_mounts(zone);
4761 	nvlist_free(rctls);
4762 
4763 	return (zoneid);
4764 
4765 errout:
4766 	mutex_exit(&zonehash_lock);
4767 	/*
4768 	 * Let the other lwps continue.
4769 	 */
4770 	mutex_enter(&pp->p_lock);
4771 	if (curthread != pp->p_agenttp)
4772 		continuelwps(pp);
4773 	mutex_exit(&pp->p_lock);
4774 
4775 	resume_mounts(zone);
4776 	nvlist_free(rctls);
4777 	/*
4778 	 * There is currently one reference to the zone, a cred_ref from
4779 	 * zone_kcred.  To free the zone, we call crfree, which will call
4780 	 * zone_cred_rele, which will call zone_free.
4781 	 */
4782 	ASSERT(zone->zone_cred_ref == 1);
4783 	ASSERT(zone->zone_kcred->cr_ref == 1);
4784 	ASSERT(zone->zone_ref == 0);
4785 	zkcr = zone->zone_kcred;
4786 	zone->zone_kcred = NULL;
4787 	crfree(zkcr);				/* triggers call to zone_free */
4788 	return (zone_create_error(error, error2, extended_error));
4789 }
4790 
4791 /*
4792  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4793  * the heavy lifting.  initname is the path to the program to launch
4794  * at the "top" of the zone; if this is NULL, we use the system default,
4795  * which is stored at zone_default_initname.
4796  */
4797 static int
4798 zone_boot(zoneid_t zoneid)
4799 {
4800 	int err;
4801 	zone_t *zone;
4802 
4803 	if (secpolicy_zone_config(CRED()) != 0)
4804 		return (set_errno(EPERM));
4805 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4806 		return (set_errno(EINVAL));
4807 
4808 	mutex_enter(&zonehash_lock);
4809 	/*
4810 	 * Look for zone under hash lock to prevent races with calls to
4811 	 * zone_shutdown, zone_destroy, etc.
4812 	 */
4813 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4814 		mutex_exit(&zonehash_lock);
4815 		return (set_errno(EINVAL));
4816 	}
4817 
4818 	mutex_enter(&zone_status_lock);
4819 	if (zone_status_get(zone) != ZONE_IS_READY) {
4820 		mutex_exit(&zone_status_lock);
4821 		mutex_exit(&zonehash_lock);
4822 		return (set_errno(EINVAL));
4823 	}
4824 	zone_status_set(zone, ZONE_IS_BOOTING);
4825 	mutex_exit(&zone_status_lock);
4826 
4827 	zone_hold(zone);	/* so we can use the zone_t later */
4828 	mutex_exit(&zonehash_lock);
4829 
4830 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4831 		zone_rele(zone);
4832 		return (set_errno(EINTR));
4833 	}
4834 
4835 	/*
4836 	 * Boot (starting init) might have failed, in which case the zone
4837 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4838 	 * be placed in zone->zone_boot_err, and so we return that.
4839 	 */
4840 	err = zone->zone_boot_err;
4841 	zone_rele(zone);
4842 	return (err ? set_errno(err) : 0);
4843 }
4844 
4845 /*
4846  * Kills all user processes in the zone, waiting for them all to exit
4847  * before returning.
4848  */
4849 static int
4850 zone_empty(zone_t *zone)
4851 {
4852 	int waitstatus;
4853 
4854 	/*
4855 	 * We need to drop zonehash_lock before killing all
4856 	 * processes, otherwise we'll deadlock with zone_find_*
4857 	 * which can be called from the exit path.
4858 	 */
4859 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4860 	while ((waitstatus = zone_status_timedwait_sig(zone,
4861 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4862 		killall(zone->zone_id);
4863 	}
4864 	/*
4865 	 * return EINTR if we were signaled
4866 	 */
4867 	if (waitstatus == 0)
4868 		return (EINTR);
4869 	return (0);
4870 }
4871 
4872 /*
4873  * This function implements the policy for zone visibility.
4874  *
4875  * In standard Solaris, a non-global zone can only see itself.
4876  *
4877  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4878  * it dominates. For this test, the label of the global zone is treated as
4879  * admin_high so it is special-cased instead of being checked for dominance.
4880  *
4881  * Returns true if zone attributes are viewable, false otherwise.
4882  */
4883 static boolean_t
4884 zone_list_access(zone_t *zone)
4885 {
4886 
4887 	if (curproc->p_zone == global_zone ||
4888 	    curproc->p_zone == zone) {
4889 		return (B_TRUE);
4890 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4891 		bslabel_t *curproc_label;
4892 		bslabel_t *zone_label;
4893 
4894 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4895 		zone_label = label2bslabel(zone->zone_slabel);
4896 
4897 		if (zone->zone_id != GLOBAL_ZONEID &&
4898 		    bldominates(curproc_label, zone_label)) {
4899 			return (B_TRUE);
4900 		} else {
4901 			return (B_FALSE);
4902 		}
4903 	} else {
4904 		return (B_FALSE);
4905 	}
4906 }
4907 
4908 /*
4909  * Systemcall to start the zone's halt sequence.  By the time this
4910  * function successfully returns, all user processes and kernel threads
4911  * executing in it will have exited, ZSD shutdown callbacks executed,
4912  * and the zone status set to ZONE_IS_DOWN.
4913  *
4914  * It is possible that the call will interrupt itself if the caller is the
4915  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4916  */
4917 static int
4918 zone_shutdown(zoneid_t zoneid)
4919 {
4920 	int error;
4921 	zone_t *zone;
4922 	zone_status_t status;
4923 
4924 	if (secpolicy_zone_config(CRED()) != 0)
4925 		return (set_errno(EPERM));
4926 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4927 		return (set_errno(EINVAL));
4928 
4929 	mutex_enter(&zonehash_lock);
4930 	/*
4931 	 * Look for zone under hash lock to prevent races with other
4932 	 * calls to zone_shutdown and zone_destroy.
4933 	 */
4934 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4935 		mutex_exit(&zonehash_lock);
4936 		return (set_errno(EINVAL));
4937 	}
4938 
4939 	/*
4940 	 * We have to drop zonehash_lock before calling block_mounts.
4941 	 * Hold the zone so we can continue to use the zone_t.
4942 	 */
4943 	zone_hold(zone);
4944 	mutex_exit(&zonehash_lock);
4945 
4946 	/*
4947 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4948 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4949 	 *
4950 	 * e.g. NFS can fail the mount if it determines that the zone
4951 	 * has already begun the shutdown sequence.
4952 	 *
4953 	 */
4954 	if (block_mounts(zone) == 0) {
4955 		zone_rele(zone);
4956 		return (set_errno(EINTR));
4957 	}
4958 
4959 	mutex_enter(&zonehash_lock);
4960 	mutex_enter(&zone_status_lock);
4961 	status = zone_status_get(zone);
4962 	/*
4963 	 * Fail if the zone isn't fully initialized yet.
4964 	 */
4965 	if (status < ZONE_IS_READY) {
4966 		mutex_exit(&zone_status_lock);
4967 		mutex_exit(&zonehash_lock);
4968 		resume_mounts(zone);
4969 		zone_rele(zone);
4970 		return (set_errno(EINVAL));
4971 	}
4972 	/*
4973 	 * If conditions required for zone_shutdown() to return have been met,
4974 	 * return success.
4975 	 */
4976 	if (status >= ZONE_IS_DOWN) {
4977 		mutex_exit(&zone_status_lock);
4978 		mutex_exit(&zonehash_lock);
4979 		resume_mounts(zone);
4980 		zone_rele(zone);
4981 		return (0);
4982 	}
4983 	/*
4984 	 * If zone_shutdown() hasn't been called before, go through the motions.
4985 	 * If it has, there's nothing to do but wait for the kernel threads to
4986 	 * drain.
4987 	 */
4988 	if (status < ZONE_IS_EMPTY) {
4989 		uint_t ntasks;
4990 
4991 		mutex_enter(&zone->zone_lock);
4992 		if ((ntasks = zone->zone_ntasks) != 1) {
4993 			/*
4994 			 * There's still stuff running.
4995 			 */
4996 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4997 		}
4998 		mutex_exit(&zone->zone_lock);
4999 		if (ntasks == 1) {
5000 			/*
5001 			 * The only way to create another task is through
5002 			 * zone_enter(), which will block until we drop
5003 			 * zonehash_lock.  The zone is empty.
5004 			 */
5005 			if (zone->zone_kthreads == NULL) {
5006 				/*
5007 				 * Skip ahead to ZONE_IS_DOWN
5008 				 */
5009 				zone_status_set(zone, ZONE_IS_DOWN);
5010 			} else {
5011 				zone_status_set(zone, ZONE_IS_EMPTY);
5012 			}
5013 		}
5014 	}
5015 	mutex_exit(&zone_status_lock);
5016 	mutex_exit(&zonehash_lock);
5017 	resume_mounts(zone);
5018 
5019 	if (error = zone_empty(zone)) {
5020 		zone_rele(zone);
5021 		return (set_errno(error));
5022 	}
5023 	/*
5024 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
5025 	 * longer be notified of changes to the pools configuration, so
5026 	 * in order to not end up with a stale pool pointer, we point
5027 	 * ourselves at the default pool and remove all resource
5028 	 * visibility.  This is especially important as the zone_t may
5029 	 * languish on the deathrow for a very long time waiting for
5030 	 * cred's to drain out.
5031 	 *
5032 	 * This rebinding of the zone can happen multiple times
5033 	 * (presumably due to interrupted or parallel systemcalls)
5034 	 * without any adverse effects.
5035 	 */
5036 	if (pool_lock_intr() != 0) {
5037 		zone_rele(zone);
5038 		return (set_errno(EINTR));
5039 	}
5040 	if (pool_state == POOL_ENABLED) {
5041 		mutex_enter(&cpu_lock);
5042 		zone_pool_set(zone, pool_default);
5043 		/*
5044 		 * The zone no longer needs to be able to see any cpus.
5045 		 */
5046 		zone_pset_set(zone, ZONE_PS_INVAL);
5047 		mutex_exit(&cpu_lock);
5048 	}
5049 	pool_unlock();
5050 
5051 	/*
5052 	 * ZSD shutdown callbacks can be executed multiple times, hence
5053 	 * it is safe to not be holding any locks across this call.
5054 	 */
5055 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
5056 
5057 	mutex_enter(&zone_status_lock);
5058 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
5059 		zone_status_set(zone, ZONE_IS_DOWN);
5060 	mutex_exit(&zone_status_lock);
5061 
5062 	/*
5063 	 * Wait for kernel threads to drain.
5064 	 */
5065 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
5066 		zone_rele(zone);
5067 		return (set_errno(EINTR));
5068 	}
5069 
5070 	/*
5071 	 * Zone can be become down/destroyable even if the above wait
5072 	 * returns EINTR, so any code added here may never execute.
5073 	 * (i.e. don't add code here)
5074 	 */
5075 
5076 	zone_rele(zone);
5077 	return (0);
5078 }
5079 
5080 /*
5081  * Log the specified zone's reference counts.  The caller should not be
5082  * holding the zone's zone_lock.
5083  */
5084 static void
5085 zone_log_refcounts(zone_t *zone)
5086 {
5087 	char *buffer;
5088 	char *buffer_position;
5089 	uint32_t buffer_size;
5090 	uint32_t index;
5091 	uint_t ref;
5092 	uint_t cred_ref;
5093 
5094 	/*
5095 	 * Construct a string representing the subsystem-specific reference
5096 	 * counts.  The counts are printed in ascending order by index into the
5097 	 * zone_t::zone_subsys_ref array.  The list will be surrounded by
5098 	 * square brackets [] and will only contain nonzero reference counts.
5099 	 *
5100 	 * The buffer will hold two square bracket characters plus ten digits,
5101 	 * one colon, one space, one comma, and some characters for a
5102 	 * subsystem name per subsystem-specific reference count.  (Unsigned 32-
5103 	 * bit integers have at most ten decimal digits.)  The last
5104 	 * reference count's comma is replaced by the closing square
5105 	 * bracket and a NULL character to terminate the string.
5106 	 *
5107 	 * NOTE: We have to grab the zone's zone_lock to create a consistent
5108 	 * snapshot of the zone's reference counters.
5109 	 *
5110 	 * First, figure out how much space the string buffer will need.
5111 	 * The buffer's size is stored in buffer_size.
5112 	 */
5113 	buffer_size = 2;			/* for the square brackets */
5114 	mutex_enter(&zone->zone_lock);
5115 	zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
5116 	ref = zone->zone_ref;
5117 	cred_ref = zone->zone_cred_ref;
5118 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
5119 		if (zone->zone_subsys_ref[index] != 0)
5120 			buffer_size += strlen(zone_ref_subsys_names[index]) +
5121 			    13;
5122 	if (buffer_size == 2) {
5123 		/*
5124 		 * No subsystems had nonzero reference counts.  Don't bother
5125 		 * with allocating a buffer; just log the general-purpose and
5126 		 * credential reference counts.
5127 		 */
5128 		mutex_exit(&zone->zone_lock);
5129 		(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5130 		    "Zone '%s' (ID: %d) is shutting down, but %u zone "
5131 		    "references and %u credential references are still extant",
5132 		    zone->zone_name, zone->zone_id, ref, cred_ref);
5133 		return;
5134 	}
5135 
5136 	/*
5137 	 * buffer_size contains the exact number of characters that the
5138 	 * buffer will need.  Allocate the buffer and fill it with nonzero
5139 	 * subsystem-specific reference counts.  Surround the results with
5140 	 * square brackets afterwards.
5141 	 */
5142 	buffer = kmem_alloc(buffer_size, KM_SLEEP);
5143 	buffer_position = &buffer[1];
5144 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5145 		/*
5146 		 * NOTE: The DDI's version of sprintf() returns a pointer to
5147 		 * the modified buffer rather than the number of bytes written
5148 		 * (as in snprintf(3C)).  This is unfortunate and annoying.
5149 		 * Therefore, we'll use snprintf() with INT_MAX to get the
5150 		 * number of bytes written.  Using INT_MAX is safe because
5151 		 * the buffer is perfectly sized for the data: we'll never
5152 		 * overrun the buffer.
5153 		 */
5154 		if (zone->zone_subsys_ref[index] != 0)
5155 			buffer_position += snprintf(buffer_position, INT_MAX,
5156 			    "%s: %u,", zone_ref_subsys_names[index],
5157 			    zone->zone_subsys_ref[index]);
5158 	}
5159 	mutex_exit(&zone->zone_lock);
5160 	buffer[0] = '[';
5161 	ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5162 	ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5163 	buffer_position[-1] = ']';
5164 
5165 	/*
5166 	 * Log the reference counts and free the message buffer.
5167 	 */
5168 	(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5169 	    "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5170 	    "%u credential references are still extant %s", zone->zone_name,
5171 	    zone->zone_id, ref, cred_ref, buffer);
5172 	kmem_free(buffer, buffer_size);
5173 }
5174 
5175 /*
5176  * Systemcall entry point to finalize the zone halt process.  The caller
5177  * must have already successfully called zone_shutdown().
5178  *
5179  * Upon successful completion, the zone will have been fully destroyed:
5180  * zsched will have exited, destructor callbacks executed, and the zone
5181  * removed from the list of active zones.
5182  */
5183 static int
5184 zone_destroy(zoneid_t zoneid)
5185 {
5186 	uint64_t uniqid;
5187 	zone_t *zone;
5188 	zone_status_t status;
5189 	clock_t wait_time;
5190 	boolean_t log_refcounts;
5191 
5192 	if (secpolicy_zone_config(CRED()) != 0)
5193 		return (set_errno(EPERM));
5194 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5195 		return (set_errno(EINVAL));
5196 
5197 	mutex_enter(&zonehash_lock);
5198 	/*
5199 	 * Look for zone under hash lock to prevent races with other
5200 	 * calls to zone_destroy.
5201 	 */
5202 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5203 		mutex_exit(&zonehash_lock);
5204 		return (set_errno(EINVAL));
5205 	}
5206 
5207 	if (zone_mount_count(zone->zone_rootpath) != 0) {
5208 		mutex_exit(&zonehash_lock);
5209 		return (set_errno(EBUSY));
5210 	}
5211 	mutex_enter(&zone_status_lock);
5212 	status = zone_status_get(zone);
5213 	if (status < ZONE_IS_DOWN) {
5214 		mutex_exit(&zone_status_lock);
5215 		mutex_exit(&zonehash_lock);
5216 		return (set_errno(EBUSY));
5217 	} else if (status == ZONE_IS_DOWN) {
5218 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5219 	}
5220 	mutex_exit(&zone_status_lock);
5221 	zone_hold(zone);
5222 	mutex_exit(&zonehash_lock);
5223 
5224 	/*
5225 	 * wait for zsched to exit
5226 	 */
5227 	zone_status_wait(zone, ZONE_IS_DEAD);
5228 	zone_zsd_callbacks(zone, ZSD_DESTROY);
5229 	zone->zone_netstack = NULL;
5230 	uniqid = zone->zone_uniqid;
5231 	zone_rele(zone);
5232 	zone = NULL;	/* potentially free'd */
5233 
5234 	log_refcounts = B_FALSE;
5235 	wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5236 	mutex_enter(&zonehash_lock);
5237 	for (; /* ever */; ) {
5238 		boolean_t unref;
5239 		boolean_t refs_have_been_logged;
5240 
5241 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5242 		    zone->zone_uniqid != uniqid) {
5243 			/*
5244 			 * The zone has gone away.  Necessary conditions
5245 			 * are met, so we return success.
5246 			 */
5247 			mutex_exit(&zonehash_lock);
5248 			return (0);
5249 		}
5250 		mutex_enter(&zone->zone_lock);
5251 		unref = ZONE_IS_UNREF(zone);
5252 		refs_have_been_logged = (zone->zone_flags &
5253 		    ZF_REFCOUNTS_LOGGED);
5254 		mutex_exit(&zone->zone_lock);
5255 		if (unref) {
5256 			/*
5257 			 * There is only one reference to the zone -- that
5258 			 * added when the zone was added to the hashtables --
5259 			 * and things will remain this way until we drop
5260 			 * zonehash_lock... we can go ahead and cleanup the
5261 			 * zone.
5262 			 */
5263 			break;
5264 		}
5265 
5266 		/*
5267 		 * Wait for zone_rele_common() or zone_cred_rele() to signal
5268 		 * zone_destroy_cv.  zone_destroy_cv is signaled only when
5269 		 * some zone's general-purpose reference count reaches one.
5270 		 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5271 		 * on zone_destroy_cv, then log the zone's reference counts and
5272 		 * continue to wait for zone_rele() and zone_cred_rele().
5273 		 */
5274 		if (!refs_have_been_logged) {
5275 			if (!log_refcounts) {
5276 				/*
5277 				 * This thread hasn't timed out waiting on
5278 				 * zone_destroy_cv yet.  Wait wait_time clock
5279 				 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5280 				 * seconds) for the zone's references to clear.
5281 				 */
5282 				ASSERT(wait_time > 0);
5283 				wait_time = cv_reltimedwait_sig(
5284 				    &zone_destroy_cv, &zonehash_lock, wait_time,
5285 				    TR_SEC);
5286 				if (wait_time > 0) {
5287 					/*
5288 					 * A thread in zone_rele() or
5289 					 * zone_cred_rele() signaled
5290 					 * zone_destroy_cv before this thread's
5291 					 * wait timed out.  The zone might have
5292 					 * only one reference left; find out!
5293 					 */
5294 					continue;
5295 				} else if (wait_time == 0) {
5296 					/* The thread's process was signaled. */
5297 					mutex_exit(&zonehash_lock);
5298 					return (set_errno(EINTR));
5299 				}
5300 
5301 				/*
5302 				 * The thread timed out while waiting on
5303 				 * zone_destroy_cv.  Even though the thread
5304 				 * timed out, it has to check whether another
5305 				 * thread woke up from zone_destroy_cv and
5306 				 * destroyed the zone.
5307 				 *
5308 				 * If the zone still exists and has more than
5309 				 * one unreleased general-purpose reference,
5310 				 * then log the zone's reference counts.
5311 				 */
5312 				log_refcounts = B_TRUE;
5313 				continue;
5314 			}
5315 
5316 			/*
5317 			 * The thread already timed out on zone_destroy_cv while
5318 			 * waiting for subsystems to release the zone's last
5319 			 * general-purpose references.  Log the zone's reference
5320 			 * counts and wait indefinitely on zone_destroy_cv.
5321 			 */
5322 			zone_log_refcounts(zone);
5323 		}
5324 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5325 			/* The thread's process was signaled. */
5326 			mutex_exit(&zonehash_lock);
5327 			return (set_errno(EINTR));
5328 		}
5329 	}
5330 
5331 	/*
5332 	 * Remove CPU cap for this zone now since we're not going to
5333 	 * fail below this point.
5334 	 */
5335 	cpucaps_zone_remove(zone);
5336 
5337 	/* Get rid of the zone's kstats */
5338 	zone_kstat_delete(zone);
5339 
5340 	/* remove the pfexecd doors */
5341 	if (zone->zone_pfexecd != NULL) {
5342 		klpd_freelist(&zone->zone_pfexecd);
5343 		zone->zone_pfexecd = NULL;
5344 	}
5345 
5346 	/* free brand specific data */
5347 	if (ZONE_IS_BRANDED(zone))
5348 		ZBROP(zone)->b_free_brand_data(zone);
5349 
5350 	/* Say goodbye to brand framework. */
5351 	brand_unregister_zone(zone->zone_brand);
5352 
5353 	/*
5354 	 * It is now safe to let the zone be recreated; remove it from the
5355 	 * lists.  The memory will not be freed until the last cred
5356 	 * reference goes away.
5357 	 */
5358 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
5359 	zonecount--;
5360 	/* remove from active list and hash tables */
5361 	list_remove(&zone_active, zone);
5362 	(void) mod_hash_destroy(zonehashbyname,
5363 	    (mod_hash_key_t)zone->zone_name);
5364 	(void) mod_hash_destroy(zonehashbyid,
5365 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
5366 	if (zone->zone_flags & ZF_HASHED_LABEL)
5367 		(void) mod_hash_destroy(zonehashbylabel,
5368 		    (mod_hash_key_t)zone->zone_slabel);
5369 	mutex_exit(&zonehash_lock);
5370 
5371 	/*
5372 	 * Release the root vnode; we're not using it anymore.  Nor should any
5373 	 * other thread that might access it exist.
5374 	 */
5375 	if (zone->zone_rootvp != NULL) {
5376 		VN_RELE(zone->zone_rootvp);
5377 		zone->zone_rootvp = NULL;
5378 	}
5379 
5380 	/* add to deathrow list */
5381 	mutex_enter(&zone_deathrow_lock);
5382 	list_insert_tail(&zone_deathrow, zone);
5383 	mutex_exit(&zone_deathrow_lock);
5384 
5385 	/*
5386 	 * Drop last reference (which was added by zsched()), this will
5387 	 * free the zone unless there are outstanding cred references.
5388 	 */
5389 	zone_rele(zone);
5390 	return (0);
5391 }
5392 
5393 /*
5394  * Systemcall entry point for zone_getattr(2).
5395  */
5396 static ssize_t
5397 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5398 {
5399 	size_t size;
5400 	int error = 0, err;
5401 	zone_t *zone;
5402 	char *zonepath;
5403 	char *outstr;
5404 	zone_status_t zone_status;
5405 	pid_t initpid;
5406 	boolean_t global = (curzone == global_zone);
5407 	boolean_t inzone = (curzone->zone_id == zoneid);
5408 	ushort_t flags;
5409 	zone_net_data_t *zbuf;
5410 
5411 	mutex_enter(&zonehash_lock);
5412 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5413 		mutex_exit(&zonehash_lock);
5414 		return (set_errno(EINVAL));
5415 	}
5416 	zone_status = zone_status_get(zone);
5417 	if (zone_status < ZONE_IS_INITIALIZED) {
5418 		mutex_exit(&zonehash_lock);
5419 		return (set_errno(EINVAL));
5420 	}
5421 	zone_hold(zone);
5422 	mutex_exit(&zonehash_lock);
5423 
5424 	/*
5425 	 * If not in the global zone, don't show information about other zones,
5426 	 * unless the system is labeled and the local zone's label dominates
5427 	 * the other zone.
5428 	 */
5429 	if (!zone_list_access(zone)) {
5430 		zone_rele(zone);
5431 		return (set_errno(EINVAL));
5432 	}
5433 
5434 	switch (attr) {
5435 	case ZONE_ATTR_ROOT:
5436 		if (global) {
5437 			/*
5438 			 * Copy the path to trim the trailing "/" (except for
5439 			 * the global zone).
5440 			 */
5441 			if (zone != global_zone)
5442 				size = zone->zone_rootpathlen - 1;
5443 			else
5444 				size = zone->zone_rootpathlen;
5445 			zonepath = kmem_alloc(size, KM_SLEEP);
5446 			bcopy(zone->zone_rootpath, zonepath, size);
5447 			zonepath[size - 1] = '\0';
5448 		} else {
5449 			if (inzone || !is_system_labeled()) {
5450 				/*
5451 				 * Caller is not in the global zone.
5452 				 * if the query is on the current zone
5453 				 * or the system is not labeled,
5454 				 * just return faked-up path for current zone.
5455 				 */
5456 				zonepath = "/";
5457 				size = 2;
5458 			} else {
5459 				/*
5460 				 * Return related path for current zone.
5461 				 */
5462 				int prefix_len = strlen(zone_prefix);
5463 				int zname_len = strlen(zone->zone_name);
5464 
5465 				size = prefix_len + zname_len + 1;
5466 				zonepath = kmem_alloc(size, KM_SLEEP);
5467 				bcopy(zone_prefix, zonepath, prefix_len);
5468 				bcopy(zone->zone_name, zonepath +
5469 				    prefix_len, zname_len);
5470 				zonepath[size - 1] = '\0';
5471 			}
5472 		}
5473 		if (bufsize > size)
5474 			bufsize = size;
5475 		if (buf != NULL) {
5476 			err = copyoutstr(zonepath, buf, bufsize, NULL);
5477 			if (err != 0 && err != ENAMETOOLONG)
5478 				error = EFAULT;
5479 		}
5480 		if (global || (is_system_labeled() && !inzone))
5481 			kmem_free(zonepath, size);
5482 		break;
5483 
5484 	case ZONE_ATTR_NAME:
5485 		size = strlen(zone->zone_name) + 1;
5486 		if (bufsize > size)
5487 			bufsize = size;
5488 		if (buf != NULL) {
5489 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5490 			if (err != 0 && err != ENAMETOOLONG)
5491 				error = EFAULT;
5492 		}
5493 		break;
5494 
5495 	case ZONE_ATTR_STATUS:
5496 		/*
5497 		 * Since we're not holding zonehash_lock, the zone status
5498 		 * may be anything; leave it up to userland to sort it out.
5499 		 */
5500 		size = sizeof (zone_status);
5501 		if (bufsize > size)
5502 			bufsize = size;
5503 		zone_status = zone_status_get(zone);
5504 		if (buf != NULL &&
5505 		    copyout(&zone_status, buf, bufsize) != 0)
5506 			error = EFAULT;
5507 		break;
5508 	case ZONE_ATTR_FLAGS:
5509 		size = sizeof (zone->zone_flags);
5510 		if (bufsize > size)
5511 			bufsize = size;
5512 		flags = zone->zone_flags;
5513 		if (buf != NULL &&
5514 		    copyout(&flags, buf, bufsize) != 0)
5515 			error = EFAULT;
5516 		break;
5517 	case ZONE_ATTR_PRIVSET:
5518 		size = sizeof (priv_set_t);
5519 		if (bufsize > size)
5520 			bufsize = size;
5521 		if (buf != NULL &&
5522 		    copyout(zone->zone_privset, buf, bufsize) != 0)
5523 			error = EFAULT;
5524 		break;
5525 	case ZONE_ATTR_UNIQID:
5526 		size = sizeof (zone->zone_uniqid);
5527 		if (bufsize > size)
5528 			bufsize = size;
5529 		if (buf != NULL &&
5530 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5531 			error = EFAULT;
5532 		break;
5533 	case ZONE_ATTR_POOLID:
5534 		{
5535 			pool_t *pool;
5536 			poolid_t poolid;
5537 
5538 			if (pool_lock_intr() != 0) {
5539 				error = EINTR;
5540 				break;
5541 			}
5542 			pool = zone_pool_get(zone);
5543 			poolid = pool->pool_id;
5544 			pool_unlock();
5545 			size = sizeof (poolid);
5546 			if (bufsize > size)
5547 				bufsize = size;
5548 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
5549 				error = EFAULT;
5550 		}
5551 		break;
5552 	case ZONE_ATTR_SLBL:
5553 		size = sizeof (bslabel_t);
5554 		if (bufsize > size)
5555 			bufsize = size;
5556 		if (zone->zone_slabel == NULL)
5557 			error = EINVAL;
5558 		else if (buf != NULL &&
5559 		    copyout(label2bslabel(zone->zone_slabel), buf,
5560 		    bufsize) != 0)
5561 			error = EFAULT;
5562 		break;
5563 	case ZONE_ATTR_INITPID:
5564 		size = sizeof (initpid);
5565 		if (bufsize > size)
5566 			bufsize = size;
5567 		initpid = zone->zone_proc_initpid;
5568 		if (initpid == -1) {
5569 			error = ESRCH;
5570 			break;
5571 		}
5572 		if (buf != NULL &&
5573 		    copyout(&initpid, buf, bufsize) != 0)
5574 			error = EFAULT;
5575 		break;
5576 	case ZONE_ATTR_BRAND:
5577 		size = strlen(zone->zone_brand->b_name) + 1;
5578 
5579 		if (bufsize > size)
5580 			bufsize = size;
5581 		if (buf != NULL) {
5582 			err = copyoutstr(zone->zone_brand->b_name, buf,
5583 			    bufsize, NULL);
5584 			if (err != 0 && err != ENAMETOOLONG)
5585 				error = EFAULT;
5586 		}
5587 		break;
5588 	case ZONE_ATTR_INITNAME:
5589 		size = strlen(zone->zone_initname) + 1;
5590 		if (bufsize > size)
5591 			bufsize = size;
5592 		if (buf != NULL) {
5593 			err = copyoutstr(zone->zone_initname, buf, bufsize,
5594 			    NULL);
5595 			if (err != 0 && err != ENAMETOOLONG)
5596 				error = EFAULT;
5597 		}
5598 		break;
5599 	case ZONE_ATTR_BOOTARGS:
5600 		if (zone->zone_bootargs == NULL)
5601 			outstr = "";
5602 		else
5603 			outstr = zone->zone_bootargs;
5604 		size = strlen(outstr) + 1;
5605 		if (bufsize > size)
5606 			bufsize = size;
5607 		if (buf != NULL) {
5608 			err = copyoutstr(outstr, buf, bufsize, NULL);
5609 			if (err != 0 && err != ENAMETOOLONG)
5610 				error = EFAULT;
5611 		}
5612 		break;
5613 	case ZONE_ATTR_PHYS_MCAP:
5614 		size = sizeof (zone->zone_phys_mcap);
5615 		if (bufsize > size)
5616 			bufsize = size;
5617 		if (buf != NULL &&
5618 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5619 			error = EFAULT;
5620 		break;
5621 	case ZONE_ATTR_SCHED_CLASS:
5622 		mutex_enter(&class_lock);
5623 
5624 		if (zone->zone_defaultcid >= loaded_classes)
5625 			outstr = "";
5626 		else
5627 			outstr = sclass[zone->zone_defaultcid].cl_name;
5628 		size = strlen(outstr) + 1;
5629 		if (bufsize > size)
5630 			bufsize = size;
5631 		if (buf != NULL) {
5632 			err = copyoutstr(outstr, buf, bufsize, NULL);
5633 			if (err != 0 && err != ENAMETOOLONG)
5634 				error = EFAULT;
5635 		}
5636 
5637 		mutex_exit(&class_lock);
5638 		break;
5639 	case ZONE_ATTR_HOSTID:
5640 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
5641 		    bufsize == sizeof (zone->zone_hostid)) {
5642 			size = sizeof (zone->zone_hostid);
5643 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
5644 			    bufsize) != 0)
5645 				error = EFAULT;
5646 		} else {
5647 			error = EINVAL;
5648 		}
5649 		break;
5650 	case ZONE_ATTR_FS_ALLOWED:
5651 		if (zone->zone_fs_allowed == NULL)
5652 			outstr = "";
5653 		else
5654 			outstr = zone->zone_fs_allowed;
5655 		size = strlen(outstr) + 1;
5656 		if (bufsize > size)
5657 			bufsize = size;
5658 		if (buf != NULL) {
5659 			err = copyoutstr(outstr, buf, bufsize, NULL);
5660 			if (err != 0 && err != ENAMETOOLONG)
5661 				error = EFAULT;
5662 		}
5663 		break;
5664 	case ZONE_ATTR_SECFLAGS:
5665 		size = sizeof (zone->zone_secflags);
5666 		if (bufsize > size)
5667 			bufsize = size;
5668 		if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0)
5669 			error = EFAULT;
5670 		break;
5671 	case ZONE_ATTR_NETWORK:
5672 		bufsize = MIN(bufsize, PIPE_BUF + sizeof (zone_net_data_t));
5673 		size = bufsize;
5674 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5675 		if (copyin(buf, zbuf, bufsize) != 0) {
5676 			error = EFAULT;
5677 		} else {
5678 			error = zone_get_network(zoneid, zbuf);
5679 			if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5680 				error = EFAULT;
5681 		}
5682 		kmem_free(zbuf, bufsize);
5683 		break;
5684 	default:
5685 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5686 			size = bufsize;
5687 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5688 		} else {
5689 			error = EINVAL;
5690 		}
5691 	}
5692 	zone_rele(zone);
5693 
5694 	if (error)
5695 		return (set_errno(error));
5696 	return ((ssize_t)size);
5697 }
5698 
5699 /*
5700  * Systemcall entry point for zone_setattr(2).
5701  */
5702 /*ARGSUSED*/
5703 static int
5704 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5705 {
5706 	zone_t *zone;
5707 	zone_status_t zone_status;
5708 	int err = -1;
5709 	zone_net_data_t *zbuf;
5710 
5711 	if (secpolicy_zone_config(CRED()) != 0)
5712 		return (set_errno(EPERM));
5713 
5714 	/*
5715 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5716 	 * global zone.
5717 	 */
5718 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5719 		return (set_errno(EINVAL));
5720 	}
5721 
5722 	mutex_enter(&zonehash_lock);
5723 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5724 		mutex_exit(&zonehash_lock);
5725 		return (set_errno(EINVAL));
5726 	}
5727 	zone_hold(zone);
5728 	mutex_exit(&zonehash_lock);
5729 
5730 	/*
5731 	 * At present most attributes can only be set on non-running,
5732 	 * non-global zones.
5733 	 */
5734 	zone_status = zone_status_get(zone);
5735 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5736 		err = EINVAL;
5737 		goto done;
5738 	}
5739 
5740 	switch (attr) {
5741 	case ZONE_ATTR_INITNAME:
5742 		err = zone_set_initname(zone, (const char *)buf);
5743 		break;
5744 	case ZONE_ATTR_INITNORESTART:
5745 		zone->zone_restart_init = B_FALSE;
5746 		err = 0;
5747 		break;
5748 	case ZONE_ATTR_INITRESTART0:
5749 		zone->zone_restart_init_0 = B_TRUE;
5750 		err = 0;
5751 		break;
5752 	case ZONE_ATTR_INITREBOOT:
5753 		zone->zone_reboot_on_init_exit = B_TRUE;
5754 		err = 0;
5755 		break;
5756 	case ZONE_ATTR_BOOTARGS:
5757 		err = zone_set_bootargs(zone, (const char *)buf);
5758 		break;
5759 	case ZONE_ATTR_BRAND:
5760 		err = zone_set_brand(zone, (const char *)buf);
5761 		break;
5762 	case ZONE_ATTR_FS_ALLOWED:
5763 		err = zone_set_fs_allowed(zone, (const char *)buf);
5764 		break;
5765 	case ZONE_ATTR_SECFLAGS:
5766 		err = zone_set_secflags(zone, (psecflags_t *)buf);
5767 		break;
5768 	case ZONE_ATTR_PHYS_MCAP:
5769 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5770 		break;
5771 	case ZONE_ATTR_SCHED_CLASS:
5772 		err = zone_set_sched_class(zone, (const char *)buf);
5773 		break;
5774 	case ZONE_ATTR_HOSTID:
5775 		if (bufsize == sizeof (zone->zone_hostid)) {
5776 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5777 				err = 0;
5778 			else
5779 				err = EFAULT;
5780 		} else {
5781 			err = EINVAL;
5782 		}
5783 		break;
5784 	case ZONE_ATTR_NETWORK:
5785 		if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5786 			err = EINVAL;
5787 			break;
5788 		}
5789 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5790 		if (copyin(buf, zbuf, bufsize) != 0) {
5791 			kmem_free(zbuf, bufsize);
5792 			err = EFAULT;
5793 			break;
5794 		}
5795 		err = zone_set_network(zoneid, zbuf);
5796 		kmem_free(zbuf, bufsize);
5797 		break;
5798 	default:
5799 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5800 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5801 		else
5802 			err = EINVAL;
5803 	}
5804 
5805 done:
5806 	zone_rele(zone);
5807 	ASSERT(err != -1);
5808 	return (err != 0 ? set_errno(err) : 0);
5809 }
5810 
5811 /*
5812  * Return zero if the process has at least one vnode mapped in to its
5813  * address space which shouldn't be allowed to change zones.
5814  *
5815  * Also return zero if the process has any shared mappings which reserve
5816  * swap.  This is because the counting for zone.max-swap does not allow swap
5817  * reservation to be shared between zones.  zone swap reservation is counted
5818  * on zone->zone_max_swap.
5819  */
5820 static int
5821 as_can_change_zones(void)
5822 {
5823 	proc_t *pp = curproc;
5824 	struct seg *seg;
5825 	struct as *as = pp->p_as;
5826 	vnode_t *vp;
5827 	int allow = 1;
5828 
5829 	ASSERT(pp->p_as != &kas);
5830 	AS_LOCK_ENTER(as, RW_READER);
5831 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5832 
5833 		/*
5834 		 * Cannot enter zone with shared anon memory which
5835 		 * reserves swap.  See comment above.
5836 		 */
5837 		if (seg_can_change_zones(seg) == B_FALSE) {
5838 			allow = 0;
5839 			break;
5840 		}
5841 		/*
5842 		 * if we can't get a backing vnode for this segment then skip
5843 		 * it.
5844 		 */
5845 		vp = NULL;
5846 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5847 			continue;
5848 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5849 			allow = 0;
5850 			break;
5851 		}
5852 	}
5853 	AS_LOCK_EXIT(as);
5854 	return (allow);
5855 }
5856 
5857 /*
5858  * Count swap reserved by curproc's address space
5859  */
5860 static size_t
5861 as_swresv(void)
5862 {
5863 	proc_t *pp = curproc;
5864 	struct seg *seg;
5865 	struct as *as = pp->p_as;
5866 	size_t swap = 0;
5867 
5868 	ASSERT(pp->p_as != &kas);
5869 	ASSERT(AS_WRITE_HELD(as));
5870 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5871 		swap += seg_swresv(seg);
5872 
5873 	return (swap);
5874 }
5875 
5876 /*
5877  * Systemcall entry point for zone_enter().
5878  *
5879  * The current process is injected into said zone.  In the process
5880  * it will change its project membership, privileges, rootdir/cwd,
5881  * zone-wide rctls, and pool association to match those of the zone.
5882  *
5883  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5884  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5885  * enter a zone that is "ready" or "running".
5886  */
5887 static int
5888 zone_enter(zoneid_t zoneid)
5889 {
5890 	zone_t *zone;
5891 	vnode_t *vp;
5892 	proc_t *pp = curproc;
5893 	contract_t *ct;
5894 	cont_process_t *ctp;
5895 	task_t *tk, *oldtk;
5896 	kproject_t *zone_proj0;
5897 	cred_t *cr, *newcr;
5898 	pool_t *oldpool, *newpool;
5899 	sess_t *sp;
5900 	uid_t uid;
5901 	zone_status_t status;
5902 	int err = 0;
5903 	rctl_entity_p_t e;
5904 	size_t swap;
5905 	kthread_id_t t;
5906 
5907 	if (secpolicy_zone_config(CRED()) != 0)
5908 		return (set_errno(EPERM));
5909 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5910 		return (set_errno(EINVAL));
5911 
5912 	/*
5913 	 * Stop all lwps so we don't need to hold a lock to look at
5914 	 * curproc->p_zone.  This needs to happen before we grab any
5915 	 * locks to avoid deadlock (another lwp in the process could
5916 	 * be waiting for the held lock).
5917 	 */
5918 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5919 		return (set_errno(EINTR));
5920 
5921 	/*
5922 	 * Make sure we're not changing zones with files open or mapped in
5923 	 * to our address space which shouldn't be changing zones.
5924 	 */
5925 	if (!files_can_change_zones()) {
5926 		err = EBADF;
5927 		goto out;
5928 	}
5929 	if (!as_can_change_zones()) {
5930 		err = EFAULT;
5931 		goto out;
5932 	}
5933 
5934 	mutex_enter(&zonehash_lock);
5935 	if (pp->p_zone != global_zone) {
5936 		mutex_exit(&zonehash_lock);
5937 		err = EINVAL;
5938 		goto out;
5939 	}
5940 
5941 	zone = zone_find_all_by_id(zoneid);
5942 	if (zone == NULL) {
5943 		mutex_exit(&zonehash_lock);
5944 		err = EINVAL;
5945 		goto out;
5946 	}
5947 
5948 	/*
5949 	 * To prevent processes in a zone from holding contracts on
5950 	 * extrazonal resources, and to avoid process contract
5951 	 * memberships which span zones, contract holders and processes
5952 	 * which aren't the sole members of their encapsulating process
5953 	 * contracts are not allowed to zone_enter.
5954 	 */
5955 	ctp = pp->p_ct_process;
5956 	ct = &ctp->conp_contract;
5957 	mutex_enter(&ct->ct_lock);
5958 	mutex_enter(&pp->p_lock);
5959 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5960 		mutex_exit(&pp->p_lock);
5961 		mutex_exit(&ct->ct_lock);
5962 		mutex_exit(&zonehash_lock);
5963 		err = EINVAL;
5964 		goto out;
5965 	}
5966 
5967 	/*
5968 	 * Moreover, we don't allow processes whose encapsulating
5969 	 * process contracts have inherited extrazonal contracts.
5970 	 * While it would be easier to eliminate all process contracts
5971 	 * with inherited contracts, we need to be able to give a
5972 	 * restarted init (or other zone-penetrating process) its
5973 	 * predecessor's contracts.
5974 	 */
5975 	if (ctp->conp_ninherited != 0) {
5976 		contract_t *next;
5977 		for (next = list_head(&ctp->conp_inherited); next;
5978 		    next = list_next(&ctp->conp_inherited, next)) {
5979 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5980 				mutex_exit(&pp->p_lock);
5981 				mutex_exit(&ct->ct_lock);
5982 				mutex_exit(&zonehash_lock);
5983 				err = EINVAL;
5984 				goto out;
5985 			}
5986 		}
5987 	}
5988 
5989 	mutex_exit(&pp->p_lock);
5990 	mutex_exit(&ct->ct_lock);
5991 
5992 	status = zone_status_get(zone);
5993 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5994 		/*
5995 		 * Can't join
5996 		 */
5997 		mutex_exit(&zonehash_lock);
5998 		err = EINVAL;
5999 		goto out;
6000 	}
6001 
6002 	/*
6003 	 * Make sure new priv set is within the permitted set for caller
6004 	 */
6005 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
6006 		mutex_exit(&zonehash_lock);
6007 		err = EPERM;
6008 		goto out;
6009 	}
6010 	/*
6011 	 * We want to momentarily drop zonehash_lock while we optimistically
6012 	 * bind curproc to the pool it should be running in.  This is safe
6013 	 * since the zone can't disappear (we have a hold on it).
6014 	 */
6015 	zone_hold(zone);
6016 	mutex_exit(&zonehash_lock);
6017 
6018 	/*
6019 	 * Grab pool_lock to keep the pools configuration from changing
6020 	 * and to stop ourselves from getting rebound to another pool
6021 	 * until we join the zone.
6022 	 */
6023 	if (pool_lock_intr() != 0) {
6024 		zone_rele(zone);
6025 		err = EINTR;
6026 		goto out;
6027 	}
6028 	ASSERT(secpolicy_pool(CRED()) == 0);
6029 	/*
6030 	 * Bind ourselves to the pool currently associated with the zone.
6031 	 */
6032 	oldpool = curproc->p_pool;
6033 	newpool = zone_pool_get(zone);
6034 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
6035 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
6036 	    POOL_BIND_ALL)) != 0) {
6037 		pool_unlock();
6038 		zone_rele(zone);
6039 		goto out;
6040 	}
6041 
6042 	/*
6043 	 * Grab cpu_lock now; we'll need it later when we call
6044 	 * task_join().
6045 	 */
6046 	mutex_enter(&cpu_lock);
6047 	mutex_enter(&zonehash_lock);
6048 	/*
6049 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
6050 	 */
6051 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
6052 		/*
6053 		 * Can't join anymore.
6054 		 */
6055 		mutex_exit(&zonehash_lock);
6056 		mutex_exit(&cpu_lock);
6057 		if (pool_state == POOL_ENABLED &&
6058 		    newpool != oldpool)
6059 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
6060 			    POOL_BIND_ALL);
6061 		pool_unlock();
6062 		zone_rele(zone);
6063 		err = EINVAL;
6064 		goto out;
6065 	}
6066 
6067 	/*
6068 	 * a_lock must be held while transfering locked memory and swap
6069 	 * reservation from the global zone to the non global zone because
6070 	 * asynchronous faults on the processes' address space can lock
6071 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
6072 	 * segments respectively.
6073 	 */
6074 	AS_LOCK_ENTER(pp->p_as, RW_WRITER);
6075 	swap = as_swresv();
6076 	mutex_enter(&pp->p_lock);
6077 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
6078 	/* verify that we do not exceed and task or lwp limits */
6079 	mutex_enter(&zone->zone_nlwps_lock);
6080 	/* add new lwps to zone and zone's proj0 */
6081 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
6082 	zone->zone_nlwps += pp->p_lwpcnt;
6083 	/* add 1 task to zone's proj0 */
6084 	zone_proj0->kpj_ntasks += 1;
6085 
6086 	zone_proj0->kpj_nprocs++;
6087 	zone->zone_nprocs++;
6088 	mutex_exit(&zone->zone_nlwps_lock);
6089 
6090 	mutex_enter(&zone->zone_mem_lock);
6091 	zone->zone_locked_mem += pp->p_locked_mem;
6092 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
6093 	zone->zone_max_swap += swap;
6094 	mutex_exit(&zone->zone_mem_lock);
6095 
6096 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
6097 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
6098 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
6099 
6100 	/* remove lwps and process from proc's old zone and old project */
6101 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
6102 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
6103 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
6104 	pp->p_task->tk_proj->kpj_nprocs--;
6105 	pp->p_zone->zone_nprocs--;
6106 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
6107 
6108 	mutex_enter(&pp->p_zone->zone_mem_lock);
6109 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
6110 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
6111 	pp->p_zone->zone_max_swap -= swap;
6112 	mutex_exit(&pp->p_zone->zone_mem_lock);
6113 
6114 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6115 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
6116 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6117 
6118 	pp->p_flag |= SZONETOP;
6119 	pp->p_zone = zone;
6120 	mutex_exit(&pp->p_lock);
6121 	AS_LOCK_EXIT(pp->p_as);
6122 
6123 	/*
6124 	 * Joining the zone cannot fail from now on.
6125 	 *
6126 	 * This means that a lot of the following code can be commonized and
6127 	 * shared with zsched().
6128 	 */
6129 
6130 	/*
6131 	 * If the process contract fmri was inherited, we need to
6132 	 * flag this so that any contract status will not leak
6133 	 * extra zone information, svc_fmri in this case
6134 	 */
6135 	if (ctp->conp_svc_ctid != ct->ct_id) {
6136 		mutex_enter(&ct->ct_lock);
6137 		ctp->conp_svc_zone_enter = ct->ct_id;
6138 		mutex_exit(&ct->ct_lock);
6139 	}
6140 
6141 	/*
6142 	 * Reset the encapsulating process contract's zone.
6143 	 */
6144 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
6145 	contract_setzuniqid(ct, zone->zone_uniqid);
6146 
6147 	/*
6148 	 * Create a new task and associate the process with the project keyed
6149 	 * by (projid,zoneid).
6150 	 *
6151 	 * We might as well be in project 0; the global zone's projid doesn't
6152 	 * make much sense in a zone anyhow.
6153 	 *
6154 	 * This also increments zone_ntasks, and returns with p_lock held.
6155 	 */
6156 	tk = task_create(0, zone);
6157 	oldtk = task_join(tk, 0);
6158 	mutex_exit(&cpu_lock);
6159 
6160 	/*
6161 	 * call RCTLOP_SET functions on this proc
6162 	 */
6163 	e.rcep_p.zone = zone;
6164 	e.rcep_t = RCENTITY_ZONE;
6165 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6166 	    RCD_CALLBACK);
6167 	mutex_exit(&pp->p_lock);
6168 
6169 	/*
6170 	 * We don't need to hold any of zsched's locks here; not only do we know
6171 	 * the process and zone aren't going away, we know its session isn't
6172 	 * changing either.
6173 	 *
6174 	 * By joining zsched's session here, we mimic the behavior in the
6175 	 * global zone of init's sid being the pid of sched.  We extend this
6176 	 * to all zlogin-like zone_enter()'ing processes as well.
6177 	 */
6178 	mutex_enter(&pidlock);
6179 	sp = zone->zone_zsched->p_sessp;
6180 	sess_hold(zone->zone_zsched);
6181 	mutex_enter(&pp->p_lock);
6182 	pgexit(pp);
6183 	sess_rele(pp->p_sessp, B_TRUE);
6184 	pp->p_sessp = sp;
6185 	pgjoin(pp, zone->zone_zsched->p_pidp);
6186 
6187 	/*
6188 	 * If any threads are scheduled to be placed on zone wait queue they
6189 	 * should abandon the idea since the wait queue is changing.
6190 	 * We need to be holding pidlock & p_lock to do this.
6191 	 */
6192 	if ((t = pp->p_tlist) != NULL) {
6193 		do {
6194 			thread_lock(t);
6195 			/*
6196 			 * Kick this thread so that it doesn't sit
6197 			 * on a wrong wait queue.
6198 			 */
6199 			if (ISWAITING(t))
6200 				setrun_locked(t);
6201 
6202 			if (t->t_schedflag & TS_ANYWAITQ)
6203 				t->t_schedflag &= ~ TS_ANYWAITQ;
6204 
6205 			thread_unlock(t);
6206 		} while ((t = t->t_forw) != pp->p_tlist);
6207 	}
6208 
6209 	/*
6210 	 * If there is a default scheduling class for the zone and it is not
6211 	 * the class we are currently in, change all of the threads in the
6212 	 * process to the new class.  We need to be holding pidlock & p_lock
6213 	 * when we call parmsset so this is a good place to do it.
6214 	 */
6215 	if (zone->zone_defaultcid > 0 &&
6216 	    zone->zone_defaultcid != curthread->t_cid) {
6217 		pcparms_t pcparms;
6218 
6219 		pcparms.pc_cid = zone->zone_defaultcid;
6220 		pcparms.pc_clparms[0] = 0;
6221 
6222 		/*
6223 		 * If setting the class fails, we still want to enter the zone.
6224 		 */
6225 		if ((t = pp->p_tlist) != NULL) {
6226 			do {
6227 				(void) parmsset(&pcparms, t);
6228 			} while ((t = t->t_forw) != pp->p_tlist);
6229 		}
6230 	}
6231 
6232 	mutex_exit(&pp->p_lock);
6233 	mutex_exit(&pidlock);
6234 
6235 	mutex_exit(&zonehash_lock);
6236 	/*
6237 	 * We're firmly in the zone; let pools progress.
6238 	 */
6239 	pool_unlock();
6240 	task_rele(oldtk);
6241 	/*
6242 	 * We don't need to retain a hold on the zone since we already
6243 	 * incremented zone_ntasks, so the zone isn't going anywhere.
6244 	 */
6245 	zone_rele(zone);
6246 
6247 	/*
6248 	 * Chroot
6249 	 */
6250 	vp = zone->zone_rootvp;
6251 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6252 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6253 
6254 	/*
6255 	 * Change process security flags.  Note that the _effective_ flags
6256 	 * cannot change
6257 	 */
6258 	secflags_copy(&pp->p_secflags.psf_lower,
6259 	    &zone->zone_secflags.psf_lower);
6260 	secflags_copy(&pp->p_secflags.psf_upper,
6261 	    &zone->zone_secflags.psf_upper);
6262 	secflags_copy(&pp->p_secflags.psf_inherit,
6263 	    &zone->zone_secflags.psf_inherit);
6264 
6265 	/*
6266 	 * Change process credentials
6267 	 */
6268 	newcr = cralloc();
6269 	mutex_enter(&pp->p_crlock);
6270 	cr = pp->p_cred;
6271 	crcopy_to(cr, newcr);
6272 	crsetzone(newcr, zone);
6273 	pp->p_cred = newcr;
6274 
6275 	/*
6276 	 * Restrict all process privilege sets to zone limit
6277 	 */
6278 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6279 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6280 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6281 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6282 	mutex_exit(&pp->p_crlock);
6283 	crset(pp, newcr);
6284 
6285 	/*
6286 	 * Adjust upcount to reflect zone entry.
6287 	 */
6288 	uid = crgetruid(newcr);
6289 	mutex_enter(&pidlock);
6290 	upcount_dec(uid, GLOBAL_ZONEID);
6291 	upcount_inc(uid, zoneid);
6292 	mutex_exit(&pidlock);
6293 
6294 	/*
6295 	 * Set up core file path and content.
6296 	 */
6297 	set_core_defaults();
6298 
6299 out:
6300 	/*
6301 	 * Let the other lwps continue.
6302 	 */
6303 	mutex_enter(&pp->p_lock);
6304 	if (curthread != pp->p_agenttp)
6305 		continuelwps(pp);
6306 	mutex_exit(&pp->p_lock);
6307 
6308 	return (err != 0 ? set_errno(err) : 0);
6309 }
6310 
6311 /*
6312  * Systemcall entry point for zone_list(2).
6313  *
6314  * Processes running in a (non-global) zone only see themselves.
6315  * On labeled systems, they see all zones whose label they dominate.
6316  */
6317 static int
6318 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6319 {
6320 	zoneid_t *zoneids;
6321 	zone_t *zone, *myzone;
6322 	uint_t user_nzones, real_nzones;
6323 	uint_t domi_nzones;
6324 	int error;
6325 
6326 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6327 		return (set_errno(EFAULT));
6328 
6329 	myzone = curproc->p_zone;
6330 	ASSERT(zonecount > 0);
6331 	if (myzone != global_zone) {
6332 		bslabel_t *mybslab;
6333 
6334 		if (!is_system_labeled()) {
6335 			/* just return current zone */
6336 			real_nzones = domi_nzones = 1;
6337 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6338 			zoneids[0] = myzone->zone_id;
6339 		} else {
6340 			/* return all zones that are dominated */
6341 			mutex_enter(&zonehash_lock);
6342 			real_nzones = zonecount;
6343 			domi_nzones = 0;
6344 			zoneids = kmem_alloc(real_nzones *
6345 			    sizeof (zoneid_t), KM_SLEEP);
6346 			mybslab = label2bslabel(myzone->zone_slabel);
6347 			for (zone = list_head(&zone_active);
6348 			    zone != NULL;
6349 			    zone = list_next(&zone_active, zone)) {
6350 				if (zone->zone_id == GLOBAL_ZONEID)
6351 					continue;
6352 				if (zone != myzone &&
6353 				    (zone->zone_flags & ZF_IS_SCRATCH))
6354 					continue;
6355 				/*
6356 				 * Note that a label always dominates
6357 				 * itself, so myzone is always included
6358 				 * in the list.
6359 				 */
6360 				if (bldominates(mybslab,
6361 				    label2bslabel(zone->zone_slabel))) {
6362 					zoneids[domi_nzones++] = zone->zone_id;
6363 				}
6364 			}
6365 			mutex_exit(&zonehash_lock);
6366 		}
6367 	} else {
6368 		mutex_enter(&zonehash_lock);
6369 		real_nzones = zonecount;
6370 		domi_nzones = 0;
6371 		zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), KM_SLEEP);
6372 		for (zone = list_head(&zone_active); zone != NULL;
6373 		    zone = list_next(&zone_active, zone))
6374 			zoneids[domi_nzones++] = zone->zone_id;
6375 
6376 		ASSERT(domi_nzones == real_nzones);
6377 		mutex_exit(&zonehash_lock);
6378 	}
6379 
6380 	/*
6381 	 * If user has allocated space for fewer entries than we found, then
6382 	 * return only up to their limit.  Either way, tell them exactly how
6383 	 * many we found.
6384 	 */
6385 	if (domi_nzones < user_nzones)
6386 		user_nzones = domi_nzones;
6387 	error = 0;
6388 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6389 		error = EFAULT;
6390 	} else if (zoneidlist != NULL && user_nzones != 0) {
6391 		if (copyout(zoneids, zoneidlist,
6392 		    user_nzones * sizeof (zoneid_t)) != 0)
6393 			error = EFAULT;
6394 	}
6395 
6396 	kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6397 
6398 	if (error != 0)
6399 		return (set_errno(error));
6400 	else
6401 		return (0);
6402 }
6403 
6404 /*
6405  * Systemcall entry point for zone_lookup(2).
6406  *
6407  * Non-global zones are only able to see themselves and (on labeled systems)
6408  * the zones they dominate.
6409  */
6410 static zoneid_t
6411 zone_lookup(const char *zone_name)
6412 {
6413 	char *kname;
6414 	zone_t *zone;
6415 	zoneid_t zoneid;
6416 	int err;
6417 
6418 	if (zone_name == NULL) {
6419 		/* return caller's zone id */
6420 		return (getzoneid());
6421 	}
6422 
6423 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6424 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6425 		kmem_free(kname, ZONENAME_MAX);
6426 		return (set_errno(err));
6427 	}
6428 
6429 	mutex_enter(&zonehash_lock);
6430 	zone = zone_find_all_by_name(kname);
6431 	kmem_free(kname, ZONENAME_MAX);
6432 	/*
6433 	 * In a non-global zone, can only lookup global and own name.
6434 	 * In Trusted Extensions zone label dominance rules apply.
6435 	 */
6436 	if (zone == NULL ||
6437 	    zone_status_get(zone) < ZONE_IS_READY ||
6438 	    !zone_list_access(zone)) {
6439 		mutex_exit(&zonehash_lock);
6440 		return (set_errno(EINVAL));
6441 	} else {
6442 		zoneid = zone->zone_id;
6443 		mutex_exit(&zonehash_lock);
6444 		return (zoneid);
6445 	}
6446 }
6447 
6448 static int
6449 zone_version(int *version_arg)
6450 {
6451 	int version = ZONE_SYSCALL_API_VERSION;
6452 
6453 	if (copyout(&version, version_arg, sizeof (int)) != 0)
6454 		return (set_errno(EFAULT));
6455 	return (0);
6456 }
6457 
6458 /* ARGSUSED */
6459 long
6460 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6461 {
6462 	zone_def zs;
6463 	int err;
6464 
6465 	switch (cmd) {
6466 	case ZONE_CREATE:
6467 		if (get_udatamodel() == DATAMODEL_NATIVE) {
6468 			if (copyin(arg1, &zs, sizeof (zone_def))) {
6469 				return (set_errno(EFAULT));
6470 			}
6471 		} else {
6472 #ifdef _SYSCALL32_IMPL
6473 			zone_def32 zs32;
6474 
6475 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6476 				return (set_errno(EFAULT));
6477 			}
6478 			zs.zone_name =
6479 			    (const char *)(unsigned long)zs32.zone_name;
6480 			zs.zone_root =
6481 			    (const char *)(unsigned long)zs32.zone_root;
6482 			zs.zone_privs =
6483 			    (const struct priv_set *)
6484 			    (unsigned long)zs32.zone_privs;
6485 			zs.zone_privssz = zs32.zone_privssz;
6486 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6487 			zs.rctlbufsz = zs32.rctlbufsz;
6488 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6489 			zs.zfsbufsz = zs32.zfsbufsz;
6490 			zs.extended_error =
6491 			    (int *)(unsigned long)zs32.extended_error;
6492 			zs.match = zs32.match;
6493 			zs.doi = zs32.doi;
6494 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6495 			zs.flags = zs32.flags;
6496 #else
6497 			panic("get_udatamodel() returned bogus result\n");
6498 #endif
6499 		}
6500 
6501 		return (zone_create(zs.zone_name, zs.zone_root,
6502 		    zs.zone_privs, zs.zone_privssz,
6503 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6504 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6505 		    zs.extended_error, zs.match, zs.doi,
6506 		    zs.label, zs.flags));
6507 	case ZONE_BOOT:
6508 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
6509 	case ZONE_DESTROY:
6510 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6511 	case ZONE_GETATTR:
6512 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6513 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6514 	case ZONE_SETATTR:
6515 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6516 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6517 	case ZONE_ENTER:
6518 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
6519 	case ZONE_LIST:
6520 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6521 	case ZONE_SHUTDOWN:
6522 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6523 	case ZONE_LOOKUP:
6524 		return (zone_lookup((const char *)arg1));
6525 	case ZONE_VERSION:
6526 		return (zone_version((int *)arg1));
6527 	case ZONE_ADD_DATALINK:
6528 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6529 		    (datalink_id_t)(uintptr_t)arg2));
6530 	case ZONE_DEL_DATALINK:
6531 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6532 		    (datalink_id_t)(uintptr_t)arg2));
6533 	case ZONE_CHECK_DATALINK: {
6534 		zoneid_t	zoneid;
6535 		boolean_t	need_copyout;
6536 
6537 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6538 			return (EFAULT);
6539 		need_copyout = (zoneid == ALL_ZONES);
6540 		err = zone_check_datalink(&zoneid,
6541 		    (datalink_id_t)(uintptr_t)arg2);
6542 		if (err == 0 && need_copyout) {
6543 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6544 				err = EFAULT;
6545 		}
6546 		return (err == 0 ? 0 : set_errno(err));
6547 	}
6548 	case ZONE_LIST_DATALINK:
6549 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6550 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6551 	default:
6552 		return (set_errno(EINVAL));
6553 	}
6554 }
6555 
6556 struct zarg {
6557 	zone_t *zone;
6558 	zone_cmd_arg_t arg;
6559 };
6560 
6561 static int
6562 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6563 {
6564 	char *buf;
6565 	size_t buflen;
6566 	int error;
6567 
6568 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6569 	buf = kmem_alloc(buflen, KM_SLEEP);
6570 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6571 	error = door_ki_open(buf, doorp);
6572 	kmem_free(buf, buflen);
6573 	return (error);
6574 }
6575 
6576 static void
6577 zone_release_door(door_handle_t *doorp)
6578 {
6579 	door_ki_rele(*doorp);
6580 	*doorp = NULL;
6581 }
6582 
6583 static void
6584 zone_ki_call_zoneadmd(struct zarg *zargp)
6585 {
6586 	door_handle_t door = NULL;
6587 	door_arg_t darg, save_arg;
6588 	char *zone_name;
6589 	size_t zone_namelen;
6590 	zoneid_t zoneid;
6591 	zone_t *zone;
6592 	zone_cmd_arg_t arg;
6593 	uint64_t uniqid;
6594 	size_t size;
6595 	int error;
6596 	int retry;
6597 
6598 	zone = zargp->zone;
6599 	arg = zargp->arg;
6600 	kmem_free(zargp, sizeof (*zargp));
6601 
6602 	zone_namelen = strlen(zone->zone_name) + 1;
6603 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6604 	bcopy(zone->zone_name, zone_name, zone_namelen);
6605 	zoneid = zone->zone_id;
6606 	uniqid = zone->zone_uniqid;
6607 	/*
6608 	 * zoneadmd may be down, but at least we can empty out the zone.
6609 	 * We can ignore the return value of zone_empty() since we're called
6610 	 * from a kernel thread and know we won't be delivered any signals.
6611 	 */
6612 	ASSERT(curproc == &p0);
6613 	(void) zone_empty(zone);
6614 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6615 	zone_rele(zone);
6616 
6617 	size = sizeof (arg);
6618 	darg.rbuf = (char *)&arg;
6619 	darg.data_ptr = (char *)&arg;
6620 	darg.rsize = size;
6621 	darg.data_size = size;
6622 	darg.desc_ptr = NULL;
6623 	darg.desc_num = 0;
6624 
6625 	save_arg = darg;
6626 	/*
6627 	 * Since we're not holding a reference to the zone, any number of
6628 	 * things can go wrong, including the zone disappearing before we get a
6629 	 * chance to talk to zoneadmd.
6630 	 */
6631 	for (retry = 0; /* forever */; retry++) {
6632 		if (door == NULL &&
6633 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
6634 			goto next;
6635 		}
6636 		ASSERT(door != NULL);
6637 
6638 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
6639 		    SIZE_MAX, 0)) == 0) {
6640 			break;
6641 		}
6642 		switch (error) {
6643 		case EINTR:
6644 			/* FALLTHROUGH */
6645 		case EAGAIN:	/* process may be forking */
6646 			/*
6647 			 * Back off for a bit
6648 			 */
6649 			break;
6650 		case EBADF:
6651 			zone_release_door(&door);
6652 			if (zone_lookup_door(zone_name, &door) != 0) {
6653 				/*
6654 				 * zoneadmd may be dead, but it may come back to
6655 				 * life later.
6656 				 */
6657 				break;
6658 			}
6659 			break;
6660 		default:
6661 			cmn_err(CE_WARN,
6662 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6663 			    error);
6664 			goto out;
6665 		}
6666 next:
6667 		/*
6668 		 * If this isn't the same zone_t that we originally had in mind,
6669 		 * then this is the same as if two kadmin requests come in at
6670 		 * the same time: the first one wins.  This means we lose, so we
6671 		 * bail.
6672 		 */
6673 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
6674 			/*
6675 			 * Problem is solved.
6676 			 */
6677 			break;
6678 		}
6679 		if (zone->zone_uniqid != uniqid) {
6680 			/*
6681 			 * zoneid recycled
6682 			 */
6683 			zone_rele(zone);
6684 			break;
6685 		}
6686 		/*
6687 		 * We could zone_status_timedwait(), but there doesn't seem to
6688 		 * be much point in doing that (plus, it would mean that
6689 		 * zone_free() isn't called until this thread exits).
6690 		 */
6691 		zone_rele(zone);
6692 		delay(hz);
6693 		darg = save_arg;
6694 	}
6695 out:
6696 	if (door != NULL) {
6697 		zone_release_door(&door);
6698 	}
6699 	kmem_free(zone_name, zone_namelen);
6700 	thread_exit();
6701 }
6702 
6703 /*
6704  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
6705  * kadmin().  The caller is a process in the zone.
6706  *
6707  * In order to shutdown the zone, we will hand off control to zoneadmd
6708  * (running in the global zone) via a door.  We do a half-hearted job at
6709  * killing all processes in the zone, create a kernel thread to contact
6710  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
6711  * a form of generation number used to let zoneadmd (as well as
6712  * zone_destroy()) know exactly which zone they're re talking about.
6713  */
6714 int
6715 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6716 {
6717 	struct zarg *zargp;
6718 	zone_cmd_t zcmd;
6719 	zone_t *zone;
6720 
6721 	zone = curproc->p_zone;
6722 	ASSERT(getzoneid() != GLOBAL_ZONEID);
6723 
6724 	switch (cmd) {
6725 	case A_SHUTDOWN:
6726 		switch (fcn) {
6727 		case AD_HALT:
6728 		case AD_POWEROFF:
6729 			zcmd = Z_HALT;
6730 			break;
6731 		case AD_BOOT:
6732 			zcmd = Z_REBOOT;
6733 			break;
6734 		case AD_IBOOT:
6735 		case AD_SBOOT:
6736 		case AD_SIBOOT:
6737 		case AD_NOSYNC:
6738 			return (ENOTSUP);
6739 		default:
6740 			return (EINVAL);
6741 		}
6742 		break;
6743 	case A_REBOOT:
6744 		zcmd = Z_REBOOT;
6745 		break;
6746 	case A_FTRACE:
6747 	case A_REMOUNT:
6748 	case A_FREEZE:
6749 	case A_DUMP:
6750 	case A_CONFIG:
6751 		return (ENOTSUP);
6752 	default:
6753 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
6754 		return (EINVAL);
6755 	}
6756 
6757 	if (secpolicy_zone_admin(credp, B_FALSE))
6758 		return (EPERM);
6759 	mutex_enter(&zone_status_lock);
6760 
6761 	/*
6762 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6763 	 * is in the zone.
6764 	 */
6765 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6766 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6767 		/*
6768 		 * This zone is already on its way down.
6769 		 */
6770 		mutex_exit(&zone_status_lock);
6771 		return (0);
6772 	}
6773 	/*
6774 	 * Prevent future zone_enter()s
6775 	 */
6776 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6777 	mutex_exit(&zone_status_lock);
6778 
6779 	/*
6780 	 * Kill everyone now and call zoneadmd later.
6781 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
6782 	 * later.
6783 	 */
6784 	killall(zone->zone_id);
6785 	/*
6786 	 * Now, create the thread to contact zoneadmd and do the rest of the
6787 	 * work.  This thread can't be created in our zone otherwise
6788 	 * zone_destroy() would deadlock.
6789 	 */
6790 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6791 	zargp->arg.cmd = zcmd;
6792 	zargp->arg.uniqid = zone->zone_uniqid;
6793 	zargp->zone = zone;
6794 	(void) strcpy(zargp->arg.locale, "C");
6795 	/* mdep was already copied in for us by uadmin */
6796 	if (mdep != NULL)
6797 		(void) strlcpy(zargp->arg.bootbuf, mdep,
6798 		    sizeof (zargp->arg.bootbuf));
6799 	zone_hold(zone);
6800 
6801 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6802 	    TS_RUN, minclsyspri);
6803 	exit(CLD_EXITED, 0);
6804 
6805 	return (EINVAL);
6806 }
6807 
6808 /*
6809  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6810  * status to ZONE_IS_SHUTTING_DOWN.
6811  *
6812  * This function also shuts down all running zones to ensure that they won't
6813  * fork new processes.
6814  */
6815 void
6816 zone_shutdown_global(void)
6817 {
6818 	zone_t *current_zonep;
6819 
6820 	ASSERT(INGLOBALZONE(curproc));
6821 	mutex_enter(&zonehash_lock);
6822 	mutex_enter(&zone_status_lock);
6823 
6824 	/* Modify the global zone's status first. */
6825 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6826 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6827 
6828 	/*
6829 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6830 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6831 	 * could cause assertions to fail (e.g., assertions about a zone's
6832 	 * state during initialization, readying, or booting) or produce races.
6833 	 * We'll let threads continue to initialize and ready new zones: they'll
6834 	 * fail to boot the new zones when they see that the global zone is
6835 	 * shutting down.
6836 	 */
6837 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6838 	    current_zonep = list_next(&zone_active, current_zonep)) {
6839 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6840 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6841 	}
6842 	mutex_exit(&zone_status_lock);
6843 	mutex_exit(&zonehash_lock);
6844 }
6845 
6846 /*
6847  * Returns true if the named dataset is visible in the current zone.
6848  * The 'write' parameter is set to 1 if the dataset is also writable.
6849  */
6850 int
6851 zone_dataset_visible(const char *dataset, int *write)
6852 {
6853 	static int zfstype = -1;
6854 	zone_dataset_t *zd;
6855 	size_t len;
6856 	zone_t *zone = curproc->p_zone;
6857 	const char *name = NULL;
6858 	vfs_t *vfsp = NULL;
6859 
6860 	if (dataset[0] == '\0')
6861 		return (0);
6862 
6863 	/*
6864 	 * Walk the list once, looking for datasets which match exactly, or
6865 	 * specify a dataset underneath an exported dataset.  If found, return
6866 	 * true and note that it is writable.
6867 	 */
6868 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6869 	    zd = list_next(&zone->zone_datasets, zd)) {
6870 
6871 		len = strlen(zd->zd_dataset);
6872 		if (strlen(dataset) >= len &&
6873 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6874 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6875 		    dataset[len] == '@')) {
6876 			if (write)
6877 				*write = 1;
6878 			return (1);
6879 		}
6880 	}
6881 
6882 	/*
6883 	 * Walk the list a second time, searching for datasets which are parents
6884 	 * of exported datasets.  These should be visible, but read-only.
6885 	 *
6886 	 * Note that we also have to support forms such as 'pool/dataset/', with
6887 	 * a trailing slash.
6888 	 */
6889 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6890 	    zd = list_next(&zone->zone_datasets, zd)) {
6891 
6892 		len = strlen(dataset);
6893 		if (dataset[len - 1] == '/')
6894 			len--;	/* Ignore trailing slash */
6895 		if (len < strlen(zd->zd_dataset) &&
6896 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6897 		    zd->zd_dataset[len] == '/') {
6898 			if (write)
6899 				*write = 0;
6900 			return (1);
6901 		}
6902 	}
6903 
6904 	/*
6905 	 * We reach here if the given dataset is not found in the zone_dataset
6906 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6907 	 * instead of delegation. For this we search for the dataset in the
6908 	 * zone_vfslist of this zone. If found, return true and note that it is
6909 	 * not writable.
6910 	 */
6911 
6912 	/*
6913 	 * Initialize zfstype if it is not initialized yet.
6914 	 */
6915 	if (zfstype == -1) {
6916 		struct vfssw *vswp = vfs_getvfssw("zfs");
6917 		zfstype = vswp - vfssw;
6918 		vfs_unrefvfssw(vswp);
6919 	}
6920 
6921 	vfs_list_read_lock();
6922 	vfsp = zone->zone_vfslist;
6923 	do {
6924 		ASSERT(vfsp);
6925 		if (vfsp->vfs_fstype == zfstype) {
6926 			name = refstr_value(vfsp->vfs_resource);
6927 
6928 			/*
6929 			 * Check if we have an exact match.
6930 			 */
6931 			if (strcmp(dataset, name) == 0) {
6932 				vfs_list_unlock();
6933 				if (write)
6934 					*write = 0;
6935 				return (1);
6936 			}
6937 			/*
6938 			 * We need to check if we are looking for parents of
6939 			 * a dataset. These should be visible, but read-only.
6940 			 */
6941 			len = strlen(dataset);
6942 			if (dataset[len - 1] == '/')
6943 				len--;
6944 
6945 			if (len < strlen(name) &&
6946 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6947 				vfs_list_unlock();
6948 				if (write)
6949 					*write = 0;
6950 				return (1);
6951 			}
6952 		}
6953 		vfsp = vfsp->vfs_zone_next;
6954 	} while (vfsp != zone->zone_vfslist);
6955 
6956 	vfs_list_unlock();
6957 	return (0);
6958 }
6959 
6960 /*
6961  * zone_find_by_any_path() -
6962  *
6963  * kernel-private routine similar to zone_find_by_path(), but which
6964  * effectively compares against zone paths rather than zonerootpath
6965  * (i.e., the last component of zonerootpaths, which should be "root/",
6966  * are not compared.)  This is done in order to accurately identify all
6967  * paths, whether zone-visible or not, including those which are parallel
6968  * to /root/, such as /dev/, /home/, etc...
6969  *
6970  * If the specified path does not fall under any zone path then global
6971  * zone is returned.
6972  *
6973  * The treat_abs parameter indicates whether the path should be treated as
6974  * an absolute path although it does not begin with "/".  (This supports
6975  * nfs mount syntax such as host:any/path.)
6976  *
6977  * The caller is responsible for zone_rele of the returned zone.
6978  */
6979 zone_t *
6980 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6981 {
6982 	zone_t *zone;
6983 	int path_offset = 0;
6984 
6985 	if (path == NULL) {
6986 		zone_hold(global_zone);
6987 		return (global_zone);
6988 	}
6989 
6990 	if (*path != '/') {
6991 		ASSERT(treat_abs);
6992 		path_offset = 1;
6993 	}
6994 
6995 	mutex_enter(&zonehash_lock);
6996 	for (zone = list_head(&zone_active); zone != NULL;
6997 	    zone = list_next(&zone_active, zone)) {
6998 		char	*c;
6999 		size_t	pathlen;
7000 		char *rootpath_start;
7001 
7002 		if (zone == global_zone)	/* skip global zone */
7003 			continue;
7004 
7005 		/* scan backwards to find start of last component */
7006 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
7007 		do {
7008 			c--;
7009 		} while (*c != '/');
7010 
7011 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
7012 		rootpath_start = (zone->zone_rootpath + path_offset);
7013 		if (strncmp(path, rootpath_start, pathlen) == 0)
7014 			break;
7015 	}
7016 	if (zone == NULL)
7017 		zone = global_zone;
7018 	zone_hold(zone);
7019 	mutex_exit(&zonehash_lock);
7020 	return (zone);
7021 }
7022 
7023 /*
7024  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
7025  * zone_dl_t pointer if found, and NULL otherwise.
7026  */
7027 static zone_dl_t *
7028 zone_find_dl(zone_t *zone, datalink_id_t linkid)
7029 {
7030 	zone_dl_t *zdl;
7031 
7032 	ASSERT(mutex_owned(&zone->zone_lock));
7033 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7034 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7035 		if (zdl->zdl_id == linkid)
7036 			break;
7037 	}
7038 	return (zdl);
7039 }
7040 
7041 static boolean_t
7042 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
7043 {
7044 	boolean_t exists;
7045 
7046 	mutex_enter(&zone->zone_lock);
7047 	exists = (zone_find_dl(zone, linkid) != NULL);
7048 	mutex_exit(&zone->zone_lock);
7049 	return (exists);
7050 }
7051 
7052 /*
7053  * Add an data link name for the zone.
7054  */
7055 static int
7056 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
7057 {
7058 	zone_dl_t *zdl;
7059 	zone_t *zone;
7060 	zone_t *thiszone;
7061 
7062 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
7063 		return (set_errno(ENXIO));
7064 
7065 	/* Verify that the datalink ID doesn't already belong to a zone. */
7066 	mutex_enter(&zonehash_lock);
7067 	for (zone = list_head(&zone_active); zone != NULL;
7068 	    zone = list_next(&zone_active, zone)) {
7069 		if (zone_dl_exists(zone, linkid)) {
7070 			mutex_exit(&zonehash_lock);
7071 			zone_rele(thiszone);
7072 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
7073 		}
7074 	}
7075 
7076 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
7077 	zdl->zdl_id = linkid;
7078 	zdl->zdl_net = NULL;
7079 	mutex_enter(&thiszone->zone_lock);
7080 	list_insert_head(&thiszone->zone_dl_list, zdl);
7081 	mutex_exit(&thiszone->zone_lock);
7082 	mutex_exit(&zonehash_lock);
7083 	zone_rele(thiszone);
7084 	return (0);
7085 }
7086 
7087 static int
7088 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
7089 {
7090 	zone_dl_t *zdl;
7091 	zone_t *zone;
7092 	int err = 0;
7093 
7094 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7095 		return (set_errno(EINVAL));
7096 
7097 	mutex_enter(&zone->zone_lock);
7098 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7099 		err = ENXIO;
7100 	} else {
7101 		list_remove(&zone->zone_dl_list, zdl);
7102 		nvlist_free(zdl->zdl_net);
7103 		kmem_free(zdl, sizeof (zone_dl_t));
7104 	}
7105 	mutex_exit(&zone->zone_lock);
7106 	zone_rele(zone);
7107 	return (err == 0 ? 0 : set_errno(err));
7108 }
7109 
7110 /*
7111  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
7112  * the linkid.  Otherwise we just check if the specified zoneidp has been
7113  * assigned the supplied linkid.
7114  */
7115 int
7116 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
7117 {
7118 	zone_t *zone;
7119 	int err = ENXIO;
7120 
7121 	if (*zoneidp != ALL_ZONES) {
7122 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
7123 			if (zone_dl_exists(zone, linkid))
7124 				err = 0;
7125 			zone_rele(zone);
7126 		}
7127 		return (err);
7128 	}
7129 
7130 	mutex_enter(&zonehash_lock);
7131 	for (zone = list_head(&zone_active); zone != NULL;
7132 	    zone = list_next(&zone_active, zone)) {
7133 		if (zone_dl_exists(zone, linkid)) {
7134 			*zoneidp = zone->zone_id;
7135 			err = 0;
7136 			break;
7137 		}
7138 	}
7139 	mutex_exit(&zonehash_lock);
7140 	return (err);
7141 }
7142 
7143 /*
7144  * Get the list of datalink IDs assigned to a zone.
7145  *
7146  * On input, *nump is the number of datalink IDs that can fit in the supplied
7147  * idarray.  Upon return, *nump is either set to the number of datalink IDs
7148  * that were placed in the array if the array was large enough, or to the
7149  * number of datalink IDs that the function needs to place in the array if the
7150  * array is too small.
7151  */
7152 static int
7153 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
7154 {
7155 	uint_t num, dlcount;
7156 	zone_t *zone;
7157 	zone_dl_t *zdl;
7158 	datalink_id_t *idptr = idarray;
7159 
7160 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7161 		return (set_errno(EFAULT));
7162 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7163 		return (set_errno(ENXIO));
7164 
7165 	num = 0;
7166 	mutex_enter(&zone->zone_lock);
7167 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7168 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7169 		/*
7170 		 * If the list is bigger than what the caller supplied, just
7171 		 * count, don't do copyout.
7172 		 */
7173 		if (++num > dlcount)
7174 			continue;
7175 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7176 			mutex_exit(&zone->zone_lock);
7177 			zone_rele(zone);
7178 			return (set_errno(EFAULT));
7179 		}
7180 		idptr++;
7181 	}
7182 	mutex_exit(&zone->zone_lock);
7183 	zone_rele(zone);
7184 
7185 	/* Increased or decreased, caller should be notified. */
7186 	if (num != dlcount) {
7187 		if (copyout(&num, nump, sizeof (num)) != 0)
7188 			return (set_errno(EFAULT));
7189 	}
7190 	return (0);
7191 }
7192 
7193 /*
7194  * Public interface for looking up a zone by zoneid. It's a customized version
7195  * for netstack_zone_create(). It can only be called from the zsd create
7196  * callbacks, since it doesn't have reference on the zone structure hence if
7197  * it is called elsewhere the zone could disappear after the zonehash_lock
7198  * is dropped.
7199  *
7200  * Furthermore it
7201  * 1. Doesn't check the status of the zone.
7202  * 2. It will be called even before zone_init is called, in that case the
7203  *    address of zone0 is returned directly, and netstack_zone_create()
7204  *    will only assign a value to zone0.zone_netstack, won't break anything.
7205  * 3. Returns without the zone being held.
7206  */
7207 zone_t *
7208 zone_find_by_id_nolock(zoneid_t zoneid)
7209 {
7210 	zone_t *zone;
7211 
7212 	mutex_enter(&zonehash_lock);
7213 	if (zonehashbyid == NULL)
7214 		zone = &zone0;
7215 	else
7216 		zone = zone_find_all_by_id(zoneid);
7217 	mutex_exit(&zonehash_lock);
7218 	return (zone);
7219 }
7220 
7221 /*
7222  * Walk the datalinks for a given zone
7223  */
7224 int
7225 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7226     void *data)
7227 {
7228 	zone_t		*zone;
7229 	zone_dl_t	*zdl;
7230 	datalink_id_t	*idarray;
7231 	uint_t		idcount = 0;
7232 	int		i, ret = 0;
7233 
7234 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7235 		return (ENOENT);
7236 
7237 	/*
7238 	 * We first build an array of linkid's so that we can walk these and
7239 	 * execute the callback with the zone_lock dropped.
7240 	 */
7241 	mutex_enter(&zone->zone_lock);
7242 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7243 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7244 		idcount++;
7245 	}
7246 
7247 	if (idcount == 0) {
7248 		mutex_exit(&zone->zone_lock);
7249 		zone_rele(zone);
7250 		return (0);
7251 	}
7252 
7253 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7254 	if (idarray == NULL) {
7255 		mutex_exit(&zone->zone_lock);
7256 		zone_rele(zone);
7257 		return (ENOMEM);
7258 	}
7259 
7260 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7261 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7262 		idarray[i] = zdl->zdl_id;
7263 	}
7264 
7265 	mutex_exit(&zone->zone_lock);
7266 
7267 	for (i = 0; i < idcount && ret == 0; i++) {
7268 		if ((ret = (*cb)(idarray[i], data)) != 0)
7269 			break;
7270 	}
7271 
7272 	zone_rele(zone);
7273 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7274 	return (ret);
7275 }
7276 
7277 static char *
7278 zone_net_type2name(int type)
7279 {
7280 	switch (type) {
7281 	case ZONE_NETWORK_ADDRESS:
7282 		return (ZONE_NET_ADDRNAME);
7283 	case ZONE_NETWORK_DEFROUTER:
7284 		return (ZONE_NET_RTRNAME);
7285 	default:
7286 		return (NULL);
7287 	}
7288 }
7289 
7290 static int
7291 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7292 {
7293 	zone_t *zone;
7294 	zone_dl_t *zdl;
7295 	nvlist_t *nvl;
7296 	int err = 0;
7297 	uint8_t *new = NULL;
7298 	char *nvname;
7299 	int bufsize;
7300 	datalink_id_t linkid = znbuf->zn_linkid;
7301 
7302 	if (secpolicy_zone_config(CRED()) != 0)
7303 		return (set_errno(EPERM));
7304 
7305 	if (zoneid == GLOBAL_ZONEID)
7306 		return (set_errno(EINVAL));
7307 
7308 	nvname = zone_net_type2name(znbuf->zn_type);
7309 	bufsize = znbuf->zn_len;
7310 	new = znbuf->zn_val;
7311 	if (nvname == NULL)
7312 		return (set_errno(EINVAL));
7313 
7314 	if ((zone = zone_find_by_id(zoneid)) == NULL) {
7315 		return (set_errno(EINVAL));
7316 	}
7317 
7318 	mutex_enter(&zone->zone_lock);
7319 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7320 		err = ENXIO;
7321 		goto done;
7322 	}
7323 	if ((nvl = zdl->zdl_net) == NULL) {
7324 		if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7325 			err = ENOMEM;
7326 			goto done;
7327 		} else {
7328 			zdl->zdl_net = nvl;
7329 		}
7330 	}
7331 	if (nvlist_exists(nvl, nvname)) {
7332 		err = EINVAL;
7333 		goto done;
7334 	}
7335 	err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7336 	ASSERT(err == 0);
7337 done:
7338 	mutex_exit(&zone->zone_lock);
7339 	zone_rele(zone);
7340 	if (err != 0)
7341 		return (set_errno(err));
7342 	else
7343 		return (0);
7344 }
7345 
7346 static int
7347 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7348 {
7349 	zone_t *zone;
7350 	zone_dl_t *zdl;
7351 	nvlist_t *nvl;
7352 	uint8_t *ptr;
7353 	uint_t psize;
7354 	int err = 0;
7355 	char *nvname;
7356 	int bufsize;
7357 	void *buf;
7358 	datalink_id_t linkid = znbuf->zn_linkid;
7359 
7360 	if (zoneid == GLOBAL_ZONEID)
7361 		return (set_errno(EINVAL));
7362 
7363 	nvname = zone_net_type2name(znbuf->zn_type);
7364 	bufsize = znbuf->zn_len;
7365 	buf = znbuf->zn_val;
7366 
7367 	if (nvname == NULL)
7368 		return (set_errno(EINVAL));
7369 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7370 		return (set_errno(EINVAL));
7371 
7372 	mutex_enter(&zone->zone_lock);
7373 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7374 		err = ENXIO;
7375 		goto done;
7376 	}
7377 	if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7378 		err = ENOENT;
7379 		goto done;
7380 	}
7381 	err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7382 	ASSERT(err == 0);
7383 
7384 	if (psize > bufsize) {
7385 		err = ENOBUFS;
7386 		goto done;
7387 	}
7388 	znbuf->zn_len = psize;
7389 	bcopy(ptr, buf, psize);
7390 done:
7391 	mutex_exit(&zone->zone_lock);
7392 	zone_rele(zone);
7393 	if (err != 0)
7394 		return (set_errno(err));
7395 	else
7396 		return (0);
7397 }
7398