1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 164 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 165 * list (a list of zones in the ZONE_IS_DEAD state). 166 * 167 * Ordering requirements: 168 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 169 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 170 * 171 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 172 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 173 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 174 * 175 * Blocking memory allocations are permitted while holding any of the 176 * zone locks. 177 * 178 * 179 * System Call Interface: 180 * 181 * The zone subsystem can be managed and queried from user level with 182 * the following system calls (all subcodes of the primary "zone" 183 * system call): 184 * - zone_create: creates a zone with selected attributes (name, 185 * root path, privileges, resource controls, ZFS datasets) 186 * - zone_enter: allows the current process to enter a zone 187 * - zone_getattr: reports attributes of a zone 188 * - zone_setattr: set attributes of a zone 189 * - zone_boot: set 'init' running for the zone 190 * - zone_list: lists all zones active in the system 191 * - zone_lookup: looks up zone id based on name 192 * - zone_shutdown: initiates shutdown process (see states above) 193 * - zone_destroy: completes shutdown process (see states above) 194 * 195 */ 196 197 #include <sys/priv_impl.h> 198 #include <sys/cred.h> 199 #include <c2/audit.h> 200 #include <sys/debug.h> 201 #include <sys/file.h> 202 #include <sys/kmem.h> 203 #include <sys/kstat.h> 204 #include <sys/mutex.h> 205 #include <sys/note.h> 206 #include <sys/pathname.h> 207 #include <sys/proc.h> 208 #include <sys/project.h> 209 #include <sys/sysevent.h> 210 #include <sys/task.h> 211 #include <sys/systm.h> 212 #include <sys/types.h> 213 #include <sys/utsname.h> 214 #include <sys/vnode.h> 215 #include <sys/vfs.h> 216 #include <sys/systeminfo.h> 217 #include <sys/policy.h> 218 #include <sys/cred_impl.h> 219 #include <sys/contract_impl.h> 220 #include <sys/contract/process_impl.h> 221 #include <sys/class.h> 222 #include <sys/pool.h> 223 #include <sys/pool_pset.h> 224 #include <sys/pset.h> 225 #include <sys/sysmacros.h> 226 #include <sys/callb.h> 227 #include <sys/vmparam.h> 228 #include <sys/corectl.h> 229 #include <sys/ipc_impl.h> 230 231 #include <sys/door.h> 232 #include <sys/cpuvar.h> 233 #include <sys/sdt.h> 234 235 #include <sys/uadmin.h> 236 #include <sys/session.h> 237 #include <sys/cmn_err.h> 238 #include <sys/modhash.h> 239 #include <sys/sunddi.h> 240 #include <sys/nvpair.h> 241 #include <sys/rctl.h> 242 #include <sys/fss.h> 243 #include <sys/brand.h> 244 #include <sys/zone.h> 245 #include <net/if.h> 246 #include <sys/cpucaps.h> 247 #include <vm/seg.h> 248 249 /* 250 * cv used to signal that all references to the zone have been released. This 251 * needs to be global since there may be multiple waiters, and the first to 252 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 253 */ 254 static kcondvar_t zone_destroy_cv; 255 /* 256 * Lock used to serialize access to zone_cv. This could have been per-zone, 257 * but then we'd need another lock for zone_destroy_cv, and why bother? 258 */ 259 static kmutex_t zone_status_lock; 260 261 /* 262 * ZSD-related global variables. 263 */ 264 static kmutex_t zsd_key_lock; /* protects the following two */ 265 /* 266 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 267 */ 268 static zone_key_t zsd_keyval = 0; 269 /* 270 * Global list of registered keys. We use this when a new zone is created. 271 */ 272 static list_t zsd_registered_keys; 273 274 int zone_hash_size = 256; 275 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 276 static kmutex_t zonehash_lock; 277 static uint_t zonecount; 278 static id_space_t *zoneid_space; 279 280 /* 281 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 282 * kernel proper runs, and which manages all other zones. 283 * 284 * Although not declared as static, the variable "zone0" should not be used 285 * except for by code that needs to reference the global zone early on in boot, 286 * before it is fully initialized. All other consumers should use 287 * 'global_zone'. 288 */ 289 zone_t zone0; 290 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 291 292 /* 293 * List of active zones, protected by zonehash_lock. 294 */ 295 static list_t zone_active; 296 297 /* 298 * List of destroyed zones that still have outstanding cred references. 299 * Used for debugging. Uses a separate lock to avoid lock ordering 300 * problems in zone_free. 301 */ 302 static list_t zone_deathrow; 303 static kmutex_t zone_deathrow_lock; 304 305 /* number of zones is limited by virtual interface limit in IP */ 306 uint_t maxzones = 8192; 307 308 /* Event channel to sent zone state change notifications */ 309 evchan_t *zone_event_chan; 310 311 /* 312 * This table holds the mapping from kernel zone states to 313 * states visible in the state notification API. 314 * The idea is that we only expose "obvious" states and 315 * do not expose states which are just implementation details. 316 */ 317 const char *zone_status_table[] = { 318 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 319 ZONE_EVENT_INITIALIZED, /* initialized */ 320 ZONE_EVENT_READY, /* ready */ 321 ZONE_EVENT_READY, /* booting */ 322 ZONE_EVENT_RUNNING, /* running */ 323 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 324 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 325 ZONE_EVENT_SHUTTING_DOWN, /* down */ 326 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 327 ZONE_EVENT_UNINITIALIZED, /* dead */ 328 }; 329 330 /* 331 * This isn't static so lint doesn't complain. 332 */ 333 rctl_hndl_t rc_zone_cpu_shares; 334 rctl_hndl_t rc_zone_locked_mem; 335 rctl_hndl_t rc_zone_max_swap; 336 rctl_hndl_t rc_zone_cpu_cap; 337 rctl_hndl_t rc_zone_nlwps; 338 rctl_hndl_t rc_zone_shmmax; 339 rctl_hndl_t rc_zone_shmmni; 340 rctl_hndl_t rc_zone_semmni; 341 rctl_hndl_t rc_zone_msgmni; 342 /* 343 * Synchronization primitives used to synchronize between mounts and zone 344 * creation/destruction. 345 */ 346 static int mounts_in_progress; 347 static kcondvar_t mount_cv; 348 static kmutex_t mount_lock; 349 350 const char * const zone_default_initname = "/sbin/init"; 351 static char * const zone_prefix = "/zone/"; 352 static int zone_shutdown(zoneid_t zoneid); 353 static int zone_add_datalink(zoneid_t, char *); 354 static int zone_remove_datalink(zoneid_t, char *); 355 static int zone_check_datalink(zoneid_t *, char *); 356 static int zone_list_datalink(zoneid_t, int *, char *); 357 358 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 359 360 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 361 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 362 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 363 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 364 zone_key_t); 365 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 366 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 367 kmutex_t *); 368 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 369 kmutex_t *); 370 371 /* 372 * Bump this number when you alter the zone syscall interfaces; this is 373 * because we need to have support for previous API versions in libc 374 * to support patching; libc calls into the kernel to determine this number. 375 * 376 * Version 1 of the API is the version originally shipped with Solaris 10 377 * Version 2 alters the zone_create system call in order to support more 378 * arguments by moving the args into a structure; and to do better 379 * error reporting when zone_create() fails. 380 * Version 3 alters the zone_create system call in order to support the 381 * import of ZFS datasets to zones. 382 * Version 4 alters the zone_create system call in order to support 383 * Trusted Extensions. 384 * Version 5 alters the zone_boot system call, and converts its old 385 * bootargs parameter to be set by the zone_setattr API instead. 386 * Version 6 adds the flag argument to zone_create. 387 */ 388 static const int ZONE_SYSCALL_API_VERSION = 6; 389 390 /* 391 * Certain filesystems (such as NFS and autofs) need to know which zone 392 * the mount is being placed in. Because of this, we need to be able to 393 * ensure that a zone isn't in the process of being created such that 394 * nfs_mount() thinks it is in the global zone, while by the time it 395 * gets added the list of mounted zones, it ends up on zoneA's mount 396 * list. 397 * 398 * The following functions: block_mounts()/resume_mounts() and 399 * mount_in_progress()/mount_completed() are used by zones and the VFS 400 * layer (respectively) to synchronize zone creation and new mounts. 401 * 402 * The semantics are like a reader-reader lock such that there may 403 * either be multiple mounts (or zone creations, if that weren't 404 * serialized by zonehash_lock) in progress at the same time, but not 405 * both. 406 * 407 * We use cv's so the user can ctrl-C out of the operation if it's 408 * taking too long. 409 * 410 * The semantics are such that there is unfair bias towards the 411 * "current" operation. This means that zone creations may starve if 412 * there is a rapid succession of new mounts coming in to the system, or 413 * there is a remote possibility that zones will be created at such a 414 * rate that new mounts will not be able to proceed. 415 */ 416 /* 417 * Prevent new mounts from progressing to the point of calling 418 * VFS_MOUNT(). If there are already mounts in this "region", wait for 419 * them to complete. 420 */ 421 static int 422 block_mounts(void) 423 { 424 int retval = 0; 425 426 /* 427 * Since it may block for a long time, block_mounts() shouldn't be 428 * called with zonehash_lock held. 429 */ 430 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 431 mutex_enter(&mount_lock); 432 while (mounts_in_progress > 0) { 433 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 434 goto signaled; 435 } 436 /* 437 * A negative value of mounts_in_progress indicates that mounts 438 * have been blocked by (-mounts_in_progress) different callers. 439 */ 440 mounts_in_progress--; 441 retval = 1; 442 signaled: 443 mutex_exit(&mount_lock); 444 return (retval); 445 } 446 447 /* 448 * The VFS layer may progress with new mounts as far as we're concerned. 449 * Allow them to progress if we were the last obstacle. 450 */ 451 static void 452 resume_mounts(void) 453 { 454 mutex_enter(&mount_lock); 455 if (++mounts_in_progress == 0) 456 cv_broadcast(&mount_cv); 457 mutex_exit(&mount_lock); 458 } 459 460 /* 461 * The VFS layer is busy with a mount; zones should wait until all 462 * mounts are completed to progress. 463 */ 464 void 465 mount_in_progress(void) 466 { 467 mutex_enter(&mount_lock); 468 while (mounts_in_progress < 0) 469 cv_wait(&mount_cv, &mount_lock); 470 mounts_in_progress++; 471 mutex_exit(&mount_lock); 472 } 473 474 /* 475 * VFS is done with one mount; wake up any waiting block_mounts() 476 * callers if this is the last mount. 477 */ 478 void 479 mount_completed(void) 480 { 481 mutex_enter(&mount_lock); 482 if (--mounts_in_progress == 0) 483 cv_broadcast(&mount_cv); 484 mutex_exit(&mount_lock); 485 } 486 487 /* 488 * ZSD routines. 489 * 490 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 491 * defined by the pthread_key_create() and related interfaces. 492 * 493 * Kernel subsystems may register one or more data items and/or 494 * callbacks to be executed when a zone is created, shutdown, or 495 * destroyed. 496 * 497 * Unlike the thread counterpart, destructor callbacks will be executed 498 * even if the data pointer is NULL and/or there are no constructor 499 * callbacks, so it is the responsibility of such callbacks to check for 500 * NULL data values if necessary. 501 * 502 * The locking strategy and overall picture is as follows: 503 * 504 * When someone calls zone_key_create(), a template ZSD entry is added to the 505 * global list "zsd_registered_keys", protected by zsd_key_lock. While 506 * holding that lock all the existing zones are marked as 507 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 508 * zone_zsd list (protected by zone_lock). The global list is updated first 509 * (under zone_key_lock) to make sure that newly created zones use the 510 * most recent list of keys. Then under zonehash_lock we walk the zones 511 * and mark them. Similar locking is used in zone_key_delete(). 512 * 513 * The actual create, shutdown, and destroy callbacks are done without 514 * holding any lock. And zsd_flags are used to ensure that the operations 515 * completed so that when zone_key_create (and zone_create) is done, as well as 516 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 517 * are completed. 518 * 519 * When new zones are created constructor callbacks for all registered ZSD 520 * entries will be called. That also uses the above two phases of marking 521 * what needs to be done, and then running the callbacks without holding 522 * any locks. 523 * 524 * The framework does not provide any locking around zone_getspecific() and 525 * zone_setspecific() apart from that needed for internal consistency, so 526 * callers interested in atomic "test-and-set" semantics will need to provide 527 * their own locking. 528 */ 529 530 /* 531 * Helper function to find the zsd_entry associated with the key in the 532 * given list. 533 */ 534 static struct zsd_entry * 535 zsd_find(list_t *l, zone_key_t key) 536 { 537 struct zsd_entry *zsd; 538 539 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 540 if (zsd->zsd_key == key) { 541 return (zsd); 542 } 543 } 544 return (NULL); 545 } 546 547 /* 548 * Helper function to find the zsd_entry associated with the key in the 549 * given list. Move it to the front of the list. 550 */ 551 static struct zsd_entry * 552 zsd_find_mru(list_t *l, zone_key_t key) 553 { 554 struct zsd_entry *zsd; 555 556 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 557 if (zsd->zsd_key == key) { 558 /* 559 * Move to head of list to keep list in MRU order. 560 */ 561 if (zsd != list_head(l)) { 562 list_remove(l, zsd); 563 list_insert_head(l, zsd); 564 } 565 return (zsd); 566 } 567 } 568 return (NULL); 569 } 570 571 void 572 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 573 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 574 { 575 struct zsd_entry *zsdp; 576 struct zsd_entry *t; 577 struct zone *zone; 578 zone_key_t key; 579 580 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 581 zsdp->zsd_data = NULL; 582 zsdp->zsd_create = create; 583 zsdp->zsd_shutdown = shutdown; 584 zsdp->zsd_destroy = destroy; 585 586 /* 587 * Insert in global list of callbacks. Makes future zone creations 588 * see it. 589 */ 590 mutex_enter(&zsd_key_lock); 591 *keyp = key = zsdp->zsd_key = ++zsd_keyval; 592 ASSERT(zsd_keyval != 0); 593 list_insert_tail(&zsd_registered_keys, zsdp); 594 mutex_exit(&zsd_key_lock); 595 596 /* 597 * Insert for all existing zones and mark them as needing 598 * a create callback. 599 */ 600 mutex_enter(&zonehash_lock); /* stop the world */ 601 for (zone = list_head(&zone_active); zone != NULL; 602 zone = list_next(&zone_active, zone)) { 603 zone_status_t status; 604 605 mutex_enter(&zone->zone_lock); 606 607 /* Skip zones that are on the way down or not yet up */ 608 status = zone_status_get(zone); 609 if (status >= ZONE_IS_DOWN || 610 status == ZONE_IS_UNINITIALIZED) { 611 mutex_exit(&zone->zone_lock); 612 continue; 613 } 614 615 t = zsd_find_mru(&zone->zone_zsd, key); 616 if (t != NULL) { 617 /* 618 * A zsd_configure already inserted it after 619 * we dropped zsd_key_lock above. 620 */ 621 mutex_exit(&zone->zone_lock); 622 continue; 623 } 624 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 625 t->zsd_key = key; 626 t->zsd_create = create; 627 t->zsd_shutdown = shutdown; 628 t->zsd_destroy = destroy; 629 if (create != NULL) { 630 t->zsd_flags = ZSD_CREATE_NEEDED; 631 DTRACE_PROBE2(zsd__create__needed, 632 zone_t *, zone, zone_key_t, key); 633 } 634 list_insert_tail(&zone->zone_zsd, t); 635 mutex_exit(&zone->zone_lock); 636 } 637 mutex_exit(&zonehash_lock); 638 639 if (create != NULL) { 640 /* Now call the create callback for this key */ 641 zsd_apply_all_zones(zsd_apply_create, key); 642 } 643 } 644 645 /* 646 * Function called when a module is being unloaded, or otherwise wishes 647 * to unregister its ZSD key and callbacks. 648 * 649 * Remove from the global list and determine the functions that need to 650 * be called under a global lock. Then call the functions without 651 * holding any locks. Finally free up the zone_zsd entries. (The apply 652 * functions need to access the zone_zsd entries to find zsd_data etc.) 653 */ 654 int 655 zone_key_delete(zone_key_t key) 656 { 657 struct zsd_entry *zsdp = NULL; 658 zone_t *zone; 659 660 mutex_enter(&zsd_key_lock); 661 zsdp = zsd_find_mru(&zsd_registered_keys, key); 662 if (zsdp == NULL) { 663 mutex_exit(&zsd_key_lock); 664 return (-1); 665 } 666 list_remove(&zsd_registered_keys, zsdp); 667 mutex_exit(&zsd_key_lock); 668 669 mutex_enter(&zonehash_lock); 670 for (zone = list_head(&zone_active); zone != NULL; 671 zone = list_next(&zone_active, zone)) { 672 struct zsd_entry *del; 673 674 mutex_enter(&zone->zone_lock); 675 del = zsd_find_mru(&zone->zone_zsd, key); 676 if (del == NULL) { 677 /* 678 * Somebody else got here first e.g the zone going 679 * away. 680 */ 681 mutex_exit(&zone->zone_lock); 682 continue; 683 } 684 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 685 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 686 if (del->zsd_shutdown != NULL && 687 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 688 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 689 DTRACE_PROBE2(zsd__shutdown__needed, 690 zone_t *, zone, zone_key_t, key); 691 } 692 if (del->zsd_destroy != NULL && 693 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 694 del->zsd_flags |= ZSD_DESTROY_NEEDED; 695 DTRACE_PROBE2(zsd__destroy__needed, 696 zone_t *, zone, zone_key_t, key); 697 } 698 mutex_exit(&zone->zone_lock); 699 } 700 mutex_exit(&zonehash_lock); 701 kmem_free(zsdp, sizeof (*zsdp)); 702 703 /* Now call the shutdown and destroy callback for this key */ 704 zsd_apply_all_zones(zsd_apply_shutdown, key); 705 zsd_apply_all_zones(zsd_apply_destroy, key); 706 707 /* Now we can free up the zsdp structures in each zone */ 708 mutex_enter(&zonehash_lock); 709 for (zone = list_head(&zone_active); zone != NULL; 710 zone = list_next(&zone_active, zone)) { 711 struct zsd_entry *del; 712 713 mutex_enter(&zone->zone_lock); 714 del = zsd_find(&zone->zone_zsd, key); 715 if (del != NULL) { 716 list_remove(&zone->zone_zsd, del); 717 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 718 kmem_free(del, sizeof (*del)); 719 } 720 mutex_exit(&zone->zone_lock); 721 } 722 mutex_exit(&zonehash_lock); 723 724 return (0); 725 } 726 727 /* 728 * ZSD counterpart of pthread_setspecific(). 729 * 730 * Since all zsd callbacks, including those with no create function, 731 * have an entry in zone_zsd, if the key is registered it is part of 732 * the zone_zsd list. 733 * Return an error if the key wasn't registerd. 734 */ 735 int 736 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 737 { 738 struct zsd_entry *t; 739 740 mutex_enter(&zone->zone_lock); 741 t = zsd_find_mru(&zone->zone_zsd, key); 742 if (t != NULL) { 743 /* 744 * Replace old value with new 745 */ 746 t->zsd_data = (void *)data; 747 mutex_exit(&zone->zone_lock); 748 return (0); 749 } 750 mutex_exit(&zone->zone_lock); 751 return (-1); 752 } 753 754 /* 755 * ZSD counterpart of pthread_getspecific(). 756 */ 757 void * 758 zone_getspecific(zone_key_t key, zone_t *zone) 759 { 760 struct zsd_entry *t; 761 void *data; 762 763 mutex_enter(&zone->zone_lock); 764 t = zsd_find_mru(&zone->zone_zsd, key); 765 data = (t == NULL ? NULL : t->zsd_data); 766 mutex_exit(&zone->zone_lock); 767 return (data); 768 } 769 770 /* 771 * Function used to initialize a zone's list of ZSD callbacks and data 772 * when the zone is being created. The callbacks are initialized from 773 * the template list (zsd_registered_keys). The constructor callback is 774 * executed later (once the zone exists and with locks dropped). 775 */ 776 static void 777 zone_zsd_configure(zone_t *zone) 778 { 779 struct zsd_entry *zsdp; 780 struct zsd_entry *t; 781 782 ASSERT(MUTEX_HELD(&zonehash_lock)); 783 ASSERT(list_head(&zone->zone_zsd) == NULL); 784 mutex_enter(&zone->zone_lock); 785 mutex_enter(&zsd_key_lock); 786 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 787 zsdp = list_next(&zsd_registered_keys, zsdp)) { 788 /* 789 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 790 * should not have added anything to it. 791 */ 792 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 793 794 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 795 t->zsd_key = zsdp->zsd_key; 796 t->zsd_create = zsdp->zsd_create; 797 t->zsd_shutdown = zsdp->zsd_shutdown; 798 t->zsd_destroy = zsdp->zsd_destroy; 799 if (zsdp->zsd_create != NULL) { 800 t->zsd_flags = ZSD_CREATE_NEEDED; 801 DTRACE_PROBE2(zsd__create__needed, 802 zone_t *, zone, zone_key_t, zsdp->zsd_key); 803 } 804 list_insert_tail(&zone->zone_zsd, t); 805 } 806 mutex_exit(&zsd_key_lock); 807 mutex_exit(&zone->zone_lock); 808 } 809 810 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 811 812 /* 813 * Helper function to execute shutdown or destructor callbacks. 814 */ 815 static void 816 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 817 { 818 struct zsd_entry *t; 819 820 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 821 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 822 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 823 824 /* 825 * Run the callback solely based on what is registered for the zone 826 * in zone_zsd. The global list can change independently of this 827 * as keys are registered and unregistered and we don't register new 828 * callbacks for a zone that is in the process of going away. 829 */ 830 mutex_enter(&zone->zone_lock); 831 for (t = list_head(&zone->zone_zsd); t != NULL; 832 t = list_next(&zone->zone_zsd, t)) { 833 zone_key_t key = t->zsd_key; 834 835 /* Skip if no callbacks registered */ 836 837 if (ct == ZSD_SHUTDOWN) { 838 if (t->zsd_shutdown != NULL && 839 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 840 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 841 DTRACE_PROBE2(zsd__shutdown__needed, 842 zone_t *, zone, zone_key_t, key); 843 } 844 } else { 845 if (t->zsd_destroy != NULL && 846 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 847 t->zsd_flags |= ZSD_DESTROY_NEEDED; 848 DTRACE_PROBE2(zsd__destroy__needed, 849 zone_t *, zone, zone_key_t, key); 850 } 851 } 852 } 853 mutex_exit(&zone->zone_lock); 854 855 /* Now call the shutdown and destroy callback for this key */ 856 zsd_apply_all_keys(zsd_apply_shutdown, zone); 857 zsd_apply_all_keys(zsd_apply_destroy, zone); 858 859 } 860 861 /* 862 * Called when the zone is going away; free ZSD-related memory, and 863 * destroy the zone_zsd list. 864 */ 865 static void 866 zone_free_zsd(zone_t *zone) 867 { 868 struct zsd_entry *t, *next; 869 870 /* 871 * Free all the zsd_entry's we had on this zone. 872 */ 873 mutex_enter(&zone->zone_lock); 874 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 875 next = list_next(&zone->zone_zsd, t); 876 list_remove(&zone->zone_zsd, t); 877 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 878 kmem_free(t, sizeof (*t)); 879 } 880 list_destroy(&zone->zone_zsd); 881 mutex_exit(&zone->zone_lock); 882 883 } 884 885 /* 886 * Apply a function to all zones for particular key value. 887 * 888 * The applyfn has to drop zonehash_lock if it does some work, and 889 * then reacquire it before it returns. 890 * When the lock is dropped we don't follow list_next even 891 * if it is possible to do so without any hazards. This is 892 * because we want the design to allow for the list of zones 893 * to change in any arbitrary way during the time the 894 * lock was dropped. 895 * 896 * It is safe to restart the loop at list_head since the applyfn 897 * changes the zsd_flags as it does work, so a subsequent 898 * pass through will have no effect in applyfn, hence the loop will terminate 899 * in at worst O(N^2). 900 */ 901 static void 902 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 903 { 904 zone_t *zone; 905 906 mutex_enter(&zonehash_lock); 907 zone = list_head(&zone_active); 908 while (zone != NULL) { 909 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 910 /* Lock dropped - restart at head */ 911 zone = list_head(&zone_active); 912 } else { 913 zone = list_next(&zone_active, zone); 914 } 915 } 916 mutex_exit(&zonehash_lock); 917 } 918 919 /* 920 * Apply a function to all keys for a particular zone. 921 * 922 * The applyfn has to drop zonehash_lock if it does some work, and 923 * then reacquire it before it returns. 924 * When the lock is dropped we don't follow list_next even 925 * if it is possible to do so without any hazards. This is 926 * because we want the design to allow for the list of zsd callbacks 927 * to change in any arbitrary way during the time the 928 * lock was dropped. 929 * 930 * It is safe to restart the loop at list_head since the applyfn 931 * changes the zsd_flags as it does work, so a subsequent 932 * pass through will have no effect in applyfn, hence the loop will terminate 933 * in at worst O(N^2). 934 */ 935 static void 936 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 937 { 938 struct zsd_entry *t; 939 940 mutex_enter(&zone->zone_lock); 941 t = list_head(&zone->zone_zsd); 942 while (t != NULL) { 943 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 944 /* Lock dropped - restart at head */ 945 t = list_head(&zone->zone_zsd); 946 } else { 947 t = list_next(&zone->zone_zsd, t); 948 } 949 } 950 mutex_exit(&zone->zone_lock); 951 } 952 953 /* 954 * Call the create function for the zone and key if CREATE_NEEDED 955 * is set. 956 * If some other thread gets here first and sets CREATE_INPROGRESS, then 957 * we wait for that thread to complete so that we can ensure that 958 * all the callbacks are done when we've looped over all zones/keys. 959 * 960 * When we call the create function, we drop the global held by the 961 * caller, and return true to tell the caller it needs to re-evalute the 962 * state. 963 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 964 * remains held on exit. 965 */ 966 static boolean_t 967 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 968 zone_t *zone, zone_key_t key) 969 { 970 void *result; 971 struct zsd_entry *t; 972 boolean_t dropped; 973 974 if (lockp != NULL) { 975 ASSERT(MUTEX_HELD(lockp)); 976 } 977 if (zone_lock_held) { 978 ASSERT(MUTEX_HELD(&zone->zone_lock)); 979 } else { 980 mutex_enter(&zone->zone_lock); 981 } 982 983 t = zsd_find(&zone->zone_zsd, key); 984 if (t == NULL) { 985 /* 986 * Somebody else got here first e.g the zone going 987 * away. 988 */ 989 if (!zone_lock_held) 990 mutex_exit(&zone->zone_lock); 991 return (B_FALSE); 992 } 993 dropped = B_FALSE; 994 if (zsd_wait_for_inprogress(zone, t, lockp)) 995 dropped = B_TRUE; 996 997 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 998 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 999 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1000 DTRACE_PROBE2(zsd__create__inprogress, 1001 zone_t *, zone, zone_key_t, key); 1002 mutex_exit(&zone->zone_lock); 1003 if (lockp != NULL) 1004 mutex_exit(lockp); 1005 1006 dropped = B_TRUE; 1007 ASSERT(t->zsd_create != NULL); 1008 DTRACE_PROBE2(zsd__create__start, 1009 zone_t *, zone, zone_key_t, key); 1010 1011 result = (*t->zsd_create)(zone->zone_id); 1012 1013 DTRACE_PROBE2(zsd__create__end, 1014 zone_t *, zone, voidn *, result); 1015 1016 ASSERT(result != NULL); 1017 if (lockp != NULL) 1018 mutex_enter(lockp); 1019 mutex_enter(&zone->zone_lock); 1020 t->zsd_data = result; 1021 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1022 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1023 cv_broadcast(&t->zsd_cv); 1024 DTRACE_PROBE2(zsd__create__completed, 1025 zone_t *, zone, zone_key_t, key); 1026 } 1027 if (!zone_lock_held) 1028 mutex_exit(&zone->zone_lock); 1029 return (dropped); 1030 } 1031 1032 /* 1033 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1034 * is set. 1035 * If some other thread gets here first and sets *_INPROGRESS, then 1036 * we wait for that thread to complete so that we can ensure that 1037 * all the callbacks are done when we've looped over all zones/keys. 1038 * 1039 * When we call the shutdown function, we drop the global held by the 1040 * caller, and return true to tell the caller it needs to re-evalute the 1041 * state. 1042 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1043 * remains held on exit. 1044 */ 1045 static boolean_t 1046 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1047 zone_t *zone, zone_key_t key) 1048 { 1049 struct zsd_entry *t; 1050 void *data; 1051 boolean_t dropped; 1052 1053 if (lockp != NULL) { 1054 ASSERT(MUTEX_HELD(lockp)); 1055 } 1056 if (zone_lock_held) { 1057 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1058 } else { 1059 mutex_enter(&zone->zone_lock); 1060 } 1061 1062 t = zsd_find(&zone->zone_zsd, key); 1063 if (t == NULL) { 1064 /* 1065 * Somebody else got here first e.g the zone going 1066 * away. 1067 */ 1068 if (!zone_lock_held) 1069 mutex_exit(&zone->zone_lock); 1070 return (B_FALSE); 1071 } 1072 dropped = B_FALSE; 1073 if (zsd_wait_for_creator(zone, t, lockp)) 1074 dropped = B_TRUE; 1075 1076 if (zsd_wait_for_inprogress(zone, t, lockp)) 1077 dropped = B_TRUE; 1078 1079 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1080 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1081 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1082 DTRACE_PROBE2(zsd__shutdown__inprogress, 1083 zone_t *, zone, zone_key_t, key); 1084 mutex_exit(&zone->zone_lock); 1085 if (lockp != NULL) 1086 mutex_exit(lockp); 1087 dropped = B_TRUE; 1088 1089 ASSERT(t->zsd_shutdown != NULL); 1090 data = t->zsd_data; 1091 1092 DTRACE_PROBE2(zsd__shutdown__start, 1093 zone_t *, zone, zone_key_t, key); 1094 1095 (t->zsd_shutdown)(zone->zone_id, data); 1096 DTRACE_PROBE2(zsd__shutdown__end, 1097 zone_t *, zone, zone_key_t, key); 1098 1099 if (lockp != NULL) 1100 mutex_enter(lockp); 1101 mutex_enter(&zone->zone_lock); 1102 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1103 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1104 cv_broadcast(&t->zsd_cv); 1105 DTRACE_PROBE2(zsd__shutdown__completed, 1106 zone_t *, zone, zone_key_t, key); 1107 } 1108 if (!zone_lock_held) 1109 mutex_exit(&zone->zone_lock); 1110 return (dropped); 1111 } 1112 1113 /* 1114 * Call the destroy function for the zone and key if DESTROY_NEEDED 1115 * is set. 1116 * If some other thread gets here first and sets *_INPROGRESS, then 1117 * we wait for that thread to complete so that we can ensure that 1118 * all the callbacks are done when we've looped over all zones/keys. 1119 * 1120 * When we call the destroy function, we drop the global held by the 1121 * caller, and return true to tell the caller it needs to re-evalute the 1122 * state. 1123 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1124 * remains held on exit. 1125 */ 1126 static boolean_t 1127 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1128 zone_t *zone, zone_key_t key) 1129 { 1130 struct zsd_entry *t; 1131 void *data; 1132 boolean_t dropped; 1133 1134 if (lockp != NULL) { 1135 ASSERT(MUTEX_HELD(lockp)); 1136 } 1137 if (zone_lock_held) { 1138 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1139 } else { 1140 mutex_enter(&zone->zone_lock); 1141 } 1142 1143 t = zsd_find(&zone->zone_zsd, key); 1144 if (t == NULL) { 1145 /* 1146 * Somebody else got here first e.g the zone going 1147 * away. 1148 */ 1149 if (!zone_lock_held) 1150 mutex_exit(&zone->zone_lock); 1151 return (B_FALSE); 1152 } 1153 dropped = B_FALSE; 1154 if (zsd_wait_for_creator(zone, t, lockp)) 1155 dropped = B_TRUE; 1156 1157 if (zsd_wait_for_inprogress(zone, t, lockp)) 1158 dropped = B_TRUE; 1159 1160 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1161 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1162 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1163 DTRACE_PROBE2(zsd__destroy__inprogress, 1164 zone_t *, zone, zone_key_t, key); 1165 mutex_exit(&zone->zone_lock); 1166 if (lockp != NULL) 1167 mutex_exit(lockp); 1168 dropped = B_TRUE; 1169 1170 ASSERT(t->zsd_destroy != NULL); 1171 data = t->zsd_data; 1172 DTRACE_PROBE2(zsd__destroy__start, 1173 zone_t *, zone, zone_key_t, key); 1174 1175 (t->zsd_destroy)(zone->zone_id, data); 1176 DTRACE_PROBE2(zsd__destroy__end, 1177 zone_t *, zone, zone_key_t, key); 1178 1179 if (lockp != NULL) 1180 mutex_enter(lockp); 1181 mutex_enter(&zone->zone_lock); 1182 t->zsd_data = NULL; 1183 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1184 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1185 cv_broadcast(&t->zsd_cv); 1186 DTRACE_PROBE2(zsd__destroy__completed, 1187 zone_t *, zone, zone_key_t, key); 1188 } 1189 if (!zone_lock_held) 1190 mutex_exit(&zone->zone_lock); 1191 return (dropped); 1192 } 1193 1194 /* 1195 * Wait for any CREATE_NEEDED flag to be cleared. 1196 * Returns true if lockp was temporarily dropped while waiting. 1197 */ 1198 static boolean_t 1199 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1200 { 1201 boolean_t dropped = B_FALSE; 1202 1203 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1204 DTRACE_PROBE2(zsd__wait__for__creator, 1205 zone_t *, zone, struct zsd_entry *, t); 1206 if (lockp != NULL) { 1207 dropped = B_TRUE; 1208 mutex_exit(lockp); 1209 } 1210 cv_wait(&t->zsd_cv, &zone->zone_lock); 1211 if (lockp != NULL) { 1212 /* First drop zone_lock to preserve order */ 1213 mutex_exit(&zone->zone_lock); 1214 mutex_enter(lockp); 1215 mutex_enter(&zone->zone_lock); 1216 } 1217 } 1218 return (dropped); 1219 } 1220 1221 /* 1222 * Wait for any INPROGRESS flag to be cleared. 1223 * Returns true if lockp was temporarily dropped while waiting. 1224 */ 1225 static boolean_t 1226 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1227 { 1228 boolean_t dropped = B_FALSE; 1229 1230 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1231 DTRACE_PROBE2(zsd__wait__for__inprogress, 1232 zone_t *, zone, struct zsd_entry *, t); 1233 if (lockp != NULL) { 1234 dropped = B_TRUE; 1235 mutex_exit(lockp); 1236 } 1237 cv_wait(&t->zsd_cv, &zone->zone_lock); 1238 if (lockp != NULL) { 1239 /* First drop zone_lock to preserve order */ 1240 mutex_exit(&zone->zone_lock); 1241 mutex_enter(lockp); 1242 mutex_enter(&zone->zone_lock); 1243 } 1244 } 1245 return (dropped); 1246 } 1247 1248 /* 1249 * Frees memory associated with the zone dataset list. 1250 */ 1251 static void 1252 zone_free_datasets(zone_t *zone) 1253 { 1254 zone_dataset_t *t, *next; 1255 1256 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1257 next = list_next(&zone->zone_datasets, t); 1258 list_remove(&zone->zone_datasets, t); 1259 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1260 kmem_free(t, sizeof (*t)); 1261 } 1262 list_destroy(&zone->zone_datasets); 1263 } 1264 1265 /* 1266 * zone.cpu-shares resource control support. 1267 */ 1268 /*ARGSUSED*/ 1269 static rctl_qty_t 1270 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1271 { 1272 ASSERT(MUTEX_HELD(&p->p_lock)); 1273 return (p->p_zone->zone_shares); 1274 } 1275 1276 /*ARGSUSED*/ 1277 static int 1278 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1279 rctl_qty_t nv) 1280 { 1281 ASSERT(MUTEX_HELD(&p->p_lock)); 1282 ASSERT(e->rcep_t == RCENTITY_ZONE); 1283 if (e->rcep_p.zone == NULL) 1284 return (0); 1285 1286 e->rcep_p.zone->zone_shares = nv; 1287 return (0); 1288 } 1289 1290 static rctl_ops_t zone_cpu_shares_ops = { 1291 rcop_no_action, 1292 zone_cpu_shares_usage, 1293 zone_cpu_shares_set, 1294 rcop_no_test 1295 }; 1296 1297 /* 1298 * zone.cpu-cap resource control support. 1299 */ 1300 /*ARGSUSED*/ 1301 static rctl_qty_t 1302 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1303 { 1304 ASSERT(MUTEX_HELD(&p->p_lock)); 1305 return (cpucaps_zone_get(p->p_zone)); 1306 } 1307 1308 /*ARGSUSED*/ 1309 static int 1310 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1311 rctl_qty_t nv) 1312 { 1313 zone_t *zone = e->rcep_p.zone; 1314 1315 ASSERT(MUTEX_HELD(&p->p_lock)); 1316 ASSERT(e->rcep_t == RCENTITY_ZONE); 1317 1318 if (zone == NULL) 1319 return (0); 1320 1321 /* 1322 * set cap to the new value. 1323 */ 1324 return (cpucaps_zone_set(zone, nv)); 1325 } 1326 1327 static rctl_ops_t zone_cpu_cap_ops = { 1328 rcop_no_action, 1329 zone_cpu_cap_get, 1330 zone_cpu_cap_set, 1331 rcop_no_test 1332 }; 1333 1334 /*ARGSUSED*/ 1335 static rctl_qty_t 1336 zone_lwps_usage(rctl_t *r, proc_t *p) 1337 { 1338 rctl_qty_t nlwps; 1339 zone_t *zone = p->p_zone; 1340 1341 ASSERT(MUTEX_HELD(&p->p_lock)); 1342 1343 mutex_enter(&zone->zone_nlwps_lock); 1344 nlwps = zone->zone_nlwps; 1345 mutex_exit(&zone->zone_nlwps_lock); 1346 1347 return (nlwps); 1348 } 1349 1350 /*ARGSUSED*/ 1351 static int 1352 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1353 rctl_qty_t incr, uint_t flags) 1354 { 1355 rctl_qty_t nlwps; 1356 1357 ASSERT(MUTEX_HELD(&p->p_lock)); 1358 ASSERT(e->rcep_t == RCENTITY_ZONE); 1359 if (e->rcep_p.zone == NULL) 1360 return (0); 1361 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1362 nlwps = e->rcep_p.zone->zone_nlwps; 1363 1364 if (nlwps + incr > rcntl->rcv_value) 1365 return (1); 1366 1367 return (0); 1368 } 1369 1370 /*ARGSUSED*/ 1371 static int 1372 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1373 { 1374 ASSERT(MUTEX_HELD(&p->p_lock)); 1375 ASSERT(e->rcep_t == RCENTITY_ZONE); 1376 if (e->rcep_p.zone == NULL) 1377 return (0); 1378 e->rcep_p.zone->zone_nlwps_ctl = nv; 1379 return (0); 1380 } 1381 1382 static rctl_ops_t zone_lwps_ops = { 1383 rcop_no_action, 1384 zone_lwps_usage, 1385 zone_lwps_set, 1386 zone_lwps_test, 1387 }; 1388 1389 /*ARGSUSED*/ 1390 static int 1391 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1392 rctl_qty_t incr, uint_t flags) 1393 { 1394 rctl_qty_t v; 1395 ASSERT(MUTEX_HELD(&p->p_lock)); 1396 ASSERT(e->rcep_t == RCENTITY_ZONE); 1397 v = e->rcep_p.zone->zone_shmmax + incr; 1398 if (v > rval->rcv_value) 1399 return (1); 1400 return (0); 1401 } 1402 1403 static rctl_ops_t zone_shmmax_ops = { 1404 rcop_no_action, 1405 rcop_no_usage, 1406 rcop_no_set, 1407 zone_shmmax_test 1408 }; 1409 1410 /*ARGSUSED*/ 1411 static int 1412 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1413 rctl_qty_t incr, uint_t flags) 1414 { 1415 rctl_qty_t v; 1416 ASSERT(MUTEX_HELD(&p->p_lock)); 1417 ASSERT(e->rcep_t == RCENTITY_ZONE); 1418 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1419 if (v > rval->rcv_value) 1420 return (1); 1421 return (0); 1422 } 1423 1424 static rctl_ops_t zone_shmmni_ops = { 1425 rcop_no_action, 1426 rcop_no_usage, 1427 rcop_no_set, 1428 zone_shmmni_test 1429 }; 1430 1431 /*ARGSUSED*/ 1432 static int 1433 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1434 rctl_qty_t incr, uint_t flags) 1435 { 1436 rctl_qty_t v; 1437 ASSERT(MUTEX_HELD(&p->p_lock)); 1438 ASSERT(e->rcep_t == RCENTITY_ZONE); 1439 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1440 if (v > rval->rcv_value) 1441 return (1); 1442 return (0); 1443 } 1444 1445 static rctl_ops_t zone_semmni_ops = { 1446 rcop_no_action, 1447 rcop_no_usage, 1448 rcop_no_set, 1449 zone_semmni_test 1450 }; 1451 1452 /*ARGSUSED*/ 1453 static int 1454 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1455 rctl_qty_t incr, uint_t flags) 1456 { 1457 rctl_qty_t v; 1458 ASSERT(MUTEX_HELD(&p->p_lock)); 1459 ASSERT(e->rcep_t == RCENTITY_ZONE); 1460 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1461 if (v > rval->rcv_value) 1462 return (1); 1463 return (0); 1464 } 1465 1466 static rctl_ops_t zone_msgmni_ops = { 1467 rcop_no_action, 1468 rcop_no_usage, 1469 rcop_no_set, 1470 zone_msgmni_test 1471 }; 1472 1473 /*ARGSUSED*/ 1474 static rctl_qty_t 1475 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1476 { 1477 rctl_qty_t q; 1478 ASSERT(MUTEX_HELD(&p->p_lock)); 1479 mutex_enter(&p->p_zone->zone_mem_lock); 1480 q = p->p_zone->zone_locked_mem; 1481 mutex_exit(&p->p_zone->zone_mem_lock); 1482 return (q); 1483 } 1484 1485 /*ARGSUSED*/ 1486 static int 1487 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1488 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1489 { 1490 rctl_qty_t q; 1491 zone_t *z; 1492 1493 z = e->rcep_p.zone; 1494 ASSERT(MUTEX_HELD(&p->p_lock)); 1495 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1496 q = z->zone_locked_mem; 1497 if (q + incr > rcntl->rcv_value) 1498 return (1); 1499 return (0); 1500 } 1501 1502 /*ARGSUSED*/ 1503 static int 1504 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1505 rctl_qty_t nv) 1506 { 1507 ASSERT(MUTEX_HELD(&p->p_lock)); 1508 ASSERT(e->rcep_t == RCENTITY_ZONE); 1509 if (e->rcep_p.zone == NULL) 1510 return (0); 1511 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1512 return (0); 1513 } 1514 1515 static rctl_ops_t zone_locked_mem_ops = { 1516 rcop_no_action, 1517 zone_locked_mem_usage, 1518 zone_locked_mem_set, 1519 zone_locked_mem_test 1520 }; 1521 1522 /*ARGSUSED*/ 1523 static rctl_qty_t 1524 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1525 { 1526 rctl_qty_t q; 1527 zone_t *z = p->p_zone; 1528 1529 ASSERT(MUTEX_HELD(&p->p_lock)); 1530 mutex_enter(&z->zone_mem_lock); 1531 q = z->zone_max_swap; 1532 mutex_exit(&z->zone_mem_lock); 1533 return (q); 1534 } 1535 1536 /*ARGSUSED*/ 1537 static int 1538 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1539 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1540 { 1541 rctl_qty_t q; 1542 zone_t *z; 1543 1544 z = e->rcep_p.zone; 1545 ASSERT(MUTEX_HELD(&p->p_lock)); 1546 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1547 q = z->zone_max_swap; 1548 if (q + incr > rcntl->rcv_value) 1549 return (1); 1550 return (0); 1551 } 1552 1553 /*ARGSUSED*/ 1554 static int 1555 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1556 rctl_qty_t nv) 1557 { 1558 ASSERT(MUTEX_HELD(&p->p_lock)); 1559 ASSERT(e->rcep_t == RCENTITY_ZONE); 1560 if (e->rcep_p.zone == NULL) 1561 return (0); 1562 e->rcep_p.zone->zone_max_swap_ctl = nv; 1563 return (0); 1564 } 1565 1566 static rctl_ops_t zone_max_swap_ops = { 1567 rcop_no_action, 1568 zone_max_swap_usage, 1569 zone_max_swap_set, 1570 zone_max_swap_test 1571 }; 1572 1573 /* 1574 * Helper function to brand the zone with a unique ID. 1575 */ 1576 static void 1577 zone_uniqid(zone_t *zone) 1578 { 1579 static uint64_t uniqid = 0; 1580 1581 ASSERT(MUTEX_HELD(&zonehash_lock)); 1582 zone->zone_uniqid = uniqid++; 1583 } 1584 1585 /* 1586 * Returns a held pointer to the "kcred" for the specified zone. 1587 */ 1588 struct cred * 1589 zone_get_kcred(zoneid_t zoneid) 1590 { 1591 zone_t *zone; 1592 cred_t *cr; 1593 1594 if ((zone = zone_find_by_id(zoneid)) == NULL) 1595 return (NULL); 1596 cr = zone->zone_kcred; 1597 crhold(cr); 1598 zone_rele(zone); 1599 return (cr); 1600 } 1601 1602 static int 1603 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1604 { 1605 zone_t *zone = ksp->ks_private; 1606 zone_kstat_t *zk = ksp->ks_data; 1607 1608 if (rw == KSTAT_WRITE) 1609 return (EACCES); 1610 1611 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1612 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1613 return (0); 1614 } 1615 1616 static int 1617 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1618 { 1619 zone_t *zone = ksp->ks_private; 1620 zone_kstat_t *zk = ksp->ks_data; 1621 1622 if (rw == KSTAT_WRITE) 1623 return (EACCES); 1624 1625 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1626 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1627 return (0); 1628 } 1629 1630 static void 1631 zone_kstat_create(zone_t *zone) 1632 { 1633 kstat_t *ksp; 1634 zone_kstat_t *zk; 1635 1636 ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED, 1637 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1638 KSTAT_FLAG_VIRTUAL); 1639 1640 if (ksp == NULL) 1641 return; 1642 1643 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1644 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1645 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1646 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1647 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1648 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1649 ksp->ks_update = zone_lockedmem_kstat_update; 1650 ksp->ks_private = zone; 1651 kstat_install(ksp); 1652 1653 zone->zone_lockedmem_kstat = ksp; 1654 1655 ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED, 1656 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1657 KSTAT_FLAG_VIRTUAL); 1658 1659 if (ksp == NULL) 1660 return; 1661 1662 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1663 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1664 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1665 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1666 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1667 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1668 ksp->ks_update = zone_swapresv_kstat_update; 1669 ksp->ks_private = zone; 1670 kstat_install(ksp); 1671 1672 zone->zone_swapresv_kstat = ksp; 1673 } 1674 1675 static void 1676 zone_kstat_delete(zone_t *zone) 1677 { 1678 void *data; 1679 1680 if (zone->zone_lockedmem_kstat != NULL) { 1681 data = zone->zone_lockedmem_kstat->ks_data; 1682 kstat_delete(zone->zone_lockedmem_kstat); 1683 kmem_free(data, sizeof (zone_kstat_t)); 1684 } 1685 if (zone->zone_swapresv_kstat != NULL) { 1686 data = zone->zone_swapresv_kstat->ks_data; 1687 kstat_delete(zone->zone_swapresv_kstat); 1688 kmem_free(data, sizeof (zone_kstat_t)); 1689 } 1690 } 1691 1692 /* 1693 * Called very early on in boot to initialize the ZSD list so that 1694 * zone_key_create() can be called before zone_init(). It also initializes 1695 * portions of zone0 which may be used before zone_init() is called. The 1696 * variable "global_zone" will be set when zone0 is fully initialized by 1697 * zone_init(). 1698 */ 1699 void 1700 zone_zsd_init(void) 1701 { 1702 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1703 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1704 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1705 offsetof(struct zsd_entry, zsd_linkage)); 1706 list_create(&zone_active, sizeof (zone_t), 1707 offsetof(zone_t, zone_linkage)); 1708 list_create(&zone_deathrow, sizeof (zone_t), 1709 offsetof(zone_t, zone_linkage)); 1710 1711 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1712 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1713 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1714 zone0.zone_shares = 1; 1715 zone0.zone_nlwps = 0; 1716 zone0.zone_nlwps_ctl = INT_MAX; 1717 zone0.zone_locked_mem = 0; 1718 zone0.zone_locked_mem_ctl = UINT64_MAX; 1719 ASSERT(zone0.zone_max_swap == 0); 1720 zone0.zone_max_swap_ctl = UINT64_MAX; 1721 zone0.zone_shmmax = 0; 1722 zone0.zone_ipc.ipcq_shmmni = 0; 1723 zone0.zone_ipc.ipcq_semmni = 0; 1724 zone0.zone_ipc.ipcq_msgmni = 0; 1725 zone0.zone_name = GLOBAL_ZONENAME; 1726 zone0.zone_nodename = utsname.nodename; 1727 zone0.zone_domain = srpc_domain; 1728 zone0.zone_hostid = HW_INVALID_HOSTID; 1729 zone0.zone_ref = 1; 1730 zone0.zone_id = GLOBAL_ZONEID; 1731 zone0.zone_status = ZONE_IS_RUNNING; 1732 zone0.zone_rootpath = "/"; 1733 zone0.zone_rootpathlen = 2; 1734 zone0.zone_psetid = ZONE_PS_INVAL; 1735 zone0.zone_ncpus = 0; 1736 zone0.zone_ncpus_online = 0; 1737 zone0.zone_proc_initpid = 1; 1738 zone0.zone_initname = initname; 1739 zone0.zone_lockedmem_kstat = NULL; 1740 zone0.zone_swapresv_kstat = NULL; 1741 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1742 offsetof(struct zsd_entry, zsd_linkage)); 1743 list_insert_head(&zone_active, &zone0); 1744 1745 /* 1746 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1747 * to anything meaningful. It is assigned to be 'rootdir' in 1748 * vfs_mountroot(). 1749 */ 1750 zone0.zone_rootvp = NULL; 1751 zone0.zone_vfslist = NULL; 1752 zone0.zone_bootargs = initargs; 1753 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1754 /* 1755 * The global zone has all privileges 1756 */ 1757 priv_fillset(zone0.zone_privset); 1758 /* 1759 * Add p0 to the global zone 1760 */ 1761 zone0.zone_zsched = &p0; 1762 p0.p_zone = &zone0; 1763 } 1764 1765 /* 1766 * Compute a hash value based on the contents of the label and the DOI. The 1767 * hash algorithm is somewhat arbitrary, but is based on the observation that 1768 * humans will likely pick labels that differ by amounts that work out to be 1769 * multiples of the number of hash chains, and thus stirring in some primes 1770 * should help. 1771 */ 1772 static uint_t 1773 hash_bylabel(void *hdata, mod_hash_key_t key) 1774 { 1775 const ts_label_t *lab = (ts_label_t *)key; 1776 const uint32_t *up, *ue; 1777 uint_t hash; 1778 int i; 1779 1780 _NOTE(ARGUNUSED(hdata)); 1781 1782 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1783 /* we depend on alignment of label, but not representation */ 1784 up = (const uint32_t *)&lab->tsl_label; 1785 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1786 i = 1; 1787 while (up < ue) { 1788 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1789 hash += *up + (*up << ((i % 16) + 1)); 1790 up++; 1791 i++; 1792 } 1793 return (hash); 1794 } 1795 1796 /* 1797 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1798 * equal). This may need to be changed if less than / greater than is ever 1799 * needed. 1800 */ 1801 static int 1802 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1803 { 1804 ts_label_t *lab1 = (ts_label_t *)key1; 1805 ts_label_t *lab2 = (ts_label_t *)key2; 1806 1807 return (label_equal(lab1, lab2) ? 0 : 1); 1808 } 1809 1810 /* 1811 * Called by main() to initialize the zones framework. 1812 */ 1813 void 1814 zone_init(void) 1815 { 1816 rctl_dict_entry_t *rde; 1817 rctl_val_t *dval; 1818 rctl_set_t *set; 1819 rctl_alloc_gp_t *gp; 1820 rctl_entity_p_t e; 1821 int res; 1822 1823 ASSERT(curproc == &p0); 1824 1825 /* 1826 * Create ID space for zone IDs. ID 0 is reserved for the 1827 * global zone. 1828 */ 1829 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1830 1831 /* 1832 * Initialize generic zone resource controls, if any. 1833 */ 1834 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1835 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1836 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 1837 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 1838 1839 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 1840 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 1841 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 1842 RCTL_GLOBAL_INFINITE, 1843 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 1844 1845 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1846 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1847 INT_MAX, INT_MAX, &zone_lwps_ops); 1848 /* 1849 * System V IPC resource controls 1850 */ 1851 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 1852 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1853 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 1854 1855 rc_zone_semmni = rctl_register("zone.max-sem-ids", 1856 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1857 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 1858 1859 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 1860 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1861 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 1862 1863 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 1864 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1865 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 1866 1867 /* 1868 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1869 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1870 */ 1871 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1872 bzero(dval, sizeof (rctl_val_t)); 1873 dval->rcv_value = 1; 1874 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1875 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1876 dval->rcv_action_recip_pid = -1; 1877 1878 rde = rctl_dict_lookup("zone.cpu-shares"); 1879 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1880 1881 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 1882 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1883 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1884 &zone_locked_mem_ops); 1885 1886 rc_zone_max_swap = rctl_register("zone.max-swap", 1887 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1888 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1889 &zone_max_swap_ops); 1890 1891 /* 1892 * Initialize the ``global zone''. 1893 */ 1894 set = rctl_set_create(); 1895 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1896 mutex_enter(&p0.p_lock); 1897 e.rcep_p.zone = &zone0; 1898 e.rcep_t = RCENTITY_ZONE; 1899 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1900 gp); 1901 1902 zone0.zone_nlwps = p0.p_lwpcnt; 1903 zone0.zone_ntasks = 1; 1904 mutex_exit(&p0.p_lock); 1905 zone0.zone_restart_init = B_TRUE; 1906 zone0.zone_brand = &native_brand; 1907 rctl_prealloc_destroy(gp); 1908 /* 1909 * pool_default hasn't been initialized yet, so we let pool_init() 1910 * take care of making sure the global zone is in the default pool. 1911 */ 1912 1913 /* 1914 * Initialize global zone kstats 1915 */ 1916 zone_kstat_create(&zone0); 1917 1918 /* 1919 * Initialize zone label. 1920 * mlp are initialized when tnzonecfg is loaded. 1921 */ 1922 zone0.zone_slabel = l_admin_low; 1923 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 1924 label_hold(l_admin_low); 1925 1926 mutex_enter(&zonehash_lock); 1927 zone_uniqid(&zone0); 1928 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 1929 1930 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 1931 mod_hash_null_valdtor); 1932 zonehashbyname = mod_hash_create_strhash("zone_by_name", 1933 zone_hash_size, mod_hash_null_valdtor); 1934 /* 1935 * maintain zonehashbylabel only for labeled systems 1936 */ 1937 if (is_system_labeled()) 1938 zonehashbylabel = mod_hash_create_extended("zone_by_label", 1939 zone_hash_size, mod_hash_null_keydtor, 1940 mod_hash_null_valdtor, hash_bylabel, NULL, 1941 hash_labelkey_cmp, KM_SLEEP); 1942 zonecount = 1; 1943 1944 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 1945 (mod_hash_val_t)&zone0); 1946 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 1947 (mod_hash_val_t)&zone0); 1948 if (is_system_labeled()) { 1949 zone0.zone_flags |= ZF_HASHED_LABEL; 1950 (void) mod_hash_insert(zonehashbylabel, 1951 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 1952 } 1953 mutex_exit(&zonehash_lock); 1954 1955 /* 1956 * We avoid setting zone_kcred until now, since kcred is initialized 1957 * sometime after zone_zsd_init() and before zone_init(). 1958 */ 1959 zone0.zone_kcred = kcred; 1960 /* 1961 * The global zone is fully initialized (except for zone_rootvp which 1962 * will be set when the root filesystem is mounted). 1963 */ 1964 global_zone = &zone0; 1965 1966 /* 1967 * Setup an event channel to send zone status change notifications on 1968 */ 1969 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 1970 EVCH_CREAT); 1971 1972 if (res) 1973 panic("Sysevent_evc_bind failed during zone setup.\n"); 1974 1975 } 1976 1977 static void 1978 zone_free(zone_t *zone) 1979 { 1980 ASSERT(zone != global_zone); 1981 ASSERT(zone->zone_ntasks == 0); 1982 ASSERT(zone->zone_nlwps == 0); 1983 ASSERT(zone->zone_cred_ref == 0); 1984 ASSERT(zone->zone_kcred == NULL); 1985 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 1986 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 1987 1988 /* 1989 * Remove any zone caps. 1990 */ 1991 cpucaps_zone_remove(zone); 1992 1993 ASSERT(zone->zone_cpucap == NULL); 1994 1995 /* remove from deathrow list */ 1996 if (zone_status_get(zone) == ZONE_IS_DEAD) { 1997 ASSERT(zone->zone_ref == 0); 1998 mutex_enter(&zone_deathrow_lock); 1999 list_remove(&zone_deathrow, zone); 2000 mutex_exit(&zone_deathrow_lock); 2001 } 2002 2003 zone_free_zsd(zone); 2004 zone_free_datasets(zone); 2005 2006 if (zone->zone_rootvp != NULL) 2007 VN_RELE(zone->zone_rootvp); 2008 if (zone->zone_rootpath) 2009 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2010 if (zone->zone_name != NULL) 2011 kmem_free(zone->zone_name, ZONENAME_MAX); 2012 if (zone->zone_slabel != NULL) 2013 label_rele(zone->zone_slabel); 2014 if (zone->zone_nodename != NULL) 2015 kmem_free(zone->zone_nodename, _SYS_NMLN); 2016 if (zone->zone_domain != NULL) 2017 kmem_free(zone->zone_domain, _SYS_NMLN); 2018 if (zone->zone_privset != NULL) 2019 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2020 if (zone->zone_rctls != NULL) 2021 rctl_set_free(zone->zone_rctls); 2022 if (zone->zone_bootargs != NULL) 2023 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 2024 if (zone->zone_initname != NULL) 2025 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 2026 id_free(zoneid_space, zone->zone_id); 2027 mutex_destroy(&zone->zone_lock); 2028 cv_destroy(&zone->zone_cv); 2029 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2030 kmem_free(zone, sizeof (zone_t)); 2031 } 2032 2033 /* 2034 * See block comment at the top of this file for information about zone 2035 * status values. 2036 */ 2037 /* 2038 * Convenience function for setting zone status. 2039 */ 2040 static void 2041 zone_status_set(zone_t *zone, zone_status_t status) 2042 { 2043 2044 nvlist_t *nvl = NULL; 2045 ASSERT(MUTEX_HELD(&zone_status_lock)); 2046 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2047 status >= zone_status_get(zone)); 2048 2049 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2050 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2051 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2052 zone_status_table[status]) || 2053 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2054 zone_status_table[zone->zone_status]) || 2055 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2056 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2057 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2058 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2059 #ifdef DEBUG 2060 (void) printf( 2061 "Failed to allocate and send zone state change event.\n"); 2062 #endif 2063 } 2064 nvlist_free(nvl); 2065 2066 zone->zone_status = status; 2067 2068 cv_broadcast(&zone->zone_cv); 2069 } 2070 2071 /* 2072 * Public function to retrieve the zone status. The zone status may 2073 * change after it is retrieved. 2074 */ 2075 zone_status_t 2076 zone_status_get(zone_t *zone) 2077 { 2078 return (zone->zone_status); 2079 } 2080 2081 static int 2082 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2083 { 2084 char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2085 int err = 0; 2086 2087 ASSERT(zone != global_zone); 2088 if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0) 2089 goto done; /* EFAULT or ENAMETOOLONG */ 2090 2091 if (zone->zone_bootargs != NULL) 2092 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 2093 2094 zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP); 2095 (void) strcpy(zone->zone_bootargs, bootargs); 2096 2097 done: 2098 kmem_free(bootargs, BOOTARGS_MAX); 2099 return (err); 2100 } 2101 2102 static int 2103 zone_set_brand(zone_t *zone, const char *brand) 2104 { 2105 struct brand_attr *attrp; 2106 brand_t *bp; 2107 2108 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2109 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2110 kmem_free(attrp, sizeof (struct brand_attr)); 2111 return (EFAULT); 2112 } 2113 2114 bp = brand_register_zone(attrp); 2115 kmem_free(attrp, sizeof (struct brand_attr)); 2116 if (bp == NULL) 2117 return (EINVAL); 2118 2119 /* 2120 * This is the only place where a zone can change it's brand. 2121 * We already need to hold zone_status_lock to check the zone 2122 * status, so we'll just use that lock to serialize zone 2123 * branding requests as well. 2124 */ 2125 mutex_enter(&zone_status_lock); 2126 2127 /* Re-Branding is not allowed and the zone can't be booted yet */ 2128 if ((ZONE_IS_BRANDED(zone)) || 2129 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2130 mutex_exit(&zone_status_lock); 2131 brand_unregister_zone(bp); 2132 return (EINVAL); 2133 } 2134 2135 if (is_system_labeled() && 2136 strncmp(attrp->ba_brandname, NATIVE_BRAND_NAME, MAXNAMELEN) != 0) { 2137 mutex_exit(&zone_status_lock); 2138 brand_unregister_zone(bp); 2139 return (EPERM); 2140 } 2141 2142 /* set up the brand specific data */ 2143 zone->zone_brand = bp; 2144 ZBROP(zone)->b_init_brand_data(zone); 2145 2146 mutex_exit(&zone_status_lock); 2147 return (0); 2148 } 2149 2150 static int 2151 zone_set_initname(zone_t *zone, const char *zone_initname) 2152 { 2153 char initname[INITNAME_SZ]; 2154 size_t len; 2155 int err = 0; 2156 2157 ASSERT(zone != global_zone); 2158 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2159 return (err); /* EFAULT or ENAMETOOLONG */ 2160 2161 if (zone->zone_initname != NULL) 2162 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 2163 2164 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2165 (void) strcpy(zone->zone_initname, initname); 2166 return (0); 2167 } 2168 2169 static int 2170 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2171 { 2172 uint64_t mcap; 2173 int err = 0; 2174 2175 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2176 zone->zone_phys_mcap = mcap; 2177 2178 return (err); 2179 } 2180 2181 static int 2182 zone_set_sched_class(zone_t *zone, const char *new_class) 2183 { 2184 char sched_class[PC_CLNMSZ]; 2185 id_t classid; 2186 int err; 2187 2188 ASSERT(zone != global_zone); 2189 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2190 return (err); /* EFAULT or ENAMETOOLONG */ 2191 2192 if (getcid(sched_class, &classid) != 0 || classid == syscid) 2193 return (set_errno(EINVAL)); 2194 zone->zone_defaultcid = classid; 2195 ASSERT(zone->zone_defaultcid > 0 && 2196 zone->zone_defaultcid < loaded_classes); 2197 2198 return (0); 2199 } 2200 2201 /* 2202 * Block indefinitely waiting for (zone_status >= status) 2203 */ 2204 void 2205 zone_status_wait(zone_t *zone, zone_status_t status) 2206 { 2207 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2208 2209 mutex_enter(&zone_status_lock); 2210 while (zone->zone_status < status) { 2211 cv_wait(&zone->zone_cv, &zone_status_lock); 2212 } 2213 mutex_exit(&zone_status_lock); 2214 } 2215 2216 /* 2217 * Private CPR-safe version of zone_status_wait(). 2218 */ 2219 static void 2220 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2221 { 2222 callb_cpr_t cprinfo; 2223 2224 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2225 2226 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2227 str); 2228 mutex_enter(&zone_status_lock); 2229 while (zone->zone_status < status) { 2230 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2231 cv_wait(&zone->zone_cv, &zone_status_lock); 2232 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2233 } 2234 /* 2235 * zone_status_lock is implicitly released by the following. 2236 */ 2237 CALLB_CPR_EXIT(&cprinfo); 2238 } 2239 2240 /* 2241 * Block until zone enters requested state or signal is received. Return (0) 2242 * if signaled, non-zero otherwise. 2243 */ 2244 int 2245 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2246 { 2247 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2248 2249 mutex_enter(&zone_status_lock); 2250 while (zone->zone_status < status) { 2251 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2252 mutex_exit(&zone_status_lock); 2253 return (0); 2254 } 2255 } 2256 mutex_exit(&zone_status_lock); 2257 return (1); 2258 } 2259 2260 /* 2261 * Block until the zone enters the requested state or the timeout expires, 2262 * whichever happens first. Return (-1) if operation timed out, time remaining 2263 * otherwise. 2264 */ 2265 clock_t 2266 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2267 { 2268 clock_t timeleft = 0; 2269 2270 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2271 2272 mutex_enter(&zone_status_lock); 2273 while (zone->zone_status < status && timeleft != -1) { 2274 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2275 } 2276 mutex_exit(&zone_status_lock); 2277 return (timeleft); 2278 } 2279 2280 /* 2281 * Block until the zone enters the requested state, the current process is 2282 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2283 * operation timed out, 0 if signaled, time remaining otherwise. 2284 */ 2285 clock_t 2286 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2287 { 2288 clock_t timeleft = tim - lbolt; 2289 2290 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2291 2292 mutex_enter(&zone_status_lock); 2293 while (zone->zone_status < status) { 2294 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2295 tim); 2296 if (timeleft <= 0) 2297 break; 2298 } 2299 mutex_exit(&zone_status_lock); 2300 return (timeleft); 2301 } 2302 2303 /* 2304 * Zones have two reference counts: one for references from credential 2305 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2306 * This is so we can allow a zone to be rebooted while there are still 2307 * outstanding cred references, since certain drivers cache dblks (which 2308 * implicitly results in cached creds). We wait for zone_ref to drop to 2309 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2310 * later freed when the zone_cred_ref drops to 0, though nothing other 2311 * than the zone id and privilege set should be accessed once the zone 2312 * is "dead". 2313 * 2314 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2315 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2316 * to 0. This can be useful to flush out other sources of cached creds 2317 * that may be less innocuous than the driver case. 2318 */ 2319 2320 int zone_wait_for_cred = 0; 2321 2322 static void 2323 zone_hold_locked(zone_t *z) 2324 { 2325 ASSERT(MUTEX_HELD(&z->zone_lock)); 2326 z->zone_ref++; 2327 ASSERT(z->zone_ref != 0); 2328 } 2329 2330 void 2331 zone_hold(zone_t *z) 2332 { 2333 mutex_enter(&z->zone_lock); 2334 zone_hold_locked(z); 2335 mutex_exit(&z->zone_lock); 2336 } 2337 2338 /* 2339 * If the non-cred ref count drops to 1 and either the cred ref count 2340 * is 0 or we aren't waiting for cred references, the zone is ready to 2341 * be destroyed. 2342 */ 2343 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2344 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2345 2346 void 2347 zone_rele(zone_t *z) 2348 { 2349 boolean_t wakeup; 2350 2351 mutex_enter(&z->zone_lock); 2352 ASSERT(z->zone_ref != 0); 2353 z->zone_ref--; 2354 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2355 /* no more refs, free the structure */ 2356 mutex_exit(&z->zone_lock); 2357 zone_free(z); 2358 return; 2359 } 2360 /* signal zone_destroy so the zone can finish halting */ 2361 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2362 mutex_exit(&z->zone_lock); 2363 2364 if (wakeup) { 2365 /* 2366 * Grabbing zonehash_lock here effectively synchronizes with 2367 * zone_destroy() to avoid missed signals. 2368 */ 2369 mutex_enter(&zonehash_lock); 2370 cv_broadcast(&zone_destroy_cv); 2371 mutex_exit(&zonehash_lock); 2372 } 2373 } 2374 2375 void 2376 zone_cred_hold(zone_t *z) 2377 { 2378 mutex_enter(&z->zone_lock); 2379 z->zone_cred_ref++; 2380 ASSERT(z->zone_cred_ref != 0); 2381 mutex_exit(&z->zone_lock); 2382 } 2383 2384 void 2385 zone_cred_rele(zone_t *z) 2386 { 2387 boolean_t wakeup; 2388 2389 mutex_enter(&z->zone_lock); 2390 ASSERT(z->zone_cred_ref != 0); 2391 z->zone_cred_ref--; 2392 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2393 /* no more refs, free the structure */ 2394 mutex_exit(&z->zone_lock); 2395 zone_free(z); 2396 return; 2397 } 2398 /* 2399 * If zone_destroy is waiting for the cred references to drain 2400 * out, and they have, signal it. 2401 */ 2402 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2403 zone_status_get(z) >= ZONE_IS_DEAD); 2404 mutex_exit(&z->zone_lock); 2405 2406 if (wakeup) { 2407 /* 2408 * Grabbing zonehash_lock here effectively synchronizes with 2409 * zone_destroy() to avoid missed signals. 2410 */ 2411 mutex_enter(&zonehash_lock); 2412 cv_broadcast(&zone_destroy_cv); 2413 mutex_exit(&zonehash_lock); 2414 } 2415 } 2416 2417 void 2418 zone_task_hold(zone_t *z) 2419 { 2420 mutex_enter(&z->zone_lock); 2421 z->zone_ntasks++; 2422 ASSERT(z->zone_ntasks != 0); 2423 mutex_exit(&z->zone_lock); 2424 } 2425 2426 void 2427 zone_task_rele(zone_t *zone) 2428 { 2429 uint_t refcnt; 2430 2431 mutex_enter(&zone->zone_lock); 2432 ASSERT(zone->zone_ntasks != 0); 2433 refcnt = --zone->zone_ntasks; 2434 if (refcnt > 1) { /* Common case */ 2435 mutex_exit(&zone->zone_lock); 2436 return; 2437 } 2438 zone_hold_locked(zone); /* so we can use the zone_t later */ 2439 mutex_exit(&zone->zone_lock); 2440 if (refcnt == 1) { 2441 /* 2442 * See if the zone is shutting down. 2443 */ 2444 mutex_enter(&zone_status_lock); 2445 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2446 goto out; 2447 } 2448 2449 /* 2450 * Make sure the ntasks didn't change since we 2451 * dropped zone_lock. 2452 */ 2453 mutex_enter(&zone->zone_lock); 2454 if (refcnt != zone->zone_ntasks) { 2455 mutex_exit(&zone->zone_lock); 2456 goto out; 2457 } 2458 mutex_exit(&zone->zone_lock); 2459 2460 /* 2461 * No more user processes in the zone. The zone is empty. 2462 */ 2463 zone_status_set(zone, ZONE_IS_EMPTY); 2464 goto out; 2465 } 2466 2467 ASSERT(refcnt == 0); 2468 /* 2469 * zsched has exited; the zone is dead. 2470 */ 2471 zone->zone_zsched = NULL; /* paranoia */ 2472 mutex_enter(&zone_status_lock); 2473 zone_status_set(zone, ZONE_IS_DEAD); 2474 out: 2475 mutex_exit(&zone_status_lock); 2476 zone_rele(zone); 2477 } 2478 2479 zoneid_t 2480 getzoneid(void) 2481 { 2482 return (curproc->p_zone->zone_id); 2483 } 2484 2485 /* 2486 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2487 * check the validity of a zone's state. 2488 */ 2489 static zone_t * 2490 zone_find_all_by_id(zoneid_t zoneid) 2491 { 2492 mod_hash_val_t hv; 2493 zone_t *zone = NULL; 2494 2495 ASSERT(MUTEX_HELD(&zonehash_lock)); 2496 2497 if (mod_hash_find(zonehashbyid, 2498 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2499 zone = (zone_t *)hv; 2500 return (zone); 2501 } 2502 2503 static zone_t * 2504 zone_find_all_by_label(const ts_label_t *label) 2505 { 2506 mod_hash_val_t hv; 2507 zone_t *zone = NULL; 2508 2509 ASSERT(MUTEX_HELD(&zonehash_lock)); 2510 2511 /* 2512 * zonehashbylabel is not maintained for unlabeled systems 2513 */ 2514 if (!is_system_labeled()) 2515 return (NULL); 2516 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2517 zone = (zone_t *)hv; 2518 return (zone); 2519 } 2520 2521 static zone_t * 2522 zone_find_all_by_name(char *name) 2523 { 2524 mod_hash_val_t hv; 2525 zone_t *zone = NULL; 2526 2527 ASSERT(MUTEX_HELD(&zonehash_lock)); 2528 2529 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2530 zone = (zone_t *)hv; 2531 return (zone); 2532 } 2533 2534 /* 2535 * Public interface for looking up a zone by zoneid. Only returns the zone if 2536 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2537 * Caller must call zone_rele() once it is done with the zone. 2538 * 2539 * The zone may begin the zone_destroy() sequence immediately after this 2540 * function returns, but may be safely used until zone_rele() is called. 2541 */ 2542 zone_t * 2543 zone_find_by_id(zoneid_t zoneid) 2544 { 2545 zone_t *zone; 2546 zone_status_t status; 2547 2548 mutex_enter(&zonehash_lock); 2549 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2550 mutex_exit(&zonehash_lock); 2551 return (NULL); 2552 } 2553 status = zone_status_get(zone); 2554 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2555 /* 2556 * For all practical purposes the zone doesn't exist. 2557 */ 2558 mutex_exit(&zonehash_lock); 2559 return (NULL); 2560 } 2561 zone_hold(zone); 2562 mutex_exit(&zonehash_lock); 2563 return (zone); 2564 } 2565 2566 /* 2567 * Similar to zone_find_by_id, but using zone label as the key. 2568 */ 2569 zone_t * 2570 zone_find_by_label(const ts_label_t *label) 2571 { 2572 zone_t *zone; 2573 zone_status_t status; 2574 2575 mutex_enter(&zonehash_lock); 2576 if ((zone = zone_find_all_by_label(label)) == NULL) { 2577 mutex_exit(&zonehash_lock); 2578 return (NULL); 2579 } 2580 2581 status = zone_status_get(zone); 2582 if (status > ZONE_IS_DOWN) { 2583 /* 2584 * For all practical purposes the zone doesn't exist. 2585 */ 2586 mutex_exit(&zonehash_lock); 2587 return (NULL); 2588 } 2589 zone_hold(zone); 2590 mutex_exit(&zonehash_lock); 2591 return (zone); 2592 } 2593 2594 /* 2595 * Similar to zone_find_by_id, but using zone name as the key. 2596 */ 2597 zone_t * 2598 zone_find_by_name(char *name) 2599 { 2600 zone_t *zone; 2601 zone_status_t status; 2602 2603 mutex_enter(&zonehash_lock); 2604 if ((zone = zone_find_all_by_name(name)) == NULL) { 2605 mutex_exit(&zonehash_lock); 2606 return (NULL); 2607 } 2608 status = zone_status_get(zone); 2609 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2610 /* 2611 * For all practical purposes the zone doesn't exist. 2612 */ 2613 mutex_exit(&zonehash_lock); 2614 return (NULL); 2615 } 2616 zone_hold(zone); 2617 mutex_exit(&zonehash_lock); 2618 return (zone); 2619 } 2620 2621 /* 2622 * Similar to zone_find_by_id(), using the path as a key. For instance, 2623 * if there is a zone "foo" rooted at /foo/root, and the path argument 2624 * is "/foo/root/proc", it will return the held zone_t corresponding to 2625 * zone "foo". 2626 * 2627 * zone_find_by_path() always returns a non-NULL value, since at the 2628 * very least every path will be contained in the global zone. 2629 * 2630 * As with the other zone_find_by_*() functions, the caller is 2631 * responsible for zone_rele()ing the return value of this function. 2632 */ 2633 zone_t * 2634 zone_find_by_path(const char *path) 2635 { 2636 zone_t *zone; 2637 zone_t *zret = NULL; 2638 zone_status_t status; 2639 2640 if (path == NULL) { 2641 /* 2642 * Call from rootconf(). 2643 */ 2644 zone_hold(global_zone); 2645 return (global_zone); 2646 } 2647 ASSERT(*path == '/'); 2648 mutex_enter(&zonehash_lock); 2649 for (zone = list_head(&zone_active); zone != NULL; 2650 zone = list_next(&zone_active, zone)) { 2651 if (ZONE_PATH_VISIBLE(path, zone)) 2652 zret = zone; 2653 } 2654 ASSERT(zret != NULL); 2655 status = zone_status_get(zret); 2656 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2657 /* 2658 * Zone practically doesn't exist. 2659 */ 2660 zret = global_zone; 2661 } 2662 zone_hold(zret); 2663 mutex_exit(&zonehash_lock); 2664 return (zret); 2665 } 2666 2667 /* 2668 * Get the number of cpus visible to this zone. The system-wide global 2669 * 'ncpus' is returned if pools are disabled, the caller is in the 2670 * global zone, or a NULL zone argument is passed in. 2671 */ 2672 int 2673 zone_ncpus_get(zone_t *zone) 2674 { 2675 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 2676 2677 return (myncpus != 0 ? myncpus : ncpus); 2678 } 2679 2680 /* 2681 * Get the number of online cpus visible to this zone. The system-wide 2682 * global 'ncpus_online' is returned if pools are disabled, the caller 2683 * is in the global zone, or a NULL zone argument is passed in. 2684 */ 2685 int 2686 zone_ncpus_online_get(zone_t *zone) 2687 { 2688 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 2689 2690 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 2691 } 2692 2693 /* 2694 * Return the pool to which the zone is currently bound. 2695 */ 2696 pool_t * 2697 zone_pool_get(zone_t *zone) 2698 { 2699 ASSERT(pool_lock_held()); 2700 2701 return (zone->zone_pool); 2702 } 2703 2704 /* 2705 * Set the zone's pool pointer and update the zone's visibility to match 2706 * the resources in the new pool. 2707 */ 2708 void 2709 zone_pool_set(zone_t *zone, pool_t *pool) 2710 { 2711 ASSERT(pool_lock_held()); 2712 ASSERT(MUTEX_HELD(&cpu_lock)); 2713 2714 zone->zone_pool = pool; 2715 zone_pset_set(zone, pool->pool_pset->pset_id); 2716 } 2717 2718 /* 2719 * Return the cached value of the id of the processor set to which the 2720 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 2721 * facility is disabled. 2722 */ 2723 psetid_t 2724 zone_pset_get(zone_t *zone) 2725 { 2726 ASSERT(MUTEX_HELD(&cpu_lock)); 2727 2728 return (zone->zone_psetid); 2729 } 2730 2731 /* 2732 * Set the cached value of the id of the processor set to which the zone 2733 * is currently bound. Also update the zone's visibility to match the 2734 * resources in the new processor set. 2735 */ 2736 void 2737 zone_pset_set(zone_t *zone, psetid_t newpsetid) 2738 { 2739 psetid_t oldpsetid; 2740 2741 ASSERT(MUTEX_HELD(&cpu_lock)); 2742 oldpsetid = zone_pset_get(zone); 2743 2744 if (oldpsetid == newpsetid) 2745 return; 2746 /* 2747 * Global zone sees all. 2748 */ 2749 if (zone != global_zone) { 2750 zone->zone_psetid = newpsetid; 2751 if (newpsetid != ZONE_PS_INVAL) 2752 pool_pset_visibility_add(newpsetid, zone); 2753 if (oldpsetid != ZONE_PS_INVAL) 2754 pool_pset_visibility_remove(oldpsetid, zone); 2755 } 2756 /* 2757 * Disabling pools, so we should start using the global values 2758 * for ncpus and ncpus_online. 2759 */ 2760 if (newpsetid == ZONE_PS_INVAL) { 2761 zone->zone_ncpus = 0; 2762 zone->zone_ncpus_online = 0; 2763 } 2764 } 2765 2766 /* 2767 * Walk the list of active zones and issue the provided callback for 2768 * each of them. 2769 * 2770 * Caller must not be holding any locks that may be acquired under 2771 * zonehash_lock. See comment at the beginning of the file for a list of 2772 * common locks and their interactions with zones. 2773 */ 2774 int 2775 zone_walk(int (*cb)(zone_t *, void *), void *data) 2776 { 2777 zone_t *zone; 2778 int ret = 0; 2779 zone_status_t status; 2780 2781 mutex_enter(&zonehash_lock); 2782 for (zone = list_head(&zone_active); zone != NULL; 2783 zone = list_next(&zone_active, zone)) { 2784 /* 2785 * Skip zones that shouldn't be externally visible. 2786 */ 2787 status = zone_status_get(zone); 2788 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 2789 continue; 2790 /* 2791 * Bail immediately if any callback invocation returns a 2792 * non-zero value. 2793 */ 2794 ret = (*cb)(zone, data); 2795 if (ret != 0) 2796 break; 2797 } 2798 mutex_exit(&zonehash_lock); 2799 return (ret); 2800 } 2801 2802 static int 2803 zone_set_root(zone_t *zone, const char *upath) 2804 { 2805 vnode_t *vp; 2806 int trycount; 2807 int error = 0; 2808 char *path; 2809 struct pathname upn, pn; 2810 size_t pathlen; 2811 2812 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 2813 return (error); 2814 2815 pn_alloc(&pn); 2816 2817 /* prevent infinite loop */ 2818 trycount = 10; 2819 for (;;) { 2820 if (--trycount <= 0) { 2821 error = ESTALE; 2822 goto out; 2823 } 2824 2825 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 2826 /* 2827 * VOP_ACCESS() may cover 'vp' with a new 2828 * filesystem, if 'vp' is an autoFS vnode. 2829 * Get the new 'vp' if so. 2830 */ 2831 if ((error = 2832 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 2833 (!vn_ismntpt(vp) || 2834 (error = traverse(&vp)) == 0)) { 2835 pathlen = pn.pn_pathlen + 2; 2836 path = kmem_alloc(pathlen, KM_SLEEP); 2837 (void) strncpy(path, pn.pn_path, 2838 pn.pn_pathlen + 1); 2839 path[pathlen - 2] = '/'; 2840 path[pathlen - 1] = '\0'; 2841 pn_free(&pn); 2842 pn_free(&upn); 2843 2844 /* Success! */ 2845 break; 2846 } 2847 VN_RELE(vp); 2848 } 2849 if (error != ESTALE) 2850 goto out; 2851 } 2852 2853 ASSERT(error == 0); 2854 zone->zone_rootvp = vp; /* we hold a reference to vp */ 2855 zone->zone_rootpath = path; 2856 zone->zone_rootpathlen = pathlen; 2857 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 2858 zone->zone_flags |= ZF_IS_SCRATCH; 2859 return (0); 2860 2861 out: 2862 pn_free(&pn); 2863 pn_free(&upn); 2864 return (error); 2865 } 2866 2867 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 2868 ((c) >= 'a' && (c) <= 'z') || \ 2869 ((c) >= 'A' && (c) <= 'Z')) 2870 2871 static int 2872 zone_set_name(zone_t *zone, const char *uname) 2873 { 2874 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 2875 size_t len; 2876 int i, err; 2877 2878 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 2879 kmem_free(kname, ZONENAME_MAX); 2880 return (err); /* EFAULT or ENAMETOOLONG */ 2881 } 2882 2883 /* must be less than ZONENAME_MAX */ 2884 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 2885 kmem_free(kname, ZONENAME_MAX); 2886 return (EINVAL); 2887 } 2888 2889 /* 2890 * Name must start with an alphanumeric and must contain only 2891 * alphanumerics, '-', '_' and '.'. 2892 */ 2893 if (!isalnum(kname[0])) { 2894 kmem_free(kname, ZONENAME_MAX); 2895 return (EINVAL); 2896 } 2897 for (i = 1; i < len - 1; i++) { 2898 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 2899 kname[i] != '.') { 2900 kmem_free(kname, ZONENAME_MAX); 2901 return (EINVAL); 2902 } 2903 } 2904 2905 zone->zone_name = kname; 2906 return (0); 2907 } 2908 2909 /* 2910 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 2911 * is NULL or it points to a zone with no hostid emulation, then the machine's 2912 * hostid (i.e., the global zone's hostid) is returned. This function returns 2913 * zero if neither the zone nor the host machine (global zone) have hostids. It 2914 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 2915 * hostid and the machine's hostid is invalid. 2916 */ 2917 uint32_t 2918 zone_get_hostid(zone_t *zonep) 2919 { 2920 unsigned long machine_hostid; 2921 2922 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 2923 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 2924 return (HW_INVALID_HOSTID); 2925 return ((uint32_t)machine_hostid); 2926 } 2927 return (zonep->zone_hostid); 2928 } 2929 2930 /* 2931 * Similar to thread_create(), but makes sure the thread is in the appropriate 2932 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 2933 */ 2934 /*ARGSUSED*/ 2935 kthread_t * 2936 zthread_create( 2937 caddr_t stk, 2938 size_t stksize, 2939 void (*proc)(), 2940 void *arg, 2941 size_t len, 2942 pri_t pri) 2943 { 2944 kthread_t *t; 2945 zone_t *zone = curproc->p_zone; 2946 proc_t *pp = zone->zone_zsched; 2947 2948 zone_hold(zone); /* Reference to be dropped when thread exits */ 2949 2950 /* 2951 * No-one should be trying to create threads if the zone is shutting 2952 * down and there aren't any kernel threads around. See comment 2953 * in zthread_exit(). 2954 */ 2955 ASSERT(!(zone->zone_kthreads == NULL && 2956 zone_status_get(zone) >= ZONE_IS_EMPTY)); 2957 /* 2958 * Create a thread, but don't let it run until we've finished setting 2959 * things up. 2960 */ 2961 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 2962 ASSERT(t->t_forw == NULL); 2963 mutex_enter(&zone_status_lock); 2964 if (zone->zone_kthreads == NULL) { 2965 t->t_forw = t->t_back = t; 2966 } else { 2967 kthread_t *tx = zone->zone_kthreads; 2968 2969 t->t_forw = tx; 2970 t->t_back = tx->t_back; 2971 tx->t_back->t_forw = t; 2972 tx->t_back = t; 2973 } 2974 zone->zone_kthreads = t; 2975 mutex_exit(&zone_status_lock); 2976 2977 mutex_enter(&pp->p_lock); 2978 t->t_proc_flag |= TP_ZTHREAD; 2979 project_rele(t->t_proj); 2980 t->t_proj = project_hold(pp->p_task->tk_proj); 2981 2982 /* 2983 * Setup complete, let it run. 2984 */ 2985 thread_lock(t); 2986 t->t_schedflag |= TS_ALLSTART; 2987 setrun_locked(t); 2988 thread_unlock(t); 2989 2990 mutex_exit(&pp->p_lock); 2991 2992 return (t); 2993 } 2994 2995 /* 2996 * Similar to thread_exit(). Must be called by threads created via 2997 * zthread_exit(). 2998 */ 2999 void 3000 zthread_exit(void) 3001 { 3002 kthread_t *t = curthread; 3003 proc_t *pp = curproc; 3004 zone_t *zone = pp->p_zone; 3005 3006 mutex_enter(&zone_status_lock); 3007 3008 /* 3009 * Reparent to p0 3010 */ 3011 kpreempt_disable(); 3012 mutex_enter(&pp->p_lock); 3013 t->t_proc_flag &= ~TP_ZTHREAD; 3014 t->t_procp = &p0; 3015 hat_thread_exit(t); 3016 mutex_exit(&pp->p_lock); 3017 kpreempt_enable(); 3018 3019 if (t->t_back == t) { 3020 ASSERT(t->t_forw == t); 3021 /* 3022 * If the zone is empty, once the thread count 3023 * goes to zero no further kernel threads can be 3024 * created. This is because if the creator is a process 3025 * in the zone, then it must have exited before the zone 3026 * state could be set to ZONE_IS_EMPTY. 3027 * Otherwise, if the creator is a kernel thread in the 3028 * zone, the thread count is non-zero. 3029 * 3030 * This really means that non-zone kernel threads should 3031 * not create zone kernel threads. 3032 */ 3033 zone->zone_kthreads = NULL; 3034 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3035 zone_status_set(zone, ZONE_IS_DOWN); 3036 /* 3037 * Remove any CPU caps on this zone. 3038 */ 3039 cpucaps_zone_remove(zone); 3040 } 3041 } else { 3042 t->t_forw->t_back = t->t_back; 3043 t->t_back->t_forw = t->t_forw; 3044 if (zone->zone_kthreads == t) 3045 zone->zone_kthreads = t->t_forw; 3046 } 3047 mutex_exit(&zone_status_lock); 3048 zone_rele(zone); 3049 thread_exit(); 3050 /* NOTREACHED */ 3051 } 3052 3053 static void 3054 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3055 { 3056 vnode_t *oldvp; 3057 3058 /* we're going to hold a reference here to the directory */ 3059 VN_HOLD(vp); 3060 3061 if (audit_active) /* update abs cwd/root path see c2audit.c */ 3062 audit_chdirec(vp, vpp); 3063 3064 mutex_enter(&pp->p_lock); 3065 oldvp = *vpp; 3066 *vpp = vp; 3067 mutex_exit(&pp->p_lock); 3068 if (oldvp != NULL) 3069 VN_RELE(oldvp); 3070 } 3071 3072 /* 3073 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3074 */ 3075 static int 3076 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3077 { 3078 nvpair_t *nvp = NULL; 3079 boolean_t priv_set = B_FALSE; 3080 boolean_t limit_set = B_FALSE; 3081 boolean_t action_set = B_FALSE; 3082 3083 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3084 const char *name; 3085 uint64_t ui64; 3086 3087 name = nvpair_name(nvp); 3088 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3089 return (EINVAL); 3090 (void) nvpair_value_uint64(nvp, &ui64); 3091 if (strcmp(name, "privilege") == 0) { 3092 /* 3093 * Currently only privileged values are allowed, but 3094 * this may change in the future. 3095 */ 3096 if (ui64 != RCPRIV_PRIVILEGED) 3097 return (EINVAL); 3098 rv->rcv_privilege = ui64; 3099 priv_set = B_TRUE; 3100 } else if (strcmp(name, "limit") == 0) { 3101 rv->rcv_value = ui64; 3102 limit_set = B_TRUE; 3103 } else if (strcmp(name, "action") == 0) { 3104 if (ui64 != RCTL_LOCAL_NOACTION && 3105 ui64 != RCTL_LOCAL_DENY) 3106 return (EINVAL); 3107 rv->rcv_flagaction = ui64; 3108 action_set = B_TRUE; 3109 } else { 3110 return (EINVAL); 3111 } 3112 } 3113 3114 if (!(priv_set && limit_set && action_set)) 3115 return (EINVAL); 3116 rv->rcv_action_signal = 0; 3117 rv->rcv_action_recipient = NULL; 3118 rv->rcv_action_recip_pid = -1; 3119 rv->rcv_firing_time = 0; 3120 3121 return (0); 3122 } 3123 3124 /* 3125 * Non-global zone version of start_init. 3126 */ 3127 void 3128 zone_start_init(void) 3129 { 3130 proc_t *p = ttoproc(curthread); 3131 zone_t *z = p->p_zone; 3132 3133 ASSERT(!INGLOBALZONE(curproc)); 3134 3135 /* 3136 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3137 * storing just the pid of init is sufficient. 3138 */ 3139 z->zone_proc_initpid = p->p_pid; 3140 3141 /* 3142 * We maintain zone_boot_err so that we can return the cause of the 3143 * failure back to the caller of the zone_boot syscall. 3144 */ 3145 p->p_zone->zone_boot_err = start_init_common(); 3146 3147 /* 3148 * We will prevent booting zones from becoming running zones if the 3149 * global zone is shutting down. 3150 */ 3151 mutex_enter(&zone_status_lock); 3152 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3153 ZONE_IS_SHUTTING_DOWN) { 3154 /* 3155 * Make sure we are still in the booting state-- we could have 3156 * raced and already be shutting down, or even further along. 3157 */ 3158 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3159 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3160 } 3161 mutex_exit(&zone_status_lock); 3162 /* It's gone bad, dispose of the process */ 3163 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3164 mutex_enter(&p->p_lock); 3165 ASSERT(p->p_flag & SEXITLWPS); 3166 lwp_exit(); 3167 } 3168 } else { 3169 if (zone_status_get(z) == ZONE_IS_BOOTING) 3170 zone_status_set(z, ZONE_IS_RUNNING); 3171 mutex_exit(&zone_status_lock); 3172 /* cause the process to return to userland. */ 3173 lwp_rtt(); 3174 } 3175 } 3176 3177 struct zsched_arg { 3178 zone_t *zone; 3179 nvlist_t *nvlist; 3180 }; 3181 3182 /* 3183 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3184 * anything to do with scheduling, but rather with the fact that 3185 * per-zone kernel threads are parented to zsched, just like regular 3186 * kernel threads are parented to sched (p0). 3187 * 3188 * zsched is also responsible for launching init for the zone. 3189 */ 3190 static void 3191 zsched(void *arg) 3192 { 3193 struct zsched_arg *za = arg; 3194 proc_t *pp = curproc; 3195 proc_t *initp = proc_init; 3196 zone_t *zone = za->zone; 3197 cred_t *cr, *oldcred; 3198 rctl_set_t *set; 3199 rctl_alloc_gp_t *gp; 3200 contract_t *ct = NULL; 3201 task_t *tk, *oldtk; 3202 rctl_entity_p_t e; 3203 kproject_t *pj; 3204 3205 nvlist_t *nvl = za->nvlist; 3206 nvpair_t *nvp = NULL; 3207 3208 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3209 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3210 PTOU(pp)->u_argc = 0; 3211 PTOU(pp)->u_argv = NULL; 3212 PTOU(pp)->u_envp = NULL; 3213 closeall(P_FINFO(pp)); 3214 3215 /* 3216 * We are this zone's "zsched" process. As the zone isn't generally 3217 * visible yet we don't need to grab any locks before initializing its 3218 * zone_proc pointer. 3219 */ 3220 zone_hold(zone); /* this hold is released by zone_destroy() */ 3221 zone->zone_zsched = pp; 3222 mutex_enter(&pp->p_lock); 3223 pp->p_zone = zone; 3224 mutex_exit(&pp->p_lock); 3225 3226 /* 3227 * Disassociate process from its 'parent'; parent ourselves to init 3228 * (pid 1) and change other values as needed. 3229 */ 3230 sess_create(); 3231 3232 mutex_enter(&pidlock); 3233 proc_detach(pp); 3234 pp->p_ppid = 1; 3235 pp->p_flag |= SZONETOP; 3236 pp->p_ancpid = 1; 3237 pp->p_parent = initp; 3238 pp->p_psibling = NULL; 3239 if (initp->p_child) 3240 initp->p_child->p_psibling = pp; 3241 pp->p_sibling = initp->p_child; 3242 initp->p_child = pp; 3243 3244 /* Decrement what newproc() incremented. */ 3245 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3246 /* 3247 * Our credentials are about to become kcred-like, so we don't care 3248 * about the caller's ruid. 3249 */ 3250 upcount_inc(crgetruid(kcred), zone->zone_id); 3251 mutex_exit(&pidlock); 3252 3253 /* 3254 * getting out of global zone, so decrement lwp counts 3255 */ 3256 pj = pp->p_task->tk_proj; 3257 mutex_enter(&global_zone->zone_nlwps_lock); 3258 pj->kpj_nlwps -= pp->p_lwpcnt; 3259 global_zone->zone_nlwps -= pp->p_lwpcnt; 3260 mutex_exit(&global_zone->zone_nlwps_lock); 3261 3262 /* 3263 * Decrement locked memory counts on old zone and project. 3264 */ 3265 mutex_enter(&global_zone->zone_mem_lock); 3266 global_zone->zone_locked_mem -= pp->p_locked_mem; 3267 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3268 mutex_exit(&global_zone->zone_mem_lock); 3269 3270 /* 3271 * Create and join a new task in project '0' of this zone. 3272 * 3273 * We don't need to call holdlwps() since we know we're the only lwp in 3274 * this process. 3275 * 3276 * task_join() returns with p_lock held. 3277 */ 3278 tk = task_create(0, zone); 3279 mutex_enter(&cpu_lock); 3280 oldtk = task_join(tk, 0); 3281 3282 pj = pp->p_task->tk_proj; 3283 3284 mutex_enter(&zone->zone_mem_lock); 3285 zone->zone_locked_mem += pp->p_locked_mem; 3286 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3287 mutex_exit(&zone->zone_mem_lock); 3288 3289 /* 3290 * add lwp counts to zsched's zone, and increment project's task count 3291 * due to the task created in the above tasksys_settaskid 3292 */ 3293 3294 mutex_enter(&zone->zone_nlwps_lock); 3295 pj->kpj_nlwps += pp->p_lwpcnt; 3296 pj->kpj_ntasks += 1; 3297 zone->zone_nlwps += pp->p_lwpcnt; 3298 mutex_exit(&zone->zone_nlwps_lock); 3299 3300 mutex_exit(&curproc->p_lock); 3301 mutex_exit(&cpu_lock); 3302 task_rele(oldtk); 3303 3304 /* 3305 * The process was created by a process in the global zone, hence the 3306 * credentials are wrong. We might as well have kcred-ish credentials. 3307 */ 3308 cr = zone->zone_kcred; 3309 crhold(cr); 3310 mutex_enter(&pp->p_crlock); 3311 oldcred = pp->p_cred; 3312 pp->p_cred = cr; 3313 mutex_exit(&pp->p_crlock); 3314 crfree(oldcred); 3315 3316 /* 3317 * Hold credentials again (for thread) 3318 */ 3319 crhold(cr); 3320 3321 /* 3322 * p_lwpcnt can't change since this is a kernel process. 3323 */ 3324 crset(pp, cr); 3325 3326 /* 3327 * Chroot 3328 */ 3329 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3330 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3331 3332 /* 3333 * Initialize zone's rctl set. 3334 */ 3335 set = rctl_set_create(); 3336 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3337 mutex_enter(&pp->p_lock); 3338 e.rcep_p.zone = zone; 3339 e.rcep_t = RCENTITY_ZONE; 3340 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3341 mutex_exit(&pp->p_lock); 3342 rctl_prealloc_destroy(gp); 3343 3344 /* 3345 * Apply the rctls passed in to zone_create(). This is basically a list 3346 * assignment: all of the old values are removed and the new ones 3347 * inserted. That is, if an empty list is passed in, all values are 3348 * removed. 3349 */ 3350 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3351 rctl_dict_entry_t *rde; 3352 rctl_hndl_t hndl; 3353 char *name; 3354 nvlist_t **nvlarray; 3355 uint_t i, nelem; 3356 int error; /* For ASSERT()s */ 3357 3358 name = nvpair_name(nvp); 3359 hndl = rctl_hndl_lookup(name); 3360 ASSERT(hndl != -1); 3361 rde = rctl_dict_lookup_hndl(hndl); 3362 ASSERT(rde != NULL); 3363 3364 for (; /* ever */; ) { 3365 rctl_val_t oval; 3366 3367 mutex_enter(&pp->p_lock); 3368 error = rctl_local_get(hndl, NULL, &oval, pp); 3369 mutex_exit(&pp->p_lock); 3370 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3371 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3372 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3373 break; 3374 mutex_enter(&pp->p_lock); 3375 error = rctl_local_delete(hndl, &oval, pp); 3376 mutex_exit(&pp->p_lock); 3377 ASSERT(error == 0); 3378 } 3379 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3380 ASSERT(error == 0); 3381 for (i = 0; i < nelem; i++) { 3382 rctl_val_t *nvalp; 3383 3384 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3385 error = nvlist2rctlval(nvlarray[i], nvalp); 3386 ASSERT(error == 0); 3387 /* 3388 * rctl_local_insert can fail if the value being 3389 * inserted is a duplicate; this is OK. 3390 */ 3391 mutex_enter(&pp->p_lock); 3392 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3393 kmem_cache_free(rctl_val_cache, nvalp); 3394 mutex_exit(&pp->p_lock); 3395 } 3396 } 3397 /* 3398 * Tell the world that we're done setting up. 3399 * 3400 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3401 * and atomically set the zone's processor set visibility. Once 3402 * we drop pool_lock() this zone will automatically get updated 3403 * to reflect any future changes to the pools configuration. 3404 * 3405 * Note that after we drop the locks below (zonehash_lock in 3406 * particular) other operations such as a zone_getattr call can 3407 * now proceed and observe the zone. That is the reason for doing a 3408 * state transition to the INITIALIZED state. 3409 */ 3410 pool_lock(); 3411 mutex_enter(&cpu_lock); 3412 mutex_enter(&zonehash_lock); 3413 zone_uniqid(zone); 3414 zone_zsd_configure(zone); 3415 if (pool_state == POOL_ENABLED) 3416 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3417 mutex_enter(&zone_status_lock); 3418 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3419 zone_status_set(zone, ZONE_IS_INITIALIZED); 3420 mutex_exit(&zone_status_lock); 3421 mutex_exit(&zonehash_lock); 3422 mutex_exit(&cpu_lock); 3423 pool_unlock(); 3424 3425 /* Now call the create callback for this key */ 3426 zsd_apply_all_keys(zsd_apply_create, zone); 3427 3428 /* The callbacks are complete. Mark ZONE_IS_READY */ 3429 mutex_enter(&zone_status_lock); 3430 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3431 zone_status_set(zone, ZONE_IS_READY); 3432 mutex_exit(&zone_status_lock); 3433 3434 /* 3435 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3436 * we launch init, and set the state to running. 3437 */ 3438 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3439 3440 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3441 id_t cid; 3442 3443 /* 3444 * Ok, this is a little complicated. We need to grab the 3445 * zone's pool's scheduling class ID; note that by now, we 3446 * are already bound to a pool if we need to be (zoneadmd 3447 * will have done that to us while we're in the READY 3448 * state). *But* the scheduling class for the zone's 'init' 3449 * must be explicitly passed to newproc, which doesn't 3450 * respect pool bindings. 3451 * 3452 * We hold the pool_lock across the call to newproc() to 3453 * close the obvious race: the pool's scheduling class 3454 * could change before we manage to create the LWP with 3455 * classid 'cid'. 3456 */ 3457 pool_lock(); 3458 if (zone->zone_defaultcid > 0) 3459 cid = zone->zone_defaultcid; 3460 else 3461 cid = pool_get_class(zone->zone_pool); 3462 if (cid == -1) 3463 cid = defaultcid; 3464 3465 /* 3466 * If this fails, zone_boot will ultimately fail. The 3467 * state of the zone will be set to SHUTTING_DOWN-- userland 3468 * will have to tear down the zone, and fail, or try again. 3469 */ 3470 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3471 minclsyspri - 1, &ct)) != 0) { 3472 mutex_enter(&zone_status_lock); 3473 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3474 mutex_exit(&zone_status_lock); 3475 } 3476 pool_unlock(); 3477 } 3478 3479 /* 3480 * Wait for zone_destroy() to be called. This is what we spend 3481 * most of our life doing. 3482 */ 3483 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3484 3485 if (ct) 3486 /* 3487 * At this point the process contract should be empty. 3488 * (Though if it isn't, it's not the end of the world.) 3489 */ 3490 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3491 3492 /* 3493 * Allow kcred to be freed when all referring processes 3494 * (including this one) go away. We can't just do this in 3495 * zone_free because we need to wait for the zone_cred_ref to 3496 * drop to 0 before calling zone_free, and the existence of 3497 * zone_kcred will prevent that. Thus, we call crfree here to 3498 * balance the crdup in zone_create. The crhold calls earlier 3499 * in zsched will be dropped when the thread and process exit. 3500 */ 3501 crfree(zone->zone_kcred); 3502 zone->zone_kcred = NULL; 3503 3504 exit(CLD_EXITED, 0); 3505 } 3506 3507 /* 3508 * Helper function to determine if there are any submounts of the 3509 * provided path. Used to make sure the zone doesn't "inherit" any 3510 * mounts from before it is created. 3511 */ 3512 static uint_t 3513 zone_mount_count(const char *rootpath) 3514 { 3515 vfs_t *vfsp; 3516 uint_t count = 0; 3517 size_t rootpathlen = strlen(rootpath); 3518 3519 /* 3520 * Holding zonehash_lock prevents race conditions with 3521 * vfs_list_add()/vfs_list_remove() since we serialize with 3522 * zone_find_by_path(). 3523 */ 3524 ASSERT(MUTEX_HELD(&zonehash_lock)); 3525 /* 3526 * The rootpath must end with a '/' 3527 */ 3528 ASSERT(rootpath[rootpathlen - 1] == '/'); 3529 3530 /* 3531 * This intentionally does not count the rootpath itself if that 3532 * happens to be a mount point. 3533 */ 3534 vfs_list_read_lock(); 3535 vfsp = rootvfs; 3536 do { 3537 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 3538 rootpathlen) == 0) 3539 count++; 3540 vfsp = vfsp->vfs_next; 3541 } while (vfsp != rootvfs); 3542 vfs_list_unlock(); 3543 return (count); 3544 } 3545 3546 /* 3547 * Helper function to make sure that a zone created on 'rootpath' 3548 * wouldn't end up containing other zones' rootpaths. 3549 */ 3550 static boolean_t 3551 zone_is_nested(const char *rootpath) 3552 { 3553 zone_t *zone; 3554 size_t rootpathlen = strlen(rootpath); 3555 size_t len; 3556 3557 ASSERT(MUTEX_HELD(&zonehash_lock)); 3558 3559 /* 3560 * zone_set_root() appended '/' and '\0' at the end of rootpath 3561 */ 3562 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 3563 (rootpath[1] == '/') && (rootpath[2] == '\0')) 3564 return (B_TRUE); 3565 3566 for (zone = list_head(&zone_active); zone != NULL; 3567 zone = list_next(&zone_active, zone)) { 3568 if (zone == global_zone) 3569 continue; 3570 len = strlen(zone->zone_rootpath); 3571 if (strncmp(rootpath, zone->zone_rootpath, 3572 MIN(rootpathlen, len)) == 0) 3573 return (B_TRUE); 3574 } 3575 return (B_FALSE); 3576 } 3577 3578 static int 3579 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 3580 size_t zone_privssz) 3581 { 3582 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 3583 3584 if (zone_privssz < sizeof (priv_set_t)) 3585 return (set_errno(ENOMEM)); 3586 3587 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 3588 kmem_free(privs, sizeof (priv_set_t)); 3589 return (EFAULT); 3590 } 3591 3592 zone->zone_privset = privs; 3593 return (0); 3594 } 3595 3596 /* 3597 * We make creative use of nvlists to pass in rctls from userland. The list is 3598 * a list of the following structures: 3599 * 3600 * (name = rctl_name, value = nvpair_list_array) 3601 * 3602 * Where each element of the nvpair_list_array is of the form: 3603 * 3604 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 3605 * (name = "limit", value = uint64_t), 3606 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 3607 */ 3608 static int 3609 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 3610 { 3611 nvpair_t *nvp = NULL; 3612 nvlist_t *nvl = NULL; 3613 char *kbuf; 3614 int error; 3615 rctl_val_t rv; 3616 3617 *nvlp = NULL; 3618 3619 if (buflen == 0) 3620 return (0); 3621 3622 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3623 return (ENOMEM); 3624 if (copyin(ubuf, kbuf, buflen)) { 3625 error = EFAULT; 3626 goto out; 3627 } 3628 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 3629 /* 3630 * nvl may have been allocated/free'd, but the value set to 3631 * non-NULL, so we reset it here. 3632 */ 3633 nvl = NULL; 3634 error = EINVAL; 3635 goto out; 3636 } 3637 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3638 rctl_dict_entry_t *rde; 3639 rctl_hndl_t hndl; 3640 nvlist_t **nvlarray; 3641 uint_t i, nelem; 3642 char *name; 3643 3644 error = EINVAL; 3645 name = nvpair_name(nvp); 3646 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 3647 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 3648 goto out; 3649 } 3650 if ((hndl = rctl_hndl_lookup(name)) == -1) { 3651 goto out; 3652 } 3653 rde = rctl_dict_lookup_hndl(hndl); 3654 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3655 ASSERT(error == 0); 3656 for (i = 0; i < nelem; i++) { 3657 if (error = nvlist2rctlval(nvlarray[i], &rv)) 3658 goto out; 3659 } 3660 if (rctl_invalid_value(rde, &rv)) { 3661 error = EINVAL; 3662 goto out; 3663 } 3664 } 3665 error = 0; 3666 *nvlp = nvl; 3667 out: 3668 kmem_free(kbuf, buflen); 3669 if (error && nvl != NULL) 3670 nvlist_free(nvl); 3671 return (error); 3672 } 3673 3674 int 3675 zone_create_error(int er_error, int er_ext, int *er_out) { 3676 if (er_out != NULL) { 3677 if (copyout(&er_ext, er_out, sizeof (int))) { 3678 return (set_errno(EFAULT)); 3679 } 3680 } 3681 return (set_errno(er_error)); 3682 } 3683 3684 static int 3685 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 3686 { 3687 ts_label_t *tsl; 3688 bslabel_t blab; 3689 3690 /* Get label from user */ 3691 if (copyin(lab, &blab, sizeof (blab)) != 0) 3692 return (EFAULT); 3693 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 3694 if (tsl == NULL) 3695 return (ENOMEM); 3696 3697 zone->zone_slabel = tsl; 3698 return (0); 3699 } 3700 3701 /* 3702 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 3703 */ 3704 static int 3705 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 3706 { 3707 char *kbuf; 3708 char *dataset, *next; 3709 zone_dataset_t *zd; 3710 size_t len; 3711 3712 if (ubuf == NULL || buflen == 0) 3713 return (0); 3714 3715 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3716 return (ENOMEM); 3717 3718 if (copyin(ubuf, kbuf, buflen) != 0) { 3719 kmem_free(kbuf, buflen); 3720 return (EFAULT); 3721 } 3722 3723 dataset = next = kbuf; 3724 for (;;) { 3725 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 3726 3727 next = strchr(dataset, ','); 3728 3729 if (next == NULL) 3730 len = strlen(dataset); 3731 else 3732 len = next - dataset; 3733 3734 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 3735 bcopy(dataset, zd->zd_dataset, len); 3736 zd->zd_dataset[len] = '\0'; 3737 3738 list_insert_head(&zone->zone_datasets, zd); 3739 3740 if (next == NULL) 3741 break; 3742 3743 dataset = next + 1; 3744 } 3745 3746 kmem_free(kbuf, buflen); 3747 return (0); 3748 } 3749 3750 /* 3751 * System call to create/initialize a new zone named 'zone_name', rooted 3752 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 3753 * and initialized with the zone-wide rctls described in 'rctlbuf', and 3754 * with labeling set by 'match', 'doi', and 'label'. 3755 * 3756 * If extended error is non-null, we may use it to return more detailed 3757 * error information. 3758 */ 3759 static zoneid_t 3760 zone_create(const char *zone_name, const char *zone_root, 3761 const priv_set_t *zone_privs, size_t zone_privssz, 3762 caddr_t rctlbuf, size_t rctlbufsz, 3763 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 3764 int match, uint32_t doi, const bslabel_t *label, 3765 int flags) 3766 { 3767 struct zsched_arg zarg; 3768 nvlist_t *rctls = NULL; 3769 proc_t *pp = curproc; 3770 zone_t *zone, *ztmp; 3771 zoneid_t zoneid; 3772 int error; 3773 int error2 = 0; 3774 char *str; 3775 cred_t *zkcr; 3776 boolean_t insert_label_hash; 3777 3778 if (secpolicy_zone_config(CRED()) != 0) 3779 return (set_errno(EPERM)); 3780 3781 /* can't boot zone from within chroot environment */ 3782 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 3783 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 3784 extended_error)); 3785 3786 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 3787 zoneid = zone->zone_id = id_alloc(zoneid_space); 3788 zone->zone_status = ZONE_IS_UNINITIALIZED; 3789 zone->zone_pool = pool_default; 3790 zone->zone_pool_mod = gethrtime(); 3791 zone->zone_psetid = ZONE_PS_INVAL; 3792 zone->zone_ncpus = 0; 3793 zone->zone_ncpus_online = 0; 3794 zone->zone_restart_init = B_TRUE; 3795 zone->zone_brand = &native_brand; 3796 zone->zone_initname = NULL; 3797 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 3798 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 3799 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 3800 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 3801 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 3802 offsetof(struct zsd_entry, zsd_linkage)); 3803 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 3804 offsetof(zone_dataset_t, zd_linkage)); 3805 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 3806 3807 if (flags & ZCF_NET_EXCL) { 3808 zone->zone_flags |= ZF_NET_EXCL; 3809 } 3810 3811 if ((error = zone_set_name(zone, zone_name)) != 0) { 3812 zone_free(zone); 3813 return (zone_create_error(error, 0, extended_error)); 3814 } 3815 3816 if ((error = zone_set_root(zone, zone_root)) != 0) { 3817 zone_free(zone); 3818 return (zone_create_error(error, 0, extended_error)); 3819 } 3820 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 3821 zone_free(zone); 3822 return (zone_create_error(error, 0, extended_error)); 3823 } 3824 3825 /* initialize node name to be the same as zone name */ 3826 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3827 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 3828 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 3829 3830 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3831 zone->zone_domain[0] = '\0'; 3832 zone->zone_hostid = HW_INVALID_HOSTID; 3833 zone->zone_shares = 1; 3834 zone->zone_shmmax = 0; 3835 zone->zone_ipc.ipcq_shmmni = 0; 3836 zone->zone_ipc.ipcq_semmni = 0; 3837 zone->zone_ipc.ipcq_msgmni = 0; 3838 zone->zone_bootargs = NULL; 3839 zone->zone_initname = 3840 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 3841 (void) strcpy(zone->zone_initname, zone_default_initname); 3842 zone->zone_nlwps = 0; 3843 zone->zone_nlwps_ctl = INT_MAX; 3844 zone->zone_locked_mem = 0; 3845 zone->zone_locked_mem_ctl = UINT64_MAX; 3846 zone->zone_max_swap = 0; 3847 zone->zone_max_swap_ctl = UINT64_MAX; 3848 zone0.zone_lockedmem_kstat = NULL; 3849 zone0.zone_swapresv_kstat = NULL; 3850 3851 /* 3852 * Zsched initializes the rctls. 3853 */ 3854 zone->zone_rctls = NULL; 3855 3856 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 3857 zone_free(zone); 3858 return (zone_create_error(error, 0, extended_error)); 3859 } 3860 3861 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 3862 zone_free(zone); 3863 return (set_errno(error)); 3864 } 3865 3866 /* 3867 * Read in the trusted system parameters: 3868 * match flag and sensitivity label. 3869 */ 3870 zone->zone_match = match; 3871 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3872 /* Fail if requested to set doi to anything but system's doi */ 3873 if (doi != 0 && doi != default_doi) { 3874 zone_free(zone); 3875 return (set_errno(EINVAL)); 3876 } 3877 /* Always apply system's doi to the zone */ 3878 error = zone_set_label(zone, label, default_doi); 3879 if (error != 0) { 3880 zone_free(zone); 3881 return (set_errno(error)); 3882 } 3883 insert_label_hash = B_TRUE; 3884 } else { 3885 /* all zones get an admin_low label if system is not labeled */ 3886 zone->zone_slabel = l_admin_low; 3887 label_hold(l_admin_low); 3888 insert_label_hash = B_FALSE; 3889 } 3890 3891 /* 3892 * Stop all lwps since that's what normally happens as part of fork(). 3893 * This needs to happen before we grab any locks to avoid deadlock 3894 * (another lwp in the process could be waiting for the held lock). 3895 */ 3896 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 3897 zone_free(zone); 3898 if (rctls) 3899 nvlist_free(rctls); 3900 return (zone_create_error(error, 0, extended_error)); 3901 } 3902 3903 if (block_mounts() == 0) { 3904 mutex_enter(&pp->p_lock); 3905 if (curthread != pp->p_agenttp) 3906 continuelwps(pp); 3907 mutex_exit(&pp->p_lock); 3908 zone_free(zone); 3909 if (rctls) 3910 nvlist_free(rctls); 3911 return (zone_create_error(error, 0, extended_error)); 3912 } 3913 3914 /* 3915 * Set up credential for kernel access. After this, any errors 3916 * should go through the dance in errout rather than calling 3917 * zone_free directly. 3918 */ 3919 zone->zone_kcred = crdup(kcred); 3920 crsetzone(zone->zone_kcred, zone); 3921 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 3922 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 3923 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 3924 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 3925 3926 mutex_enter(&zonehash_lock); 3927 /* 3928 * Make sure zone doesn't already exist. 3929 * 3930 * If the system and zone are labeled, 3931 * make sure no other zone exists that has the same label. 3932 */ 3933 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 3934 (insert_label_hash && 3935 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 3936 zone_status_t status; 3937 3938 status = zone_status_get(ztmp); 3939 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 3940 error = EEXIST; 3941 else 3942 error = EBUSY; 3943 3944 if (insert_label_hash) 3945 error2 = ZE_LABELINUSE; 3946 3947 goto errout; 3948 } 3949 3950 /* 3951 * Don't allow zone creations which would cause one zone's rootpath to 3952 * be accessible from that of another (non-global) zone. 3953 */ 3954 if (zone_is_nested(zone->zone_rootpath)) { 3955 error = EBUSY; 3956 goto errout; 3957 } 3958 3959 ASSERT(zonecount != 0); /* check for leaks */ 3960 if (zonecount + 1 > maxzones) { 3961 error = ENOMEM; 3962 goto errout; 3963 } 3964 3965 if (zone_mount_count(zone->zone_rootpath) != 0) { 3966 error = EBUSY; 3967 error2 = ZE_AREMOUNTS; 3968 goto errout; 3969 } 3970 3971 /* 3972 * Zone is still incomplete, but we need to drop all locks while 3973 * zsched() initializes this zone's kernel process. We 3974 * optimistically add the zone to the hashtable and associated 3975 * lists so a parallel zone_create() doesn't try to create the 3976 * same zone. 3977 */ 3978 zonecount++; 3979 (void) mod_hash_insert(zonehashbyid, 3980 (mod_hash_key_t)(uintptr_t)zone->zone_id, 3981 (mod_hash_val_t)(uintptr_t)zone); 3982 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 3983 (void) strcpy(str, zone->zone_name); 3984 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 3985 (mod_hash_val_t)(uintptr_t)zone); 3986 if (insert_label_hash) { 3987 (void) mod_hash_insert(zonehashbylabel, 3988 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 3989 zone->zone_flags |= ZF_HASHED_LABEL; 3990 } 3991 3992 /* 3993 * Insert into active list. At this point there are no 'hold's 3994 * on the zone, but everyone else knows not to use it, so we can 3995 * continue to use it. zsched() will do a zone_hold() if the 3996 * newproc() is successful. 3997 */ 3998 list_insert_tail(&zone_active, zone); 3999 mutex_exit(&zonehash_lock); 4000 4001 zarg.zone = zone; 4002 zarg.nvlist = rctls; 4003 /* 4004 * The process, task, and project rctls are probably wrong; 4005 * we need an interface to get the default values of all rctls, 4006 * and initialize zsched appropriately. I'm not sure that that 4007 * makes much of a difference, though. 4008 */ 4009 if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) { 4010 /* 4011 * We need to undo all globally visible state. 4012 */ 4013 mutex_enter(&zonehash_lock); 4014 list_remove(&zone_active, zone); 4015 if (zone->zone_flags & ZF_HASHED_LABEL) { 4016 ASSERT(zone->zone_slabel != NULL); 4017 (void) mod_hash_destroy(zonehashbylabel, 4018 (mod_hash_key_t)zone->zone_slabel); 4019 } 4020 (void) mod_hash_destroy(zonehashbyname, 4021 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4022 (void) mod_hash_destroy(zonehashbyid, 4023 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4024 ASSERT(zonecount > 1); 4025 zonecount--; 4026 goto errout; 4027 } 4028 4029 /* 4030 * Zone creation can't fail from now on. 4031 */ 4032 4033 /* 4034 * Create zone kstats 4035 */ 4036 zone_kstat_create(zone); 4037 4038 /* 4039 * Let the other lwps continue. 4040 */ 4041 mutex_enter(&pp->p_lock); 4042 if (curthread != pp->p_agenttp) 4043 continuelwps(pp); 4044 mutex_exit(&pp->p_lock); 4045 4046 /* 4047 * Wait for zsched to finish initializing the zone. 4048 */ 4049 zone_status_wait(zone, ZONE_IS_READY); 4050 /* 4051 * The zone is fully visible, so we can let mounts progress. 4052 */ 4053 resume_mounts(); 4054 if (rctls) 4055 nvlist_free(rctls); 4056 4057 return (zoneid); 4058 4059 errout: 4060 mutex_exit(&zonehash_lock); 4061 /* 4062 * Let the other lwps continue. 4063 */ 4064 mutex_enter(&pp->p_lock); 4065 if (curthread != pp->p_agenttp) 4066 continuelwps(pp); 4067 mutex_exit(&pp->p_lock); 4068 4069 resume_mounts(); 4070 if (rctls) 4071 nvlist_free(rctls); 4072 /* 4073 * There is currently one reference to the zone, a cred_ref from 4074 * zone_kcred. To free the zone, we call crfree, which will call 4075 * zone_cred_rele, which will call zone_free. 4076 */ 4077 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 4078 ASSERT(zone->zone_kcred->cr_ref == 1); 4079 ASSERT(zone->zone_ref == 0); 4080 zkcr = zone->zone_kcred; 4081 zone->zone_kcred = NULL; 4082 crfree(zkcr); /* triggers call to zone_free */ 4083 return (zone_create_error(error, error2, extended_error)); 4084 } 4085 4086 /* 4087 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4088 * the heavy lifting. initname is the path to the program to launch 4089 * at the "top" of the zone; if this is NULL, we use the system default, 4090 * which is stored at zone_default_initname. 4091 */ 4092 static int 4093 zone_boot(zoneid_t zoneid) 4094 { 4095 int err; 4096 zone_t *zone; 4097 4098 if (secpolicy_zone_config(CRED()) != 0) 4099 return (set_errno(EPERM)); 4100 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4101 return (set_errno(EINVAL)); 4102 4103 mutex_enter(&zonehash_lock); 4104 /* 4105 * Look for zone under hash lock to prevent races with calls to 4106 * zone_shutdown, zone_destroy, etc. 4107 */ 4108 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4109 mutex_exit(&zonehash_lock); 4110 return (set_errno(EINVAL)); 4111 } 4112 4113 mutex_enter(&zone_status_lock); 4114 if (zone_status_get(zone) != ZONE_IS_READY) { 4115 mutex_exit(&zone_status_lock); 4116 mutex_exit(&zonehash_lock); 4117 return (set_errno(EINVAL)); 4118 } 4119 zone_status_set(zone, ZONE_IS_BOOTING); 4120 mutex_exit(&zone_status_lock); 4121 4122 zone_hold(zone); /* so we can use the zone_t later */ 4123 mutex_exit(&zonehash_lock); 4124 4125 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4126 zone_rele(zone); 4127 return (set_errno(EINTR)); 4128 } 4129 4130 /* 4131 * Boot (starting init) might have failed, in which case the zone 4132 * will go to the SHUTTING_DOWN state; an appropriate errno will 4133 * be placed in zone->zone_boot_err, and so we return that. 4134 */ 4135 err = zone->zone_boot_err; 4136 zone_rele(zone); 4137 return (err ? set_errno(err) : 0); 4138 } 4139 4140 /* 4141 * Kills all user processes in the zone, waiting for them all to exit 4142 * before returning. 4143 */ 4144 static int 4145 zone_empty(zone_t *zone) 4146 { 4147 int waitstatus; 4148 4149 /* 4150 * We need to drop zonehash_lock before killing all 4151 * processes, otherwise we'll deadlock with zone_find_* 4152 * which can be called from the exit path. 4153 */ 4154 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4155 while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz, 4156 ZONE_IS_EMPTY)) == -1) { 4157 killall(zone->zone_id); 4158 } 4159 /* 4160 * return EINTR if we were signaled 4161 */ 4162 if (waitstatus == 0) 4163 return (EINTR); 4164 return (0); 4165 } 4166 4167 /* 4168 * This function implements the policy for zone visibility. 4169 * 4170 * In standard Solaris, a non-global zone can only see itself. 4171 * 4172 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4173 * it dominates. For this test, the label of the global zone is treated as 4174 * admin_high so it is special-cased instead of being checked for dominance. 4175 * 4176 * Returns true if zone attributes are viewable, false otherwise. 4177 */ 4178 static boolean_t 4179 zone_list_access(zone_t *zone) 4180 { 4181 4182 if (curproc->p_zone == global_zone || 4183 curproc->p_zone == zone) { 4184 return (B_TRUE); 4185 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4186 bslabel_t *curproc_label; 4187 bslabel_t *zone_label; 4188 4189 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4190 zone_label = label2bslabel(zone->zone_slabel); 4191 4192 if (zone->zone_id != GLOBAL_ZONEID && 4193 bldominates(curproc_label, zone_label)) { 4194 return (B_TRUE); 4195 } else { 4196 return (B_FALSE); 4197 } 4198 } else { 4199 return (B_FALSE); 4200 } 4201 } 4202 4203 /* 4204 * Systemcall to start the zone's halt sequence. By the time this 4205 * function successfully returns, all user processes and kernel threads 4206 * executing in it will have exited, ZSD shutdown callbacks executed, 4207 * and the zone status set to ZONE_IS_DOWN. 4208 * 4209 * It is possible that the call will interrupt itself if the caller is the 4210 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4211 */ 4212 static int 4213 zone_shutdown(zoneid_t zoneid) 4214 { 4215 int error; 4216 zone_t *zone; 4217 zone_status_t status; 4218 4219 if (secpolicy_zone_config(CRED()) != 0) 4220 return (set_errno(EPERM)); 4221 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4222 return (set_errno(EINVAL)); 4223 4224 /* 4225 * Block mounts so that VFS_MOUNT() can get an accurate view of 4226 * the zone's status with regards to ZONE_IS_SHUTTING down. 4227 * 4228 * e.g. NFS can fail the mount if it determines that the zone 4229 * has already begun the shutdown sequence. 4230 */ 4231 if (block_mounts() == 0) 4232 return (set_errno(EINTR)); 4233 mutex_enter(&zonehash_lock); 4234 /* 4235 * Look for zone under hash lock to prevent races with other 4236 * calls to zone_shutdown and zone_destroy. 4237 */ 4238 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4239 mutex_exit(&zonehash_lock); 4240 resume_mounts(); 4241 return (set_errno(EINVAL)); 4242 } 4243 mutex_enter(&zone_status_lock); 4244 status = zone_status_get(zone); 4245 /* 4246 * Fail if the zone isn't fully initialized yet. 4247 */ 4248 if (status < ZONE_IS_READY) { 4249 mutex_exit(&zone_status_lock); 4250 mutex_exit(&zonehash_lock); 4251 resume_mounts(); 4252 return (set_errno(EINVAL)); 4253 } 4254 /* 4255 * If conditions required for zone_shutdown() to return have been met, 4256 * return success. 4257 */ 4258 if (status >= ZONE_IS_DOWN) { 4259 mutex_exit(&zone_status_lock); 4260 mutex_exit(&zonehash_lock); 4261 resume_mounts(); 4262 return (0); 4263 } 4264 /* 4265 * If zone_shutdown() hasn't been called before, go through the motions. 4266 * If it has, there's nothing to do but wait for the kernel threads to 4267 * drain. 4268 */ 4269 if (status < ZONE_IS_EMPTY) { 4270 uint_t ntasks; 4271 4272 mutex_enter(&zone->zone_lock); 4273 if ((ntasks = zone->zone_ntasks) != 1) { 4274 /* 4275 * There's still stuff running. 4276 */ 4277 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4278 } 4279 mutex_exit(&zone->zone_lock); 4280 if (ntasks == 1) { 4281 /* 4282 * The only way to create another task is through 4283 * zone_enter(), which will block until we drop 4284 * zonehash_lock. The zone is empty. 4285 */ 4286 if (zone->zone_kthreads == NULL) { 4287 /* 4288 * Skip ahead to ZONE_IS_DOWN 4289 */ 4290 zone_status_set(zone, ZONE_IS_DOWN); 4291 } else { 4292 zone_status_set(zone, ZONE_IS_EMPTY); 4293 } 4294 } 4295 } 4296 zone_hold(zone); /* so we can use the zone_t later */ 4297 mutex_exit(&zone_status_lock); 4298 mutex_exit(&zonehash_lock); 4299 resume_mounts(); 4300 4301 if (error = zone_empty(zone)) { 4302 zone_rele(zone); 4303 return (set_errno(error)); 4304 } 4305 /* 4306 * After the zone status goes to ZONE_IS_DOWN this zone will no 4307 * longer be notified of changes to the pools configuration, so 4308 * in order to not end up with a stale pool pointer, we point 4309 * ourselves at the default pool and remove all resource 4310 * visibility. This is especially important as the zone_t may 4311 * languish on the deathrow for a very long time waiting for 4312 * cred's to drain out. 4313 * 4314 * This rebinding of the zone can happen multiple times 4315 * (presumably due to interrupted or parallel systemcalls) 4316 * without any adverse effects. 4317 */ 4318 if (pool_lock_intr() != 0) { 4319 zone_rele(zone); 4320 return (set_errno(EINTR)); 4321 } 4322 if (pool_state == POOL_ENABLED) { 4323 mutex_enter(&cpu_lock); 4324 zone_pool_set(zone, pool_default); 4325 /* 4326 * The zone no longer needs to be able to see any cpus. 4327 */ 4328 zone_pset_set(zone, ZONE_PS_INVAL); 4329 mutex_exit(&cpu_lock); 4330 } 4331 pool_unlock(); 4332 4333 /* 4334 * ZSD shutdown callbacks can be executed multiple times, hence 4335 * it is safe to not be holding any locks across this call. 4336 */ 4337 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4338 4339 mutex_enter(&zone_status_lock); 4340 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4341 zone_status_set(zone, ZONE_IS_DOWN); 4342 mutex_exit(&zone_status_lock); 4343 4344 /* 4345 * Wait for kernel threads to drain. 4346 */ 4347 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4348 zone_rele(zone); 4349 return (set_errno(EINTR)); 4350 } 4351 4352 /* 4353 * Zone can be become down/destroyable even if the above wait 4354 * returns EINTR, so any code added here may never execute. 4355 * (i.e. don't add code here) 4356 */ 4357 4358 zone_rele(zone); 4359 return (0); 4360 } 4361 4362 /* 4363 * Systemcall entry point to finalize the zone halt process. The caller 4364 * must have already successfully called zone_shutdown(). 4365 * 4366 * Upon successful completion, the zone will have been fully destroyed: 4367 * zsched will have exited, destructor callbacks executed, and the zone 4368 * removed from the list of active zones. 4369 */ 4370 static int 4371 zone_destroy(zoneid_t zoneid) 4372 { 4373 uint64_t uniqid; 4374 zone_t *zone; 4375 zone_status_t status; 4376 4377 if (secpolicy_zone_config(CRED()) != 0) 4378 return (set_errno(EPERM)); 4379 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4380 return (set_errno(EINVAL)); 4381 4382 mutex_enter(&zonehash_lock); 4383 /* 4384 * Look for zone under hash lock to prevent races with other 4385 * calls to zone_destroy. 4386 */ 4387 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4388 mutex_exit(&zonehash_lock); 4389 return (set_errno(EINVAL)); 4390 } 4391 4392 if (zone_mount_count(zone->zone_rootpath) != 0) { 4393 mutex_exit(&zonehash_lock); 4394 return (set_errno(EBUSY)); 4395 } 4396 mutex_enter(&zone_status_lock); 4397 status = zone_status_get(zone); 4398 if (status < ZONE_IS_DOWN) { 4399 mutex_exit(&zone_status_lock); 4400 mutex_exit(&zonehash_lock); 4401 return (set_errno(EBUSY)); 4402 } else if (status == ZONE_IS_DOWN) { 4403 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 4404 } 4405 mutex_exit(&zone_status_lock); 4406 zone_hold(zone); 4407 mutex_exit(&zonehash_lock); 4408 4409 /* 4410 * wait for zsched to exit 4411 */ 4412 zone_status_wait(zone, ZONE_IS_DEAD); 4413 zone_zsd_callbacks(zone, ZSD_DESTROY); 4414 zone->zone_netstack = NULL; 4415 uniqid = zone->zone_uniqid; 4416 zone_rele(zone); 4417 zone = NULL; /* potentially free'd */ 4418 4419 mutex_enter(&zonehash_lock); 4420 for (; /* ever */; ) { 4421 boolean_t unref; 4422 4423 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 4424 zone->zone_uniqid != uniqid) { 4425 /* 4426 * The zone has gone away. Necessary conditions 4427 * are met, so we return success. 4428 */ 4429 mutex_exit(&zonehash_lock); 4430 return (0); 4431 } 4432 mutex_enter(&zone->zone_lock); 4433 unref = ZONE_IS_UNREF(zone); 4434 mutex_exit(&zone->zone_lock); 4435 if (unref) { 4436 /* 4437 * There is only one reference to the zone -- that 4438 * added when the zone was added to the hashtables -- 4439 * and things will remain this way until we drop 4440 * zonehash_lock... we can go ahead and cleanup the 4441 * zone. 4442 */ 4443 break; 4444 } 4445 4446 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 4447 /* Signaled */ 4448 mutex_exit(&zonehash_lock); 4449 return (set_errno(EINTR)); 4450 } 4451 4452 } 4453 4454 /* 4455 * Remove CPU cap for this zone now since we're not going to 4456 * fail below this point. 4457 */ 4458 cpucaps_zone_remove(zone); 4459 4460 /* Get rid of the zone's kstats */ 4461 zone_kstat_delete(zone); 4462 4463 /* free brand specific data */ 4464 if (ZONE_IS_BRANDED(zone)) 4465 ZBROP(zone)->b_free_brand_data(zone); 4466 4467 /* Say goodbye to brand framework. */ 4468 brand_unregister_zone(zone->zone_brand); 4469 4470 /* 4471 * It is now safe to let the zone be recreated; remove it from the 4472 * lists. The memory will not be freed until the last cred 4473 * reference goes away. 4474 */ 4475 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 4476 zonecount--; 4477 /* remove from active list and hash tables */ 4478 list_remove(&zone_active, zone); 4479 (void) mod_hash_destroy(zonehashbyname, 4480 (mod_hash_key_t)zone->zone_name); 4481 (void) mod_hash_destroy(zonehashbyid, 4482 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4483 if (zone->zone_flags & ZF_HASHED_LABEL) 4484 (void) mod_hash_destroy(zonehashbylabel, 4485 (mod_hash_key_t)zone->zone_slabel); 4486 mutex_exit(&zonehash_lock); 4487 4488 /* 4489 * Release the root vnode; we're not using it anymore. Nor should any 4490 * other thread that might access it exist. 4491 */ 4492 if (zone->zone_rootvp != NULL) { 4493 VN_RELE(zone->zone_rootvp); 4494 zone->zone_rootvp = NULL; 4495 } 4496 4497 /* add to deathrow list */ 4498 mutex_enter(&zone_deathrow_lock); 4499 list_insert_tail(&zone_deathrow, zone); 4500 mutex_exit(&zone_deathrow_lock); 4501 4502 /* 4503 * Drop last reference (which was added by zsched()), this will 4504 * free the zone unless there are outstanding cred references. 4505 */ 4506 zone_rele(zone); 4507 return (0); 4508 } 4509 4510 /* 4511 * Systemcall entry point for zone_getattr(2). 4512 */ 4513 static ssize_t 4514 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4515 { 4516 size_t size; 4517 int error = 0, err; 4518 zone_t *zone; 4519 char *zonepath; 4520 char *outstr; 4521 zone_status_t zone_status; 4522 pid_t initpid; 4523 boolean_t global = (curzone == global_zone); 4524 boolean_t inzone = (curzone->zone_id == zoneid); 4525 ushort_t flags; 4526 4527 mutex_enter(&zonehash_lock); 4528 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4529 mutex_exit(&zonehash_lock); 4530 return (set_errno(EINVAL)); 4531 } 4532 zone_status = zone_status_get(zone); 4533 if (zone_status < ZONE_IS_INITIALIZED) { 4534 mutex_exit(&zonehash_lock); 4535 return (set_errno(EINVAL)); 4536 } 4537 zone_hold(zone); 4538 mutex_exit(&zonehash_lock); 4539 4540 /* 4541 * If not in the global zone, don't show information about other zones, 4542 * unless the system is labeled and the local zone's label dominates 4543 * the other zone. 4544 */ 4545 if (!zone_list_access(zone)) { 4546 zone_rele(zone); 4547 return (set_errno(EINVAL)); 4548 } 4549 4550 switch (attr) { 4551 case ZONE_ATTR_ROOT: 4552 if (global) { 4553 /* 4554 * Copy the path to trim the trailing "/" (except for 4555 * the global zone). 4556 */ 4557 if (zone != global_zone) 4558 size = zone->zone_rootpathlen - 1; 4559 else 4560 size = zone->zone_rootpathlen; 4561 zonepath = kmem_alloc(size, KM_SLEEP); 4562 bcopy(zone->zone_rootpath, zonepath, size); 4563 zonepath[size - 1] = '\0'; 4564 } else { 4565 if (inzone || !is_system_labeled()) { 4566 /* 4567 * Caller is not in the global zone. 4568 * if the query is on the current zone 4569 * or the system is not labeled, 4570 * just return faked-up path for current zone. 4571 */ 4572 zonepath = "/"; 4573 size = 2; 4574 } else { 4575 /* 4576 * Return related path for current zone. 4577 */ 4578 int prefix_len = strlen(zone_prefix); 4579 int zname_len = strlen(zone->zone_name); 4580 4581 size = prefix_len + zname_len + 1; 4582 zonepath = kmem_alloc(size, KM_SLEEP); 4583 bcopy(zone_prefix, zonepath, prefix_len); 4584 bcopy(zone->zone_name, zonepath + 4585 prefix_len, zname_len); 4586 zonepath[size - 1] = '\0'; 4587 } 4588 } 4589 if (bufsize > size) 4590 bufsize = size; 4591 if (buf != NULL) { 4592 err = copyoutstr(zonepath, buf, bufsize, NULL); 4593 if (err != 0 && err != ENAMETOOLONG) 4594 error = EFAULT; 4595 } 4596 if (global || (is_system_labeled() && !inzone)) 4597 kmem_free(zonepath, size); 4598 break; 4599 4600 case ZONE_ATTR_NAME: 4601 size = strlen(zone->zone_name) + 1; 4602 if (bufsize > size) 4603 bufsize = size; 4604 if (buf != NULL) { 4605 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 4606 if (err != 0 && err != ENAMETOOLONG) 4607 error = EFAULT; 4608 } 4609 break; 4610 4611 case ZONE_ATTR_STATUS: 4612 /* 4613 * Since we're not holding zonehash_lock, the zone status 4614 * may be anything; leave it up to userland to sort it out. 4615 */ 4616 size = sizeof (zone_status); 4617 if (bufsize > size) 4618 bufsize = size; 4619 zone_status = zone_status_get(zone); 4620 if (buf != NULL && 4621 copyout(&zone_status, buf, bufsize) != 0) 4622 error = EFAULT; 4623 break; 4624 case ZONE_ATTR_FLAGS: 4625 size = sizeof (zone->zone_flags); 4626 if (bufsize > size) 4627 bufsize = size; 4628 flags = zone->zone_flags; 4629 if (buf != NULL && 4630 copyout(&flags, buf, bufsize) != 0) 4631 error = EFAULT; 4632 break; 4633 case ZONE_ATTR_PRIVSET: 4634 size = sizeof (priv_set_t); 4635 if (bufsize > size) 4636 bufsize = size; 4637 if (buf != NULL && 4638 copyout(zone->zone_privset, buf, bufsize) != 0) 4639 error = EFAULT; 4640 break; 4641 case ZONE_ATTR_UNIQID: 4642 size = sizeof (zone->zone_uniqid); 4643 if (bufsize > size) 4644 bufsize = size; 4645 if (buf != NULL && 4646 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 4647 error = EFAULT; 4648 break; 4649 case ZONE_ATTR_POOLID: 4650 { 4651 pool_t *pool; 4652 poolid_t poolid; 4653 4654 if (pool_lock_intr() != 0) { 4655 error = EINTR; 4656 break; 4657 } 4658 pool = zone_pool_get(zone); 4659 poolid = pool->pool_id; 4660 pool_unlock(); 4661 size = sizeof (poolid); 4662 if (bufsize > size) 4663 bufsize = size; 4664 if (buf != NULL && copyout(&poolid, buf, size) != 0) 4665 error = EFAULT; 4666 } 4667 break; 4668 case ZONE_ATTR_SLBL: 4669 size = sizeof (bslabel_t); 4670 if (bufsize > size) 4671 bufsize = size; 4672 if (zone->zone_slabel == NULL) 4673 error = EINVAL; 4674 else if (buf != NULL && 4675 copyout(label2bslabel(zone->zone_slabel), buf, 4676 bufsize) != 0) 4677 error = EFAULT; 4678 break; 4679 case ZONE_ATTR_INITPID: 4680 size = sizeof (initpid); 4681 if (bufsize > size) 4682 bufsize = size; 4683 initpid = zone->zone_proc_initpid; 4684 if (initpid == -1) { 4685 error = ESRCH; 4686 break; 4687 } 4688 if (buf != NULL && 4689 copyout(&initpid, buf, bufsize) != 0) 4690 error = EFAULT; 4691 break; 4692 case ZONE_ATTR_BRAND: 4693 size = strlen(zone->zone_brand->b_name) + 1; 4694 4695 if (bufsize > size) 4696 bufsize = size; 4697 if (buf != NULL) { 4698 err = copyoutstr(zone->zone_brand->b_name, buf, 4699 bufsize, NULL); 4700 if (err != 0 && err != ENAMETOOLONG) 4701 error = EFAULT; 4702 } 4703 break; 4704 case ZONE_ATTR_INITNAME: 4705 size = strlen(zone->zone_initname) + 1; 4706 if (bufsize > size) 4707 bufsize = size; 4708 if (buf != NULL) { 4709 err = copyoutstr(zone->zone_initname, buf, bufsize, 4710 NULL); 4711 if (err != 0 && err != ENAMETOOLONG) 4712 error = EFAULT; 4713 } 4714 break; 4715 case ZONE_ATTR_BOOTARGS: 4716 if (zone->zone_bootargs == NULL) 4717 outstr = ""; 4718 else 4719 outstr = zone->zone_bootargs; 4720 size = strlen(outstr) + 1; 4721 if (bufsize > size) 4722 bufsize = size; 4723 if (buf != NULL) { 4724 err = copyoutstr(outstr, buf, bufsize, NULL); 4725 if (err != 0 && err != ENAMETOOLONG) 4726 error = EFAULT; 4727 } 4728 break; 4729 case ZONE_ATTR_PHYS_MCAP: 4730 size = sizeof (zone->zone_phys_mcap); 4731 if (bufsize > size) 4732 bufsize = size; 4733 if (buf != NULL && 4734 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 4735 error = EFAULT; 4736 break; 4737 case ZONE_ATTR_SCHED_CLASS: 4738 mutex_enter(&class_lock); 4739 4740 if (zone->zone_defaultcid >= loaded_classes) 4741 outstr = ""; 4742 else 4743 outstr = sclass[zone->zone_defaultcid].cl_name; 4744 size = strlen(outstr) + 1; 4745 if (bufsize > size) 4746 bufsize = size; 4747 if (buf != NULL) { 4748 err = copyoutstr(outstr, buf, bufsize, NULL); 4749 if (err != 0 && err != ENAMETOOLONG) 4750 error = EFAULT; 4751 } 4752 4753 mutex_exit(&class_lock); 4754 break; 4755 case ZONE_ATTR_HOSTID: 4756 if (zone->zone_hostid != HW_INVALID_HOSTID && 4757 bufsize == sizeof (zone->zone_hostid)) { 4758 size = sizeof (zone->zone_hostid); 4759 if (buf != NULL && copyout(&zone->zone_hostid, buf, 4760 bufsize) != 0) 4761 error = EFAULT; 4762 } else { 4763 error = EINVAL; 4764 } 4765 break; 4766 default: 4767 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 4768 size = bufsize; 4769 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 4770 } else { 4771 error = EINVAL; 4772 } 4773 } 4774 zone_rele(zone); 4775 4776 if (error) 4777 return (set_errno(error)); 4778 return ((ssize_t)size); 4779 } 4780 4781 /* 4782 * Systemcall entry point for zone_setattr(2). 4783 */ 4784 /*ARGSUSED*/ 4785 static int 4786 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4787 { 4788 zone_t *zone; 4789 zone_status_t zone_status; 4790 int err; 4791 4792 if (secpolicy_zone_config(CRED()) != 0) 4793 return (set_errno(EPERM)); 4794 4795 /* 4796 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 4797 * global zone. 4798 */ 4799 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 4800 return (set_errno(EINVAL)); 4801 } 4802 4803 mutex_enter(&zonehash_lock); 4804 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4805 mutex_exit(&zonehash_lock); 4806 return (set_errno(EINVAL)); 4807 } 4808 zone_hold(zone); 4809 mutex_exit(&zonehash_lock); 4810 4811 /* 4812 * At present most attributes can only be set on non-running, 4813 * non-global zones. 4814 */ 4815 zone_status = zone_status_get(zone); 4816 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) 4817 goto done; 4818 4819 switch (attr) { 4820 case ZONE_ATTR_INITNAME: 4821 err = zone_set_initname(zone, (const char *)buf); 4822 break; 4823 case ZONE_ATTR_BOOTARGS: 4824 err = zone_set_bootargs(zone, (const char *)buf); 4825 break; 4826 case ZONE_ATTR_BRAND: 4827 err = zone_set_brand(zone, (const char *)buf); 4828 break; 4829 case ZONE_ATTR_PHYS_MCAP: 4830 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 4831 break; 4832 case ZONE_ATTR_SCHED_CLASS: 4833 err = zone_set_sched_class(zone, (const char *)buf); 4834 break; 4835 case ZONE_ATTR_HOSTID: 4836 if (bufsize == sizeof (zone->zone_hostid)) { 4837 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 4838 err = 0; 4839 else 4840 err = EFAULT; 4841 } else { 4842 err = EINVAL; 4843 } 4844 break; 4845 default: 4846 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 4847 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 4848 else 4849 err = EINVAL; 4850 } 4851 4852 done: 4853 zone_rele(zone); 4854 return (err != 0 ? set_errno(err) : 0); 4855 } 4856 4857 /* 4858 * Return zero if the process has at least one vnode mapped in to its 4859 * address space which shouldn't be allowed to change zones. 4860 * 4861 * Also return zero if the process has any shared mappings which reserve 4862 * swap. This is because the counting for zone.max-swap does not allow swap 4863 * reservation to be shared between zones. zone swap reservation is counted 4864 * on zone->zone_max_swap. 4865 */ 4866 static int 4867 as_can_change_zones(void) 4868 { 4869 proc_t *pp = curproc; 4870 struct seg *seg; 4871 struct as *as = pp->p_as; 4872 vnode_t *vp; 4873 int allow = 1; 4874 4875 ASSERT(pp->p_as != &kas); 4876 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 4877 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 4878 4879 /* 4880 * Cannot enter zone with shared anon memory which 4881 * reserves swap. See comment above. 4882 */ 4883 if (seg_can_change_zones(seg) == B_FALSE) { 4884 allow = 0; 4885 break; 4886 } 4887 /* 4888 * if we can't get a backing vnode for this segment then skip 4889 * it. 4890 */ 4891 vp = NULL; 4892 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 4893 continue; 4894 if (!vn_can_change_zones(vp)) { /* bail on first match */ 4895 allow = 0; 4896 break; 4897 } 4898 } 4899 AS_LOCK_EXIT(as, &as->a_lock); 4900 return (allow); 4901 } 4902 4903 /* 4904 * Count swap reserved by curproc's address space 4905 */ 4906 static size_t 4907 as_swresv(void) 4908 { 4909 proc_t *pp = curproc; 4910 struct seg *seg; 4911 struct as *as = pp->p_as; 4912 size_t swap = 0; 4913 4914 ASSERT(pp->p_as != &kas); 4915 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 4916 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 4917 swap += seg_swresv(seg); 4918 4919 return (swap); 4920 } 4921 4922 /* 4923 * Systemcall entry point for zone_enter(). 4924 * 4925 * The current process is injected into said zone. In the process 4926 * it will change its project membership, privileges, rootdir/cwd, 4927 * zone-wide rctls, and pool association to match those of the zone. 4928 * 4929 * The first zone_enter() called while the zone is in the ZONE_IS_READY 4930 * state will transition it to ZONE_IS_RUNNING. Processes may only 4931 * enter a zone that is "ready" or "running". 4932 */ 4933 static int 4934 zone_enter(zoneid_t zoneid) 4935 { 4936 zone_t *zone; 4937 vnode_t *vp; 4938 proc_t *pp = curproc; 4939 contract_t *ct; 4940 cont_process_t *ctp; 4941 task_t *tk, *oldtk; 4942 kproject_t *zone_proj0; 4943 cred_t *cr, *newcr; 4944 pool_t *oldpool, *newpool; 4945 sess_t *sp; 4946 uid_t uid; 4947 zone_status_t status; 4948 int err = 0; 4949 rctl_entity_p_t e; 4950 size_t swap; 4951 kthread_id_t t; 4952 4953 if (secpolicy_zone_config(CRED()) != 0) 4954 return (set_errno(EPERM)); 4955 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4956 return (set_errno(EINVAL)); 4957 4958 /* 4959 * Stop all lwps so we don't need to hold a lock to look at 4960 * curproc->p_zone. This needs to happen before we grab any 4961 * locks to avoid deadlock (another lwp in the process could 4962 * be waiting for the held lock). 4963 */ 4964 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 4965 return (set_errno(EINTR)); 4966 4967 /* 4968 * Make sure we're not changing zones with files open or mapped in 4969 * to our address space which shouldn't be changing zones. 4970 */ 4971 if (!files_can_change_zones()) { 4972 err = EBADF; 4973 goto out; 4974 } 4975 if (!as_can_change_zones()) { 4976 err = EFAULT; 4977 goto out; 4978 } 4979 4980 mutex_enter(&zonehash_lock); 4981 if (pp->p_zone != global_zone) { 4982 mutex_exit(&zonehash_lock); 4983 err = EINVAL; 4984 goto out; 4985 } 4986 4987 zone = zone_find_all_by_id(zoneid); 4988 if (zone == NULL) { 4989 mutex_exit(&zonehash_lock); 4990 err = EINVAL; 4991 goto out; 4992 } 4993 4994 /* 4995 * To prevent processes in a zone from holding contracts on 4996 * extrazonal resources, and to avoid process contract 4997 * memberships which span zones, contract holders and processes 4998 * which aren't the sole members of their encapsulating process 4999 * contracts are not allowed to zone_enter. 5000 */ 5001 ctp = pp->p_ct_process; 5002 ct = &ctp->conp_contract; 5003 mutex_enter(&ct->ct_lock); 5004 mutex_enter(&pp->p_lock); 5005 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5006 mutex_exit(&pp->p_lock); 5007 mutex_exit(&ct->ct_lock); 5008 mutex_exit(&zonehash_lock); 5009 err = EINVAL; 5010 goto out; 5011 } 5012 5013 /* 5014 * Moreover, we don't allow processes whose encapsulating 5015 * process contracts have inherited extrazonal contracts. 5016 * While it would be easier to eliminate all process contracts 5017 * with inherited contracts, we need to be able to give a 5018 * restarted init (or other zone-penetrating process) its 5019 * predecessor's contracts. 5020 */ 5021 if (ctp->conp_ninherited != 0) { 5022 contract_t *next; 5023 for (next = list_head(&ctp->conp_inherited); next; 5024 next = list_next(&ctp->conp_inherited, next)) { 5025 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5026 mutex_exit(&pp->p_lock); 5027 mutex_exit(&ct->ct_lock); 5028 mutex_exit(&zonehash_lock); 5029 err = EINVAL; 5030 goto out; 5031 } 5032 } 5033 } 5034 5035 mutex_exit(&pp->p_lock); 5036 mutex_exit(&ct->ct_lock); 5037 5038 status = zone_status_get(zone); 5039 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5040 /* 5041 * Can't join 5042 */ 5043 mutex_exit(&zonehash_lock); 5044 err = EINVAL; 5045 goto out; 5046 } 5047 5048 /* 5049 * Make sure new priv set is within the permitted set for caller 5050 */ 5051 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5052 mutex_exit(&zonehash_lock); 5053 err = EPERM; 5054 goto out; 5055 } 5056 /* 5057 * We want to momentarily drop zonehash_lock while we optimistically 5058 * bind curproc to the pool it should be running in. This is safe 5059 * since the zone can't disappear (we have a hold on it). 5060 */ 5061 zone_hold(zone); 5062 mutex_exit(&zonehash_lock); 5063 5064 /* 5065 * Grab pool_lock to keep the pools configuration from changing 5066 * and to stop ourselves from getting rebound to another pool 5067 * until we join the zone. 5068 */ 5069 if (pool_lock_intr() != 0) { 5070 zone_rele(zone); 5071 err = EINTR; 5072 goto out; 5073 } 5074 ASSERT(secpolicy_pool(CRED()) == 0); 5075 /* 5076 * Bind ourselves to the pool currently associated with the zone. 5077 */ 5078 oldpool = curproc->p_pool; 5079 newpool = zone_pool_get(zone); 5080 if (pool_state == POOL_ENABLED && newpool != oldpool && 5081 (err = pool_do_bind(newpool, P_PID, P_MYID, 5082 POOL_BIND_ALL)) != 0) { 5083 pool_unlock(); 5084 zone_rele(zone); 5085 goto out; 5086 } 5087 5088 /* 5089 * Grab cpu_lock now; we'll need it later when we call 5090 * task_join(). 5091 */ 5092 mutex_enter(&cpu_lock); 5093 mutex_enter(&zonehash_lock); 5094 /* 5095 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5096 */ 5097 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5098 /* 5099 * Can't join anymore. 5100 */ 5101 mutex_exit(&zonehash_lock); 5102 mutex_exit(&cpu_lock); 5103 if (pool_state == POOL_ENABLED && 5104 newpool != oldpool) 5105 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5106 POOL_BIND_ALL); 5107 pool_unlock(); 5108 zone_rele(zone); 5109 err = EINVAL; 5110 goto out; 5111 } 5112 5113 /* 5114 * a_lock must be held while transfering locked memory and swap 5115 * reservation from the global zone to the non global zone because 5116 * asynchronous faults on the processes' address space can lock 5117 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5118 * segments respectively. 5119 */ 5120 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5121 swap = as_swresv(); 5122 mutex_enter(&pp->p_lock); 5123 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5124 /* verify that we do not exceed and task or lwp limits */ 5125 mutex_enter(&zone->zone_nlwps_lock); 5126 /* add new lwps to zone and zone's proj0 */ 5127 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5128 zone->zone_nlwps += pp->p_lwpcnt; 5129 /* add 1 task to zone's proj0 */ 5130 zone_proj0->kpj_ntasks += 1; 5131 mutex_exit(&zone->zone_nlwps_lock); 5132 5133 mutex_enter(&zone->zone_mem_lock); 5134 zone->zone_locked_mem += pp->p_locked_mem; 5135 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5136 zone->zone_max_swap += swap; 5137 mutex_exit(&zone->zone_mem_lock); 5138 5139 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5140 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5141 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5142 5143 /* remove lwps from proc's old zone and old project */ 5144 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5145 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5146 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5147 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5148 5149 mutex_enter(&pp->p_zone->zone_mem_lock); 5150 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5151 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5152 pp->p_zone->zone_max_swap -= swap; 5153 mutex_exit(&pp->p_zone->zone_mem_lock); 5154 5155 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5156 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5157 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5158 5159 mutex_exit(&pp->p_lock); 5160 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5161 5162 /* 5163 * Joining the zone cannot fail from now on. 5164 * 5165 * This means that a lot of the following code can be commonized and 5166 * shared with zsched(). 5167 */ 5168 5169 /* 5170 * If the process contract fmri was inherited, we need to 5171 * flag this so that any contract status will not leak 5172 * extra zone information, svc_fmri in this case 5173 */ 5174 if (ctp->conp_svc_ctid != ct->ct_id) { 5175 mutex_enter(&ct->ct_lock); 5176 ctp->conp_svc_zone_enter = ct->ct_id; 5177 mutex_exit(&ct->ct_lock); 5178 } 5179 5180 /* 5181 * Reset the encapsulating process contract's zone. 5182 */ 5183 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5184 contract_setzuniqid(ct, zone->zone_uniqid); 5185 5186 /* 5187 * Create a new task and associate the process with the project keyed 5188 * by (projid,zoneid). 5189 * 5190 * We might as well be in project 0; the global zone's projid doesn't 5191 * make much sense in a zone anyhow. 5192 * 5193 * This also increments zone_ntasks, and returns with p_lock held. 5194 */ 5195 tk = task_create(0, zone); 5196 oldtk = task_join(tk, 0); 5197 mutex_exit(&cpu_lock); 5198 5199 pp->p_flag |= SZONETOP; 5200 pp->p_zone = zone; 5201 5202 /* 5203 * call RCTLOP_SET functions on this proc 5204 */ 5205 e.rcep_p.zone = zone; 5206 e.rcep_t = RCENTITY_ZONE; 5207 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5208 RCD_CALLBACK); 5209 mutex_exit(&pp->p_lock); 5210 5211 /* 5212 * We don't need to hold any of zsched's locks here; not only do we know 5213 * the process and zone aren't going away, we know its session isn't 5214 * changing either. 5215 * 5216 * By joining zsched's session here, we mimic the behavior in the 5217 * global zone of init's sid being the pid of sched. We extend this 5218 * to all zlogin-like zone_enter()'ing processes as well. 5219 */ 5220 mutex_enter(&pidlock); 5221 sp = zone->zone_zsched->p_sessp; 5222 sess_hold(zone->zone_zsched); 5223 mutex_enter(&pp->p_lock); 5224 pgexit(pp); 5225 sess_rele(pp->p_sessp, B_TRUE); 5226 pp->p_sessp = sp; 5227 pgjoin(pp, zone->zone_zsched->p_pidp); 5228 5229 /* 5230 * If any threads are scheduled to be placed on zone wait queue they 5231 * should abandon the idea since the wait queue is changing. 5232 * We need to be holding pidlock & p_lock to do this. 5233 */ 5234 if ((t = pp->p_tlist) != NULL) { 5235 do { 5236 thread_lock(t); 5237 /* 5238 * Kick this thread so that he doesn't sit 5239 * on a wrong wait queue. 5240 */ 5241 if (ISWAITING(t)) 5242 setrun_locked(t); 5243 5244 if (t->t_schedflag & TS_ANYWAITQ) 5245 t->t_schedflag &= ~ TS_ANYWAITQ; 5246 5247 thread_unlock(t); 5248 } while ((t = t->t_forw) != pp->p_tlist); 5249 } 5250 5251 /* 5252 * If there is a default scheduling class for the zone and it is not 5253 * the class we are currently in, change all of the threads in the 5254 * process to the new class. We need to be holding pidlock & p_lock 5255 * when we call parmsset so this is a good place to do it. 5256 */ 5257 if (zone->zone_defaultcid > 0 && 5258 zone->zone_defaultcid != curthread->t_cid) { 5259 pcparms_t pcparms; 5260 5261 pcparms.pc_cid = zone->zone_defaultcid; 5262 pcparms.pc_clparms[0] = 0; 5263 5264 /* 5265 * If setting the class fails, we still want to enter the zone. 5266 */ 5267 if ((t = pp->p_tlist) != NULL) { 5268 do { 5269 (void) parmsset(&pcparms, t); 5270 } while ((t = t->t_forw) != pp->p_tlist); 5271 } 5272 } 5273 5274 mutex_exit(&pp->p_lock); 5275 mutex_exit(&pidlock); 5276 5277 mutex_exit(&zonehash_lock); 5278 /* 5279 * We're firmly in the zone; let pools progress. 5280 */ 5281 pool_unlock(); 5282 task_rele(oldtk); 5283 /* 5284 * We don't need to retain a hold on the zone since we already 5285 * incremented zone_ntasks, so the zone isn't going anywhere. 5286 */ 5287 zone_rele(zone); 5288 5289 /* 5290 * Chroot 5291 */ 5292 vp = zone->zone_rootvp; 5293 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 5294 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 5295 5296 /* 5297 * Change process credentials 5298 */ 5299 newcr = cralloc(); 5300 mutex_enter(&pp->p_crlock); 5301 cr = pp->p_cred; 5302 crcopy_to(cr, newcr); 5303 crsetzone(newcr, zone); 5304 pp->p_cred = newcr; 5305 5306 /* 5307 * Restrict all process privilege sets to zone limit 5308 */ 5309 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 5310 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 5311 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 5312 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 5313 mutex_exit(&pp->p_crlock); 5314 crset(pp, newcr); 5315 5316 /* 5317 * Adjust upcount to reflect zone entry. 5318 */ 5319 uid = crgetruid(newcr); 5320 mutex_enter(&pidlock); 5321 upcount_dec(uid, GLOBAL_ZONEID); 5322 upcount_inc(uid, zoneid); 5323 mutex_exit(&pidlock); 5324 5325 /* 5326 * Set up core file path and content. 5327 */ 5328 set_core_defaults(); 5329 5330 out: 5331 /* 5332 * Let the other lwps continue. 5333 */ 5334 mutex_enter(&pp->p_lock); 5335 if (curthread != pp->p_agenttp) 5336 continuelwps(pp); 5337 mutex_exit(&pp->p_lock); 5338 5339 return (err != 0 ? set_errno(err) : 0); 5340 } 5341 5342 /* 5343 * Systemcall entry point for zone_list(2). 5344 * 5345 * Processes running in a (non-global) zone only see themselves. 5346 * On labeled systems, they see all zones whose label they dominate. 5347 */ 5348 static int 5349 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 5350 { 5351 zoneid_t *zoneids; 5352 zone_t *zone, *myzone; 5353 uint_t user_nzones, real_nzones; 5354 uint_t domi_nzones; 5355 int error; 5356 5357 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 5358 return (set_errno(EFAULT)); 5359 5360 myzone = curproc->p_zone; 5361 if (myzone != global_zone) { 5362 bslabel_t *mybslab; 5363 5364 if (!is_system_labeled()) { 5365 /* just return current zone */ 5366 real_nzones = domi_nzones = 1; 5367 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 5368 zoneids[0] = myzone->zone_id; 5369 } else { 5370 /* return all zones that are dominated */ 5371 mutex_enter(&zonehash_lock); 5372 real_nzones = zonecount; 5373 domi_nzones = 0; 5374 if (real_nzones > 0) { 5375 zoneids = kmem_alloc(real_nzones * 5376 sizeof (zoneid_t), KM_SLEEP); 5377 mybslab = label2bslabel(myzone->zone_slabel); 5378 for (zone = list_head(&zone_active); 5379 zone != NULL; 5380 zone = list_next(&zone_active, zone)) { 5381 if (zone->zone_id == GLOBAL_ZONEID) 5382 continue; 5383 if (zone != myzone && 5384 (zone->zone_flags & ZF_IS_SCRATCH)) 5385 continue; 5386 /* 5387 * Note that a label always dominates 5388 * itself, so myzone is always included 5389 * in the list. 5390 */ 5391 if (bldominates(mybslab, 5392 label2bslabel(zone->zone_slabel))) { 5393 zoneids[domi_nzones++] = 5394 zone->zone_id; 5395 } 5396 } 5397 } 5398 mutex_exit(&zonehash_lock); 5399 } 5400 } else { 5401 mutex_enter(&zonehash_lock); 5402 real_nzones = zonecount; 5403 domi_nzones = 0; 5404 if (real_nzones > 0) { 5405 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 5406 KM_SLEEP); 5407 for (zone = list_head(&zone_active); zone != NULL; 5408 zone = list_next(&zone_active, zone)) 5409 zoneids[domi_nzones++] = zone->zone_id; 5410 ASSERT(domi_nzones == real_nzones); 5411 } 5412 mutex_exit(&zonehash_lock); 5413 } 5414 5415 /* 5416 * If user has allocated space for fewer entries than we found, then 5417 * return only up to his limit. Either way, tell him exactly how many 5418 * we found. 5419 */ 5420 if (domi_nzones < user_nzones) 5421 user_nzones = domi_nzones; 5422 error = 0; 5423 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 5424 error = EFAULT; 5425 } else if (zoneidlist != NULL && user_nzones != 0) { 5426 if (copyout(zoneids, zoneidlist, 5427 user_nzones * sizeof (zoneid_t)) != 0) 5428 error = EFAULT; 5429 } 5430 5431 if (real_nzones > 0) 5432 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 5433 5434 if (error != 0) 5435 return (set_errno(error)); 5436 else 5437 return (0); 5438 } 5439 5440 /* 5441 * Systemcall entry point for zone_lookup(2). 5442 * 5443 * Non-global zones are only able to see themselves and (on labeled systems) 5444 * the zones they dominate. 5445 */ 5446 static zoneid_t 5447 zone_lookup(const char *zone_name) 5448 { 5449 char *kname; 5450 zone_t *zone; 5451 zoneid_t zoneid; 5452 int err; 5453 5454 if (zone_name == NULL) { 5455 /* return caller's zone id */ 5456 return (getzoneid()); 5457 } 5458 5459 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 5460 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 5461 kmem_free(kname, ZONENAME_MAX); 5462 return (set_errno(err)); 5463 } 5464 5465 mutex_enter(&zonehash_lock); 5466 zone = zone_find_all_by_name(kname); 5467 kmem_free(kname, ZONENAME_MAX); 5468 /* 5469 * In a non-global zone, can only lookup global and own name. 5470 * In Trusted Extensions zone label dominance rules apply. 5471 */ 5472 if (zone == NULL || 5473 zone_status_get(zone) < ZONE_IS_READY || 5474 !zone_list_access(zone)) { 5475 mutex_exit(&zonehash_lock); 5476 return (set_errno(EINVAL)); 5477 } else { 5478 zoneid = zone->zone_id; 5479 mutex_exit(&zonehash_lock); 5480 return (zoneid); 5481 } 5482 } 5483 5484 static int 5485 zone_version(int *version_arg) 5486 { 5487 int version = ZONE_SYSCALL_API_VERSION; 5488 5489 if (copyout(&version, version_arg, sizeof (int)) != 0) 5490 return (set_errno(EFAULT)); 5491 return (0); 5492 } 5493 5494 /* ARGSUSED */ 5495 long 5496 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 5497 { 5498 zone_def zs; 5499 5500 switch (cmd) { 5501 case ZONE_CREATE: 5502 if (get_udatamodel() == DATAMODEL_NATIVE) { 5503 if (copyin(arg1, &zs, sizeof (zone_def))) { 5504 return (set_errno(EFAULT)); 5505 } 5506 } else { 5507 #ifdef _SYSCALL32_IMPL 5508 zone_def32 zs32; 5509 5510 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 5511 return (set_errno(EFAULT)); 5512 } 5513 zs.zone_name = 5514 (const char *)(unsigned long)zs32.zone_name; 5515 zs.zone_root = 5516 (const char *)(unsigned long)zs32.zone_root; 5517 zs.zone_privs = 5518 (const struct priv_set *) 5519 (unsigned long)zs32.zone_privs; 5520 zs.zone_privssz = zs32.zone_privssz; 5521 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 5522 zs.rctlbufsz = zs32.rctlbufsz; 5523 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 5524 zs.zfsbufsz = zs32.zfsbufsz; 5525 zs.extended_error = 5526 (int *)(unsigned long)zs32.extended_error; 5527 zs.match = zs32.match; 5528 zs.doi = zs32.doi; 5529 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 5530 zs.flags = zs32.flags; 5531 #else 5532 panic("get_udatamodel() returned bogus result\n"); 5533 #endif 5534 } 5535 5536 return (zone_create(zs.zone_name, zs.zone_root, 5537 zs.zone_privs, zs.zone_privssz, 5538 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 5539 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 5540 zs.extended_error, zs.match, zs.doi, 5541 zs.label, zs.flags)); 5542 case ZONE_BOOT: 5543 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 5544 case ZONE_DESTROY: 5545 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 5546 case ZONE_GETATTR: 5547 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 5548 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5549 case ZONE_SETATTR: 5550 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 5551 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5552 case ZONE_ENTER: 5553 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 5554 case ZONE_LIST: 5555 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 5556 case ZONE_SHUTDOWN: 5557 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 5558 case ZONE_LOOKUP: 5559 return (zone_lookup((const char *)arg1)); 5560 case ZONE_VERSION: 5561 return (zone_version((int *)arg1)); 5562 case ZONE_ADD_DATALINK: 5563 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 5564 (char *)arg2)); 5565 case ZONE_DEL_DATALINK: 5566 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 5567 (char *)arg2)); 5568 case ZONE_CHECK_DATALINK: 5569 return (zone_check_datalink((zoneid_t *)arg1, (char *)arg2)); 5570 case ZONE_LIST_DATALINK: 5571 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 5572 (int *)arg2, (char *)arg3)); 5573 default: 5574 return (set_errno(EINVAL)); 5575 } 5576 } 5577 5578 struct zarg { 5579 zone_t *zone; 5580 zone_cmd_arg_t arg; 5581 }; 5582 5583 static int 5584 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 5585 { 5586 char *buf; 5587 size_t buflen; 5588 int error; 5589 5590 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 5591 buf = kmem_alloc(buflen, KM_SLEEP); 5592 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 5593 error = door_ki_open(buf, doorp); 5594 kmem_free(buf, buflen); 5595 return (error); 5596 } 5597 5598 static void 5599 zone_release_door(door_handle_t *doorp) 5600 { 5601 door_ki_rele(*doorp); 5602 *doorp = NULL; 5603 } 5604 5605 static void 5606 zone_ki_call_zoneadmd(struct zarg *zargp) 5607 { 5608 door_handle_t door = NULL; 5609 door_arg_t darg, save_arg; 5610 char *zone_name; 5611 size_t zone_namelen; 5612 zoneid_t zoneid; 5613 zone_t *zone; 5614 zone_cmd_arg_t arg; 5615 uint64_t uniqid; 5616 size_t size; 5617 int error; 5618 int retry; 5619 5620 zone = zargp->zone; 5621 arg = zargp->arg; 5622 kmem_free(zargp, sizeof (*zargp)); 5623 5624 zone_namelen = strlen(zone->zone_name) + 1; 5625 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 5626 bcopy(zone->zone_name, zone_name, zone_namelen); 5627 zoneid = zone->zone_id; 5628 uniqid = zone->zone_uniqid; 5629 /* 5630 * zoneadmd may be down, but at least we can empty out the zone. 5631 * We can ignore the return value of zone_empty() since we're called 5632 * from a kernel thread and know we won't be delivered any signals. 5633 */ 5634 ASSERT(curproc == &p0); 5635 (void) zone_empty(zone); 5636 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 5637 zone_rele(zone); 5638 5639 size = sizeof (arg); 5640 darg.rbuf = (char *)&arg; 5641 darg.data_ptr = (char *)&arg; 5642 darg.rsize = size; 5643 darg.data_size = size; 5644 darg.desc_ptr = NULL; 5645 darg.desc_num = 0; 5646 5647 save_arg = darg; 5648 /* 5649 * Since we're not holding a reference to the zone, any number of 5650 * things can go wrong, including the zone disappearing before we get a 5651 * chance to talk to zoneadmd. 5652 */ 5653 for (retry = 0; /* forever */; retry++) { 5654 if (door == NULL && 5655 (error = zone_lookup_door(zone_name, &door)) != 0) { 5656 goto next; 5657 } 5658 ASSERT(door != NULL); 5659 5660 if ((error = door_ki_upcall_limited(door, &darg, NULL, 5661 SIZE_MAX, 0)) == 0) { 5662 break; 5663 } 5664 switch (error) { 5665 case EINTR: 5666 /* FALLTHROUGH */ 5667 case EAGAIN: /* process may be forking */ 5668 /* 5669 * Back off for a bit 5670 */ 5671 break; 5672 case EBADF: 5673 zone_release_door(&door); 5674 if (zone_lookup_door(zone_name, &door) != 0) { 5675 /* 5676 * zoneadmd may be dead, but it may come back to 5677 * life later. 5678 */ 5679 break; 5680 } 5681 break; 5682 default: 5683 cmn_err(CE_WARN, 5684 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 5685 error); 5686 goto out; 5687 } 5688 next: 5689 /* 5690 * If this isn't the same zone_t that we originally had in mind, 5691 * then this is the same as if two kadmin requests come in at 5692 * the same time: the first one wins. This means we lose, so we 5693 * bail. 5694 */ 5695 if ((zone = zone_find_by_id(zoneid)) == NULL) { 5696 /* 5697 * Problem is solved. 5698 */ 5699 break; 5700 } 5701 if (zone->zone_uniqid != uniqid) { 5702 /* 5703 * zoneid recycled 5704 */ 5705 zone_rele(zone); 5706 break; 5707 } 5708 /* 5709 * We could zone_status_timedwait(), but there doesn't seem to 5710 * be much point in doing that (plus, it would mean that 5711 * zone_free() isn't called until this thread exits). 5712 */ 5713 zone_rele(zone); 5714 delay(hz); 5715 darg = save_arg; 5716 } 5717 out: 5718 if (door != NULL) { 5719 zone_release_door(&door); 5720 } 5721 kmem_free(zone_name, zone_namelen); 5722 thread_exit(); 5723 } 5724 5725 /* 5726 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 5727 * kadmin(). The caller is a process in the zone. 5728 * 5729 * In order to shutdown the zone, we will hand off control to zoneadmd 5730 * (running in the global zone) via a door. We do a half-hearted job at 5731 * killing all processes in the zone, create a kernel thread to contact 5732 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 5733 * a form of generation number used to let zoneadmd (as well as 5734 * zone_destroy()) know exactly which zone they're re talking about. 5735 */ 5736 int 5737 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 5738 { 5739 struct zarg *zargp; 5740 zone_cmd_t zcmd; 5741 zone_t *zone; 5742 5743 zone = curproc->p_zone; 5744 ASSERT(getzoneid() != GLOBAL_ZONEID); 5745 5746 switch (cmd) { 5747 case A_SHUTDOWN: 5748 switch (fcn) { 5749 case AD_HALT: 5750 case AD_POWEROFF: 5751 zcmd = Z_HALT; 5752 break; 5753 case AD_BOOT: 5754 zcmd = Z_REBOOT; 5755 break; 5756 case AD_IBOOT: 5757 case AD_SBOOT: 5758 case AD_SIBOOT: 5759 case AD_NOSYNC: 5760 return (ENOTSUP); 5761 default: 5762 return (EINVAL); 5763 } 5764 break; 5765 case A_REBOOT: 5766 zcmd = Z_REBOOT; 5767 break; 5768 case A_FTRACE: 5769 case A_REMOUNT: 5770 case A_FREEZE: 5771 case A_DUMP: 5772 return (ENOTSUP); 5773 default: 5774 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 5775 return (EINVAL); 5776 } 5777 5778 if (secpolicy_zone_admin(credp, B_FALSE)) 5779 return (EPERM); 5780 mutex_enter(&zone_status_lock); 5781 5782 /* 5783 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 5784 * is in the zone. 5785 */ 5786 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 5787 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 5788 /* 5789 * This zone is already on its way down. 5790 */ 5791 mutex_exit(&zone_status_lock); 5792 return (0); 5793 } 5794 /* 5795 * Prevent future zone_enter()s 5796 */ 5797 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 5798 mutex_exit(&zone_status_lock); 5799 5800 /* 5801 * Kill everyone now and call zoneadmd later. 5802 * zone_ki_call_zoneadmd() will do a more thorough job of this 5803 * later. 5804 */ 5805 killall(zone->zone_id); 5806 /* 5807 * Now, create the thread to contact zoneadmd and do the rest of the 5808 * work. This thread can't be created in our zone otherwise 5809 * zone_destroy() would deadlock. 5810 */ 5811 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 5812 zargp->arg.cmd = zcmd; 5813 zargp->arg.uniqid = zone->zone_uniqid; 5814 zargp->zone = zone; 5815 (void) strcpy(zargp->arg.locale, "C"); 5816 /* mdep was already copied in for us by uadmin */ 5817 if (mdep != NULL) 5818 (void) strlcpy(zargp->arg.bootbuf, mdep, 5819 sizeof (zargp->arg.bootbuf)); 5820 zone_hold(zone); 5821 5822 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 5823 TS_RUN, minclsyspri); 5824 exit(CLD_EXITED, 0); 5825 5826 return (EINVAL); 5827 } 5828 5829 /* 5830 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 5831 * status to ZONE_IS_SHUTTING_DOWN. 5832 * 5833 * This function also shuts down all running zones to ensure that they won't 5834 * fork new processes. 5835 */ 5836 void 5837 zone_shutdown_global(void) 5838 { 5839 zone_t *current_zonep; 5840 5841 ASSERT(INGLOBALZONE(curproc)); 5842 mutex_enter(&zonehash_lock); 5843 mutex_enter(&zone_status_lock); 5844 5845 /* Modify the global zone's status first. */ 5846 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 5847 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 5848 5849 /* 5850 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 5851 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 5852 * could cause assertions to fail (e.g., assertions about a zone's 5853 * state during initialization, readying, or booting) or produce races. 5854 * We'll let threads continue to initialize and ready new zones: they'll 5855 * fail to boot the new zones when they see that the global zone is 5856 * shutting down. 5857 */ 5858 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 5859 current_zonep = list_next(&zone_active, current_zonep)) { 5860 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 5861 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 5862 } 5863 mutex_exit(&zone_status_lock); 5864 mutex_exit(&zonehash_lock); 5865 } 5866 5867 /* 5868 * Returns true if the named dataset is visible in the current zone. 5869 * The 'write' parameter is set to 1 if the dataset is also writable. 5870 */ 5871 int 5872 zone_dataset_visible(const char *dataset, int *write) 5873 { 5874 zone_dataset_t *zd; 5875 size_t len; 5876 zone_t *zone = curproc->p_zone; 5877 5878 if (dataset[0] == '\0') 5879 return (0); 5880 5881 /* 5882 * Walk the list once, looking for datasets which match exactly, or 5883 * specify a dataset underneath an exported dataset. If found, return 5884 * true and note that it is writable. 5885 */ 5886 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5887 zd = list_next(&zone->zone_datasets, zd)) { 5888 5889 len = strlen(zd->zd_dataset); 5890 if (strlen(dataset) >= len && 5891 bcmp(dataset, zd->zd_dataset, len) == 0 && 5892 (dataset[len] == '\0' || dataset[len] == '/' || 5893 dataset[len] == '@')) { 5894 if (write) 5895 *write = 1; 5896 return (1); 5897 } 5898 } 5899 5900 /* 5901 * Walk the list a second time, searching for datasets which are parents 5902 * of exported datasets. These should be visible, but read-only. 5903 * 5904 * Note that we also have to support forms such as 'pool/dataset/', with 5905 * a trailing slash. 5906 */ 5907 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5908 zd = list_next(&zone->zone_datasets, zd)) { 5909 5910 len = strlen(dataset); 5911 if (dataset[len - 1] == '/') 5912 len--; /* Ignore trailing slash */ 5913 if (len < strlen(zd->zd_dataset) && 5914 bcmp(dataset, zd->zd_dataset, len) == 0 && 5915 zd->zd_dataset[len] == '/') { 5916 if (write) 5917 *write = 0; 5918 return (1); 5919 } 5920 } 5921 5922 return (0); 5923 } 5924 5925 /* 5926 * zone_find_by_any_path() - 5927 * 5928 * kernel-private routine similar to zone_find_by_path(), but which 5929 * effectively compares against zone paths rather than zonerootpath 5930 * (i.e., the last component of zonerootpaths, which should be "root/", 5931 * are not compared.) This is done in order to accurately identify all 5932 * paths, whether zone-visible or not, including those which are parallel 5933 * to /root/, such as /dev/, /home/, etc... 5934 * 5935 * If the specified path does not fall under any zone path then global 5936 * zone is returned. 5937 * 5938 * The treat_abs parameter indicates whether the path should be treated as 5939 * an absolute path although it does not begin with "/". (This supports 5940 * nfs mount syntax such as host:any/path.) 5941 * 5942 * The caller is responsible for zone_rele of the returned zone. 5943 */ 5944 zone_t * 5945 zone_find_by_any_path(const char *path, boolean_t treat_abs) 5946 { 5947 zone_t *zone; 5948 int path_offset = 0; 5949 5950 if (path == NULL) { 5951 zone_hold(global_zone); 5952 return (global_zone); 5953 } 5954 5955 if (*path != '/') { 5956 ASSERT(treat_abs); 5957 path_offset = 1; 5958 } 5959 5960 mutex_enter(&zonehash_lock); 5961 for (zone = list_head(&zone_active); zone != NULL; 5962 zone = list_next(&zone_active, zone)) { 5963 char *c; 5964 size_t pathlen; 5965 char *rootpath_start; 5966 5967 if (zone == global_zone) /* skip global zone */ 5968 continue; 5969 5970 /* scan backwards to find start of last component */ 5971 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 5972 do { 5973 c--; 5974 } while (*c != '/'); 5975 5976 pathlen = c - zone->zone_rootpath + 1 - path_offset; 5977 rootpath_start = (zone->zone_rootpath + path_offset); 5978 if (strncmp(path, rootpath_start, pathlen) == 0) 5979 break; 5980 } 5981 if (zone == NULL) 5982 zone = global_zone; 5983 zone_hold(zone); 5984 mutex_exit(&zonehash_lock); 5985 return (zone); 5986 } 5987 5988 /* List of data link names which are accessible from the zone */ 5989 struct dlnamelist { 5990 char dlnl_name[LIFNAMSIZ]; 5991 struct dlnamelist *dlnl_next; 5992 }; 5993 5994 5995 /* 5996 * Check whether the datalink name (dlname) itself is present. 5997 * Return true if found. 5998 */ 5999 static boolean_t 6000 zone_dlname(zone_t *zone, char *dlname) 6001 { 6002 struct dlnamelist *dlnl; 6003 boolean_t found = B_FALSE; 6004 6005 mutex_enter(&zone->zone_lock); 6006 for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) { 6007 if (strncmp(dlnl->dlnl_name, dlname, LIFNAMSIZ) == 0) { 6008 found = B_TRUE; 6009 break; 6010 } 6011 } 6012 mutex_exit(&zone->zone_lock); 6013 return (found); 6014 } 6015 6016 /* 6017 * Add an data link name for the zone. Does not check for duplicates. 6018 */ 6019 static int 6020 zone_add_datalink(zoneid_t zoneid, char *dlname) 6021 { 6022 struct dlnamelist *dlnl; 6023 zone_t *zone; 6024 zone_t *thiszone; 6025 int err; 6026 6027 dlnl = kmem_zalloc(sizeof (struct dlnamelist), KM_SLEEP); 6028 if ((err = copyinstr(dlname, dlnl->dlnl_name, LIFNAMSIZ, NULL)) != 0) { 6029 kmem_free(dlnl, sizeof (struct dlnamelist)); 6030 return (set_errno(err)); 6031 } 6032 6033 thiszone = zone_find_by_id(zoneid); 6034 if (thiszone == NULL) { 6035 kmem_free(dlnl, sizeof (struct dlnamelist)); 6036 return (set_errno(ENXIO)); 6037 } 6038 6039 /* 6040 * Verify that the datalink name isn't already used by a different 6041 * zone while allowing duplicate entries for the same zone (e.g. due 6042 * to both using IPv4 and IPv6 on an interface) 6043 */ 6044 mutex_enter(&zonehash_lock); 6045 for (zone = list_head(&zone_active); zone != NULL; 6046 zone = list_next(&zone_active, zone)) { 6047 if (zone->zone_id == zoneid) 6048 continue; 6049 6050 if (zone_dlname(zone, dlnl->dlnl_name)) { 6051 mutex_exit(&zonehash_lock); 6052 zone_rele(thiszone); 6053 kmem_free(dlnl, sizeof (struct dlnamelist)); 6054 return (set_errno(EPERM)); 6055 } 6056 } 6057 mutex_enter(&thiszone->zone_lock); 6058 dlnl->dlnl_next = thiszone->zone_dl_list; 6059 thiszone->zone_dl_list = dlnl; 6060 mutex_exit(&thiszone->zone_lock); 6061 mutex_exit(&zonehash_lock); 6062 zone_rele(thiszone); 6063 return (0); 6064 } 6065 6066 static int 6067 zone_remove_datalink(zoneid_t zoneid, char *dlname) 6068 { 6069 struct dlnamelist *dlnl, *odlnl, **dlnlp; 6070 zone_t *zone; 6071 int err; 6072 6073 dlnl = kmem_zalloc(sizeof (struct dlnamelist), KM_SLEEP); 6074 if ((err = copyinstr(dlname, dlnl->dlnl_name, LIFNAMSIZ, NULL)) != 0) { 6075 kmem_free(dlnl, sizeof (struct dlnamelist)); 6076 return (set_errno(err)); 6077 } 6078 zone = zone_find_by_id(zoneid); 6079 if (zone == NULL) { 6080 kmem_free(dlnl, sizeof (struct dlnamelist)); 6081 return (set_errno(EINVAL)); 6082 } 6083 6084 mutex_enter(&zone->zone_lock); 6085 /* Look for match */ 6086 dlnlp = &zone->zone_dl_list; 6087 while (*dlnlp != NULL) { 6088 if (strncmp(dlnl->dlnl_name, (*dlnlp)->dlnl_name, 6089 LIFNAMSIZ) == 0) 6090 goto found; 6091 dlnlp = &((*dlnlp)->dlnl_next); 6092 } 6093 mutex_exit(&zone->zone_lock); 6094 zone_rele(zone); 6095 kmem_free(dlnl, sizeof (struct dlnamelist)); 6096 return (set_errno(ENXIO)); 6097 6098 found: 6099 odlnl = *dlnlp; 6100 *dlnlp = (*dlnlp)->dlnl_next; 6101 kmem_free(odlnl, sizeof (struct dlnamelist)); 6102 6103 mutex_exit(&zone->zone_lock); 6104 zone_rele(zone); 6105 kmem_free(dlnl, sizeof (struct dlnamelist)); 6106 return (0); 6107 } 6108 6109 /* 6110 * Using the zoneidp as ALL_ZONES, we can lookup which zone is using datalink 6111 * name (dlname); otherwise we just check if the specified zoneidp has access 6112 * to the datalink name. 6113 */ 6114 static int 6115 zone_check_datalink(zoneid_t *zoneidp, char *dlname) 6116 { 6117 zoneid_t id; 6118 char *dln; 6119 zone_t *zone; 6120 int err = 0; 6121 boolean_t allzones = B_FALSE; 6122 6123 if (copyin(zoneidp, &id, sizeof (id)) != 0) { 6124 return (set_errno(EFAULT)); 6125 } 6126 dln = kmem_zalloc(LIFNAMSIZ, KM_SLEEP); 6127 if ((err = copyinstr(dlname, dln, LIFNAMSIZ, NULL)) != 0) { 6128 kmem_free(dln, LIFNAMSIZ); 6129 return (set_errno(err)); 6130 } 6131 6132 if (id == ALL_ZONES) 6133 allzones = B_TRUE; 6134 6135 /* 6136 * Check whether datalink name is already used. 6137 */ 6138 mutex_enter(&zonehash_lock); 6139 for (zone = list_head(&zone_active); zone != NULL; 6140 zone = list_next(&zone_active, zone)) { 6141 if (allzones || (id == zone->zone_id)) { 6142 if (!zone_dlname(zone, dln)) 6143 continue; 6144 if (allzones) 6145 err = copyout(&zone->zone_id, zoneidp, 6146 sizeof (*zoneidp)); 6147 6148 mutex_exit(&zonehash_lock); 6149 kmem_free(dln, LIFNAMSIZ); 6150 return (err ? set_errno(EFAULT) : 0); 6151 } 6152 } 6153 6154 /* datalink name is not found in any active zone. */ 6155 mutex_exit(&zonehash_lock); 6156 kmem_free(dln, LIFNAMSIZ); 6157 return (set_errno(ENXIO)); 6158 } 6159 6160 /* 6161 * Get the names of the datalinks assigned to a zone. 6162 * Here *nump is the number of datalinks, and the assumption 6163 * is that the caller will guarantee that the the supplied buffer is 6164 * big enough to hold at least #*nump datalink names, that is, 6165 * LIFNAMSIZ X *nump 6166 * On return, *nump will be the "new" number of datalinks, if it 6167 * ever changed. 6168 */ 6169 static int 6170 zone_list_datalink(zoneid_t zoneid, int *nump, char *buf) 6171 { 6172 int num, dlcount; 6173 zone_t *zone; 6174 struct dlnamelist *dlnl; 6175 char *ptr; 6176 6177 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6178 return (set_errno(EFAULT)); 6179 6180 zone = zone_find_by_id(zoneid); 6181 if (zone == NULL) { 6182 return (set_errno(ENXIO)); 6183 } 6184 6185 num = 0; 6186 mutex_enter(&zone->zone_lock); 6187 ptr = buf; 6188 for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) { 6189 /* 6190 * If the list changed and the new number is bigger 6191 * than what the caller supplied, just count, don't 6192 * do copyout 6193 */ 6194 if (++num > dlcount) 6195 continue; 6196 if (copyout(dlnl->dlnl_name, ptr, LIFNAMSIZ) != 0) { 6197 mutex_exit(&zone->zone_lock); 6198 zone_rele(zone); 6199 return (set_errno(EFAULT)); 6200 } 6201 ptr += LIFNAMSIZ; 6202 } 6203 mutex_exit(&zone->zone_lock); 6204 zone_rele(zone); 6205 6206 /* Increased or decreased, caller should be notified. */ 6207 if (num != dlcount) { 6208 if (copyout(&num, nump, sizeof (num)) != 0) { 6209 return (set_errno(EFAULT)); 6210 } 6211 } 6212 return (0); 6213 } 6214 6215 /* 6216 * Public interface for looking up a zone by zoneid. It's a customized version 6217 * for netstack_zone_create(). It can only be called from the zsd create 6218 * callbacks, since it doesn't have reference on the zone structure hence if 6219 * it is called elsewhere the zone could disappear after the zonehash_lock 6220 * is dropped. 6221 * 6222 * Furthermore it 6223 * 1. Doesn't check the status of the zone. 6224 * 2. It will be called even before zone_init is called, in that case the 6225 * address of zone0 is returned directly, and netstack_zone_create() 6226 * will only assign a value to zone0.zone_netstack, won't break anything. 6227 * 3. Returns without the zone being held. 6228 */ 6229 zone_t * 6230 zone_find_by_id_nolock(zoneid_t zoneid) 6231 { 6232 zone_t *zone; 6233 6234 mutex_enter(&zonehash_lock); 6235 if (zonehashbyid == NULL) 6236 zone = &zone0; 6237 else 6238 zone = zone_find_all_by_id(zoneid); 6239 mutex_exit(&zonehash_lock); 6240 return (zone); 6241 } 6242 6243 /* 6244 * Walk the datalinks for a given zone 6245 */ 6246 int 6247 zone_datalink_walk(zoneid_t zoneid, int (*cb)(const char *, void *), void *data) 6248 { 6249 zone_t *zone; 6250 struct dlnamelist *dlnl; 6251 int ret = 0; 6252 6253 if ((zone = zone_find_by_id(zoneid)) == NULL) 6254 return (ENOENT); 6255 6256 mutex_enter(&zone->zone_lock); 6257 for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) { 6258 if ((ret = (*cb)(dlnl->dlnl_name, data)) != 0) 6259 break; 6260 } 6261 mutex_exit(&zone->zone_lock); 6262 zone_rele(zone); 6263 return (ret); 6264 } 6265