xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision 94ddd0900a8838f62bba15e270649a42f4ef9f81)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent Inc. All rights reserved.
25  * Copyright (c) 2016 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * Zones
30  *
31  *   A zone is a named collection of processes, namespace constraints,
32  *   and other system resources which comprise a secure and manageable
33  *   application containment facility.
34  *
35  *   Zones (represented by the reference counted zone_t) are tracked in
36  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
37  *   (zoneid_t) are used to track zone association.  Zone IDs are
38  *   dynamically generated when the zone is created; if a persistent
39  *   identifier is needed (core files, accounting logs, audit trail,
40  *   etc.), the zone name should be used.
41  *
42  *
43  *   Global Zone:
44  *
45  *   The global zone (zoneid 0) is automatically associated with all
46  *   system resources that have not been bound to a user-created zone.
47  *   This means that even systems where zones are not in active use
48  *   have a global zone, and all processes, mounts, etc. are
49  *   associated with that zone.  The global zone is generally
50  *   unconstrained in terms of privileges and access, though the usual
51  *   credential and privilege based restrictions apply.
52  *
53  *
54  *   Zone States:
55  *
56  *   The states in which a zone may be in and the transitions are as
57  *   follows:
58  *
59  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
60  *   initialized zone is added to the list of active zones on the system but
61  *   isn't accessible.
62  *
63  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
64  *   not yet completed. Not possible to enter the zone, but attributes can
65  *   be retrieved.
66  *
67  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
68  *   ready.  The zone is made visible after the ZSD constructor callbacks are
69  *   executed.  A zone remains in this state until it transitions into
70  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
71  *
72  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
73  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
74  *   state.
75  *
76  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
77  *   successfully started init.   A zone remains in this state until
78  *   zone_shutdown() is called.
79  *
80  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
81  *   killing all processes running in the zone. The zone remains
82  *   in this state until there are no more user processes running in the zone.
83  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
84  *   Since zone_shutdown() is restartable, it may be called successfully
85  *   multiple times for the same zone_t.  Setting of the zone's state to
86  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
87  *   the zone's status without worrying about it being a moving target.
88  *
89  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
90  *   are no more user processes in the zone.  The zone remains in this
91  *   state until there are no more kernel threads associated with the
92  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
93  *   fail.
94  *
95  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
96  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
97  *   join the zone or create kernel threads therein.
98  *
99  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
100  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
101  *   return NULL from now on.
102  *
103  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
104  *   processes or threads doing work on behalf of the zone.  The zone is
105  *   removed from the list of active zones.  zone_destroy() returns, and
106  *   the zone can be recreated.
107  *
108  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
109  *   callbacks are executed, and all memory associated with the zone is
110  *   freed.
111  *
112  *   Threads can wait for the zone to enter a requested state by using
113  *   zone_status_wait() or zone_status_timedwait() with the desired
114  *   state passed in as an argument.  Zone state transitions are
115  *   uni-directional; it is not possible to move back to an earlier state.
116  *
117  *
118  *   Zone-Specific Data:
119  *
120  *   Subsystems needing to maintain zone-specific data can store that
121  *   data using the ZSD mechanism.  This provides a zone-specific data
122  *   store, similar to thread-specific data (see pthread_getspecific(3C)
123  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
124  *   to register callbacks to be invoked when a zone is created, shut
125  *   down, or destroyed.  This can be used to initialize zone-specific
126  *   data for new zones and to clean up when zones go away.
127  *
128  *
129  *   Data Structures:
130  *
131  *   The per-zone structure (zone_t) is reference counted, and freed
132  *   when all references are released.  zone_hold and zone_rele can be
133  *   used to adjust the reference count.  In addition, reference counts
134  *   associated with the cred_t structure are tracked separately using
135  *   zone_cred_hold and zone_cred_rele.
136  *
137  *   Pointers to active zone_t's are stored in two hash tables; one
138  *   for searching by id, the other for searching by name.  Lookups
139  *   can be performed on either basis, using zone_find_by_id and
140  *   zone_find_by_name.  Both return zone_t pointers with the zone
141  *   held, so zone_rele should be called when the pointer is no longer
142  *   needed.  Zones can also be searched by path; zone_find_by_path
143  *   returns the zone with which a path name is associated (global
144  *   zone if the path is not within some other zone's file system
145  *   hierarchy).  This currently requires iterating through each zone,
146  *   so it is slower than an id or name search via a hash table.
147  *
148  *
149  *   Locking:
150  *
151  *   zonehash_lock: This is a top-level global lock used to protect the
152  *       zone hash tables and lists.  Zones cannot be created or destroyed
153  *       while this lock is held.
154  *   zone_status_lock: This is a global lock protecting zone state.
155  *       Zones cannot change state while this lock is held.  It also
156  *       protects the list of kernel threads associated with a zone.
157  *   zone_lock: This is a per-zone lock used to protect several fields of
158  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
159  *       this lock means that the zone cannot go away.
160  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
161  *	 related to the zone.max-lwps rctl.
162  *   zone_mem_lock: This is a per-zone lock used to protect the fields
163  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
164  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
165  *       currently just max_lofi
166  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
167  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
168  *       list (a list of zones in the ZONE_IS_DEAD state).
169  *
170  *   Ordering requirements:
171  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
172  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
173  *
174  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
175  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
176  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
177  *
178  *   Blocking memory allocations are permitted while holding any of the
179  *   zone locks.
180  *
181  *
182  *   System Call Interface:
183  *
184  *   The zone subsystem can be managed and queried from user level with
185  *   the following system calls (all subcodes of the primary "zone"
186  *   system call):
187  *   - zone_create: creates a zone with selected attributes (name,
188  *     root path, privileges, resource controls, ZFS datasets)
189  *   - zone_enter: allows the current process to enter a zone
190  *   - zone_getattr: reports attributes of a zone
191  *   - zone_setattr: set attributes of a zone
192  *   - zone_boot: set 'init' running for the zone
193  *   - zone_list: lists all zones active in the system
194  *   - zone_lookup: looks up zone id based on name
195  *   - zone_shutdown: initiates shutdown process (see states above)
196  *   - zone_destroy: completes shutdown process (see states above)
197  *
198  */
199 
200 #include <sys/priv_impl.h>
201 #include <sys/cred.h>
202 #include <c2/audit.h>
203 #include <sys/debug.h>
204 #include <sys/file.h>
205 #include <sys/kmem.h>
206 #include <sys/kstat.h>
207 #include <sys/mutex.h>
208 #include <sys/note.h>
209 #include <sys/pathname.h>
210 #include <sys/proc.h>
211 #include <sys/project.h>
212 #include <sys/sysevent.h>
213 #include <sys/task.h>
214 #include <sys/systm.h>
215 #include <sys/types.h>
216 #include <sys/utsname.h>
217 #include <sys/vnode.h>
218 #include <sys/vfs.h>
219 #include <sys/systeminfo.h>
220 #include <sys/policy.h>
221 #include <sys/cred_impl.h>
222 #include <sys/contract_impl.h>
223 #include <sys/contract/process_impl.h>
224 #include <sys/class.h>
225 #include <sys/pool.h>
226 #include <sys/pool_pset.h>
227 #include <sys/pset.h>
228 #include <sys/strlog.h>
229 #include <sys/sysmacros.h>
230 #include <sys/callb.h>
231 #include <sys/vmparam.h>
232 #include <sys/corectl.h>
233 #include <sys/ipc_impl.h>
234 #include <sys/klpd.h>
235 
236 #include <sys/door.h>
237 #include <sys/cpuvar.h>
238 #include <sys/sdt.h>
239 
240 #include <sys/uadmin.h>
241 #include <sys/session.h>
242 #include <sys/cmn_err.h>
243 #include <sys/modhash.h>
244 #include <sys/sunddi.h>
245 #include <sys/nvpair.h>
246 #include <sys/rctl.h>
247 #include <sys/fss.h>
248 #include <sys/brand.h>
249 #include <sys/zone.h>
250 #include <net/if.h>
251 #include <sys/cpucaps.h>
252 #include <vm/seg.h>
253 #include <sys/mac.h>
254 
255 /*
256  * This constant specifies the number of seconds that threads waiting for
257  * subsystems to release a zone's general-purpose references will wait before
258  * they log the zone's reference counts.  The constant's value shouldn't
259  * be so small that reference counts are unnecessarily reported for zones
260  * whose references are slowly released.  On the other hand, it shouldn't be so
261  * large that users reboot their systems out of frustration over hung zones
262  * before the system logs the zones' reference counts.
263  */
264 #define	ZONE_DESTROY_TIMEOUT_SECS	60
265 
266 /* List of data link IDs which are accessible from the zone */
267 typedef struct zone_dl {
268 	datalink_id_t	zdl_id;
269 	nvlist_t	*zdl_net;
270 	list_node_t	zdl_linkage;
271 } zone_dl_t;
272 
273 /*
274  * cv used to signal that all references to the zone have been released.  This
275  * needs to be global since there may be multiple waiters, and the first to
276  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
277  */
278 static kcondvar_t zone_destroy_cv;
279 /*
280  * Lock used to serialize access to zone_cv.  This could have been per-zone,
281  * but then we'd need another lock for zone_destroy_cv, and why bother?
282  */
283 static kmutex_t zone_status_lock;
284 
285 /*
286  * ZSD-related global variables.
287  */
288 static kmutex_t zsd_key_lock;	/* protects the following two */
289 /*
290  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
291  */
292 static zone_key_t zsd_keyval = 0;
293 /*
294  * Global list of registered keys.  We use this when a new zone is created.
295  */
296 static list_t zsd_registered_keys;
297 
298 int zone_hash_size = 256;
299 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
300 static kmutex_t zonehash_lock;
301 static uint_t zonecount;
302 static id_space_t *zoneid_space;
303 
304 /*
305  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
306  * kernel proper runs, and which manages all other zones.
307  *
308  * Although not declared as static, the variable "zone0" should not be used
309  * except for by code that needs to reference the global zone early on in boot,
310  * before it is fully initialized.  All other consumers should use
311  * 'global_zone'.
312  */
313 zone_t zone0;
314 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
315 
316 /*
317  * List of active zones, protected by zonehash_lock.
318  */
319 static list_t zone_active;
320 
321 /*
322  * List of destroyed zones that still have outstanding cred references.
323  * Used for debugging.  Uses a separate lock to avoid lock ordering
324  * problems in zone_free.
325  */
326 static list_t zone_deathrow;
327 static kmutex_t zone_deathrow_lock;
328 
329 /* number of zones is limited by virtual interface limit in IP */
330 uint_t maxzones = 8192;
331 
332 /* Event channel to sent zone state change notifications */
333 evchan_t *zone_event_chan;
334 
335 /*
336  * This table holds the mapping from kernel zone states to
337  * states visible in the state notification API.
338  * The idea is that we only expose "obvious" states and
339  * do not expose states which are just implementation details.
340  */
341 const char  *zone_status_table[] = {
342 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
343 	ZONE_EVENT_INITIALIZED,		/* initialized */
344 	ZONE_EVENT_READY,		/* ready */
345 	ZONE_EVENT_READY,		/* booting */
346 	ZONE_EVENT_RUNNING,		/* running */
347 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
350 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
351 	ZONE_EVENT_UNINITIALIZED,	/* dead */
352 };
353 
354 /*
355  * This array contains the names of the subsystems listed in zone_ref_subsys_t
356  * (see sys/zone.h).
357  */
358 static char *zone_ref_subsys_names[] = {
359 	"NFS",		/* ZONE_REF_NFS */
360 	"NFSv4",	/* ZONE_REF_NFSV4 */
361 	"SMBFS",	/* ZONE_REF_SMBFS */
362 	"MNTFS",	/* ZONE_REF_MNTFS */
363 	"LOFI",		/* ZONE_REF_LOFI */
364 	"VFS",		/* ZONE_REF_VFS */
365 	"IPC"		/* ZONE_REF_IPC */
366 };
367 
368 /*
369  * This isn't static so lint doesn't complain.
370  */
371 rctl_hndl_t rc_zone_cpu_shares;
372 rctl_hndl_t rc_zone_locked_mem;
373 rctl_hndl_t rc_zone_max_swap;
374 rctl_hndl_t rc_zone_max_lofi;
375 rctl_hndl_t rc_zone_cpu_cap;
376 rctl_hndl_t rc_zone_nlwps;
377 rctl_hndl_t rc_zone_nprocs;
378 rctl_hndl_t rc_zone_shmmax;
379 rctl_hndl_t rc_zone_shmmni;
380 rctl_hndl_t rc_zone_semmni;
381 rctl_hndl_t rc_zone_msgmni;
382 
383 const char * const zone_default_initname = "/sbin/init";
384 static char * const zone_prefix = "/zone/";
385 static int zone_shutdown(zoneid_t zoneid);
386 static int zone_add_datalink(zoneid_t, datalink_id_t);
387 static int zone_remove_datalink(zoneid_t, datalink_id_t);
388 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
389 static int zone_set_network(zoneid_t, zone_net_data_t *);
390 static int zone_get_network(zoneid_t, zone_net_data_t *);
391 
392 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
393 
394 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
395 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
396 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
397 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
398     zone_key_t);
399 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
400 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
401     kmutex_t *);
402 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
403     kmutex_t *);
404 
405 /*
406  * Bump this number when you alter the zone syscall interfaces; this is
407  * because we need to have support for previous API versions in libc
408  * to support patching; libc calls into the kernel to determine this number.
409  *
410  * Version 1 of the API is the version originally shipped with Solaris 10
411  * Version 2 alters the zone_create system call in order to support more
412  *     arguments by moving the args into a structure; and to do better
413  *     error reporting when zone_create() fails.
414  * Version 3 alters the zone_create system call in order to support the
415  *     import of ZFS datasets to zones.
416  * Version 4 alters the zone_create system call in order to support
417  *     Trusted Extensions.
418  * Version 5 alters the zone_boot system call, and converts its old
419  *     bootargs parameter to be set by the zone_setattr API instead.
420  * Version 6 adds the flag argument to zone_create.
421  */
422 static const int ZONE_SYSCALL_API_VERSION = 6;
423 
424 /*
425  * Certain filesystems (such as NFS and autofs) need to know which zone
426  * the mount is being placed in.  Because of this, we need to be able to
427  * ensure that a zone isn't in the process of being created/destroyed such
428  * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
429  * it gets added the list of mounted zones, it ends up on the wrong zone's
430  * mount list. Since a zone can't reside on an NFS file system, we don't
431  * have to worry about the zonepath itself.
432  *
433  * The following functions: block_mounts()/resume_mounts() and
434  * mount_in_progress()/mount_completed() are used by zones and the VFS
435  * layer (respectively) to synchronize zone state transitions and new
436  * mounts within a zone. This syncronization is on a per-zone basis, so
437  * activity for one zone will not interfere with activity for another zone.
438  *
439  * The semantics are like a reader-reader lock such that there may
440  * either be multiple mounts (or zone state transitions, if that weren't
441  * serialized by zonehash_lock) in progress at the same time, but not
442  * both.
443  *
444  * We use cv's so the user can ctrl-C out of the operation if it's
445  * taking too long.
446  *
447  * The semantics are such that there is unfair bias towards the
448  * "current" operation.  This means that zone halt may starve if
449  * there is a rapid succession of new mounts coming in to the zone.
450  */
451 /*
452  * Prevent new mounts from progressing to the point of calling
453  * VFS_MOUNT().  If there are already mounts in this "region", wait for
454  * them to complete.
455  */
456 static int
457 block_mounts(zone_t *zp)
458 {
459 	int retval = 0;
460 
461 	/*
462 	 * Since it may block for a long time, block_mounts() shouldn't be
463 	 * called with zonehash_lock held.
464 	 */
465 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
466 	mutex_enter(&zp->zone_mount_lock);
467 	while (zp->zone_mounts_in_progress > 0) {
468 		if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
469 			goto signaled;
470 	}
471 	/*
472 	 * A negative value of mounts_in_progress indicates that mounts
473 	 * have been blocked by (-mounts_in_progress) different callers
474 	 * (remotely possible if two threads enter zone_shutdown at the same
475 	 * time).
476 	 */
477 	zp->zone_mounts_in_progress--;
478 	retval = 1;
479 signaled:
480 	mutex_exit(&zp->zone_mount_lock);
481 	return (retval);
482 }
483 
484 /*
485  * The VFS layer may progress with new mounts as far as we're concerned.
486  * Allow them to progress if we were the last obstacle.
487  */
488 static void
489 resume_mounts(zone_t *zp)
490 {
491 	mutex_enter(&zp->zone_mount_lock);
492 	if (++zp->zone_mounts_in_progress == 0)
493 		cv_broadcast(&zp->zone_mount_cv);
494 	mutex_exit(&zp->zone_mount_lock);
495 }
496 
497 /*
498  * The VFS layer is busy with a mount; this zone should wait until all
499  * of its mounts are completed to progress.
500  */
501 void
502 mount_in_progress(zone_t *zp)
503 {
504 	mutex_enter(&zp->zone_mount_lock);
505 	while (zp->zone_mounts_in_progress < 0)
506 		cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
507 	zp->zone_mounts_in_progress++;
508 	mutex_exit(&zp->zone_mount_lock);
509 }
510 
511 /*
512  * VFS is done with one mount; wake up any waiting block_mounts()
513  * callers if this is the last mount.
514  */
515 void
516 mount_completed(zone_t *zp)
517 {
518 	mutex_enter(&zp->zone_mount_lock);
519 	if (--zp->zone_mounts_in_progress == 0)
520 		cv_broadcast(&zp->zone_mount_cv);
521 	mutex_exit(&zp->zone_mount_lock);
522 }
523 
524 /*
525  * ZSD routines.
526  *
527  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
528  * defined by the pthread_key_create() and related interfaces.
529  *
530  * Kernel subsystems may register one or more data items and/or
531  * callbacks to be executed when a zone is created, shutdown, or
532  * destroyed.
533  *
534  * Unlike the thread counterpart, destructor callbacks will be executed
535  * even if the data pointer is NULL and/or there are no constructor
536  * callbacks, so it is the responsibility of such callbacks to check for
537  * NULL data values if necessary.
538  *
539  * The locking strategy and overall picture is as follows:
540  *
541  * When someone calls zone_key_create(), a template ZSD entry is added to the
542  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
543  * holding that lock all the existing zones are marked as
544  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
545  * zone_zsd list (protected by zone_lock). The global list is updated first
546  * (under zone_key_lock) to make sure that newly created zones use the
547  * most recent list of keys. Then under zonehash_lock we walk the zones
548  * and mark them.  Similar locking is used in zone_key_delete().
549  *
550  * The actual create, shutdown, and destroy callbacks are done without
551  * holding any lock. And zsd_flags are used to ensure that the operations
552  * completed so that when zone_key_create (and zone_create) is done, as well as
553  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
554  * are completed.
555  *
556  * When new zones are created constructor callbacks for all registered ZSD
557  * entries will be called. That also uses the above two phases of marking
558  * what needs to be done, and then running the callbacks without holding
559  * any locks.
560  *
561  * The framework does not provide any locking around zone_getspecific() and
562  * zone_setspecific() apart from that needed for internal consistency, so
563  * callers interested in atomic "test-and-set" semantics will need to provide
564  * their own locking.
565  */
566 
567 /*
568  * Helper function to find the zsd_entry associated with the key in the
569  * given list.
570  */
571 static struct zsd_entry *
572 zsd_find(list_t *l, zone_key_t key)
573 {
574 	struct zsd_entry *zsd;
575 
576 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
577 		if (zsd->zsd_key == key) {
578 			return (zsd);
579 		}
580 	}
581 	return (NULL);
582 }
583 
584 /*
585  * Helper function to find the zsd_entry associated with the key in the
586  * given list. Move it to the front of the list.
587  */
588 static struct zsd_entry *
589 zsd_find_mru(list_t *l, zone_key_t key)
590 {
591 	struct zsd_entry *zsd;
592 
593 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
594 		if (zsd->zsd_key == key) {
595 			/*
596 			 * Move to head of list to keep list in MRU order.
597 			 */
598 			if (zsd != list_head(l)) {
599 				list_remove(l, zsd);
600 				list_insert_head(l, zsd);
601 			}
602 			return (zsd);
603 		}
604 	}
605 	return (NULL);
606 }
607 
608 void
609 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
610     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
611 {
612 	struct zsd_entry *zsdp;
613 	struct zsd_entry *t;
614 	struct zone *zone;
615 	zone_key_t  key;
616 
617 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
618 	zsdp->zsd_data = NULL;
619 	zsdp->zsd_create = create;
620 	zsdp->zsd_shutdown = shutdown;
621 	zsdp->zsd_destroy = destroy;
622 
623 	/*
624 	 * Insert in global list of callbacks. Makes future zone creations
625 	 * see it.
626 	 */
627 	mutex_enter(&zsd_key_lock);
628 	key = zsdp->zsd_key = ++zsd_keyval;
629 	ASSERT(zsd_keyval != 0);
630 	list_insert_tail(&zsd_registered_keys, zsdp);
631 	mutex_exit(&zsd_key_lock);
632 
633 	/*
634 	 * Insert for all existing zones and mark them as needing
635 	 * a create callback.
636 	 */
637 	mutex_enter(&zonehash_lock);	/* stop the world */
638 	for (zone = list_head(&zone_active); zone != NULL;
639 	    zone = list_next(&zone_active, zone)) {
640 		zone_status_t status;
641 
642 		mutex_enter(&zone->zone_lock);
643 
644 		/* Skip zones that are on the way down or not yet up */
645 		status = zone_status_get(zone);
646 		if (status >= ZONE_IS_DOWN ||
647 		    status == ZONE_IS_UNINITIALIZED) {
648 			mutex_exit(&zone->zone_lock);
649 			continue;
650 		}
651 
652 		t = zsd_find_mru(&zone->zone_zsd, key);
653 		if (t != NULL) {
654 			/*
655 			 * A zsd_configure already inserted it after
656 			 * we dropped zsd_key_lock above.
657 			 */
658 			mutex_exit(&zone->zone_lock);
659 			continue;
660 		}
661 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
662 		t->zsd_key = key;
663 		t->zsd_create = create;
664 		t->zsd_shutdown = shutdown;
665 		t->zsd_destroy = destroy;
666 		if (create != NULL) {
667 			t->zsd_flags = ZSD_CREATE_NEEDED;
668 			DTRACE_PROBE2(zsd__create__needed,
669 			    zone_t *, zone, zone_key_t, key);
670 		}
671 		list_insert_tail(&zone->zone_zsd, t);
672 		mutex_exit(&zone->zone_lock);
673 	}
674 	mutex_exit(&zonehash_lock);
675 
676 	if (create != NULL) {
677 		/* Now call the create callback for this key */
678 		zsd_apply_all_zones(zsd_apply_create, key);
679 	}
680 	/*
681 	 * It is safe for consumers to use the key now, make it
682 	 * globally visible. Specifically zone_getspecific() will
683 	 * always successfully return the zone specific data associated
684 	 * with the key.
685 	 */
686 	*keyp = key;
687 
688 }
689 
690 /*
691  * Function called when a module is being unloaded, or otherwise wishes
692  * to unregister its ZSD key and callbacks.
693  *
694  * Remove from the global list and determine the functions that need to
695  * be called under a global lock. Then call the functions without
696  * holding any locks. Finally free up the zone_zsd entries. (The apply
697  * functions need to access the zone_zsd entries to find zsd_data etc.)
698  */
699 int
700 zone_key_delete(zone_key_t key)
701 {
702 	struct zsd_entry *zsdp = NULL;
703 	zone_t *zone;
704 
705 	mutex_enter(&zsd_key_lock);
706 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
707 	if (zsdp == NULL) {
708 		mutex_exit(&zsd_key_lock);
709 		return (-1);
710 	}
711 	list_remove(&zsd_registered_keys, zsdp);
712 	mutex_exit(&zsd_key_lock);
713 
714 	mutex_enter(&zonehash_lock);
715 	for (zone = list_head(&zone_active); zone != NULL;
716 	    zone = list_next(&zone_active, zone)) {
717 		struct zsd_entry *del;
718 
719 		mutex_enter(&zone->zone_lock);
720 		del = zsd_find_mru(&zone->zone_zsd, key);
721 		if (del == NULL) {
722 			/*
723 			 * Somebody else got here first e.g the zone going
724 			 * away.
725 			 */
726 			mutex_exit(&zone->zone_lock);
727 			continue;
728 		}
729 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
730 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
731 		if (del->zsd_shutdown != NULL &&
732 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
733 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
734 			DTRACE_PROBE2(zsd__shutdown__needed,
735 			    zone_t *, zone, zone_key_t, key);
736 		}
737 		if (del->zsd_destroy != NULL &&
738 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
739 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
740 			DTRACE_PROBE2(zsd__destroy__needed,
741 			    zone_t *, zone, zone_key_t, key);
742 		}
743 		mutex_exit(&zone->zone_lock);
744 	}
745 	mutex_exit(&zonehash_lock);
746 	kmem_free(zsdp, sizeof (*zsdp));
747 
748 	/* Now call the shutdown and destroy callback for this key */
749 	zsd_apply_all_zones(zsd_apply_shutdown, key);
750 	zsd_apply_all_zones(zsd_apply_destroy, key);
751 
752 	/* Now we can free up the zsdp structures in each zone */
753 	mutex_enter(&zonehash_lock);
754 	for (zone = list_head(&zone_active); zone != NULL;
755 	    zone = list_next(&zone_active, zone)) {
756 		struct zsd_entry *del;
757 
758 		mutex_enter(&zone->zone_lock);
759 		del = zsd_find(&zone->zone_zsd, key);
760 		if (del != NULL) {
761 			list_remove(&zone->zone_zsd, del);
762 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
763 			kmem_free(del, sizeof (*del));
764 		}
765 		mutex_exit(&zone->zone_lock);
766 	}
767 	mutex_exit(&zonehash_lock);
768 
769 	return (0);
770 }
771 
772 /*
773  * ZSD counterpart of pthread_setspecific().
774  *
775  * Since all zsd callbacks, including those with no create function,
776  * have an entry in zone_zsd, if the key is registered it is part of
777  * the zone_zsd list.
778  * Return an error if the key wasn't registerd.
779  */
780 int
781 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
782 {
783 	struct zsd_entry *t;
784 
785 	mutex_enter(&zone->zone_lock);
786 	t = zsd_find_mru(&zone->zone_zsd, key);
787 	if (t != NULL) {
788 		/*
789 		 * Replace old value with new
790 		 */
791 		t->zsd_data = (void *)data;
792 		mutex_exit(&zone->zone_lock);
793 		return (0);
794 	}
795 	mutex_exit(&zone->zone_lock);
796 	return (-1);
797 }
798 
799 /*
800  * ZSD counterpart of pthread_getspecific().
801  */
802 void *
803 zone_getspecific(zone_key_t key, zone_t *zone)
804 {
805 	struct zsd_entry *t;
806 	void *data;
807 
808 	mutex_enter(&zone->zone_lock);
809 	t = zsd_find_mru(&zone->zone_zsd, key);
810 	data = (t == NULL ? NULL : t->zsd_data);
811 	mutex_exit(&zone->zone_lock);
812 	return (data);
813 }
814 
815 /*
816  * Function used to initialize a zone's list of ZSD callbacks and data
817  * when the zone is being created.  The callbacks are initialized from
818  * the template list (zsd_registered_keys). The constructor callback is
819  * executed later (once the zone exists and with locks dropped).
820  */
821 static void
822 zone_zsd_configure(zone_t *zone)
823 {
824 	struct zsd_entry *zsdp;
825 	struct zsd_entry *t;
826 
827 	ASSERT(MUTEX_HELD(&zonehash_lock));
828 	ASSERT(list_head(&zone->zone_zsd) == NULL);
829 	mutex_enter(&zone->zone_lock);
830 	mutex_enter(&zsd_key_lock);
831 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
832 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
833 		/*
834 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
835 		 * should not have added anything to it.
836 		 */
837 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
838 
839 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
840 		t->zsd_key = zsdp->zsd_key;
841 		t->zsd_create = zsdp->zsd_create;
842 		t->zsd_shutdown = zsdp->zsd_shutdown;
843 		t->zsd_destroy = zsdp->zsd_destroy;
844 		if (zsdp->zsd_create != NULL) {
845 			t->zsd_flags = ZSD_CREATE_NEEDED;
846 			DTRACE_PROBE2(zsd__create__needed,
847 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
848 		}
849 		list_insert_tail(&zone->zone_zsd, t);
850 	}
851 	mutex_exit(&zsd_key_lock);
852 	mutex_exit(&zone->zone_lock);
853 }
854 
855 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
856 
857 /*
858  * Helper function to execute shutdown or destructor callbacks.
859  */
860 static void
861 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
862 {
863 	struct zsd_entry *t;
864 
865 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
866 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
867 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
868 
869 	/*
870 	 * Run the callback solely based on what is registered for the zone
871 	 * in zone_zsd. The global list can change independently of this
872 	 * as keys are registered and unregistered and we don't register new
873 	 * callbacks for a zone that is in the process of going away.
874 	 */
875 	mutex_enter(&zone->zone_lock);
876 	for (t = list_head(&zone->zone_zsd); t != NULL;
877 	    t = list_next(&zone->zone_zsd, t)) {
878 		zone_key_t key = t->zsd_key;
879 
880 		/* Skip if no callbacks registered */
881 
882 		if (ct == ZSD_SHUTDOWN) {
883 			if (t->zsd_shutdown != NULL &&
884 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
885 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
886 				DTRACE_PROBE2(zsd__shutdown__needed,
887 				    zone_t *, zone, zone_key_t, key);
888 			}
889 		} else {
890 			if (t->zsd_destroy != NULL &&
891 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
892 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
893 				DTRACE_PROBE2(zsd__destroy__needed,
894 				    zone_t *, zone, zone_key_t, key);
895 			}
896 		}
897 	}
898 	mutex_exit(&zone->zone_lock);
899 
900 	/* Now call the shutdown and destroy callback for this key */
901 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
902 	zsd_apply_all_keys(zsd_apply_destroy, zone);
903 
904 }
905 
906 /*
907  * Called when the zone is going away; free ZSD-related memory, and
908  * destroy the zone_zsd list.
909  */
910 static void
911 zone_free_zsd(zone_t *zone)
912 {
913 	struct zsd_entry *t, *next;
914 
915 	/*
916 	 * Free all the zsd_entry's we had on this zone.
917 	 */
918 	mutex_enter(&zone->zone_lock);
919 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
920 		next = list_next(&zone->zone_zsd, t);
921 		list_remove(&zone->zone_zsd, t);
922 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
923 		kmem_free(t, sizeof (*t));
924 	}
925 	list_destroy(&zone->zone_zsd);
926 	mutex_exit(&zone->zone_lock);
927 
928 }
929 
930 /*
931  * Apply a function to all zones for particular key value.
932  *
933  * The applyfn has to drop zonehash_lock if it does some work, and
934  * then reacquire it before it returns.
935  * When the lock is dropped we don't follow list_next even
936  * if it is possible to do so without any hazards. This is
937  * because we want the design to allow for the list of zones
938  * to change in any arbitrary way during the time the
939  * lock was dropped.
940  *
941  * It is safe to restart the loop at list_head since the applyfn
942  * changes the zsd_flags as it does work, so a subsequent
943  * pass through will have no effect in applyfn, hence the loop will terminate
944  * in at worst O(N^2).
945  */
946 static void
947 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
948 {
949 	zone_t *zone;
950 
951 	mutex_enter(&zonehash_lock);
952 	zone = list_head(&zone_active);
953 	while (zone != NULL) {
954 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
955 			/* Lock dropped - restart at head */
956 			zone = list_head(&zone_active);
957 		} else {
958 			zone = list_next(&zone_active, zone);
959 		}
960 	}
961 	mutex_exit(&zonehash_lock);
962 }
963 
964 /*
965  * Apply a function to all keys for a particular zone.
966  *
967  * The applyfn has to drop zonehash_lock if it does some work, and
968  * then reacquire it before it returns.
969  * When the lock is dropped we don't follow list_next even
970  * if it is possible to do so without any hazards. This is
971  * because we want the design to allow for the list of zsd callbacks
972  * to change in any arbitrary way during the time the
973  * lock was dropped.
974  *
975  * It is safe to restart the loop at list_head since the applyfn
976  * changes the zsd_flags as it does work, so a subsequent
977  * pass through will have no effect in applyfn, hence the loop will terminate
978  * in at worst O(N^2).
979  */
980 static void
981 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
982 {
983 	struct zsd_entry *t;
984 
985 	mutex_enter(&zone->zone_lock);
986 	t = list_head(&zone->zone_zsd);
987 	while (t != NULL) {
988 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
989 			/* Lock dropped - restart at head */
990 			t = list_head(&zone->zone_zsd);
991 		} else {
992 			t = list_next(&zone->zone_zsd, t);
993 		}
994 	}
995 	mutex_exit(&zone->zone_lock);
996 }
997 
998 /*
999  * Call the create function for the zone and key if CREATE_NEEDED
1000  * is set.
1001  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1002  * we wait for that thread to complete so that we can ensure that
1003  * all the callbacks are done when we've looped over all zones/keys.
1004  *
1005  * When we call the create function, we drop the global held by the
1006  * caller, and return true to tell the caller it needs to re-evalute the
1007  * state.
1008  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1009  * remains held on exit.
1010  */
1011 static boolean_t
1012 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1013     zone_t *zone, zone_key_t key)
1014 {
1015 	void *result;
1016 	struct zsd_entry *t;
1017 	boolean_t dropped;
1018 
1019 	if (lockp != NULL) {
1020 		ASSERT(MUTEX_HELD(lockp));
1021 	}
1022 	if (zone_lock_held) {
1023 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1024 	} else {
1025 		mutex_enter(&zone->zone_lock);
1026 	}
1027 
1028 	t = zsd_find(&zone->zone_zsd, key);
1029 	if (t == NULL) {
1030 		/*
1031 		 * Somebody else got here first e.g the zone going
1032 		 * away.
1033 		 */
1034 		if (!zone_lock_held)
1035 			mutex_exit(&zone->zone_lock);
1036 		return (B_FALSE);
1037 	}
1038 	dropped = B_FALSE;
1039 	if (zsd_wait_for_inprogress(zone, t, lockp))
1040 		dropped = B_TRUE;
1041 
1042 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1043 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1044 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1045 		DTRACE_PROBE2(zsd__create__inprogress,
1046 		    zone_t *, zone, zone_key_t, key);
1047 		mutex_exit(&zone->zone_lock);
1048 		if (lockp != NULL)
1049 			mutex_exit(lockp);
1050 
1051 		dropped = B_TRUE;
1052 		ASSERT(t->zsd_create != NULL);
1053 		DTRACE_PROBE2(zsd__create__start,
1054 		    zone_t *, zone, zone_key_t, key);
1055 
1056 		result = (*t->zsd_create)(zone->zone_id);
1057 
1058 		DTRACE_PROBE2(zsd__create__end,
1059 		    zone_t *, zone, voidn *, result);
1060 
1061 		ASSERT(result != NULL);
1062 		if (lockp != NULL)
1063 			mutex_enter(lockp);
1064 		mutex_enter(&zone->zone_lock);
1065 		t->zsd_data = result;
1066 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1067 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1068 		cv_broadcast(&t->zsd_cv);
1069 		DTRACE_PROBE2(zsd__create__completed,
1070 		    zone_t *, zone, zone_key_t, key);
1071 	}
1072 	if (!zone_lock_held)
1073 		mutex_exit(&zone->zone_lock);
1074 	return (dropped);
1075 }
1076 
1077 /*
1078  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1079  * is set.
1080  * If some other thread gets here first and sets *_INPROGRESS, then
1081  * we wait for that thread to complete so that we can ensure that
1082  * all the callbacks are done when we've looped over all zones/keys.
1083  *
1084  * When we call the shutdown function, we drop the global held by the
1085  * caller, and return true to tell the caller it needs to re-evalute the
1086  * state.
1087  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1088  * remains held on exit.
1089  */
1090 static boolean_t
1091 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1092     zone_t *zone, zone_key_t key)
1093 {
1094 	struct zsd_entry *t;
1095 	void *data;
1096 	boolean_t dropped;
1097 
1098 	if (lockp != NULL) {
1099 		ASSERT(MUTEX_HELD(lockp));
1100 	}
1101 	if (zone_lock_held) {
1102 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1103 	} else {
1104 		mutex_enter(&zone->zone_lock);
1105 	}
1106 
1107 	t = zsd_find(&zone->zone_zsd, key);
1108 	if (t == NULL) {
1109 		/*
1110 		 * Somebody else got here first e.g the zone going
1111 		 * away.
1112 		 */
1113 		if (!zone_lock_held)
1114 			mutex_exit(&zone->zone_lock);
1115 		return (B_FALSE);
1116 	}
1117 	dropped = B_FALSE;
1118 	if (zsd_wait_for_creator(zone, t, lockp))
1119 		dropped = B_TRUE;
1120 
1121 	if (zsd_wait_for_inprogress(zone, t, lockp))
1122 		dropped = B_TRUE;
1123 
1124 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1125 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1126 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1127 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1128 		    zone_t *, zone, zone_key_t, key);
1129 		mutex_exit(&zone->zone_lock);
1130 		if (lockp != NULL)
1131 			mutex_exit(lockp);
1132 		dropped = B_TRUE;
1133 
1134 		ASSERT(t->zsd_shutdown != NULL);
1135 		data = t->zsd_data;
1136 
1137 		DTRACE_PROBE2(zsd__shutdown__start,
1138 		    zone_t *, zone, zone_key_t, key);
1139 
1140 		(t->zsd_shutdown)(zone->zone_id, data);
1141 		DTRACE_PROBE2(zsd__shutdown__end,
1142 		    zone_t *, zone, zone_key_t, key);
1143 
1144 		if (lockp != NULL)
1145 			mutex_enter(lockp);
1146 		mutex_enter(&zone->zone_lock);
1147 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1148 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1149 		cv_broadcast(&t->zsd_cv);
1150 		DTRACE_PROBE2(zsd__shutdown__completed,
1151 		    zone_t *, zone, zone_key_t, key);
1152 	}
1153 	if (!zone_lock_held)
1154 		mutex_exit(&zone->zone_lock);
1155 	return (dropped);
1156 }
1157 
1158 /*
1159  * Call the destroy function for the zone and key if DESTROY_NEEDED
1160  * is set.
1161  * If some other thread gets here first and sets *_INPROGRESS, then
1162  * we wait for that thread to complete so that we can ensure that
1163  * all the callbacks are done when we've looped over all zones/keys.
1164  *
1165  * When we call the destroy function, we drop the global held by the
1166  * caller, and return true to tell the caller it needs to re-evalute the
1167  * state.
1168  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1169  * remains held on exit.
1170  */
1171 static boolean_t
1172 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1173     zone_t *zone, zone_key_t key)
1174 {
1175 	struct zsd_entry *t;
1176 	void *data;
1177 	boolean_t dropped;
1178 
1179 	if (lockp != NULL) {
1180 		ASSERT(MUTEX_HELD(lockp));
1181 	}
1182 	if (zone_lock_held) {
1183 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1184 	} else {
1185 		mutex_enter(&zone->zone_lock);
1186 	}
1187 
1188 	t = zsd_find(&zone->zone_zsd, key);
1189 	if (t == NULL) {
1190 		/*
1191 		 * Somebody else got here first e.g the zone going
1192 		 * away.
1193 		 */
1194 		if (!zone_lock_held)
1195 			mutex_exit(&zone->zone_lock);
1196 		return (B_FALSE);
1197 	}
1198 	dropped = B_FALSE;
1199 	if (zsd_wait_for_creator(zone, t, lockp))
1200 		dropped = B_TRUE;
1201 
1202 	if (zsd_wait_for_inprogress(zone, t, lockp))
1203 		dropped = B_TRUE;
1204 
1205 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1206 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1207 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1208 		DTRACE_PROBE2(zsd__destroy__inprogress,
1209 		    zone_t *, zone, zone_key_t, key);
1210 		mutex_exit(&zone->zone_lock);
1211 		if (lockp != NULL)
1212 			mutex_exit(lockp);
1213 		dropped = B_TRUE;
1214 
1215 		ASSERT(t->zsd_destroy != NULL);
1216 		data = t->zsd_data;
1217 		DTRACE_PROBE2(zsd__destroy__start,
1218 		    zone_t *, zone, zone_key_t, key);
1219 
1220 		(t->zsd_destroy)(zone->zone_id, data);
1221 		DTRACE_PROBE2(zsd__destroy__end,
1222 		    zone_t *, zone, zone_key_t, key);
1223 
1224 		if (lockp != NULL)
1225 			mutex_enter(lockp);
1226 		mutex_enter(&zone->zone_lock);
1227 		t->zsd_data = NULL;
1228 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1229 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1230 		cv_broadcast(&t->zsd_cv);
1231 		DTRACE_PROBE2(zsd__destroy__completed,
1232 		    zone_t *, zone, zone_key_t, key);
1233 	}
1234 	if (!zone_lock_held)
1235 		mutex_exit(&zone->zone_lock);
1236 	return (dropped);
1237 }
1238 
1239 /*
1240  * Wait for any CREATE_NEEDED flag to be cleared.
1241  * Returns true if lockp was temporarily dropped while waiting.
1242  */
1243 static boolean_t
1244 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1245 {
1246 	boolean_t dropped = B_FALSE;
1247 
1248 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1249 		DTRACE_PROBE2(zsd__wait__for__creator,
1250 		    zone_t *, zone, struct zsd_entry *, t);
1251 		if (lockp != NULL) {
1252 			dropped = B_TRUE;
1253 			mutex_exit(lockp);
1254 		}
1255 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1256 		if (lockp != NULL) {
1257 			/* First drop zone_lock to preserve order */
1258 			mutex_exit(&zone->zone_lock);
1259 			mutex_enter(lockp);
1260 			mutex_enter(&zone->zone_lock);
1261 		}
1262 	}
1263 	return (dropped);
1264 }
1265 
1266 /*
1267  * Wait for any INPROGRESS flag to be cleared.
1268  * Returns true if lockp was temporarily dropped while waiting.
1269  */
1270 static boolean_t
1271 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1272 {
1273 	boolean_t dropped = B_FALSE;
1274 
1275 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1276 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1277 		    zone_t *, zone, struct zsd_entry *, t);
1278 		if (lockp != NULL) {
1279 			dropped = B_TRUE;
1280 			mutex_exit(lockp);
1281 		}
1282 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1283 		if (lockp != NULL) {
1284 			/* First drop zone_lock to preserve order */
1285 			mutex_exit(&zone->zone_lock);
1286 			mutex_enter(lockp);
1287 			mutex_enter(&zone->zone_lock);
1288 		}
1289 	}
1290 	return (dropped);
1291 }
1292 
1293 /*
1294  * Frees memory associated with the zone dataset list.
1295  */
1296 static void
1297 zone_free_datasets(zone_t *zone)
1298 {
1299 	zone_dataset_t *t, *next;
1300 
1301 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1302 		next = list_next(&zone->zone_datasets, t);
1303 		list_remove(&zone->zone_datasets, t);
1304 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1305 		kmem_free(t, sizeof (*t));
1306 	}
1307 	list_destroy(&zone->zone_datasets);
1308 }
1309 
1310 /*
1311  * zone.cpu-shares resource control support.
1312  */
1313 /*ARGSUSED*/
1314 static rctl_qty_t
1315 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1316 {
1317 	ASSERT(MUTEX_HELD(&p->p_lock));
1318 	return (p->p_zone->zone_shares);
1319 }
1320 
1321 /*ARGSUSED*/
1322 static int
1323 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1324     rctl_qty_t nv)
1325 {
1326 	ASSERT(MUTEX_HELD(&p->p_lock));
1327 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1328 	if (e->rcep_p.zone == NULL)
1329 		return (0);
1330 
1331 	e->rcep_p.zone->zone_shares = nv;
1332 	return (0);
1333 }
1334 
1335 static rctl_ops_t zone_cpu_shares_ops = {
1336 	rcop_no_action,
1337 	zone_cpu_shares_usage,
1338 	zone_cpu_shares_set,
1339 	rcop_no_test
1340 };
1341 
1342 /*
1343  * zone.cpu-cap resource control support.
1344  */
1345 /*ARGSUSED*/
1346 static rctl_qty_t
1347 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1348 {
1349 	ASSERT(MUTEX_HELD(&p->p_lock));
1350 	return (cpucaps_zone_get(p->p_zone));
1351 }
1352 
1353 /*ARGSUSED*/
1354 static int
1355 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1356     rctl_qty_t nv)
1357 {
1358 	zone_t *zone = e->rcep_p.zone;
1359 
1360 	ASSERT(MUTEX_HELD(&p->p_lock));
1361 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1362 
1363 	if (zone == NULL)
1364 		return (0);
1365 
1366 	/*
1367 	 * set cap to the new value.
1368 	 */
1369 	return (cpucaps_zone_set(zone, nv));
1370 }
1371 
1372 static rctl_ops_t zone_cpu_cap_ops = {
1373 	rcop_no_action,
1374 	zone_cpu_cap_get,
1375 	zone_cpu_cap_set,
1376 	rcop_no_test
1377 };
1378 
1379 /*ARGSUSED*/
1380 static rctl_qty_t
1381 zone_lwps_usage(rctl_t *r, proc_t *p)
1382 {
1383 	rctl_qty_t nlwps;
1384 	zone_t *zone = p->p_zone;
1385 
1386 	ASSERT(MUTEX_HELD(&p->p_lock));
1387 
1388 	mutex_enter(&zone->zone_nlwps_lock);
1389 	nlwps = zone->zone_nlwps;
1390 	mutex_exit(&zone->zone_nlwps_lock);
1391 
1392 	return (nlwps);
1393 }
1394 
1395 /*ARGSUSED*/
1396 static int
1397 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1398     rctl_qty_t incr, uint_t flags)
1399 {
1400 	rctl_qty_t nlwps;
1401 
1402 	ASSERT(MUTEX_HELD(&p->p_lock));
1403 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1404 	if (e->rcep_p.zone == NULL)
1405 		return (0);
1406 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1407 	nlwps = e->rcep_p.zone->zone_nlwps;
1408 
1409 	if (nlwps + incr > rcntl->rcv_value)
1410 		return (1);
1411 
1412 	return (0);
1413 }
1414 
1415 /*ARGSUSED*/
1416 static int
1417 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1418 {
1419 	ASSERT(MUTEX_HELD(&p->p_lock));
1420 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1421 	if (e->rcep_p.zone == NULL)
1422 		return (0);
1423 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1424 	return (0);
1425 }
1426 
1427 static rctl_ops_t zone_lwps_ops = {
1428 	rcop_no_action,
1429 	zone_lwps_usage,
1430 	zone_lwps_set,
1431 	zone_lwps_test,
1432 };
1433 
1434 /*ARGSUSED*/
1435 static rctl_qty_t
1436 zone_procs_usage(rctl_t *r, proc_t *p)
1437 {
1438 	rctl_qty_t nprocs;
1439 	zone_t *zone = p->p_zone;
1440 
1441 	ASSERT(MUTEX_HELD(&p->p_lock));
1442 
1443 	mutex_enter(&zone->zone_nlwps_lock);
1444 	nprocs = zone->zone_nprocs;
1445 	mutex_exit(&zone->zone_nlwps_lock);
1446 
1447 	return (nprocs);
1448 }
1449 
1450 /*ARGSUSED*/
1451 static int
1452 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1453     rctl_qty_t incr, uint_t flags)
1454 {
1455 	rctl_qty_t nprocs;
1456 
1457 	ASSERT(MUTEX_HELD(&p->p_lock));
1458 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1459 	if (e->rcep_p.zone == NULL)
1460 		return (0);
1461 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1462 	nprocs = e->rcep_p.zone->zone_nprocs;
1463 
1464 	if (nprocs + incr > rcntl->rcv_value)
1465 		return (1);
1466 
1467 	return (0);
1468 }
1469 
1470 /*ARGSUSED*/
1471 static int
1472 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1473 {
1474 	ASSERT(MUTEX_HELD(&p->p_lock));
1475 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1476 	if (e->rcep_p.zone == NULL)
1477 		return (0);
1478 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1479 	return (0);
1480 }
1481 
1482 static rctl_ops_t zone_procs_ops = {
1483 	rcop_no_action,
1484 	zone_procs_usage,
1485 	zone_procs_set,
1486 	zone_procs_test,
1487 };
1488 
1489 /*ARGSUSED*/
1490 static rctl_qty_t
1491 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1492 {
1493 	ASSERT(MUTEX_HELD(&p->p_lock));
1494 	return (p->p_zone->zone_shmmax);
1495 }
1496 
1497 /*ARGSUSED*/
1498 static int
1499 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1500     rctl_qty_t incr, uint_t flags)
1501 {
1502 	rctl_qty_t v;
1503 	ASSERT(MUTEX_HELD(&p->p_lock));
1504 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1505 	v = e->rcep_p.zone->zone_shmmax + incr;
1506 	if (v > rval->rcv_value)
1507 		return (1);
1508 	return (0);
1509 }
1510 
1511 static rctl_ops_t zone_shmmax_ops = {
1512 	rcop_no_action,
1513 	zone_shmmax_usage,
1514 	rcop_no_set,
1515 	zone_shmmax_test
1516 };
1517 
1518 /*ARGSUSED*/
1519 static rctl_qty_t
1520 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1521 {
1522 	ASSERT(MUTEX_HELD(&p->p_lock));
1523 	return (p->p_zone->zone_ipc.ipcq_shmmni);
1524 }
1525 
1526 /*ARGSUSED*/
1527 static int
1528 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1529     rctl_qty_t incr, uint_t flags)
1530 {
1531 	rctl_qty_t v;
1532 	ASSERT(MUTEX_HELD(&p->p_lock));
1533 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1534 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1535 	if (v > rval->rcv_value)
1536 		return (1);
1537 	return (0);
1538 }
1539 
1540 static rctl_ops_t zone_shmmni_ops = {
1541 	rcop_no_action,
1542 	zone_shmmni_usage,
1543 	rcop_no_set,
1544 	zone_shmmni_test
1545 };
1546 
1547 /*ARGSUSED*/
1548 static rctl_qty_t
1549 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1550 {
1551 	ASSERT(MUTEX_HELD(&p->p_lock));
1552 	return (p->p_zone->zone_ipc.ipcq_semmni);
1553 }
1554 
1555 /*ARGSUSED*/
1556 static int
1557 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1558     rctl_qty_t incr, uint_t flags)
1559 {
1560 	rctl_qty_t v;
1561 	ASSERT(MUTEX_HELD(&p->p_lock));
1562 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1563 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1564 	if (v > rval->rcv_value)
1565 		return (1);
1566 	return (0);
1567 }
1568 
1569 static rctl_ops_t zone_semmni_ops = {
1570 	rcop_no_action,
1571 	zone_semmni_usage,
1572 	rcop_no_set,
1573 	zone_semmni_test
1574 };
1575 
1576 /*ARGSUSED*/
1577 static rctl_qty_t
1578 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1579 {
1580 	ASSERT(MUTEX_HELD(&p->p_lock));
1581 	return (p->p_zone->zone_ipc.ipcq_msgmni);
1582 }
1583 
1584 /*ARGSUSED*/
1585 static int
1586 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1587     rctl_qty_t incr, uint_t flags)
1588 {
1589 	rctl_qty_t v;
1590 	ASSERT(MUTEX_HELD(&p->p_lock));
1591 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1592 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1593 	if (v > rval->rcv_value)
1594 		return (1);
1595 	return (0);
1596 }
1597 
1598 static rctl_ops_t zone_msgmni_ops = {
1599 	rcop_no_action,
1600 	zone_msgmni_usage,
1601 	rcop_no_set,
1602 	zone_msgmni_test
1603 };
1604 
1605 /*ARGSUSED*/
1606 static rctl_qty_t
1607 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1608 {
1609 	rctl_qty_t q;
1610 	ASSERT(MUTEX_HELD(&p->p_lock));
1611 	mutex_enter(&p->p_zone->zone_mem_lock);
1612 	q = p->p_zone->zone_locked_mem;
1613 	mutex_exit(&p->p_zone->zone_mem_lock);
1614 	return (q);
1615 }
1616 
1617 /*ARGSUSED*/
1618 static int
1619 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1620     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1621 {
1622 	rctl_qty_t q;
1623 	zone_t *z;
1624 
1625 	z = e->rcep_p.zone;
1626 	ASSERT(MUTEX_HELD(&p->p_lock));
1627 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1628 	q = z->zone_locked_mem;
1629 	if (q + incr > rcntl->rcv_value)
1630 		return (1);
1631 	return (0);
1632 }
1633 
1634 /*ARGSUSED*/
1635 static int
1636 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1637     rctl_qty_t nv)
1638 {
1639 	ASSERT(MUTEX_HELD(&p->p_lock));
1640 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1641 	if (e->rcep_p.zone == NULL)
1642 		return (0);
1643 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1644 	return (0);
1645 }
1646 
1647 static rctl_ops_t zone_locked_mem_ops = {
1648 	rcop_no_action,
1649 	zone_locked_mem_usage,
1650 	zone_locked_mem_set,
1651 	zone_locked_mem_test
1652 };
1653 
1654 /*ARGSUSED*/
1655 static rctl_qty_t
1656 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1657 {
1658 	rctl_qty_t q;
1659 	zone_t *z = p->p_zone;
1660 
1661 	ASSERT(MUTEX_HELD(&p->p_lock));
1662 	mutex_enter(&z->zone_mem_lock);
1663 	q = z->zone_max_swap;
1664 	mutex_exit(&z->zone_mem_lock);
1665 	return (q);
1666 }
1667 
1668 /*ARGSUSED*/
1669 static int
1670 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1671     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1672 {
1673 	rctl_qty_t q;
1674 	zone_t *z;
1675 
1676 	z = e->rcep_p.zone;
1677 	ASSERT(MUTEX_HELD(&p->p_lock));
1678 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1679 	q = z->zone_max_swap;
1680 	if (q + incr > rcntl->rcv_value)
1681 		return (1);
1682 	return (0);
1683 }
1684 
1685 /*ARGSUSED*/
1686 static int
1687 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1688     rctl_qty_t nv)
1689 {
1690 	ASSERT(MUTEX_HELD(&p->p_lock));
1691 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1692 	if (e->rcep_p.zone == NULL)
1693 		return (0);
1694 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1695 	return (0);
1696 }
1697 
1698 static rctl_ops_t zone_max_swap_ops = {
1699 	rcop_no_action,
1700 	zone_max_swap_usage,
1701 	zone_max_swap_set,
1702 	zone_max_swap_test
1703 };
1704 
1705 /*ARGSUSED*/
1706 static rctl_qty_t
1707 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1708 {
1709 	rctl_qty_t q;
1710 	zone_t *z = p->p_zone;
1711 
1712 	ASSERT(MUTEX_HELD(&p->p_lock));
1713 	mutex_enter(&z->zone_rctl_lock);
1714 	q = z->zone_max_lofi;
1715 	mutex_exit(&z->zone_rctl_lock);
1716 	return (q);
1717 }
1718 
1719 /*ARGSUSED*/
1720 static int
1721 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1722     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1723 {
1724 	rctl_qty_t q;
1725 	zone_t *z;
1726 
1727 	z = e->rcep_p.zone;
1728 	ASSERT(MUTEX_HELD(&p->p_lock));
1729 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1730 	q = z->zone_max_lofi;
1731 	if (q + incr > rcntl->rcv_value)
1732 		return (1);
1733 	return (0);
1734 }
1735 
1736 /*ARGSUSED*/
1737 static int
1738 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1739     rctl_qty_t nv)
1740 {
1741 	ASSERT(MUTEX_HELD(&p->p_lock));
1742 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1743 	if (e->rcep_p.zone == NULL)
1744 		return (0);
1745 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1746 	return (0);
1747 }
1748 
1749 static rctl_ops_t zone_max_lofi_ops = {
1750 	rcop_no_action,
1751 	zone_max_lofi_usage,
1752 	zone_max_lofi_set,
1753 	zone_max_lofi_test
1754 };
1755 
1756 /*
1757  * Helper function to brand the zone with a unique ID.
1758  */
1759 static void
1760 zone_uniqid(zone_t *zone)
1761 {
1762 	static uint64_t uniqid = 0;
1763 
1764 	ASSERT(MUTEX_HELD(&zonehash_lock));
1765 	zone->zone_uniqid = uniqid++;
1766 }
1767 
1768 /*
1769  * Returns a held pointer to the "kcred" for the specified zone.
1770  */
1771 struct cred *
1772 zone_get_kcred(zoneid_t zoneid)
1773 {
1774 	zone_t *zone;
1775 	cred_t *cr;
1776 
1777 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1778 		return (NULL);
1779 	cr = zone->zone_kcred;
1780 	crhold(cr);
1781 	zone_rele(zone);
1782 	return (cr);
1783 }
1784 
1785 static int
1786 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1787 {
1788 	zone_t *zone = ksp->ks_private;
1789 	zone_kstat_t *zk = ksp->ks_data;
1790 
1791 	if (rw == KSTAT_WRITE)
1792 		return (EACCES);
1793 
1794 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1795 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1796 	return (0);
1797 }
1798 
1799 static int
1800 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1801 {
1802 	zone_t *zone = ksp->ks_private;
1803 	zone_kstat_t *zk = ksp->ks_data;
1804 
1805 	if (rw == KSTAT_WRITE)
1806 		return (EACCES);
1807 
1808 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1809 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1810 	return (0);
1811 }
1812 
1813 static int
1814 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1815 {
1816 	zone_t *zone = ksp->ks_private;
1817 	zone_kstat_t *zk = ksp->ks_data;
1818 
1819 	if (rw == KSTAT_WRITE)
1820 		return (EACCES);
1821 
1822 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1823 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1824 	return (0);
1825 }
1826 
1827 static kstat_t *
1828 zone_kstat_create_common(zone_t *zone, char *name,
1829     int (*updatefunc) (kstat_t *, int))
1830 {
1831 	kstat_t *ksp;
1832 	zone_kstat_t *zk;
1833 
1834 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1835 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1836 	    KSTAT_FLAG_VIRTUAL);
1837 
1838 	if (ksp == NULL)
1839 		return (NULL);
1840 
1841 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1842 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1843 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1844 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1845 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1846 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1847 	ksp->ks_update = updatefunc;
1848 	ksp->ks_private = zone;
1849 	kstat_install(ksp);
1850 	return (ksp);
1851 }
1852 
1853 
1854 static int
1855 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1856 {
1857 	zone_t *zone = ksp->ks_private;
1858 	zone_mcap_kstat_t *zmp = ksp->ks_data;
1859 
1860 	if (rw == KSTAT_WRITE)
1861 		return (EACCES);
1862 
1863 	zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1864 	zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1865 	zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1866 	zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1867 	zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1868 
1869 	return (0);
1870 }
1871 
1872 static kstat_t *
1873 zone_mcap_kstat_create(zone_t *zone)
1874 {
1875 	kstat_t *ksp;
1876 	zone_mcap_kstat_t *zmp;
1877 
1878 	if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1879 	    zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1880 	    sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1881 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1882 		return (NULL);
1883 
1884 	if (zone->zone_id != GLOBAL_ZONEID)
1885 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1886 
1887 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1888 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1889 	ksp->ks_lock = &zone->zone_mcap_lock;
1890 	zone->zone_mcap_stats = zmp;
1891 
1892 	/* The kstat "name" field is not large enough for a full zonename */
1893 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1894 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1895 	kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1896 	kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1897 	kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1898 	kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1899 	kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1900 	    KSTAT_DATA_UINT64);
1901 
1902 	ksp->ks_update = zone_mcap_kstat_update;
1903 	ksp->ks_private = zone;
1904 
1905 	kstat_install(ksp);
1906 	return (ksp);
1907 }
1908 
1909 static int
1910 zone_misc_kstat_update(kstat_t *ksp, int rw)
1911 {
1912 	zone_t *zone = ksp->ks_private;
1913 	zone_misc_kstat_t *zmp = ksp->ks_data;
1914 	hrtime_t tmp;
1915 
1916 	if (rw == KSTAT_WRITE)
1917 		return (EACCES);
1918 
1919 	tmp = zone->zone_utime;
1920 	scalehrtime(&tmp);
1921 	zmp->zm_utime.value.ui64 = tmp;
1922 	tmp = zone->zone_stime;
1923 	scalehrtime(&tmp);
1924 	zmp->zm_stime.value.ui64 = tmp;
1925 	tmp = zone->zone_wtime;
1926 	scalehrtime(&tmp);
1927 	zmp->zm_wtime.value.ui64 = tmp;
1928 
1929 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1930 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1931 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1932 
1933 	zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1934 	zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1935 	zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1936 	zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1937 
1938 	zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1939 
1940 	zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1941 	zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1942 
1943 	return (0);
1944 }
1945 
1946 static kstat_t *
1947 zone_misc_kstat_create(zone_t *zone)
1948 {
1949 	kstat_t *ksp;
1950 	zone_misc_kstat_t *zmp;
1951 
1952 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1953 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1954 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1955 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1956 		return (NULL);
1957 
1958 	if (zone->zone_id != GLOBAL_ZONEID)
1959 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1960 
1961 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1962 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1963 	ksp->ks_lock = &zone->zone_misc_lock;
1964 	zone->zone_misc_stats = zmp;
1965 
1966 	/* The kstat "name" field is not large enough for a full zonename */
1967 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1968 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1969 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1970 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1971 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1972 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1973 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1974 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1975 	    KSTAT_DATA_UINT32);
1976 	kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1977 	kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1978 	    KSTAT_DATA_UINT32);
1979 	kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1980 	kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1981 	kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1982 	    KSTAT_DATA_UINT32);
1983 	kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1984 	kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1985 
1986 	ksp->ks_update = zone_misc_kstat_update;
1987 	ksp->ks_private = zone;
1988 
1989 	kstat_install(ksp);
1990 	return (ksp);
1991 }
1992 
1993 static void
1994 zone_kstat_create(zone_t *zone)
1995 {
1996 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
1997 	    "lockedmem", zone_lockedmem_kstat_update);
1998 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
1999 	    "swapresv", zone_swapresv_kstat_update);
2000 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
2001 	    "nprocs", zone_nprocs_kstat_update);
2002 
2003 	if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2004 		zone->zone_mcap_stats = kmem_zalloc(
2005 		    sizeof (zone_mcap_kstat_t), KM_SLEEP);
2006 	}
2007 
2008 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2009 		zone->zone_misc_stats = kmem_zalloc(
2010 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
2011 	}
2012 }
2013 
2014 static void
2015 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2016 {
2017 	void *data;
2018 
2019 	if (*pkstat != NULL) {
2020 		data = (*pkstat)->ks_data;
2021 		kstat_delete(*pkstat);
2022 		kmem_free(data, datasz);
2023 		*pkstat = NULL;
2024 	}
2025 }
2026 
2027 static void
2028 zone_kstat_delete(zone_t *zone)
2029 {
2030 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2031 	    sizeof (zone_kstat_t));
2032 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2033 	    sizeof (zone_kstat_t));
2034 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2035 	    sizeof (zone_kstat_t));
2036 	zone_kstat_delete_common(&zone->zone_mcap_ksp,
2037 	    sizeof (zone_mcap_kstat_t));
2038 	zone_kstat_delete_common(&zone->zone_misc_ksp,
2039 	    sizeof (zone_misc_kstat_t));
2040 }
2041 
2042 /*
2043  * Called very early on in boot to initialize the ZSD list so that
2044  * zone_key_create() can be called before zone_init().  It also initializes
2045  * portions of zone0 which may be used before zone_init() is called.  The
2046  * variable "global_zone" will be set when zone0 is fully initialized by
2047  * zone_init().
2048  */
2049 void
2050 zone_zsd_init(void)
2051 {
2052 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2053 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2054 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2055 	    offsetof(struct zsd_entry, zsd_linkage));
2056 	list_create(&zone_active, sizeof (zone_t),
2057 	    offsetof(zone_t, zone_linkage));
2058 	list_create(&zone_deathrow, sizeof (zone_t),
2059 	    offsetof(zone_t, zone_linkage));
2060 
2061 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2062 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2063 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2064 	zone0.zone_shares = 1;
2065 	zone0.zone_nlwps = 0;
2066 	zone0.zone_nlwps_ctl = INT_MAX;
2067 	zone0.zone_nprocs = 0;
2068 	zone0.zone_nprocs_ctl = INT_MAX;
2069 	zone0.zone_locked_mem = 0;
2070 	zone0.zone_locked_mem_ctl = UINT64_MAX;
2071 	ASSERT(zone0.zone_max_swap == 0);
2072 	zone0.zone_max_swap_ctl = UINT64_MAX;
2073 	zone0.zone_max_lofi = 0;
2074 	zone0.zone_max_lofi_ctl = UINT64_MAX;
2075 	zone0.zone_shmmax = 0;
2076 	zone0.zone_ipc.ipcq_shmmni = 0;
2077 	zone0.zone_ipc.ipcq_semmni = 0;
2078 	zone0.zone_ipc.ipcq_msgmni = 0;
2079 	zone0.zone_name = GLOBAL_ZONENAME;
2080 	zone0.zone_nodename = utsname.nodename;
2081 	zone0.zone_domain = srpc_domain;
2082 	zone0.zone_hostid = HW_INVALID_HOSTID;
2083 	zone0.zone_fs_allowed = NULL;
2084 	psecflags_default(&zone0.zone_secflags);
2085 	zone0.zone_ref = 1;
2086 	zone0.zone_id = GLOBAL_ZONEID;
2087 	zone0.zone_status = ZONE_IS_RUNNING;
2088 	zone0.zone_rootpath = "/";
2089 	zone0.zone_rootpathlen = 2;
2090 	zone0.zone_psetid = ZONE_PS_INVAL;
2091 	zone0.zone_ncpus = 0;
2092 	zone0.zone_ncpus_online = 0;
2093 	zone0.zone_proc_initpid = 1;
2094 	zone0.zone_initname = initname;
2095 	zone0.zone_lockedmem_kstat = NULL;
2096 	zone0.zone_swapresv_kstat = NULL;
2097 	zone0.zone_nprocs_kstat = NULL;
2098 
2099 	zone0.zone_stime = 0;
2100 	zone0.zone_utime = 0;
2101 	zone0.zone_wtime = 0;
2102 
2103 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2104 	    offsetof(zone_ref_t, zref_linkage));
2105 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2106 	    offsetof(struct zsd_entry, zsd_linkage));
2107 	list_insert_head(&zone_active, &zone0);
2108 
2109 	/*
2110 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2111 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2112 	 * vfs_mountroot().
2113 	 */
2114 	zone0.zone_rootvp = NULL;
2115 	zone0.zone_vfslist = NULL;
2116 	zone0.zone_bootargs = initargs;
2117 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2118 	/*
2119 	 * The global zone has all privileges
2120 	 */
2121 	priv_fillset(zone0.zone_privset);
2122 	/*
2123 	 * Add p0 to the global zone
2124 	 */
2125 	zone0.zone_zsched = &p0;
2126 	p0.p_zone = &zone0;
2127 }
2128 
2129 /*
2130  * Compute a hash value based on the contents of the label and the DOI.  The
2131  * hash algorithm is somewhat arbitrary, but is based on the observation that
2132  * humans will likely pick labels that differ by amounts that work out to be
2133  * multiples of the number of hash chains, and thus stirring in some primes
2134  * should help.
2135  */
2136 static uint_t
2137 hash_bylabel(void *hdata, mod_hash_key_t key)
2138 {
2139 	const ts_label_t *lab = (ts_label_t *)key;
2140 	const uint32_t *up, *ue;
2141 	uint_t hash;
2142 	int i;
2143 
2144 	_NOTE(ARGUNUSED(hdata));
2145 
2146 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2147 	/* we depend on alignment of label, but not representation */
2148 	up = (const uint32_t *)&lab->tsl_label;
2149 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2150 	i = 1;
2151 	while (up < ue) {
2152 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2153 		hash += *up + (*up << ((i % 16) + 1));
2154 		up++;
2155 		i++;
2156 	}
2157 	return (hash);
2158 }
2159 
2160 /*
2161  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2162  * equal).  This may need to be changed if less than / greater than is ever
2163  * needed.
2164  */
2165 static int
2166 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2167 {
2168 	ts_label_t *lab1 = (ts_label_t *)key1;
2169 	ts_label_t *lab2 = (ts_label_t *)key2;
2170 
2171 	return (label_equal(lab1, lab2) ? 0 : 1);
2172 }
2173 
2174 /*
2175  * Called by main() to initialize the zones framework.
2176  */
2177 void
2178 zone_init(void)
2179 {
2180 	rctl_dict_entry_t *rde;
2181 	rctl_val_t *dval;
2182 	rctl_set_t *set;
2183 	rctl_alloc_gp_t *gp;
2184 	rctl_entity_p_t e;
2185 	int res;
2186 
2187 	ASSERT(curproc == &p0);
2188 
2189 	/*
2190 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2191 	 * global zone.
2192 	 */
2193 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2194 
2195 	/*
2196 	 * Initialize generic zone resource controls, if any.
2197 	 */
2198 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2199 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2200 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2201 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2202 
2203 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2204 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2205 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2206 	    RCTL_GLOBAL_INFINITE,
2207 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2208 
2209 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2210 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2211 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2212 
2213 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2214 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2215 	    INT_MAX, INT_MAX, &zone_procs_ops);
2216 
2217 	/*
2218 	 * System V IPC resource controls
2219 	 */
2220 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2221 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2222 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2223 
2224 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2225 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2226 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2227 
2228 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2229 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2230 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2231 
2232 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2233 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2234 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2235 
2236 	/*
2237 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2238 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2239 	 */
2240 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2241 	bzero(dval, sizeof (rctl_val_t));
2242 	dval->rcv_value = 1;
2243 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2244 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2245 	dval->rcv_action_recip_pid = -1;
2246 
2247 	rde = rctl_dict_lookup("zone.cpu-shares");
2248 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2249 
2250 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2251 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2252 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2253 	    &zone_locked_mem_ops);
2254 
2255 	rc_zone_max_swap = rctl_register("zone.max-swap",
2256 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2257 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2258 	    &zone_max_swap_ops);
2259 
2260 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2261 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2262 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2263 	    &zone_max_lofi_ops);
2264 
2265 	/*
2266 	 * Initialize the ``global zone''.
2267 	 */
2268 	set = rctl_set_create();
2269 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2270 	mutex_enter(&p0.p_lock);
2271 	e.rcep_p.zone = &zone0;
2272 	e.rcep_t = RCENTITY_ZONE;
2273 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2274 	    gp);
2275 
2276 	zone0.zone_nlwps = p0.p_lwpcnt;
2277 	zone0.zone_nprocs = 1;
2278 	zone0.zone_ntasks = 1;
2279 	mutex_exit(&p0.p_lock);
2280 	zone0.zone_restart_init = B_TRUE;
2281 	zone0.zone_brand = &native_brand;
2282 	rctl_prealloc_destroy(gp);
2283 	/*
2284 	 * pool_default hasn't been initialized yet, so we let pool_init()
2285 	 * take care of making sure the global zone is in the default pool.
2286 	 */
2287 
2288 	/*
2289 	 * Initialize global zone kstats
2290 	 */
2291 	zone_kstat_create(&zone0);
2292 
2293 	/*
2294 	 * Initialize zone label.
2295 	 * mlp are initialized when tnzonecfg is loaded.
2296 	 */
2297 	zone0.zone_slabel = l_admin_low;
2298 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2299 	label_hold(l_admin_low);
2300 
2301 	/*
2302 	 * Initialise the lock for the database structure used by mntfs.
2303 	 */
2304 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2305 
2306 	mutex_enter(&zonehash_lock);
2307 	zone_uniqid(&zone0);
2308 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2309 
2310 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2311 	    mod_hash_null_valdtor);
2312 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2313 	    zone_hash_size, mod_hash_null_valdtor);
2314 	/*
2315 	 * maintain zonehashbylabel only for labeled systems
2316 	 */
2317 	if (is_system_labeled())
2318 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2319 		    zone_hash_size, mod_hash_null_keydtor,
2320 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2321 		    hash_labelkey_cmp, KM_SLEEP);
2322 	zonecount = 1;
2323 
2324 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2325 	    (mod_hash_val_t)&zone0);
2326 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2327 	    (mod_hash_val_t)&zone0);
2328 	if (is_system_labeled()) {
2329 		zone0.zone_flags |= ZF_HASHED_LABEL;
2330 		(void) mod_hash_insert(zonehashbylabel,
2331 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2332 	}
2333 	mutex_exit(&zonehash_lock);
2334 
2335 	/*
2336 	 * We avoid setting zone_kcred until now, since kcred is initialized
2337 	 * sometime after zone_zsd_init() and before zone_init().
2338 	 */
2339 	zone0.zone_kcred = kcred;
2340 	/*
2341 	 * The global zone is fully initialized (except for zone_rootvp which
2342 	 * will be set when the root filesystem is mounted).
2343 	 */
2344 	global_zone = &zone0;
2345 
2346 	/*
2347 	 * Setup an event channel to send zone status change notifications on
2348 	 */
2349 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2350 	    EVCH_CREAT);
2351 
2352 	if (res)
2353 		panic("Sysevent_evc_bind failed during zone setup.\n");
2354 
2355 }
2356 
2357 static void
2358 zone_free(zone_t *zone)
2359 {
2360 	ASSERT(zone != global_zone);
2361 	ASSERT(zone->zone_ntasks == 0);
2362 	ASSERT(zone->zone_nlwps == 0);
2363 	ASSERT(zone->zone_nprocs == 0);
2364 	ASSERT(zone->zone_cred_ref == 0);
2365 	ASSERT(zone->zone_kcred == NULL);
2366 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2367 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2368 	ASSERT(list_is_empty(&zone->zone_ref_list));
2369 
2370 	/*
2371 	 * Remove any zone caps.
2372 	 */
2373 	cpucaps_zone_remove(zone);
2374 
2375 	ASSERT(zone->zone_cpucap == NULL);
2376 
2377 	/* remove from deathrow list */
2378 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2379 		ASSERT(zone->zone_ref == 0);
2380 		mutex_enter(&zone_deathrow_lock);
2381 		list_remove(&zone_deathrow, zone);
2382 		mutex_exit(&zone_deathrow_lock);
2383 	}
2384 
2385 	list_destroy(&zone->zone_ref_list);
2386 	zone_free_zsd(zone);
2387 	zone_free_datasets(zone);
2388 	list_destroy(&zone->zone_dl_list);
2389 
2390 	if (zone->zone_rootvp != NULL)
2391 		VN_RELE(zone->zone_rootvp);
2392 	if (zone->zone_rootpath)
2393 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2394 	if (zone->zone_name != NULL)
2395 		kmem_free(zone->zone_name, ZONENAME_MAX);
2396 	if (zone->zone_slabel != NULL)
2397 		label_rele(zone->zone_slabel);
2398 	if (zone->zone_nodename != NULL)
2399 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2400 	if (zone->zone_domain != NULL)
2401 		kmem_free(zone->zone_domain, _SYS_NMLN);
2402 	if (zone->zone_privset != NULL)
2403 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2404 	if (zone->zone_rctls != NULL)
2405 		rctl_set_free(zone->zone_rctls);
2406 	if (zone->zone_bootargs != NULL)
2407 		strfree(zone->zone_bootargs);
2408 	if (zone->zone_initname != NULL)
2409 		strfree(zone->zone_initname);
2410 	if (zone->zone_fs_allowed != NULL)
2411 		strfree(zone->zone_fs_allowed);
2412 	if (zone->zone_pfexecd != NULL)
2413 		klpd_freelist(&zone->zone_pfexecd);
2414 	id_free(zoneid_space, zone->zone_id);
2415 	mutex_destroy(&zone->zone_lock);
2416 	cv_destroy(&zone->zone_cv);
2417 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2418 	rw_destroy(&zone->zone_mntfs_db_lock);
2419 	kmem_free(zone, sizeof (zone_t));
2420 }
2421 
2422 /*
2423  * See block comment at the top of this file for information about zone
2424  * status values.
2425  */
2426 /*
2427  * Convenience function for setting zone status.
2428  */
2429 static void
2430 zone_status_set(zone_t *zone, zone_status_t status)
2431 {
2432 
2433 	nvlist_t *nvl = NULL;
2434 	ASSERT(MUTEX_HELD(&zone_status_lock));
2435 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2436 	    status >= zone_status_get(zone));
2437 
2438 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2439 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2440 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2441 	    zone_status_table[status]) ||
2442 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2443 	    zone_status_table[zone->zone_status]) ||
2444 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2445 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2446 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2447 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2448 #ifdef DEBUG
2449 		(void) printf(
2450 		    "Failed to allocate and send zone state change event.\n");
2451 #endif
2452 	}
2453 	nvlist_free(nvl);
2454 
2455 	zone->zone_status = status;
2456 
2457 	cv_broadcast(&zone->zone_cv);
2458 }
2459 
2460 /*
2461  * Public function to retrieve the zone status.  The zone status may
2462  * change after it is retrieved.
2463  */
2464 zone_status_t
2465 zone_status_get(zone_t *zone)
2466 {
2467 	return (zone->zone_status);
2468 }
2469 
2470 static int
2471 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2472 {
2473 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2474 	int err = 0;
2475 
2476 	ASSERT(zone != global_zone);
2477 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2478 		goto done;	/* EFAULT or ENAMETOOLONG */
2479 
2480 	if (zone->zone_bootargs != NULL)
2481 		strfree(zone->zone_bootargs);
2482 
2483 	zone->zone_bootargs = strdup(buf);
2484 
2485 done:
2486 	kmem_free(buf, BOOTARGS_MAX);
2487 	return (err);
2488 }
2489 
2490 static int
2491 zone_set_brand(zone_t *zone, const char *brand)
2492 {
2493 	struct brand_attr *attrp;
2494 	brand_t *bp;
2495 
2496 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2497 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2498 		kmem_free(attrp, sizeof (struct brand_attr));
2499 		return (EFAULT);
2500 	}
2501 
2502 	bp = brand_register_zone(attrp);
2503 	kmem_free(attrp, sizeof (struct brand_attr));
2504 	if (bp == NULL)
2505 		return (EINVAL);
2506 
2507 	/*
2508 	 * This is the only place where a zone can change it's brand.
2509 	 * We already need to hold zone_status_lock to check the zone
2510 	 * status, so we'll just use that lock to serialize zone
2511 	 * branding requests as well.
2512 	 */
2513 	mutex_enter(&zone_status_lock);
2514 
2515 	/* Re-Branding is not allowed and the zone can't be booted yet */
2516 	if ((ZONE_IS_BRANDED(zone)) ||
2517 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2518 		mutex_exit(&zone_status_lock);
2519 		brand_unregister_zone(bp);
2520 		return (EINVAL);
2521 	}
2522 
2523 	/* set up the brand specific data */
2524 	zone->zone_brand = bp;
2525 	ZBROP(zone)->b_init_brand_data(zone);
2526 
2527 	mutex_exit(&zone_status_lock);
2528 	return (0);
2529 }
2530 
2531 static int
2532 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags)
2533 {
2534 	int err = 0;
2535 	psecflags_t psf;
2536 
2537 	ASSERT(zone != global_zone);
2538 
2539 	if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0)
2540 		return (err);
2541 
2542 	if (zone_status_get(zone) > ZONE_IS_READY)
2543 		return (EINVAL);
2544 
2545 	if (!psecflags_validate(&psf))
2546 		return (EINVAL);
2547 
2548 	(void) memcpy(&zone->zone_secflags, &psf, sizeof (psf));
2549 
2550 	/* Set security flags on the zone's zsched */
2551 	(void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags,
2552 	    sizeof (zone->zone_zsched->p_secflags));
2553 
2554 	return (0);
2555 }
2556 
2557 static int
2558 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2559 {
2560 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2561 	int err = 0;
2562 
2563 	ASSERT(zone != global_zone);
2564 	if ((err = copyinstr(zone_fs_allowed, buf,
2565 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2566 		goto done;
2567 
2568 	if (zone->zone_fs_allowed != NULL)
2569 		strfree(zone->zone_fs_allowed);
2570 
2571 	zone->zone_fs_allowed = strdup(buf);
2572 
2573 done:
2574 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2575 	return (err);
2576 }
2577 
2578 static int
2579 zone_set_initname(zone_t *zone, const char *zone_initname)
2580 {
2581 	char initname[INITNAME_SZ];
2582 	size_t len;
2583 	int err = 0;
2584 
2585 	ASSERT(zone != global_zone);
2586 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2587 		return (err);	/* EFAULT or ENAMETOOLONG */
2588 
2589 	if (zone->zone_initname != NULL)
2590 		strfree(zone->zone_initname);
2591 
2592 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2593 	(void) strcpy(zone->zone_initname, initname);
2594 	return (0);
2595 }
2596 
2597 static int
2598 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2599 {
2600 	uint64_t mcap;
2601 	int err = 0;
2602 
2603 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2604 		zone->zone_phys_mcap = mcap;
2605 
2606 	return (err);
2607 }
2608 
2609 static int
2610 zone_set_sched_class(zone_t *zone, const char *new_class)
2611 {
2612 	char sched_class[PC_CLNMSZ];
2613 	id_t classid;
2614 	int err;
2615 
2616 	ASSERT(zone != global_zone);
2617 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2618 		return (err);	/* EFAULT or ENAMETOOLONG */
2619 
2620 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2621 		return (set_errno(EINVAL));
2622 	zone->zone_defaultcid = classid;
2623 	ASSERT(zone->zone_defaultcid > 0 &&
2624 	    zone->zone_defaultcid < loaded_classes);
2625 
2626 	return (0);
2627 }
2628 
2629 /*
2630  * Block indefinitely waiting for (zone_status >= status)
2631  */
2632 void
2633 zone_status_wait(zone_t *zone, zone_status_t status)
2634 {
2635 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2636 
2637 	mutex_enter(&zone_status_lock);
2638 	while (zone->zone_status < status) {
2639 		cv_wait(&zone->zone_cv, &zone_status_lock);
2640 	}
2641 	mutex_exit(&zone_status_lock);
2642 }
2643 
2644 /*
2645  * Private CPR-safe version of zone_status_wait().
2646  */
2647 static void
2648 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2649 {
2650 	callb_cpr_t cprinfo;
2651 
2652 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2653 
2654 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2655 	    str);
2656 	mutex_enter(&zone_status_lock);
2657 	while (zone->zone_status < status) {
2658 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2659 		cv_wait(&zone->zone_cv, &zone_status_lock);
2660 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2661 	}
2662 	/*
2663 	 * zone_status_lock is implicitly released by the following.
2664 	 */
2665 	CALLB_CPR_EXIT(&cprinfo);
2666 }
2667 
2668 /*
2669  * Block until zone enters requested state or signal is received.  Return (0)
2670  * if signaled, non-zero otherwise.
2671  */
2672 int
2673 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2674 {
2675 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2676 
2677 	mutex_enter(&zone_status_lock);
2678 	while (zone->zone_status < status) {
2679 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2680 			mutex_exit(&zone_status_lock);
2681 			return (0);
2682 		}
2683 	}
2684 	mutex_exit(&zone_status_lock);
2685 	return (1);
2686 }
2687 
2688 /*
2689  * Block until the zone enters the requested state or the timeout expires,
2690  * whichever happens first.  Return (-1) if operation timed out, time remaining
2691  * otherwise.
2692  */
2693 clock_t
2694 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2695 {
2696 	clock_t timeleft = 0;
2697 
2698 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2699 
2700 	mutex_enter(&zone_status_lock);
2701 	while (zone->zone_status < status && timeleft != -1) {
2702 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2703 	}
2704 	mutex_exit(&zone_status_lock);
2705 	return (timeleft);
2706 }
2707 
2708 /*
2709  * Block until the zone enters the requested state, the current process is
2710  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2711  * operation timed out, 0 if signaled, time remaining otherwise.
2712  */
2713 clock_t
2714 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2715 {
2716 	clock_t timeleft = tim - ddi_get_lbolt();
2717 
2718 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2719 
2720 	mutex_enter(&zone_status_lock);
2721 	while (zone->zone_status < status) {
2722 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2723 		    tim);
2724 		if (timeleft <= 0)
2725 			break;
2726 	}
2727 	mutex_exit(&zone_status_lock);
2728 	return (timeleft);
2729 }
2730 
2731 /*
2732  * Zones have two reference counts: one for references from credential
2733  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2734  * This is so we can allow a zone to be rebooted while there are still
2735  * outstanding cred references, since certain drivers cache dblks (which
2736  * implicitly results in cached creds).  We wait for zone_ref to drop to
2737  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2738  * later freed when the zone_cred_ref drops to 0, though nothing other
2739  * than the zone id and privilege set should be accessed once the zone
2740  * is "dead".
2741  *
2742  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2743  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2744  * to 0.  This can be useful to flush out other sources of cached creds
2745  * that may be less innocuous than the driver case.
2746  *
2747  * Zones also provide a tracked reference counting mechanism in which zone
2748  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2749  * debuggers determine the sources of leaked zone references.  See
2750  * zone_hold_ref() and zone_rele_ref() below for more information.
2751  */
2752 
2753 int zone_wait_for_cred = 0;
2754 
2755 static void
2756 zone_hold_locked(zone_t *z)
2757 {
2758 	ASSERT(MUTEX_HELD(&z->zone_lock));
2759 	z->zone_ref++;
2760 	ASSERT(z->zone_ref != 0);
2761 }
2762 
2763 /*
2764  * Increment the specified zone's reference count.  The zone's zone_t structure
2765  * will not be freed as long as the zone's reference count is nonzero.
2766  * Decrement the zone's reference count via zone_rele().
2767  *
2768  * NOTE: This function should only be used to hold zones for short periods of
2769  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2770  */
2771 void
2772 zone_hold(zone_t *z)
2773 {
2774 	mutex_enter(&z->zone_lock);
2775 	zone_hold_locked(z);
2776 	mutex_exit(&z->zone_lock);
2777 }
2778 
2779 /*
2780  * If the non-cred ref count drops to 1 and either the cred ref count
2781  * is 0 or we aren't waiting for cred references, the zone is ready to
2782  * be destroyed.
2783  */
2784 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2785 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2786 
2787 /*
2788  * Common zone reference release function invoked by zone_rele() and
2789  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2790  * zone's subsystem-specific reference counters are not affected by the
2791  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2792  * removed from the specified zone's reference list.  ref must be non-NULL iff
2793  * subsys is not ZONE_REF_NUM_SUBSYS.
2794  */
2795 static void
2796 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2797 {
2798 	boolean_t wakeup;
2799 
2800 	mutex_enter(&z->zone_lock);
2801 	ASSERT(z->zone_ref != 0);
2802 	z->zone_ref--;
2803 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2804 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2805 		z->zone_subsys_ref[subsys]--;
2806 		list_remove(&z->zone_ref_list, ref);
2807 	}
2808 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2809 		/* no more refs, free the structure */
2810 		mutex_exit(&z->zone_lock);
2811 		zone_free(z);
2812 		return;
2813 	}
2814 	/* signal zone_destroy so the zone can finish halting */
2815 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2816 	mutex_exit(&z->zone_lock);
2817 
2818 	if (wakeup) {
2819 		/*
2820 		 * Grabbing zonehash_lock here effectively synchronizes with
2821 		 * zone_destroy() to avoid missed signals.
2822 		 */
2823 		mutex_enter(&zonehash_lock);
2824 		cv_broadcast(&zone_destroy_cv);
2825 		mutex_exit(&zonehash_lock);
2826 	}
2827 }
2828 
2829 /*
2830  * Decrement the specified zone's reference count.  The specified zone will
2831  * cease to exist after this function returns if the reference count drops to
2832  * zero.  This function should be paired with zone_hold().
2833  */
2834 void
2835 zone_rele(zone_t *z)
2836 {
2837 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2838 }
2839 
2840 /*
2841  * Initialize a zone reference structure.  This function must be invoked for
2842  * a reference structure before the structure is passed to zone_hold_ref().
2843  */
2844 void
2845 zone_init_ref(zone_ref_t *ref)
2846 {
2847 	ref->zref_zone = NULL;
2848 	list_link_init(&ref->zref_linkage);
2849 }
2850 
2851 /*
2852  * Acquire a reference to zone z.  The caller must specify the
2853  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2854  * zone_ref_t structure will represent a reference to the specified zone.  Use
2855  * zone_rele_ref() to release the reference.
2856  *
2857  * The referenced zone_t structure will not be freed as long as the zone_t's
2858  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2859  * references.
2860  *
2861  * NOTE: The zone_ref_t structure must be initialized before it is used.
2862  * See zone_init_ref() above.
2863  */
2864 void
2865 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2866 {
2867 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2868 
2869 	/*
2870 	 * Prevent consumers from reusing a reference structure before
2871 	 * releasing it.
2872 	 */
2873 	VERIFY(ref->zref_zone == NULL);
2874 
2875 	ref->zref_zone = z;
2876 	mutex_enter(&z->zone_lock);
2877 	zone_hold_locked(z);
2878 	z->zone_subsys_ref[subsys]++;
2879 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2880 	list_insert_head(&z->zone_ref_list, ref);
2881 	mutex_exit(&z->zone_lock);
2882 }
2883 
2884 /*
2885  * Release the zone reference represented by the specified zone_ref_t.
2886  * The reference is invalid after it's released; however, the zone_ref_t
2887  * structure can be reused without having to invoke zone_init_ref().
2888  * subsys should be the same value that was passed to zone_hold_ref()
2889  * when the reference was acquired.
2890  */
2891 void
2892 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2893 {
2894 	zone_rele_common(ref->zref_zone, ref, subsys);
2895 
2896 	/*
2897 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2898 	 * when consumers dereference the reference.  This helps us catch
2899 	 * consumers who use released references.  Furthermore, this lets
2900 	 * consumers reuse the zone_ref_t structure without having to
2901 	 * invoke zone_init_ref().
2902 	 */
2903 	ref->zref_zone = NULL;
2904 }
2905 
2906 void
2907 zone_cred_hold(zone_t *z)
2908 {
2909 	mutex_enter(&z->zone_lock);
2910 	z->zone_cred_ref++;
2911 	ASSERT(z->zone_cred_ref != 0);
2912 	mutex_exit(&z->zone_lock);
2913 }
2914 
2915 void
2916 zone_cred_rele(zone_t *z)
2917 {
2918 	boolean_t wakeup;
2919 
2920 	mutex_enter(&z->zone_lock);
2921 	ASSERT(z->zone_cred_ref != 0);
2922 	z->zone_cred_ref--;
2923 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2924 		/* no more refs, free the structure */
2925 		mutex_exit(&z->zone_lock);
2926 		zone_free(z);
2927 		return;
2928 	}
2929 	/*
2930 	 * If zone_destroy is waiting for the cred references to drain
2931 	 * out, and they have, signal it.
2932 	 */
2933 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2934 	    zone_status_get(z) >= ZONE_IS_DEAD);
2935 	mutex_exit(&z->zone_lock);
2936 
2937 	if (wakeup) {
2938 		/*
2939 		 * Grabbing zonehash_lock here effectively synchronizes with
2940 		 * zone_destroy() to avoid missed signals.
2941 		 */
2942 		mutex_enter(&zonehash_lock);
2943 		cv_broadcast(&zone_destroy_cv);
2944 		mutex_exit(&zonehash_lock);
2945 	}
2946 }
2947 
2948 void
2949 zone_task_hold(zone_t *z)
2950 {
2951 	mutex_enter(&z->zone_lock);
2952 	z->zone_ntasks++;
2953 	ASSERT(z->zone_ntasks != 0);
2954 	mutex_exit(&z->zone_lock);
2955 }
2956 
2957 void
2958 zone_task_rele(zone_t *zone)
2959 {
2960 	uint_t refcnt;
2961 
2962 	mutex_enter(&zone->zone_lock);
2963 	ASSERT(zone->zone_ntasks != 0);
2964 	refcnt = --zone->zone_ntasks;
2965 	if (refcnt > 1)	{	/* Common case */
2966 		mutex_exit(&zone->zone_lock);
2967 		return;
2968 	}
2969 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2970 	mutex_exit(&zone->zone_lock);
2971 	if (refcnt == 1) {
2972 		/*
2973 		 * See if the zone is shutting down.
2974 		 */
2975 		mutex_enter(&zone_status_lock);
2976 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2977 			goto out;
2978 		}
2979 
2980 		/*
2981 		 * Make sure the ntasks didn't change since we
2982 		 * dropped zone_lock.
2983 		 */
2984 		mutex_enter(&zone->zone_lock);
2985 		if (refcnt != zone->zone_ntasks) {
2986 			mutex_exit(&zone->zone_lock);
2987 			goto out;
2988 		}
2989 		mutex_exit(&zone->zone_lock);
2990 
2991 		/*
2992 		 * No more user processes in the zone.  The zone is empty.
2993 		 */
2994 		zone_status_set(zone, ZONE_IS_EMPTY);
2995 		goto out;
2996 	}
2997 
2998 	ASSERT(refcnt == 0);
2999 	/*
3000 	 * zsched has exited; the zone is dead.
3001 	 */
3002 	zone->zone_zsched = NULL;		/* paranoia */
3003 	mutex_enter(&zone_status_lock);
3004 	zone_status_set(zone, ZONE_IS_DEAD);
3005 out:
3006 	mutex_exit(&zone_status_lock);
3007 	zone_rele(zone);
3008 }
3009 
3010 zoneid_t
3011 getzoneid(void)
3012 {
3013 	return (curproc->p_zone->zone_id);
3014 }
3015 
3016 /*
3017  * Internal versions of zone_find_by_*().  These don't zone_hold() or
3018  * check the validity of a zone's state.
3019  */
3020 static zone_t *
3021 zone_find_all_by_id(zoneid_t zoneid)
3022 {
3023 	mod_hash_val_t hv;
3024 	zone_t *zone = NULL;
3025 
3026 	ASSERT(MUTEX_HELD(&zonehash_lock));
3027 
3028 	if (mod_hash_find(zonehashbyid,
3029 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
3030 		zone = (zone_t *)hv;
3031 	return (zone);
3032 }
3033 
3034 static zone_t *
3035 zone_find_all_by_label(const ts_label_t *label)
3036 {
3037 	mod_hash_val_t hv;
3038 	zone_t *zone = NULL;
3039 
3040 	ASSERT(MUTEX_HELD(&zonehash_lock));
3041 
3042 	/*
3043 	 * zonehashbylabel is not maintained for unlabeled systems
3044 	 */
3045 	if (!is_system_labeled())
3046 		return (NULL);
3047 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
3048 		zone = (zone_t *)hv;
3049 	return (zone);
3050 }
3051 
3052 static zone_t *
3053 zone_find_all_by_name(char *name)
3054 {
3055 	mod_hash_val_t hv;
3056 	zone_t *zone = NULL;
3057 
3058 	ASSERT(MUTEX_HELD(&zonehash_lock));
3059 
3060 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3061 		zone = (zone_t *)hv;
3062 	return (zone);
3063 }
3064 
3065 /*
3066  * Public interface for looking up a zone by zoneid.  Only returns the zone if
3067  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3068  * Caller must call zone_rele() once it is done with the zone.
3069  *
3070  * The zone may begin the zone_destroy() sequence immediately after this
3071  * function returns, but may be safely used until zone_rele() is called.
3072  */
3073 zone_t *
3074 zone_find_by_id(zoneid_t zoneid)
3075 {
3076 	zone_t *zone;
3077 	zone_status_t status;
3078 
3079 	mutex_enter(&zonehash_lock);
3080 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3081 		mutex_exit(&zonehash_lock);
3082 		return (NULL);
3083 	}
3084 	status = zone_status_get(zone);
3085 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3086 		/*
3087 		 * For all practical purposes the zone doesn't exist.
3088 		 */
3089 		mutex_exit(&zonehash_lock);
3090 		return (NULL);
3091 	}
3092 	zone_hold(zone);
3093 	mutex_exit(&zonehash_lock);
3094 	return (zone);
3095 }
3096 
3097 /*
3098  * Similar to zone_find_by_id, but using zone label as the key.
3099  */
3100 zone_t *
3101 zone_find_by_label(const ts_label_t *label)
3102 {
3103 	zone_t *zone;
3104 	zone_status_t status;
3105 
3106 	mutex_enter(&zonehash_lock);
3107 	if ((zone = zone_find_all_by_label(label)) == NULL) {
3108 		mutex_exit(&zonehash_lock);
3109 		return (NULL);
3110 	}
3111 
3112 	status = zone_status_get(zone);
3113 	if (status > ZONE_IS_DOWN) {
3114 		/*
3115 		 * For all practical purposes the zone doesn't exist.
3116 		 */
3117 		mutex_exit(&zonehash_lock);
3118 		return (NULL);
3119 	}
3120 	zone_hold(zone);
3121 	mutex_exit(&zonehash_lock);
3122 	return (zone);
3123 }
3124 
3125 /*
3126  * Similar to zone_find_by_id, but using zone name as the key.
3127  */
3128 zone_t *
3129 zone_find_by_name(char *name)
3130 {
3131 	zone_t *zone;
3132 	zone_status_t status;
3133 
3134 	mutex_enter(&zonehash_lock);
3135 	if ((zone = zone_find_all_by_name(name)) == NULL) {
3136 		mutex_exit(&zonehash_lock);
3137 		return (NULL);
3138 	}
3139 	status = zone_status_get(zone);
3140 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3141 		/*
3142 		 * For all practical purposes the zone doesn't exist.
3143 		 */
3144 		mutex_exit(&zonehash_lock);
3145 		return (NULL);
3146 	}
3147 	zone_hold(zone);
3148 	mutex_exit(&zonehash_lock);
3149 	return (zone);
3150 }
3151 
3152 /*
3153  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3154  * if there is a zone "foo" rooted at /foo/root, and the path argument
3155  * is "/foo/root/proc", it will return the held zone_t corresponding to
3156  * zone "foo".
3157  *
3158  * zone_find_by_path() always returns a non-NULL value, since at the
3159  * very least every path will be contained in the global zone.
3160  *
3161  * As with the other zone_find_by_*() functions, the caller is
3162  * responsible for zone_rele()ing the return value of this function.
3163  */
3164 zone_t *
3165 zone_find_by_path(const char *path)
3166 {
3167 	zone_t *zone;
3168 	zone_t *zret = NULL;
3169 	zone_status_t status;
3170 
3171 	if (path == NULL) {
3172 		/*
3173 		 * Call from rootconf().
3174 		 */
3175 		zone_hold(global_zone);
3176 		return (global_zone);
3177 	}
3178 	ASSERT(*path == '/');
3179 	mutex_enter(&zonehash_lock);
3180 	for (zone = list_head(&zone_active); zone != NULL;
3181 	    zone = list_next(&zone_active, zone)) {
3182 		if (ZONE_PATH_VISIBLE(path, zone))
3183 			zret = zone;
3184 	}
3185 	ASSERT(zret != NULL);
3186 	status = zone_status_get(zret);
3187 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3188 		/*
3189 		 * Zone practically doesn't exist.
3190 		 */
3191 		zret = global_zone;
3192 	}
3193 	zone_hold(zret);
3194 	mutex_exit(&zonehash_lock);
3195 	return (zret);
3196 }
3197 
3198 /*
3199  * Public interface for updating per-zone load averages.  Called once per
3200  * second.
3201  *
3202  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3203  */
3204 void
3205 zone_loadavg_update()
3206 {
3207 	zone_t *zp;
3208 	zone_status_t status;
3209 	struct loadavg_s *lavg;
3210 	hrtime_t zone_total;
3211 	int i;
3212 	hrtime_t hr_avg;
3213 	int nrun;
3214 	static int64_t f[3] = { 135, 27, 9 };
3215 	int64_t q, r;
3216 
3217 	mutex_enter(&zonehash_lock);
3218 	for (zp = list_head(&zone_active); zp != NULL;
3219 	    zp = list_next(&zone_active, zp)) {
3220 		mutex_enter(&zp->zone_lock);
3221 
3222 		/* Skip zones that are on the way down or not yet up */
3223 		status = zone_status_get(zp);
3224 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3225 			/* For all practical purposes the zone doesn't exist. */
3226 			mutex_exit(&zp->zone_lock);
3227 			continue;
3228 		}
3229 
3230 		/*
3231 		 * Update the 10 second moving average data in zone_loadavg.
3232 		 */
3233 		lavg = &zp->zone_loadavg;
3234 
3235 		zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime;
3236 		scalehrtime(&zone_total);
3237 
3238 		/* The zone_total should always be increasing. */
3239 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3240 		    zone_total - lavg->lg_total : 0;
3241 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3242 		/* lg_total holds the prev. 1 sec. total */
3243 		lavg->lg_total = zone_total;
3244 
3245 		/*
3246 		 * To simplify the calculation, we don't calculate the load avg.
3247 		 * until the zone has been up for at least 10 seconds and our
3248 		 * moving average is thus full.
3249 		 */
3250 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3251 			lavg->lg_len++;
3252 			mutex_exit(&zp->zone_lock);
3253 			continue;
3254 		}
3255 
3256 		/* Now calculate the 1min, 5min, 15 min load avg. */
3257 		hr_avg = 0;
3258 		for (i = 0; i < S_LOADAVG_SZ; i++)
3259 			hr_avg += lavg->lg_loads[i];
3260 		hr_avg = hr_avg / S_LOADAVG_SZ;
3261 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3262 
3263 		/* Compute load avg. See comment in calcloadavg() */
3264 		for (i = 0; i < 3; i++) {
3265 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3266 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3267 			zp->zone_hp_avenrun[i] +=
3268 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3269 
3270 			/* avenrun[] can only hold 31 bits of load avg. */
3271 			if (zp->zone_hp_avenrun[i] <
3272 			    ((uint64_t)1<<(31+16-FSHIFT)))
3273 				zp->zone_avenrun[i] = (int32_t)
3274 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3275 			else
3276 				zp->zone_avenrun[i] = 0x7fffffff;
3277 		}
3278 
3279 		mutex_exit(&zp->zone_lock);
3280 	}
3281 	mutex_exit(&zonehash_lock);
3282 }
3283 
3284 /*
3285  * Get the number of cpus visible to this zone.  The system-wide global
3286  * 'ncpus' is returned if pools are disabled, the caller is in the
3287  * global zone, or a NULL zone argument is passed in.
3288  */
3289 int
3290 zone_ncpus_get(zone_t *zone)
3291 {
3292 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3293 
3294 	return (myncpus != 0 ? myncpus : ncpus);
3295 }
3296 
3297 /*
3298  * Get the number of online cpus visible to this zone.  The system-wide
3299  * global 'ncpus_online' is returned if pools are disabled, the caller
3300  * is in the global zone, or a NULL zone argument is passed in.
3301  */
3302 int
3303 zone_ncpus_online_get(zone_t *zone)
3304 {
3305 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3306 
3307 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3308 }
3309 
3310 /*
3311  * Return the pool to which the zone is currently bound.
3312  */
3313 pool_t *
3314 zone_pool_get(zone_t *zone)
3315 {
3316 	ASSERT(pool_lock_held());
3317 
3318 	return (zone->zone_pool);
3319 }
3320 
3321 /*
3322  * Set the zone's pool pointer and update the zone's visibility to match
3323  * the resources in the new pool.
3324  */
3325 void
3326 zone_pool_set(zone_t *zone, pool_t *pool)
3327 {
3328 	ASSERT(pool_lock_held());
3329 	ASSERT(MUTEX_HELD(&cpu_lock));
3330 
3331 	zone->zone_pool = pool;
3332 	zone_pset_set(zone, pool->pool_pset->pset_id);
3333 }
3334 
3335 /*
3336  * Return the cached value of the id of the processor set to which the
3337  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3338  * facility is disabled.
3339  */
3340 psetid_t
3341 zone_pset_get(zone_t *zone)
3342 {
3343 	ASSERT(MUTEX_HELD(&cpu_lock));
3344 
3345 	return (zone->zone_psetid);
3346 }
3347 
3348 /*
3349  * Set the cached value of the id of the processor set to which the zone
3350  * is currently bound.  Also update the zone's visibility to match the
3351  * resources in the new processor set.
3352  */
3353 void
3354 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3355 {
3356 	psetid_t oldpsetid;
3357 
3358 	ASSERT(MUTEX_HELD(&cpu_lock));
3359 	oldpsetid = zone_pset_get(zone);
3360 
3361 	if (oldpsetid == newpsetid)
3362 		return;
3363 	/*
3364 	 * Global zone sees all.
3365 	 */
3366 	if (zone != global_zone) {
3367 		zone->zone_psetid = newpsetid;
3368 		if (newpsetid != ZONE_PS_INVAL)
3369 			pool_pset_visibility_add(newpsetid, zone);
3370 		if (oldpsetid != ZONE_PS_INVAL)
3371 			pool_pset_visibility_remove(oldpsetid, zone);
3372 	}
3373 	/*
3374 	 * Disabling pools, so we should start using the global values
3375 	 * for ncpus and ncpus_online.
3376 	 */
3377 	if (newpsetid == ZONE_PS_INVAL) {
3378 		zone->zone_ncpus = 0;
3379 		zone->zone_ncpus_online = 0;
3380 	}
3381 }
3382 
3383 /*
3384  * Walk the list of active zones and issue the provided callback for
3385  * each of them.
3386  *
3387  * Caller must not be holding any locks that may be acquired under
3388  * zonehash_lock.  See comment at the beginning of the file for a list of
3389  * common locks and their interactions with zones.
3390  */
3391 int
3392 zone_walk(int (*cb)(zone_t *, void *), void *data)
3393 {
3394 	zone_t *zone;
3395 	int ret = 0;
3396 	zone_status_t status;
3397 
3398 	mutex_enter(&zonehash_lock);
3399 	for (zone = list_head(&zone_active); zone != NULL;
3400 	    zone = list_next(&zone_active, zone)) {
3401 		/*
3402 		 * Skip zones that shouldn't be externally visible.
3403 		 */
3404 		status = zone_status_get(zone);
3405 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3406 			continue;
3407 		/*
3408 		 * Bail immediately if any callback invocation returns a
3409 		 * non-zero value.
3410 		 */
3411 		ret = (*cb)(zone, data);
3412 		if (ret != 0)
3413 			break;
3414 	}
3415 	mutex_exit(&zonehash_lock);
3416 	return (ret);
3417 }
3418 
3419 static int
3420 zone_set_root(zone_t *zone, const char *upath)
3421 {
3422 	vnode_t *vp;
3423 	int trycount;
3424 	int error = 0;
3425 	char *path;
3426 	struct pathname upn, pn;
3427 	size_t pathlen;
3428 
3429 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3430 		return (error);
3431 
3432 	pn_alloc(&pn);
3433 
3434 	/* prevent infinite loop */
3435 	trycount = 10;
3436 	for (;;) {
3437 		if (--trycount <= 0) {
3438 			error = ESTALE;
3439 			goto out;
3440 		}
3441 
3442 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3443 			/*
3444 			 * VOP_ACCESS() may cover 'vp' with a new
3445 			 * filesystem, if 'vp' is an autoFS vnode.
3446 			 * Get the new 'vp' if so.
3447 			 */
3448 			if ((error =
3449 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3450 			    (!vn_ismntpt(vp) ||
3451 			    (error = traverse(&vp)) == 0)) {
3452 				pathlen = pn.pn_pathlen + 2;
3453 				path = kmem_alloc(pathlen, KM_SLEEP);
3454 				(void) strncpy(path, pn.pn_path,
3455 				    pn.pn_pathlen + 1);
3456 				path[pathlen - 2] = '/';
3457 				path[pathlen - 1] = '\0';
3458 				pn_free(&pn);
3459 				pn_free(&upn);
3460 
3461 				/* Success! */
3462 				break;
3463 			}
3464 			VN_RELE(vp);
3465 		}
3466 		if (error != ESTALE)
3467 			goto out;
3468 	}
3469 
3470 	ASSERT(error == 0);
3471 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3472 	zone->zone_rootpath = path;
3473 	zone->zone_rootpathlen = pathlen;
3474 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3475 		zone->zone_flags |= ZF_IS_SCRATCH;
3476 	return (0);
3477 
3478 out:
3479 	pn_free(&pn);
3480 	pn_free(&upn);
3481 	return (error);
3482 }
3483 
3484 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3485 			((c) >= 'a' && (c) <= 'z') || \
3486 			((c) >= 'A' && (c) <= 'Z'))
3487 
3488 static int
3489 zone_set_name(zone_t *zone, const char *uname)
3490 {
3491 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3492 	size_t len;
3493 	int i, err;
3494 
3495 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3496 		kmem_free(kname, ZONENAME_MAX);
3497 		return (err);	/* EFAULT or ENAMETOOLONG */
3498 	}
3499 
3500 	/* must be less than ZONENAME_MAX */
3501 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3502 		kmem_free(kname, ZONENAME_MAX);
3503 		return (EINVAL);
3504 	}
3505 
3506 	/*
3507 	 * Name must start with an alphanumeric and must contain only
3508 	 * alphanumerics, '-', '_' and '.'.
3509 	 */
3510 	if (!isalnum(kname[0])) {
3511 		kmem_free(kname, ZONENAME_MAX);
3512 		return (EINVAL);
3513 	}
3514 	for (i = 1; i < len - 1; i++) {
3515 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3516 		    kname[i] != '.') {
3517 			kmem_free(kname, ZONENAME_MAX);
3518 			return (EINVAL);
3519 		}
3520 	}
3521 
3522 	zone->zone_name = kname;
3523 	return (0);
3524 }
3525 
3526 /*
3527  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3528  * is NULL or it points to a zone with no hostid emulation, then the machine's
3529  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3530  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3531  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3532  * hostid and the machine's hostid is invalid.
3533  */
3534 uint32_t
3535 zone_get_hostid(zone_t *zonep)
3536 {
3537 	unsigned long machine_hostid;
3538 
3539 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3540 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3541 			return (HW_INVALID_HOSTID);
3542 		return ((uint32_t)machine_hostid);
3543 	}
3544 	return (zonep->zone_hostid);
3545 }
3546 
3547 /*
3548  * Similar to thread_create(), but makes sure the thread is in the appropriate
3549  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3550  */
3551 /*ARGSUSED*/
3552 kthread_t *
3553 zthread_create(
3554     caddr_t stk,
3555     size_t stksize,
3556     void (*proc)(),
3557     void *arg,
3558     size_t len,
3559     pri_t pri)
3560 {
3561 	kthread_t *t;
3562 	zone_t *zone = curproc->p_zone;
3563 	proc_t *pp = zone->zone_zsched;
3564 
3565 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3566 
3567 	/*
3568 	 * No-one should be trying to create threads if the zone is shutting
3569 	 * down and there aren't any kernel threads around.  See comment
3570 	 * in zthread_exit().
3571 	 */
3572 	ASSERT(!(zone->zone_kthreads == NULL &&
3573 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3574 	/*
3575 	 * Create a thread, but don't let it run until we've finished setting
3576 	 * things up.
3577 	 */
3578 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3579 	ASSERT(t->t_forw == NULL);
3580 	mutex_enter(&zone_status_lock);
3581 	if (zone->zone_kthreads == NULL) {
3582 		t->t_forw = t->t_back = t;
3583 	} else {
3584 		kthread_t *tx = zone->zone_kthreads;
3585 
3586 		t->t_forw = tx;
3587 		t->t_back = tx->t_back;
3588 		tx->t_back->t_forw = t;
3589 		tx->t_back = t;
3590 	}
3591 	zone->zone_kthreads = t;
3592 	mutex_exit(&zone_status_lock);
3593 
3594 	mutex_enter(&pp->p_lock);
3595 	t->t_proc_flag |= TP_ZTHREAD;
3596 	project_rele(t->t_proj);
3597 	t->t_proj = project_hold(pp->p_task->tk_proj);
3598 
3599 	/*
3600 	 * Setup complete, let it run.
3601 	 */
3602 	thread_lock(t);
3603 	t->t_schedflag |= TS_ALLSTART;
3604 	setrun_locked(t);
3605 	thread_unlock(t);
3606 
3607 	mutex_exit(&pp->p_lock);
3608 
3609 	return (t);
3610 }
3611 
3612 /*
3613  * Similar to thread_exit().  Must be called by threads created via
3614  * zthread_exit().
3615  */
3616 void
3617 zthread_exit(void)
3618 {
3619 	kthread_t *t = curthread;
3620 	proc_t *pp = curproc;
3621 	zone_t *zone = pp->p_zone;
3622 
3623 	mutex_enter(&zone_status_lock);
3624 
3625 	/*
3626 	 * Reparent to p0
3627 	 */
3628 	kpreempt_disable();
3629 	mutex_enter(&pp->p_lock);
3630 	t->t_proc_flag &= ~TP_ZTHREAD;
3631 	t->t_procp = &p0;
3632 	hat_thread_exit(t);
3633 	mutex_exit(&pp->p_lock);
3634 	kpreempt_enable();
3635 
3636 	if (t->t_back == t) {
3637 		ASSERT(t->t_forw == t);
3638 		/*
3639 		 * If the zone is empty, once the thread count
3640 		 * goes to zero no further kernel threads can be
3641 		 * created.  This is because if the creator is a process
3642 		 * in the zone, then it must have exited before the zone
3643 		 * state could be set to ZONE_IS_EMPTY.
3644 		 * Otherwise, if the creator is a kernel thread in the
3645 		 * zone, the thread count is non-zero.
3646 		 *
3647 		 * This really means that non-zone kernel threads should
3648 		 * not create zone kernel threads.
3649 		 */
3650 		zone->zone_kthreads = NULL;
3651 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3652 			zone_status_set(zone, ZONE_IS_DOWN);
3653 			/*
3654 			 * Remove any CPU caps on this zone.
3655 			 */
3656 			cpucaps_zone_remove(zone);
3657 		}
3658 	} else {
3659 		t->t_forw->t_back = t->t_back;
3660 		t->t_back->t_forw = t->t_forw;
3661 		if (zone->zone_kthreads == t)
3662 			zone->zone_kthreads = t->t_forw;
3663 	}
3664 	mutex_exit(&zone_status_lock);
3665 	zone_rele(zone);
3666 	thread_exit();
3667 	/* NOTREACHED */
3668 }
3669 
3670 static void
3671 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3672 {
3673 	vnode_t *oldvp;
3674 
3675 	/* we're going to hold a reference here to the directory */
3676 	VN_HOLD(vp);
3677 
3678 	/* update abs cwd/root path see c2/audit.c */
3679 	if (AU_AUDITING())
3680 		audit_chdirec(vp, vpp);
3681 
3682 	mutex_enter(&pp->p_lock);
3683 	oldvp = *vpp;
3684 	*vpp = vp;
3685 	mutex_exit(&pp->p_lock);
3686 	if (oldvp != NULL)
3687 		VN_RELE(oldvp);
3688 }
3689 
3690 /*
3691  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3692  */
3693 static int
3694 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3695 {
3696 	nvpair_t *nvp = NULL;
3697 	boolean_t priv_set = B_FALSE;
3698 	boolean_t limit_set = B_FALSE;
3699 	boolean_t action_set = B_FALSE;
3700 
3701 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3702 		const char *name;
3703 		uint64_t ui64;
3704 
3705 		name = nvpair_name(nvp);
3706 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3707 			return (EINVAL);
3708 		(void) nvpair_value_uint64(nvp, &ui64);
3709 		if (strcmp(name, "privilege") == 0) {
3710 			/*
3711 			 * Currently only privileged values are allowed, but
3712 			 * this may change in the future.
3713 			 */
3714 			if (ui64 != RCPRIV_PRIVILEGED)
3715 				return (EINVAL);
3716 			rv->rcv_privilege = ui64;
3717 			priv_set = B_TRUE;
3718 		} else if (strcmp(name, "limit") == 0) {
3719 			rv->rcv_value = ui64;
3720 			limit_set = B_TRUE;
3721 		} else if (strcmp(name, "action") == 0) {
3722 			if (ui64 != RCTL_LOCAL_NOACTION &&
3723 			    ui64 != RCTL_LOCAL_DENY)
3724 				return (EINVAL);
3725 			rv->rcv_flagaction = ui64;
3726 			action_set = B_TRUE;
3727 		} else {
3728 			return (EINVAL);
3729 		}
3730 	}
3731 
3732 	if (!(priv_set && limit_set && action_set))
3733 		return (EINVAL);
3734 	rv->rcv_action_signal = 0;
3735 	rv->rcv_action_recipient = NULL;
3736 	rv->rcv_action_recip_pid = -1;
3737 	rv->rcv_firing_time = 0;
3738 
3739 	return (0);
3740 }
3741 
3742 /*
3743  * Non-global zone version of start_init.
3744  */
3745 void
3746 zone_start_init(void)
3747 {
3748 	proc_t *p = ttoproc(curthread);
3749 	zone_t *z = p->p_zone;
3750 
3751 	ASSERT(!INGLOBALZONE(curproc));
3752 
3753 	/*
3754 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3755 	 * storing just the pid of init is sufficient.
3756 	 */
3757 	z->zone_proc_initpid = p->p_pid;
3758 
3759 	/*
3760 	 * We maintain zone_boot_err so that we can return the cause of the
3761 	 * failure back to the caller of the zone_boot syscall.
3762 	 */
3763 	p->p_zone->zone_boot_err = start_init_common();
3764 
3765 	/*
3766 	 * We will prevent booting zones from becoming running zones if the
3767 	 * global zone is shutting down.
3768 	 */
3769 	mutex_enter(&zone_status_lock);
3770 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3771 	    ZONE_IS_SHUTTING_DOWN) {
3772 		/*
3773 		 * Make sure we are still in the booting state-- we could have
3774 		 * raced and already be shutting down, or even further along.
3775 		 */
3776 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3777 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3778 		}
3779 		mutex_exit(&zone_status_lock);
3780 		/* It's gone bad, dispose of the process */
3781 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3782 			mutex_enter(&p->p_lock);
3783 			ASSERT(p->p_flag & SEXITLWPS);
3784 			lwp_exit();
3785 		}
3786 	} else {
3787 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3788 			zone_status_set(z, ZONE_IS_RUNNING);
3789 		mutex_exit(&zone_status_lock);
3790 		/* cause the process to return to userland. */
3791 		lwp_rtt();
3792 	}
3793 }
3794 
3795 struct zsched_arg {
3796 	zone_t *zone;
3797 	nvlist_t *nvlist;
3798 };
3799 
3800 /*
3801  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3802  * anything to do with scheduling, but rather with the fact that
3803  * per-zone kernel threads are parented to zsched, just like regular
3804  * kernel threads are parented to sched (p0).
3805  *
3806  * zsched is also responsible for launching init for the zone.
3807  */
3808 static void
3809 zsched(void *arg)
3810 {
3811 	struct zsched_arg *za = arg;
3812 	proc_t *pp = curproc;
3813 	proc_t *initp = proc_init;
3814 	zone_t *zone = za->zone;
3815 	cred_t *cr, *oldcred;
3816 	rctl_set_t *set;
3817 	rctl_alloc_gp_t *gp;
3818 	contract_t *ct = NULL;
3819 	task_t *tk, *oldtk;
3820 	rctl_entity_p_t e;
3821 	kproject_t *pj;
3822 
3823 	nvlist_t *nvl = za->nvlist;
3824 	nvpair_t *nvp = NULL;
3825 
3826 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3827 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3828 	PTOU(pp)->u_argc = 0;
3829 	PTOU(pp)->u_argv = NULL;
3830 	PTOU(pp)->u_envp = NULL;
3831 	PTOU(pp)->u_commpagep = NULL;
3832 	closeall(P_FINFO(pp));
3833 
3834 	/*
3835 	 * We are this zone's "zsched" process.  As the zone isn't generally
3836 	 * visible yet we don't need to grab any locks before initializing its
3837 	 * zone_proc pointer.
3838 	 */
3839 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3840 	zone->zone_zsched = pp;
3841 	mutex_enter(&pp->p_lock);
3842 	pp->p_zone = zone;
3843 	mutex_exit(&pp->p_lock);
3844 
3845 	/*
3846 	 * Disassociate process from its 'parent'; parent ourselves to init
3847 	 * (pid 1) and change other values as needed.
3848 	 */
3849 	sess_create();
3850 
3851 	mutex_enter(&pidlock);
3852 	proc_detach(pp);
3853 	pp->p_ppid = 1;
3854 	pp->p_flag |= SZONETOP;
3855 	pp->p_ancpid = 1;
3856 	pp->p_parent = initp;
3857 	pp->p_psibling = NULL;
3858 	if (initp->p_child)
3859 		initp->p_child->p_psibling = pp;
3860 	pp->p_sibling = initp->p_child;
3861 	initp->p_child = pp;
3862 
3863 	/* Decrement what newproc() incremented. */
3864 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3865 	/*
3866 	 * Our credentials are about to become kcred-like, so we don't care
3867 	 * about the caller's ruid.
3868 	 */
3869 	upcount_inc(crgetruid(kcred), zone->zone_id);
3870 	mutex_exit(&pidlock);
3871 
3872 	/*
3873 	 * getting out of global zone, so decrement lwp and process counts
3874 	 */
3875 	pj = pp->p_task->tk_proj;
3876 	mutex_enter(&global_zone->zone_nlwps_lock);
3877 	pj->kpj_nlwps -= pp->p_lwpcnt;
3878 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3879 	pj->kpj_nprocs--;
3880 	global_zone->zone_nprocs--;
3881 	mutex_exit(&global_zone->zone_nlwps_lock);
3882 
3883 	/*
3884 	 * Decrement locked memory counts on old zone and project.
3885 	 */
3886 	mutex_enter(&global_zone->zone_mem_lock);
3887 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3888 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3889 	mutex_exit(&global_zone->zone_mem_lock);
3890 
3891 	/*
3892 	 * Create and join a new task in project '0' of this zone.
3893 	 *
3894 	 * We don't need to call holdlwps() since we know we're the only lwp in
3895 	 * this process.
3896 	 *
3897 	 * task_join() returns with p_lock held.
3898 	 */
3899 	tk = task_create(0, zone);
3900 	mutex_enter(&cpu_lock);
3901 	oldtk = task_join(tk, 0);
3902 
3903 	pj = pp->p_task->tk_proj;
3904 
3905 	mutex_enter(&zone->zone_mem_lock);
3906 	zone->zone_locked_mem += pp->p_locked_mem;
3907 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3908 	mutex_exit(&zone->zone_mem_lock);
3909 
3910 	/*
3911 	 * add lwp and process counts to zsched's zone, and increment
3912 	 * project's task and process count due to the task created in
3913 	 * the above task_create.
3914 	 */
3915 	mutex_enter(&zone->zone_nlwps_lock);
3916 	pj->kpj_nlwps += pp->p_lwpcnt;
3917 	pj->kpj_ntasks += 1;
3918 	zone->zone_nlwps += pp->p_lwpcnt;
3919 	pj->kpj_nprocs++;
3920 	zone->zone_nprocs++;
3921 	mutex_exit(&zone->zone_nlwps_lock);
3922 
3923 	mutex_exit(&curproc->p_lock);
3924 	mutex_exit(&cpu_lock);
3925 	task_rele(oldtk);
3926 
3927 	/*
3928 	 * The process was created by a process in the global zone, hence the
3929 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3930 	 */
3931 	cr = zone->zone_kcred;
3932 	crhold(cr);
3933 	mutex_enter(&pp->p_crlock);
3934 	oldcred = pp->p_cred;
3935 	pp->p_cred = cr;
3936 	mutex_exit(&pp->p_crlock);
3937 	crfree(oldcred);
3938 
3939 	/*
3940 	 * Hold credentials again (for thread)
3941 	 */
3942 	crhold(cr);
3943 
3944 	/*
3945 	 * p_lwpcnt can't change since this is a kernel process.
3946 	 */
3947 	crset(pp, cr);
3948 
3949 	/*
3950 	 * Chroot
3951 	 */
3952 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3953 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3954 
3955 	/*
3956 	 * Initialize zone's rctl set.
3957 	 */
3958 	set = rctl_set_create();
3959 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3960 	mutex_enter(&pp->p_lock);
3961 	e.rcep_p.zone = zone;
3962 	e.rcep_t = RCENTITY_ZONE;
3963 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3964 	mutex_exit(&pp->p_lock);
3965 	rctl_prealloc_destroy(gp);
3966 
3967 	/*
3968 	 * Apply the rctls passed in to zone_create().  This is basically a list
3969 	 * assignment: all of the old values are removed and the new ones
3970 	 * inserted.  That is, if an empty list is passed in, all values are
3971 	 * removed.
3972 	 */
3973 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3974 		rctl_dict_entry_t *rde;
3975 		rctl_hndl_t hndl;
3976 		char *name;
3977 		nvlist_t **nvlarray;
3978 		uint_t i, nelem;
3979 		int error;	/* For ASSERT()s */
3980 
3981 		name = nvpair_name(nvp);
3982 		hndl = rctl_hndl_lookup(name);
3983 		ASSERT(hndl != -1);
3984 		rde = rctl_dict_lookup_hndl(hndl);
3985 		ASSERT(rde != NULL);
3986 
3987 		for (; /* ever */; ) {
3988 			rctl_val_t oval;
3989 
3990 			mutex_enter(&pp->p_lock);
3991 			error = rctl_local_get(hndl, NULL, &oval, pp);
3992 			mutex_exit(&pp->p_lock);
3993 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3994 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3995 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3996 				break;
3997 			mutex_enter(&pp->p_lock);
3998 			error = rctl_local_delete(hndl, &oval, pp);
3999 			mutex_exit(&pp->p_lock);
4000 			ASSERT(error == 0);
4001 		}
4002 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4003 		ASSERT(error == 0);
4004 		for (i = 0; i < nelem; i++) {
4005 			rctl_val_t *nvalp;
4006 
4007 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
4008 			error = nvlist2rctlval(nvlarray[i], nvalp);
4009 			ASSERT(error == 0);
4010 			/*
4011 			 * rctl_local_insert can fail if the value being
4012 			 * inserted is a duplicate; this is OK.
4013 			 */
4014 			mutex_enter(&pp->p_lock);
4015 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
4016 				kmem_cache_free(rctl_val_cache, nvalp);
4017 			mutex_exit(&pp->p_lock);
4018 		}
4019 	}
4020 
4021 	/*
4022 	 * Tell the world that we're done setting up.
4023 	 *
4024 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
4025 	 * and atomically set the zone's processor set visibility.  Once
4026 	 * we drop pool_lock() this zone will automatically get updated
4027 	 * to reflect any future changes to the pools configuration.
4028 	 *
4029 	 * Note that after we drop the locks below (zonehash_lock in
4030 	 * particular) other operations such as a zone_getattr call can
4031 	 * now proceed and observe the zone. That is the reason for doing a
4032 	 * state transition to the INITIALIZED state.
4033 	 */
4034 	pool_lock();
4035 	mutex_enter(&cpu_lock);
4036 	mutex_enter(&zonehash_lock);
4037 	zone_uniqid(zone);
4038 	zone_zsd_configure(zone);
4039 	if (pool_state == POOL_ENABLED)
4040 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
4041 	mutex_enter(&zone_status_lock);
4042 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
4043 	zone_status_set(zone, ZONE_IS_INITIALIZED);
4044 	mutex_exit(&zone_status_lock);
4045 	mutex_exit(&zonehash_lock);
4046 	mutex_exit(&cpu_lock);
4047 	pool_unlock();
4048 
4049 	/* Now call the create callback for this key */
4050 	zsd_apply_all_keys(zsd_apply_create, zone);
4051 
4052 	/* The callbacks are complete. Mark ZONE_IS_READY */
4053 	mutex_enter(&zone_status_lock);
4054 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
4055 	zone_status_set(zone, ZONE_IS_READY);
4056 	mutex_exit(&zone_status_lock);
4057 
4058 	/*
4059 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
4060 	 * we launch init, and set the state to running.
4061 	 */
4062 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4063 
4064 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4065 		id_t cid;
4066 
4067 		/*
4068 		 * Ok, this is a little complicated.  We need to grab the
4069 		 * zone's pool's scheduling class ID; note that by now, we
4070 		 * are already bound to a pool if we need to be (zoneadmd
4071 		 * will have done that to us while we're in the READY
4072 		 * state).  *But* the scheduling class for the zone's 'init'
4073 		 * must be explicitly passed to newproc, which doesn't
4074 		 * respect pool bindings.
4075 		 *
4076 		 * We hold the pool_lock across the call to newproc() to
4077 		 * close the obvious race: the pool's scheduling class
4078 		 * could change before we manage to create the LWP with
4079 		 * classid 'cid'.
4080 		 */
4081 		pool_lock();
4082 		if (zone->zone_defaultcid > 0)
4083 			cid = zone->zone_defaultcid;
4084 		else
4085 			cid = pool_get_class(zone->zone_pool);
4086 		if (cid == -1)
4087 			cid = defaultcid;
4088 
4089 		/*
4090 		 * If this fails, zone_boot will ultimately fail.  The
4091 		 * state of the zone will be set to SHUTTING_DOWN-- userland
4092 		 * will have to tear down the zone, and fail, or try again.
4093 		 */
4094 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4095 		    minclsyspri - 1, &ct, 0)) != 0) {
4096 			mutex_enter(&zone_status_lock);
4097 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4098 			mutex_exit(&zone_status_lock);
4099 		} else {
4100 			zone->zone_boot_time = gethrestime_sec();
4101 		}
4102 
4103 		pool_unlock();
4104 	}
4105 
4106 	/*
4107 	 * Wait for zone_destroy() to be called.  This is what we spend
4108 	 * most of our life doing.
4109 	 */
4110 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4111 
4112 	if (ct)
4113 		/*
4114 		 * At this point the process contract should be empty.
4115 		 * (Though if it isn't, it's not the end of the world.)
4116 		 */
4117 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4118 
4119 	/*
4120 	 * Allow kcred to be freed when all referring processes
4121 	 * (including this one) go away.  We can't just do this in
4122 	 * zone_free because we need to wait for the zone_cred_ref to
4123 	 * drop to 0 before calling zone_free, and the existence of
4124 	 * zone_kcred will prevent that.  Thus, we call crfree here to
4125 	 * balance the crdup in zone_create.  The crhold calls earlier
4126 	 * in zsched will be dropped when the thread and process exit.
4127 	 */
4128 	crfree(zone->zone_kcred);
4129 	zone->zone_kcred = NULL;
4130 
4131 	exit(CLD_EXITED, 0);
4132 }
4133 
4134 /*
4135  * Helper function to determine if there are any submounts of the
4136  * provided path.  Used to make sure the zone doesn't "inherit" any
4137  * mounts from before it is created.
4138  */
4139 static uint_t
4140 zone_mount_count(const char *rootpath)
4141 {
4142 	vfs_t *vfsp;
4143 	uint_t count = 0;
4144 	size_t rootpathlen = strlen(rootpath);
4145 
4146 	/*
4147 	 * Holding zonehash_lock prevents race conditions with
4148 	 * vfs_list_add()/vfs_list_remove() since we serialize with
4149 	 * zone_find_by_path().
4150 	 */
4151 	ASSERT(MUTEX_HELD(&zonehash_lock));
4152 	/*
4153 	 * The rootpath must end with a '/'
4154 	 */
4155 	ASSERT(rootpath[rootpathlen - 1] == '/');
4156 
4157 	/*
4158 	 * This intentionally does not count the rootpath itself if that
4159 	 * happens to be a mount point.
4160 	 */
4161 	vfs_list_read_lock();
4162 	vfsp = rootvfs;
4163 	do {
4164 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4165 		    rootpathlen) == 0)
4166 			count++;
4167 		vfsp = vfsp->vfs_next;
4168 	} while (vfsp != rootvfs);
4169 	vfs_list_unlock();
4170 	return (count);
4171 }
4172 
4173 /*
4174  * Helper function to make sure that a zone created on 'rootpath'
4175  * wouldn't end up containing other zones' rootpaths.
4176  */
4177 static boolean_t
4178 zone_is_nested(const char *rootpath)
4179 {
4180 	zone_t *zone;
4181 	size_t rootpathlen = strlen(rootpath);
4182 	size_t len;
4183 
4184 	ASSERT(MUTEX_HELD(&zonehash_lock));
4185 
4186 	/*
4187 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
4188 	 */
4189 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4190 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
4191 		return (B_TRUE);
4192 
4193 	for (zone = list_head(&zone_active); zone != NULL;
4194 	    zone = list_next(&zone_active, zone)) {
4195 		if (zone == global_zone)
4196 			continue;
4197 		len = strlen(zone->zone_rootpath);
4198 		if (strncmp(rootpath, zone->zone_rootpath,
4199 		    MIN(rootpathlen, len)) == 0)
4200 			return (B_TRUE);
4201 	}
4202 	return (B_FALSE);
4203 }
4204 
4205 static int
4206 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4207     size_t zone_privssz)
4208 {
4209 	priv_set_t *privs;
4210 
4211 	if (zone_privssz < sizeof (priv_set_t))
4212 		return (ENOMEM);
4213 
4214 	privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4215 
4216 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4217 		kmem_free(privs, sizeof (priv_set_t));
4218 		return (EFAULT);
4219 	}
4220 
4221 	zone->zone_privset = privs;
4222 	return (0);
4223 }
4224 
4225 /*
4226  * We make creative use of nvlists to pass in rctls from userland.  The list is
4227  * a list of the following structures:
4228  *
4229  * (name = rctl_name, value = nvpair_list_array)
4230  *
4231  * Where each element of the nvpair_list_array is of the form:
4232  *
4233  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4234  * 	(name = "limit", value = uint64_t),
4235  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4236  */
4237 static int
4238 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4239 {
4240 	nvpair_t *nvp = NULL;
4241 	nvlist_t *nvl = NULL;
4242 	char *kbuf;
4243 	int error;
4244 	rctl_val_t rv;
4245 
4246 	*nvlp = NULL;
4247 
4248 	if (buflen == 0)
4249 		return (0);
4250 
4251 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4252 		return (ENOMEM);
4253 	if (copyin(ubuf, kbuf, buflen)) {
4254 		error = EFAULT;
4255 		goto out;
4256 	}
4257 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4258 		/*
4259 		 * nvl may have been allocated/free'd, but the value set to
4260 		 * non-NULL, so we reset it here.
4261 		 */
4262 		nvl = NULL;
4263 		error = EINVAL;
4264 		goto out;
4265 	}
4266 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4267 		rctl_dict_entry_t *rde;
4268 		rctl_hndl_t hndl;
4269 		nvlist_t **nvlarray;
4270 		uint_t i, nelem;
4271 		char *name;
4272 
4273 		error = EINVAL;
4274 		name = nvpair_name(nvp);
4275 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4276 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4277 			goto out;
4278 		}
4279 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
4280 			goto out;
4281 		}
4282 		rde = rctl_dict_lookup_hndl(hndl);
4283 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4284 		ASSERT(error == 0);
4285 		for (i = 0; i < nelem; i++) {
4286 			if (error = nvlist2rctlval(nvlarray[i], &rv))
4287 				goto out;
4288 		}
4289 		if (rctl_invalid_value(rde, &rv)) {
4290 			error = EINVAL;
4291 			goto out;
4292 		}
4293 	}
4294 	error = 0;
4295 	*nvlp = nvl;
4296 out:
4297 	kmem_free(kbuf, buflen);
4298 	if (error && nvl != NULL)
4299 		nvlist_free(nvl);
4300 	return (error);
4301 }
4302 
4303 int
4304 zone_create_error(int er_error, int er_ext, int *er_out)
4305 {
4306 	if (er_out != NULL) {
4307 		if (copyout(&er_ext, er_out, sizeof (int))) {
4308 			return (set_errno(EFAULT));
4309 		}
4310 	}
4311 	return (set_errno(er_error));
4312 }
4313 
4314 static int
4315 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4316 {
4317 	ts_label_t *tsl;
4318 	bslabel_t blab;
4319 
4320 	/* Get label from user */
4321 	if (copyin(lab, &blab, sizeof (blab)) != 0)
4322 		return (EFAULT);
4323 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4324 	if (tsl == NULL)
4325 		return (ENOMEM);
4326 
4327 	zone->zone_slabel = tsl;
4328 	return (0);
4329 }
4330 
4331 /*
4332  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4333  */
4334 static int
4335 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4336 {
4337 	char *kbuf;
4338 	char *dataset, *next;
4339 	zone_dataset_t *zd;
4340 	size_t len;
4341 
4342 	if (ubuf == NULL || buflen == 0)
4343 		return (0);
4344 
4345 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4346 		return (ENOMEM);
4347 
4348 	if (copyin(ubuf, kbuf, buflen) != 0) {
4349 		kmem_free(kbuf, buflen);
4350 		return (EFAULT);
4351 	}
4352 
4353 	dataset = next = kbuf;
4354 	for (;;) {
4355 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4356 
4357 		next = strchr(dataset, ',');
4358 
4359 		if (next == NULL)
4360 			len = strlen(dataset);
4361 		else
4362 			len = next - dataset;
4363 
4364 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4365 		bcopy(dataset, zd->zd_dataset, len);
4366 		zd->zd_dataset[len] = '\0';
4367 
4368 		list_insert_head(&zone->zone_datasets, zd);
4369 
4370 		if (next == NULL)
4371 			break;
4372 
4373 		dataset = next + 1;
4374 	}
4375 
4376 	kmem_free(kbuf, buflen);
4377 	return (0);
4378 }
4379 
4380 /*
4381  * System call to create/initialize a new zone named 'zone_name', rooted
4382  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4383  * and initialized with the zone-wide rctls described in 'rctlbuf', and
4384  * with labeling set by 'match', 'doi', and 'label'.
4385  *
4386  * If extended error is non-null, we may use it to return more detailed
4387  * error information.
4388  */
4389 static zoneid_t
4390 zone_create(const char *zone_name, const char *zone_root,
4391     const priv_set_t *zone_privs, size_t zone_privssz,
4392     caddr_t rctlbuf, size_t rctlbufsz,
4393     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4394     int match, uint32_t doi, const bslabel_t *label,
4395     int flags)
4396 {
4397 	struct zsched_arg zarg;
4398 	nvlist_t *rctls = NULL;
4399 	proc_t *pp = curproc;
4400 	zone_t *zone, *ztmp;
4401 	zoneid_t zoneid, start = GLOBAL_ZONEID;
4402 	int error;
4403 	int error2 = 0;
4404 	char *str;
4405 	cred_t *zkcr;
4406 	boolean_t insert_label_hash;
4407 
4408 	if (secpolicy_zone_config(CRED()) != 0)
4409 		return (set_errno(EPERM));
4410 
4411 	/* can't boot zone from within chroot environment */
4412 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4413 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4414 		    extended_error));
4415 	/*
4416 	 * As the first step of zone creation, we want to allocate a zoneid.
4417 	 * This allocation is complicated by the fact that netstacks use the
4418 	 * zoneid to determine their stackid, but netstacks themselves are
4419 	 * freed asynchronously with respect to zone destruction.  This means
4420 	 * that a netstack reference leak (or in principle, an extraordinarily
4421 	 * long netstack reference hold) could result in a zoneid being
4422 	 * allocated that in fact corresponds to a stackid from an active
4423 	 * (referenced) netstack -- unleashing all sorts of havoc when that
4424 	 * netstack is actually (re)used.  (In the abstract, we might wish a
4425 	 * zoneid to not be deallocated until its last referencing netstack
4426 	 * has been released, but netstacks lack a backpointer into their
4427 	 * referencing zone -- and changing them to have such a pointer would
4428 	 * be substantial, to put it euphemistically.)  To avoid this, we
4429 	 * detect this condition on allocation: if we have allocated a zoneid
4430 	 * that corresponds to a netstack that's still in use, we warn about
4431 	 * it (as it is much more likely to be a reference leak than an actual
4432 	 * netstack reference), free it, and allocate another.  That these
4433 	 * identifers are allocated out of an ID space assures that we won't
4434 	 * see the identifier we just allocated.
4435 	 */
4436 	for (;;) {
4437 		zoneid = id_alloc(zoneid_space);
4438 
4439 		if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid)))
4440 			break;
4441 
4442 		id_free(zoneid_space, zoneid);
4443 
4444 		if (start == GLOBAL_ZONEID) {
4445 			start = zoneid;
4446 		} else if (zoneid == start) {
4447 			/*
4448 			 * We have managed to iterate over the entire available
4449 			 * zoneid space -- there are no identifiers available,
4450 			 * presumably due to some number of leaked netstack
4451 			 * references.  While it's in principle possible for us
4452 			 * to continue to try, it seems wiser to give up at
4453 			 * this point to warn and fail explicitly with a
4454 			 * distinctive error.
4455 			 */
4456 			cmn_err(CE_WARN, "zone_create() failed: all available "
4457 			    "zone IDs have netstacks still in use");
4458 			return (set_errno(ENFILE));
4459 		}
4460 
4461 		cmn_err(CE_WARN, "unable to reuse zone ID %d; "
4462 		    "netstack still in use", zoneid);
4463 	}
4464 
4465 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4466 	zone->zone_id = zoneid;
4467 	zone->zone_status = ZONE_IS_UNINITIALIZED;
4468 	zone->zone_pool = pool_default;
4469 	zone->zone_pool_mod = gethrtime();
4470 	zone->zone_psetid = ZONE_PS_INVAL;
4471 	zone->zone_ncpus = 0;
4472 	zone->zone_ncpus_online = 0;
4473 	zone->zone_restart_init = B_TRUE;
4474 	zone->zone_brand = &native_brand;
4475 	zone->zone_initname = NULL;
4476 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4477 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4478 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4479 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4480 	list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4481 	    offsetof(zone_ref_t, zref_linkage));
4482 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4483 	    offsetof(struct zsd_entry, zsd_linkage));
4484 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4485 	    offsetof(zone_dataset_t, zd_linkage));
4486 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4487 	    offsetof(zone_dl_t, zdl_linkage));
4488 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4489 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4490 
4491 	if (flags & ZCF_NET_EXCL) {
4492 		zone->zone_flags |= ZF_NET_EXCL;
4493 	}
4494 
4495 	if ((error = zone_set_name(zone, zone_name)) != 0) {
4496 		zone_free(zone);
4497 		return (zone_create_error(error, 0, extended_error));
4498 	}
4499 
4500 	if ((error = zone_set_root(zone, zone_root)) != 0) {
4501 		zone_free(zone);
4502 		return (zone_create_error(error, 0, extended_error));
4503 	}
4504 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4505 		zone_free(zone);
4506 		return (zone_create_error(error, 0, extended_error));
4507 	}
4508 
4509 	/* initialize node name to be the same as zone name */
4510 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4511 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4512 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4513 
4514 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4515 	zone->zone_domain[0] = '\0';
4516 	zone->zone_hostid = HW_INVALID_HOSTID;
4517 	zone->zone_shares = 1;
4518 	zone->zone_shmmax = 0;
4519 	zone->zone_ipc.ipcq_shmmni = 0;
4520 	zone->zone_ipc.ipcq_semmni = 0;
4521 	zone->zone_ipc.ipcq_msgmni = 0;
4522 	zone->zone_bootargs = NULL;
4523 	zone->zone_fs_allowed = NULL;
4524 
4525 	secflags_zero(&zone0.zone_secflags.psf_lower);
4526 	secflags_zero(&zone0.zone_secflags.psf_effective);
4527 	secflags_zero(&zone0.zone_secflags.psf_inherit);
4528 	secflags_fullset(&zone0.zone_secflags.psf_upper);
4529 
4530 	zone->zone_initname =
4531 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4532 	(void) strcpy(zone->zone_initname, zone_default_initname);
4533 	zone->zone_nlwps = 0;
4534 	zone->zone_nlwps_ctl = INT_MAX;
4535 	zone->zone_nprocs = 0;
4536 	zone->zone_nprocs_ctl = INT_MAX;
4537 	zone->zone_locked_mem = 0;
4538 	zone->zone_locked_mem_ctl = UINT64_MAX;
4539 	zone->zone_max_swap = 0;
4540 	zone->zone_max_swap_ctl = UINT64_MAX;
4541 	zone->zone_max_lofi = 0;
4542 	zone->zone_max_lofi_ctl = UINT64_MAX;
4543 	zone0.zone_lockedmem_kstat = NULL;
4544 	zone0.zone_swapresv_kstat = NULL;
4545 
4546 	/*
4547 	 * Zsched initializes the rctls.
4548 	 */
4549 	zone->zone_rctls = NULL;
4550 
4551 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4552 		zone_free(zone);
4553 		return (zone_create_error(error, 0, extended_error));
4554 	}
4555 
4556 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4557 		zone_free(zone);
4558 		return (set_errno(error));
4559 	}
4560 
4561 	/*
4562 	 * Read in the trusted system parameters:
4563 	 * match flag and sensitivity label.
4564 	 */
4565 	zone->zone_match = match;
4566 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4567 		/* Fail if requested to set doi to anything but system's doi */
4568 		if (doi != 0 && doi != default_doi) {
4569 			zone_free(zone);
4570 			return (set_errno(EINVAL));
4571 		}
4572 		/* Always apply system's doi to the zone */
4573 		error = zone_set_label(zone, label, default_doi);
4574 		if (error != 0) {
4575 			zone_free(zone);
4576 			return (set_errno(error));
4577 		}
4578 		insert_label_hash = B_TRUE;
4579 	} else {
4580 		/* all zones get an admin_low label if system is not labeled */
4581 		zone->zone_slabel = l_admin_low;
4582 		label_hold(l_admin_low);
4583 		insert_label_hash = B_FALSE;
4584 	}
4585 
4586 	/*
4587 	 * Stop all lwps since that's what normally happens as part of fork().
4588 	 * This needs to happen before we grab any locks to avoid deadlock
4589 	 * (another lwp in the process could be waiting for the held lock).
4590 	 */
4591 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4592 		zone_free(zone);
4593 		nvlist_free(rctls);
4594 		return (zone_create_error(error, 0, extended_error));
4595 	}
4596 
4597 	if (block_mounts(zone) == 0) {
4598 		mutex_enter(&pp->p_lock);
4599 		if (curthread != pp->p_agenttp)
4600 			continuelwps(pp);
4601 		mutex_exit(&pp->p_lock);
4602 		zone_free(zone);
4603 		nvlist_free(rctls);
4604 		return (zone_create_error(error, 0, extended_error));
4605 	}
4606 
4607 	/*
4608 	 * Set up credential for kernel access.  After this, any errors
4609 	 * should go through the dance in errout rather than calling
4610 	 * zone_free directly.
4611 	 */
4612 	zone->zone_kcred = crdup(kcred);
4613 	crsetzone(zone->zone_kcred, zone);
4614 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4615 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4616 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4617 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4618 
4619 	mutex_enter(&zonehash_lock);
4620 	/*
4621 	 * Make sure zone doesn't already exist.
4622 	 *
4623 	 * If the system and zone are labeled,
4624 	 * make sure no other zone exists that has the same label.
4625 	 */
4626 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4627 	    (insert_label_hash &&
4628 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4629 		zone_status_t status;
4630 
4631 		status = zone_status_get(ztmp);
4632 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4633 			error = EEXIST;
4634 		else
4635 			error = EBUSY;
4636 
4637 		if (insert_label_hash)
4638 			error2 = ZE_LABELINUSE;
4639 
4640 		goto errout;
4641 	}
4642 
4643 	/*
4644 	 * Don't allow zone creations which would cause one zone's rootpath to
4645 	 * be accessible from that of another (non-global) zone.
4646 	 */
4647 	if (zone_is_nested(zone->zone_rootpath)) {
4648 		error = EBUSY;
4649 		goto errout;
4650 	}
4651 
4652 	ASSERT(zonecount != 0);		/* check for leaks */
4653 	if (zonecount + 1 > maxzones) {
4654 		error = ENOMEM;
4655 		goto errout;
4656 	}
4657 
4658 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4659 		error = EBUSY;
4660 		error2 = ZE_AREMOUNTS;
4661 		goto errout;
4662 	}
4663 
4664 	/*
4665 	 * Zone is still incomplete, but we need to drop all locks while
4666 	 * zsched() initializes this zone's kernel process.  We
4667 	 * optimistically add the zone to the hashtable and associated
4668 	 * lists so a parallel zone_create() doesn't try to create the
4669 	 * same zone.
4670 	 */
4671 	zonecount++;
4672 	(void) mod_hash_insert(zonehashbyid,
4673 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4674 	    (mod_hash_val_t)(uintptr_t)zone);
4675 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4676 	(void) strcpy(str, zone->zone_name);
4677 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4678 	    (mod_hash_val_t)(uintptr_t)zone);
4679 	if (insert_label_hash) {
4680 		(void) mod_hash_insert(zonehashbylabel,
4681 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4682 		zone->zone_flags |= ZF_HASHED_LABEL;
4683 	}
4684 
4685 	/*
4686 	 * Insert into active list.  At this point there are no 'hold's
4687 	 * on the zone, but everyone else knows not to use it, so we can
4688 	 * continue to use it.  zsched() will do a zone_hold() if the
4689 	 * newproc() is successful.
4690 	 */
4691 	list_insert_tail(&zone_active, zone);
4692 	mutex_exit(&zonehash_lock);
4693 
4694 	zarg.zone = zone;
4695 	zarg.nvlist = rctls;
4696 	/*
4697 	 * The process, task, and project rctls are probably wrong;
4698 	 * we need an interface to get the default values of all rctls,
4699 	 * and initialize zsched appropriately.  I'm not sure that that
4700 	 * makes much of a difference, though.
4701 	 */
4702 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4703 	if (error != 0) {
4704 		/*
4705 		 * We need to undo all globally visible state.
4706 		 */
4707 		mutex_enter(&zonehash_lock);
4708 		list_remove(&zone_active, zone);
4709 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4710 			ASSERT(zone->zone_slabel != NULL);
4711 			(void) mod_hash_destroy(zonehashbylabel,
4712 			    (mod_hash_key_t)zone->zone_slabel);
4713 		}
4714 		(void) mod_hash_destroy(zonehashbyname,
4715 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4716 		(void) mod_hash_destroy(zonehashbyid,
4717 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4718 		ASSERT(zonecount > 1);
4719 		zonecount--;
4720 		goto errout;
4721 	}
4722 
4723 	/*
4724 	 * Zone creation can't fail from now on.
4725 	 */
4726 
4727 	/*
4728 	 * Create zone kstats
4729 	 */
4730 	zone_kstat_create(zone);
4731 
4732 	/*
4733 	 * Let the other lwps continue.
4734 	 */
4735 	mutex_enter(&pp->p_lock);
4736 	if (curthread != pp->p_agenttp)
4737 		continuelwps(pp);
4738 	mutex_exit(&pp->p_lock);
4739 
4740 	/*
4741 	 * Wait for zsched to finish initializing the zone.
4742 	 */
4743 	zone_status_wait(zone, ZONE_IS_READY);
4744 	/*
4745 	 * The zone is fully visible, so we can let mounts progress.
4746 	 */
4747 	resume_mounts(zone);
4748 	nvlist_free(rctls);
4749 
4750 	return (zoneid);
4751 
4752 errout:
4753 	mutex_exit(&zonehash_lock);
4754 	/*
4755 	 * Let the other lwps continue.
4756 	 */
4757 	mutex_enter(&pp->p_lock);
4758 	if (curthread != pp->p_agenttp)
4759 		continuelwps(pp);
4760 	mutex_exit(&pp->p_lock);
4761 
4762 	resume_mounts(zone);
4763 	nvlist_free(rctls);
4764 	/*
4765 	 * There is currently one reference to the zone, a cred_ref from
4766 	 * zone_kcred.  To free the zone, we call crfree, which will call
4767 	 * zone_cred_rele, which will call zone_free.
4768 	 */
4769 	ASSERT(zone->zone_cred_ref == 1);
4770 	ASSERT(zone->zone_kcred->cr_ref == 1);
4771 	ASSERT(zone->zone_ref == 0);
4772 	zkcr = zone->zone_kcred;
4773 	zone->zone_kcred = NULL;
4774 	crfree(zkcr);				/* triggers call to zone_free */
4775 	return (zone_create_error(error, error2, extended_error));
4776 }
4777 
4778 /*
4779  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4780  * the heavy lifting.  initname is the path to the program to launch
4781  * at the "top" of the zone; if this is NULL, we use the system default,
4782  * which is stored at zone_default_initname.
4783  */
4784 static int
4785 zone_boot(zoneid_t zoneid)
4786 {
4787 	int err;
4788 	zone_t *zone;
4789 
4790 	if (secpolicy_zone_config(CRED()) != 0)
4791 		return (set_errno(EPERM));
4792 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4793 		return (set_errno(EINVAL));
4794 
4795 	mutex_enter(&zonehash_lock);
4796 	/*
4797 	 * Look for zone under hash lock to prevent races with calls to
4798 	 * zone_shutdown, zone_destroy, etc.
4799 	 */
4800 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4801 		mutex_exit(&zonehash_lock);
4802 		return (set_errno(EINVAL));
4803 	}
4804 
4805 	mutex_enter(&zone_status_lock);
4806 	if (zone_status_get(zone) != ZONE_IS_READY) {
4807 		mutex_exit(&zone_status_lock);
4808 		mutex_exit(&zonehash_lock);
4809 		return (set_errno(EINVAL));
4810 	}
4811 	zone_status_set(zone, ZONE_IS_BOOTING);
4812 	mutex_exit(&zone_status_lock);
4813 
4814 	zone_hold(zone);	/* so we can use the zone_t later */
4815 	mutex_exit(&zonehash_lock);
4816 
4817 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4818 		zone_rele(zone);
4819 		return (set_errno(EINTR));
4820 	}
4821 
4822 	/*
4823 	 * Boot (starting init) might have failed, in which case the zone
4824 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4825 	 * be placed in zone->zone_boot_err, and so we return that.
4826 	 */
4827 	err = zone->zone_boot_err;
4828 	zone_rele(zone);
4829 	return (err ? set_errno(err) : 0);
4830 }
4831 
4832 /*
4833  * Kills all user processes in the zone, waiting for them all to exit
4834  * before returning.
4835  */
4836 static int
4837 zone_empty(zone_t *zone)
4838 {
4839 	int waitstatus;
4840 
4841 	/*
4842 	 * We need to drop zonehash_lock before killing all
4843 	 * processes, otherwise we'll deadlock with zone_find_*
4844 	 * which can be called from the exit path.
4845 	 */
4846 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4847 	while ((waitstatus = zone_status_timedwait_sig(zone,
4848 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4849 		killall(zone->zone_id);
4850 	}
4851 	/*
4852 	 * return EINTR if we were signaled
4853 	 */
4854 	if (waitstatus == 0)
4855 		return (EINTR);
4856 	return (0);
4857 }
4858 
4859 /*
4860  * This function implements the policy for zone visibility.
4861  *
4862  * In standard Solaris, a non-global zone can only see itself.
4863  *
4864  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4865  * it dominates. For this test, the label of the global zone is treated as
4866  * admin_high so it is special-cased instead of being checked for dominance.
4867  *
4868  * Returns true if zone attributes are viewable, false otherwise.
4869  */
4870 static boolean_t
4871 zone_list_access(zone_t *zone)
4872 {
4873 
4874 	if (curproc->p_zone == global_zone ||
4875 	    curproc->p_zone == zone) {
4876 		return (B_TRUE);
4877 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4878 		bslabel_t *curproc_label;
4879 		bslabel_t *zone_label;
4880 
4881 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4882 		zone_label = label2bslabel(zone->zone_slabel);
4883 
4884 		if (zone->zone_id != GLOBAL_ZONEID &&
4885 		    bldominates(curproc_label, zone_label)) {
4886 			return (B_TRUE);
4887 		} else {
4888 			return (B_FALSE);
4889 		}
4890 	} else {
4891 		return (B_FALSE);
4892 	}
4893 }
4894 
4895 /*
4896  * Systemcall to start the zone's halt sequence.  By the time this
4897  * function successfully returns, all user processes and kernel threads
4898  * executing in it will have exited, ZSD shutdown callbacks executed,
4899  * and the zone status set to ZONE_IS_DOWN.
4900  *
4901  * It is possible that the call will interrupt itself if the caller is the
4902  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4903  */
4904 static int
4905 zone_shutdown(zoneid_t zoneid)
4906 {
4907 	int error;
4908 	zone_t *zone;
4909 	zone_status_t status;
4910 
4911 	if (secpolicy_zone_config(CRED()) != 0)
4912 		return (set_errno(EPERM));
4913 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4914 		return (set_errno(EINVAL));
4915 
4916 	mutex_enter(&zonehash_lock);
4917 	/*
4918 	 * Look for zone under hash lock to prevent races with other
4919 	 * calls to zone_shutdown and zone_destroy.
4920 	 */
4921 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4922 		mutex_exit(&zonehash_lock);
4923 		return (set_errno(EINVAL));
4924 	}
4925 
4926 	/*
4927 	 * We have to drop zonehash_lock before calling block_mounts.
4928 	 * Hold the zone so we can continue to use the zone_t.
4929 	 */
4930 	zone_hold(zone);
4931 	mutex_exit(&zonehash_lock);
4932 
4933 	/*
4934 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4935 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4936 	 *
4937 	 * e.g. NFS can fail the mount if it determines that the zone
4938 	 * has already begun the shutdown sequence.
4939 	 *
4940 	 */
4941 	if (block_mounts(zone) == 0) {
4942 		zone_rele(zone);
4943 		return (set_errno(EINTR));
4944 	}
4945 
4946 	mutex_enter(&zonehash_lock);
4947 	mutex_enter(&zone_status_lock);
4948 	status = zone_status_get(zone);
4949 	/*
4950 	 * Fail if the zone isn't fully initialized yet.
4951 	 */
4952 	if (status < ZONE_IS_READY) {
4953 		mutex_exit(&zone_status_lock);
4954 		mutex_exit(&zonehash_lock);
4955 		resume_mounts(zone);
4956 		zone_rele(zone);
4957 		return (set_errno(EINVAL));
4958 	}
4959 	/*
4960 	 * If conditions required for zone_shutdown() to return have been met,
4961 	 * return success.
4962 	 */
4963 	if (status >= ZONE_IS_DOWN) {
4964 		mutex_exit(&zone_status_lock);
4965 		mutex_exit(&zonehash_lock);
4966 		resume_mounts(zone);
4967 		zone_rele(zone);
4968 		return (0);
4969 	}
4970 	/*
4971 	 * If zone_shutdown() hasn't been called before, go through the motions.
4972 	 * If it has, there's nothing to do but wait for the kernel threads to
4973 	 * drain.
4974 	 */
4975 	if (status < ZONE_IS_EMPTY) {
4976 		uint_t ntasks;
4977 
4978 		mutex_enter(&zone->zone_lock);
4979 		if ((ntasks = zone->zone_ntasks) != 1) {
4980 			/*
4981 			 * There's still stuff running.
4982 			 */
4983 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4984 		}
4985 		mutex_exit(&zone->zone_lock);
4986 		if (ntasks == 1) {
4987 			/*
4988 			 * The only way to create another task is through
4989 			 * zone_enter(), which will block until we drop
4990 			 * zonehash_lock.  The zone is empty.
4991 			 */
4992 			if (zone->zone_kthreads == NULL) {
4993 				/*
4994 				 * Skip ahead to ZONE_IS_DOWN
4995 				 */
4996 				zone_status_set(zone, ZONE_IS_DOWN);
4997 			} else {
4998 				zone_status_set(zone, ZONE_IS_EMPTY);
4999 			}
5000 		}
5001 	}
5002 	mutex_exit(&zone_status_lock);
5003 	mutex_exit(&zonehash_lock);
5004 	resume_mounts(zone);
5005 
5006 	if (error = zone_empty(zone)) {
5007 		zone_rele(zone);
5008 		return (set_errno(error));
5009 	}
5010 	/*
5011 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
5012 	 * longer be notified of changes to the pools configuration, so
5013 	 * in order to not end up with a stale pool pointer, we point
5014 	 * ourselves at the default pool and remove all resource
5015 	 * visibility.  This is especially important as the zone_t may
5016 	 * languish on the deathrow for a very long time waiting for
5017 	 * cred's to drain out.
5018 	 *
5019 	 * This rebinding of the zone can happen multiple times
5020 	 * (presumably due to interrupted or parallel systemcalls)
5021 	 * without any adverse effects.
5022 	 */
5023 	if (pool_lock_intr() != 0) {
5024 		zone_rele(zone);
5025 		return (set_errno(EINTR));
5026 	}
5027 	if (pool_state == POOL_ENABLED) {
5028 		mutex_enter(&cpu_lock);
5029 		zone_pool_set(zone, pool_default);
5030 		/*
5031 		 * The zone no longer needs to be able to see any cpus.
5032 		 */
5033 		zone_pset_set(zone, ZONE_PS_INVAL);
5034 		mutex_exit(&cpu_lock);
5035 	}
5036 	pool_unlock();
5037 
5038 	/*
5039 	 * ZSD shutdown callbacks can be executed multiple times, hence
5040 	 * it is safe to not be holding any locks across this call.
5041 	 */
5042 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
5043 
5044 	mutex_enter(&zone_status_lock);
5045 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
5046 		zone_status_set(zone, ZONE_IS_DOWN);
5047 	mutex_exit(&zone_status_lock);
5048 
5049 	/*
5050 	 * Wait for kernel threads to drain.
5051 	 */
5052 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
5053 		zone_rele(zone);
5054 		return (set_errno(EINTR));
5055 	}
5056 
5057 	/*
5058 	 * Zone can be become down/destroyable even if the above wait
5059 	 * returns EINTR, so any code added here may never execute.
5060 	 * (i.e. don't add code here)
5061 	 */
5062 
5063 	zone_rele(zone);
5064 	return (0);
5065 }
5066 
5067 /*
5068  * Log the specified zone's reference counts.  The caller should not be
5069  * holding the zone's zone_lock.
5070  */
5071 static void
5072 zone_log_refcounts(zone_t *zone)
5073 {
5074 	char *buffer;
5075 	char *buffer_position;
5076 	uint32_t buffer_size;
5077 	uint32_t index;
5078 	uint_t ref;
5079 	uint_t cred_ref;
5080 
5081 	/*
5082 	 * Construct a string representing the subsystem-specific reference
5083 	 * counts.  The counts are printed in ascending order by index into the
5084 	 * zone_t::zone_subsys_ref array.  The list will be surrounded by
5085 	 * square brackets [] and will only contain nonzero reference counts.
5086 	 *
5087 	 * The buffer will hold two square bracket characters plus ten digits,
5088 	 * one colon, one space, one comma, and some characters for a
5089 	 * subsystem name per subsystem-specific reference count.  (Unsigned 32-
5090 	 * bit integers have at most ten decimal digits.)  The last
5091 	 * reference count's comma is replaced by the closing square
5092 	 * bracket and a NULL character to terminate the string.
5093 	 *
5094 	 * NOTE: We have to grab the zone's zone_lock to create a consistent
5095 	 * snapshot of the zone's reference counters.
5096 	 *
5097 	 * First, figure out how much space the string buffer will need.
5098 	 * The buffer's size is stored in buffer_size.
5099 	 */
5100 	buffer_size = 2;			/* for the square brackets */
5101 	mutex_enter(&zone->zone_lock);
5102 	zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
5103 	ref = zone->zone_ref;
5104 	cred_ref = zone->zone_cred_ref;
5105 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
5106 		if (zone->zone_subsys_ref[index] != 0)
5107 			buffer_size += strlen(zone_ref_subsys_names[index]) +
5108 			    13;
5109 	if (buffer_size == 2) {
5110 		/*
5111 		 * No subsystems had nonzero reference counts.  Don't bother
5112 		 * with allocating a buffer; just log the general-purpose and
5113 		 * credential reference counts.
5114 		 */
5115 		mutex_exit(&zone->zone_lock);
5116 		(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5117 		    "Zone '%s' (ID: %d) is shutting down, but %u zone "
5118 		    "references and %u credential references are still extant",
5119 		    zone->zone_name, zone->zone_id, ref, cred_ref);
5120 		return;
5121 	}
5122 
5123 	/*
5124 	 * buffer_size contains the exact number of characters that the
5125 	 * buffer will need.  Allocate the buffer and fill it with nonzero
5126 	 * subsystem-specific reference counts.  Surround the results with
5127 	 * square brackets afterwards.
5128 	 */
5129 	buffer = kmem_alloc(buffer_size, KM_SLEEP);
5130 	buffer_position = &buffer[1];
5131 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5132 		/*
5133 		 * NOTE: The DDI's version of sprintf() returns a pointer to
5134 		 * the modified buffer rather than the number of bytes written
5135 		 * (as in snprintf(3C)).  This is unfortunate and annoying.
5136 		 * Therefore, we'll use snprintf() with INT_MAX to get the
5137 		 * number of bytes written.  Using INT_MAX is safe because
5138 		 * the buffer is perfectly sized for the data: we'll never
5139 		 * overrun the buffer.
5140 		 */
5141 		if (zone->zone_subsys_ref[index] != 0)
5142 			buffer_position += snprintf(buffer_position, INT_MAX,
5143 			    "%s: %u,", zone_ref_subsys_names[index],
5144 			    zone->zone_subsys_ref[index]);
5145 	}
5146 	mutex_exit(&zone->zone_lock);
5147 	buffer[0] = '[';
5148 	ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5149 	ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5150 	buffer_position[-1] = ']';
5151 
5152 	/*
5153 	 * Log the reference counts and free the message buffer.
5154 	 */
5155 	(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5156 	    "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5157 	    "%u credential references are still extant %s", zone->zone_name,
5158 	    zone->zone_id, ref, cred_ref, buffer);
5159 	kmem_free(buffer, buffer_size);
5160 }
5161 
5162 /*
5163  * Systemcall entry point to finalize the zone halt process.  The caller
5164  * must have already successfully called zone_shutdown().
5165  *
5166  * Upon successful completion, the zone will have been fully destroyed:
5167  * zsched will have exited, destructor callbacks executed, and the zone
5168  * removed from the list of active zones.
5169  */
5170 static int
5171 zone_destroy(zoneid_t zoneid)
5172 {
5173 	uint64_t uniqid;
5174 	zone_t *zone;
5175 	zone_status_t status;
5176 	clock_t wait_time;
5177 	boolean_t log_refcounts;
5178 
5179 	if (secpolicy_zone_config(CRED()) != 0)
5180 		return (set_errno(EPERM));
5181 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5182 		return (set_errno(EINVAL));
5183 
5184 	mutex_enter(&zonehash_lock);
5185 	/*
5186 	 * Look for zone under hash lock to prevent races with other
5187 	 * calls to zone_destroy.
5188 	 */
5189 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5190 		mutex_exit(&zonehash_lock);
5191 		return (set_errno(EINVAL));
5192 	}
5193 
5194 	if (zone_mount_count(zone->zone_rootpath) != 0) {
5195 		mutex_exit(&zonehash_lock);
5196 		return (set_errno(EBUSY));
5197 	}
5198 	mutex_enter(&zone_status_lock);
5199 	status = zone_status_get(zone);
5200 	if (status < ZONE_IS_DOWN) {
5201 		mutex_exit(&zone_status_lock);
5202 		mutex_exit(&zonehash_lock);
5203 		return (set_errno(EBUSY));
5204 	} else if (status == ZONE_IS_DOWN) {
5205 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5206 	}
5207 	mutex_exit(&zone_status_lock);
5208 	zone_hold(zone);
5209 	mutex_exit(&zonehash_lock);
5210 
5211 	/*
5212 	 * wait for zsched to exit
5213 	 */
5214 	zone_status_wait(zone, ZONE_IS_DEAD);
5215 	zone_zsd_callbacks(zone, ZSD_DESTROY);
5216 	zone->zone_netstack = NULL;
5217 	uniqid = zone->zone_uniqid;
5218 	zone_rele(zone);
5219 	zone = NULL;	/* potentially free'd */
5220 
5221 	log_refcounts = B_FALSE;
5222 	wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5223 	mutex_enter(&zonehash_lock);
5224 	for (; /* ever */; ) {
5225 		boolean_t unref;
5226 		boolean_t refs_have_been_logged;
5227 
5228 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5229 		    zone->zone_uniqid != uniqid) {
5230 			/*
5231 			 * The zone has gone away.  Necessary conditions
5232 			 * are met, so we return success.
5233 			 */
5234 			mutex_exit(&zonehash_lock);
5235 			return (0);
5236 		}
5237 		mutex_enter(&zone->zone_lock);
5238 		unref = ZONE_IS_UNREF(zone);
5239 		refs_have_been_logged = (zone->zone_flags &
5240 		    ZF_REFCOUNTS_LOGGED);
5241 		mutex_exit(&zone->zone_lock);
5242 		if (unref) {
5243 			/*
5244 			 * There is only one reference to the zone -- that
5245 			 * added when the zone was added to the hashtables --
5246 			 * and things will remain this way until we drop
5247 			 * zonehash_lock... we can go ahead and cleanup the
5248 			 * zone.
5249 			 */
5250 			break;
5251 		}
5252 
5253 		/*
5254 		 * Wait for zone_rele_common() or zone_cred_rele() to signal
5255 		 * zone_destroy_cv.  zone_destroy_cv is signaled only when
5256 		 * some zone's general-purpose reference count reaches one.
5257 		 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5258 		 * on zone_destroy_cv, then log the zone's reference counts and
5259 		 * continue to wait for zone_rele() and zone_cred_rele().
5260 		 */
5261 		if (!refs_have_been_logged) {
5262 			if (!log_refcounts) {
5263 				/*
5264 				 * This thread hasn't timed out waiting on
5265 				 * zone_destroy_cv yet.  Wait wait_time clock
5266 				 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5267 				 * seconds) for the zone's references to clear.
5268 				 */
5269 				ASSERT(wait_time > 0);
5270 				wait_time = cv_reltimedwait_sig(
5271 				    &zone_destroy_cv, &zonehash_lock, wait_time,
5272 				    TR_SEC);
5273 				if (wait_time > 0) {
5274 					/*
5275 					 * A thread in zone_rele() or
5276 					 * zone_cred_rele() signaled
5277 					 * zone_destroy_cv before this thread's
5278 					 * wait timed out.  The zone might have
5279 					 * only one reference left; find out!
5280 					 */
5281 					continue;
5282 				} else if (wait_time == 0) {
5283 					/* The thread's process was signaled. */
5284 					mutex_exit(&zonehash_lock);
5285 					return (set_errno(EINTR));
5286 				}
5287 
5288 				/*
5289 				 * The thread timed out while waiting on
5290 				 * zone_destroy_cv.  Even though the thread
5291 				 * timed out, it has to check whether another
5292 				 * thread woke up from zone_destroy_cv and
5293 				 * destroyed the zone.
5294 				 *
5295 				 * If the zone still exists and has more than
5296 				 * one unreleased general-purpose reference,
5297 				 * then log the zone's reference counts.
5298 				 */
5299 				log_refcounts = B_TRUE;
5300 				continue;
5301 			}
5302 
5303 			/*
5304 			 * The thread already timed out on zone_destroy_cv while
5305 			 * waiting for subsystems to release the zone's last
5306 			 * general-purpose references.  Log the zone's reference
5307 			 * counts and wait indefinitely on zone_destroy_cv.
5308 			 */
5309 			zone_log_refcounts(zone);
5310 		}
5311 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5312 			/* The thread's process was signaled. */
5313 			mutex_exit(&zonehash_lock);
5314 			return (set_errno(EINTR));
5315 		}
5316 	}
5317 
5318 	/*
5319 	 * Remove CPU cap for this zone now since we're not going to
5320 	 * fail below this point.
5321 	 */
5322 	cpucaps_zone_remove(zone);
5323 
5324 	/* Get rid of the zone's kstats */
5325 	zone_kstat_delete(zone);
5326 
5327 	/* remove the pfexecd doors */
5328 	if (zone->zone_pfexecd != NULL) {
5329 		klpd_freelist(&zone->zone_pfexecd);
5330 		zone->zone_pfexecd = NULL;
5331 	}
5332 
5333 	/* free brand specific data */
5334 	if (ZONE_IS_BRANDED(zone))
5335 		ZBROP(zone)->b_free_brand_data(zone);
5336 
5337 	/* Say goodbye to brand framework. */
5338 	brand_unregister_zone(zone->zone_brand);
5339 
5340 	/*
5341 	 * It is now safe to let the zone be recreated; remove it from the
5342 	 * lists.  The memory will not be freed until the last cred
5343 	 * reference goes away.
5344 	 */
5345 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
5346 	zonecount--;
5347 	/* remove from active list and hash tables */
5348 	list_remove(&zone_active, zone);
5349 	(void) mod_hash_destroy(zonehashbyname,
5350 	    (mod_hash_key_t)zone->zone_name);
5351 	(void) mod_hash_destroy(zonehashbyid,
5352 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
5353 	if (zone->zone_flags & ZF_HASHED_LABEL)
5354 		(void) mod_hash_destroy(zonehashbylabel,
5355 		    (mod_hash_key_t)zone->zone_slabel);
5356 	mutex_exit(&zonehash_lock);
5357 
5358 	/*
5359 	 * Release the root vnode; we're not using it anymore.  Nor should any
5360 	 * other thread that might access it exist.
5361 	 */
5362 	if (zone->zone_rootvp != NULL) {
5363 		VN_RELE(zone->zone_rootvp);
5364 		zone->zone_rootvp = NULL;
5365 	}
5366 
5367 	/* add to deathrow list */
5368 	mutex_enter(&zone_deathrow_lock);
5369 	list_insert_tail(&zone_deathrow, zone);
5370 	mutex_exit(&zone_deathrow_lock);
5371 
5372 	/*
5373 	 * Drop last reference (which was added by zsched()), this will
5374 	 * free the zone unless there are outstanding cred references.
5375 	 */
5376 	zone_rele(zone);
5377 	return (0);
5378 }
5379 
5380 /*
5381  * Systemcall entry point for zone_getattr(2).
5382  */
5383 static ssize_t
5384 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5385 {
5386 	size_t size;
5387 	int error = 0, err;
5388 	zone_t *zone;
5389 	char *zonepath;
5390 	char *outstr;
5391 	zone_status_t zone_status;
5392 	pid_t initpid;
5393 	boolean_t global = (curzone == global_zone);
5394 	boolean_t inzone = (curzone->zone_id == zoneid);
5395 	ushort_t flags;
5396 	zone_net_data_t *zbuf;
5397 
5398 	mutex_enter(&zonehash_lock);
5399 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5400 		mutex_exit(&zonehash_lock);
5401 		return (set_errno(EINVAL));
5402 	}
5403 	zone_status = zone_status_get(zone);
5404 	if (zone_status < ZONE_IS_INITIALIZED) {
5405 		mutex_exit(&zonehash_lock);
5406 		return (set_errno(EINVAL));
5407 	}
5408 	zone_hold(zone);
5409 	mutex_exit(&zonehash_lock);
5410 
5411 	/*
5412 	 * If not in the global zone, don't show information about other zones,
5413 	 * unless the system is labeled and the local zone's label dominates
5414 	 * the other zone.
5415 	 */
5416 	if (!zone_list_access(zone)) {
5417 		zone_rele(zone);
5418 		return (set_errno(EINVAL));
5419 	}
5420 
5421 	switch (attr) {
5422 	case ZONE_ATTR_ROOT:
5423 		if (global) {
5424 			/*
5425 			 * Copy the path to trim the trailing "/" (except for
5426 			 * the global zone).
5427 			 */
5428 			if (zone != global_zone)
5429 				size = zone->zone_rootpathlen - 1;
5430 			else
5431 				size = zone->zone_rootpathlen;
5432 			zonepath = kmem_alloc(size, KM_SLEEP);
5433 			bcopy(zone->zone_rootpath, zonepath, size);
5434 			zonepath[size - 1] = '\0';
5435 		} else {
5436 			if (inzone || !is_system_labeled()) {
5437 				/*
5438 				 * Caller is not in the global zone.
5439 				 * if the query is on the current zone
5440 				 * or the system is not labeled,
5441 				 * just return faked-up path for current zone.
5442 				 */
5443 				zonepath = "/";
5444 				size = 2;
5445 			} else {
5446 				/*
5447 				 * Return related path for current zone.
5448 				 */
5449 				int prefix_len = strlen(zone_prefix);
5450 				int zname_len = strlen(zone->zone_name);
5451 
5452 				size = prefix_len + zname_len + 1;
5453 				zonepath = kmem_alloc(size, KM_SLEEP);
5454 				bcopy(zone_prefix, zonepath, prefix_len);
5455 				bcopy(zone->zone_name, zonepath +
5456 				    prefix_len, zname_len);
5457 				zonepath[size - 1] = '\0';
5458 			}
5459 		}
5460 		if (bufsize > size)
5461 			bufsize = size;
5462 		if (buf != NULL) {
5463 			err = copyoutstr(zonepath, buf, bufsize, NULL);
5464 			if (err != 0 && err != ENAMETOOLONG)
5465 				error = EFAULT;
5466 		}
5467 		if (global || (is_system_labeled() && !inzone))
5468 			kmem_free(zonepath, size);
5469 		break;
5470 
5471 	case ZONE_ATTR_NAME:
5472 		size = strlen(zone->zone_name) + 1;
5473 		if (bufsize > size)
5474 			bufsize = size;
5475 		if (buf != NULL) {
5476 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5477 			if (err != 0 && err != ENAMETOOLONG)
5478 				error = EFAULT;
5479 		}
5480 		break;
5481 
5482 	case ZONE_ATTR_STATUS:
5483 		/*
5484 		 * Since we're not holding zonehash_lock, the zone status
5485 		 * may be anything; leave it up to userland to sort it out.
5486 		 */
5487 		size = sizeof (zone_status);
5488 		if (bufsize > size)
5489 			bufsize = size;
5490 		zone_status = zone_status_get(zone);
5491 		if (buf != NULL &&
5492 		    copyout(&zone_status, buf, bufsize) != 0)
5493 			error = EFAULT;
5494 		break;
5495 	case ZONE_ATTR_FLAGS:
5496 		size = sizeof (zone->zone_flags);
5497 		if (bufsize > size)
5498 			bufsize = size;
5499 		flags = zone->zone_flags;
5500 		if (buf != NULL &&
5501 		    copyout(&flags, buf, bufsize) != 0)
5502 			error = EFAULT;
5503 		break;
5504 	case ZONE_ATTR_PRIVSET:
5505 		size = sizeof (priv_set_t);
5506 		if (bufsize > size)
5507 			bufsize = size;
5508 		if (buf != NULL &&
5509 		    copyout(zone->zone_privset, buf, bufsize) != 0)
5510 			error = EFAULT;
5511 		break;
5512 	case ZONE_ATTR_UNIQID:
5513 		size = sizeof (zone->zone_uniqid);
5514 		if (bufsize > size)
5515 			bufsize = size;
5516 		if (buf != NULL &&
5517 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5518 			error = EFAULT;
5519 		break;
5520 	case ZONE_ATTR_POOLID:
5521 		{
5522 			pool_t *pool;
5523 			poolid_t poolid;
5524 
5525 			if (pool_lock_intr() != 0) {
5526 				error = EINTR;
5527 				break;
5528 			}
5529 			pool = zone_pool_get(zone);
5530 			poolid = pool->pool_id;
5531 			pool_unlock();
5532 			size = sizeof (poolid);
5533 			if (bufsize > size)
5534 				bufsize = size;
5535 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
5536 				error = EFAULT;
5537 		}
5538 		break;
5539 	case ZONE_ATTR_SLBL:
5540 		size = sizeof (bslabel_t);
5541 		if (bufsize > size)
5542 			bufsize = size;
5543 		if (zone->zone_slabel == NULL)
5544 			error = EINVAL;
5545 		else if (buf != NULL &&
5546 		    copyout(label2bslabel(zone->zone_slabel), buf,
5547 		    bufsize) != 0)
5548 			error = EFAULT;
5549 		break;
5550 	case ZONE_ATTR_INITPID:
5551 		size = sizeof (initpid);
5552 		if (bufsize > size)
5553 			bufsize = size;
5554 		initpid = zone->zone_proc_initpid;
5555 		if (initpid == -1) {
5556 			error = ESRCH;
5557 			break;
5558 		}
5559 		if (buf != NULL &&
5560 		    copyout(&initpid, buf, bufsize) != 0)
5561 			error = EFAULT;
5562 		break;
5563 	case ZONE_ATTR_BRAND:
5564 		size = strlen(zone->zone_brand->b_name) + 1;
5565 
5566 		if (bufsize > size)
5567 			bufsize = size;
5568 		if (buf != NULL) {
5569 			err = copyoutstr(zone->zone_brand->b_name, buf,
5570 			    bufsize, NULL);
5571 			if (err != 0 && err != ENAMETOOLONG)
5572 				error = EFAULT;
5573 		}
5574 		break;
5575 	case ZONE_ATTR_INITNAME:
5576 		size = strlen(zone->zone_initname) + 1;
5577 		if (bufsize > size)
5578 			bufsize = size;
5579 		if (buf != NULL) {
5580 			err = copyoutstr(zone->zone_initname, buf, bufsize,
5581 			    NULL);
5582 			if (err != 0 && err != ENAMETOOLONG)
5583 				error = EFAULT;
5584 		}
5585 		break;
5586 	case ZONE_ATTR_BOOTARGS:
5587 		if (zone->zone_bootargs == NULL)
5588 			outstr = "";
5589 		else
5590 			outstr = zone->zone_bootargs;
5591 		size = strlen(outstr) + 1;
5592 		if (bufsize > size)
5593 			bufsize = size;
5594 		if (buf != NULL) {
5595 			err = copyoutstr(outstr, buf, bufsize, NULL);
5596 			if (err != 0 && err != ENAMETOOLONG)
5597 				error = EFAULT;
5598 		}
5599 		break;
5600 	case ZONE_ATTR_PHYS_MCAP:
5601 		size = sizeof (zone->zone_phys_mcap);
5602 		if (bufsize > size)
5603 			bufsize = size;
5604 		if (buf != NULL &&
5605 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5606 			error = EFAULT;
5607 		break;
5608 	case ZONE_ATTR_SCHED_CLASS:
5609 		mutex_enter(&class_lock);
5610 
5611 		if (zone->zone_defaultcid >= loaded_classes)
5612 			outstr = "";
5613 		else
5614 			outstr = sclass[zone->zone_defaultcid].cl_name;
5615 		size = strlen(outstr) + 1;
5616 		if (bufsize > size)
5617 			bufsize = size;
5618 		if (buf != NULL) {
5619 			err = copyoutstr(outstr, buf, bufsize, NULL);
5620 			if (err != 0 && err != ENAMETOOLONG)
5621 				error = EFAULT;
5622 		}
5623 
5624 		mutex_exit(&class_lock);
5625 		break;
5626 	case ZONE_ATTR_HOSTID:
5627 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
5628 		    bufsize == sizeof (zone->zone_hostid)) {
5629 			size = sizeof (zone->zone_hostid);
5630 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
5631 			    bufsize) != 0)
5632 				error = EFAULT;
5633 		} else {
5634 			error = EINVAL;
5635 		}
5636 		break;
5637 	case ZONE_ATTR_FS_ALLOWED:
5638 		if (zone->zone_fs_allowed == NULL)
5639 			outstr = "";
5640 		else
5641 			outstr = zone->zone_fs_allowed;
5642 		size = strlen(outstr) + 1;
5643 		if (bufsize > size)
5644 			bufsize = size;
5645 		if (buf != NULL) {
5646 			err = copyoutstr(outstr, buf, bufsize, NULL);
5647 			if (err != 0 && err != ENAMETOOLONG)
5648 				error = EFAULT;
5649 		}
5650 		break;
5651 	case ZONE_ATTR_SECFLAGS:
5652 		size = sizeof (zone->zone_secflags);
5653 		if (bufsize > size)
5654 			bufsize = size;
5655 		if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0)
5656 			error = EFAULT;
5657 		break;
5658 	case ZONE_ATTR_NETWORK:
5659 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5660 		if (copyin(buf, zbuf, bufsize) != 0) {
5661 			error = EFAULT;
5662 		} else {
5663 			error = zone_get_network(zoneid, zbuf);
5664 			if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5665 				error = EFAULT;
5666 		}
5667 		kmem_free(zbuf, bufsize);
5668 		break;
5669 	default:
5670 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5671 			size = bufsize;
5672 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5673 		} else {
5674 			error = EINVAL;
5675 		}
5676 	}
5677 	zone_rele(zone);
5678 
5679 	if (error)
5680 		return (set_errno(error));
5681 	return ((ssize_t)size);
5682 }
5683 
5684 /*
5685  * Systemcall entry point for zone_setattr(2).
5686  */
5687 /*ARGSUSED*/
5688 static int
5689 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5690 {
5691 	zone_t *zone;
5692 	zone_status_t zone_status;
5693 	int err = -1;
5694 	zone_net_data_t *zbuf;
5695 
5696 	if (secpolicy_zone_config(CRED()) != 0)
5697 		return (set_errno(EPERM));
5698 
5699 	/*
5700 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5701 	 * global zone.
5702 	 */
5703 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5704 		return (set_errno(EINVAL));
5705 	}
5706 
5707 	mutex_enter(&zonehash_lock);
5708 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5709 		mutex_exit(&zonehash_lock);
5710 		return (set_errno(EINVAL));
5711 	}
5712 	zone_hold(zone);
5713 	mutex_exit(&zonehash_lock);
5714 
5715 	/*
5716 	 * At present most attributes can only be set on non-running,
5717 	 * non-global zones.
5718 	 */
5719 	zone_status = zone_status_get(zone);
5720 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5721 		err = EINVAL;
5722 		goto done;
5723 	}
5724 
5725 	switch (attr) {
5726 	case ZONE_ATTR_INITNAME:
5727 		err = zone_set_initname(zone, (const char *)buf);
5728 		break;
5729 	case ZONE_ATTR_INITNORESTART:
5730 		zone->zone_restart_init = B_FALSE;
5731 		err = 0;
5732 		break;
5733 	case ZONE_ATTR_BOOTARGS:
5734 		err = zone_set_bootargs(zone, (const char *)buf);
5735 		break;
5736 	case ZONE_ATTR_BRAND:
5737 		err = zone_set_brand(zone, (const char *)buf);
5738 		break;
5739 	case ZONE_ATTR_FS_ALLOWED:
5740 		err = zone_set_fs_allowed(zone, (const char *)buf);
5741 		break;
5742 	case ZONE_ATTR_SECFLAGS:
5743 		err = zone_set_secflags(zone, (psecflags_t *)buf);
5744 		break;
5745 	case ZONE_ATTR_PHYS_MCAP:
5746 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5747 		break;
5748 	case ZONE_ATTR_SCHED_CLASS:
5749 		err = zone_set_sched_class(zone, (const char *)buf);
5750 		break;
5751 	case ZONE_ATTR_HOSTID:
5752 		if (bufsize == sizeof (zone->zone_hostid)) {
5753 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5754 				err = 0;
5755 			else
5756 				err = EFAULT;
5757 		} else {
5758 			err = EINVAL;
5759 		}
5760 		break;
5761 	case ZONE_ATTR_NETWORK:
5762 		if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5763 			err = EINVAL;
5764 			break;
5765 		}
5766 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5767 		if (copyin(buf, zbuf, bufsize) != 0) {
5768 			kmem_free(zbuf, bufsize);
5769 			err = EFAULT;
5770 			break;
5771 		}
5772 		err = zone_set_network(zoneid, zbuf);
5773 		kmem_free(zbuf, bufsize);
5774 		break;
5775 	default:
5776 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5777 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5778 		else
5779 			err = EINVAL;
5780 	}
5781 
5782 done:
5783 	zone_rele(zone);
5784 	ASSERT(err != -1);
5785 	return (err != 0 ? set_errno(err) : 0);
5786 }
5787 
5788 /*
5789  * Return zero if the process has at least one vnode mapped in to its
5790  * address space which shouldn't be allowed to change zones.
5791  *
5792  * Also return zero if the process has any shared mappings which reserve
5793  * swap.  This is because the counting for zone.max-swap does not allow swap
5794  * reservation to be shared between zones.  zone swap reservation is counted
5795  * on zone->zone_max_swap.
5796  */
5797 static int
5798 as_can_change_zones(void)
5799 {
5800 	proc_t *pp = curproc;
5801 	struct seg *seg;
5802 	struct as *as = pp->p_as;
5803 	vnode_t *vp;
5804 	int allow = 1;
5805 
5806 	ASSERT(pp->p_as != &kas);
5807 	AS_LOCK_ENTER(as, RW_READER);
5808 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5809 
5810 		/*
5811 		 * Cannot enter zone with shared anon memory which
5812 		 * reserves swap.  See comment above.
5813 		 */
5814 		if (seg_can_change_zones(seg) == B_FALSE) {
5815 			allow = 0;
5816 			break;
5817 		}
5818 		/*
5819 		 * if we can't get a backing vnode for this segment then skip
5820 		 * it.
5821 		 */
5822 		vp = NULL;
5823 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5824 			continue;
5825 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5826 			allow = 0;
5827 			break;
5828 		}
5829 	}
5830 	AS_LOCK_EXIT(as);
5831 	return (allow);
5832 }
5833 
5834 /*
5835  * Count swap reserved by curproc's address space
5836  */
5837 static size_t
5838 as_swresv(void)
5839 {
5840 	proc_t *pp = curproc;
5841 	struct seg *seg;
5842 	struct as *as = pp->p_as;
5843 	size_t swap = 0;
5844 
5845 	ASSERT(pp->p_as != &kas);
5846 	ASSERT(AS_WRITE_HELD(as));
5847 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5848 		swap += seg_swresv(seg);
5849 
5850 	return (swap);
5851 }
5852 
5853 /*
5854  * Systemcall entry point for zone_enter().
5855  *
5856  * The current process is injected into said zone.  In the process
5857  * it will change its project membership, privileges, rootdir/cwd,
5858  * zone-wide rctls, and pool association to match those of the zone.
5859  *
5860  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5861  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5862  * enter a zone that is "ready" or "running".
5863  */
5864 static int
5865 zone_enter(zoneid_t zoneid)
5866 {
5867 	zone_t *zone;
5868 	vnode_t *vp;
5869 	proc_t *pp = curproc;
5870 	contract_t *ct;
5871 	cont_process_t *ctp;
5872 	task_t *tk, *oldtk;
5873 	kproject_t *zone_proj0;
5874 	cred_t *cr, *newcr;
5875 	pool_t *oldpool, *newpool;
5876 	sess_t *sp;
5877 	uid_t uid;
5878 	zone_status_t status;
5879 	int err = 0;
5880 	rctl_entity_p_t e;
5881 	size_t swap;
5882 	kthread_id_t t;
5883 
5884 	if (secpolicy_zone_config(CRED()) != 0)
5885 		return (set_errno(EPERM));
5886 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5887 		return (set_errno(EINVAL));
5888 
5889 	/*
5890 	 * Stop all lwps so we don't need to hold a lock to look at
5891 	 * curproc->p_zone.  This needs to happen before we grab any
5892 	 * locks to avoid deadlock (another lwp in the process could
5893 	 * be waiting for the held lock).
5894 	 */
5895 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5896 		return (set_errno(EINTR));
5897 
5898 	/*
5899 	 * Make sure we're not changing zones with files open or mapped in
5900 	 * to our address space which shouldn't be changing zones.
5901 	 */
5902 	if (!files_can_change_zones()) {
5903 		err = EBADF;
5904 		goto out;
5905 	}
5906 	if (!as_can_change_zones()) {
5907 		err = EFAULT;
5908 		goto out;
5909 	}
5910 
5911 	mutex_enter(&zonehash_lock);
5912 	if (pp->p_zone != global_zone) {
5913 		mutex_exit(&zonehash_lock);
5914 		err = EINVAL;
5915 		goto out;
5916 	}
5917 
5918 	zone = zone_find_all_by_id(zoneid);
5919 	if (zone == NULL) {
5920 		mutex_exit(&zonehash_lock);
5921 		err = EINVAL;
5922 		goto out;
5923 	}
5924 
5925 	/*
5926 	 * To prevent processes in a zone from holding contracts on
5927 	 * extrazonal resources, and to avoid process contract
5928 	 * memberships which span zones, contract holders and processes
5929 	 * which aren't the sole members of their encapsulating process
5930 	 * contracts are not allowed to zone_enter.
5931 	 */
5932 	ctp = pp->p_ct_process;
5933 	ct = &ctp->conp_contract;
5934 	mutex_enter(&ct->ct_lock);
5935 	mutex_enter(&pp->p_lock);
5936 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5937 		mutex_exit(&pp->p_lock);
5938 		mutex_exit(&ct->ct_lock);
5939 		mutex_exit(&zonehash_lock);
5940 		err = EINVAL;
5941 		goto out;
5942 	}
5943 
5944 	/*
5945 	 * Moreover, we don't allow processes whose encapsulating
5946 	 * process contracts have inherited extrazonal contracts.
5947 	 * While it would be easier to eliminate all process contracts
5948 	 * with inherited contracts, we need to be able to give a
5949 	 * restarted init (or other zone-penetrating process) its
5950 	 * predecessor's contracts.
5951 	 */
5952 	if (ctp->conp_ninherited != 0) {
5953 		contract_t *next;
5954 		for (next = list_head(&ctp->conp_inherited); next;
5955 		    next = list_next(&ctp->conp_inherited, next)) {
5956 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5957 				mutex_exit(&pp->p_lock);
5958 				mutex_exit(&ct->ct_lock);
5959 				mutex_exit(&zonehash_lock);
5960 				err = EINVAL;
5961 				goto out;
5962 			}
5963 		}
5964 	}
5965 
5966 	mutex_exit(&pp->p_lock);
5967 	mutex_exit(&ct->ct_lock);
5968 
5969 	status = zone_status_get(zone);
5970 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5971 		/*
5972 		 * Can't join
5973 		 */
5974 		mutex_exit(&zonehash_lock);
5975 		err = EINVAL;
5976 		goto out;
5977 	}
5978 
5979 	/*
5980 	 * Make sure new priv set is within the permitted set for caller
5981 	 */
5982 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5983 		mutex_exit(&zonehash_lock);
5984 		err = EPERM;
5985 		goto out;
5986 	}
5987 	/*
5988 	 * We want to momentarily drop zonehash_lock while we optimistically
5989 	 * bind curproc to the pool it should be running in.  This is safe
5990 	 * since the zone can't disappear (we have a hold on it).
5991 	 */
5992 	zone_hold(zone);
5993 	mutex_exit(&zonehash_lock);
5994 
5995 	/*
5996 	 * Grab pool_lock to keep the pools configuration from changing
5997 	 * and to stop ourselves from getting rebound to another pool
5998 	 * until we join the zone.
5999 	 */
6000 	if (pool_lock_intr() != 0) {
6001 		zone_rele(zone);
6002 		err = EINTR;
6003 		goto out;
6004 	}
6005 	ASSERT(secpolicy_pool(CRED()) == 0);
6006 	/*
6007 	 * Bind ourselves to the pool currently associated with the zone.
6008 	 */
6009 	oldpool = curproc->p_pool;
6010 	newpool = zone_pool_get(zone);
6011 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
6012 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
6013 	    POOL_BIND_ALL)) != 0) {
6014 		pool_unlock();
6015 		zone_rele(zone);
6016 		goto out;
6017 	}
6018 
6019 	/*
6020 	 * Grab cpu_lock now; we'll need it later when we call
6021 	 * task_join().
6022 	 */
6023 	mutex_enter(&cpu_lock);
6024 	mutex_enter(&zonehash_lock);
6025 	/*
6026 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
6027 	 */
6028 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
6029 		/*
6030 		 * Can't join anymore.
6031 		 */
6032 		mutex_exit(&zonehash_lock);
6033 		mutex_exit(&cpu_lock);
6034 		if (pool_state == POOL_ENABLED &&
6035 		    newpool != oldpool)
6036 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
6037 			    POOL_BIND_ALL);
6038 		pool_unlock();
6039 		zone_rele(zone);
6040 		err = EINVAL;
6041 		goto out;
6042 	}
6043 
6044 	/*
6045 	 * a_lock must be held while transfering locked memory and swap
6046 	 * reservation from the global zone to the non global zone because
6047 	 * asynchronous faults on the processes' address space can lock
6048 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
6049 	 * segments respectively.
6050 	 */
6051 	AS_LOCK_ENTER(pp->p_as, RW_WRITER);
6052 	swap = as_swresv();
6053 	mutex_enter(&pp->p_lock);
6054 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
6055 	/* verify that we do not exceed and task or lwp limits */
6056 	mutex_enter(&zone->zone_nlwps_lock);
6057 	/* add new lwps to zone and zone's proj0 */
6058 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
6059 	zone->zone_nlwps += pp->p_lwpcnt;
6060 	/* add 1 task to zone's proj0 */
6061 	zone_proj0->kpj_ntasks += 1;
6062 
6063 	zone_proj0->kpj_nprocs++;
6064 	zone->zone_nprocs++;
6065 	mutex_exit(&zone->zone_nlwps_lock);
6066 
6067 	mutex_enter(&zone->zone_mem_lock);
6068 	zone->zone_locked_mem += pp->p_locked_mem;
6069 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
6070 	zone->zone_max_swap += swap;
6071 	mutex_exit(&zone->zone_mem_lock);
6072 
6073 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
6074 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
6075 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
6076 
6077 	/* remove lwps and process from proc's old zone and old project */
6078 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
6079 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
6080 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
6081 	pp->p_task->tk_proj->kpj_nprocs--;
6082 	pp->p_zone->zone_nprocs--;
6083 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
6084 
6085 	mutex_enter(&pp->p_zone->zone_mem_lock);
6086 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
6087 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
6088 	pp->p_zone->zone_max_swap -= swap;
6089 	mutex_exit(&pp->p_zone->zone_mem_lock);
6090 
6091 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6092 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
6093 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6094 
6095 	pp->p_flag |= SZONETOP;
6096 	pp->p_zone = zone;
6097 	mutex_exit(&pp->p_lock);
6098 	AS_LOCK_EXIT(pp->p_as);
6099 
6100 	/*
6101 	 * Joining the zone cannot fail from now on.
6102 	 *
6103 	 * This means that a lot of the following code can be commonized and
6104 	 * shared with zsched().
6105 	 */
6106 
6107 	/*
6108 	 * If the process contract fmri was inherited, we need to
6109 	 * flag this so that any contract status will not leak
6110 	 * extra zone information, svc_fmri in this case
6111 	 */
6112 	if (ctp->conp_svc_ctid != ct->ct_id) {
6113 		mutex_enter(&ct->ct_lock);
6114 		ctp->conp_svc_zone_enter = ct->ct_id;
6115 		mutex_exit(&ct->ct_lock);
6116 	}
6117 
6118 	/*
6119 	 * Reset the encapsulating process contract's zone.
6120 	 */
6121 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
6122 	contract_setzuniqid(ct, zone->zone_uniqid);
6123 
6124 	/*
6125 	 * Create a new task and associate the process with the project keyed
6126 	 * by (projid,zoneid).
6127 	 *
6128 	 * We might as well be in project 0; the global zone's projid doesn't
6129 	 * make much sense in a zone anyhow.
6130 	 *
6131 	 * This also increments zone_ntasks, and returns with p_lock held.
6132 	 */
6133 	tk = task_create(0, zone);
6134 	oldtk = task_join(tk, 0);
6135 	mutex_exit(&cpu_lock);
6136 
6137 	/*
6138 	 * call RCTLOP_SET functions on this proc
6139 	 */
6140 	e.rcep_p.zone = zone;
6141 	e.rcep_t = RCENTITY_ZONE;
6142 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6143 	    RCD_CALLBACK);
6144 	mutex_exit(&pp->p_lock);
6145 
6146 	/*
6147 	 * We don't need to hold any of zsched's locks here; not only do we know
6148 	 * the process and zone aren't going away, we know its session isn't
6149 	 * changing either.
6150 	 *
6151 	 * By joining zsched's session here, we mimic the behavior in the
6152 	 * global zone of init's sid being the pid of sched.  We extend this
6153 	 * to all zlogin-like zone_enter()'ing processes as well.
6154 	 */
6155 	mutex_enter(&pidlock);
6156 	sp = zone->zone_zsched->p_sessp;
6157 	sess_hold(zone->zone_zsched);
6158 	mutex_enter(&pp->p_lock);
6159 	pgexit(pp);
6160 	sess_rele(pp->p_sessp, B_TRUE);
6161 	pp->p_sessp = sp;
6162 	pgjoin(pp, zone->zone_zsched->p_pidp);
6163 
6164 	/*
6165 	 * If any threads are scheduled to be placed on zone wait queue they
6166 	 * should abandon the idea since the wait queue is changing.
6167 	 * We need to be holding pidlock & p_lock to do this.
6168 	 */
6169 	if ((t = pp->p_tlist) != NULL) {
6170 		do {
6171 			thread_lock(t);
6172 			/*
6173 			 * Kick this thread so that it doesn't sit
6174 			 * on a wrong wait queue.
6175 			 */
6176 			if (ISWAITING(t))
6177 				setrun_locked(t);
6178 
6179 			if (t->t_schedflag & TS_ANYWAITQ)
6180 				t->t_schedflag &= ~ TS_ANYWAITQ;
6181 
6182 			thread_unlock(t);
6183 		} while ((t = t->t_forw) != pp->p_tlist);
6184 	}
6185 
6186 	/*
6187 	 * If there is a default scheduling class for the zone and it is not
6188 	 * the class we are currently in, change all of the threads in the
6189 	 * process to the new class.  We need to be holding pidlock & p_lock
6190 	 * when we call parmsset so this is a good place to do it.
6191 	 */
6192 	if (zone->zone_defaultcid > 0 &&
6193 	    zone->zone_defaultcid != curthread->t_cid) {
6194 		pcparms_t pcparms;
6195 
6196 		pcparms.pc_cid = zone->zone_defaultcid;
6197 		pcparms.pc_clparms[0] = 0;
6198 
6199 		/*
6200 		 * If setting the class fails, we still want to enter the zone.
6201 		 */
6202 		if ((t = pp->p_tlist) != NULL) {
6203 			do {
6204 				(void) parmsset(&pcparms, t);
6205 			} while ((t = t->t_forw) != pp->p_tlist);
6206 		}
6207 	}
6208 
6209 	mutex_exit(&pp->p_lock);
6210 	mutex_exit(&pidlock);
6211 
6212 	mutex_exit(&zonehash_lock);
6213 	/*
6214 	 * We're firmly in the zone; let pools progress.
6215 	 */
6216 	pool_unlock();
6217 	task_rele(oldtk);
6218 	/*
6219 	 * We don't need to retain a hold on the zone since we already
6220 	 * incremented zone_ntasks, so the zone isn't going anywhere.
6221 	 */
6222 	zone_rele(zone);
6223 
6224 	/*
6225 	 * Chroot
6226 	 */
6227 	vp = zone->zone_rootvp;
6228 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6229 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6230 
6231 	/*
6232 	 * Change process security flags.  Note that the _effective_ flags
6233 	 * cannot change
6234 	 */
6235 	secflags_copy(&pp->p_secflags.psf_lower,
6236 	    &zone->zone_secflags.psf_lower);
6237 	secflags_copy(&pp->p_secflags.psf_upper,
6238 	    &zone->zone_secflags.psf_upper);
6239 	secflags_copy(&pp->p_secflags.psf_inherit,
6240 	    &zone->zone_secflags.psf_inherit);
6241 
6242 	/*
6243 	 * Change process credentials
6244 	 */
6245 	newcr = cralloc();
6246 	mutex_enter(&pp->p_crlock);
6247 	cr = pp->p_cred;
6248 	crcopy_to(cr, newcr);
6249 	crsetzone(newcr, zone);
6250 	pp->p_cred = newcr;
6251 
6252 	/*
6253 	 * Restrict all process privilege sets to zone limit
6254 	 */
6255 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6256 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6257 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6258 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6259 	mutex_exit(&pp->p_crlock);
6260 	crset(pp, newcr);
6261 
6262 	/*
6263 	 * Adjust upcount to reflect zone entry.
6264 	 */
6265 	uid = crgetruid(newcr);
6266 	mutex_enter(&pidlock);
6267 	upcount_dec(uid, GLOBAL_ZONEID);
6268 	upcount_inc(uid, zoneid);
6269 	mutex_exit(&pidlock);
6270 
6271 	/*
6272 	 * Set up core file path and content.
6273 	 */
6274 	set_core_defaults();
6275 
6276 out:
6277 	/*
6278 	 * Let the other lwps continue.
6279 	 */
6280 	mutex_enter(&pp->p_lock);
6281 	if (curthread != pp->p_agenttp)
6282 		continuelwps(pp);
6283 	mutex_exit(&pp->p_lock);
6284 
6285 	return (err != 0 ? set_errno(err) : 0);
6286 }
6287 
6288 /*
6289  * Systemcall entry point for zone_list(2).
6290  *
6291  * Processes running in a (non-global) zone only see themselves.
6292  * On labeled systems, they see all zones whose label they dominate.
6293  */
6294 static int
6295 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6296 {
6297 	zoneid_t *zoneids;
6298 	zone_t *zone, *myzone;
6299 	uint_t user_nzones, real_nzones;
6300 	uint_t domi_nzones;
6301 	int error;
6302 
6303 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6304 		return (set_errno(EFAULT));
6305 
6306 	myzone = curproc->p_zone;
6307 	if (myzone != global_zone) {
6308 		bslabel_t *mybslab;
6309 
6310 		if (!is_system_labeled()) {
6311 			/* just return current zone */
6312 			real_nzones = domi_nzones = 1;
6313 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6314 			zoneids[0] = myzone->zone_id;
6315 		} else {
6316 			/* return all zones that are dominated */
6317 			mutex_enter(&zonehash_lock);
6318 			real_nzones = zonecount;
6319 			domi_nzones = 0;
6320 			if (real_nzones > 0) {
6321 				zoneids = kmem_alloc(real_nzones *
6322 				    sizeof (zoneid_t), KM_SLEEP);
6323 				mybslab = label2bslabel(myzone->zone_slabel);
6324 				for (zone = list_head(&zone_active);
6325 				    zone != NULL;
6326 				    zone = list_next(&zone_active, zone)) {
6327 					if (zone->zone_id == GLOBAL_ZONEID)
6328 						continue;
6329 					if (zone != myzone &&
6330 					    (zone->zone_flags & ZF_IS_SCRATCH))
6331 						continue;
6332 					/*
6333 					 * Note that a label always dominates
6334 					 * itself, so myzone is always included
6335 					 * in the list.
6336 					 */
6337 					if (bldominates(mybslab,
6338 					    label2bslabel(zone->zone_slabel))) {
6339 						zoneids[domi_nzones++] =
6340 						    zone->zone_id;
6341 					}
6342 				}
6343 			}
6344 			mutex_exit(&zonehash_lock);
6345 		}
6346 	} else {
6347 		mutex_enter(&zonehash_lock);
6348 		real_nzones = zonecount;
6349 		domi_nzones = 0;
6350 		if (real_nzones > 0) {
6351 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6352 			    KM_SLEEP);
6353 			for (zone = list_head(&zone_active); zone != NULL;
6354 			    zone = list_next(&zone_active, zone))
6355 				zoneids[domi_nzones++] = zone->zone_id;
6356 			ASSERT(domi_nzones == real_nzones);
6357 		}
6358 		mutex_exit(&zonehash_lock);
6359 	}
6360 
6361 	/*
6362 	 * If user has allocated space for fewer entries than we found, then
6363 	 * return only up to their limit.  Either way, tell them exactly how
6364 	 * many we found.
6365 	 */
6366 	if (domi_nzones < user_nzones)
6367 		user_nzones = domi_nzones;
6368 	error = 0;
6369 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6370 		error = EFAULT;
6371 	} else if (zoneidlist != NULL && user_nzones != 0) {
6372 		if (copyout(zoneids, zoneidlist,
6373 		    user_nzones * sizeof (zoneid_t)) != 0)
6374 			error = EFAULT;
6375 	}
6376 
6377 	if (real_nzones > 0)
6378 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6379 
6380 	if (error != 0)
6381 		return (set_errno(error));
6382 	else
6383 		return (0);
6384 }
6385 
6386 /*
6387  * Systemcall entry point for zone_lookup(2).
6388  *
6389  * Non-global zones are only able to see themselves and (on labeled systems)
6390  * the zones they dominate.
6391  */
6392 static zoneid_t
6393 zone_lookup(const char *zone_name)
6394 {
6395 	char *kname;
6396 	zone_t *zone;
6397 	zoneid_t zoneid;
6398 	int err;
6399 
6400 	if (zone_name == NULL) {
6401 		/* return caller's zone id */
6402 		return (getzoneid());
6403 	}
6404 
6405 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6406 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6407 		kmem_free(kname, ZONENAME_MAX);
6408 		return (set_errno(err));
6409 	}
6410 
6411 	mutex_enter(&zonehash_lock);
6412 	zone = zone_find_all_by_name(kname);
6413 	kmem_free(kname, ZONENAME_MAX);
6414 	/*
6415 	 * In a non-global zone, can only lookup global and own name.
6416 	 * In Trusted Extensions zone label dominance rules apply.
6417 	 */
6418 	if (zone == NULL ||
6419 	    zone_status_get(zone) < ZONE_IS_READY ||
6420 	    !zone_list_access(zone)) {
6421 		mutex_exit(&zonehash_lock);
6422 		return (set_errno(EINVAL));
6423 	} else {
6424 		zoneid = zone->zone_id;
6425 		mutex_exit(&zonehash_lock);
6426 		return (zoneid);
6427 	}
6428 }
6429 
6430 static int
6431 zone_version(int *version_arg)
6432 {
6433 	int version = ZONE_SYSCALL_API_VERSION;
6434 
6435 	if (copyout(&version, version_arg, sizeof (int)) != 0)
6436 		return (set_errno(EFAULT));
6437 	return (0);
6438 }
6439 
6440 /* ARGSUSED */
6441 long
6442 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6443 {
6444 	zone_def zs;
6445 	int err;
6446 
6447 	switch (cmd) {
6448 	case ZONE_CREATE:
6449 		if (get_udatamodel() == DATAMODEL_NATIVE) {
6450 			if (copyin(arg1, &zs, sizeof (zone_def))) {
6451 				return (set_errno(EFAULT));
6452 			}
6453 		} else {
6454 #ifdef _SYSCALL32_IMPL
6455 			zone_def32 zs32;
6456 
6457 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6458 				return (set_errno(EFAULT));
6459 			}
6460 			zs.zone_name =
6461 			    (const char *)(unsigned long)zs32.zone_name;
6462 			zs.zone_root =
6463 			    (const char *)(unsigned long)zs32.zone_root;
6464 			zs.zone_privs =
6465 			    (const struct priv_set *)
6466 			    (unsigned long)zs32.zone_privs;
6467 			zs.zone_privssz = zs32.zone_privssz;
6468 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6469 			zs.rctlbufsz = zs32.rctlbufsz;
6470 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6471 			zs.zfsbufsz = zs32.zfsbufsz;
6472 			zs.extended_error =
6473 			    (int *)(unsigned long)zs32.extended_error;
6474 			zs.match = zs32.match;
6475 			zs.doi = zs32.doi;
6476 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6477 			zs.flags = zs32.flags;
6478 #else
6479 			panic("get_udatamodel() returned bogus result\n");
6480 #endif
6481 		}
6482 
6483 		return (zone_create(zs.zone_name, zs.zone_root,
6484 		    zs.zone_privs, zs.zone_privssz,
6485 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6486 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6487 		    zs.extended_error, zs.match, zs.doi,
6488 		    zs.label, zs.flags));
6489 	case ZONE_BOOT:
6490 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
6491 	case ZONE_DESTROY:
6492 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6493 	case ZONE_GETATTR:
6494 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6495 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6496 	case ZONE_SETATTR:
6497 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6498 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6499 	case ZONE_ENTER:
6500 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
6501 	case ZONE_LIST:
6502 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6503 	case ZONE_SHUTDOWN:
6504 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6505 	case ZONE_LOOKUP:
6506 		return (zone_lookup((const char *)arg1));
6507 	case ZONE_VERSION:
6508 		return (zone_version((int *)arg1));
6509 	case ZONE_ADD_DATALINK:
6510 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6511 		    (datalink_id_t)(uintptr_t)arg2));
6512 	case ZONE_DEL_DATALINK:
6513 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6514 		    (datalink_id_t)(uintptr_t)arg2));
6515 	case ZONE_CHECK_DATALINK: {
6516 		zoneid_t	zoneid;
6517 		boolean_t	need_copyout;
6518 
6519 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6520 			return (EFAULT);
6521 		need_copyout = (zoneid == ALL_ZONES);
6522 		err = zone_check_datalink(&zoneid,
6523 		    (datalink_id_t)(uintptr_t)arg2);
6524 		if (err == 0 && need_copyout) {
6525 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6526 				err = EFAULT;
6527 		}
6528 		return (err == 0 ? 0 : set_errno(err));
6529 	}
6530 	case ZONE_LIST_DATALINK:
6531 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6532 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6533 	default:
6534 		return (set_errno(EINVAL));
6535 	}
6536 }
6537 
6538 struct zarg {
6539 	zone_t *zone;
6540 	zone_cmd_arg_t arg;
6541 };
6542 
6543 static int
6544 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6545 {
6546 	char *buf;
6547 	size_t buflen;
6548 	int error;
6549 
6550 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6551 	buf = kmem_alloc(buflen, KM_SLEEP);
6552 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6553 	error = door_ki_open(buf, doorp);
6554 	kmem_free(buf, buflen);
6555 	return (error);
6556 }
6557 
6558 static void
6559 zone_release_door(door_handle_t *doorp)
6560 {
6561 	door_ki_rele(*doorp);
6562 	*doorp = NULL;
6563 }
6564 
6565 static void
6566 zone_ki_call_zoneadmd(struct zarg *zargp)
6567 {
6568 	door_handle_t door = NULL;
6569 	door_arg_t darg, save_arg;
6570 	char *zone_name;
6571 	size_t zone_namelen;
6572 	zoneid_t zoneid;
6573 	zone_t *zone;
6574 	zone_cmd_arg_t arg;
6575 	uint64_t uniqid;
6576 	size_t size;
6577 	int error;
6578 	int retry;
6579 
6580 	zone = zargp->zone;
6581 	arg = zargp->arg;
6582 	kmem_free(zargp, sizeof (*zargp));
6583 
6584 	zone_namelen = strlen(zone->zone_name) + 1;
6585 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6586 	bcopy(zone->zone_name, zone_name, zone_namelen);
6587 	zoneid = zone->zone_id;
6588 	uniqid = zone->zone_uniqid;
6589 	/*
6590 	 * zoneadmd may be down, but at least we can empty out the zone.
6591 	 * We can ignore the return value of zone_empty() since we're called
6592 	 * from a kernel thread and know we won't be delivered any signals.
6593 	 */
6594 	ASSERT(curproc == &p0);
6595 	(void) zone_empty(zone);
6596 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6597 	zone_rele(zone);
6598 
6599 	size = sizeof (arg);
6600 	darg.rbuf = (char *)&arg;
6601 	darg.data_ptr = (char *)&arg;
6602 	darg.rsize = size;
6603 	darg.data_size = size;
6604 	darg.desc_ptr = NULL;
6605 	darg.desc_num = 0;
6606 
6607 	save_arg = darg;
6608 	/*
6609 	 * Since we're not holding a reference to the zone, any number of
6610 	 * things can go wrong, including the zone disappearing before we get a
6611 	 * chance to talk to zoneadmd.
6612 	 */
6613 	for (retry = 0; /* forever */; retry++) {
6614 		if (door == NULL &&
6615 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
6616 			goto next;
6617 		}
6618 		ASSERT(door != NULL);
6619 
6620 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
6621 		    SIZE_MAX, 0)) == 0) {
6622 			break;
6623 		}
6624 		switch (error) {
6625 		case EINTR:
6626 			/* FALLTHROUGH */
6627 		case EAGAIN:	/* process may be forking */
6628 			/*
6629 			 * Back off for a bit
6630 			 */
6631 			break;
6632 		case EBADF:
6633 			zone_release_door(&door);
6634 			if (zone_lookup_door(zone_name, &door) != 0) {
6635 				/*
6636 				 * zoneadmd may be dead, but it may come back to
6637 				 * life later.
6638 				 */
6639 				break;
6640 			}
6641 			break;
6642 		default:
6643 			cmn_err(CE_WARN,
6644 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6645 			    error);
6646 			goto out;
6647 		}
6648 next:
6649 		/*
6650 		 * If this isn't the same zone_t that we originally had in mind,
6651 		 * then this is the same as if two kadmin requests come in at
6652 		 * the same time: the first one wins.  This means we lose, so we
6653 		 * bail.
6654 		 */
6655 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
6656 			/*
6657 			 * Problem is solved.
6658 			 */
6659 			break;
6660 		}
6661 		if (zone->zone_uniqid != uniqid) {
6662 			/*
6663 			 * zoneid recycled
6664 			 */
6665 			zone_rele(zone);
6666 			break;
6667 		}
6668 		/*
6669 		 * We could zone_status_timedwait(), but there doesn't seem to
6670 		 * be much point in doing that (plus, it would mean that
6671 		 * zone_free() isn't called until this thread exits).
6672 		 */
6673 		zone_rele(zone);
6674 		delay(hz);
6675 		darg = save_arg;
6676 	}
6677 out:
6678 	if (door != NULL) {
6679 		zone_release_door(&door);
6680 	}
6681 	kmem_free(zone_name, zone_namelen);
6682 	thread_exit();
6683 }
6684 
6685 /*
6686  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
6687  * kadmin().  The caller is a process in the zone.
6688  *
6689  * In order to shutdown the zone, we will hand off control to zoneadmd
6690  * (running in the global zone) via a door.  We do a half-hearted job at
6691  * killing all processes in the zone, create a kernel thread to contact
6692  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
6693  * a form of generation number used to let zoneadmd (as well as
6694  * zone_destroy()) know exactly which zone they're re talking about.
6695  */
6696 int
6697 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6698 {
6699 	struct zarg *zargp;
6700 	zone_cmd_t zcmd;
6701 	zone_t *zone;
6702 
6703 	zone = curproc->p_zone;
6704 	ASSERT(getzoneid() != GLOBAL_ZONEID);
6705 
6706 	switch (cmd) {
6707 	case A_SHUTDOWN:
6708 		switch (fcn) {
6709 		case AD_HALT:
6710 		case AD_POWEROFF:
6711 			zcmd = Z_HALT;
6712 			break;
6713 		case AD_BOOT:
6714 			zcmd = Z_REBOOT;
6715 			break;
6716 		case AD_IBOOT:
6717 		case AD_SBOOT:
6718 		case AD_SIBOOT:
6719 		case AD_NOSYNC:
6720 			return (ENOTSUP);
6721 		default:
6722 			return (EINVAL);
6723 		}
6724 		break;
6725 	case A_REBOOT:
6726 		zcmd = Z_REBOOT;
6727 		break;
6728 	case A_FTRACE:
6729 	case A_REMOUNT:
6730 	case A_FREEZE:
6731 	case A_DUMP:
6732 	case A_CONFIG:
6733 		return (ENOTSUP);
6734 	default:
6735 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
6736 		return (EINVAL);
6737 	}
6738 
6739 	if (secpolicy_zone_admin(credp, B_FALSE))
6740 		return (EPERM);
6741 	mutex_enter(&zone_status_lock);
6742 
6743 	/*
6744 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6745 	 * is in the zone.
6746 	 */
6747 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6748 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6749 		/*
6750 		 * This zone is already on its way down.
6751 		 */
6752 		mutex_exit(&zone_status_lock);
6753 		return (0);
6754 	}
6755 	/*
6756 	 * Prevent future zone_enter()s
6757 	 */
6758 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6759 	mutex_exit(&zone_status_lock);
6760 
6761 	/*
6762 	 * Kill everyone now and call zoneadmd later.
6763 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
6764 	 * later.
6765 	 */
6766 	killall(zone->zone_id);
6767 	/*
6768 	 * Now, create the thread to contact zoneadmd and do the rest of the
6769 	 * work.  This thread can't be created in our zone otherwise
6770 	 * zone_destroy() would deadlock.
6771 	 */
6772 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6773 	zargp->arg.cmd = zcmd;
6774 	zargp->arg.uniqid = zone->zone_uniqid;
6775 	zargp->zone = zone;
6776 	(void) strcpy(zargp->arg.locale, "C");
6777 	/* mdep was already copied in for us by uadmin */
6778 	if (mdep != NULL)
6779 		(void) strlcpy(zargp->arg.bootbuf, mdep,
6780 		    sizeof (zargp->arg.bootbuf));
6781 	zone_hold(zone);
6782 
6783 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6784 	    TS_RUN, minclsyspri);
6785 	exit(CLD_EXITED, 0);
6786 
6787 	return (EINVAL);
6788 }
6789 
6790 /*
6791  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6792  * status to ZONE_IS_SHUTTING_DOWN.
6793  *
6794  * This function also shuts down all running zones to ensure that they won't
6795  * fork new processes.
6796  */
6797 void
6798 zone_shutdown_global(void)
6799 {
6800 	zone_t *current_zonep;
6801 
6802 	ASSERT(INGLOBALZONE(curproc));
6803 	mutex_enter(&zonehash_lock);
6804 	mutex_enter(&zone_status_lock);
6805 
6806 	/* Modify the global zone's status first. */
6807 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6808 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6809 
6810 	/*
6811 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6812 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6813 	 * could cause assertions to fail (e.g., assertions about a zone's
6814 	 * state during initialization, readying, or booting) or produce races.
6815 	 * We'll let threads continue to initialize and ready new zones: they'll
6816 	 * fail to boot the new zones when they see that the global zone is
6817 	 * shutting down.
6818 	 */
6819 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6820 	    current_zonep = list_next(&zone_active, current_zonep)) {
6821 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6822 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6823 	}
6824 	mutex_exit(&zone_status_lock);
6825 	mutex_exit(&zonehash_lock);
6826 }
6827 
6828 /*
6829  * Returns true if the named dataset is visible in the current zone.
6830  * The 'write' parameter is set to 1 if the dataset is also writable.
6831  */
6832 int
6833 zone_dataset_visible(const char *dataset, int *write)
6834 {
6835 	static int zfstype = -1;
6836 	zone_dataset_t *zd;
6837 	size_t len;
6838 	zone_t *zone = curproc->p_zone;
6839 	const char *name = NULL;
6840 	vfs_t *vfsp = NULL;
6841 
6842 	if (dataset[0] == '\0')
6843 		return (0);
6844 
6845 	/*
6846 	 * Walk the list once, looking for datasets which match exactly, or
6847 	 * specify a dataset underneath an exported dataset.  If found, return
6848 	 * true and note that it is writable.
6849 	 */
6850 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6851 	    zd = list_next(&zone->zone_datasets, zd)) {
6852 
6853 		len = strlen(zd->zd_dataset);
6854 		if (strlen(dataset) >= len &&
6855 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6856 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6857 		    dataset[len] == '@')) {
6858 			if (write)
6859 				*write = 1;
6860 			return (1);
6861 		}
6862 	}
6863 
6864 	/*
6865 	 * Walk the list a second time, searching for datasets which are parents
6866 	 * of exported datasets.  These should be visible, but read-only.
6867 	 *
6868 	 * Note that we also have to support forms such as 'pool/dataset/', with
6869 	 * a trailing slash.
6870 	 */
6871 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6872 	    zd = list_next(&zone->zone_datasets, zd)) {
6873 
6874 		len = strlen(dataset);
6875 		if (dataset[len - 1] == '/')
6876 			len--;	/* Ignore trailing slash */
6877 		if (len < strlen(zd->zd_dataset) &&
6878 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6879 		    zd->zd_dataset[len] == '/') {
6880 			if (write)
6881 				*write = 0;
6882 			return (1);
6883 		}
6884 	}
6885 
6886 	/*
6887 	 * We reach here if the given dataset is not found in the zone_dataset
6888 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6889 	 * instead of delegation. For this we search for the dataset in the
6890 	 * zone_vfslist of this zone. If found, return true and note that it is
6891 	 * not writable.
6892 	 */
6893 
6894 	/*
6895 	 * Initialize zfstype if it is not initialized yet.
6896 	 */
6897 	if (zfstype == -1) {
6898 		struct vfssw *vswp = vfs_getvfssw("zfs");
6899 		zfstype = vswp - vfssw;
6900 		vfs_unrefvfssw(vswp);
6901 	}
6902 
6903 	vfs_list_read_lock();
6904 	vfsp = zone->zone_vfslist;
6905 	do {
6906 		ASSERT(vfsp);
6907 		if (vfsp->vfs_fstype == zfstype) {
6908 			name = refstr_value(vfsp->vfs_resource);
6909 
6910 			/*
6911 			 * Check if we have an exact match.
6912 			 */
6913 			if (strcmp(dataset, name) == 0) {
6914 				vfs_list_unlock();
6915 				if (write)
6916 					*write = 0;
6917 				return (1);
6918 			}
6919 			/*
6920 			 * We need to check if we are looking for parents of
6921 			 * a dataset. These should be visible, but read-only.
6922 			 */
6923 			len = strlen(dataset);
6924 			if (dataset[len - 1] == '/')
6925 				len--;
6926 
6927 			if (len < strlen(name) &&
6928 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6929 				vfs_list_unlock();
6930 				if (write)
6931 					*write = 0;
6932 				return (1);
6933 			}
6934 		}
6935 		vfsp = vfsp->vfs_zone_next;
6936 	} while (vfsp != zone->zone_vfslist);
6937 
6938 	vfs_list_unlock();
6939 	return (0);
6940 }
6941 
6942 /*
6943  * zone_find_by_any_path() -
6944  *
6945  * kernel-private routine similar to zone_find_by_path(), but which
6946  * effectively compares against zone paths rather than zonerootpath
6947  * (i.e., the last component of zonerootpaths, which should be "root/",
6948  * are not compared.)  This is done in order to accurately identify all
6949  * paths, whether zone-visible or not, including those which are parallel
6950  * to /root/, such as /dev/, /home/, etc...
6951  *
6952  * If the specified path does not fall under any zone path then global
6953  * zone is returned.
6954  *
6955  * The treat_abs parameter indicates whether the path should be treated as
6956  * an absolute path although it does not begin with "/".  (This supports
6957  * nfs mount syntax such as host:any/path.)
6958  *
6959  * The caller is responsible for zone_rele of the returned zone.
6960  */
6961 zone_t *
6962 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6963 {
6964 	zone_t *zone;
6965 	int path_offset = 0;
6966 
6967 	if (path == NULL) {
6968 		zone_hold(global_zone);
6969 		return (global_zone);
6970 	}
6971 
6972 	if (*path != '/') {
6973 		ASSERT(treat_abs);
6974 		path_offset = 1;
6975 	}
6976 
6977 	mutex_enter(&zonehash_lock);
6978 	for (zone = list_head(&zone_active); zone != NULL;
6979 	    zone = list_next(&zone_active, zone)) {
6980 		char	*c;
6981 		size_t	pathlen;
6982 		char *rootpath_start;
6983 
6984 		if (zone == global_zone)	/* skip global zone */
6985 			continue;
6986 
6987 		/* scan backwards to find start of last component */
6988 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6989 		do {
6990 			c--;
6991 		} while (*c != '/');
6992 
6993 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
6994 		rootpath_start = (zone->zone_rootpath + path_offset);
6995 		if (strncmp(path, rootpath_start, pathlen) == 0)
6996 			break;
6997 	}
6998 	if (zone == NULL)
6999 		zone = global_zone;
7000 	zone_hold(zone);
7001 	mutex_exit(&zonehash_lock);
7002 	return (zone);
7003 }
7004 
7005 /*
7006  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
7007  * zone_dl_t pointer if found, and NULL otherwise.
7008  */
7009 static zone_dl_t *
7010 zone_find_dl(zone_t *zone, datalink_id_t linkid)
7011 {
7012 	zone_dl_t *zdl;
7013 
7014 	ASSERT(mutex_owned(&zone->zone_lock));
7015 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7016 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7017 		if (zdl->zdl_id == linkid)
7018 			break;
7019 	}
7020 	return (zdl);
7021 }
7022 
7023 static boolean_t
7024 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
7025 {
7026 	boolean_t exists;
7027 
7028 	mutex_enter(&zone->zone_lock);
7029 	exists = (zone_find_dl(zone, linkid) != NULL);
7030 	mutex_exit(&zone->zone_lock);
7031 	return (exists);
7032 }
7033 
7034 /*
7035  * Add an data link name for the zone.
7036  */
7037 static int
7038 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
7039 {
7040 	zone_dl_t *zdl;
7041 	zone_t *zone;
7042 	zone_t *thiszone;
7043 
7044 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
7045 		return (set_errno(ENXIO));
7046 
7047 	/* Verify that the datalink ID doesn't already belong to a zone. */
7048 	mutex_enter(&zonehash_lock);
7049 	for (zone = list_head(&zone_active); zone != NULL;
7050 	    zone = list_next(&zone_active, zone)) {
7051 		if (zone_dl_exists(zone, linkid)) {
7052 			mutex_exit(&zonehash_lock);
7053 			zone_rele(thiszone);
7054 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
7055 		}
7056 	}
7057 
7058 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
7059 	zdl->zdl_id = linkid;
7060 	zdl->zdl_net = NULL;
7061 	mutex_enter(&thiszone->zone_lock);
7062 	list_insert_head(&thiszone->zone_dl_list, zdl);
7063 	mutex_exit(&thiszone->zone_lock);
7064 	mutex_exit(&zonehash_lock);
7065 	zone_rele(thiszone);
7066 	return (0);
7067 }
7068 
7069 static int
7070 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
7071 {
7072 	zone_dl_t *zdl;
7073 	zone_t *zone;
7074 	int err = 0;
7075 
7076 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7077 		return (set_errno(EINVAL));
7078 
7079 	mutex_enter(&zone->zone_lock);
7080 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7081 		err = ENXIO;
7082 	} else {
7083 		list_remove(&zone->zone_dl_list, zdl);
7084 		nvlist_free(zdl->zdl_net);
7085 		kmem_free(zdl, sizeof (zone_dl_t));
7086 	}
7087 	mutex_exit(&zone->zone_lock);
7088 	zone_rele(zone);
7089 	return (err == 0 ? 0 : set_errno(err));
7090 }
7091 
7092 /*
7093  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
7094  * the linkid.  Otherwise we just check if the specified zoneidp has been
7095  * assigned the supplied linkid.
7096  */
7097 int
7098 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
7099 {
7100 	zone_t *zone;
7101 	int err = ENXIO;
7102 
7103 	if (*zoneidp != ALL_ZONES) {
7104 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
7105 			if (zone_dl_exists(zone, linkid))
7106 				err = 0;
7107 			zone_rele(zone);
7108 		}
7109 		return (err);
7110 	}
7111 
7112 	mutex_enter(&zonehash_lock);
7113 	for (zone = list_head(&zone_active); zone != NULL;
7114 	    zone = list_next(&zone_active, zone)) {
7115 		if (zone_dl_exists(zone, linkid)) {
7116 			*zoneidp = zone->zone_id;
7117 			err = 0;
7118 			break;
7119 		}
7120 	}
7121 	mutex_exit(&zonehash_lock);
7122 	return (err);
7123 }
7124 
7125 /*
7126  * Get the list of datalink IDs assigned to a zone.
7127  *
7128  * On input, *nump is the number of datalink IDs that can fit in the supplied
7129  * idarray.  Upon return, *nump is either set to the number of datalink IDs
7130  * that were placed in the array if the array was large enough, or to the
7131  * number of datalink IDs that the function needs to place in the array if the
7132  * array is too small.
7133  */
7134 static int
7135 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
7136 {
7137 	uint_t num, dlcount;
7138 	zone_t *zone;
7139 	zone_dl_t *zdl;
7140 	datalink_id_t *idptr = idarray;
7141 
7142 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7143 		return (set_errno(EFAULT));
7144 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7145 		return (set_errno(ENXIO));
7146 
7147 	num = 0;
7148 	mutex_enter(&zone->zone_lock);
7149 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7150 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7151 		/*
7152 		 * If the list is bigger than what the caller supplied, just
7153 		 * count, don't do copyout.
7154 		 */
7155 		if (++num > dlcount)
7156 			continue;
7157 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7158 			mutex_exit(&zone->zone_lock);
7159 			zone_rele(zone);
7160 			return (set_errno(EFAULT));
7161 		}
7162 		idptr++;
7163 	}
7164 	mutex_exit(&zone->zone_lock);
7165 	zone_rele(zone);
7166 
7167 	/* Increased or decreased, caller should be notified. */
7168 	if (num != dlcount) {
7169 		if (copyout(&num, nump, sizeof (num)) != 0)
7170 			return (set_errno(EFAULT));
7171 	}
7172 	return (0);
7173 }
7174 
7175 /*
7176  * Public interface for looking up a zone by zoneid. It's a customized version
7177  * for netstack_zone_create(). It can only be called from the zsd create
7178  * callbacks, since it doesn't have reference on the zone structure hence if
7179  * it is called elsewhere the zone could disappear after the zonehash_lock
7180  * is dropped.
7181  *
7182  * Furthermore it
7183  * 1. Doesn't check the status of the zone.
7184  * 2. It will be called even before zone_init is called, in that case the
7185  *    address of zone0 is returned directly, and netstack_zone_create()
7186  *    will only assign a value to zone0.zone_netstack, won't break anything.
7187  * 3. Returns without the zone being held.
7188  */
7189 zone_t *
7190 zone_find_by_id_nolock(zoneid_t zoneid)
7191 {
7192 	zone_t *zone;
7193 
7194 	mutex_enter(&zonehash_lock);
7195 	if (zonehashbyid == NULL)
7196 		zone = &zone0;
7197 	else
7198 		zone = zone_find_all_by_id(zoneid);
7199 	mutex_exit(&zonehash_lock);
7200 	return (zone);
7201 }
7202 
7203 /*
7204  * Walk the datalinks for a given zone
7205  */
7206 int
7207 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7208     void *data)
7209 {
7210 	zone_t		*zone;
7211 	zone_dl_t	*zdl;
7212 	datalink_id_t	*idarray;
7213 	uint_t		idcount = 0;
7214 	int		i, ret = 0;
7215 
7216 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7217 		return (ENOENT);
7218 
7219 	/*
7220 	 * We first build an array of linkid's so that we can walk these and
7221 	 * execute the callback with the zone_lock dropped.
7222 	 */
7223 	mutex_enter(&zone->zone_lock);
7224 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7225 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7226 		idcount++;
7227 	}
7228 
7229 	if (idcount == 0) {
7230 		mutex_exit(&zone->zone_lock);
7231 		zone_rele(zone);
7232 		return (0);
7233 	}
7234 
7235 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7236 	if (idarray == NULL) {
7237 		mutex_exit(&zone->zone_lock);
7238 		zone_rele(zone);
7239 		return (ENOMEM);
7240 	}
7241 
7242 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7243 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7244 		idarray[i] = zdl->zdl_id;
7245 	}
7246 
7247 	mutex_exit(&zone->zone_lock);
7248 
7249 	for (i = 0; i < idcount && ret == 0; i++) {
7250 		if ((ret = (*cb)(idarray[i], data)) != 0)
7251 			break;
7252 	}
7253 
7254 	zone_rele(zone);
7255 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7256 	return (ret);
7257 }
7258 
7259 static char *
7260 zone_net_type2name(int type)
7261 {
7262 	switch (type) {
7263 	case ZONE_NETWORK_ADDRESS:
7264 		return (ZONE_NET_ADDRNAME);
7265 	case ZONE_NETWORK_DEFROUTER:
7266 		return (ZONE_NET_RTRNAME);
7267 	default:
7268 		return (NULL);
7269 	}
7270 }
7271 
7272 static int
7273 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7274 {
7275 	zone_t *zone;
7276 	zone_dl_t *zdl;
7277 	nvlist_t *nvl;
7278 	int err = 0;
7279 	uint8_t *new = NULL;
7280 	char *nvname;
7281 	int bufsize;
7282 	datalink_id_t linkid = znbuf->zn_linkid;
7283 
7284 	if (secpolicy_zone_config(CRED()) != 0)
7285 		return (set_errno(EPERM));
7286 
7287 	if (zoneid == GLOBAL_ZONEID)
7288 		return (set_errno(EINVAL));
7289 
7290 	nvname = zone_net_type2name(znbuf->zn_type);
7291 	bufsize = znbuf->zn_len;
7292 	new = znbuf->zn_val;
7293 	if (nvname == NULL)
7294 		return (set_errno(EINVAL));
7295 
7296 	if ((zone = zone_find_by_id(zoneid)) == NULL) {
7297 		return (set_errno(EINVAL));
7298 	}
7299 
7300 	mutex_enter(&zone->zone_lock);
7301 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7302 		err = ENXIO;
7303 		goto done;
7304 	}
7305 	if ((nvl = zdl->zdl_net) == NULL) {
7306 		if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7307 			err = ENOMEM;
7308 			goto done;
7309 		} else {
7310 			zdl->zdl_net = nvl;
7311 		}
7312 	}
7313 	if (nvlist_exists(nvl, nvname)) {
7314 		err = EINVAL;
7315 		goto done;
7316 	}
7317 	err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7318 	ASSERT(err == 0);
7319 done:
7320 	mutex_exit(&zone->zone_lock);
7321 	zone_rele(zone);
7322 	if (err != 0)
7323 		return (set_errno(err));
7324 	else
7325 		return (0);
7326 }
7327 
7328 static int
7329 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7330 {
7331 	zone_t *zone;
7332 	zone_dl_t *zdl;
7333 	nvlist_t *nvl;
7334 	uint8_t *ptr;
7335 	uint_t psize;
7336 	int err = 0;
7337 	char *nvname;
7338 	int bufsize;
7339 	void *buf;
7340 	datalink_id_t linkid = znbuf->zn_linkid;
7341 
7342 	if (zoneid == GLOBAL_ZONEID)
7343 		return (set_errno(EINVAL));
7344 
7345 	nvname = zone_net_type2name(znbuf->zn_type);
7346 	bufsize = znbuf->zn_len;
7347 	buf = znbuf->zn_val;
7348 
7349 	if (nvname == NULL)
7350 		return (set_errno(EINVAL));
7351 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7352 		return (set_errno(EINVAL));
7353 
7354 	mutex_enter(&zone->zone_lock);
7355 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7356 		err = ENXIO;
7357 		goto done;
7358 	}
7359 	if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7360 		err = ENOENT;
7361 		goto done;
7362 	}
7363 	err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7364 	ASSERT(err == 0);
7365 
7366 	if (psize > bufsize) {
7367 		err = ENOBUFS;
7368 		goto done;
7369 	}
7370 	znbuf->zn_len = psize;
7371 	bcopy(ptr, buf, psize);
7372 done:
7373 	mutex_exit(&zone->zone_lock);
7374 	zone_rele(zone);
7375 	if (err != 0)
7376 		return (set_errno(err));
7377 	else
7378 		return (0);
7379 }
7380