1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Zones 31 * 32 * A zone is a named collection of processes, namespace constraints, 33 * and other system resources which comprise a secure and manageable 34 * application containment facility. 35 * 36 * Zones (represented by the reference counted zone_t) are tracked in 37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 38 * (zoneid_t) are used to track zone association. Zone IDs are 39 * dynamically generated when the zone is created; if a persistent 40 * identifier is needed (core files, accounting logs, audit trail, 41 * etc.), the zone name should be used. 42 * 43 * 44 * Global Zone: 45 * 46 * The global zone (zoneid 0) is automatically associated with all 47 * system resources that have not been bound to a user-created zone. 48 * This means that even systems where zones are not in active use 49 * have a global zone, and all processes, mounts, etc. are 50 * associated with that zone. The global zone is generally 51 * unconstrained in terms of privileges and access, though the usual 52 * credential and privilege based restrictions apply. 53 * 54 * 55 * Zone States: 56 * 57 * The states in which a zone may be in and the transitions are as 58 * follows: 59 * 60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 61 * initialized zone is added to the list of active zones on the system but 62 * isn't accessible. 63 * 64 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 65 * not yet completed. Not possible to enter the zone, but attributes can 66 * be retrieved. 67 * 68 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 69 * ready. The zone is made visible after the ZSD constructor callbacks are 70 * executed. A zone remains in this state until it transitions into 71 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 72 * 73 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 74 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 75 * state. 76 * 77 * ZONE_IS_RUNNING: The zone is open for business: zsched has 78 * successfully started init. A zone remains in this state until 79 * zone_shutdown() is called. 80 * 81 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 82 * killing all processes running in the zone. The zone remains 83 * in this state until there are no more user processes running in the zone. 84 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 85 * Since zone_shutdown() is restartable, it may be called successfully 86 * multiple times for the same zone_t. Setting of the zone's state to 87 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 88 * the zone's status without worrying about it being a moving target. 89 * 90 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 91 * are no more user processes in the zone. The zone remains in this 92 * state until there are no more kernel threads associated with the 93 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 94 * fail. 95 * 96 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 97 * have exited. zone_shutdown() returns. Henceforth it is not possible to 98 * join the zone or create kernel threads therein. 99 * 100 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 101 * remains in this state until zsched exits. Calls to zone_find_by_*() 102 * return NULL from now on. 103 * 104 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 105 * processes or threads doing work on behalf of the zone. The zone is 106 * removed from the list of active zones. zone_destroy() returns, and 107 * the zone can be recreated. 108 * 109 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 110 * callbacks are executed, and all memory associated with the zone is 111 * freed. 112 * 113 * Threads can wait for the zone to enter a requested state by using 114 * zone_status_wait() or zone_status_timedwait() with the desired 115 * state passed in as an argument. Zone state transitions are 116 * uni-directional; it is not possible to move back to an earlier state. 117 * 118 * 119 * Zone-Specific Data: 120 * 121 * Subsystems needing to maintain zone-specific data can store that 122 * data using the ZSD mechanism. This provides a zone-specific data 123 * store, similar to thread-specific data (see pthread_getspecific(3C) 124 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 125 * to register callbacks to be invoked when a zone is created, shut 126 * down, or destroyed. This can be used to initialize zone-specific 127 * data for new zones and to clean up when zones go away. 128 * 129 * 130 * Data Structures: 131 * 132 * The per-zone structure (zone_t) is reference counted, and freed 133 * when all references are released. zone_hold and zone_rele can be 134 * used to adjust the reference count. In addition, reference counts 135 * associated with the cred_t structure are tracked separately using 136 * zone_cred_hold and zone_cred_rele. 137 * 138 * Pointers to active zone_t's are stored in two hash tables; one 139 * for searching by id, the other for searching by name. Lookups 140 * can be performed on either basis, using zone_find_by_id and 141 * zone_find_by_name. Both return zone_t pointers with the zone 142 * held, so zone_rele should be called when the pointer is no longer 143 * needed. Zones can also be searched by path; zone_find_by_path 144 * returns the zone with which a path name is associated (global 145 * zone if the path is not within some other zone's file system 146 * hierarchy). This currently requires iterating through each zone, 147 * so it is slower than an id or name search via a hash table. 148 * 149 * 150 * Locking: 151 * 152 * zonehash_lock: This is a top-level global lock used to protect the 153 * zone hash tables and lists. Zones cannot be created or destroyed 154 * while this lock is held. 155 * zone_status_lock: This is a global lock protecting zone state. 156 * Zones cannot change state while this lock is held. It also 157 * protects the list of kernel threads associated with a zone. 158 * zone_lock: This is a per-zone lock used to protect several fields of 159 * the zone_t (see <sys/zone.h> for details). In addition, holding 160 * this lock means that the zone cannot go away. 161 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-lwps rctl. 163 * zone_mem_lock: This is a per-zone lock used to protect the fields 164 * related to the zone.max-locked-memory and zone.max-swap rctls. 165 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 166 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 167 * list (a list of zones in the ZONE_IS_DEAD state). 168 * 169 * Ordering requirements: 170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 172 * 173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 176 * 177 * Blocking memory allocations are permitted while holding any of the 178 * zone locks. 179 * 180 * 181 * System Call Interface: 182 * 183 * The zone subsystem can be managed and queried from user level with 184 * the following system calls (all subcodes of the primary "zone" 185 * system call): 186 * - zone_create: creates a zone with selected attributes (name, 187 * root path, privileges, resource controls, ZFS datasets) 188 * - zone_enter: allows the current process to enter a zone 189 * - zone_getattr: reports attributes of a zone 190 * - zone_setattr: set attributes of a zone 191 * - zone_boot: set 'init' running for the zone 192 * - zone_list: lists all zones active in the system 193 * - zone_lookup: looks up zone id based on name 194 * - zone_shutdown: initiates shutdown process (see states above) 195 * - zone_destroy: completes shutdown process (see states above) 196 * 197 */ 198 199 #include <sys/priv_impl.h> 200 #include <sys/cred.h> 201 #include <c2/audit.h> 202 #include <sys/debug.h> 203 #include <sys/file.h> 204 #include <sys/kmem.h> 205 #include <sys/kstat.h> 206 #include <sys/mutex.h> 207 #include <sys/note.h> 208 #include <sys/pathname.h> 209 #include <sys/proc.h> 210 #include <sys/project.h> 211 #include <sys/sysevent.h> 212 #include <sys/task.h> 213 #include <sys/systm.h> 214 #include <sys/types.h> 215 #include <sys/utsname.h> 216 #include <sys/vnode.h> 217 #include <sys/vfs.h> 218 #include <sys/systeminfo.h> 219 #include <sys/policy.h> 220 #include <sys/cred_impl.h> 221 #include <sys/contract_impl.h> 222 #include <sys/contract/process_impl.h> 223 #include <sys/class.h> 224 #include <sys/pool.h> 225 #include <sys/pool_pset.h> 226 #include <sys/pset.h> 227 #include <sys/sysmacros.h> 228 #include <sys/callb.h> 229 #include <sys/vmparam.h> 230 #include <sys/corectl.h> 231 #include <sys/ipc_impl.h> 232 233 #include <sys/door.h> 234 #include <sys/cpuvar.h> 235 #include <sys/sdt.h> 236 237 #include <sys/uadmin.h> 238 #include <sys/session.h> 239 #include <sys/cmn_err.h> 240 #include <sys/modhash.h> 241 #include <sys/sunddi.h> 242 #include <sys/nvpair.h> 243 #include <sys/rctl.h> 244 #include <sys/fss.h> 245 #include <sys/brand.h> 246 #include <sys/zone.h> 247 #include <net/if.h> 248 #include <sys/cpucaps.h> 249 #include <vm/seg.h> 250 251 /* 252 * cv used to signal that all references to the zone have been released. This 253 * needs to be global since there may be multiple waiters, and the first to 254 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 255 */ 256 static kcondvar_t zone_destroy_cv; 257 /* 258 * Lock used to serialize access to zone_cv. This could have been per-zone, 259 * but then we'd need another lock for zone_destroy_cv, and why bother? 260 */ 261 static kmutex_t zone_status_lock; 262 263 /* 264 * ZSD-related global variables. 265 */ 266 static kmutex_t zsd_key_lock; /* protects the following two */ 267 /* 268 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 269 */ 270 static zone_key_t zsd_keyval = 0; 271 /* 272 * Global list of registered keys. We use this when a new zone is created. 273 */ 274 static list_t zsd_registered_keys; 275 276 int zone_hash_size = 256; 277 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 278 static kmutex_t zonehash_lock; 279 static uint_t zonecount; 280 static id_space_t *zoneid_space; 281 282 /* 283 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 284 * kernel proper runs, and which manages all other zones. 285 * 286 * Although not declared as static, the variable "zone0" should not be used 287 * except for by code that needs to reference the global zone early on in boot, 288 * before it is fully initialized. All other consumers should use 289 * 'global_zone'. 290 */ 291 zone_t zone0; 292 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 293 294 /* 295 * List of active zones, protected by zonehash_lock. 296 */ 297 static list_t zone_active; 298 299 /* 300 * List of destroyed zones that still have outstanding cred references. 301 * Used for debugging. Uses a separate lock to avoid lock ordering 302 * problems in zone_free. 303 */ 304 static list_t zone_deathrow; 305 static kmutex_t zone_deathrow_lock; 306 307 /* number of zones is limited by virtual interface limit in IP */ 308 uint_t maxzones = 8192; 309 310 /* Event channel to sent zone state change notifications */ 311 evchan_t *zone_event_chan; 312 313 /* 314 * This table holds the mapping from kernel zone states to 315 * states visible in the state notification API. 316 * The idea is that we only expose "obvious" states and 317 * do not expose states which are just implementation details. 318 */ 319 const char *zone_status_table[] = { 320 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 321 ZONE_EVENT_INITIALIZED, /* initialized */ 322 ZONE_EVENT_READY, /* ready */ 323 ZONE_EVENT_READY, /* booting */ 324 ZONE_EVENT_RUNNING, /* running */ 325 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 326 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 327 ZONE_EVENT_SHUTTING_DOWN, /* down */ 328 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 329 ZONE_EVENT_UNINITIALIZED, /* dead */ 330 }; 331 332 /* 333 * This isn't static so lint doesn't complain. 334 */ 335 rctl_hndl_t rc_zone_cpu_shares; 336 rctl_hndl_t rc_zone_locked_mem; 337 rctl_hndl_t rc_zone_max_swap; 338 rctl_hndl_t rc_zone_cpu_cap; 339 rctl_hndl_t rc_zone_nlwps; 340 rctl_hndl_t rc_zone_shmmax; 341 rctl_hndl_t rc_zone_shmmni; 342 rctl_hndl_t rc_zone_semmni; 343 rctl_hndl_t rc_zone_msgmni; 344 /* 345 * Synchronization primitives used to synchronize between mounts and zone 346 * creation/destruction. 347 */ 348 static int mounts_in_progress; 349 static kcondvar_t mount_cv; 350 static kmutex_t mount_lock; 351 352 const char * const zone_default_initname = "/sbin/init"; 353 static char * const zone_prefix = "/zone/"; 354 static int zone_shutdown(zoneid_t zoneid); 355 static int zone_add_datalink(zoneid_t, char *); 356 static int zone_remove_datalink(zoneid_t, char *); 357 static int zone_check_datalink(zoneid_t *, char *); 358 static int zone_list_datalink(zoneid_t, int *, char *); 359 360 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 361 362 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 363 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 364 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 365 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 366 zone_key_t); 367 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 368 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 369 kmutex_t *); 370 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 371 kmutex_t *); 372 373 /* 374 * Bump this number when you alter the zone syscall interfaces; this is 375 * because we need to have support for previous API versions in libc 376 * to support patching; libc calls into the kernel to determine this number. 377 * 378 * Version 1 of the API is the version originally shipped with Solaris 10 379 * Version 2 alters the zone_create system call in order to support more 380 * arguments by moving the args into a structure; and to do better 381 * error reporting when zone_create() fails. 382 * Version 3 alters the zone_create system call in order to support the 383 * import of ZFS datasets to zones. 384 * Version 4 alters the zone_create system call in order to support 385 * Trusted Extensions. 386 * Version 5 alters the zone_boot system call, and converts its old 387 * bootargs parameter to be set by the zone_setattr API instead. 388 * Version 6 adds the flag argument to zone_create. 389 */ 390 static const int ZONE_SYSCALL_API_VERSION = 6; 391 392 /* 393 * Certain filesystems (such as NFS and autofs) need to know which zone 394 * the mount is being placed in. Because of this, we need to be able to 395 * ensure that a zone isn't in the process of being created such that 396 * nfs_mount() thinks it is in the global zone, while by the time it 397 * gets added the list of mounted zones, it ends up on zoneA's mount 398 * list. 399 * 400 * The following functions: block_mounts()/resume_mounts() and 401 * mount_in_progress()/mount_completed() are used by zones and the VFS 402 * layer (respectively) to synchronize zone creation and new mounts. 403 * 404 * The semantics are like a reader-reader lock such that there may 405 * either be multiple mounts (or zone creations, if that weren't 406 * serialized by zonehash_lock) in progress at the same time, but not 407 * both. 408 * 409 * We use cv's so the user can ctrl-C out of the operation if it's 410 * taking too long. 411 * 412 * The semantics are such that there is unfair bias towards the 413 * "current" operation. This means that zone creations may starve if 414 * there is a rapid succession of new mounts coming in to the system, or 415 * there is a remote possibility that zones will be created at such a 416 * rate that new mounts will not be able to proceed. 417 */ 418 /* 419 * Prevent new mounts from progressing to the point of calling 420 * VFS_MOUNT(). If there are already mounts in this "region", wait for 421 * them to complete. 422 */ 423 static int 424 block_mounts(void) 425 { 426 int retval = 0; 427 428 /* 429 * Since it may block for a long time, block_mounts() shouldn't be 430 * called with zonehash_lock held. 431 */ 432 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 433 mutex_enter(&mount_lock); 434 while (mounts_in_progress > 0) { 435 if (cv_wait_sig(&mount_cv, &mount_lock) == 0) 436 goto signaled; 437 } 438 /* 439 * A negative value of mounts_in_progress indicates that mounts 440 * have been blocked by (-mounts_in_progress) different callers. 441 */ 442 mounts_in_progress--; 443 retval = 1; 444 signaled: 445 mutex_exit(&mount_lock); 446 return (retval); 447 } 448 449 /* 450 * The VFS layer may progress with new mounts as far as we're concerned. 451 * Allow them to progress if we were the last obstacle. 452 */ 453 static void 454 resume_mounts(void) 455 { 456 mutex_enter(&mount_lock); 457 if (++mounts_in_progress == 0) 458 cv_broadcast(&mount_cv); 459 mutex_exit(&mount_lock); 460 } 461 462 /* 463 * The VFS layer is busy with a mount; zones should wait until all 464 * mounts are completed to progress. 465 */ 466 void 467 mount_in_progress(void) 468 { 469 mutex_enter(&mount_lock); 470 while (mounts_in_progress < 0) 471 cv_wait(&mount_cv, &mount_lock); 472 mounts_in_progress++; 473 mutex_exit(&mount_lock); 474 } 475 476 /* 477 * VFS is done with one mount; wake up any waiting block_mounts() 478 * callers if this is the last mount. 479 */ 480 void 481 mount_completed(void) 482 { 483 mutex_enter(&mount_lock); 484 if (--mounts_in_progress == 0) 485 cv_broadcast(&mount_cv); 486 mutex_exit(&mount_lock); 487 } 488 489 /* 490 * ZSD routines. 491 * 492 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 493 * defined by the pthread_key_create() and related interfaces. 494 * 495 * Kernel subsystems may register one or more data items and/or 496 * callbacks to be executed when a zone is created, shutdown, or 497 * destroyed. 498 * 499 * Unlike the thread counterpart, destructor callbacks will be executed 500 * even if the data pointer is NULL and/or there are no constructor 501 * callbacks, so it is the responsibility of such callbacks to check for 502 * NULL data values if necessary. 503 * 504 * The locking strategy and overall picture is as follows: 505 * 506 * When someone calls zone_key_create(), a template ZSD entry is added to the 507 * global list "zsd_registered_keys", protected by zsd_key_lock. While 508 * holding that lock all the existing zones are marked as 509 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 510 * zone_zsd list (protected by zone_lock). The global list is updated first 511 * (under zone_key_lock) to make sure that newly created zones use the 512 * most recent list of keys. Then under zonehash_lock we walk the zones 513 * and mark them. Similar locking is used in zone_key_delete(). 514 * 515 * The actual create, shutdown, and destroy callbacks are done without 516 * holding any lock. And zsd_flags are used to ensure that the operations 517 * completed so that when zone_key_create (and zone_create) is done, as well as 518 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 519 * are completed. 520 * 521 * When new zones are created constructor callbacks for all registered ZSD 522 * entries will be called. That also uses the above two phases of marking 523 * what needs to be done, and then running the callbacks without holding 524 * any locks. 525 * 526 * The framework does not provide any locking around zone_getspecific() and 527 * zone_setspecific() apart from that needed for internal consistency, so 528 * callers interested in atomic "test-and-set" semantics will need to provide 529 * their own locking. 530 */ 531 532 /* 533 * Helper function to find the zsd_entry associated with the key in the 534 * given list. 535 */ 536 static struct zsd_entry * 537 zsd_find(list_t *l, zone_key_t key) 538 { 539 struct zsd_entry *zsd; 540 541 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 542 if (zsd->zsd_key == key) { 543 return (zsd); 544 } 545 } 546 return (NULL); 547 } 548 549 /* 550 * Helper function to find the zsd_entry associated with the key in the 551 * given list. Move it to the front of the list. 552 */ 553 static struct zsd_entry * 554 zsd_find_mru(list_t *l, zone_key_t key) 555 { 556 struct zsd_entry *zsd; 557 558 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 559 if (zsd->zsd_key == key) { 560 /* 561 * Move to head of list to keep list in MRU order. 562 */ 563 if (zsd != list_head(l)) { 564 list_remove(l, zsd); 565 list_insert_head(l, zsd); 566 } 567 return (zsd); 568 } 569 } 570 return (NULL); 571 } 572 573 void 574 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 575 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 576 { 577 struct zsd_entry *zsdp; 578 struct zsd_entry *t; 579 struct zone *zone; 580 zone_key_t key; 581 582 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 583 zsdp->zsd_data = NULL; 584 zsdp->zsd_create = create; 585 zsdp->zsd_shutdown = shutdown; 586 zsdp->zsd_destroy = destroy; 587 588 /* 589 * Insert in global list of callbacks. Makes future zone creations 590 * see it. 591 */ 592 mutex_enter(&zsd_key_lock); 593 *keyp = key = zsdp->zsd_key = ++zsd_keyval; 594 ASSERT(zsd_keyval != 0); 595 list_insert_tail(&zsd_registered_keys, zsdp); 596 mutex_exit(&zsd_key_lock); 597 598 /* 599 * Insert for all existing zones and mark them as needing 600 * a create callback. 601 */ 602 mutex_enter(&zonehash_lock); /* stop the world */ 603 for (zone = list_head(&zone_active); zone != NULL; 604 zone = list_next(&zone_active, zone)) { 605 zone_status_t status; 606 607 mutex_enter(&zone->zone_lock); 608 609 /* Skip zones that are on the way down or not yet up */ 610 status = zone_status_get(zone); 611 if (status >= ZONE_IS_DOWN || 612 status == ZONE_IS_UNINITIALIZED) { 613 mutex_exit(&zone->zone_lock); 614 continue; 615 } 616 617 t = zsd_find_mru(&zone->zone_zsd, key); 618 if (t != NULL) { 619 /* 620 * A zsd_configure already inserted it after 621 * we dropped zsd_key_lock above. 622 */ 623 mutex_exit(&zone->zone_lock); 624 continue; 625 } 626 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 627 t->zsd_key = key; 628 t->zsd_create = create; 629 t->zsd_shutdown = shutdown; 630 t->zsd_destroy = destroy; 631 if (create != NULL) { 632 t->zsd_flags = ZSD_CREATE_NEEDED; 633 DTRACE_PROBE2(zsd__create__needed, 634 zone_t *, zone, zone_key_t, key); 635 } 636 list_insert_tail(&zone->zone_zsd, t); 637 mutex_exit(&zone->zone_lock); 638 } 639 mutex_exit(&zonehash_lock); 640 641 if (create != NULL) { 642 /* Now call the create callback for this key */ 643 zsd_apply_all_zones(zsd_apply_create, key); 644 } 645 } 646 647 /* 648 * Function called when a module is being unloaded, or otherwise wishes 649 * to unregister its ZSD key and callbacks. 650 * 651 * Remove from the global list and determine the functions that need to 652 * be called under a global lock. Then call the functions without 653 * holding any locks. Finally free up the zone_zsd entries. (The apply 654 * functions need to access the zone_zsd entries to find zsd_data etc.) 655 */ 656 int 657 zone_key_delete(zone_key_t key) 658 { 659 struct zsd_entry *zsdp = NULL; 660 zone_t *zone; 661 662 mutex_enter(&zsd_key_lock); 663 zsdp = zsd_find_mru(&zsd_registered_keys, key); 664 if (zsdp == NULL) { 665 mutex_exit(&zsd_key_lock); 666 return (-1); 667 } 668 list_remove(&zsd_registered_keys, zsdp); 669 mutex_exit(&zsd_key_lock); 670 671 mutex_enter(&zonehash_lock); 672 for (zone = list_head(&zone_active); zone != NULL; 673 zone = list_next(&zone_active, zone)) { 674 struct zsd_entry *del; 675 676 mutex_enter(&zone->zone_lock); 677 del = zsd_find_mru(&zone->zone_zsd, key); 678 if (del == NULL) { 679 /* 680 * Somebody else got here first e.g the zone going 681 * away. 682 */ 683 mutex_exit(&zone->zone_lock); 684 continue; 685 } 686 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 687 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 688 if (del->zsd_shutdown != NULL && 689 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 690 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 691 DTRACE_PROBE2(zsd__shutdown__needed, 692 zone_t *, zone, zone_key_t, key); 693 } 694 if (del->zsd_destroy != NULL && 695 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 696 del->zsd_flags |= ZSD_DESTROY_NEEDED; 697 DTRACE_PROBE2(zsd__destroy__needed, 698 zone_t *, zone, zone_key_t, key); 699 } 700 mutex_exit(&zone->zone_lock); 701 } 702 mutex_exit(&zonehash_lock); 703 kmem_free(zsdp, sizeof (*zsdp)); 704 705 /* Now call the shutdown and destroy callback for this key */ 706 zsd_apply_all_zones(zsd_apply_shutdown, key); 707 zsd_apply_all_zones(zsd_apply_destroy, key); 708 709 /* Now we can free up the zsdp structures in each zone */ 710 mutex_enter(&zonehash_lock); 711 for (zone = list_head(&zone_active); zone != NULL; 712 zone = list_next(&zone_active, zone)) { 713 struct zsd_entry *del; 714 715 mutex_enter(&zone->zone_lock); 716 del = zsd_find(&zone->zone_zsd, key); 717 if (del != NULL) { 718 list_remove(&zone->zone_zsd, del); 719 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 720 kmem_free(del, sizeof (*del)); 721 } 722 mutex_exit(&zone->zone_lock); 723 } 724 mutex_exit(&zonehash_lock); 725 726 return (0); 727 } 728 729 /* 730 * ZSD counterpart of pthread_setspecific(). 731 * 732 * Since all zsd callbacks, including those with no create function, 733 * have an entry in zone_zsd, if the key is registered it is part of 734 * the zone_zsd list. 735 * Return an error if the key wasn't registerd. 736 */ 737 int 738 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 739 { 740 struct zsd_entry *t; 741 742 mutex_enter(&zone->zone_lock); 743 t = zsd_find_mru(&zone->zone_zsd, key); 744 if (t != NULL) { 745 /* 746 * Replace old value with new 747 */ 748 t->zsd_data = (void *)data; 749 mutex_exit(&zone->zone_lock); 750 return (0); 751 } 752 mutex_exit(&zone->zone_lock); 753 return (-1); 754 } 755 756 /* 757 * ZSD counterpart of pthread_getspecific(). 758 */ 759 void * 760 zone_getspecific(zone_key_t key, zone_t *zone) 761 { 762 struct zsd_entry *t; 763 void *data; 764 765 mutex_enter(&zone->zone_lock); 766 t = zsd_find_mru(&zone->zone_zsd, key); 767 data = (t == NULL ? NULL : t->zsd_data); 768 mutex_exit(&zone->zone_lock); 769 return (data); 770 } 771 772 /* 773 * Function used to initialize a zone's list of ZSD callbacks and data 774 * when the zone is being created. The callbacks are initialized from 775 * the template list (zsd_registered_keys). The constructor callback is 776 * executed later (once the zone exists and with locks dropped). 777 */ 778 static void 779 zone_zsd_configure(zone_t *zone) 780 { 781 struct zsd_entry *zsdp; 782 struct zsd_entry *t; 783 784 ASSERT(MUTEX_HELD(&zonehash_lock)); 785 ASSERT(list_head(&zone->zone_zsd) == NULL); 786 mutex_enter(&zone->zone_lock); 787 mutex_enter(&zsd_key_lock); 788 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 789 zsdp = list_next(&zsd_registered_keys, zsdp)) { 790 /* 791 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 792 * should not have added anything to it. 793 */ 794 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 795 796 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 797 t->zsd_key = zsdp->zsd_key; 798 t->zsd_create = zsdp->zsd_create; 799 t->zsd_shutdown = zsdp->zsd_shutdown; 800 t->zsd_destroy = zsdp->zsd_destroy; 801 if (zsdp->zsd_create != NULL) { 802 t->zsd_flags = ZSD_CREATE_NEEDED; 803 DTRACE_PROBE2(zsd__create__needed, 804 zone_t *, zone, zone_key_t, zsdp->zsd_key); 805 } 806 list_insert_tail(&zone->zone_zsd, t); 807 } 808 mutex_exit(&zsd_key_lock); 809 mutex_exit(&zone->zone_lock); 810 } 811 812 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 813 814 /* 815 * Helper function to execute shutdown or destructor callbacks. 816 */ 817 static void 818 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 819 { 820 struct zsd_entry *t; 821 822 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 823 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 824 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 825 826 /* 827 * Run the callback solely based on what is registered for the zone 828 * in zone_zsd. The global list can change independently of this 829 * as keys are registered and unregistered and we don't register new 830 * callbacks for a zone that is in the process of going away. 831 */ 832 mutex_enter(&zone->zone_lock); 833 for (t = list_head(&zone->zone_zsd); t != NULL; 834 t = list_next(&zone->zone_zsd, t)) { 835 zone_key_t key = t->zsd_key; 836 837 /* Skip if no callbacks registered */ 838 839 if (ct == ZSD_SHUTDOWN) { 840 if (t->zsd_shutdown != NULL && 841 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 842 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 843 DTRACE_PROBE2(zsd__shutdown__needed, 844 zone_t *, zone, zone_key_t, key); 845 } 846 } else { 847 if (t->zsd_destroy != NULL && 848 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 849 t->zsd_flags |= ZSD_DESTROY_NEEDED; 850 DTRACE_PROBE2(zsd__destroy__needed, 851 zone_t *, zone, zone_key_t, key); 852 } 853 } 854 } 855 mutex_exit(&zone->zone_lock); 856 857 /* Now call the shutdown and destroy callback for this key */ 858 zsd_apply_all_keys(zsd_apply_shutdown, zone); 859 zsd_apply_all_keys(zsd_apply_destroy, zone); 860 861 } 862 863 /* 864 * Called when the zone is going away; free ZSD-related memory, and 865 * destroy the zone_zsd list. 866 */ 867 static void 868 zone_free_zsd(zone_t *zone) 869 { 870 struct zsd_entry *t, *next; 871 872 /* 873 * Free all the zsd_entry's we had on this zone. 874 */ 875 mutex_enter(&zone->zone_lock); 876 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 877 next = list_next(&zone->zone_zsd, t); 878 list_remove(&zone->zone_zsd, t); 879 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 880 kmem_free(t, sizeof (*t)); 881 } 882 list_destroy(&zone->zone_zsd); 883 mutex_exit(&zone->zone_lock); 884 885 } 886 887 /* 888 * Apply a function to all zones for particular key value. 889 * 890 * The applyfn has to drop zonehash_lock if it does some work, and 891 * then reacquire it before it returns. 892 * When the lock is dropped we don't follow list_next even 893 * if it is possible to do so without any hazards. This is 894 * because we want the design to allow for the list of zones 895 * to change in any arbitrary way during the time the 896 * lock was dropped. 897 * 898 * It is safe to restart the loop at list_head since the applyfn 899 * changes the zsd_flags as it does work, so a subsequent 900 * pass through will have no effect in applyfn, hence the loop will terminate 901 * in at worst O(N^2). 902 */ 903 static void 904 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 905 { 906 zone_t *zone; 907 908 mutex_enter(&zonehash_lock); 909 zone = list_head(&zone_active); 910 while (zone != NULL) { 911 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 912 /* Lock dropped - restart at head */ 913 zone = list_head(&zone_active); 914 } else { 915 zone = list_next(&zone_active, zone); 916 } 917 } 918 mutex_exit(&zonehash_lock); 919 } 920 921 /* 922 * Apply a function to all keys for a particular zone. 923 * 924 * The applyfn has to drop zonehash_lock if it does some work, and 925 * then reacquire it before it returns. 926 * When the lock is dropped we don't follow list_next even 927 * if it is possible to do so without any hazards. This is 928 * because we want the design to allow for the list of zsd callbacks 929 * to change in any arbitrary way during the time the 930 * lock was dropped. 931 * 932 * It is safe to restart the loop at list_head since the applyfn 933 * changes the zsd_flags as it does work, so a subsequent 934 * pass through will have no effect in applyfn, hence the loop will terminate 935 * in at worst O(N^2). 936 */ 937 static void 938 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 939 { 940 struct zsd_entry *t; 941 942 mutex_enter(&zone->zone_lock); 943 t = list_head(&zone->zone_zsd); 944 while (t != NULL) { 945 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 946 /* Lock dropped - restart at head */ 947 t = list_head(&zone->zone_zsd); 948 } else { 949 t = list_next(&zone->zone_zsd, t); 950 } 951 } 952 mutex_exit(&zone->zone_lock); 953 } 954 955 /* 956 * Call the create function for the zone and key if CREATE_NEEDED 957 * is set. 958 * If some other thread gets here first and sets CREATE_INPROGRESS, then 959 * we wait for that thread to complete so that we can ensure that 960 * all the callbacks are done when we've looped over all zones/keys. 961 * 962 * When we call the create function, we drop the global held by the 963 * caller, and return true to tell the caller it needs to re-evalute the 964 * state. 965 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 966 * remains held on exit. 967 */ 968 static boolean_t 969 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 970 zone_t *zone, zone_key_t key) 971 { 972 void *result; 973 struct zsd_entry *t; 974 boolean_t dropped; 975 976 if (lockp != NULL) { 977 ASSERT(MUTEX_HELD(lockp)); 978 } 979 if (zone_lock_held) { 980 ASSERT(MUTEX_HELD(&zone->zone_lock)); 981 } else { 982 mutex_enter(&zone->zone_lock); 983 } 984 985 t = zsd_find(&zone->zone_zsd, key); 986 if (t == NULL) { 987 /* 988 * Somebody else got here first e.g the zone going 989 * away. 990 */ 991 if (!zone_lock_held) 992 mutex_exit(&zone->zone_lock); 993 return (B_FALSE); 994 } 995 dropped = B_FALSE; 996 if (zsd_wait_for_inprogress(zone, t, lockp)) 997 dropped = B_TRUE; 998 999 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1000 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1001 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1002 DTRACE_PROBE2(zsd__create__inprogress, 1003 zone_t *, zone, zone_key_t, key); 1004 mutex_exit(&zone->zone_lock); 1005 if (lockp != NULL) 1006 mutex_exit(lockp); 1007 1008 dropped = B_TRUE; 1009 ASSERT(t->zsd_create != NULL); 1010 DTRACE_PROBE2(zsd__create__start, 1011 zone_t *, zone, zone_key_t, key); 1012 1013 result = (*t->zsd_create)(zone->zone_id); 1014 1015 DTRACE_PROBE2(zsd__create__end, 1016 zone_t *, zone, voidn *, result); 1017 1018 ASSERT(result != NULL); 1019 if (lockp != NULL) 1020 mutex_enter(lockp); 1021 mutex_enter(&zone->zone_lock); 1022 t->zsd_data = result; 1023 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1024 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1025 cv_broadcast(&t->zsd_cv); 1026 DTRACE_PROBE2(zsd__create__completed, 1027 zone_t *, zone, zone_key_t, key); 1028 } 1029 if (!zone_lock_held) 1030 mutex_exit(&zone->zone_lock); 1031 return (dropped); 1032 } 1033 1034 /* 1035 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1036 * is set. 1037 * If some other thread gets here first and sets *_INPROGRESS, then 1038 * we wait for that thread to complete so that we can ensure that 1039 * all the callbacks are done when we've looped over all zones/keys. 1040 * 1041 * When we call the shutdown function, we drop the global held by the 1042 * caller, and return true to tell the caller it needs to re-evalute the 1043 * state. 1044 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1045 * remains held on exit. 1046 */ 1047 static boolean_t 1048 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1049 zone_t *zone, zone_key_t key) 1050 { 1051 struct zsd_entry *t; 1052 void *data; 1053 boolean_t dropped; 1054 1055 if (lockp != NULL) { 1056 ASSERT(MUTEX_HELD(lockp)); 1057 } 1058 if (zone_lock_held) { 1059 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1060 } else { 1061 mutex_enter(&zone->zone_lock); 1062 } 1063 1064 t = zsd_find(&zone->zone_zsd, key); 1065 if (t == NULL) { 1066 /* 1067 * Somebody else got here first e.g the zone going 1068 * away. 1069 */ 1070 if (!zone_lock_held) 1071 mutex_exit(&zone->zone_lock); 1072 return (B_FALSE); 1073 } 1074 dropped = B_FALSE; 1075 if (zsd_wait_for_creator(zone, t, lockp)) 1076 dropped = B_TRUE; 1077 1078 if (zsd_wait_for_inprogress(zone, t, lockp)) 1079 dropped = B_TRUE; 1080 1081 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1082 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1083 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1084 DTRACE_PROBE2(zsd__shutdown__inprogress, 1085 zone_t *, zone, zone_key_t, key); 1086 mutex_exit(&zone->zone_lock); 1087 if (lockp != NULL) 1088 mutex_exit(lockp); 1089 dropped = B_TRUE; 1090 1091 ASSERT(t->zsd_shutdown != NULL); 1092 data = t->zsd_data; 1093 1094 DTRACE_PROBE2(zsd__shutdown__start, 1095 zone_t *, zone, zone_key_t, key); 1096 1097 (t->zsd_shutdown)(zone->zone_id, data); 1098 DTRACE_PROBE2(zsd__shutdown__end, 1099 zone_t *, zone, zone_key_t, key); 1100 1101 if (lockp != NULL) 1102 mutex_enter(lockp); 1103 mutex_enter(&zone->zone_lock); 1104 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1105 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1106 cv_broadcast(&t->zsd_cv); 1107 DTRACE_PROBE2(zsd__shutdown__completed, 1108 zone_t *, zone, zone_key_t, key); 1109 } 1110 if (!zone_lock_held) 1111 mutex_exit(&zone->zone_lock); 1112 return (dropped); 1113 } 1114 1115 /* 1116 * Call the destroy function for the zone and key if DESTROY_NEEDED 1117 * is set. 1118 * If some other thread gets here first and sets *_INPROGRESS, then 1119 * we wait for that thread to complete so that we can ensure that 1120 * all the callbacks are done when we've looped over all zones/keys. 1121 * 1122 * When we call the destroy function, we drop the global held by the 1123 * caller, and return true to tell the caller it needs to re-evalute the 1124 * state. 1125 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1126 * remains held on exit. 1127 */ 1128 static boolean_t 1129 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1130 zone_t *zone, zone_key_t key) 1131 { 1132 struct zsd_entry *t; 1133 void *data; 1134 boolean_t dropped; 1135 1136 if (lockp != NULL) { 1137 ASSERT(MUTEX_HELD(lockp)); 1138 } 1139 if (zone_lock_held) { 1140 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1141 } else { 1142 mutex_enter(&zone->zone_lock); 1143 } 1144 1145 t = zsd_find(&zone->zone_zsd, key); 1146 if (t == NULL) { 1147 /* 1148 * Somebody else got here first e.g the zone going 1149 * away. 1150 */ 1151 if (!zone_lock_held) 1152 mutex_exit(&zone->zone_lock); 1153 return (B_FALSE); 1154 } 1155 dropped = B_FALSE; 1156 if (zsd_wait_for_creator(zone, t, lockp)) 1157 dropped = B_TRUE; 1158 1159 if (zsd_wait_for_inprogress(zone, t, lockp)) 1160 dropped = B_TRUE; 1161 1162 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1163 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1164 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1165 DTRACE_PROBE2(zsd__destroy__inprogress, 1166 zone_t *, zone, zone_key_t, key); 1167 mutex_exit(&zone->zone_lock); 1168 if (lockp != NULL) 1169 mutex_exit(lockp); 1170 dropped = B_TRUE; 1171 1172 ASSERT(t->zsd_destroy != NULL); 1173 data = t->zsd_data; 1174 DTRACE_PROBE2(zsd__destroy__start, 1175 zone_t *, zone, zone_key_t, key); 1176 1177 (t->zsd_destroy)(zone->zone_id, data); 1178 DTRACE_PROBE2(zsd__destroy__end, 1179 zone_t *, zone, zone_key_t, key); 1180 1181 if (lockp != NULL) 1182 mutex_enter(lockp); 1183 mutex_enter(&zone->zone_lock); 1184 t->zsd_data = NULL; 1185 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1186 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1187 cv_broadcast(&t->zsd_cv); 1188 DTRACE_PROBE2(zsd__destroy__completed, 1189 zone_t *, zone, zone_key_t, key); 1190 } 1191 if (!zone_lock_held) 1192 mutex_exit(&zone->zone_lock); 1193 return (dropped); 1194 } 1195 1196 /* 1197 * Wait for any CREATE_NEEDED flag to be cleared. 1198 * Returns true if lockp was temporarily dropped while waiting. 1199 */ 1200 static boolean_t 1201 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1202 { 1203 boolean_t dropped = B_FALSE; 1204 1205 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1206 DTRACE_PROBE2(zsd__wait__for__creator, 1207 zone_t *, zone, struct zsd_entry *, t); 1208 if (lockp != NULL) { 1209 dropped = B_TRUE; 1210 mutex_exit(lockp); 1211 } 1212 cv_wait(&t->zsd_cv, &zone->zone_lock); 1213 if (lockp != NULL) { 1214 /* First drop zone_lock to preserve order */ 1215 mutex_exit(&zone->zone_lock); 1216 mutex_enter(lockp); 1217 mutex_enter(&zone->zone_lock); 1218 } 1219 } 1220 return (dropped); 1221 } 1222 1223 /* 1224 * Wait for any INPROGRESS flag to be cleared. 1225 * Returns true if lockp was temporarily dropped while waiting. 1226 */ 1227 static boolean_t 1228 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1229 { 1230 boolean_t dropped = B_FALSE; 1231 1232 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1233 DTRACE_PROBE2(zsd__wait__for__inprogress, 1234 zone_t *, zone, struct zsd_entry *, t); 1235 if (lockp != NULL) { 1236 dropped = B_TRUE; 1237 mutex_exit(lockp); 1238 } 1239 cv_wait(&t->zsd_cv, &zone->zone_lock); 1240 if (lockp != NULL) { 1241 /* First drop zone_lock to preserve order */ 1242 mutex_exit(&zone->zone_lock); 1243 mutex_enter(lockp); 1244 mutex_enter(&zone->zone_lock); 1245 } 1246 } 1247 return (dropped); 1248 } 1249 1250 /* 1251 * Frees memory associated with the zone dataset list. 1252 */ 1253 static void 1254 zone_free_datasets(zone_t *zone) 1255 { 1256 zone_dataset_t *t, *next; 1257 1258 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1259 next = list_next(&zone->zone_datasets, t); 1260 list_remove(&zone->zone_datasets, t); 1261 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1262 kmem_free(t, sizeof (*t)); 1263 } 1264 list_destroy(&zone->zone_datasets); 1265 } 1266 1267 /* 1268 * zone.cpu-shares resource control support. 1269 */ 1270 /*ARGSUSED*/ 1271 static rctl_qty_t 1272 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1273 { 1274 ASSERT(MUTEX_HELD(&p->p_lock)); 1275 return (p->p_zone->zone_shares); 1276 } 1277 1278 /*ARGSUSED*/ 1279 static int 1280 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1281 rctl_qty_t nv) 1282 { 1283 ASSERT(MUTEX_HELD(&p->p_lock)); 1284 ASSERT(e->rcep_t == RCENTITY_ZONE); 1285 if (e->rcep_p.zone == NULL) 1286 return (0); 1287 1288 e->rcep_p.zone->zone_shares = nv; 1289 return (0); 1290 } 1291 1292 static rctl_ops_t zone_cpu_shares_ops = { 1293 rcop_no_action, 1294 zone_cpu_shares_usage, 1295 zone_cpu_shares_set, 1296 rcop_no_test 1297 }; 1298 1299 /* 1300 * zone.cpu-cap resource control support. 1301 */ 1302 /*ARGSUSED*/ 1303 static rctl_qty_t 1304 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1305 { 1306 ASSERT(MUTEX_HELD(&p->p_lock)); 1307 return (cpucaps_zone_get(p->p_zone)); 1308 } 1309 1310 /*ARGSUSED*/ 1311 static int 1312 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1313 rctl_qty_t nv) 1314 { 1315 zone_t *zone = e->rcep_p.zone; 1316 1317 ASSERT(MUTEX_HELD(&p->p_lock)); 1318 ASSERT(e->rcep_t == RCENTITY_ZONE); 1319 1320 if (zone == NULL) 1321 return (0); 1322 1323 /* 1324 * set cap to the new value. 1325 */ 1326 return (cpucaps_zone_set(zone, nv)); 1327 } 1328 1329 static rctl_ops_t zone_cpu_cap_ops = { 1330 rcop_no_action, 1331 zone_cpu_cap_get, 1332 zone_cpu_cap_set, 1333 rcop_no_test 1334 }; 1335 1336 /*ARGSUSED*/ 1337 static rctl_qty_t 1338 zone_lwps_usage(rctl_t *r, proc_t *p) 1339 { 1340 rctl_qty_t nlwps; 1341 zone_t *zone = p->p_zone; 1342 1343 ASSERT(MUTEX_HELD(&p->p_lock)); 1344 1345 mutex_enter(&zone->zone_nlwps_lock); 1346 nlwps = zone->zone_nlwps; 1347 mutex_exit(&zone->zone_nlwps_lock); 1348 1349 return (nlwps); 1350 } 1351 1352 /*ARGSUSED*/ 1353 static int 1354 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1355 rctl_qty_t incr, uint_t flags) 1356 { 1357 rctl_qty_t nlwps; 1358 1359 ASSERT(MUTEX_HELD(&p->p_lock)); 1360 ASSERT(e->rcep_t == RCENTITY_ZONE); 1361 if (e->rcep_p.zone == NULL) 1362 return (0); 1363 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1364 nlwps = e->rcep_p.zone->zone_nlwps; 1365 1366 if (nlwps + incr > rcntl->rcv_value) 1367 return (1); 1368 1369 return (0); 1370 } 1371 1372 /*ARGSUSED*/ 1373 static int 1374 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1375 { 1376 ASSERT(MUTEX_HELD(&p->p_lock)); 1377 ASSERT(e->rcep_t == RCENTITY_ZONE); 1378 if (e->rcep_p.zone == NULL) 1379 return (0); 1380 e->rcep_p.zone->zone_nlwps_ctl = nv; 1381 return (0); 1382 } 1383 1384 static rctl_ops_t zone_lwps_ops = { 1385 rcop_no_action, 1386 zone_lwps_usage, 1387 zone_lwps_set, 1388 zone_lwps_test, 1389 }; 1390 1391 /*ARGSUSED*/ 1392 static int 1393 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1394 rctl_qty_t incr, uint_t flags) 1395 { 1396 rctl_qty_t v; 1397 ASSERT(MUTEX_HELD(&p->p_lock)); 1398 ASSERT(e->rcep_t == RCENTITY_ZONE); 1399 v = e->rcep_p.zone->zone_shmmax + incr; 1400 if (v > rval->rcv_value) 1401 return (1); 1402 return (0); 1403 } 1404 1405 static rctl_ops_t zone_shmmax_ops = { 1406 rcop_no_action, 1407 rcop_no_usage, 1408 rcop_no_set, 1409 zone_shmmax_test 1410 }; 1411 1412 /*ARGSUSED*/ 1413 static int 1414 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1415 rctl_qty_t incr, uint_t flags) 1416 { 1417 rctl_qty_t v; 1418 ASSERT(MUTEX_HELD(&p->p_lock)); 1419 ASSERT(e->rcep_t == RCENTITY_ZONE); 1420 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1421 if (v > rval->rcv_value) 1422 return (1); 1423 return (0); 1424 } 1425 1426 static rctl_ops_t zone_shmmni_ops = { 1427 rcop_no_action, 1428 rcop_no_usage, 1429 rcop_no_set, 1430 zone_shmmni_test 1431 }; 1432 1433 /*ARGSUSED*/ 1434 static int 1435 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1436 rctl_qty_t incr, uint_t flags) 1437 { 1438 rctl_qty_t v; 1439 ASSERT(MUTEX_HELD(&p->p_lock)); 1440 ASSERT(e->rcep_t == RCENTITY_ZONE); 1441 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1442 if (v > rval->rcv_value) 1443 return (1); 1444 return (0); 1445 } 1446 1447 static rctl_ops_t zone_semmni_ops = { 1448 rcop_no_action, 1449 rcop_no_usage, 1450 rcop_no_set, 1451 zone_semmni_test 1452 }; 1453 1454 /*ARGSUSED*/ 1455 static int 1456 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1457 rctl_qty_t incr, uint_t flags) 1458 { 1459 rctl_qty_t v; 1460 ASSERT(MUTEX_HELD(&p->p_lock)); 1461 ASSERT(e->rcep_t == RCENTITY_ZONE); 1462 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1463 if (v > rval->rcv_value) 1464 return (1); 1465 return (0); 1466 } 1467 1468 static rctl_ops_t zone_msgmni_ops = { 1469 rcop_no_action, 1470 rcop_no_usage, 1471 rcop_no_set, 1472 zone_msgmni_test 1473 }; 1474 1475 /*ARGSUSED*/ 1476 static rctl_qty_t 1477 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1478 { 1479 rctl_qty_t q; 1480 ASSERT(MUTEX_HELD(&p->p_lock)); 1481 mutex_enter(&p->p_zone->zone_mem_lock); 1482 q = p->p_zone->zone_locked_mem; 1483 mutex_exit(&p->p_zone->zone_mem_lock); 1484 return (q); 1485 } 1486 1487 /*ARGSUSED*/ 1488 static int 1489 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1490 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1491 { 1492 rctl_qty_t q; 1493 zone_t *z; 1494 1495 z = e->rcep_p.zone; 1496 ASSERT(MUTEX_HELD(&p->p_lock)); 1497 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1498 q = z->zone_locked_mem; 1499 if (q + incr > rcntl->rcv_value) 1500 return (1); 1501 return (0); 1502 } 1503 1504 /*ARGSUSED*/ 1505 static int 1506 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1507 rctl_qty_t nv) 1508 { 1509 ASSERT(MUTEX_HELD(&p->p_lock)); 1510 ASSERT(e->rcep_t == RCENTITY_ZONE); 1511 if (e->rcep_p.zone == NULL) 1512 return (0); 1513 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1514 return (0); 1515 } 1516 1517 static rctl_ops_t zone_locked_mem_ops = { 1518 rcop_no_action, 1519 zone_locked_mem_usage, 1520 zone_locked_mem_set, 1521 zone_locked_mem_test 1522 }; 1523 1524 /*ARGSUSED*/ 1525 static rctl_qty_t 1526 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1527 { 1528 rctl_qty_t q; 1529 zone_t *z = p->p_zone; 1530 1531 ASSERT(MUTEX_HELD(&p->p_lock)); 1532 mutex_enter(&z->zone_mem_lock); 1533 q = z->zone_max_swap; 1534 mutex_exit(&z->zone_mem_lock); 1535 return (q); 1536 } 1537 1538 /*ARGSUSED*/ 1539 static int 1540 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1541 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1542 { 1543 rctl_qty_t q; 1544 zone_t *z; 1545 1546 z = e->rcep_p.zone; 1547 ASSERT(MUTEX_HELD(&p->p_lock)); 1548 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1549 q = z->zone_max_swap; 1550 if (q + incr > rcntl->rcv_value) 1551 return (1); 1552 return (0); 1553 } 1554 1555 /*ARGSUSED*/ 1556 static int 1557 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1558 rctl_qty_t nv) 1559 { 1560 ASSERT(MUTEX_HELD(&p->p_lock)); 1561 ASSERT(e->rcep_t == RCENTITY_ZONE); 1562 if (e->rcep_p.zone == NULL) 1563 return (0); 1564 e->rcep_p.zone->zone_max_swap_ctl = nv; 1565 return (0); 1566 } 1567 1568 static rctl_ops_t zone_max_swap_ops = { 1569 rcop_no_action, 1570 zone_max_swap_usage, 1571 zone_max_swap_set, 1572 zone_max_swap_test 1573 }; 1574 1575 /* 1576 * Helper function to brand the zone with a unique ID. 1577 */ 1578 static void 1579 zone_uniqid(zone_t *zone) 1580 { 1581 static uint64_t uniqid = 0; 1582 1583 ASSERT(MUTEX_HELD(&zonehash_lock)); 1584 zone->zone_uniqid = uniqid++; 1585 } 1586 1587 /* 1588 * Returns a held pointer to the "kcred" for the specified zone. 1589 */ 1590 struct cred * 1591 zone_get_kcred(zoneid_t zoneid) 1592 { 1593 zone_t *zone; 1594 cred_t *cr; 1595 1596 if ((zone = zone_find_by_id(zoneid)) == NULL) 1597 return (NULL); 1598 cr = zone->zone_kcred; 1599 crhold(cr); 1600 zone_rele(zone); 1601 return (cr); 1602 } 1603 1604 static int 1605 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1606 { 1607 zone_t *zone = ksp->ks_private; 1608 zone_kstat_t *zk = ksp->ks_data; 1609 1610 if (rw == KSTAT_WRITE) 1611 return (EACCES); 1612 1613 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1614 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1615 return (0); 1616 } 1617 1618 static int 1619 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1620 { 1621 zone_t *zone = ksp->ks_private; 1622 zone_kstat_t *zk = ksp->ks_data; 1623 1624 if (rw == KSTAT_WRITE) 1625 return (EACCES); 1626 1627 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1628 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1629 return (0); 1630 } 1631 1632 static void 1633 zone_kstat_create(zone_t *zone) 1634 { 1635 kstat_t *ksp; 1636 zone_kstat_t *zk; 1637 1638 ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED, 1639 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1640 KSTAT_FLAG_VIRTUAL); 1641 1642 if (ksp == NULL) 1643 return; 1644 1645 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1646 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1647 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1648 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1649 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1650 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1651 ksp->ks_update = zone_lockedmem_kstat_update; 1652 ksp->ks_private = zone; 1653 kstat_install(ksp); 1654 1655 zone->zone_lockedmem_kstat = ksp; 1656 1657 ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED, 1658 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1659 KSTAT_FLAG_VIRTUAL); 1660 1661 if (ksp == NULL) 1662 return; 1663 1664 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1665 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1666 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1667 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1668 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1669 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1670 ksp->ks_update = zone_swapresv_kstat_update; 1671 ksp->ks_private = zone; 1672 kstat_install(ksp); 1673 1674 zone->zone_swapresv_kstat = ksp; 1675 } 1676 1677 static void 1678 zone_kstat_delete(zone_t *zone) 1679 { 1680 void *data; 1681 1682 if (zone->zone_lockedmem_kstat != NULL) { 1683 data = zone->zone_lockedmem_kstat->ks_data; 1684 kstat_delete(zone->zone_lockedmem_kstat); 1685 kmem_free(data, sizeof (zone_kstat_t)); 1686 } 1687 if (zone->zone_swapresv_kstat != NULL) { 1688 data = zone->zone_swapresv_kstat->ks_data; 1689 kstat_delete(zone->zone_swapresv_kstat); 1690 kmem_free(data, sizeof (zone_kstat_t)); 1691 } 1692 } 1693 1694 /* 1695 * Called very early on in boot to initialize the ZSD list so that 1696 * zone_key_create() can be called before zone_init(). It also initializes 1697 * portions of zone0 which may be used before zone_init() is called. The 1698 * variable "global_zone" will be set when zone0 is fully initialized by 1699 * zone_init(). 1700 */ 1701 void 1702 zone_zsd_init(void) 1703 { 1704 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1705 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1706 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1707 offsetof(struct zsd_entry, zsd_linkage)); 1708 list_create(&zone_active, sizeof (zone_t), 1709 offsetof(zone_t, zone_linkage)); 1710 list_create(&zone_deathrow, sizeof (zone_t), 1711 offsetof(zone_t, zone_linkage)); 1712 1713 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1714 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1715 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1716 zone0.zone_shares = 1; 1717 zone0.zone_nlwps = 0; 1718 zone0.zone_nlwps_ctl = INT_MAX; 1719 zone0.zone_locked_mem = 0; 1720 zone0.zone_locked_mem_ctl = UINT64_MAX; 1721 ASSERT(zone0.zone_max_swap == 0); 1722 zone0.zone_max_swap_ctl = UINT64_MAX; 1723 zone0.zone_shmmax = 0; 1724 zone0.zone_ipc.ipcq_shmmni = 0; 1725 zone0.zone_ipc.ipcq_semmni = 0; 1726 zone0.zone_ipc.ipcq_msgmni = 0; 1727 zone0.zone_name = GLOBAL_ZONENAME; 1728 zone0.zone_nodename = utsname.nodename; 1729 zone0.zone_domain = srpc_domain; 1730 zone0.zone_ref = 1; 1731 zone0.zone_id = GLOBAL_ZONEID; 1732 zone0.zone_status = ZONE_IS_RUNNING; 1733 zone0.zone_rootpath = "/"; 1734 zone0.zone_rootpathlen = 2; 1735 zone0.zone_psetid = ZONE_PS_INVAL; 1736 zone0.zone_ncpus = 0; 1737 zone0.zone_ncpus_online = 0; 1738 zone0.zone_proc_initpid = 1; 1739 zone0.zone_initname = initname; 1740 zone0.zone_lockedmem_kstat = NULL; 1741 zone0.zone_swapresv_kstat = NULL; 1742 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 1743 offsetof(struct zsd_entry, zsd_linkage)); 1744 list_insert_head(&zone_active, &zone0); 1745 1746 /* 1747 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 1748 * to anything meaningful. It is assigned to be 'rootdir' in 1749 * vfs_mountroot(). 1750 */ 1751 zone0.zone_rootvp = NULL; 1752 zone0.zone_vfslist = NULL; 1753 zone0.zone_bootargs = initargs; 1754 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 1755 /* 1756 * The global zone has all privileges 1757 */ 1758 priv_fillset(zone0.zone_privset); 1759 /* 1760 * Add p0 to the global zone 1761 */ 1762 zone0.zone_zsched = &p0; 1763 p0.p_zone = &zone0; 1764 } 1765 1766 /* 1767 * Compute a hash value based on the contents of the label and the DOI. The 1768 * hash algorithm is somewhat arbitrary, but is based on the observation that 1769 * humans will likely pick labels that differ by amounts that work out to be 1770 * multiples of the number of hash chains, and thus stirring in some primes 1771 * should help. 1772 */ 1773 static uint_t 1774 hash_bylabel(void *hdata, mod_hash_key_t key) 1775 { 1776 const ts_label_t *lab = (ts_label_t *)key; 1777 const uint32_t *up, *ue; 1778 uint_t hash; 1779 int i; 1780 1781 _NOTE(ARGUNUSED(hdata)); 1782 1783 hash = lab->tsl_doi + (lab->tsl_doi << 1); 1784 /* we depend on alignment of label, but not representation */ 1785 up = (const uint32_t *)&lab->tsl_label; 1786 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 1787 i = 1; 1788 while (up < ue) { 1789 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 1790 hash += *up + (*up << ((i % 16) + 1)); 1791 up++; 1792 i++; 1793 } 1794 return (hash); 1795 } 1796 1797 /* 1798 * All that mod_hash cares about here is zero (equal) versus non-zero (not 1799 * equal). This may need to be changed if less than / greater than is ever 1800 * needed. 1801 */ 1802 static int 1803 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 1804 { 1805 ts_label_t *lab1 = (ts_label_t *)key1; 1806 ts_label_t *lab2 = (ts_label_t *)key2; 1807 1808 return (label_equal(lab1, lab2) ? 0 : 1); 1809 } 1810 1811 /* 1812 * Called by main() to initialize the zones framework. 1813 */ 1814 void 1815 zone_init(void) 1816 { 1817 rctl_dict_entry_t *rde; 1818 rctl_val_t *dval; 1819 rctl_set_t *set; 1820 rctl_alloc_gp_t *gp; 1821 rctl_entity_p_t e; 1822 int res; 1823 1824 ASSERT(curproc == &p0); 1825 1826 /* 1827 * Create ID space for zone IDs. ID 0 is reserved for the 1828 * global zone. 1829 */ 1830 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 1831 1832 /* 1833 * Initialize generic zone resource controls, if any. 1834 */ 1835 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 1836 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 1837 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 1838 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 1839 1840 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 1841 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 1842 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 1843 RCTL_GLOBAL_INFINITE, 1844 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 1845 1846 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 1847 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 1848 INT_MAX, INT_MAX, &zone_lwps_ops); 1849 /* 1850 * System V IPC resource controls 1851 */ 1852 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 1853 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1854 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 1855 1856 rc_zone_semmni = rctl_register("zone.max-sem-ids", 1857 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1858 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 1859 1860 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 1861 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1862 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 1863 1864 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 1865 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 1866 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 1867 1868 /* 1869 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 1870 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 1871 */ 1872 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 1873 bzero(dval, sizeof (rctl_val_t)); 1874 dval->rcv_value = 1; 1875 dval->rcv_privilege = RCPRIV_PRIVILEGED; 1876 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 1877 dval->rcv_action_recip_pid = -1; 1878 1879 rde = rctl_dict_lookup("zone.cpu-shares"); 1880 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 1881 1882 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 1883 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1884 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1885 &zone_locked_mem_ops); 1886 1887 rc_zone_max_swap = rctl_register("zone.max-swap", 1888 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 1889 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 1890 &zone_max_swap_ops); 1891 1892 /* 1893 * Initialize the ``global zone''. 1894 */ 1895 set = rctl_set_create(); 1896 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 1897 mutex_enter(&p0.p_lock); 1898 e.rcep_p.zone = &zone0; 1899 e.rcep_t = RCENTITY_ZONE; 1900 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 1901 gp); 1902 1903 zone0.zone_nlwps = p0.p_lwpcnt; 1904 zone0.zone_ntasks = 1; 1905 mutex_exit(&p0.p_lock); 1906 zone0.zone_restart_init = B_TRUE; 1907 zone0.zone_brand = &native_brand; 1908 rctl_prealloc_destroy(gp); 1909 /* 1910 * pool_default hasn't been initialized yet, so we let pool_init() 1911 * take care of making sure the global zone is in the default pool. 1912 */ 1913 1914 /* 1915 * Initialize global zone kstats 1916 */ 1917 zone_kstat_create(&zone0); 1918 1919 /* 1920 * Initialize zone label. 1921 * mlp are initialized when tnzonecfg is loaded. 1922 */ 1923 zone0.zone_slabel = l_admin_low; 1924 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 1925 label_hold(l_admin_low); 1926 1927 mutex_enter(&zonehash_lock); 1928 zone_uniqid(&zone0); 1929 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 1930 1931 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 1932 mod_hash_null_valdtor); 1933 zonehashbyname = mod_hash_create_strhash("zone_by_name", 1934 zone_hash_size, mod_hash_null_valdtor); 1935 /* 1936 * maintain zonehashbylabel only for labeled systems 1937 */ 1938 if (is_system_labeled()) 1939 zonehashbylabel = mod_hash_create_extended("zone_by_label", 1940 zone_hash_size, mod_hash_null_keydtor, 1941 mod_hash_null_valdtor, hash_bylabel, NULL, 1942 hash_labelkey_cmp, KM_SLEEP); 1943 zonecount = 1; 1944 1945 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 1946 (mod_hash_val_t)&zone0); 1947 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 1948 (mod_hash_val_t)&zone0); 1949 if (is_system_labeled()) { 1950 zone0.zone_flags |= ZF_HASHED_LABEL; 1951 (void) mod_hash_insert(zonehashbylabel, 1952 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 1953 } 1954 mutex_exit(&zonehash_lock); 1955 1956 /* 1957 * We avoid setting zone_kcred until now, since kcred is initialized 1958 * sometime after zone_zsd_init() and before zone_init(). 1959 */ 1960 zone0.zone_kcred = kcred; 1961 /* 1962 * The global zone is fully initialized (except for zone_rootvp which 1963 * will be set when the root filesystem is mounted). 1964 */ 1965 global_zone = &zone0; 1966 1967 /* 1968 * Setup an event channel to send zone status change notifications on 1969 */ 1970 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 1971 EVCH_CREAT); 1972 1973 if (res) 1974 panic("Sysevent_evc_bind failed during zone setup.\n"); 1975 1976 } 1977 1978 static void 1979 zone_free(zone_t *zone) 1980 { 1981 ASSERT(zone != global_zone); 1982 ASSERT(zone->zone_ntasks == 0); 1983 ASSERT(zone->zone_nlwps == 0); 1984 ASSERT(zone->zone_cred_ref == 0); 1985 ASSERT(zone->zone_kcred == NULL); 1986 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 1987 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 1988 1989 /* 1990 * Remove any zone caps. 1991 */ 1992 cpucaps_zone_remove(zone); 1993 1994 ASSERT(zone->zone_cpucap == NULL); 1995 1996 /* remove from deathrow list */ 1997 if (zone_status_get(zone) == ZONE_IS_DEAD) { 1998 ASSERT(zone->zone_ref == 0); 1999 mutex_enter(&zone_deathrow_lock); 2000 list_remove(&zone_deathrow, zone); 2001 mutex_exit(&zone_deathrow_lock); 2002 } 2003 2004 zone_free_zsd(zone); 2005 zone_free_datasets(zone); 2006 2007 if (zone->zone_rootvp != NULL) 2008 VN_RELE(zone->zone_rootvp); 2009 if (zone->zone_rootpath) 2010 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2011 if (zone->zone_name != NULL) 2012 kmem_free(zone->zone_name, ZONENAME_MAX); 2013 if (zone->zone_slabel != NULL) 2014 label_rele(zone->zone_slabel); 2015 if (zone->zone_nodename != NULL) 2016 kmem_free(zone->zone_nodename, _SYS_NMLN); 2017 if (zone->zone_domain != NULL) 2018 kmem_free(zone->zone_domain, _SYS_NMLN); 2019 if (zone->zone_privset != NULL) 2020 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2021 if (zone->zone_rctls != NULL) 2022 rctl_set_free(zone->zone_rctls); 2023 if (zone->zone_bootargs != NULL) 2024 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 2025 if (zone->zone_initname != NULL) 2026 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 2027 id_free(zoneid_space, zone->zone_id); 2028 mutex_destroy(&zone->zone_lock); 2029 cv_destroy(&zone->zone_cv); 2030 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2031 kmem_free(zone, sizeof (zone_t)); 2032 } 2033 2034 /* 2035 * See block comment at the top of this file for information about zone 2036 * status values. 2037 */ 2038 /* 2039 * Convenience function for setting zone status. 2040 */ 2041 static void 2042 zone_status_set(zone_t *zone, zone_status_t status) 2043 { 2044 2045 nvlist_t *nvl = NULL; 2046 ASSERT(MUTEX_HELD(&zone_status_lock)); 2047 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2048 status >= zone_status_get(zone)); 2049 2050 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2051 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2052 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2053 zone_status_table[status]) || 2054 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2055 zone_status_table[zone->zone_status]) || 2056 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2057 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2058 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2059 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2060 #ifdef DEBUG 2061 (void) printf( 2062 "Failed to allocate and send zone state change event.\n"); 2063 #endif 2064 } 2065 nvlist_free(nvl); 2066 2067 zone->zone_status = status; 2068 2069 cv_broadcast(&zone->zone_cv); 2070 } 2071 2072 /* 2073 * Public function to retrieve the zone status. The zone status may 2074 * change after it is retrieved. 2075 */ 2076 zone_status_t 2077 zone_status_get(zone_t *zone) 2078 { 2079 return (zone->zone_status); 2080 } 2081 2082 static int 2083 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2084 { 2085 char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2086 int err = 0; 2087 2088 ASSERT(zone != global_zone); 2089 if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0) 2090 goto done; /* EFAULT or ENAMETOOLONG */ 2091 2092 if (zone->zone_bootargs != NULL) 2093 kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1); 2094 2095 zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP); 2096 (void) strcpy(zone->zone_bootargs, bootargs); 2097 2098 done: 2099 kmem_free(bootargs, BOOTARGS_MAX); 2100 return (err); 2101 } 2102 2103 static int 2104 zone_set_brand(zone_t *zone, const char *brand) 2105 { 2106 struct brand_attr *attrp; 2107 brand_t *bp; 2108 2109 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2110 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2111 kmem_free(attrp, sizeof (struct brand_attr)); 2112 return (EFAULT); 2113 } 2114 2115 bp = brand_register_zone(attrp); 2116 kmem_free(attrp, sizeof (struct brand_attr)); 2117 if (bp == NULL) 2118 return (EINVAL); 2119 2120 /* 2121 * This is the only place where a zone can change it's brand. 2122 * We already need to hold zone_status_lock to check the zone 2123 * status, so we'll just use that lock to serialize zone 2124 * branding requests as well. 2125 */ 2126 mutex_enter(&zone_status_lock); 2127 2128 /* Re-Branding is not allowed and the zone can't be booted yet */ 2129 if ((ZONE_IS_BRANDED(zone)) || 2130 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2131 mutex_exit(&zone_status_lock); 2132 brand_unregister_zone(bp); 2133 return (EINVAL); 2134 } 2135 2136 if (is_system_labeled() && 2137 strncmp(attrp->ba_brandname, NATIVE_BRAND_NAME, MAXNAMELEN) != 0) { 2138 mutex_exit(&zone_status_lock); 2139 brand_unregister_zone(bp); 2140 return (EPERM); 2141 } 2142 2143 /* set up the brand specific data */ 2144 zone->zone_brand = bp; 2145 ZBROP(zone)->b_init_brand_data(zone); 2146 2147 mutex_exit(&zone_status_lock); 2148 return (0); 2149 } 2150 2151 static int 2152 zone_set_initname(zone_t *zone, const char *zone_initname) 2153 { 2154 char initname[INITNAME_SZ]; 2155 size_t len; 2156 int err = 0; 2157 2158 ASSERT(zone != global_zone); 2159 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2160 return (err); /* EFAULT or ENAMETOOLONG */ 2161 2162 if (zone->zone_initname != NULL) 2163 kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1); 2164 2165 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2166 (void) strcpy(zone->zone_initname, initname); 2167 return (0); 2168 } 2169 2170 static int 2171 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2172 { 2173 uint64_t mcap; 2174 int err = 0; 2175 2176 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2177 zone->zone_phys_mcap = mcap; 2178 2179 return (err); 2180 } 2181 2182 static int 2183 zone_set_sched_class(zone_t *zone, const char *new_class) 2184 { 2185 char sched_class[PC_CLNMSZ]; 2186 id_t classid; 2187 int err; 2188 2189 ASSERT(zone != global_zone); 2190 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2191 return (err); /* EFAULT or ENAMETOOLONG */ 2192 2193 if (getcid(sched_class, &classid) != 0 || classid == syscid) 2194 return (set_errno(EINVAL)); 2195 zone->zone_defaultcid = classid; 2196 ASSERT(zone->zone_defaultcid > 0 && 2197 zone->zone_defaultcid < loaded_classes); 2198 2199 return (0); 2200 } 2201 2202 /* 2203 * Block indefinitely waiting for (zone_status >= status) 2204 */ 2205 void 2206 zone_status_wait(zone_t *zone, zone_status_t status) 2207 { 2208 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2209 2210 mutex_enter(&zone_status_lock); 2211 while (zone->zone_status < status) { 2212 cv_wait(&zone->zone_cv, &zone_status_lock); 2213 } 2214 mutex_exit(&zone_status_lock); 2215 } 2216 2217 /* 2218 * Private CPR-safe version of zone_status_wait(). 2219 */ 2220 static void 2221 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2222 { 2223 callb_cpr_t cprinfo; 2224 2225 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2226 2227 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2228 str); 2229 mutex_enter(&zone_status_lock); 2230 while (zone->zone_status < status) { 2231 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2232 cv_wait(&zone->zone_cv, &zone_status_lock); 2233 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2234 } 2235 /* 2236 * zone_status_lock is implicitly released by the following. 2237 */ 2238 CALLB_CPR_EXIT(&cprinfo); 2239 } 2240 2241 /* 2242 * Block until zone enters requested state or signal is received. Return (0) 2243 * if signaled, non-zero otherwise. 2244 */ 2245 int 2246 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2247 { 2248 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2249 2250 mutex_enter(&zone_status_lock); 2251 while (zone->zone_status < status) { 2252 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2253 mutex_exit(&zone_status_lock); 2254 return (0); 2255 } 2256 } 2257 mutex_exit(&zone_status_lock); 2258 return (1); 2259 } 2260 2261 /* 2262 * Block until the zone enters the requested state or the timeout expires, 2263 * whichever happens first. Return (-1) if operation timed out, time remaining 2264 * otherwise. 2265 */ 2266 clock_t 2267 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2268 { 2269 clock_t timeleft = 0; 2270 2271 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2272 2273 mutex_enter(&zone_status_lock); 2274 while (zone->zone_status < status && timeleft != -1) { 2275 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2276 } 2277 mutex_exit(&zone_status_lock); 2278 return (timeleft); 2279 } 2280 2281 /* 2282 * Block until the zone enters the requested state, the current process is 2283 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2284 * operation timed out, 0 if signaled, time remaining otherwise. 2285 */ 2286 clock_t 2287 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2288 { 2289 clock_t timeleft = tim - lbolt; 2290 2291 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2292 2293 mutex_enter(&zone_status_lock); 2294 while (zone->zone_status < status) { 2295 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2296 tim); 2297 if (timeleft <= 0) 2298 break; 2299 } 2300 mutex_exit(&zone_status_lock); 2301 return (timeleft); 2302 } 2303 2304 /* 2305 * Zones have two reference counts: one for references from credential 2306 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2307 * This is so we can allow a zone to be rebooted while there are still 2308 * outstanding cred references, since certain drivers cache dblks (which 2309 * implicitly results in cached creds). We wait for zone_ref to drop to 2310 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2311 * later freed when the zone_cred_ref drops to 0, though nothing other 2312 * than the zone id and privilege set should be accessed once the zone 2313 * is "dead". 2314 * 2315 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2316 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2317 * to 0. This can be useful to flush out other sources of cached creds 2318 * that may be less innocuous than the driver case. 2319 */ 2320 2321 int zone_wait_for_cred = 0; 2322 2323 static void 2324 zone_hold_locked(zone_t *z) 2325 { 2326 ASSERT(MUTEX_HELD(&z->zone_lock)); 2327 z->zone_ref++; 2328 ASSERT(z->zone_ref != 0); 2329 } 2330 2331 void 2332 zone_hold(zone_t *z) 2333 { 2334 mutex_enter(&z->zone_lock); 2335 zone_hold_locked(z); 2336 mutex_exit(&z->zone_lock); 2337 } 2338 2339 /* 2340 * If the non-cred ref count drops to 1 and either the cred ref count 2341 * is 0 or we aren't waiting for cred references, the zone is ready to 2342 * be destroyed. 2343 */ 2344 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2345 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2346 2347 void 2348 zone_rele(zone_t *z) 2349 { 2350 boolean_t wakeup; 2351 2352 mutex_enter(&z->zone_lock); 2353 ASSERT(z->zone_ref != 0); 2354 z->zone_ref--; 2355 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2356 /* no more refs, free the structure */ 2357 mutex_exit(&z->zone_lock); 2358 zone_free(z); 2359 return; 2360 } 2361 /* signal zone_destroy so the zone can finish halting */ 2362 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2363 mutex_exit(&z->zone_lock); 2364 2365 if (wakeup) { 2366 /* 2367 * Grabbing zonehash_lock here effectively synchronizes with 2368 * zone_destroy() to avoid missed signals. 2369 */ 2370 mutex_enter(&zonehash_lock); 2371 cv_broadcast(&zone_destroy_cv); 2372 mutex_exit(&zonehash_lock); 2373 } 2374 } 2375 2376 void 2377 zone_cred_hold(zone_t *z) 2378 { 2379 mutex_enter(&z->zone_lock); 2380 z->zone_cred_ref++; 2381 ASSERT(z->zone_cred_ref != 0); 2382 mutex_exit(&z->zone_lock); 2383 } 2384 2385 void 2386 zone_cred_rele(zone_t *z) 2387 { 2388 boolean_t wakeup; 2389 2390 mutex_enter(&z->zone_lock); 2391 ASSERT(z->zone_cred_ref != 0); 2392 z->zone_cred_ref--; 2393 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2394 /* no more refs, free the structure */ 2395 mutex_exit(&z->zone_lock); 2396 zone_free(z); 2397 return; 2398 } 2399 /* 2400 * If zone_destroy is waiting for the cred references to drain 2401 * out, and they have, signal it. 2402 */ 2403 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2404 zone_status_get(z) >= ZONE_IS_DEAD); 2405 mutex_exit(&z->zone_lock); 2406 2407 if (wakeup) { 2408 /* 2409 * Grabbing zonehash_lock here effectively synchronizes with 2410 * zone_destroy() to avoid missed signals. 2411 */ 2412 mutex_enter(&zonehash_lock); 2413 cv_broadcast(&zone_destroy_cv); 2414 mutex_exit(&zonehash_lock); 2415 } 2416 } 2417 2418 void 2419 zone_task_hold(zone_t *z) 2420 { 2421 mutex_enter(&z->zone_lock); 2422 z->zone_ntasks++; 2423 ASSERT(z->zone_ntasks != 0); 2424 mutex_exit(&z->zone_lock); 2425 } 2426 2427 void 2428 zone_task_rele(zone_t *zone) 2429 { 2430 uint_t refcnt; 2431 2432 mutex_enter(&zone->zone_lock); 2433 ASSERT(zone->zone_ntasks != 0); 2434 refcnt = --zone->zone_ntasks; 2435 if (refcnt > 1) { /* Common case */ 2436 mutex_exit(&zone->zone_lock); 2437 return; 2438 } 2439 zone_hold_locked(zone); /* so we can use the zone_t later */ 2440 mutex_exit(&zone->zone_lock); 2441 if (refcnt == 1) { 2442 /* 2443 * See if the zone is shutting down. 2444 */ 2445 mutex_enter(&zone_status_lock); 2446 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2447 goto out; 2448 } 2449 2450 /* 2451 * Make sure the ntasks didn't change since we 2452 * dropped zone_lock. 2453 */ 2454 mutex_enter(&zone->zone_lock); 2455 if (refcnt != zone->zone_ntasks) { 2456 mutex_exit(&zone->zone_lock); 2457 goto out; 2458 } 2459 mutex_exit(&zone->zone_lock); 2460 2461 /* 2462 * No more user processes in the zone. The zone is empty. 2463 */ 2464 zone_status_set(zone, ZONE_IS_EMPTY); 2465 goto out; 2466 } 2467 2468 ASSERT(refcnt == 0); 2469 /* 2470 * zsched has exited; the zone is dead. 2471 */ 2472 zone->zone_zsched = NULL; /* paranoia */ 2473 mutex_enter(&zone_status_lock); 2474 zone_status_set(zone, ZONE_IS_DEAD); 2475 out: 2476 mutex_exit(&zone_status_lock); 2477 zone_rele(zone); 2478 } 2479 2480 zoneid_t 2481 getzoneid(void) 2482 { 2483 return (curproc->p_zone->zone_id); 2484 } 2485 2486 /* 2487 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2488 * check the validity of a zone's state. 2489 */ 2490 static zone_t * 2491 zone_find_all_by_id(zoneid_t zoneid) 2492 { 2493 mod_hash_val_t hv; 2494 zone_t *zone = NULL; 2495 2496 ASSERT(MUTEX_HELD(&zonehash_lock)); 2497 2498 if (mod_hash_find(zonehashbyid, 2499 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2500 zone = (zone_t *)hv; 2501 return (zone); 2502 } 2503 2504 static zone_t * 2505 zone_find_all_by_label(const ts_label_t *label) 2506 { 2507 mod_hash_val_t hv; 2508 zone_t *zone = NULL; 2509 2510 ASSERT(MUTEX_HELD(&zonehash_lock)); 2511 2512 /* 2513 * zonehashbylabel is not maintained for unlabeled systems 2514 */ 2515 if (!is_system_labeled()) 2516 return (NULL); 2517 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2518 zone = (zone_t *)hv; 2519 return (zone); 2520 } 2521 2522 static zone_t * 2523 zone_find_all_by_name(char *name) 2524 { 2525 mod_hash_val_t hv; 2526 zone_t *zone = NULL; 2527 2528 ASSERT(MUTEX_HELD(&zonehash_lock)); 2529 2530 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2531 zone = (zone_t *)hv; 2532 return (zone); 2533 } 2534 2535 /* 2536 * Public interface for looking up a zone by zoneid. Only returns the zone if 2537 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2538 * Caller must call zone_rele() once it is done with the zone. 2539 * 2540 * The zone may begin the zone_destroy() sequence immediately after this 2541 * function returns, but may be safely used until zone_rele() is called. 2542 */ 2543 zone_t * 2544 zone_find_by_id(zoneid_t zoneid) 2545 { 2546 zone_t *zone; 2547 zone_status_t status; 2548 2549 mutex_enter(&zonehash_lock); 2550 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2551 mutex_exit(&zonehash_lock); 2552 return (NULL); 2553 } 2554 status = zone_status_get(zone); 2555 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2556 /* 2557 * For all practical purposes the zone doesn't exist. 2558 */ 2559 mutex_exit(&zonehash_lock); 2560 return (NULL); 2561 } 2562 zone_hold(zone); 2563 mutex_exit(&zonehash_lock); 2564 return (zone); 2565 } 2566 2567 /* 2568 * Similar to zone_find_by_id, but using zone label as the key. 2569 */ 2570 zone_t * 2571 zone_find_by_label(const ts_label_t *label) 2572 { 2573 zone_t *zone; 2574 zone_status_t status; 2575 2576 mutex_enter(&zonehash_lock); 2577 if ((zone = zone_find_all_by_label(label)) == NULL) { 2578 mutex_exit(&zonehash_lock); 2579 return (NULL); 2580 } 2581 2582 status = zone_status_get(zone); 2583 if (status > ZONE_IS_DOWN) { 2584 /* 2585 * For all practical purposes the zone doesn't exist. 2586 */ 2587 mutex_exit(&zonehash_lock); 2588 return (NULL); 2589 } 2590 zone_hold(zone); 2591 mutex_exit(&zonehash_lock); 2592 return (zone); 2593 } 2594 2595 /* 2596 * Similar to zone_find_by_id, but using zone name as the key. 2597 */ 2598 zone_t * 2599 zone_find_by_name(char *name) 2600 { 2601 zone_t *zone; 2602 zone_status_t status; 2603 2604 mutex_enter(&zonehash_lock); 2605 if ((zone = zone_find_all_by_name(name)) == NULL) { 2606 mutex_exit(&zonehash_lock); 2607 return (NULL); 2608 } 2609 status = zone_status_get(zone); 2610 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2611 /* 2612 * For all practical purposes the zone doesn't exist. 2613 */ 2614 mutex_exit(&zonehash_lock); 2615 return (NULL); 2616 } 2617 zone_hold(zone); 2618 mutex_exit(&zonehash_lock); 2619 return (zone); 2620 } 2621 2622 /* 2623 * Similar to zone_find_by_id(), using the path as a key. For instance, 2624 * if there is a zone "foo" rooted at /foo/root, and the path argument 2625 * is "/foo/root/proc", it will return the held zone_t corresponding to 2626 * zone "foo". 2627 * 2628 * zone_find_by_path() always returns a non-NULL value, since at the 2629 * very least every path will be contained in the global zone. 2630 * 2631 * As with the other zone_find_by_*() functions, the caller is 2632 * responsible for zone_rele()ing the return value of this function. 2633 */ 2634 zone_t * 2635 zone_find_by_path(const char *path) 2636 { 2637 zone_t *zone; 2638 zone_t *zret = NULL; 2639 zone_status_t status; 2640 2641 if (path == NULL) { 2642 /* 2643 * Call from rootconf(). 2644 */ 2645 zone_hold(global_zone); 2646 return (global_zone); 2647 } 2648 ASSERT(*path == '/'); 2649 mutex_enter(&zonehash_lock); 2650 for (zone = list_head(&zone_active); zone != NULL; 2651 zone = list_next(&zone_active, zone)) { 2652 if (ZONE_PATH_VISIBLE(path, zone)) 2653 zret = zone; 2654 } 2655 ASSERT(zret != NULL); 2656 status = zone_status_get(zret); 2657 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2658 /* 2659 * Zone practically doesn't exist. 2660 */ 2661 zret = global_zone; 2662 } 2663 zone_hold(zret); 2664 mutex_exit(&zonehash_lock); 2665 return (zret); 2666 } 2667 2668 /* 2669 * Get the number of cpus visible to this zone. The system-wide global 2670 * 'ncpus' is returned if pools are disabled, the caller is in the 2671 * global zone, or a NULL zone argument is passed in. 2672 */ 2673 int 2674 zone_ncpus_get(zone_t *zone) 2675 { 2676 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 2677 2678 return (myncpus != 0 ? myncpus : ncpus); 2679 } 2680 2681 /* 2682 * Get the number of online cpus visible to this zone. The system-wide 2683 * global 'ncpus_online' is returned if pools are disabled, the caller 2684 * is in the global zone, or a NULL zone argument is passed in. 2685 */ 2686 int 2687 zone_ncpus_online_get(zone_t *zone) 2688 { 2689 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 2690 2691 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 2692 } 2693 2694 /* 2695 * Return the pool to which the zone is currently bound. 2696 */ 2697 pool_t * 2698 zone_pool_get(zone_t *zone) 2699 { 2700 ASSERT(pool_lock_held()); 2701 2702 return (zone->zone_pool); 2703 } 2704 2705 /* 2706 * Set the zone's pool pointer and update the zone's visibility to match 2707 * the resources in the new pool. 2708 */ 2709 void 2710 zone_pool_set(zone_t *zone, pool_t *pool) 2711 { 2712 ASSERT(pool_lock_held()); 2713 ASSERT(MUTEX_HELD(&cpu_lock)); 2714 2715 zone->zone_pool = pool; 2716 zone_pset_set(zone, pool->pool_pset->pset_id); 2717 } 2718 2719 /* 2720 * Return the cached value of the id of the processor set to which the 2721 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 2722 * facility is disabled. 2723 */ 2724 psetid_t 2725 zone_pset_get(zone_t *zone) 2726 { 2727 ASSERT(MUTEX_HELD(&cpu_lock)); 2728 2729 return (zone->zone_psetid); 2730 } 2731 2732 /* 2733 * Set the cached value of the id of the processor set to which the zone 2734 * is currently bound. Also update the zone's visibility to match the 2735 * resources in the new processor set. 2736 */ 2737 void 2738 zone_pset_set(zone_t *zone, psetid_t newpsetid) 2739 { 2740 psetid_t oldpsetid; 2741 2742 ASSERT(MUTEX_HELD(&cpu_lock)); 2743 oldpsetid = zone_pset_get(zone); 2744 2745 if (oldpsetid == newpsetid) 2746 return; 2747 /* 2748 * Global zone sees all. 2749 */ 2750 if (zone != global_zone) { 2751 zone->zone_psetid = newpsetid; 2752 if (newpsetid != ZONE_PS_INVAL) 2753 pool_pset_visibility_add(newpsetid, zone); 2754 if (oldpsetid != ZONE_PS_INVAL) 2755 pool_pset_visibility_remove(oldpsetid, zone); 2756 } 2757 /* 2758 * Disabling pools, so we should start using the global values 2759 * for ncpus and ncpus_online. 2760 */ 2761 if (newpsetid == ZONE_PS_INVAL) { 2762 zone->zone_ncpus = 0; 2763 zone->zone_ncpus_online = 0; 2764 } 2765 } 2766 2767 /* 2768 * Walk the list of active zones and issue the provided callback for 2769 * each of them. 2770 * 2771 * Caller must not be holding any locks that may be acquired under 2772 * zonehash_lock. See comment at the beginning of the file for a list of 2773 * common locks and their interactions with zones. 2774 */ 2775 int 2776 zone_walk(int (*cb)(zone_t *, void *), void *data) 2777 { 2778 zone_t *zone; 2779 int ret = 0; 2780 zone_status_t status; 2781 2782 mutex_enter(&zonehash_lock); 2783 for (zone = list_head(&zone_active); zone != NULL; 2784 zone = list_next(&zone_active, zone)) { 2785 /* 2786 * Skip zones that shouldn't be externally visible. 2787 */ 2788 status = zone_status_get(zone); 2789 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 2790 continue; 2791 /* 2792 * Bail immediately if any callback invocation returns a 2793 * non-zero value. 2794 */ 2795 ret = (*cb)(zone, data); 2796 if (ret != 0) 2797 break; 2798 } 2799 mutex_exit(&zonehash_lock); 2800 return (ret); 2801 } 2802 2803 static int 2804 zone_set_root(zone_t *zone, const char *upath) 2805 { 2806 vnode_t *vp; 2807 int trycount; 2808 int error = 0; 2809 char *path; 2810 struct pathname upn, pn; 2811 size_t pathlen; 2812 2813 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 2814 return (error); 2815 2816 pn_alloc(&pn); 2817 2818 /* prevent infinite loop */ 2819 trycount = 10; 2820 for (;;) { 2821 if (--trycount <= 0) { 2822 error = ESTALE; 2823 goto out; 2824 } 2825 2826 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 2827 /* 2828 * VOP_ACCESS() may cover 'vp' with a new 2829 * filesystem, if 'vp' is an autoFS vnode. 2830 * Get the new 'vp' if so. 2831 */ 2832 if ((error = 2833 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 2834 (!vn_ismntpt(vp) || 2835 (error = traverse(&vp)) == 0)) { 2836 pathlen = pn.pn_pathlen + 2; 2837 path = kmem_alloc(pathlen, KM_SLEEP); 2838 (void) strncpy(path, pn.pn_path, 2839 pn.pn_pathlen + 1); 2840 path[pathlen - 2] = '/'; 2841 path[pathlen - 1] = '\0'; 2842 pn_free(&pn); 2843 pn_free(&upn); 2844 2845 /* Success! */ 2846 break; 2847 } 2848 VN_RELE(vp); 2849 } 2850 if (error != ESTALE) 2851 goto out; 2852 } 2853 2854 ASSERT(error == 0); 2855 zone->zone_rootvp = vp; /* we hold a reference to vp */ 2856 zone->zone_rootpath = path; 2857 zone->zone_rootpathlen = pathlen; 2858 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 2859 zone->zone_flags |= ZF_IS_SCRATCH; 2860 return (0); 2861 2862 out: 2863 pn_free(&pn); 2864 pn_free(&upn); 2865 return (error); 2866 } 2867 2868 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 2869 ((c) >= 'a' && (c) <= 'z') || \ 2870 ((c) >= 'A' && (c) <= 'Z')) 2871 2872 static int 2873 zone_set_name(zone_t *zone, const char *uname) 2874 { 2875 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 2876 size_t len; 2877 int i, err; 2878 2879 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 2880 kmem_free(kname, ZONENAME_MAX); 2881 return (err); /* EFAULT or ENAMETOOLONG */ 2882 } 2883 2884 /* must be less than ZONENAME_MAX */ 2885 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 2886 kmem_free(kname, ZONENAME_MAX); 2887 return (EINVAL); 2888 } 2889 2890 /* 2891 * Name must start with an alphanumeric and must contain only 2892 * alphanumerics, '-', '_' and '.'. 2893 */ 2894 if (!isalnum(kname[0])) { 2895 kmem_free(kname, ZONENAME_MAX); 2896 return (EINVAL); 2897 } 2898 for (i = 1; i < len - 1; i++) { 2899 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 2900 kname[i] != '.') { 2901 kmem_free(kname, ZONENAME_MAX); 2902 return (EINVAL); 2903 } 2904 } 2905 2906 zone->zone_name = kname; 2907 return (0); 2908 } 2909 2910 /* 2911 * Similar to thread_create(), but makes sure the thread is in the appropriate 2912 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 2913 */ 2914 /*ARGSUSED*/ 2915 kthread_t * 2916 zthread_create( 2917 caddr_t stk, 2918 size_t stksize, 2919 void (*proc)(), 2920 void *arg, 2921 size_t len, 2922 pri_t pri) 2923 { 2924 kthread_t *t; 2925 zone_t *zone = curproc->p_zone; 2926 proc_t *pp = zone->zone_zsched; 2927 2928 zone_hold(zone); /* Reference to be dropped when thread exits */ 2929 2930 /* 2931 * No-one should be trying to create threads if the zone is shutting 2932 * down and there aren't any kernel threads around. See comment 2933 * in zthread_exit(). 2934 */ 2935 ASSERT(!(zone->zone_kthreads == NULL && 2936 zone_status_get(zone) >= ZONE_IS_EMPTY)); 2937 /* 2938 * Create a thread, but don't let it run until we've finished setting 2939 * things up. 2940 */ 2941 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 2942 ASSERT(t->t_forw == NULL); 2943 mutex_enter(&zone_status_lock); 2944 if (zone->zone_kthreads == NULL) { 2945 t->t_forw = t->t_back = t; 2946 } else { 2947 kthread_t *tx = zone->zone_kthreads; 2948 2949 t->t_forw = tx; 2950 t->t_back = tx->t_back; 2951 tx->t_back->t_forw = t; 2952 tx->t_back = t; 2953 } 2954 zone->zone_kthreads = t; 2955 mutex_exit(&zone_status_lock); 2956 2957 mutex_enter(&pp->p_lock); 2958 t->t_proc_flag |= TP_ZTHREAD; 2959 project_rele(t->t_proj); 2960 t->t_proj = project_hold(pp->p_task->tk_proj); 2961 2962 /* 2963 * Setup complete, let it run. 2964 */ 2965 thread_lock(t); 2966 t->t_schedflag |= TS_ALLSTART; 2967 setrun_locked(t); 2968 thread_unlock(t); 2969 2970 mutex_exit(&pp->p_lock); 2971 2972 return (t); 2973 } 2974 2975 /* 2976 * Similar to thread_exit(). Must be called by threads created via 2977 * zthread_exit(). 2978 */ 2979 void 2980 zthread_exit(void) 2981 { 2982 kthread_t *t = curthread; 2983 proc_t *pp = curproc; 2984 zone_t *zone = pp->p_zone; 2985 2986 mutex_enter(&zone_status_lock); 2987 2988 /* 2989 * Reparent to p0 2990 */ 2991 kpreempt_disable(); 2992 mutex_enter(&pp->p_lock); 2993 t->t_proc_flag &= ~TP_ZTHREAD; 2994 t->t_procp = &p0; 2995 hat_thread_exit(t); 2996 mutex_exit(&pp->p_lock); 2997 kpreempt_enable(); 2998 2999 if (t->t_back == t) { 3000 ASSERT(t->t_forw == t); 3001 /* 3002 * If the zone is empty, once the thread count 3003 * goes to zero no further kernel threads can be 3004 * created. This is because if the creator is a process 3005 * in the zone, then it must have exited before the zone 3006 * state could be set to ZONE_IS_EMPTY. 3007 * Otherwise, if the creator is a kernel thread in the 3008 * zone, the thread count is non-zero. 3009 * 3010 * This really means that non-zone kernel threads should 3011 * not create zone kernel threads. 3012 */ 3013 zone->zone_kthreads = NULL; 3014 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3015 zone_status_set(zone, ZONE_IS_DOWN); 3016 /* 3017 * Remove any CPU caps on this zone. 3018 */ 3019 cpucaps_zone_remove(zone); 3020 } 3021 } else { 3022 t->t_forw->t_back = t->t_back; 3023 t->t_back->t_forw = t->t_forw; 3024 if (zone->zone_kthreads == t) 3025 zone->zone_kthreads = t->t_forw; 3026 } 3027 mutex_exit(&zone_status_lock); 3028 zone_rele(zone); 3029 thread_exit(); 3030 /* NOTREACHED */ 3031 } 3032 3033 static void 3034 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3035 { 3036 vnode_t *oldvp; 3037 3038 /* we're going to hold a reference here to the directory */ 3039 VN_HOLD(vp); 3040 3041 if (audit_active) /* update abs cwd/root path see c2audit.c */ 3042 audit_chdirec(vp, vpp); 3043 3044 mutex_enter(&pp->p_lock); 3045 oldvp = *vpp; 3046 *vpp = vp; 3047 mutex_exit(&pp->p_lock); 3048 if (oldvp != NULL) 3049 VN_RELE(oldvp); 3050 } 3051 3052 /* 3053 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3054 */ 3055 static int 3056 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3057 { 3058 nvpair_t *nvp = NULL; 3059 boolean_t priv_set = B_FALSE; 3060 boolean_t limit_set = B_FALSE; 3061 boolean_t action_set = B_FALSE; 3062 3063 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3064 const char *name; 3065 uint64_t ui64; 3066 3067 name = nvpair_name(nvp); 3068 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3069 return (EINVAL); 3070 (void) nvpair_value_uint64(nvp, &ui64); 3071 if (strcmp(name, "privilege") == 0) { 3072 /* 3073 * Currently only privileged values are allowed, but 3074 * this may change in the future. 3075 */ 3076 if (ui64 != RCPRIV_PRIVILEGED) 3077 return (EINVAL); 3078 rv->rcv_privilege = ui64; 3079 priv_set = B_TRUE; 3080 } else if (strcmp(name, "limit") == 0) { 3081 rv->rcv_value = ui64; 3082 limit_set = B_TRUE; 3083 } else if (strcmp(name, "action") == 0) { 3084 if (ui64 != RCTL_LOCAL_NOACTION && 3085 ui64 != RCTL_LOCAL_DENY) 3086 return (EINVAL); 3087 rv->rcv_flagaction = ui64; 3088 action_set = B_TRUE; 3089 } else { 3090 return (EINVAL); 3091 } 3092 } 3093 3094 if (!(priv_set && limit_set && action_set)) 3095 return (EINVAL); 3096 rv->rcv_action_signal = 0; 3097 rv->rcv_action_recipient = NULL; 3098 rv->rcv_action_recip_pid = -1; 3099 rv->rcv_firing_time = 0; 3100 3101 return (0); 3102 } 3103 3104 /* 3105 * Non-global zone version of start_init. 3106 */ 3107 void 3108 zone_start_init(void) 3109 { 3110 proc_t *p = ttoproc(curthread); 3111 zone_t *z = p->p_zone; 3112 3113 ASSERT(!INGLOBALZONE(curproc)); 3114 3115 /* 3116 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3117 * storing just the pid of init is sufficient. 3118 */ 3119 z->zone_proc_initpid = p->p_pid; 3120 3121 /* 3122 * We maintain zone_boot_err so that we can return the cause of the 3123 * failure back to the caller of the zone_boot syscall. 3124 */ 3125 p->p_zone->zone_boot_err = start_init_common(); 3126 3127 mutex_enter(&zone_status_lock); 3128 if (z->zone_boot_err != 0) { 3129 /* 3130 * Make sure we are still in the booting state-- we could have 3131 * raced and already be shutting down, or even further along. 3132 */ 3133 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3134 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3135 } 3136 mutex_exit(&zone_status_lock); 3137 /* It's gone bad, dispose of the process */ 3138 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3139 mutex_enter(&p->p_lock); 3140 ASSERT(p->p_flag & SEXITLWPS); 3141 lwp_exit(); 3142 } 3143 } else { 3144 if (zone_status_get(z) == ZONE_IS_BOOTING) 3145 zone_status_set(z, ZONE_IS_RUNNING); 3146 mutex_exit(&zone_status_lock); 3147 /* cause the process to return to userland. */ 3148 lwp_rtt(); 3149 } 3150 } 3151 3152 struct zsched_arg { 3153 zone_t *zone; 3154 nvlist_t *nvlist; 3155 }; 3156 3157 /* 3158 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3159 * anything to do with scheduling, but rather with the fact that 3160 * per-zone kernel threads are parented to zsched, just like regular 3161 * kernel threads are parented to sched (p0). 3162 * 3163 * zsched is also responsible for launching init for the zone. 3164 */ 3165 static void 3166 zsched(void *arg) 3167 { 3168 struct zsched_arg *za = arg; 3169 proc_t *pp = curproc; 3170 proc_t *initp = proc_init; 3171 zone_t *zone = za->zone; 3172 cred_t *cr, *oldcred; 3173 rctl_set_t *set; 3174 rctl_alloc_gp_t *gp; 3175 contract_t *ct = NULL; 3176 task_t *tk, *oldtk; 3177 rctl_entity_p_t e; 3178 kproject_t *pj; 3179 3180 nvlist_t *nvl = za->nvlist; 3181 nvpair_t *nvp = NULL; 3182 3183 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3184 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3185 PTOU(pp)->u_argc = 0; 3186 PTOU(pp)->u_argv = NULL; 3187 PTOU(pp)->u_envp = NULL; 3188 closeall(P_FINFO(pp)); 3189 3190 /* 3191 * We are this zone's "zsched" process. As the zone isn't generally 3192 * visible yet we don't need to grab any locks before initializing its 3193 * zone_proc pointer. 3194 */ 3195 zone_hold(zone); /* this hold is released by zone_destroy() */ 3196 zone->zone_zsched = pp; 3197 mutex_enter(&pp->p_lock); 3198 pp->p_zone = zone; 3199 mutex_exit(&pp->p_lock); 3200 3201 /* 3202 * Disassociate process from its 'parent'; parent ourselves to init 3203 * (pid 1) and change other values as needed. 3204 */ 3205 sess_create(); 3206 3207 mutex_enter(&pidlock); 3208 proc_detach(pp); 3209 pp->p_ppid = 1; 3210 pp->p_flag |= SZONETOP; 3211 pp->p_ancpid = 1; 3212 pp->p_parent = initp; 3213 pp->p_psibling = NULL; 3214 if (initp->p_child) 3215 initp->p_child->p_psibling = pp; 3216 pp->p_sibling = initp->p_child; 3217 initp->p_child = pp; 3218 3219 /* Decrement what newproc() incremented. */ 3220 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3221 /* 3222 * Our credentials are about to become kcred-like, so we don't care 3223 * about the caller's ruid. 3224 */ 3225 upcount_inc(crgetruid(kcred), zone->zone_id); 3226 mutex_exit(&pidlock); 3227 3228 /* 3229 * getting out of global zone, so decrement lwp counts 3230 */ 3231 pj = pp->p_task->tk_proj; 3232 mutex_enter(&global_zone->zone_nlwps_lock); 3233 pj->kpj_nlwps -= pp->p_lwpcnt; 3234 global_zone->zone_nlwps -= pp->p_lwpcnt; 3235 mutex_exit(&global_zone->zone_nlwps_lock); 3236 3237 /* 3238 * Decrement locked memory counts on old zone and project. 3239 */ 3240 mutex_enter(&global_zone->zone_mem_lock); 3241 global_zone->zone_locked_mem -= pp->p_locked_mem; 3242 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3243 mutex_exit(&global_zone->zone_mem_lock); 3244 3245 /* 3246 * Create and join a new task in project '0' of this zone. 3247 * 3248 * We don't need to call holdlwps() since we know we're the only lwp in 3249 * this process. 3250 * 3251 * task_join() returns with p_lock held. 3252 */ 3253 tk = task_create(0, zone); 3254 mutex_enter(&cpu_lock); 3255 oldtk = task_join(tk, 0); 3256 3257 pj = pp->p_task->tk_proj; 3258 3259 mutex_enter(&zone->zone_mem_lock); 3260 zone->zone_locked_mem += pp->p_locked_mem; 3261 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3262 mutex_exit(&zone->zone_mem_lock); 3263 3264 /* 3265 * add lwp counts to zsched's zone, and increment project's task count 3266 * due to the task created in the above tasksys_settaskid 3267 */ 3268 3269 mutex_enter(&zone->zone_nlwps_lock); 3270 pj->kpj_nlwps += pp->p_lwpcnt; 3271 pj->kpj_ntasks += 1; 3272 zone->zone_nlwps += pp->p_lwpcnt; 3273 mutex_exit(&zone->zone_nlwps_lock); 3274 3275 mutex_exit(&curproc->p_lock); 3276 mutex_exit(&cpu_lock); 3277 task_rele(oldtk); 3278 3279 /* 3280 * The process was created by a process in the global zone, hence the 3281 * credentials are wrong. We might as well have kcred-ish credentials. 3282 */ 3283 cr = zone->zone_kcred; 3284 crhold(cr); 3285 mutex_enter(&pp->p_crlock); 3286 oldcred = pp->p_cred; 3287 pp->p_cred = cr; 3288 mutex_exit(&pp->p_crlock); 3289 crfree(oldcred); 3290 3291 /* 3292 * Hold credentials again (for thread) 3293 */ 3294 crhold(cr); 3295 3296 /* 3297 * p_lwpcnt can't change since this is a kernel process. 3298 */ 3299 crset(pp, cr); 3300 3301 /* 3302 * Chroot 3303 */ 3304 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3305 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3306 3307 /* 3308 * Initialize zone's rctl set. 3309 */ 3310 set = rctl_set_create(); 3311 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3312 mutex_enter(&pp->p_lock); 3313 e.rcep_p.zone = zone; 3314 e.rcep_t = RCENTITY_ZONE; 3315 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3316 mutex_exit(&pp->p_lock); 3317 rctl_prealloc_destroy(gp); 3318 3319 /* 3320 * Apply the rctls passed in to zone_create(). This is basically a list 3321 * assignment: all of the old values are removed and the new ones 3322 * inserted. That is, if an empty list is passed in, all values are 3323 * removed. 3324 */ 3325 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3326 rctl_dict_entry_t *rde; 3327 rctl_hndl_t hndl; 3328 char *name; 3329 nvlist_t **nvlarray; 3330 uint_t i, nelem; 3331 int error; /* For ASSERT()s */ 3332 3333 name = nvpair_name(nvp); 3334 hndl = rctl_hndl_lookup(name); 3335 ASSERT(hndl != -1); 3336 rde = rctl_dict_lookup_hndl(hndl); 3337 ASSERT(rde != NULL); 3338 3339 for (; /* ever */; ) { 3340 rctl_val_t oval; 3341 3342 mutex_enter(&pp->p_lock); 3343 error = rctl_local_get(hndl, NULL, &oval, pp); 3344 mutex_exit(&pp->p_lock); 3345 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3346 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3347 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3348 break; 3349 mutex_enter(&pp->p_lock); 3350 error = rctl_local_delete(hndl, &oval, pp); 3351 mutex_exit(&pp->p_lock); 3352 ASSERT(error == 0); 3353 } 3354 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3355 ASSERT(error == 0); 3356 for (i = 0; i < nelem; i++) { 3357 rctl_val_t *nvalp; 3358 3359 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3360 error = nvlist2rctlval(nvlarray[i], nvalp); 3361 ASSERT(error == 0); 3362 /* 3363 * rctl_local_insert can fail if the value being 3364 * inserted is a duplicate; this is OK. 3365 */ 3366 mutex_enter(&pp->p_lock); 3367 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3368 kmem_cache_free(rctl_val_cache, nvalp); 3369 mutex_exit(&pp->p_lock); 3370 } 3371 } 3372 /* 3373 * Tell the world that we're done setting up. 3374 * 3375 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3376 * and atomically set the zone's processor set visibility. Once 3377 * we drop pool_lock() this zone will automatically get updated 3378 * to reflect any future changes to the pools configuration. 3379 * 3380 * Note that after we drop the locks below (zonehash_lock in 3381 * particular) other operations such as a zone_getattr call can 3382 * now proceed and observe the zone. That is the reason for doing a 3383 * state transition to the INITIALIZED state. 3384 */ 3385 pool_lock(); 3386 mutex_enter(&cpu_lock); 3387 mutex_enter(&zonehash_lock); 3388 zone_uniqid(zone); 3389 zone_zsd_configure(zone); 3390 if (pool_state == POOL_ENABLED) 3391 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3392 mutex_enter(&zone_status_lock); 3393 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3394 zone_status_set(zone, ZONE_IS_INITIALIZED); 3395 mutex_exit(&zone_status_lock); 3396 mutex_exit(&zonehash_lock); 3397 mutex_exit(&cpu_lock); 3398 pool_unlock(); 3399 3400 /* Now call the create callback for this key */ 3401 zsd_apply_all_keys(zsd_apply_create, zone); 3402 3403 /* The callbacks are complete. Mark ZONE_IS_READY */ 3404 mutex_enter(&zone_status_lock); 3405 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3406 zone_status_set(zone, ZONE_IS_READY); 3407 mutex_exit(&zone_status_lock); 3408 3409 /* 3410 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3411 * we launch init, and set the state to running. 3412 */ 3413 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3414 3415 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3416 id_t cid; 3417 3418 /* 3419 * Ok, this is a little complicated. We need to grab the 3420 * zone's pool's scheduling class ID; note that by now, we 3421 * are already bound to a pool if we need to be (zoneadmd 3422 * will have done that to us while we're in the READY 3423 * state). *But* the scheduling class for the zone's 'init' 3424 * must be explicitly passed to newproc, which doesn't 3425 * respect pool bindings. 3426 * 3427 * We hold the pool_lock across the call to newproc() to 3428 * close the obvious race: the pool's scheduling class 3429 * could change before we manage to create the LWP with 3430 * classid 'cid'. 3431 */ 3432 pool_lock(); 3433 if (zone->zone_defaultcid > 0) 3434 cid = zone->zone_defaultcid; 3435 else 3436 cid = pool_get_class(zone->zone_pool); 3437 if (cid == -1) 3438 cid = defaultcid; 3439 3440 /* 3441 * If this fails, zone_boot will ultimately fail. The 3442 * state of the zone will be set to SHUTTING_DOWN-- userland 3443 * will have to tear down the zone, and fail, or try again. 3444 */ 3445 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3446 minclsyspri - 1, &ct)) != 0) { 3447 mutex_enter(&zone_status_lock); 3448 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3449 mutex_exit(&zone_status_lock); 3450 } 3451 pool_unlock(); 3452 } 3453 3454 /* 3455 * Wait for zone_destroy() to be called. This is what we spend 3456 * most of our life doing. 3457 */ 3458 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3459 3460 if (ct) 3461 /* 3462 * At this point the process contract should be empty. 3463 * (Though if it isn't, it's not the end of the world.) 3464 */ 3465 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3466 3467 /* 3468 * Allow kcred to be freed when all referring processes 3469 * (including this one) go away. We can't just do this in 3470 * zone_free because we need to wait for the zone_cred_ref to 3471 * drop to 0 before calling zone_free, and the existence of 3472 * zone_kcred will prevent that. Thus, we call crfree here to 3473 * balance the crdup in zone_create. The crhold calls earlier 3474 * in zsched will be dropped when the thread and process exit. 3475 */ 3476 crfree(zone->zone_kcred); 3477 zone->zone_kcred = NULL; 3478 3479 exit(CLD_EXITED, 0); 3480 } 3481 3482 /* 3483 * Helper function to determine if there are any submounts of the 3484 * provided path. Used to make sure the zone doesn't "inherit" any 3485 * mounts from before it is created. 3486 */ 3487 static uint_t 3488 zone_mount_count(const char *rootpath) 3489 { 3490 vfs_t *vfsp; 3491 uint_t count = 0; 3492 size_t rootpathlen = strlen(rootpath); 3493 3494 /* 3495 * Holding zonehash_lock prevents race conditions with 3496 * vfs_list_add()/vfs_list_remove() since we serialize with 3497 * zone_find_by_path(). 3498 */ 3499 ASSERT(MUTEX_HELD(&zonehash_lock)); 3500 /* 3501 * The rootpath must end with a '/' 3502 */ 3503 ASSERT(rootpath[rootpathlen - 1] == '/'); 3504 3505 /* 3506 * This intentionally does not count the rootpath itself if that 3507 * happens to be a mount point. 3508 */ 3509 vfs_list_read_lock(); 3510 vfsp = rootvfs; 3511 do { 3512 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 3513 rootpathlen) == 0) 3514 count++; 3515 vfsp = vfsp->vfs_next; 3516 } while (vfsp != rootvfs); 3517 vfs_list_unlock(); 3518 return (count); 3519 } 3520 3521 /* 3522 * Helper function to make sure that a zone created on 'rootpath' 3523 * wouldn't end up containing other zones' rootpaths. 3524 */ 3525 static boolean_t 3526 zone_is_nested(const char *rootpath) 3527 { 3528 zone_t *zone; 3529 size_t rootpathlen = strlen(rootpath); 3530 size_t len; 3531 3532 ASSERT(MUTEX_HELD(&zonehash_lock)); 3533 3534 for (zone = list_head(&zone_active); zone != NULL; 3535 zone = list_next(&zone_active, zone)) { 3536 if (zone == global_zone) 3537 continue; 3538 len = strlen(zone->zone_rootpath); 3539 if (strncmp(rootpath, zone->zone_rootpath, 3540 MIN(rootpathlen, len)) == 0) 3541 return (B_TRUE); 3542 } 3543 return (B_FALSE); 3544 } 3545 3546 static int 3547 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 3548 size_t zone_privssz) 3549 { 3550 priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 3551 3552 if (zone_privssz < sizeof (priv_set_t)) 3553 return (set_errno(ENOMEM)); 3554 3555 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 3556 kmem_free(privs, sizeof (priv_set_t)); 3557 return (EFAULT); 3558 } 3559 3560 zone->zone_privset = privs; 3561 return (0); 3562 } 3563 3564 /* 3565 * We make creative use of nvlists to pass in rctls from userland. The list is 3566 * a list of the following structures: 3567 * 3568 * (name = rctl_name, value = nvpair_list_array) 3569 * 3570 * Where each element of the nvpair_list_array is of the form: 3571 * 3572 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 3573 * (name = "limit", value = uint64_t), 3574 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 3575 */ 3576 static int 3577 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 3578 { 3579 nvpair_t *nvp = NULL; 3580 nvlist_t *nvl = NULL; 3581 char *kbuf; 3582 int error; 3583 rctl_val_t rv; 3584 3585 *nvlp = NULL; 3586 3587 if (buflen == 0) 3588 return (0); 3589 3590 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3591 return (ENOMEM); 3592 if (copyin(ubuf, kbuf, buflen)) { 3593 error = EFAULT; 3594 goto out; 3595 } 3596 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 3597 /* 3598 * nvl may have been allocated/free'd, but the value set to 3599 * non-NULL, so we reset it here. 3600 */ 3601 nvl = NULL; 3602 error = EINVAL; 3603 goto out; 3604 } 3605 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3606 rctl_dict_entry_t *rde; 3607 rctl_hndl_t hndl; 3608 nvlist_t **nvlarray; 3609 uint_t i, nelem; 3610 char *name; 3611 3612 error = EINVAL; 3613 name = nvpair_name(nvp); 3614 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 3615 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 3616 goto out; 3617 } 3618 if ((hndl = rctl_hndl_lookup(name)) == -1) { 3619 goto out; 3620 } 3621 rde = rctl_dict_lookup_hndl(hndl); 3622 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3623 ASSERT(error == 0); 3624 for (i = 0; i < nelem; i++) { 3625 if (error = nvlist2rctlval(nvlarray[i], &rv)) 3626 goto out; 3627 } 3628 if (rctl_invalid_value(rde, &rv)) { 3629 error = EINVAL; 3630 goto out; 3631 } 3632 } 3633 error = 0; 3634 *nvlp = nvl; 3635 out: 3636 kmem_free(kbuf, buflen); 3637 if (error && nvl != NULL) 3638 nvlist_free(nvl); 3639 return (error); 3640 } 3641 3642 int 3643 zone_create_error(int er_error, int er_ext, int *er_out) { 3644 if (er_out != NULL) { 3645 if (copyout(&er_ext, er_out, sizeof (int))) { 3646 return (set_errno(EFAULT)); 3647 } 3648 } 3649 return (set_errno(er_error)); 3650 } 3651 3652 static int 3653 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 3654 { 3655 ts_label_t *tsl; 3656 bslabel_t blab; 3657 3658 /* Get label from user */ 3659 if (copyin(lab, &blab, sizeof (blab)) != 0) 3660 return (EFAULT); 3661 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 3662 if (tsl == NULL) 3663 return (ENOMEM); 3664 3665 zone->zone_slabel = tsl; 3666 return (0); 3667 } 3668 3669 /* 3670 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 3671 */ 3672 static int 3673 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 3674 { 3675 char *kbuf; 3676 char *dataset, *next; 3677 zone_dataset_t *zd; 3678 size_t len; 3679 3680 if (ubuf == NULL || buflen == 0) 3681 return (0); 3682 3683 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 3684 return (ENOMEM); 3685 3686 if (copyin(ubuf, kbuf, buflen) != 0) { 3687 kmem_free(kbuf, buflen); 3688 return (EFAULT); 3689 } 3690 3691 dataset = next = kbuf; 3692 for (;;) { 3693 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 3694 3695 next = strchr(dataset, ','); 3696 3697 if (next == NULL) 3698 len = strlen(dataset); 3699 else 3700 len = next - dataset; 3701 3702 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 3703 bcopy(dataset, zd->zd_dataset, len); 3704 zd->zd_dataset[len] = '\0'; 3705 3706 list_insert_head(&zone->zone_datasets, zd); 3707 3708 if (next == NULL) 3709 break; 3710 3711 dataset = next + 1; 3712 } 3713 3714 kmem_free(kbuf, buflen); 3715 return (0); 3716 } 3717 3718 /* 3719 * System call to create/initialize a new zone named 'zone_name', rooted 3720 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 3721 * and initialized with the zone-wide rctls described in 'rctlbuf', and 3722 * with labeling set by 'match', 'doi', and 'label'. 3723 * 3724 * If extended error is non-null, we may use it to return more detailed 3725 * error information. 3726 */ 3727 static zoneid_t 3728 zone_create(const char *zone_name, const char *zone_root, 3729 const priv_set_t *zone_privs, size_t zone_privssz, 3730 caddr_t rctlbuf, size_t rctlbufsz, 3731 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 3732 int match, uint32_t doi, const bslabel_t *label, 3733 int flags) 3734 { 3735 struct zsched_arg zarg; 3736 nvlist_t *rctls = NULL; 3737 proc_t *pp = curproc; 3738 zone_t *zone, *ztmp; 3739 zoneid_t zoneid; 3740 int error; 3741 int error2 = 0; 3742 char *str; 3743 cred_t *zkcr; 3744 boolean_t insert_label_hash; 3745 3746 if (secpolicy_zone_config(CRED()) != 0) 3747 return (set_errno(EPERM)); 3748 3749 /* can't boot zone from within chroot environment */ 3750 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 3751 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 3752 extended_error)); 3753 3754 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 3755 zoneid = zone->zone_id = id_alloc(zoneid_space); 3756 zone->zone_status = ZONE_IS_UNINITIALIZED; 3757 zone->zone_pool = pool_default; 3758 zone->zone_pool_mod = gethrtime(); 3759 zone->zone_psetid = ZONE_PS_INVAL; 3760 zone->zone_ncpus = 0; 3761 zone->zone_ncpus_online = 0; 3762 zone->zone_restart_init = B_TRUE; 3763 zone->zone_brand = &native_brand; 3764 zone->zone_initname = NULL; 3765 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 3766 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 3767 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 3768 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 3769 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 3770 offsetof(struct zsd_entry, zsd_linkage)); 3771 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 3772 offsetof(zone_dataset_t, zd_linkage)); 3773 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 3774 3775 if (flags & ZCF_NET_EXCL) { 3776 zone->zone_flags |= ZF_NET_EXCL; 3777 } 3778 3779 if ((error = zone_set_name(zone, zone_name)) != 0) { 3780 zone_free(zone); 3781 return (zone_create_error(error, 0, extended_error)); 3782 } 3783 3784 if ((error = zone_set_root(zone, zone_root)) != 0) { 3785 zone_free(zone); 3786 return (zone_create_error(error, 0, extended_error)); 3787 } 3788 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 3789 zone_free(zone); 3790 return (zone_create_error(error, 0, extended_error)); 3791 } 3792 3793 /* initialize node name to be the same as zone name */ 3794 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3795 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 3796 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 3797 3798 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 3799 zone->zone_domain[0] = '\0'; 3800 zone->zone_shares = 1; 3801 zone->zone_shmmax = 0; 3802 zone->zone_ipc.ipcq_shmmni = 0; 3803 zone->zone_ipc.ipcq_semmni = 0; 3804 zone->zone_ipc.ipcq_msgmni = 0; 3805 zone->zone_bootargs = NULL; 3806 zone->zone_initname = 3807 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 3808 (void) strcpy(zone->zone_initname, zone_default_initname); 3809 zone->zone_nlwps = 0; 3810 zone->zone_nlwps_ctl = INT_MAX; 3811 zone->zone_locked_mem = 0; 3812 zone->zone_locked_mem_ctl = UINT64_MAX; 3813 zone->zone_max_swap = 0; 3814 zone->zone_max_swap_ctl = UINT64_MAX; 3815 zone0.zone_lockedmem_kstat = NULL; 3816 zone0.zone_swapresv_kstat = NULL; 3817 3818 /* 3819 * Zsched initializes the rctls. 3820 */ 3821 zone->zone_rctls = NULL; 3822 3823 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 3824 zone_free(zone); 3825 return (zone_create_error(error, 0, extended_error)); 3826 } 3827 3828 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 3829 zone_free(zone); 3830 return (set_errno(error)); 3831 } 3832 3833 /* 3834 * Read in the trusted system parameters: 3835 * match flag and sensitivity label. 3836 */ 3837 zone->zone_match = match; 3838 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 3839 /* Fail if requested to set doi to anything but system's doi */ 3840 if (doi != 0 && doi != default_doi) { 3841 zone_free(zone); 3842 return (set_errno(EINVAL)); 3843 } 3844 /* Always apply system's doi to the zone */ 3845 error = zone_set_label(zone, label, default_doi); 3846 if (error != 0) { 3847 zone_free(zone); 3848 return (set_errno(error)); 3849 } 3850 insert_label_hash = B_TRUE; 3851 } else { 3852 /* all zones get an admin_low label if system is not labeled */ 3853 zone->zone_slabel = l_admin_low; 3854 label_hold(l_admin_low); 3855 insert_label_hash = B_FALSE; 3856 } 3857 3858 /* 3859 * Stop all lwps since that's what normally happens as part of fork(). 3860 * This needs to happen before we grab any locks to avoid deadlock 3861 * (another lwp in the process could be waiting for the held lock). 3862 */ 3863 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 3864 zone_free(zone); 3865 if (rctls) 3866 nvlist_free(rctls); 3867 return (zone_create_error(error, 0, extended_error)); 3868 } 3869 3870 if (block_mounts() == 0) { 3871 mutex_enter(&pp->p_lock); 3872 if (curthread != pp->p_agenttp) 3873 continuelwps(pp); 3874 mutex_exit(&pp->p_lock); 3875 zone_free(zone); 3876 if (rctls) 3877 nvlist_free(rctls); 3878 return (zone_create_error(error, 0, extended_error)); 3879 } 3880 3881 /* 3882 * Set up credential for kernel access. After this, any errors 3883 * should go through the dance in errout rather than calling 3884 * zone_free directly. 3885 */ 3886 zone->zone_kcred = crdup(kcred); 3887 crsetzone(zone->zone_kcred, zone); 3888 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 3889 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 3890 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 3891 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 3892 3893 mutex_enter(&zonehash_lock); 3894 /* 3895 * Make sure zone doesn't already exist. 3896 * 3897 * If the system and zone are labeled, 3898 * make sure no other zone exists that has the same label. 3899 */ 3900 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 3901 (insert_label_hash && 3902 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 3903 zone_status_t status; 3904 3905 status = zone_status_get(ztmp); 3906 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 3907 error = EEXIST; 3908 else 3909 error = EBUSY; 3910 3911 if (insert_label_hash) 3912 error2 = ZE_LABELINUSE; 3913 3914 goto errout; 3915 } 3916 3917 /* 3918 * Don't allow zone creations which would cause one zone's rootpath to 3919 * be accessible from that of another (non-global) zone. 3920 */ 3921 if (zone_is_nested(zone->zone_rootpath)) { 3922 error = EBUSY; 3923 goto errout; 3924 } 3925 3926 ASSERT(zonecount != 0); /* check for leaks */ 3927 if (zonecount + 1 > maxzones) { 3928 error = ENOMEM; 3929 goto errout; 3930 } 3931 3932 if (zone_mount_count(zone->zone_rootpath) != 0) { 3933 error = EBUSY; 3934 error2 = ZE_AREMOUNTS; 3935 goto errout; 3936 } 3937 3938 /* 3939 * Zone is still incomplete, but we need to drop all locks while 3940 * zsched() initializes this zone's kernel process. We 3941 * optimistically add the zone to the hashtable and associated 3942 * lists so a parallel zone_create() doesn't try to create the 3943 * same zone. 3944 */ 3945 zonecount++; 3946 (void) mod_hash_insert(zonehashbyid, 3947 (mod_hash_key_t)(uintptr_t)zone->zone_id, 3948 (mod_hash_val_t)(uintptr_t)zone); 3949 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 3950 (void) strcpy(str, zone->zone_name); 3951 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 3952 (mod_hash_val_t)(uintptr_t)zone); 3953 if (insert_label_hash) { 3954 (void) mod_hash_insert(zonehashbylabel, 3955 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 3956 zone->zone_flags |= ZF_HASHED_LABEL; 3957 } 3958 3959 /* 3960 * Insert into active list. At this point there are no 'hold's 3961 * on the zone, but everyone else knows not to use it, so we can 3962 * continue to use it. zsched() will do a zone_hold() if the 3963 * newproc() is successful. 3964 */ 3965 list_insert_tail(&zone_active, zone); 3966 mutex_exit(&zonehash_lock); 3967 3968 zarg.zone = zone; 3969 zarg.nvlist = rctls; 3970 /* 3971 * The process, task, and project rctls are probably wrong; 3972 * we need an interface to get the default values of all rctls, 3973 * and initialize zsched appropriately. I'm not sure that that 3974 * makes much of a difference, though. 3975 */ 3976 if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) { 3977 /* 3978 * We need to undo all globally visible state. 3979 */ 3980 mutex_enter(&zonehash_lock); 3981 list_remove(&zone_active, zone); 3982 if (zone->zone_flags & ZF_HASHED_LABEL) { 3983 ASSERT(zone->zone_slabel != NULL); 3984 (void) mod_hash_destroy(zonehashbylabel, 3985 (mod_hash_key_t)zone->zone_slabel); 3986 } 3987 (void) mod_hash_destroy(zonehashbyname, 3988 (mod_hash_key_t)(uintptr_t)zone->zone_name); 3989 (void) mod_hash_destroy(zonehashbyid, 3990 (mod_hash_key_t)(uintptr_t)zone->zone_id); 3991 ASSERT(zonecount > 1); 3992 zonecount--; 3993 goto errout; 3994 } 3995 3996 /* 3997 * Zone creation can't fail from now on. 3998 */ 3999 4000 /* 4001 * Create zone kstats 4002 */ 4003 zone_kstat_create(zone); 4004 4005 /* 4006 * Let the other lwps continue. 4007 */ 4008 mutex_enter(&pp->p_lock); 4009 if (curthread != pp->p_agenttp) 4010 continuelwps(pp); 4011 mutex_exit(&pp->p_lock); 4012 4013 /* 4014 * Wait for zsched to finish initializing the zone. 4015 */ 4016 zone_status_wait(zone, ZONE_IS_READY); 4017 /* 4018 * The zone is fully visible, so we can let mounts progress. 4019 */ 4020 resume_mounts(); 4021 if (rctls) 4022 nvlist_free(rctls); 4023 4024 return (zoneid); 4025 4026 errout: 4027 mutex_exit(&zonehash_lock); 4028 /* 4029 * Let the other lwps continue. 4030 */ 4031 mutex_enter(&pp->p_lock); 4032 if (curthread != pp->p_agenttp) 4033 continuelwps(pp); 4034 mutex_exit(&pp->p_lock); 4035 4036 resume_mounts(); 4037 if (rctls) 4038 nvlist_free(rctls); 4039 /* 4040 * There is currently one reference to the zone, a cred_ref from 4041 * zone_kcred. To free the zone, we call crfree, which will call 4042 * zone_cred_rele, which will call zone_free. 4043 */ 4044 ASSERT(zone->zone_cred_ref == 1); /* for zone_kcred */ 4045 ASSERT(zone->zone_kcred->cr_ref == 1); 4046 ASSERT(zone->zone_ref == 0); 4047 zkcr = zone->zone_kcred; 4048 zone->zone_kcred = NULL; 4049 crfree(zkcr); /* triggers call to zone_free */ 4050 return (zone_create_error(error, error2, extended_error)); 4051 } 4052 4053 /* 4054 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4055 * the heavy lifting. initname is the path to the program to launch 4056 * at the "top" of the zone; if this is NULL, we use the system default, 4057 * which is stored at zone_default_initname. 4058 */ 4059 static int 4060 zone_boot(zoneid_t zoneid) 4061 { 4062 int err; 4063 zone_t *zone; 4064 4065 if (secpolicy_zone_config(CRED()) != 0) 4066 return (set_errno(EPERM)); 4067 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4068 return (set_errno(EINVAL)); 4069 4070 mutex_enter(&zonehash_lock); 4071 /* 4072 * Look for zone under hash lock to prevent races with calls to 4073 * zone_shutdown, zone_destroy, etc. 4074 */ 4075 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4076 mutex_exit(&zonehash_lock); 4077 return (set_errno(EINVAL)); 4078 } 4079 4080 mutex_enter(&zone_status_lock); 4081 if (zone_status_get(zone) != ZONE_IS_READY) { 4082 mutex_exit(&zone_status_lock); 4083 mutex_exit(&zonehash_lock); 4084 return (set_errno(EINVAL)); 4085 } 4086 zone_status_set(zone, ZONE_IS_BOOTING); 4087 mutex_exit(&zone_status_lock); 4088 4089 zone_hold(zone); /* so we can use the zone_t later */ 4090 mutex_exit(&zonehash_lock); 4091 4092 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4093 zone_rele(zone); 4094 return (set_errno(EINTR)); 4095 } 4096 4097 /* 4098 * Boot (starting init) might have failed, in which case the zone 4099 * will go to the SHUTTING_DOWN state; an appropriate errno will 4100 * be placed in zone->zone_boot_err, and so we return that. 4101 */ 4102 err = zone->zone_boot_err; 4103 zone_rele(zone); 4104 return (err ? set_errno(err) : 0); 4105 } 4106 4107 /* 4108 * Kills all user processes in the zone, waiting for them all to exit 4109 * before returning. 4110 */ 4111 static int 4112 zone_empty(zone_t *zone) 4113 { 4114 int waitstatus; 4115 4116 /* 4117 * We need to drop zonehash_lock before killing all 4118 * processes, otherwise we'll deadlock with zone_find_* 4119 * which can be called from the exit path. 4120 */ 4121 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4122 while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz, 4123 ZONE_IS_EMPTY)) == -1) { 4124 killall(zone->zone_id); 4125 } 4126 /* 4127 * return EINTR if we were signaled 4128 */ 4129 if (waitstatus == 0) 4130 return (EINTR); 4131 return (0); 4132 } 4133 4134 /* 4135 * This function implements the policy for zone visibility. 4136 * 4137 * In standard Solaris, a non-global zone can only see itself. 4138 * 4139 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4140 * it dominates. For this test, the label of the global zone is treated as 4141 * admin_high so it is special-cased instead of being checked for dominance. 4142 * 4143 * Returns true if zone attributes are viewable, false otherwise. 4144 */ 4145 static boolean_t 4146 zone_list_access(zone_t *zone) 4147 { 4148 4149 if (curproc->p_zone == global_zone || 4150 curproc->p_zone == zone) { 4151 return (B_TRUE); 4152 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4153 bslabel_t *curproc_label; 4154 bslabel_t *zone_label; 4155 4156 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4157 zone_label = label2bslabel(zone->zone_slabel); 4158 4159 if (zone->zone_id != GLOBAL_ZONEID && 4160 bldominates(curproc_label, zone_label)) { 4161 return (B_TRUE); 4162 } else { 4163 return (B_FALSE); 4164 } 4165 } else { 4166 return (B_FALSE); 4167 } 4168 } 4169 4170 /* 4171 * Systemcall to start the zone's halt sequence. By the time this 4172 * function successfully returns, all user processes and kernel threads 4173 * executing in it will have exited, ZSD shutdown callbacks executed, 4174 * and the zone status set to ZONE_IS_DOWN. 4175 * 4176 * It is possible that the call will interrupt itself if the caller is the 4177 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4178 */ 4179 static int 4180 zone_shutdown(zoneid_t zoneid) 4181 { 4182 int error; 4183 zone_t *zone; 4184 zone_status_t status; 4185 4186 if (secpolicy_zone_config(CRED()) != 0) 4187 return (set_errno(EPERM)); 4188 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4189 return (set_errno(EINVAL)); 4190 4191 /* 4192 * Block mounts so that VFS_MOUNT() can get an accurate view of 4193 * the zone's status with regards to ZONE_IS_SHUTTING down. 4194 * 4195 * e.g. NFS can fail the mount if it determines that the zone 4196 * has already begun the shutdown sequence. 4197 */ 4198 if (block_mounts() == 0) 4199 return (set_errno(EINTR)); 4200 mutex_enter(&zonehash_lock); 4201 /* 4202 * Look for zone under hash lock to prevent races with other 4203 * calls to zone_shutdown and zone_destroy. 4204 */ 4205 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4206 mutex_exit(&zonehash_lock); 4207 resume_mounts(); 4208 return (set_errno(EINVAL)); 4209 } 4210 mutex_enter(&zone_status_lock); 4211 status = zone_status_get(zone); 4212 /* 4213 * Fail if the zone isn't fully initialized yet. 4214 */ 4215 if (status < ZONE_IS_READY) { 4216 mutex_exit(&zone_status_lock); 4217 mutex_exit(&zonehash_lock); 4218 resume_mounts(); 4219 return (set_errno(EINVAL)); 4220 } 4221 /* 4222 * If conditions required for zone_shutdown() to return have been met, 4223 * return success. 4224 */ 4225 if (status >= ZONE_IS_DOWN) { 4226 mutex_exit(&zone_status_lock); 4227 mutex_exit(&zonehash_lock); 4228 resume_mounts(); 4229 return (0); 4230 } 4231 /* 4232 * If zone_shutdown() hasn't been called before, go through the motions. 4233 * If it has, there's nothing to do but wait for the kernel threads to 4234 * drain. 4235 */ 4236 if (status < ZONE_IS_EMPTY) { 4237 uint_t ntasks; 4238 4239 mutex_enter(&zone->zone_lock); 4240 if ((ntasks = zone->zone_ntasks) != 1) { 4241 /* 4242 * There's still stuff running. 4243 */ 4244 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4245 } 4246 mutex_exit(&zone->zone_lock); 4247 if (ntasks == 1) { 4248 /* 4249 * The only way to create another task is through 4250 * zone_enter(), which will block until we drop 4251 * zonehash_lock. The zone is empty. 4252 */ 4253 if (zone->zone_kthreads == NULL) { 4254 /* 4255 * Skip ahead to ZONE_IS_DOWN 4256 */ 4257 zone_status_set(zone, ZONE_IS_DOWN); 4258 } else { 4259 zone_status_set(zone, ZONE_IS_EMPTY); 4260 } 4261 } 4262 } 4263 zone_hold(zone); /* so we can use the zone_t later */ 4264 mutex_exit(&zone_status_lock); 4265 mutex_exit(&zonehash_lock); 4266 resume_mounts(); 4267 4268 if (error = zone_empty(zone)) { 4269 zone_rele(zone); 4270 return (set_errno(error)); 4271 } 4272 /* 4273 * After the zone status goes to ZONE_IS_DOWN this zone will no 4274 * longer be notified of changes to the pools configuration, so 4275 * in order to not end up with a stale pool pointer, we point 4276 * ourselves at the default pool and remove all resource 4277 * visibility. This is especially important as the zone_t may 4278 * languish on the deathrow for a very long time waiting for 4279 * cred's to drain out. 4280 * 4281 * This rebinding of the zone can happen multiple times 4282 * (presumably due to interrupted or parallel systemcalls) 4283 * without any adverse effects. 4284 */ 4285 if (pool_lock_intr() != 0) { 4286 zone_rele(zone); 4287 return (set_errno(EINTR)); 4288 } 4289 if (pool_state == POOL_ENABLED) { 4290 mutex_enter(&cpu_lock); 4291 zone_pool_set(zone, pool_default); 4292 /* 4293 * The zone no longer needs to be able to see any cpus. 4294 */ 4295 zone_pset_set(zone, ZONE_PS_INVAL); 4296 mutex_exit(&cpu_lock); 4297 } 4298 pool_unlock(); 4299 4300 /* 4301 * ZSD shutdown callbacks can be executed multiple times, hence 4302 * it is safe to not be holding any locks across this call. 4303 */ 4304 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4305 4306 mutex_enter(&zone_status_lock); 4307 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4308 zone_status_set(zone, ZONE_IS_DOWN); 4309 mutex_exit(&zone_status_lock); 4310 4311 /* 4312 * Wait for kernel threads to drain. 4313 */ 4314 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4315 zone_rele(zone); 4316 return (set_errno(EINTR)); 4317 } 4318 4319 /* 4320 * Zone can be become down/destroyable even if the above wait 4321 * returns EINTR, so any code added here may never execute. 4322 * (i.e. don't add code here) 4323 */ 4324 4325 zone_rele(zone); 4326 return (0); 4327 } 4328 4329 /* 4330 * Systemcall entry point to finalize the zone halt process. The caller 4331 * must have already successfully called zone_shutdown(). 4332 * 4333 * Upon successful completion, the zone will have been fully destroyed: 4334 * zsched will have exited, destructor callbacks executed, and the zone 4335 * removed from the list of active zones. 4336 */ 4337 static int 4338 zone_destroy(zoneid_t zoneid) 4339 { 4340 uint64_t uniqid; 4341 zone_t *zone; 4342 zone_status_t status; 4343 4344 if (secpolicy_zone_config(CRED()) != 0) 4345 return (set_errno(EPERM)); 4346 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4347 return (set_errno(EINVAL)); 4348 4349 mutex_enter(&zonehash_lock); 4350 /* 4351 * Look for zone under hash lock to prevent races with other 4352 * calls to zone_destroy. 4353 */ 4354 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4355 mutex_exit(&zonehash_lock); 4356 return (set_errno(EINVAL)); 4357 } 4358 4359 if (zone_mount_count(zone->zone_rootpath) != 0) { 4360 mutex_exit(&zonehash_lock); 4361 return (set_errno(EBUSY)); 4362 } 4363 mutex_enter(&zone_status_lock); 4364 status = zone_status_get(zone); 4365 if (status < ZONE_IS_DOWN) { 4366 mutex_exit(&zone_status_lock); 4367 mutex_exit(&zonehash_lock); 4368 return (set_errno(EBUSY)); 4369 } else if (status == ZONE_IS_DOWN) { 4370 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 4371 } 4372 mutex_exit(&zone_status_lock); 4373 zone_hold(zone); 4374 mutex_exit(&zonehash_lock); 4375 4376 /* 4377 * wait for zsched to exit 4378 */ 4379 zone_status_wait(zone, ZONE_IS_DEAD); 4380 zone_zsd_callbacks(zone, ZSD_DESTROY); 4381 zone->zone_netstack = NULL; 4382 uniqid = zone->zone_uniqid; 4383 zone_rele(zone); 4384 zone = NULL; /* potentially free'd */ 4385 4386 mutex_enter(&zonehash_lock); 4387 for (; /* ever */; ) { 4388 boolean_t unref; 4389 4390 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 4391 zone->zone_uniqid != uniqid) { 4392 /* 4393 * The zone has gone away. Necessary conditions 4394 * are met, so we return success. 4395 */ 4396 mutex_exit(&zonehash_lock); 4397 return (0); 4398 } 4399 mutex_enter(&zone->zone_lock); 4400 unref = ZONE_IS_UNREF(zone); 4401 mutex_exit(&zone->zone_lock); 4402 if (unref) { 4403 /* 4404 * There is only one reference to the zone -- that 4405 * added when the zone was added to the hashtables -- 4406 * and things will remain this way until we drop 4407 * zonehash_lock... we can go ahead and cleanup the 4408 * zone. 4409 */ 4410 break; 4411 } 4412 4413 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 4414 /* Signaled */ 4415 mutex_exit(&zonehash_lock); 4416 return (set_errno(EINTR)); 4417 } 4418 4419 } 4420 4421 /* 4422 * Remove CPU cap for this zone now since we're not going to 4423 * fail below this point. 4424 */ 4425 cpucaps_zone_remove(zone); 4426 4427 /* Get rid of the zone's kstats */ 4428 zone_kstat_delete(zone); 4429 4430 /* free brand specific data */ 4431 if (ZONE_IS_BRANDED(zone)) 4432 ZBROP(zone)->b_free_brand_data(zone); 4433 4434 /* Say goodbye to brand framework. */ 4435 brand_unregister_zone(zone->zone_brand); 4436 4437 /* 4438 * It is now safe to let the zone be recreated; remove it from the 4439 * lists. The memory will not be freed until the last cred 4440 * reference goes away. 4441 */ 4442 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 4443 zonecount--; 4444 /* remove from active list and hash tables */ 4445 list_remove(&zone_active, zone); 4446 (void) mod_hash_destroy(zonehashbyname, 4447 (mod_hash_key_t)zone->zone_name); 4448 (void) mod_hash_destroy(zonehashbyid, 4449 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4450 if (zone->zone_flags & ZF_HASHED_LABEL) 4451 (void) mod_hash_destroy(zonehashbylabel, 4452 (mod_hash_key_t)zone->zone_slabel); 4453 mutex_exit(&zonehash_lock); 4454 4455 /* 4456 * Release the root vnode; we're not using it anymore. Nor should any 4457 * other thread that might access it exist. 4458 */ 4459 if (zone->zone_rootvp != NULL) { 4460 VN_RELE(zone->zone_rootvp); 4461 zone->zone_rootvp = NULL; 4462 } 4463 4464 /* add to deathrow list */ 4465 mutex_enter(&zone_deathrow_lock); 4466 list_insert_tail(&zone_deathrow, zone); 4467 mutex_exit(&zone_deathrow_lock); 4468 4469 /* 4470 * Drop last reference (which was added by zsched()), this will 4471 * free the zone unless there are outstanding cred references. 4472 */ 4473 zone_rele(zone); 4474 return (0); 4475 } 4476 4477 /* 4478 * Systemcall entry point for zone_getattr(2). 4479 */ 4480 static ssize_t 4481 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4482 { 4483 size_t size; 4484 int error = 0, err; 4485 zone_t *zone; 4486 char *zonepath; 4487 char *outstr; 4488 zone_status_t zone_status; 4489 pid_t initpid; 4490 boolean_t global = (curzone == global_zone); 4491 boolean_t inzone = (curzone->zone_id == zoneid); 4492 ushort_t flags; 4493 4494 mutex_enter(&zonehash_lock); 4495 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4496 mutex_exit(&zonehash_lock); 4497 return (set_errno(EINVAL)); 4498 } 4499 zone_status = zone_status_get(zone); 4500 if (zone_status < ZONE_IS_INITIALIZED) { 4501 mutex_exit(&zonehash_lock); 4502 return (set_errno(EINVAL)); 4503 } 4504 zone_hold(zone); 4505 mutex_exit(&zonehash_lock); 4506 4507 /* 4508 * If not in the global zone, don't show information about other zones, 4509 * unless the system is labeled and the local zone's label dominates 4510 * the other zone. 4511 */ 4512 if (!zone_list_access(zone)) { 4513 zone_rele(zone); 4514 return (set_errno(EINVAL)); 4515 } 4516 4517 switch (attr) { 4518 case ZONE_ATTR_ROOT: 4519 if (global) { 4520 /* 4521 * Copy the path to trim the trailing "/" (except for 4522 * the global zone). 4523 */ 4524 if (zone != global_zone) 4525 size = zone->zone_rootpathlen - 1; 4526 else 4527 size = zone->zone_rootpathlen; 4528 zonepath = kmem_alloc(size, KM_SLEEP); 4529 bcopy(zone->zone_rootpath, zonepath, size); 4530 zonepath[size - 1] = '\0'; 4531 } else { 4532 if (inzone || !is_system_labeled()) { 4533 /* 4534 * Caller is not in the global zone. 4535 * if the query is on the current zone 4536 * or the system is not labeled, 4537 * just return faked-up path for current zone. 4538 */ 4539 zonepath = "/"; 4540 size = 2; 4541 } else { 4542 /* 4543 * Return related path for current zone. 4544 */ 4545 int prefix_len = strlen(zone_prefix); 4546 int zname_len = strlen(zone->zone_name); 4547 4548 size = prefix_len + zname_len + 1; 4549 zonepath = kmem_alloc(size, KM_SLEEP); 4550 bcopy(zone_prefix, zonepath, prefix_len); 4551 bcopy(zone->zone_name, zonepath + 4552 prefix_len, zname_len); 4553 zonepath[size - 1] = '\0'; 4554 } 4555 } 4556 if (bufsize > size) 4557 bufsize = size; 4558 if (buf != NULL) { 4559 err = copyoutstr(zonepath, buf, bufsize, NULL); 4560 if (err != 0 && err != ENAMETOOLONG) 4561 error = EFAULT; 4562 } 4563 if (global || (is_system_labeled() && !inzone)) 4564 kmem_free(zonepath, size); 4565 break; 4566 4567 case ZONE_ATTR_NAME: 4568 size = strlen(zone->zone_name) + 1; 4569 if (bufsize > size) 4570 bufsize = size; 4571 if (buf != NULL) { 4572 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 4573 if (err != 0 && err != ENAMETOOLONG) 4574 error = EFAULT; 4575 } 4576 break; 4577 4578 case ZONE_ATTR_STATUS: 4579 /* 4580 * Since we're not holding zonehash_lock, the zone status 4581 * may be anything; leave it up to userland to sort it out. 4582 */ 4583 size = sizeof (zone_status); 4584 if (bufsize > size) 4585 bufsize = size; 4586 zone_status = zone_status_get(zone); 4587 if (buf != NULL && 4588 copyout(&zone_status, buf, bufsize) != 0) 4589 error = EFAULT; 4590 break; 4591 case ZONE_ATTR_FLAGS: 4592 size = sizeof (zone->zone_flags); 4593 if (bufsize > size) 4594 bufsize = size; 4595 flags = zone->zone_flags; 4596 if (buf != NULL && 4597 copyout(&flags, buf, bufsize) != 0) 4598 error = EFAULT; 4599 break; 4600 case ZONE_ATTR_PRIVSET: 4601 size = sizeof (priv_set_t); 4602 if (bufsize > size) 4603 bufsize = size; 4604 if (buf != NULL && 4605 copyout(zone->zone_privset, buf, bufsize) != 0) 4606 error = EFAULT; 4607 break; 4608 case ZONE_ATTR_UNIQID: 4609 size = sizeof (zone->zone_uniqid); 4610 if (bufsize > size) 4611 bufsize = size; 4612 if (buf != NULL && 4613 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 4614 error = EFAULT; 4615 break; 4616 case ZONE_ATTR_POOLID: 4617 { 4618 pool_t *pool; 4619 poolid_t poolid; 4620 4621 if (pool_lock_intr() != 0) { 4622 error = EINTR; 4623 break; 4624 } 4625 pool = zone_pool_get(zone); 4626 poolid = pool->pool_id; 4627 pool_unlock(); 4628 size = sizeof (poolid); 4629 if (bufsize > size) 4630 bufsize = size; 4631 if (buf != NULL && copyout(&poolid, buf, size) != 0) 4632 error = EFAULT; 4633 } 4634 break; 4635 case ZONE_ATTR_SLBL: 4636 size = sizeof (bslabel_t); 4637 if (bufsize > size) 4638 bufsize = size; 4639 if (zone->zone_slabel == NULL) 4640 error = EINVAL; 4641 else if (buf != NULL && 4642 copyout(label2bslabel(zone->zone_slabel), buf, 4643 bufsize) != 0) 4644 error = EFAULT; 4645 break; 4646 case ZONE_ATTR_INITPID: 4647 size = sizeof (initpid); 4648 if (bufsize > size) 4649 bufsize = size; 4650 initpid = zone->zone_proc_initpid; 4651 if (initpid == -1) { 4652 error = ESRCH; 4653 break; 4654 } 4655 if (buf != NULL && 4656 copyout(&initpid, buf, bufsize) != 0) 4657 error = EFAULT; 4658 break; 4659 case ZONE_ATTR_BRAND: 4660 size = strlen(zone->zone_brand->b_name) + 1; 4661 4662 if (bufsize > size) 4663 bufsize = size; 4664 if (buf != NULL) { 4665 err = copyoutstr(zone->zone_brand->b_name, buf, 4666 bufsize, NULL); 4667 if (err != 0 && err != ENAMETOOLONG) 4668 error = EFAULT; 4669 } 4670 break; 4671 case ZONE_ATTR_INITNAME: 4672 size = strlen(zone->zone_initname) + 1; 4673 if (bufsize > size) 4674 bufsize = size; 4675 if (buf != NULL) { 4676 err = copyoutstr(zone->zone_initname, buf, bufsize, 4677 NULL); 4678 if (err != 0 && err != ENAMETOOLONG) 4679 error = EFAULT; 4680 } 4681 break; 4682 case ZONE_ATTR_BOOTARGS: 4683 if (zone->zone_bootargs == NULL) 4684 outstr = ""; 4685 else 4686 outstr = zone->zone_bootargs; 4687 size = strlen(outstr) + 1; 4688 if (bufsize > size) 4689 bufsize = size; 4690 if (buf != NULL) { 4691 err = copyoutstr(outstr, buf, bufsize, NULL); 4692 if (err != 0 && err != ENAMETOOLONG) 4693 error = EFAULT; 4694 } 4695 break; 4696 case ZONE_ATTR_PHYS_MCAP: 4697 size = sizeof (zone->zone_phys_mcap); 4698 if (bufsize > size) 4699 bufsize = size; 4700 if (buf != NULL && 4701 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 4702 error = EFAULT; 4703 break; 4704 case ZONE_ATTR_SCHED_CLASS: 4705 mutex_enter(&class_lock); 4706 4707 if (zone->zone_defaultcid >= loaded_classes) 4708 outstr = ""; 4709 else 4710 outstr = sclass[zone->zone_defaultcid].cl_name; 4711 size = strlen(outstr) + 1; 4712 if (bufsize > size) 4713 bufsize = size; 4714 if (buf != NULL) { 4715 err = copyoutstr(outstr, buf, bufsize, NULL); 4716 if (err != 0 && err != ENAMETOOLONG) 4717 error = EFAULT; 4718 } 4719 4720 mutex_exit(&class_lock); 4721 break; 4722 default: 4723 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 4724 size = bufsize; 4725 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 4726 } else { 4727 error = EINVAL; 4728 } 4729 } 4730 zone_rele(zone); 4731 4732 if (error) 4733 return (set_errno(error)); 4734 return ((ssize_t)size); 4735 } 4736 4737 /* 4738 * Systemcall entry point for zone_setattr(2). 4739 */ 4740 /*ARGSUSED*/ 4741 static int 4742 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 4743 { 4744 zone_t *zone; 4745 zone_status_t zone_status; 4746 int err; 4747 4748 if (secpolicy_zone_config(CRED()) != 0) 4749 return (set_errno(EPERM)); 4750 4751 /* 4752 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 4753 * global zone. 4754 */ 4755 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 4756 return (set_errno(EINVAL)); 4757 } 4758 4759 mutex_enter(&zonehash_lock); 4760 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4761 mutex_exit(&zonehash_lock); 4762 return (set_errno(EINVAL)); 4763 } 4764 zone_hold(zone); 4765 mutex_exit(&zonehash_lock); 4766 4767 /* 4768 * At present most attributes can only be set on non-running, 4769 * non-global zones. 4770 */ 4771 zone_status = zone_status_get(zone); 4772 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) 4773 goto done; 4774 4775 switch (attr) { 4776 case ZONE_ATTR_INITNAME: 4777 err = zone_set_initname(zone, (const char *)buf); 4778 break; 4779 case ZONE_ATTR_BOOTARGS: 4780 err = zone_set_bootargs(zone, (const char *)buf); 4781 break; 4782 case ZONE_ATTR_BRAND: 4783 err = zone_set_brand(zone, (const char *)buf); 4784 break; 4785 case ZONE_ATTR_PHYS_MCAP: 4786 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 4787 break; 4788 case ZONE_ATTR_SCHED_CLASS: 4789 err = zone_set_sched_class(zone, (const char *)buf); 4790 break; 4791 default: 4792 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 4793 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 4794 else 4795 err = EINVAL; 4796 } 4797 4798 done: 4799 zone_rele(zone); 4800 return (err != 0 ? set_errno(err) : 0); 4801 } 4802 4803 /* 4804 * Return zero if the process has at least one vnode mapped in to its 4805 * address space which shouldn't be allowed to change zones. 4806 * 4807 * Also return zero if the process has any shared mappings which reserve 4808 * swap. This is because the counting for zone.max-swap does not allow swap 4809 * reservation to be shared between zones. zone swap reservation is counted 4810 * on zone->zone_max_swap. 4811 */ 4812 static int 4813 as_can_change_zones(void) 4814 { 4815 proc_t *pp = curproc; 4816 struct seg *seg; 4817 struct as *as = pp->p_as; 4818 vnode_t *vp; 4819 int allow = 1; 4820 4821 ASSERT(pp->p_as != &kas); 4822 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 4823 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 4824 4825 /* 4826 * Cannot enter zone with shared anon memory which 4827 * reserves swap. See comment above. 4828 */ 4829 if (seg_can_change_zones(seg) == B_FALSE) { 4830 allow = 0; 4831 break; 4832 } 4833 /* 4834 * if we can't get a backing vnode for this segment then skip 4835 * it. 4836 */ 4837 vp = NULL; 4838 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 4839 continue; 4840 if (!vn_can_change_zones(vp)) { /* bail on first match */ 4841 allow = 0; 4842 break; 4843 } 4844 } 4845 AS_LOCK_EXIT(as, &as->a_lock); 4846 return (allow); 4847 } 4848 4849 /* 4850 * Count swap reserved by curproc's address space 4851 */ 4852 static size_t 4853 as_swresv(void) 4854 { 4855 proc_t *pp = curproc; 4856 struct seg *seg; 4857 struct as *as = pp->p_as; 4858 size_t swap = 0; 4859 4860 ASSERT(pp->p_as != &kas); 4861 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 4862 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 4863 swap += seg_swresv(seg); 4864 4865 return (swap); 4866 } 4867 4868 /* 4869 * Systemcall entry point for zone_enter(). 4870 * 4871 * The current process is injected into said zone. In the process 4872 * it will change its project membership, privileges, rootdir/cwd, 4873 * zone-wide rctls, and pool association to match those of the zone. 4874 * 4875 * The first zone_enter() called while the zone is in the ZONE_IS_READY 4876 * state will transition it to ZONE_IS_RUNNING. Processes may only 4877 * enter a zone that is "ready" or "running". 4878 */ 4879 static int 4880 zone_enter(zoneid_t zoneid) 4881 { 4882 zone_t *zone; 4883 vnode_t *vp; 4884 proc_t *pp = curproc; 4885 contract_t *ct; 4886 cont_process_t *ctp; 4887 task_t *tk, *oldtk; 4888 kproject_t *zone_proj0; 4889 cred_t *cr, *newcr; 4890 pool_t *oldpool, *newpool; 4891 sess_t *sp; 4892 uid_t uid; 4893 zone_status_t status; 4894 int err = 0; 4895 rctl_entity_p_t e; 4896 size_t swap; 4897 kthread_id_t t; 4898 4899 if (secpolicy_zone_config(CRED()) != 0) 4900 return (set_errno(EPERM)); 4901 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4902 return (set_errno(EINVAL)); 4903 4904 /* 4905 * Stop all lwps so we don't need to hold a lock to look at 4906 * curproc->p_zone. This needs to happen before we grab any 4907 * locks to avoid deadlock (another lwp in the process could 4908 * be waiting for the held lock). 4909 */ 4910 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 4911 return (set_errno(EINTR)); 4912 4913 /* 4914 * Make sure we're not changing zones with files open or mapped in 4915 * to our address space which shouldn't be changing zones. 4916 */ 4917 if (!files_can_change_zones()) { 4918 err = EBADF; 4919 goto out; 4920 } 4921 if (!as_can_change_zones()) { 4922 err = EFAULT; 4923 goto out; 4924 } 4925 4926 mutex_enter(&zonehash_lock); 4927 if (pp->p_zone != global_zone) { 4928 mutex_exit(&zonehash_lock); 4929 err = EINVAL; 4930 goto out; 4931 } 4932 4933 zone = zone_find_all_by_id(zoneid); 4934 if (zone == NULL) { 4935 mutex_exit(&zonehash_lock); 4936 err = EINVAL; 4937 goto out; 4938 } 4939 4940 /* 4941 * To prevent processes in a zone from holding contracts on 4942 * extrazonal resources, and to avoid process contract 4943 * memberships which span zones, contract holders and processes 4944 * which aren't the sole members of their encapsulating process 4945 * contracts are not allowed to zone_enter. 4946 */ 4947 ctp = pp->p_ct_process; 4948 ct = &ctp->conp_contract; 4949 mutex_enter(&ct->ct_lock); 4950 mutex_enter(&pp->p_lock); 4951 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 4952 mutex_exit(&pp->p_lock); 4953 mutex_exit(&ct->ct_lock); 4954 mutex_exit(&zonehash_lock); 4955 err = EINVAL; 4956 goto out; 4957 } 4958 4959 /* 4960 * Moreover, we don't allow processes whose encapsulating 4961 * process contracts have inherited extrazonal contracts. 4962 * While it would be easier to eliminate all process contracts 4963 * with inherited contracts, we need to be able to give a 4964 * restarted init (or other zone-penetrating process) its 4965 * predecessor's contracts. 4966 */ 4967 if (ctp->conp_ninherited != 0) { 4968 contract_t *next; 4969 for (next = list_head(&ctp->conp_inherited); next; 4970 next = list_next(&ctp->conp_inherited, next)) { 4971 if (contract_getzuniqid(next) != zone->zone_uniqid) { 4972 mutex_exit(&pp->p_lock); 4973 mutex_exit(&ct->ct_lock); 4974 mutex_exit(&zonehash_lock); 4975 err = EINVAL; 4976 goto out; 4977 } 4978 } 4979 } 4980 4981 mutex_exit(&pp->p_lock); 4982 mutex_exit(&ct->ct_lock); 4983 4984 status = zone_status_get(zone); 4985 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 4986 /* 4987 * Can't join 4988 */ 4989 mutex_exit(&zonehash_lock); 4990 err = EINVAL; 4991 goto out; 4992 } 4993 4994 /* 4995 * Make sure new priv set is within the permitted set for caller 4996 */ 4997 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 4998 mutex_exit(&zonehash_lock); 4999 err = EPERM; 5000 goto out; 5001 } 5002 /* 5003 * We want to momentarily drop zonehash_lock while we optimistically 5004 * bind curproc to the pool it should be running in. This is safe 5005 * since the zone can't disappear (we have a hold on it). 5006 */ 5007 zone_hold(zone); 5008 mutex_exit(&zonehash_lock); 5009 5010 /* 5011 * Grab pool_lock to keep the pools configuration from changing 5012 * and to stop ourselves from getting rebound to another pool 5013 * until we join the zone. 5014 */ 5015 if (pool_lock_intr() != 0) { 5016 zone_rele(zone); 5017 err = EINTR; 5018 goto out; 5019 } 5020 ASSERT(secpolicy_pool(CRED()) == 0); 5021 /* 5022 * Bind ourselves to the pool currently associated with the zone. 5023 */ 5024 oldpool = curproc->p_pool; 5025 newpool = zone_pool_get(zone); 5026 if (pool_state == POOL_ENABLED && newpool != oldpool && 5027 (err = pool_do_bind(newpool, P_PID, P_MYID, 5028 POOL_BIND_ALL)) != 0) { 5029 pool_unlock(); 5030 zone_rele(zone); 5031 goto out; 5032 } 5033 5034 /* 5035 * Grab cpu_lock now; we'll need it later when we call 5036 * task_join(). 5037 */ 5038 mutex_enter(&cpu_lock); 5039 mutex_enter(&zonehash_lock); 5040 /* 5041 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5042 */ 5043 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5044 /* 5045 * Can't join anymore. 5046 */ 5047 mutex_exit(&zonehash_lock); 5048 mutex_exit(&cpu_lock); 5049 if (pool_state == POOL_ENABLED && 5050 newpool != oldpool) 5051 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5052 POOL_BIND_ALL); 5053 pool_unlock(); 5054 zone_rele(zone); 5055 err = EINVAL; 5056 goto out; 5057 } 5058 5059 /* 5060 * a_lock must be held while transfering locked memory and swap 5061 * reservation from the global zone to the non global zone because 5062 * asynchronous faults on the processes' address space can lock 5063 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5064 * segments respectively. 5065 */ 5066 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5067 swap = as_swresv(); 5068 mutex_enter(&pp->p_lock); 5069 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5070 /* verify that we do not exceed and task or lwp limits */ 5071 mutex_enter(&zone->zone_nlwps_lock); 5072 /* add new lwps to zone and zone's proj0 */ 5073 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5074 zone->zone_nlwps += pp->p_lwpcnt; 5075 /* add 1 task to zone's proj0 */ 5076 zone_proj0->kpj_ntasks += 1; 5077 mutex_exit(&zone->zone_nlwps_lock); 5078 5079 mutex_enter(&zone->zone_mem_lock); 5080 zone->zone_locked_mem += pp->p_locked_mem; 5081 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5082 zone->zone_max_swap += swap; 5083 mutex_exit(&zone->zone_mem_lock); 5084 5085 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5086 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5087 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5088 5089 /* remove lwps from proc's old zone and old project */ 5090 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5091 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5092 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5093 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5094 5095 mutex_enter(&pp->p_zone->zone_mem_lock); 5096 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5097 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5098 pp->p_zone->zone_max_swap -= swap; 5099 mutex_exit(&pp->p_zone->zone_mem_lock); 5100 5101 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5102 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5103 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5104 5105 mutex_exit(&pp->p_lock); 5106 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5107 5108 /* 5109 * Joining the zone cannot fail from now on. 5110 * 5111 * This means that a lot of the following code can be commonized and 5112 * shared with zsched(). 5113 */ 5114 5115 /* 5116 * If the process contract fmri was inherited, we need to 5117 * flag this so that any contract status will not leak 5118 * extra zone information, svc_fmri in this case 5119 */ 5120 if (ctp->conp_svc_ctid != ct->ct_id) { 5121 mutex_enter(&ct->ct_lock); 5122 ctp->conp_svc_zone_enter = ct->ct_id; 5123 mutex_exit(&ct->ct_lock); 5124 } 5125 5126 /* 5127 * Reset the encapsulating process contract's zone. 5128 */ 5129 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5130 contract_setzuniqid(ct, zone->zone_uniqid); 5131 5132 /* 5133 * Create a new task and associate the process with the project keyed 5134 * by (projid,zoneid). 5135 * 5136 * We might as well be in project 0; the global zone's projid doesn't 5137 * make much sense in a zone anyhow. 5138 * 5139 * This also increments zone_ntasks, and returns with p_lock held. 5140 */ 5141 tk = task_create(0, zone); 5142 oldtk = task_join(tk, 0); 5143 mutex_exit(&cpu_lock); 5144 5145 pp->p_flag |= SZONETOP; 5146 pp->p_zone = zone; 5147 5148 /* 5149 * call RCTLOP_SET functions on this proc 5150 */ 5151 e.rcep_p.zone = zone; 5152 e.rcep_t = RCENTITY_ZONE; 5153 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5154 RCD_CALLBACK); 5155 mutex_exit(&pp->p_lock); 5156 5157 /* 5158 * We don't need to hold any of zsched's locks here; not only do we know 5159 * the process and zone aren't going away, we know its session isn't 5160 * changing either. 5161 * 5162 * By joining zsched's session here, we mimic the behavior in the 5163 * global zone of init's sid being the pid of sched. We extend this 5164 * to all zlogin-like zone_enter()'ing processes as well. 5165 */ 5166 mutex_enter(&pidlock); 5167 sp = zone->zone_zsched->p_sessp; 5168 sess_hold(zone->zone_zsched); 5169 mutex_enter(&pp->p_lock); 5170 pgexit(pp); 5171 sess_rele(pp->p_sessp, B_TRUE); 5172 pp->p_sessp = sp; 5173 pgjoin(pp, zone->zone_zsched->p_pidp); 5174 5175 /* 5176 * If any threads are scheduled to be placed on zone wait queue they 5177 * should abandon the idea since the wait queue is changing. 5178 * We need to be holding pidlock & p_lock to do this. 5179 */ 5180 if ((t = pp->p_tlist) != NULL) { 5181 do { 5182 thread_lock(t); 5183 /* 5184 * Kick this thread so that he doesn't sit 5185 * on a wrong wait queue. 5186 */ 5187 if (ISWAITING(t)) 5188 setrun_locked(t); 5189 5190 if (t->t_schedflag & TS_ANYWAITQ) 5191 t->t_schedflag &= ~ TS_ANYWAITQ; 5192 5193 thread_unlock(t); 5194 } while ((t = t->t_forw) != pp->p_tlist); 5195 } 5196 5197 /* 5198 * If there is a default scheduling class for the zone and it is not 5199 * the class we are currently in, change all of the threads in the 5200 * process to the new class. We need to be holding pidlock & p_lock 5201 * when we call parmsset so this is a good place to do it. 5202 */ 5203 if (zone->zone_defaultcid > 0 && 5204 zone->zone_defaultcid != curthread->t_cid) { 5205 pcparms_t pcparms; 5206 5207 pcparms.pc_cid = zone->zone_defaultcid; 5208 pcparms.pc_clparms[0] = 0; 5209 5210 /* 5211 * If setting the class fails, we still want to enter the zone. 5212 */ 5213 if ((t = pp->p_tlist) != NULL) { 5214 do { 5215 (void) parmsset(&pcparms, t); 5216 } while ((t = t->t_forw) != pp->p_tlist); 5217 } 5218 } 5219 5220 mutex_exit(&pp->p_lock); 5221 mutex_exit(&pidlock); 5222 5223 mutex_exit(&zonehash_lock); 5224 /* 5225 * We're firmly in the zone; let pools progress. 5226 */ 5227 pool_unlock(); 5228 task_rele(oldtk); 5229 /* 5230 * We don't need to retain a hold on the zone since we already 5231 * incremented zone_ntasks, so the zone isn't going anywhere. 5232 */ 5233 zone_rele(zone); 5234 5235 /* 5236 * Chroot 5237 */ 5238 vp = zone->zone_rootvp; 5239 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 5240 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 5241 5242 /* 5243 * Change process credentials 5244 */ 5245 newcr = cralloc(); 5246 mutex_enter(&pp->p_crlock); 5247 cr = pp->p_cred; 5248 crcopy_to(cr, newcr); 5249 crsetzone(newcr, zone); 5250 pp->p_cred = newcr; 5251 5252 /* 5253 * Restrict all process privilege sets to zone limit 5254 */ 5255 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 5256 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 5257 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 5258 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 5259 mutex_exit(&pp->p_crlock); 5260 crset(pp, newcr); 5261 5262 /* 5263 * Adjust upcount to reflect zone entry. 5264 */ 5265 uid = crgetruid(newcr); 5266 mutex_enter(&pidlock); 5267 upcount_dec(uid, GLOBAL_ZONEID); 5268 upcount_inc(uid, zoneid); 5269 mutex_exit(&pidlock); 5270 5271 /* 5272 * Set up core file path and content. 5273 */ 5274 set_core_defaults(); 5275 5276 out: 5277 /* 5278 * Let the other lwps continue. 5279 */ 5280 mutex_enter(&pp->p_lock); 5281 if (curthread != pp->p_agenttp) 5282 continuelwps(pp); 5283 mutex_exit(&pp->p_lock); 5284 5285 return (err != 0 ? set_errno(err) : 0); 5286 } 5287 5288 /* 5289 * Systemcall entry point for zone_list(2). 5290 * 5291 * Processes running in a (non-global) zone only see themselves. 5292 * On labeled systems, they see all zones whose label they dominate. 5293 */ 5294 static int 5295 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 5296 { 5297 zoneid_t *zoneids; 5298 zone_t *zone, *myzone; 5299 uint_t user_nzones, real_nzones; 5300 uint_t domi_nzones; 5301 int error; 5302 5303 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 5304 return (set_errno(EFAULT)); 5305 5306 myzone = curproc->p_zone; 5307 if (myzone != global_zone) { 5308 bslabel_t *mybslab; 5309 5310 if (!is_system_labeled()) { 5311 /* just return current zone */ 5312 real_nzones = domi_nzones = 1; 5313 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 5314 zoneids[0] = myzone->zone_id; 5315 } else { 5316 /* return all zones that are dominated */ 5317 mutex_enter(&zonehash_lock); 5318 real_nzones = zonecount; 5319 domi_nzones = 0; 5320 if (real_nzones > 0) { 5321 zoneids = kmem_alloc(real_nzones * 5322 sizeof (zoneid_t), KM_SLEEP); 5323 mybslab = label2bslabel(myzone->zone_slabel); 5324 for (zone = list_head(&zone_active); 5325 zone != NULL; 5326 zone = list_next(&zone_active, zone)) { 5327 if (zone->zone_id == GLOBAL_ZONEID) 5328 continue; 5329 if (zone != myzone && 5330 (zone->zone_flags & ZF_IS_SCRATCH)) 5331 continue; 5332 /* 5333 * Note that a label always dominates 5334 * itself, so myzone is always included 5335 * in the list. 5336 */ 5337 if (bldominates(mybslab, 5338 label2bslabel(zone->zone_slabel))) { 5339 zoneids[domi_nzones++] = 5340 zone->zone_id; 5341 } 5342 } 5343 } 5344 mutex_exit(&zonehash_lock); 5345 } 5346 } else { 5347 mutex_enter(&zonehash_lock); 5348 real_nzones = zonecount; 5349 domi_nzones = 0; 5350 if (real_nzones > 0) { 5351 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 5352 KM_SLEEP); 5353 for (zone = list_head(&zone_active); zone != NULL; 5354 zone = list_next(&zone_active, zone)) 5355 zoneids[domi_nzones++] = zone->zone_id; 5356 ASSERT(domi_nzones == real_nzones); 5357 } 5358 mutex_exit(&zonehash_lock); 5359 } 5360 5361 /* 5362 * If user has allocated space for fewer entries than we found, then 5363 * return only up to his limit. Either way, tell him exactly how many 5364 * we found. 5365 */ 5366 if (domi_nzones < user_nzones) 5367 user_nzones = domi_nzones; 5368 error = 0; 5369 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 5370 error = EFAULT; 5371 } else if (zoneidlist != NULL && user_nzones != 0) { 5372 if (copyout(zoneids, zoneidlist, 5373 user_nzones * sizeof (zoneid_t)) != 0) 5374 error = EFAULT; 5375 } 5376 5377 if (real_nzones > 0) 5378 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 5379 5380 if (error != 0) 5381 return (set_errno(error)); 5382 else 5383 return (0); 5384 } 5385 5386 /* 5387 * Systemcall entry point for zone_lookup(2). 5388 * 5389 * Non-global zones are only able to see themselves and (on labeled systems) 5390 * the zones they dominate. 5391 */ 5392 static zoneid_t 5393 zone_lookup(const char *zone_name) 5394 { 5395 char *kname; 5396 zone_t *zone; 5397 zoneid_t zoneid; 5398 int err; 5399 5400 if (zone_name == NULL) { 5401 /* return caller's zone id */ 5402 return (getzoneid()); 5403 } 5404 5405 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 5406 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 5407 kmem_free(kname, ZONENAME_MAX); 5408 return (set_errno(err)); 5409 } 5410 5411 mutex_enter(&zonehash_lock); 5412 zone = zone_find_all_by_name(kname); 5413 kmem_free(kname, ZONENAME_MAX); 5414 /* 5415 * In a non-global zone, can only lookup global and own name. 5416 * In Trusted Extensions zone label dominance rules apply. 5417 */ 5418 if (zone == NULL || 5419 zone_status_get(zone) < ZONE_IS_READY || 5420 !zone_list_access(zone)) { 5421 mutex_exit(&zonehash_lock); 5422 return (set_errno(EINVAL)); 5423 } else { 5424 zoneid = zone->zone_id; 5425 mutex_exit(&zonehash_lock); 5426 return (zoneid); 5427 } 5428 } 5429 5430 static int 5431 zone_version(int *version_arg) 5432 { 5433 int version = ZONE_SYSCALL_API_VERSION; 5434 5435 if (copyout(&version, version_arg, sizeof (int)) != 0) 5436 return (set_errno(EFAULT)); 5437 return (0); 5438 } 5439 5440 /* ARGSUSED */ 5441 long 5442 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 5443 { 5444 zone_def zs; 5445 5446 switch (cmd) { 5447 case ZONE_CREATE: 5448 if (get_udatamodel() == DATAMODEL_NATIVE) { 5449 if (copyin(arg1, &zs, sizeof (zone_def))) { 5450 return (set_errno(EFAULT)); 5451 } 5452 } else { 5453 #ifdef _SYSCALL32_IMPL 5454 zone_def32 zs32; 5455 5456 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 5457 return (set_errno(EFAULT)); 5458 } 5459 zs.zone_name = 5460 (const char *)(unsigned long)zs32.zone_name; 5461 zs.zone_root = 5462 (const char *)(unsigned long)zs32.zone_root; 5463 zs.zone_privs = 5464 (const struct priv_set *) 5465 (unsigned long)zs32.zone_privs; 5466 zs.zone_privssz = zs32.zone_privssz; 5467 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 5468 zs.rctlbufsz = zs32.rctlbufsz; 5469 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 5470 zs.zfsbufsz = zs32.zfsbufsz; 5471 zs.extended_error = 5472 (int *)(unsigned long)zs32.extended_error; 5473 zs.match = zs32.match; 5474 zs.doi = zs32.doi; 5475 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 5476 zs.flags = zs32.flags; 5477 #else 5478 panic("get_udatamodel() returned bogus result\n"); 5479 #endif 5480 } 5481 5482 return (zone_create(zs.zone_name, zs.zone_root, 5483 zs.zone_privs, zs.zone_privssz, 5484 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 5485 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 5486 zs.extended_error, zs.match, zs.doi, 5487 zs.label, zs.flags)); 5488 case ZONE_BOOT: 5489 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 5490 case ZONE_DESTROY: 5491 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 5492 case ZONE_GETATTR: 5493 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 5494 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5495 case ZONE_SETATTR: 5496 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 5497 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 5498 case ZONE_ENTER: 5499 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 5500 case ZONE_LIST: 5501 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 5502 case ZONE_SHUTDOWN: 5503 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 5504 case ZONE_LOOKUP: 5505 return (zone_lookup((const char *)arg1)); 5506 case ZONE_VERSION: 5507 return (zone_version((int *)arg1)); 5508 case ZONE_ADD_DATALINK: 5509 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 5510 (char *)arg2)); 5511 case ZONE_DEL_DATALINK: 5512 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 5513 (char *)arg2)); 5514 case ZONE_CHECK_DATALINK: 5515 return (zone_check_datalink((zoneid_t *)arg1, (char *)arg2)); 5516 case ZONE_LIST_DATALINK: 5517 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 5518 (int *)arg2, (char *)arg3)); 5519 default: 5520 return (set_errno(EINVAL)); 5521 } 5522 } 5523 5524 struct zarg { 5525 zone_t *zone; 5526 zone_cmd_arg_t arg; 5527 }; 5528 5529 static int 5530 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 5531 { 5532 char *buf; 5533 size_t buflen; 5534 int error; 5535 5536 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 5537 buf = kmem_alloc(buflen, KM_SLEEP); 5538 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 5539 error = door_ki_open(buf, doorp); 5540 kmem_free(buf, buflen); 5541 return (error); 5542 } 5543 5544 static void 5545 zone_release_door(door_handle_t *doorp) 5546 { 5547 door_ki_rele(*doorp); 5548 *doorp = NULL; 5549 } 5550 5551 static void 5552 zone_ki_call_zoneadmd(struct zarg *zargp) 5553 { 5554 door_handle_t door = NULL; 5555 door_arg_t darg, save_arg; 5556 char *zone_name; 5557 size_t zone_namelen; 5558 zoneid_t zoneid; 5559 zone_t *zone; 5560 zone_cmd_arg_t arg; 5561 uint64_t uniqid; 5562 size_t size; 5563 int error; 5564 int retry; 5565 5566 zone = zargp->zone; 5567 arg = zargp->arg; 5568 kmem_free(zargp, sizeof (*zargp)); 5569 5570 zone_namelen = strlen(zone->zone_name) + 1; 5571 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 5572 bcopy(zone->zone_name, zone_name, zone_namelen); 5573 zoneid = zone->zone_id; 5574 uniqid = zone->zone_uniqid; 5575 /* 5576 * zoneadmd may be down, but at least we can empty out the zone. 5577 * We can ignore the return value of zone_empty() since we're called 5578 * from a kernel thread and know we won't be delivered any signals. 5579 */ 5580 ASSERT(curproc == &p0); 5581 (void) zone_empty(zone); 5582 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 5583 zone_rele(zone); 5584 5585 size = sizeof (arg); 5586 darg.rbuf = (char *)&arg; 5587 darg.data_ptr = (char *)&arg; 5588 darg.rsize = size; 5589 darg.data_size = size; 5590 darg.desc_ptr = NULL; 5591 darg.desc_num = 0; 5592 5593 save_arg = darg; 5594 /* 5595 * Since we're not holding a reference to the zone, any number of 5596 * things can go wrong, including the zone disappearing before we get a 5597 * chance to talk to zoneadmd. 5598 */ 5599 for (retry = 0; /* forever */; retry++) { 5600 if (door == NULL && 5601 (error = zone_lookup_door(zone_name, &door)) != 0) { 5602 goto next; 5603 } 5604 ASSERT(door != NULL); 5605 5606 if ((error = door_ki_upcall_limited(door, &darg, NULL, 5607 SIZE_MAX, 0)) == 0) { 5608 break; 5609 } 5610 switch (error) { 5611 case EINTR: 5612 /* FALLTHROUGH */ 5613 case EAGAIN: /* process may be forking */ 5614 /* 5615 * Back off for a bit 5616 */ 5617 break; 5618 case EBADF: 5619 zone_release_door(&door); 5620 if (zone_lookup_door(zone_name, &door) != 0) { 5621 /* 5622 * zoneadmd may be dead, but it may come back to 5623 * life later. 5624 */ 5625 break; 5626 } 5627 break; 5628 default: 5629 cmn_err(CE_WARN, 5630 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 5631 error); 5632 goto out; 5633 } 5634 next: 5635 /* 5636 * If this isn't the same zone_t that we originally had in mind, 5637 * then this is the same as if two kadmin requests come in at 5638 * the same time: the first one wins. This means we lose, so we 5639 * bail. 5640 */ 5641 if ((zone = zone_find_by_id(zoneid)) == NULL) { 5642 /* 5643 * Problem is solved. 5644 */ 5645 break; 5646 } 5647 if (zone->zone_uniqid != uniqid) { 5648 /* 5649 * zoneid recycled 5650 */ 5651 zone_rele(zone); 5652 break; 5653 } 5654 /* 5655 * We could zone_status_timedwait(), but there doesn't seem to 5656 * be much point in doing that (plus, it would mean that 5657 * zone_free() isn't called until this thread exits). 5658 */ 5659 zone_rele(zone); 5660 delay(hz); 5661 darg = save_arg; 5662 } 5663 out: 5664 if (door != NULL) { 5665 zone_release_door(&door); 5666 } 5667 kmem_free(zone_name, zone_namelen); 5668 thread_exit(); 5669 } 5670 5671 /* 5672 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 5673 * kadmin(). The caller is a process in the zone. 5674 * 5675 * In order to shutdown the zone, we will hand off control to zoneadmd 5676 * (running in the global zone) via a door. We do a half-hearted job at 5677 * killing all processes in the zone, create a kernel thread to contact 5678 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 5679 * a form of generation number used to let zoneadmd (as well as 5680 * zone_destroy()) know exactly which zone they're re talking about. 5681 */ 5682 int 5683 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 5684 { 5685 struct zarg *zargp; 5686 zone_cmd_t zcmd; 5687 zone_t *zone; 5688 5689 zone = curproc->p_zone; 5690 ASSERT(getzoneid() != GLOBAL_ZONEID); 5691 5692 switch (cmd) { 5693 case A_SHUTDOWN: 5694 switch (fcn) { 5695 case AD_HALT: 5696 case AD_POWEROFF: 5697 zcmd = Z_HALT; 5698 break; 5699 case AD_BOOT: 5700 zcmd = Z_REBOOT; 5701 break; 5702 case AD_IBOOT: 5703 case AD_SBOOT: 5704 case AD_SIBOOT: 5705 case AD_NOSYNC: 5706 return (ENOTSUP); 5707 default: 5708 return (EINVAL); 5709 } 5710 break; 5711 case A_REBOOT: 5712 zcmd = Z_REBOOT; 5713 break; 5714 case A_FTRACE: 5715 case A_REMOUNT: 5716 case A_FREEZE: 5717 case A_DUMP: 5718 return (ENOTSUP); 5719 default: 5720 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 5721 return (EINVAL); 5722 } 5723 5724 if (secpolicy_zone_admin(credp, B_FALSE)) 5725 return (EPERM); 5726 mutex_enter(&zone_status_lock); 5727 5728 /* 5729 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 5730 * is in the zone. 5731 */ 5732 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 5733 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 5734 /* 5735 * This zone is already on its way down. 5736 */ 5737 mutex_exit(&zone_status_lock); 5738 return (0); 5739 } 5740 /* 5741 * Prevent future zone_enter()s 5742 */ 5743 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 5744 mutex_exit(&zone_status_lock); 5745 5746 /* 5747 * Kill everyone now and call zoneadmd later. 5748 * zone_ki_call_zoneadmd() will do a more thorough job of this 5749 * later. 5750 */ 5751 killall(zone->zone_id); 5752 /* 5753 * Now, create the thread to contact zoneadmd and do the rest of the 5754 * work. This thread can't be created in our zone otherwise 5755 * zone_destroy() would deadlock. 5756 */ 5757 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 5758 zargp->arg.cmd = zcmd; 5759 zargp->arg.uniqid = zone->zone_uniqid; 5760 zargp->zone = zone; 5761 (void) strcpy(zargp->arg.locale, "C"); 5762 /* mdep was already copied in for us by uadmin */ 5763 if (mdep != NULL) 5764 (void) strlcpy(zargp->arg.bootbuf, mdep, 5765 sizeof (zargp->arg.bootbuf)); 5766 zone_hold(zone); 5767 5768 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 5769 TS_RUN, minclsyspri); 5770 exit(CLD_EXITED, 0); 5771 5772 return (EINVAL); 5773 } 5774 5775 /* 5776 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 5777 * status to ZONE_IS_SHUTTING_DOWN. 5778 */ 5779 void 5780 zone_shutdown_global(void) 5781 { 5782 ASSERT(curproc->p_zone == global_zone); 5783 5784 mutex_enter(&zone_status_lock); 5785 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 5786 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 5787 mutex_exit(&zone_status_lock); 5788 } 5789 5790 /* 5791 * Returns true if the named dataset is visible in the current zone. 5792 * The 'write' parameter is set to 1 if the dataset is also writable. 5793 */ 5794 int 5795 zone_dataset_visible(const char *dataset, int *write) 5796 { 5797 zone_dataset_t *zd; 5798 size_t len; 5799 zone_t *zone = curproc->p_zone; 5800 5801 if (dataset[0] == '\0') 5802 return (0); 5803 5804 /* 5805 * Walk the list once, looking for datasets which match exactly, or 5806 * specify a dataset underneath an exported dataset. If found, return 5807 * true and note that it is writable. 5808 */ 5809 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5810 zd = list_next(&zone->zone_datasets, zd)) { 5811 5812 len = strlen(zd->zd_dataset); 5813 if (strlen(dataset) >= len && 5814 bcmp(dataset, zd->zd_dataset, len) == 0 && 5815 (dataset[len] == '\0' || dataset[len] == '/' || 5816 dataset[len] == '@')) { 5817 if (write) 5818 *write = 1; 5819 return (1); 5820 } 5821 } 5822 5823 /* 5824 * Walk the list a second time, searching for datasets which are parents 5825 * of exported datasets. These should be visible, but read-only. 5826 * 5827 * Note that we also have to support forms such as 'pool/dataset/', with 5828 * a trailing slash. 5829 */ 5830 for (zd = list_head(&zone->zone_datasets); zd != NULL; 5831 zd = list_next(&zone->zone_datasets, zd)) { 5832 5833 len = strlen(dataset); 5834 if (dataset[len - 1] == '/') 5835 len--; /* Ignore trailing slash */ 5836 if (len < strlen(zd->zd_dataset) && 5837 bcmp(dataset, zd->zd_dataset, len) == 0 && 5838 zd->zd_dataset[len] == '/') { 5839 if (write) 5840 *write = 0; 5841 return (1); 5842 } 5843 } 5844 5845 return (0); 5846 } 5847 5848 /* 5849 * zone_find_by_any_path() - 5850 * 5851 * kernel-private routine similar to zone_find_by_path(), but which 5852 * effectively compares against zone paths rather than zonerootpath 5853 * (i.e., the last component of zonerootpaths, which should be "root/", 5854 * are not compared.) This is done in order to accurately identify all 5855 * paths, whether zone-visible or not, including those which are parallel 5856 * to /root/, such as /dev/, /home/, etc... 5857 * 5858 * If the specified path does not fall under any zone path then global 5859 * zone is returned. 5860 * 5861 * The treat_abs parameter indicates whether the path should be treated as 5862 * an absolute path although it does not begin with "/". (This supports 5863 * nfs mount syntax such as host:any/path.) 5864 * 5865 * The caller is responsible for zone_rele of the returned zone. 5866 */ 5867 zone_t * 5868 zone_find_by_any_path(const char *path, boolean_t treat_abs) 5869 { 5870 zone_t *zone; 5871 int path_offset = 0; 5872 5873 if (path == NULL) { 5874 zone_hold(global_zone); 5875 return (global_zone); 5876 } 5877 5878 if (*path != '/') { 5879 ASSERT(treat_abs); 5880 path_offset = 1; 5881 } 5882 5883 mutex_enter(&zonehash_lock); 5884 for (zone = list_head(&zone_active); zone != NULL; 5885 zone = list_next(&zone_active, zone)) { 5886 char *c; 5887 size_t pathlen; 5888 char *rootpath_start; 5889 5890 if (zone == global_zone) /* skip global zone */ 5891 continue; 5892 5893 /* scan backwards to find start of last component */ 5894 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 5895 do { 5896 c--; 5897 } while (*c != '/'); 5898 5899 pathlen = c - zone->zone_rootpath + 1 - path_offset; 5900 rootpath_start = (zone->zone_rootpath + path_offset); 5901 if (strncmp(path, rootpath_start, pathlen) == 0) 5902 break; 5903 } 5904 if (zone == NULL) 5905 zone = global_zone; 5906 zone_hold(zone); 5907 mutex_exit(&zonehash_lock); 5908 return (zone); 5909 } 5910 5911 /* List of data link names which are accessible from the zone */ 5912 struct dlnamelist { 5913 char dlnl_name[LIFNAMSIZ]; 5914 struct dlnamelist *dlnl_next; 5915 }; 5916 5917 5918 /* 5919 * Check whether the datalink name (dlname) itself is present. 5920 * Return true if found. 5921 */ 5922 static boolean_t 5923 zone_dlname(zone_t *zone, char *dlname) 5924 { 5925 struct dlnamelist *dlnl; 5926 boolean_t found = B_FALSE; 5927 5928 mutex_enter(&zone->zone_lock); 5929 for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) { 5930 if (strncmp(dlnl->dlnl_name, dlname, LIFNAMSIZ) == 0) { 5931 found = B_TRUE; 5932 break; 5933 } 5934 } 5935 mutex_exit(&zone->zone_lock); 5936 return (found); 5937 } 5938 5939 /* 5940 * Add an data link name for the zone. Does not check for duplicates. 5941 */ 5942 static int 5943 zone_add_datalink(zoneid_t zoneid, char *dlname) 5944 { 5945 struct dlnamelist *dlnl; 5946 zone_t *zone; 5947 zone_t *thiszone; 5948 int err; 5949 5950 dlnl = kmem_zalloc(sizeof (struct dlnamelist), KM_SLEEP); 5951 if ((err = copyinstr(dlname, dlnl->dlnl_name, LIFNAMSIZ, NULL)) != 0) { 5952 kmem_free(dlnl, sizeof (struct dlnamelist)); 5953 return (set_errno(err)); 5954 } 5955 5956 thiszone = zone_find_by_id(zoneid); 5957 if (thiszone == NULL) { 5958 kmem_free(dlnl, sizeof (struct dlnamelist)); 5959 return (set_errno(ENXIO)); 5960 } 5961 5962 /* 5963 * Verify that the datalink name isn't already used by a different 5964 * zone while allowing duplicate entries for the same zone (e.g. due 5965 * to both using IPv4 and IPv6 on an interface) 5966 */ 5967 mutex_enter(&zonehash_lock); 5968 for (zone = list_head(&zone_active); zone != NULL; 5969 zone = list_next(&zone_active, zone)) { 5970 if (zone->zone_id == zoneid) 5971 continue; 5972 5973 if (zone_dlname(zone, dlnl->dlnl_name)) { 5974 mutex_exit(&zonehash_lock); 5975 zone_rele(thiszone); 5976 kmem_free(dlnl, sizeof (struct dlnamelist)); 5977 return (set_errno(EPERM)); 5978 } 5979 } 5980 mutex_enter(&thiszone->zone_lock); 5981 dlnl->dlnl_next = thiszone->zone_dl_list; 5982 thiszone->zone_dl_list = dlnl; 5983 mutex_exit(&thiszone->zone_lock); 5984 mutex_exit(&zonehash_lock); 5985 zone_rele(thiszone); 5986 return (0); 5987 } 5988 5989 static int 5990 zone_remove_datalink(zoneid_t zoneid, char *dlname) 5991 { 5992 struct dlnamelist *dlnl, *odlnl, **dlnlp; 5993 zone_t *zone; 5994 int err; 5995 5996 dlnl = kmem_zalloc(sizeof (struct dlnamelist), KM_SLEEP); 5997 if ((err = copyinstr(dlname, dlnl->dlnl_name, LIFNAMSIZ, NULL)) != 0) { 5998 kmem_free(dlnl, sizeof (struct dlnamelist)); 5999 return (set_errno(err)); 6000 } 6001 zone = zone_find_by_id(zoneid); 6002 if (zone == NULL) { 6003 kmem_free(dlnl, sizeof (struct dlnamelist)); 6004 return (set_errno(EINVAL)); 6005 } 6006 6007 mutex_enter(&zone->zone_lock); 6008 /* Look for match */ 6009 dlnlp = &zone->zone_dl_list; 6010 while (*dlnlp != NULL) { 6011 if (strncmp(dlnl->dlnl_name, (*dlnlp)->dlnl_name, 6012 LIFNAMSIZ) == 0) 6013 goto found; 6014 dlnlp = &((*dlnlp)->dlnl_next); 6015 } 6016 mutex_exit(&zone->zone_lock); 6017 zone_rele(zone); 6018 kmem_free(dlnl, sizeof (struct dlnamelist)); 6019 return (set_errno(ENXIO)); 6020 6021 found: 6022 odlnl = *dlnlp; 6023 *dlnlp = (*dlnlp)->dlnl_next; 6024 kmem_free(odlnl, sizeof (struct dlnamelist)); 6025 6026 mutex_exit(&zone->zone_lock); 6027 zone_rele(zone); 6028 kmem_free(dlnl, sizeof (struct dlnamelist)); 6029 return (0); 6030 } 6031 6032 /* 6033 * Using the zoneidp as ALL_ZONES, we can lookup which zone is using datalink 6034 * name (dlname); otherwise we just check if the specified zoneidp has access 6035 * to the datalink name. 6036 */ 6037 static int 6038 zone_check_datalink(zoneid_t *zoneidp, char *dlname) 6039 { 6040 zoneid_t id; 6041 char *dln; 6042 zone_t *zone; 6043 int err = 0; 6044 boolean_t allzones = B_FALSE; 6045 6046 if (copyin(zoneidp, &id, sizeof (id)) != 0) { 6047 return (set_errno(EFAULT)); 6048 } 6049 dln = kmem_zalloc(LIFNAMSIZ, KM_SLEEP); 6050 if ((err = copyinstr(dlname, dln, LIFNAMSIZ, NULL)) != 0) { 6051 kmem_free(dln, LIFNAMSIZ); 6052 return (set_errno(err)); 6053 } 6054 6055 if (id == ALL_ZONES) 6056 allzones = B_TRUE; 6057 6058 /* 6059 * Check whether datalink name is already used. 6060 */ 6061 mutex_enter(&zonehash_lock); 6062 for (zone = list_head(&zone_active); zone != NULL; 6063 zone = list_next(&zone_active, zone)) { 6064 if (allzones || (id == zone->zone_id)) { 6065 if (!zone_dlname(zone, dln)) 6066 continue; 6067 if (allzones) 6068 err = copyout(&zone->zone_id, zoneidp, 6069 sizeof (*zoneidp)); 6070 6071 mutex_exit(&zonehash_lock); 6072 kmem_free(dln, LIFNAMSIZ); 6073 return (err ? set_errno(EFAULT) : 0); 6074 } 6075 } 6076 6077 /* datalink name is not found in any active zone. */ 6078 mutex_exit(&zonehash_lock); 6079 kmem_free(dln, LIFNAMSIZ); 6080 return (set_errno(ENXIO)); 6081 } 6082 6083 /* 6084 * Get the names of the datalinks assigned to a zone. 6085 * Here *nump is the number of datalinks, and the assumption 6086 * is that the caller will guarantee that the the supplied buffer is 6087 * big enough to hold at least #*nump datalink names, that is, 6088 * LIFNAMSIZ X *nump 6089 * On return, *nump will be the "new" number of datalinks, if it 6090 * ever changed. 6091 */ 6092 static int 6093 zone_list_datalink(zoneid_t zoneid, int *nump, char *buf) 6094 { 6095 int num, dlcount; 6096 zone_t *zone; 6097 struct dlnamelist *dlnl; 6098 char *ptr; 6099 6100 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6101 return (set_errno(EFAULT)); 6102 6103 zone = zone_find_by_id(zoneid); 6104 if (zone == NULL) { 6105 return (set_errno(ENXIO)); 6106 } 6107 6108 num = 0; 6109 mutex_enter(&zone->zone_lock); 6110 ptr = buf; 6111 for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) { 6112 /* 6113 * If the list changed and the new number is bigger 6114 * than what the caller supplied, just count, don't 6115 * do copyout 6116 */ 6117 if (++num > dlcount) 6118 continue; 6119 if (copyout(dlnl->dlnl_name, ptr, LIFNAMSIZ) != 0) { 6120 mutex_exit(&zone->zone_lock); 6121 zone_rele(zone); 6122 return (set_errno(EFAULT)); 6123 } 6124 ptr += LIFNAMSIZ; 6125 } 6126 mutex_exit(&zone->zone_lock); 6127 zone_rele(zone); 6128 6129 /* Increased or decreased, caller should be notified. */ 6130 if (num != dlcount) { 6131 if (copyout(&num, nump, sizeof (num)) != 0) { 6132 return (set_errno(EFAULT)); 6133 } 6134 } 6135 return (0); 6136 } 6137 6138 /* 6139 * Public interface for looking up a zone by zoneid. It's a customized version 6140 * for netstack_zone_create(). It can only be called from the zsd create 6141 * callbacks, since it doesn't have reference on the zone structure hence if 6142 * it is called elsewhere the zone could disappear after the zonehash_lock 6143 * is dropped. 6144 * 6145 * Furthermore it 6146 * 1. Doesn't check the status of the zone. 6147 * 2. It will be called even before zone_init is called, in that case the 6148 * address of zone0 is returned directly, and netstack_zone_create() 6149 * will only assign a value to zone0.zone_netstack, won't break anything. 6150 * 3. Returns without the zone being held. 6151 */ 6152 zone_t * 6153 zone_find_by_id_nolock(zoneid_t zoneid) 6154 { 6155 zone_t *zone; 6156 6157 mutex_enter(&zonehash_lock); 6158 if (zonehashbyid == NULL) 6159 zone = &zone0; 6160 else 6161 zone = zone_find_all_by_id(zoneid); 6162 mutex_exit(&zonehash_lock); 6163 return (zone); 6164 } 6165 6166 /* 6167 * Walk the datalinks for a given zone 6168 */ 6169 int 6170 zone_datalink_walk(zoneid_t zoneid, int (*cb)(const char *, void *), void *data) 6171 { 6172 zone_t *zone; 6173 struct dlnamelist *dlnl; 6174 int ret = 0; 6175 6176 if ((zone = zone_find_by_id(zoneid)) == NULL) 6177 return (ENOENT); 6178 6179 mutex_enter(&zone->zone_lock); 6180 for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) { 6181 if ((ret = (*cb)(dlnl->dlnl_name, data)) != 0) 6182 break; 6183 } 6184 mutex_exit(&zone->zone_lock); 6185 zone_rele(zone); 6186 return (ret); 6187 } 6188