1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. All rights reserved. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 164 * currently just max_lofi 165 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 166 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 167 * list (a list of zones in the ZONE_IS_DEAD state). 168 * 169 * Ordering requirements: 170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 172 * 173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 176 * 177 * Blocking memory allocations are permitted while holding any of the 178 * zone locks. 179 * 180 * 181 * System Call Interface: 182 * 183 * The zone subsystem can be managed and queried from user level with 184 * the following system calls (all subcodes of the primary "zone" 185 * system call): 186 * - zone_create: creates a zone with selected attributes (name, 187 * root path, privileges, resource controls, ZFS datasets) 188 * - zone_enter: allows the current process to enter a zone 189 * - zone_getattr: reports attributes of a zone 190 * - zone_setattr: set attributes of a zone 191 * - zone_boot: set 'init' running for the zone 192 * - zone_list: lists all zones active in the system 193 * - zone_lookup: looks up zone id based on name 194 * - zone_shutdown: initiates shutdown process (see states above) 195 * - zone_destroy: completes shutdown process (see states above) 196 * 197 */ 198 199 #include <sys/priv_impl.h> 200 #include <sys/cred.h> 201 #include <c2/audit.h> 202 #include <sys/debug.h> 203 #include <sys/file.h> 204 #include <sys/kmem.h> 205 #include <sys/kstat.h> 206 #include <sys/mutex.h> 207 #include <sys/note.h> 208 #include <sys/pathname.h> 209 #include <sys/proc.h> 210 #include <sys/project.h> 211 #include <sys/sysevent.h> 212 #include <sys/task.h> 213 #include <sys/systm.h> 214 #include <sys/types.h> 215 #include <sys/utsname.h> 216 #include <sys/vnode.h> 217 #include <sys/vfs.h> 218 #include <sys/systeminfo.h> 219 #include <sys/policy.h> 220 #include <sys/cred_impl.h> 221 #include <sys/contract_impl.h> 222 #include <sys/contract/process_impl.h> 223 #include <sys/class.h> 224 #include <sys/pool.h> 225 #include <sys/pool_pset.h> 226 #include <sys/pset.h> 227 #include <sys/strlog.h> 228 #include <sys/sysmacros.h> 229 #include <sys/callb.h> 230 #include <sys/vmparam.h> 231 #include <sys/corectl.h> 232 #include <sys/ipc_impl.h> 233 #include <sys/klpd.h> 234 235 #include <sys/door.h> 236 #include <sys/cpuvar.h> 237 #include <sys/sdt.h> 238 239 #include <sys/uadmin.h> 240 #include <sys/session.h> 241 #include <sys/cmn_err.h> 242 #include <sys/modhash.h> 243 #include <sys/sunddi.h> 244 #include <sys/nvpair.h> 245 #include <sys/rctl.h> 246 #include <sys/fss.h> 247 #include <sys/brand.h> 248 #include <sys/zone.h> 249 #include <net/if.h> 250 #include <sys/cpucaps.h> 251 #include <vm/seg.h> 252 #include <sys/mac.h> 253 254 /* 255 * This constant specifies the number of seconds that threads waiting for 256 * subsystems to release a zone's general-purpose references will wait before 257 * they log the zone's reference counts. The constant's value shouldn't 258 * be so small that reference counts are unnecessarily reported for zones 259 * whose references are slowly released. On the other hand, it shouldn't be so 260 * large that users reboot their systems out of frustration over hung zones 261 * before the system logs the zones' reference counts. 262 */ 263 #define ZONE_DESTROY_TIMEOUT_SECS 60 264 265 /* List of data link IDs which are accessible from the zone */ 266 typedef struct zone_dl { 267 datalink_id_t zdl_id; 268 nvlist_t *zdl_net; 269 list_node_t zdl_linkage; 270 } zone_dl_t; 271 272 /* 273 * cv used to signal that all references to the zone have been released. This 274 * needs to be global since there may be multiple waiters, and the first to 275 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 276 */ 277 static kcondvar_t zone_destroy_cv; 278 /* 279 * Lock used to serialize access to zone_cv. This could have been per-zone, 280 * but then we'd need another lock for zone_destroy_cv, and why bother? 281 */ 282 static kmutex_t zone_status_lock; 283 284 /* 285 * ZSD-related global variables. 286 */ 287 static kmutex_t zsd_key_lock; /* protects the following two */ 288 /* 289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 290 */ 291 static zone_key_t zsd_keyval = 0; 292 /* 293 * Global list of registered keys. We use this when a new zone is created. 294 */ 295 static list_t zsd_registered_keys; 296 297 int zone_hash_size = 256; 298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 299 static kmutex_t zonehash_lock; 300 static uint_t zonecount; 301 static id_space_t *zoneid_space; 302 303 /* 304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 305 * kernel proper runs, and which manages all other zones. 306 * 307 * Although not declared as static, the variable "zone0" should not be used 308 * except for by code that needs to reference the global zone early on in boot, 309 * before it is fully initialized. All other consumers should use 310 * 'global_zone'. 311 */ 312 zone_t zone0; 313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 314 315 /* 316 * List of active zones, protected by zonehash_lock. 317 */ 318 static list_t zone_active; 319 320 /* 321 * List of destroyed zones that still have outstanding cred references. 322 * Used for debugging. Uses a separate lock to avoid lock ordering 323 * problems in zone_free. 324 */ 325 static list_t zone_deathrow; 326 static kmutex_t zone_deathrow_lock; 327 328 /* number of zones is limited by virtual interface limit in IP */ 329 uint_t maxzones = 8192; 330 331 /* Event channel to sent zone state change notifications */ 332 evchan_t *zone_event_chan; 333 334 /* 335 * This table holds the mapping from kernel zone states to 336 * states visible in the state notification API. 337 * The idea is that we only expose "obvious" states and 338 * do not expose states which are just implementation details. 339 */ 340 const char *zone_status_table[] = { 341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 342 ZONE_EVENT_INITIALIZED, /* initialized */ 343 ZONE_EVENT_READY, /* ready */ 344 ZONE_EVENT_READY, /* booting */ 345 ZONE_EVENT_RUNNING, /* running */ 346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 347 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 348 ZONE_EVENT_SHUTTING_DOWN, /* down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 350 ZONE_EVENT_UNINITIALIZED, /* dead */ 351 }; 352 353 /* 354 * This array contains the names of the subsystems listed in zone_ref_subsys_t 355 * (see sys/zone.h). 356 */ 357 static char *zone_ref_subsys_names[] = { 358 "NFS", /* ZONE_REF_NFS */ 359 "NFSv4", /* ZONE_REF_NFSV4 */ 360 "SMBFS", /* ZONE_REF_SMBFS */ 361 "MNTFS", /* ZONE_REF_MNTFS */ 362 "LOFI", /* ZONE_REF_LOFI */ 363 "VFS", /* ZONE_REF_VFS */ 364 "IPC" /* ZONE_REF_IPC */ 365 }; 366 367 /* 368 * This isn't static so lint doesn't complain. 369 */ 370 rctl_hndl_t rc_zone_cpu_shares; 371 rctl_hndl_t rc_zone_locked_mem; 372 rctl_hndl_t rc_zone_max_swap; 373 rctl_hndl_t rc_zone_max_lofi; 374 rctl_hndl_t rc_zone_cpu_cap; 375 rctl_hndl_t rc_zone_nlwps; 376 rctl_hndl_t rc_zone_nprocs; 377 rctl_hndl_t rc_zone_shmmax; 378 rctl_hndl_t rc_zone_shmmni; 379 rctl_hndl_t rc_zone_semmni; 380 rctl_hndl_t rc_zone_msgmni; 381 382 const char * const zone_default_initname = "/sbin/init"; 383 static char * const zone_prefix = "/zone/"; 384 static int zone_shutdown(zoneid_t zoneid); 385 static int zone_add_datalink(zoneid_t, datalink_id_t); 386 static int zone_remove_datalink(zoneid_t, datalink_id_t); 387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 388 static int zone_set_network(zoneid_t, zone_net_data_t *); 389 static int zone_get_network(zoneid_t, zone_net_data_t *); 390 391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 392 393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 397 zone_key_t); 398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 400 kmutex_t *); 401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 402 kmutex_t *); 403 404 /* 405 * Bump this number when you alter the zone syscall interfaces; this is 406 * because we need to have support for previous API versions in libc 407 * to support patching; libc calls into the kernel to determine this number. 408 * 409 * Version 1 of the API is the version originally shipped with Solaris 10 410 * Version 2 alters the zone_create system call in order to support more 411 * arguments by moving the args into a structure; and to do better 412 * error reporting when zone_create() fails. 413 * Version 3 alters the zone_create system call in order to support the 414 * import of ZFS datasets to zones. 415 * Version 4 alters the zone_create system call in order to support 416 * Trusted Extensions. 417 * Version 5 alters the zone_boot system call, and converts its old 418 * bootargs parameter to be set by the zone_setattr API instead. 419 * Version 6 adds the flag argument to zone_create. 420 */ 421 static const int ZONE_SYSCALL_API_VERSION = 6; 422 423 /* 424 * Certain filesystems (such as NFS and autofs) need to know which zone 425 * the mount is being placed in. Because of this, we need to be able to 426 * ensure that a zone isn't in the process of being created/destroyed such 427 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time 428 * it gets added the list of mounted zones, it ends up on the wrong zone's 429 * mount list. Since a zone can't reside on an NFS file system, we don't 430 * have to worry about the zonepath itself. 431 * 432 * The following functions: block_mounts()/resume_mounts() and 433 * mount_in_progress()/mount_completed() are used by zones and the VFS 434 * layer (respectively) to synchronize zone state transitions and new 435 * mounts within a zone. This syncronization is on a per-zone basis, so 436 * activity for one zone will not interfere with activity for another zone. 437 * 438 * The semantics are like a reader-reader lock such that there may 439 * either be multiple mounts (or zone state transitions, if that weren't 440 * serialized by zonehash_lock) in progress at the same time, but not 441 * both. 442 * 443 * We use cv's so the user can ctrl-C out of the operation if it's 444 * taking too long. 445 * 446 * The semantics are such that there is unfair bias towards the 447 * "current" operation. This means that zone halt may starve if 448 * there is a rapid succession of new mounts coming in to the zone. 449 */ 450 /* 451 * Prevent new mounts from progressing to the point of calling 452 * VFS_MOUNT(). If there are already mounts in this "region", wait for 453 * them to complete. 454 */ 455 static int 456 block_mounts(zone_t *zp) 457 { 458 int retval = 0; 459 460 /* 461 * Since it may block for a long time, block_mounts() shouldn't be 462 * called with zonehash_lock held. 463 */ 464 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 465 mutex_enter(&zp->zone_mount_lock); 466 while (zp->zone_mounts_in_progress > 0) { 467 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0) 468 goto signaled; 469 } 470 /* 471 * A negative value of mounts_in_progress indicates that mounts 472 * have been blocked by (-mounts_in_progress) different callers 473 * (remotely possible if two threads enter zone_shutdown at the same 474 * time). 475 */ 476 zp->zone_mounts_in_progress--; 477 retval = 1; 478 signaled: 479 mutex_exit(&zp->zone_mount_lock); 480 return (retval); 481 } 482 483 /* 484 * The VFS layer may progress with new mounts as far as we're concerned. 485 * Allow them to progress if we were the last obstacle. 486 */ 487 static void 488 resume_mounts(zone_t *zp) 489 { 490 mutex_enter(&zp->zone_mount_lock); 491 if (++zp->zone_mounts_in_progress == 0) 492 cv_broadcast(&zp->zone_mount_cv); 493 mutex_exit(&zp->zone_mount_lock); 494 } 495 496 /* 497 * The VFS layer is busy with a mount; this zone should wait until all 498 * of its mounts are completed to progress. 499 */ 500 void 501 mount_in_progress(zone_t *zp) 502 { 503 mutex_enter(&zp->zone_mount_lock); 504 while (zp->zone_mounts_in_progress < 0) 505 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock); 506 zp->zone_mounts_in_progress++; 507 mutex_exit(&zp->zone_mount_lock); 508 } 509 510 /* 511 * VFS is done with one mount; wake up any waiting block_mounts() 512 * callers if this is the last mount. 513 */ 514 void 515 mount_completed(zone_t *zp) 516 { 517 mutex_enter(&zp->zone_mount_lock); 518 if (--zp->zone_mounts_in_progress == 0) 519 cv_broadcast(&zp->zone_mount_cv); 520 mutex_exit(&zp->zone_mount_lock); 521 } 522 523 /* 524 * ZSD routines. 525 * 526 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 527 * defined by the pthread_key_create() and related interfaces. 528 * 529 * Kernel subsystems may register one or more data items and/or 530 * callbacks to be executed when a zone is created, shutdown, or 531 * destroyed. 532 * 533 * Unlike the thread counterpart, destructor callbacks will be executed 534 * even if the data pointer is NULL and/or there are no constructor 535 * callbacks, so it is the responsibility of such callbacks to check for 536 * NULL data values if necessary. 537 * 538 * The locking strategy and overall picture is as follows: 539 * 540 * When someone calls zone_key_create(), a template ZSD entry is added to the 541 * global list "zsd_registered_keys", protected by zsd_key_lock. While 542 * holding that lock all the existing zones are marked as 543 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 544 * zone_zsd list (protected by zone_lock). The global list is updated first 545 * (under zone_key_lock) to make sure that newly created zones use the 546 * most recent list of keys. Then under zonehash_lock we walk the zones 547 * and mark them. Similar locking is used in zone_key_delete(). 548 * 549 * The actual create, shutdown, and destroy callbacks are done without 550 * holding any lock. And zsd_flags are used to ensure that the operations 551 * completed so that when zone_key_create (and zone_create) is done, as well as 552 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 553 * are completed. 554 * 555 * When new zones are created constructor callbacks for all registered ZSD 556 * entries will be called. That also uses the above two phases of marking 557 * what needs to be done, and then running the callbacks without holding 558 * any locks. 559 * 560 * The framework does not provide any locking around zone_getspecific() and 561 * zone_setspecific() apart from that needed for internal consistency, so 562 * callers interested in atomic "test-and-set" semantics will need to provide 563 * their own locking. 564 */ 565 566 /* 567 * Helper function to find the zsd_entry associated with the key in the 568 * given list. 569 */ 570 static struct zsd_entry * 571 zsd_find(list_t *l, zone_key_t key) 572 { 573 struct zsd_entry *zsd; 574 575 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 576 if (zsd->zsd_key == key) { 577 return (zsd); 578 } 579 } 580 return (NULL); 581 } 582 583 /* 584 * Helper function to find the zsd_entry associated with the key in the 585 * given list. Move it to the front of the list. 586 */ 587 static struct zsd_entry * 588 zsd_find_mru(list_t *l, zone_key_t key) 589 { 590 struct zsd_entry *zsd; 591 592 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 593 if (zsd->zsd_key == key) { 594 /* 595 * Move to head of list to keep list in MRU order. 596 */ 597 if (zsd != list_head(l)) { 598 list_remove(l, zsd); 599 list_insert_head(l, zsd); 600 } 601 return (zsd); 602 } 603 } 604 return (NULL); 605 } 606 607 void 608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 609 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 610 { 611 struct zsd_entry *zsdp; 612 struct zsd_entry *t; 613 struct zone *zone; 614 zone_key_t key; 615 616 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 617 zsdp->zsd_data = NULL; 618 zsdp->zsd_create = create; 619 zsdp->zsd_shutdown = shutdown; 620 zsdp->zsd_destroy = destroy; 621 622 /* 623 * Insert in global list of callbacks. Makes future zone creations 624 * see it. 625 */ 626 mutex_enter(&zsd_key_lock); 627 key = zsdp->zsd_key = ++zsd_keyval; 628 ASSERT(zsd_keyval != 0); 629 list_insert_tail(&zsd_registered_keys, zsdp); 630 mutex_exit(&zsd_key_lock); 631 632 /* 633 * Insert for all existing zones and mark them as needing 634 * a create callback. 635 */ 636 mutex_enter(&zonehash_lock); /* stop the world */ 637 for (zone = list_head(&zone_active); zone != NULL; 638 zone = list_next(&zone_active, zone)) { 639 zone_status_t status; 640 641 mutex_enter(&zone->zone_lock); 642 643 /* Skip zones that are on the way down or not yet up */ 644 status = zone_status_get(zone); 645 if (status >= ZONE_IS_DOWN || 646 status == ZONE_IS_UNINITIALIZED) { 647 mutex_exit(&zone->zone_lock); 648 continue; 649 } 650 651 t = zsd_find_mru(&zone->zone_zsd, key); 652 if (t != NULL) { 653 /* 654 * A zsd_configure already inserted it after 655 * we dropped zsd_key_lock above. 656 */ 657 mutex_exit(&zone->zone_lock); 658 continue; 659 } 660 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 661 t->zsd_key = key; 662 t->zsd_create = create; 663 t->zsd_shutdown = shutdown; 664 t->zsd_destroy = destroy; 665 if (create != NULL) { 666 t->zsd_flags = ZSD_CREATE_NEEDED; 667 DTRACE_PROBE2(zsd__create__needed, 668 zone_t *, zone, zone_key_t, key); 669 } 670 list_insert_tail(&zone->zone_zsd, t); 671 mutex_exit(&zone->zone_lock); 672 } 673 mutex_exit(&zonehash_lock); 674 675 if (create != NULL) { 676 /* Now call the create callback for this key */ 677 zsd_apply_all_zones(zsd_apply_create, key); 678 } 679 /* 680 * It is safe for consumers to use the key now, make it 681 * globally visible. Specifically zone_getspecific() will 682 * always successfully return the zone specific data associated 683 * with the key. 684 */ 685 *keyp = key; 686 687 } 688 689 /* 690 * Function called when a module is being unloaded, or otherwise wishes 691 * to unregister its ZSD key and callbacks. 692 * 693 * Remove from the global list and determine the functions that need to 694 * be called under a global lock. Then call the functions without 695 * holding any locks. Finally free up the zone_zsd entries. (The apply 696 * functions need to access the zone_zsd entries to find zsd_data etc.) 697 */ 698 int 699 zone_key_delete(zone_key_t key) 700 { 701 struct zsd_entry *zsdp = NULL; 702 zone_t *zone; 703 704 mutex_enter(&zsd_key_lock); 705 zsdp = zsd_find_mru(&zsd_registered_keys, key); 706 if (zsdp == NULL) { 707 mutex_exit(&zsd_key_lock); 708 return (-1); 709 } 710 list_remove(&zsd_registered_keys, zsdp); 711 mutex_exit(&zsd_key_lock); 712 713 mutex_enter(&zonehash_lock); 714 for (zone = list_head(&zone_active); zone != NULL; 715 zone = list_next(&zone_active, zone)) { 716 struct zsd_entry *del; 717 718 mutex_enter(&zone->zone_lock); 719 del = zsd_find_mru(&zone->zone_zsd, key); 720 if (del == NULL) { 721 /* 722 * Somebody else got here first e.g the zone going 723 * away. 724 */ 725 mutex_exit(&zone->zone_lock); 726 continue; 727 } 728 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 729 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 730 if (del->zsd_shutdown != NULL && 731 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 732 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 733 DTRACE_PROBE2(zsd__shutdown__needed, 734 zone_t *, zone, zone_key_t, key); 735 } 736 if (del->zsd_destroy != NULL && 737 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 738 del->zsd_flags |= ZSD_DESTROY_NEEDED; 739 DTRACE_PROBE2(zsd__destroy__needed, 740 zone_t *, zone, zone_key_t, key); 741 } 742 mutex_exit(&zone->zone_lock); 743 } 744 mutex_exit(&zonehash_lock); 745 kmem_free(zsdp, sizeof (*zsdp)); 746 747 /* Now call the shutdown and destroy callback for this key */ 748 zsd_apply_all_zones(zsd_apply_shutdown, key); 749 zsd_apply_all_zones(zsd_apply_destroy, key); 750 751 /* Now we can free up the zsdp structures in each zone */ 752 mutex_enter(&zonehash_lock); 753 for (zone = list_head(&zone_active); zone != NULL; 754 zone = list_next(&zone_active, zone)) { 755 struct zsd_entry *del; 756 757 mutex_enter(&zone->zone_lock); 758 del = zsd_find(&zone->zone_zsd, key); 759 if (del != NULL) { 760 list_remove(&zone->zone_zsd, del); 761 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 762 kmem_free(del, sizeof (*del)); 763 } 764 mutex_exit(&zone->zone_lock); 765 } 766 mutex_exit(&zonehash_lock); 767 768 return (0); 769 } 770 771 /* 772 * ZSD counterpart of pthread_setspecific(). 773 * 774 * Since all zsd callbacks, including those with no create function, 775 * have an entry in zone_zsd, if the key is registered it is part of 776 * the zone_zsd list. 777 * Return an error if the key wasn't registerd. 778 */ 779 int 780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 781 { 782 struct zsd_entry *t; 783 784 mutex_enter(&zone->zone_lock); 785 t = zsd_find_mru(&zone->zone_zsd, key); 786 if (t != NULL) { 787 /* 788 * Replace old value with new 789 */ 790 t->zsd_data = (void *)data; 791 mutex_exit(&zone->zone_lock); 792 return (0); 793 } 794 mutex_exit(&zone->zone_lock); 795 return (-1); 796 } 797 798 /* 799 * ZSD counterpart of pthread_getspecific(). 800 */ 801 void * 802 zone_getspecific(zone_key_t key, zone_t *zone) 803 { 804 struct zsd_entry *t; 805 void *data; 806 807 mutex_enter(&zone->zone_lock); 808 t = zsd_find_mru(&zone->zone_zsd, key); 809 data = (t == NULL ? NULL : t->zsd_data); 810 mutex_exit(&zone->zone_lock); 811 return (data); 812 } 813 814 /* 815 * Function used to initialize a zone's list of ZSD callbacks and data 816 * when the zone is being created. The callbacks are initialized from 817 * the template list (zsd_registered_keys). The constructor callback is 818 * executed later (once the zone exists and with locks dropped). 819 */ 820 static void 821 zone_zsd_configure(zone_t *zone) 822 { 823 struct zsd_entry *zsdp; 824 struct zsd_entry *t; 825 826 ASSERT(MUTEX_HELD(&zonehash_lock)); 827 ASSERT(list_head(&zone->zone_zsd) == NULL); 828 mutex_enter(&zone->zone_lock); 829 mutex_enter(&zsd_key_lock); 830 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 831 zsdp = list_next(&zsd_registered_keys, zsdp)) { 832 /* 833 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 834 * should not have added anything to it. 835 */ 836 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 837 838 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 839 t->zsd_key = zsdp->zsd_key; 840 t->zsd_create = zsdp->zsd_create; 841 t->zsd_shutdown = zsdp->zsd_shutdown; 842 t->zsd_destroy = zsdp->zsd_destroy; 843 if (zsdp->zsd_create != NULL) { 844 t->zsd_flags = ZSD_CREATE_NEEDED; 845 DTRACE_PROBE2(zsd__create__needed, 846 zone_t *, zone, zone_key_t, zsdp->zsd_key); 847 } 848 list_insert_tail(&zone->zone_zsd, t); 849 } 850 mutex_exit(&zsd_key_lock); 851 mutex_exit(&zone->zone_lock); 852 } 853 854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 855 856 /* 857 * Helper function to execute shutdown or destructor callbacks. 858 */ 859 static void 860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 861 { 862 struct zsd_entry *t; 863 864 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 865 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 866 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 867 868 /* 869 * Run the callback solely based on what is registered for the zone 870 * in zone_zsd. The global list can change independently of this 871 * as keys are registered and unregistered and we don't register new 872 * callbacks for a zone that is in the process of going away. 873 */ 874 mutex_enter(&zone->zone_lock); 875 for (t = list_head(&zone->zone_zsd); t != NULL; 876 t = list_next(&zone->zone_zsd, t)) { 877 zone_key_t key = t->zsd_key; 878 879 /* Skip if no callbacks registered */ 880 881 if (ct == ZSD_SHUTDOWN) { 882 if (t->zsd_shutdown != NULL && 883 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 884 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 885 DTRACE_PROBE2(zsd__shutdown__needed, 886 zone_t *, zone, zone_key_t, key); 887 } 888 } else { 889 if (t->zsd_destroy != NULL && 890 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 891 t->zsd_flags |= ZSD_DESTROY_NEEDED; 892 DTRACE_PROBE2(zsd__destroy__needed, 893 zone_t *, zone, zone_key_t, key); 894 } 895 } 896 } 897 mutex_exit(&zone->zone_lock); 898 899 /* Now call the shutdown and destroy callback for this key */ 900 zsd_apply_all_keys(zsd_apply_shutdown, zone); 901 zsd_apply_all_keys(zsd_apply_destroy, zone); 902 903 } 904 905 /* 906 * Called when the zone is going away; free ZSD-related memory, and 907 * destroy the zone_zsd list. 908 */ 909 static void 910 zone_free_zsd(zone_t *zone) 911 { 912 struct zsd_entry *t, *next; 913 914 /* 915 * Free all the zsd_entry's we had on this zone. 916 */ 917 mutex_enter(&zone->zone_lock); 918 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 919 next = list_next(&zone->zone_zsd, t); 920 list_remove(&zone->zone_zsd, t); 921 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 922 kmem_free(t, sizeof (*t)); 923 } 924 list_destroy(&zone->zone_zsd); 925 mutex_exit(&zone->zone_lock); 926 927 } 928 929 /* 930 * Apply a function to all zones for particular key value. 931 * 932 * The applyfn has to drop zonehash_lock if it does some work, and 933 * then reacquire it before it returns. 934 * When the lock is dropped we don't follow list_next even 935 * if it is possible to do so without any hazards. This is 936 * because we want the design to allow for the list of zones 937 * to change in any arbitrary way during the time the 938 * lock was dropped. 939 * 940 * It is safe to restart the loop at list_head since the applyfn 941 * changes the zsd_flags as it does work, so a subsequent 942 * pass through will have no effect in applyfn, hence the loop will terminate 943 * in at worst O(N^2). 944 */ 945 static void 946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 947 { 948 zone_t *zone; 949 950 mutex_enter(&zonehash_lock); 951 zone = list_head(&zone_active); 952 while (zone != NULL) { 953 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 954 /* Lock dropped - restart at head */ 955 zone = list_head(&zone_active); 956 } else { 957 zone = list_next(&zone_active, zone); 958 } 959 } 960 mutex_exit(&zonehash_lock); 961 } 962 963 /* 964 * Apply a function to all keys for a particular zone. 965 * 966 * The applyfn has to drop zonehash_lock if it does some work, and 967 * then reacquire it before it returns. 968 * When the lock is dropped we don't follow list_next even 969 * if it is possible to do so without any hazards. This is 970 * because we want the design to allow for the list of zsd callbacks 971 * to change in any arbitrary way during the time the 972 * lock was dropped. 973 * 974 * It is safe to restart the loop at list_head since the applyfn 975 * changes the zsd_flags as it does work, so a subsequent 976 * pass through will have no effect in applyfn, hence the loop will terminate 977 * in at worst O(N^2). 978 */ 979 static void 980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 981 { 982 struct zsd_entry *t; 983 984 mutex_enter(&zone->zone_lock); 985 t = list_head(&zone->zone_zsd); 986 while (t != NULL) { 987 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 988 /* Lock dropped - restart at head */ 989 t = list_head(&zone->zone_zsd); 990 } else { 991 t = list_next(&zone->zone_zsd, t); 992 } 993 } 994 mutex_exit(&zone->zone_lock); 995 } 996 997 /* 998 * Call the create function for the zone and key if CREATE_NEEDED 999 * is set. 1000 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1001 * we wait for that thread to complete so that we can ensure that 1002 * all the callbacks are done when we've looped over all zones/keys. 1003 * 1004 * When we call the create function, we drop the global held by the 1005 * caller, and return true to tell the caller it needs to re-evalute the 1006 * state. 1007 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1008 * remains held on exit. 1009 */ 1010 static boolean_t 1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1012 zone_t *zone, zone_key_t key) 1013 { 1014 void *result; 1015 struct zsd_entry *t; 1016 boolean_t dropped; 1017 1018 if (lockp != NULL) { 1019 ASSERT(MUTEX_HELD(lockp)); 1020 } 1021 if (zone_lock_held) { 1022 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1023 } else { 1024 mutex_enter(&zone->zone_lock); 1025 } 1026 1027 t = zsd_find(&zone->zone_zsd, key); 1028 if (t == NULL) { 1029 /* 1030 * Somebody else got here first e.g the zone going 1031 * away. 1032 */ 1033 if (!zone_lock_held) 1034 mutex_exit(&zone->zone_lock); 1035 return (B_FALSE); 1036 } 1037 dropped = B_FALSE; 1038 if (zsd_wait_for_inprogress(zone, t, lockp)) 1039 dropped = B_TRUE; 1040 1041 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1042 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1043 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1044 DTRACE_PROBE2(zsd__create__inprogress, 1045 zone_t *, zone, zone_key_t, key); 1046 mutex_exit(&zone->zone_lock); 1047 if (lockp != NULL) 1048 mutex_exit(lockp); 1049 1050 dropped = B_TRUE; 1051 ASSERT(t->zsd_create != NULL); 1052 DTRACE_PROBE2(zsd__create__start, 1053 zone_t *, zone, zone_key_t, key); 1054 1055 result = (*t->zsd_create)(zone->zone_id); 1056 1057 DTRACE_PROBE2(zsd__create__end, 1058 zone_t *, zone, voidn *, result); 1059 1060 ASSERT(result != NULL); 1061 if (lockp != NULL) 1062 mutex_enter(lockp); 1063 mutex_enter(&zone->zone_lock); 1064 t->zsd_data = result; 1065 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1066 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1067 cv_broadcast(&t->zsd_cv); 1068 DTRACE_PROBE2(zsd__create__completed, 1069 zone_t *, zone, zone_key_t, key); 1070 } 1071 if (!zone_lock_held) 1072 mutex_exit(&zone->zone_lock); 1073 return (dropped); 1074 } 1075 1076 /* 1077 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1078 * is set. 1079 * If some other thread gets here first and sets *_INPROGRESS, then 1080 * we wait for that thread to complete so that we can ensure that 1081 * all the callbacks are done when we've looped over all zones/keys. 1082 * 1083 * When we call the shutdown function, we drop the global held by the 1084 * caller, and return true to tell the caller it needs to re-evalute the 1085 * state. 1086 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1087 * remains held on exit. 1088 */ 1089 static boolean_t 1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1091 zone_t *zone, zone_key_t key) 1092 { 1093 struct zsd_entry *t; 1094 void *data; 1095 boolean_t dropped; 1096 1097 if (lockp != NULL) { 1098 ASSERT(MUTEX_HELD(lockp)); 1099 } 1100 if (zone_lock_held) { 1101 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1102 } else { 1103 mutex_enter(&zone->zone_lock); 1104 } 1105 1106 t = zsd_find(&zone->zone_zsd, key); 1107 if (t == NULL) { 1108 /* 1109 * Somebody else got here first e.g the zone going 1110 * away. 1111 */ 1112 if (!zone_lock_held) 1113 mutex_exit(&zone->zone_lock); 1114 return (B_FALSE); 1115 } 1116 dropped = B_FALSE; 1117 if (zsd_wait_for_creator(zone, t, lockp)) 1118 dropped = B_TRUE; 1119 1120 if (zsd_wait_for_inprogress(zone, t, lockp)) 1121 dropped = B_TRUE; 1122 1123 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1124 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1125 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1126 DTRACE_PROBE2(zsd__shutdown__inprogress, 1127 zone_t *, zone, zone_key_t, key); 1128 mutex_exit(&zone->zone_lock); 1129 if (lockp != NULL) 1130 mutex_exit(lockp); 1131 dropped = B_TRUE; 1132 1133 ASSERT(t->zsd_shutdown != NULL); 1134 data = t->zsd_data; 1135 1136 DTRACE_PROBE2(zsd__shutdown__start, 1137 zone_t *, zone, zone_key_t, key); 1138 1139 (t->zsd_shutdown)(zone->zone_id, data); 1140 DTRACE_PROBE2(zsd__shutdown__end, 1141 zone_t *, zone, zone_key_t, key); 1142 1143 if (lockp != NULL) 1144 mutex_enter(lockp); 1145 mutex_enter(&zone->zone_lock); 1146 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1147 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1148 cv_broadcast(&t->zsd_cv); 1149 DTRACE_PROBE2(zsd__shutdown__completed, 1150 zone_t *, zone, zone_key_t, key); 1151 } 1152 if (!zone_lock_held) 1153 mutex_exit(&zone->zone_lock); 1154 return (dropped); 1155 } 1156 1157 /* 1158 * Call the destroy function for the zone and key if DESTROY_NEEDED 1159 * is set. 1160 * If some other thread gets here first and sets *_INPROGRESS, then 1161 * we wait for that thread to complete so that we can ensure that 1162 * all the callbacks are done when we've looped over all zones/keys. 1163 * 1164 * When we call the destroy function, we drop the global held by the 1165 * caller, and return true to tell the caller it needs to re-evalute the 1166 * state. 1167 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1168 * remains held on exit. 1169 */ 1170 static boolean_t 1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1172 zone_t *zone, zone_key_t key) 1173 { 1174 struct zsd_entry *t; 1175 void *data; 1176 boolean_t dropped; 1177 1178 if (lockp != NULL) { 1179 ASSERT(MUTEX_HELD(lockp)); 1180 } 1181 if (zone_lock_held) { 1182 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1183 } else { 1184 mutex_enter(&zone->zone_lock); 1185 } 1186 1187 t = zsd_find(&zone->zone_zsd, key); 1188 if (t == NULL) { 1189 /* 1190 * Somebody else got here first e.g the zone going 1191 * away. 1192 */ 1193 if (!zone_lock_held) 1194 mutex_exit(&zone->zone_lock); 1195 return (B_FALSE); 1196 } 1197 dropped = B_FALSE; 1198 if (zsd_wait_for_creator(zone, t, lockp)) 1199 dropped = B_TRUE; 1200 1201 if (zsd_wait_for_inprogress(zone, t, lockp)) 1202 dropped = B_TRUE; 1203 1204 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1205 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1206 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1207 DTRACE_PROBE2(zsd__destroy__inprogress, 1208 zone_t *, zone, zone_key_t, key); 1209 mutex_exit(&zone->zone_lock); 1210 if (lockp != NULL) 1211 mutex_exit(lockp); 1212 dropped = B_TRUE; 1213 1214 ASSERT(t->zsd_destroy != NULL); 1215 data = t->zsd_data; 1216 DTRACE_PROBE2(zsd__destroy__start, 1217 zone_t *, zone, zone_key_t, key); 1218 1219 (t->zsd_destroy)(zone->zone_id, data); 1220 DTRACE_PROBE2(zsd__destroy__end, 1221 zone_t *, zone, zone_key_t, key); 1222 1223 if (lockp != NULL) 1224 mutex_enter(lockp); 1225 mutex_enter(&zone->zone_lock); 1226 t->zsd_data = NULL; 1227 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1228 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1229 cv_broadcast(&t->zsd_cv); 1230 DTRACE_PROBE2(zsd__destroy__completed, 1231 zone_t *, zone, zone_key_t, key); 1232 } 1233 if (!zone_lock_held) 1234 mutex_exit(&zone->zone_lock); 1235 return (dropped); 1236 } 1237 1238 /* 1239 * Wait for any CREATE_NEEDED flag to be cleared. 1240 * Returns true if lockp was temporarily dropped while waiting. 1241 */ 1242 static boolean_t 1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1244 { 1245 boolean_t dropped = B_FALSE; 1246 1247 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1248 DTRACE_PROBE2(zsd__wait__for__creator, 1249 zone_t *, zone, struct zsd_entry *, t); 1250 if (lockp != NULL) { 1251 dropped = B_TRUE; 1252 mutex_exit(lockp); 1253 } 1254 cv_wait(&t->zsd_cv, &zone->zone_lock); 1255 if (lockp != NULL) { 1256 /* First drop zone_lock to preserve order */ 1257 mutex_exit(&zone->zone_lock); 1258 mutex_enter(lockp); 1259 mutex_enter(&zone->zone_lock); 1260 } 1261 } 1262 return (dropped); 1263 } 1264 1265 /* 1266 * Wait for any INPROGRESS flag to be cleared. 1267 * Returns true if lockp was temporarily dropped while waiting. 1268 */ 1269 static boolean_t 1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1271 { 1272 boolean_t dropped = B_FALSE; 1273 1274 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1275 DTRACE_PROBE2(zsd__wait__for__inprogress, 1276 zone_t *, zone, struct zsd_entry *, t); 1277 if (lockp != NULL) { 1278 dropped = B_TRUE; 1279 mutex_exit(lockp); 1280 } 1281 cv_wait(&t->zsd_cv, &zone->zone_lock); 1282 if (lockp != NULL) { 1283 /* First drop zone_lock to preserve order */ 1284 mutex_exit(&zone->zone_lock); 1285 mutex_enter(lockp); 1286 mutex_enter(&zone->zone_lock); 1287 } 1288 } 1289 return (dropped); 1290 } 1291 1292 /* 1293 * Frees memory associated with the zone dataset list. 1294 */ 1295 static void 1296 zone_free_datasets(zone_t *zone) 1297 { 1298 zone_dataset_t *t, *next; 1299 1300 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1301 next = list_next(&zone->zone_datasets, t); 1302 list_remove(&zone->zone_datasets, t); 1303 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1304 kmem_free(t, sizeof (*t)); 1305 } 1306 list_destroy(&zone->zone_datasets); 1307 } 1308 1309 /* 1310 * zone.cpu-shares resource control support. 1311 */ 1312 /*ARGSUSED*/ 1313 static rctl_qty_t 1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1315 { 1316 ASSERT(MUTEX_HELD(&p->p_lock)); 1317 return (p->p_zone->zone_shares); 1318 } 1319 1320 /*ARGSUSED*/ 1321 static int 1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1323 rctl_qty_t nv) 1324 { 1325 ASSERT(MUTEX_HELD(&p->p_lock)); 1326 ASSERT(e->rcep_t == RCENTITY_ZONE); 1327 if (e->rcep_p.zone == NULL) 1328 return (0); 1329 1330 e->rcep_p.zone->zone_shares = nv; 1331 return (0); 1332 } 1333 1334 static rctl_ops_t zone_cpu_shares_ops = { 1335 rcop_no_action, 1336 zone_cpu_shares_usage, 1337 zone_cpu_shares_set, 1338 rcop_no_test 1339 }; 1340 1341 /* 1342 * zone.cpu-cap resource control support. 1343 */ 1344 /*ARGSUSED*/ 1345 static rctl_qty_t 1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1347 { 1348 ASSERT(MUTEX_HELD(&p->p_lock)); 1349 return (cpucaps_zone_get(p->p_zone)); 1350 } 1351 1352 /*ARGSUSED*/ 1353 static int 1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1355 rctl_qty_t nv) 1356 { 1357 zone_t *zone = e->rcep_p.zone; 1358 1359 ASSERT(MUTEX_HELD(&p->p_lock)); 1360 ASSERT(e->rcep_t == RCENTITY_ZONE); 1361 1362 if (zone == NULL) 1363 return (0); 1364 1365 /* 1366 * set cap to the new value. 1367 */ 1368 return (cpucaps_zone_set(zone, nv)); 1369 } 1370 1371 static rctl_ops_t zone_cpu_cap_ops = { 1372 rcop_no_action, 1373 zone_cpu_cap_get, 1374 zone_cpu_cap_set, 1375 rcop_no_test 1376 }; 1377 1378 /*ARGSUSED*/ 1379 static rctl_qty_t 1380 zone_lwps_usage(rctl_t *r, proc_t *p) 1381 { 1382 rctl_qty_t nlwps; 1383 zone_t *zone = p->p_zone; 1384 1385 ASSERT(MUTEX_HELD(&p->p_lock)); 1386 1387 mutex_enter(&zone->zone_nlwps_lock); 1388 nlwps = zone->zone_nlwps; 1389 mutex_exit(&zone->zone_nlwps_lock); 1390 1391 return (nlwps); 1392 } 1393 1394 /*ARGSUSED*/ 1395 static int 1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1397 rctl_qty_t incr, uint_t flags) 1398 { 1399 rctl_qty_t nlwps; 1400 1401 ASSERT(MUTEX_HELD(&p->p_lock)); 1402 ASSERT(e->rcep_t == RCENTITY_ZONE); 1403 if (e->rcep_p.zone == NULL) 1404 return (0); 1405 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1406 nlwps = e->rcep_p.zone->zone_nlwps; 1407 1408 if (nlwps + incr > rcntl->rcv_value) 1409 return (1); 1410 1411 return (0); 1412 } 1413 1414 /*ARGSUSED*/ 1415 static int 1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1417 { 1418 ASSERT(MUTEX_HELD(&p->p_lock)); 1419 ASSERT(e->rcep_t == RCENTITY_ZONE); 1420 if (e->rcep_p.zone == NULL) 1421 return (0); 1422 e->rcep_p.zone->zone_nlwps_ctl = nv; 1423 return (0); 1424 } 1425 1426 static rctl_ops_t zone_lwps_ops = { 1427 rcop_no_action, 1428 zone_lwps_usage, 1429 zone_lwps_set, 1430 zone_lwps_test, 1431 }; 1432 1433 /*ARGSUSED*/ 1434 static rctl_qty_t 1435 zone_procs_usage(rctl_t *r, proc_t *p) 1436 { 1437 rctl_qty_t nprocs; 1438 zone_t *zone = p->p_zone; 1439 1440 ASSERT(MUTEX_HELD(&p->p_lock)); 1441 1442 mutex_enter(&zone->zone_nlwps_lock); 1443 nprocs = zone->zone_nprocs; 1444 mutex_exit(&zone->zone_nlwps_lock); 1445 1446 return (nprocs); 1447 } 1448 1449 /*ARGSUSED*/ 1450 static int 1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1452 rctl_qty_t incr, uint_t flags) 1453 { 1454 rctl_qty_t nprocs; 1455 1456 ASSERT(MUTEX_HELD(&p->p_lock)); 1457 ASSERT(e->rcep_t == RCENTITY_ZONE); 1458 if (e->rcep_p.zone == NULL) 1459 return (0); 1460 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1461 nprocs = e->rcep_p.zone->zone_nprocs; 1462 1463 if (nprocs + incr > rcntl->rcv_value) 1464 return (1); 1465 1466 return (0); 1467 } 1468 1469 /*ARGSUSED*/ 1470 static int 1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1472 { 1473 ASSERT(MUTEX_HELD(&p->p_lock)); 1474 ASSERT(e->rcep_t == RCENTITY_ZONE); 1475 if (e->rcep_p.zone == NULL) 1476 return (0); 1477 e->rcep_p.zone->zone_nprocs_ctl = nv; 1478 return (0); 1479 } 1480 1481 static rctl_ops_t zone_procs_ops = { 1482 rcop_no_action, 1483 zone_procs_usage, 1484 zone_procs_set, 1485 zone_procs_test, 1486 }; 1487 1488 /*ARGSUSED*/ 1489 static rctl_qty_t 1490 zone_shmmax_usage(rctl_t *rctl, struct proc *p) 1491 { 1492 ASSERT(MUTEX_HELD(&p->p_lock)); 1493 return (p->p_zone->zone_shmmax); 1494 } 1495 1496 /*ARGSUSED*/ 1497 static int 1498 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1499 rctl_qty_t incr, uint_t flags) 1500 { 1501 rctl_qty_t v; 1502 ASSERT(MUTEX_HELD(&p->p_lock)); 1503 ASSERT(e->rcep_t == RCENTITY_ZONE); 1504 v = e->rcep_p.zone->zone_shmmax + incr; 1505 if (v > rval->rcv_value) 1506 return (1); 1507 return (0); 1508 } 1509 1510 static rctl_ops_t zone_shmmax_ops = { 1511 rcop_no_action, 1512 zone_shmmax_usage, 1513 rcop_no_set, 1514 zone_shmmax_test 1515 }; 1516 1517 /*ARGSUSED*/ 1518 static rctl_qty_t 1519 zone_shmmni_usage(rctl_t *rctl, struct proc *p) 1520 { 1521 ASSERT(MUTEX_HELD(&p->p_lock)); 1522 return (p->p_zone->zone_ipc.ipcq_shmmni); 1523 } 1524 1525 /*ARGSUSED*/ 1526 static int 1527 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1528 rctl_qty_t incr, uint_t flags) 1529 { 1530 rctl_qty_t v; 1531 ASSERT(MUTEX_HELD(&p->p_lock)); 1532 ASSERT(e->rcep_t == RCENTITY_ZONE); 1533 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1534 if (v > rval->rcv_value) 1535 return (1); 1536 return (0); 1537 } 1538 1539 static rctl_ops_t zone_shmmni_ops = { 1540 rcop_no_action, 1541 zone_shmmni_usage, 1542 rcop_no_set, 1543 zone_shmmni_test 1544 }; 1545 1546 /*ARGSUSED*/ 1547 static rctl_qty_t 1548 zone_semmni_usage(rctl_t *rctl, struct proc *p) 1549 { 1550 ASSERT(MUTEX_HELD(&p->p_lock)); 1551 return (p->p_zone->zone_ipc.ipcq_semmni); 1552 } 1553 1554 /*ARGSUSED*/ 1555 static int 1556 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1557 rctl_qty_t incr, uint_t flags) 1558 { 1559 rctl_qty_t v; 1560 ASSERT(MUTEX_HELD(&p->p_lock)); 1561 ASSERT(e->rcep_t == RCENTITY_ZONE); 1562 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1563 if (v > rval->rcv_value) 1564 return (1); 1565 return (0); 1566 } 1567 1568 static rctl_ops_t zone_semmni_ops = { 1569 rcop_no_action, 1570 zone_semmni_usage, 1571 rcop_no_set, 1572 zone_semmni_test 1573 }; 1574 1575 /*ARGSUSED*/ 1576 static rctl_qty_t 1577 zone_msgmni_usage(rctl_t *rctl, struct proc *p) 1578 { 1579 ASSERT(MUTEX_HELD(&p->p_lock)); 1580 return (p->p_zone->zone_ipc.ipcq_msgmni); 1581 } 1582 1583 /*ARGSUSED*/ 1584 static int 1585 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1586 rctl_qty_t incr, uint_t flags) 1587 { 1588 rctl_qty_t v; 1589 ASSERT(MUTEX_HELD(&p->p_lock)); 1590 ASSERT(e->rcep_t == RCENTITY_ZONE); 1591 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1592 if (v > rval->rcv_value) 1593 return (1); 1594 return (0); 1595 } 1596 1597 static rctl_ops_t zone_msgmni_ops = { 1598 rcop_no_action, 1599 zone_msgmni_usage, 1600 rcop_no_set, 1601 zone_msgmni_test 1602 }; 1603 1604 /*ARGSUSED*/ 1605 static rctl_qty_t 1606 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1607 { 1608 rctl_qty_t q; 1609 ASSERT(MUTEX_HELD(&p->p_lock)); 1610 mutex_enter(&p->p_zone->zone_mem_lock); 1611 q = p->p_zone->zone_locked_mem; 1612 mutex_exit(&p->p_zone->zone_mem_lock); 1613 return (q); 1614 } 1615 1616 /*ARGSUSED*/ 1617 static int 1618 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1619 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1620 { 1621 rctl_qty_t q; 1622 zone_t *z; 1623 1624 z = e->rcep_p.zone; 1625 ASSERT(MUTEX_HELD(&p->p_lock)); 1626 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1627 q = z->zone_locked_mem; 1628 if (q + incr > rcntl->rcv_value) 1629 return (1); 1630 return (0); 1631 } 1632 1633 /*ARGSUSED*/ 1634 static int 1635 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1636 rctl_qty_t nv) 1637 { 1638 ASSERT(MUTEX_HELD(&p->p_lock)); 1639 ASSERT(e->rcep_t == RCENTITY_ZONE); 1640 if (e->rcep_p.zone == NULL) 1641 return (0); 1642 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1643 return (0); 1644 } 1645 1646 static rctl_ops_t zone_locked_mem_ops = { 1647 rcop_no_action, 1648 zone_locked_mem_usage, 1649 zone_locked_mem_set, 1650 zone_locked_mem_test 1651 }; 1652 1653 /*ARGSUSED*/ 1654 static rctl_qty_t 1655 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1656 { 1657 rctl_qty_t q; 1658 zone_t *z = p->p_zone; 1659 1660 ASSERT(MUTEX_HELD(&p->p_lock)); 1661 mutex_enter(&z->zone_mem_lock); 1662 q = z->zone_max_swap; 1663 mutex_exit(&z->zone_mem_lock); 1664 return (q); 1665 } 1666 1667 /*ARGSUSED*/ 1668 static int 1669 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1670 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1671 { 1672 rctl_qty_t q; 1673 zone_t *z; 1674 1675 z = e->rcep_p.zone; 1676 ASSERT(MUTEX_HELD(&p->p_lock)); 1677 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1678 q = z->zone_max_swap; 1679 if (q + incr > rcntl->rcv_value) 1680 return (1); 1681 return (0); 1682 } 1683 1684 /*ARGSUSED*/ 1685 static int 1686 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1687 rctl_qty_t nv) 1688 { 1689 ASSERT(MUTEX_HELD(&p->p_lock)); 1690 ASSERT(e->rcep_t == RCENTITY_ZONE); 1691 if (e->rcep_p.zone == NULL) 1692 return (0); 1693 e->rcep_p.zone->zone_max_swap_ctl = nv; 1694 return (0); 1695 } 1696 1697 static rctl_ops_t zone_max_swap_ops = { 1698 rcop_no_action, 1699 zone_max_swap_usage, 1700 zone_max_swap_set, 1701 zone_max_swap_test 1702 }; 1703 1704 /*ARGSUSED*/ 1705 static rctl_qty_t 1706 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1707 { 1708 rctl_qty_t q; 1709 zone_t *z = p->p_zone; 1710 1711 ASSERT(MUTEX_HELD(&p->p_lock)); 1712 mutex_enter(&z->zone_rctl_lock); 1713 q = z->zone_max_lofi; 1714 mutex_exit(&z->zone_rctl_lock); 1715 return (q); 1716 } 1717 1718 /*ARGSUSED*/ 1719 static int 1720 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1721 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1722 { 1723 rctl_qty_t q; 1724 zone_t *z; 1725 1726 z = e->rcep_p.zone; 1727 ASSERT(MUTEX_HELD(&p->p_lock)); 1728 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1729 q = z->zone_max_lofi; 1730 if (q + incr > rcntl->rcv_value) 1731 return (1); 1732 return (0); 1733 } 1734 1735 /*ARGSUSED*/ 1736 static int 1737 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1738 rctl_qty_t nv) 1739 { 1740 ASSERT(MUTEX_HELD(&p->p_lock)); 1741 ASSERT(e->rcep_t == RCENTITY_ZONE); 1742 if (e->rcep_p.zone == NULL) 1743 return (0); 1744 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1745 return (0); 1746 } 1747 1748 static rctl_ops_t zone_max_lofi_ops = { 1749 rcop_no_action, 1750 zone_max_lofi_usage, 1751 zone_max_lofi_set, 1752 zone_max_lofi_test 1753 }; 1754 1755 /* 1756 * Helper function to brand the zone with a unique ID. 1757 */ 1758 static void 1759 zone_uniqid(zone_t *zone) 1760 { 1761 static uint64_t uniqid = 0; 1762 1763 ASSERT(MUTEX_HELD(&zonehash_lock)); 1764 zone->zone_uniqid = uniqid++; 1765 } 1766 1767 /* 1768 * Returns a held pointer to the "kcred" for the specified zone. 1769 */ 1770 struct cred * 1771 zone_get_kcred(zoneid_t zoneid) 1772 { 1773 zone_t *zone; 1774 cred_t *cr; 1775 1776 if ((zone = zone_find_by_id(zoneid)) == NULL) 1777 return (NULL); 1778 cr = zone->zone_kcred; 1779 crhold(cr); 1780 zone_rele(zone); 1781 return (cr); 1782 } 1783 1784 static int 1785 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1786 { 1787 zone_t *zone = ksp->ks_private; 1788 zone_kstat_t *zk = ksp->ks_data; 1789 1790 if (rw == KSTAT_WRITE) 1791 return (EACCES); 1792 1793 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1794 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1795 return (0); 1796 } 1797 1798 static int 1799 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1800 { 1801 zone_t *zone = ksp->ks_private; 1802 zone_kstat_t *zk = ksp->ks_data; 1803 1804 if (rw == KSTAT_WRITE) 1805 return (EACCES); 1806 1807 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1808 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1809 return (0); 1810 } 1811 1812 static int 1813 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1814 { 1815 zone_t *zone = ksp->ks_private; 1816 zone_kstat_t *zk = ksp->ks_data; 1817 1818 if (rw == KSTAT_WRITE) 1819 return (EACCES); 1820 1821 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1822 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1823 return (0); 1824 } 1825 1826 static kstat_t * 1827 zone_kstat_create_common(zone_t *zone, char *name, 1828 int (*updatefunc) (kstat_t *, int)) 1829 { 1830 kstat_t *ksp; 1831 zone_kstat_t *zk; 1832 1833 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1834 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1835 KSTAT_FLAG_VIRTUAL); 1836 1837 if (ksp == NULL) 1838 return (NULL); 1839 1840 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1841 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1842 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1843 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1844 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1845 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1846 ksp->ks_update = updatefunc; 1847 ksp->ks_private = zone; 1848 kstat_install(ksp); 1849 return (ksp); 1850 } 1851 1852 1853 static int 1854 zone_mcap_kstat_update(kstat_t *ksp, int rw) 1855 { 1856 zone_t *zone = ksp->ks_private; 1857 zone_mcap_kstat_t *zmp = ksp->ks_data; 1858 1859 if (rw == KSTAT_WRITE) 1860 return (EACCES); 1861 1862 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin; 1863 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin; 1864 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin; 1865 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin; 1866 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail; 1867 1868 return (0); 1869 } 1870 1871 static kstat_t * 1872 zone_mcap_kstat_create(zone_t *zone) 1873 { 1874 kstat_t *ksp; 1875 zone_mcap_kstat_t *zmp; 1876 1877 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id, 1878 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED, 1879 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t), 1880 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1881 return (NULL); 1882 1883 if (zone->zone_id != GLOBAL_ZONEID) 1884 kstat_zone_add(ksp, GLOBAL_ZONEID); 1885 1886 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP); 1887 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1888 ksp->ks_lock = &zone->zone_mcap_lock; 1889 zone->zone_mcap_stats = zmp; 1890 1891 /* The kstat "name" field is not large enough for a full zonename */ 1892 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1893 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1894 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64); 1895 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64); 1896 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64); 1897 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64); 1898 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail", 1899 KSTAT_DATA_UINT64); 1900 1901 ksp->ks_update = zone_mcap_kstat_update; 1902 ksp->ks_private = zone; 1903 1904 kstat_install(ksp); 1905 return (ksp); 1906 } 1907 1908 static int 1909 zone_misc_kstat_update(kstat_t *ksp, int rw) 1910 { 1911 zone_t *zone = ksp->ks_private; 1912 zone_misc_kstat_t *zmp = ksp->ks_data; 1913 hrtime_t tmp; 1914 1915 if (rw == KSTAT_WRITE) 1916 return (EACCES); 1917 1918 tmp = zone->zone_utime; 1919 scalehrtime(&tmp); 1920 zmp->zm_utime.value.ui64 = tmp; 1921 tmp = zone->zone_stime; 1922 scalehrtime(&tmp); 1923 zmp->zm_stime.value.ui64 = tmp; 1924 tmp = zone->zone_wtime; 1925 scalehrtime(&tmp); 1926 zmp->zm_wtime.value.ui64 = tmp; 1927 1928 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1929 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1930 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1931 1932 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1933 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1934 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1935 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1936 1937 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp; 1938 1939 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid; 1940 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time; 1941 1942 return (0); 1943 } 1944 1945 static kstat_t * 1946 zone_misc_kstat_create(zone_t *zone) 1947 { 1948 kstat_t *ksp; 1949 zone_misc_kstat_t *zmp; 1950 1951 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1952 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1953 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1954 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1955 return (NULL); 1956 1957 if (zone->zone_id != GLOBAL_ZONEID) 1958 kstat_zone_add(ksp, GLOBAL_ZONEID); 1959 1960 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1961 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1962 ksp->ks_lock = &zone->zone_misc_lock; 1963 zone->zone_misc_stats = zmp; 1964 1965 /* The kstat "name" field is not large enough for a full zonename */ 1966 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1967 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1968 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1969 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1970 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1971 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1972 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1973 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1974 KSTAT_DATA_UINT32); 1975 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1976 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1977 KSTAT_DATA_UINT32); 1978 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1979 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1980 kstat_named_init(&zmp->zm_nested_intp, "nested_interp", 1981 KSTAT_DATA_UINT32); 1982 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32); 1983 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64); 1984 1985 ksp->ks_update = zone_misc_kstat_update; 1986 ksp->ks_private = zone; 1987 1988 kstat_install(ksp); 1989 return (ksp); 1990 } 1991 1992 static void 1993 zone_kstat_create(zone_t *zone) 1994 { 1995 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1996 "lockedmem", zone_lockedmem_kstat_update); 1997 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1998 "swapresv", zone_swapresv_kstat_update); 1999 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 2000 "nprocs", zone_nprocs_kstat_update); 2001 2002 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) { 2003 zone->zone_mcap_stats = kmem_zalloc( 2004 sizeof (zone_mcap_kstat_t), KM_SLEEP); 2005 } 2006 2007 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 2008 zone->zone_misc_stats = kmem_zalloc( 2009 sizeof (zone_misc_kstat_t), KM_SLEEP); 2010 } 2011 } 2012 2013 static void 2014 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 2015 { 2016 void *data; 2017 2018 if (*pkstat != NULL) { 2019 data = (*pkstat)->ks_data; 2020 kstat_delete(*pkstat); 2021 kmem_free(data, datasz); 2022 *pkstat = NULL; 2023 } 2024 } 2025 2026 static void 2027 zone_kstat_delete(zone_t *zone) 2028 { 2029 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 2030 sizeof (zone_kstat_t)); 2031 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 2032 sizeof (zone_kstat_t)); 2033 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 2034 sizeof (zone_kstat_t)); 2035 zone_kstat_delete_common(&zone->zone_mcap_ksp, 2036 sizeof (zone_mcap_kstat_t)); 2037 zone_kstat_delete_common(&zone->zone_misc_ksp, 2038 sizeof (zone_misc_kstat_t)); 2039 } 2040 2041 /* 2042 * Called very early on in boot to initialize the ZSD list so that 2043 * zone_key_create() can be called before zone_init(). It also initializes 2044 * portions of zone0 which may be used before zone_init() is called. The 2045 * variable "global_zone" will be set when zone0 is fully initialized by 2046 * zone_init(). 2047 */ 2048 void 2049 zone_zsd_init(void) 2050 { 2051 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 2052 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 2053 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 2054 offsetof(struct zsd_entry, zsd_linkage)); 2055 list_create(&zone_active, sizeof (zone_t), 2056 offsetof(zone_t, zone_linkage)); 2057 list_create(&zone_deathrow, sizeof (zone_t), 2058 offsetof(zone_t, zone_linkage)); 2059 2060 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 2061 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2062 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 2063 zone0.zone_shares = 1; 2064 zone0.zone_nlwps = 0; 2065 zone0.zone_nlwps_ctl = INT_MAX; 2066 zone0.zone_nprocs = 0; 2067 zone0.zone_nprocs_ctl = INT_MAX; 2068 zone0.zone_locked_mem = 0; 2069 zone0.zone_locked_mem_ctl = UINT64_MAX; 2070 ASSERT(zone0.zone_max_swap == 0); 2071 zone0.zone_max_swap_ctl = UINT64_MAX; 2072 zone0.zone_max_lofi = 0; 2073 zone0.zone_max_lofi_ctl = UINT64_MAX; 2074 zone0.zone_shmmax = 0; 2075 zone0.zone_ipc.ipcq_shmmni = 0; 2076 zone0.zone_ipc.ipcq_semmni = 0; 2077 zone0.zone_ipc.ipcq_msgmni = 0; 2078 zone0.zone_name = GLOBAL_ZONENAME; 2079 zone0.zone_nodename = utsname.nodename; 2080 zone0.zone_domain = srpc_domain; 2081 zone0.zone_hostid = HW_INVALID_HOSTID; 2082 zone0.zone_fs_allowed = NULL; 2083 zone0.zone_ref = 1; 2084 zone0.zone_id = GLOBAL_ZONEID; 2085 zone0.zone_status = ZONE_IS_RUNNING; 2086 zone0.zone_rootpath = "/"; 2087 zone0.zone_rootpathlen = 2; 2088 zone0.zone_psetid = ZONE_PS_INVAL; 2089 zone0.zone_ncpus = 0; 2090 zone0.zone_ncpus_online = 0; 2091 zone0.zone_proc_initpid = 1; 2092 zone0.zone_initname = initname; 2093 zone0.zone_lockedmem_kstat = NULL; 2094 zone0.zone_swapresv_kstat = NULL; 2095 zone0.zone_nprocs_kstat = NULL; 2096 2097 zone0.zone_stime = 0; 2098 zone0.zone_utime = 0; 2099 zone0.zone_wtime = 0; 2100 2101 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 2102 offsetof(zone_ref_t, zref_linkage)); 2103 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2104 offsetof(struct zsd_entry, zsd_linkage)); 2105 list_insert_head(&zone_active, &zone0); 2106 2107 /* 2108 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2109 * to anything meaningful. It is assigned to be 'rootdir' in 2110 * vfs_mountroot(). 2111 */ 2112 zone0.zone_rootvp = NULL; 2113 zone0.zone_vfslist = NULL; 2114 zone0.zone_bootargs = initargs; 2115 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2116 /* 2117 * The global zone has all privileges 2118 */ 2119 priv_fillset(zone0.zone_privset); 2120 /* 2121 * Add p0 to the global zone 2122 */ 2123 zone0.zone_zsched = &p0; 2124 p0.p_zone = &zone0; 2125 } 2126 2127 /* 2128 * Compute a hash value based on the contents of the label and the DOI. The 2129 * hash algorithm is somewhat arbitrary, but is based on the observation that 2130 * humans will likely pick labels that differ by amounts that work out to be 2131 * multiples of the number of hash chains, and thus stirring in some primes 2132 * should help. 2133 */ 2134 static uint_t 2135 hash_bylabel(void *hdata, mod_hash_key_t key) 2136 { 2137 const ts_label_t *lab = (ts_label_t *)key; 2138 const uint32_t *up, *ue; 2139 uint_t hash; 2140 int i; 2141 2142 _NOTE(ARGUNUSED(hdata)); 2143 2144 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2145 /* we depend on alignment of label, but not representation */ 2146 up = (const uint32_t *)&lab->tsl_label; 2147 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2148 i = 1; 2149 while (up < ue) { 2150 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2151 hash += *up + (*up << ((i % 16) + 1)); 2152 up++; 2153 i++; 2154 } 2155 return (hash); 2156 } 2157 2158 /* 2159 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2160 * equal). This may need to be changed if less than / greater than is ever 2161 * needed. 2162 */ 2163 static int 2164 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2165 { 2166 ts_label_t *lab1 = (ts_label_t *)key1; 2167 ts_label_t *lab2 = (ts_label_t *)key2; 2168 2169 return (label_equal(lab1, lab2) ? 0 : 1); 2170 } 2171 2172 /* 2173 * Called by main() to initialize the zones framework. 2174 */ 2175 void 2176 zone_init(void) 2177 { 2178 rctl_dict_entry_t *rde; 2179 rctl_val_t *dval; 2180 rctl_set_t *set; 2181 rctl_alloc_gp_t *gp; 2182 rctl_entity_p_t e; 2183 int res; 2184 2185 ASSERT(curproc == &p0); 2186 2187 /* 2188 * Create ID space for zone IDs. ID 0 is reserved for the 2189 * global zone. 2190 */ 2191 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2192 2193 /* 2194 * Initialize generic zone resource controls, if any. 2195 */ 2196 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2197 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2198 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2199 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2200 2201 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2202 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2203 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2204 RCTL_GLOBAL_INFINITE, 2205 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2206 2207 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2208 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2209 INT_MAX, INT_MAX, &zone_lwps_ops); 2210 2211 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2212 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2213 INT_MAX, INT_MAX, &zone_procs_ops); 2214 2215 /* 2216 * System V IPC resource controls 2217 */ 2218 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2219 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2220 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2221 2222 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2223 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2224 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2225 2226 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2227 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2228 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2229 2230 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2231 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2232 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2233 2234 /* 2235 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2236 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2237 */ 2238 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2239 bzero(dval, sizeof (rctl_val_t)); 2240 dval->rcv_value = 1; 2241 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2242 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2243 dval->rcv_action_recip_pid = -1; 2244 2245 rde = rctl_dict_lookup("zone.cpu-shares"); 2246 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2247 2248 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2249 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2250 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2251 &zone_locked_mem_ops); 2252 2253 rc_zone_max_swap = rctl_register("zone.max-swap", 2254 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2255 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2256 &zone_max_swap_ops); 2257 2258 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2259 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2260 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2261 &zone_max_lofi_ops); 2262 2263 /* 2264 * Initialize the ``global zone''. 2265 */ 2266 set = rctl_set_create(); 2267 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2268 mutex_enter(&p0.p_lock); 2269 e.rcep_p.zone = &zone0; 2270 e.rcep_t = RCENTITY_ZONE; 2271 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2272 gp); 2273 2274 zone0.zone_nlwps = p0.p_lwpcnt; 2275 zone0.zone_nprocs = 1; 2276 zone0.zone_ntasks = 1; 2277 mutex_exit(&p0.p_lock); 2278 zone0.zone_restart_init = B_TRUE; 2279 zone0.zone_brand = &native_brand; 2280 rctl_prealloc_destroy(gp); 2281 /* 2282 * pool_default hasn't been initialized yet, so we let pool_init() 2283 * take care of making sure the global zone is in the default pool. 2284 */ 2285 2286 /* 2287 * Initialize global zone kstats 2288 */ 2289 zone_kstat_create(&zone0); 2290 2291 /* 2292 * Initialize zone label. 2293 * mlp are initialized when tnzonecfg is loaded. 2294 */ 2295 zone0.zone_slabel = l_admin_low; 2296 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2297 label_hold(l_admin_low); 2298 2299 /* 2300 * Initialise the lock for the database structure used by mntfs. 2301 */ 2302 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2303 2304 mutex_enter(&zonehash_lock); 2305 zone_uniqid(&zone0); 2306 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2307 2308 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2309 mod_hash_null_valdtor); 2310 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2311 zone_hash_size, mod_hash_null_valdtor); 2312 /* 2313 * maintain zonehashbylabel only for labeled systems 2314 */ 2315 if (is_system_labeled()) 2316 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2317 zone_hash_size, mod_hash_null_keydtor, 2318 mod_hash_null_valdtor, hash_bylabel, NULL, 2319 hash_labelkey_cmp, KM_SLEEP); 2320 zonecount = 1; 2321 2322 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2323 (mod_hash_val_t)&zone0); 2324 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2325 (mod_hash_val_t)&zone0); 2326 if (is_system_labeled()) { 2327 zone0.zone_flags |= ZF_HASHED_LABEL; 2328 (void) mod_hash_insert(zonehashbylabel, 2329 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2330 } 2331 mutex_exit(&zonehash_lock); 2332 2333 /* 2334 * We avoid setting zone_kcred until now, since kcred is initialized 2335 * sometime after zone_zsd_init() and before zone_init(). 2336 */ 2337 zone0.zone_kcred = kcred; 2338 /* 2339 * The global zone is fully initialized (except for zone_rootvp which 2340 * will be set when the root filesystem is mounted). 2341 */ 2342 global_zone = &zone0; 2343 2344 /* 2345 * Setup an event channel to send zone status change notifications on 2346 */ 2347 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2348 EVCH_CREAT); 2349 2350 if (res) 2351 panic("Sysevent_evc_bind failed during zone setup.\n"); 2352 2353 } 2354 2355 static void 2356 zone_free(zone_t *zone) 2357 { 2358 ASSERT(zone != global_zone); 2359 ASSERT(zone->zone_ntasks == 0); 2360 ASSERT(zone->zone_nlwps == 0); 2361 ASSERT(zone->zone_nprocs == 0); 2362 ASSERT(zone->zone_cred_ref == 0); 2363 ASSERT(zone->zone_kcred == NULL); 2364 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2365 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2366 ASSERT(list_is_empty(&zone->zone_ref_list)); 2367 2368 /* 2369 * Remove any zone caps. 2370 */ 2371 cpucaps_zone_remove(zone); 2372 2373 ASSERT(zone->zone_cpucap == NULL); 2374 2375 /* remove from deathrow list */ 2376 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2377 ASSERT(zone->zone_ref == 0); 2378 mutex_enter(&zone_deathrow_lock); 2379 list_remove(&zone_deathrow, zone); 2380 mutex_exit(&zone_deathrow_lock); 2381 } 2382 2383 list_destroy(&zone->zone_ref_list); 2384 zone_free_zsd(zone); 2385 zone_free_datasets(zone); 2386 list_destroy(&zone->zone_dl_list); 2387 2388 if (zone->zone_rootvp != NULL) 2389 VN_RELE(zone->zone_rootvp); 2390 if (zone->zone_rootpath) 2391 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2392 if (zone->zone_name != NULL) 2393 kmem_free(zone->zone_name, ZONENAME_MAX); 2394 if (zone->zone_slabel != NULL) 2395 label_rele(zone->zone_slabel); 2396 if (zone->zone_nodename != NULL) 2397 kmem_free(zone->zone_nodename, _SYS_NMLN); 2398 if (zone->zone_domain != NULL) 2399 kmem_free(zone->zone_domain, _SYS_NMLN); 2400 if (zone->zone_privset != NULL) 2401 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2402 if (zone->zone_rctls != NULL) 2403 rctl_set_free(zone->zone_rctls); 2404 if (zone->zone_bootargs != NULL) 2405 strfree(zone->zone_bootargs); 2406 if (zone->zone_initname != NULL) 2407 strfree(zone->zone_initname); 2408 if (zone->zone_fs_allowed != NULL) 2409 strfree(zone->zone_fs_allowed); 2410 if (zone->zone_pfexecd != NULL) 2411 klpd_freelist(&zone->zone_pfexecd); 2412 id_free(zoneid_space, zone->zone_id); 2413 mutex_destroy(&zone->zone_lock); 2414 cv_destroy(&zone->zone_cv); 2415 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2416 rw_destroy(&zone->zone_mntfs_db_lock); 2417 kmem_free(zone, sizeof (zone_t)); 2418 } 2419 2420 /* 2421 * See block comment at the top of this file for information about zone 2422 * status values. 2423 */ 2424 /* 2425 * Convenience function for setting zone status. 2426 */ 2427 static void 2428 zone_status_set(zone_t *zone, zone_status_t status) 2429 { 2430 2431 nvlist_t *nvl = NULL; 2432 ASSERT(MUTEX_HELD(&zone_status_lock)); 2433 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2434 status >= zone_status_get(zone)); 2435 2436 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2437 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2438 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2439 zone_status_table[status]) || 2440 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2441 zone_status_table[zone->zone_status]) || 2442 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2443 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2444 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2445 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2446 #ifdef DEBUG 2447 (void) printf( 2448 "Failed to allocate and send zone state change event.\n"); 2449 #endif 2450 } 2451 nvlist_free(nvl); 2452 2453 zone->zone_status = status; 2454 2455 cv_broadcast(&zone->zone_cv); 2456 } 2457 2458 /* 2459 * Public function to retrieve the zone status. The zone status may 2460 * change after it is retrieved. 2461 */ 2462 zone_status_t 2463 zone_status_get(zone_t *zone) 2464 { 2465 return (zone->zone_status); 2466 } 2467 2468 static int 2469 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2470 { 2471 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2472 int err = 0; 2473 2474 ASSERT(zone != global_zone); 2475 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2476 goto done; /* EFAULT or ENAMETOOLONG */ 2477 2478 if (zone->zone_bootargs != NULL) 2479 strfree(zone->zone_bootargs); 2480 2481 zone->zone_bootargs = strdup(buf); 2482 2483 done: 2484 kmem_free(buf, BOOTARGS_MAX); 2485 return (err); 2486 } 2487 2488 static int 2489 zone_set_brand(zone_t *zone, const char *brand) 2490 { 2491 struct brand_attr *attrp; 2492 brand_t *bp; 2493 2494 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2495 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2496 kmem_free(attrp, sizeof (struct brand_attr)); 2497 return (EFAULT); 2498 } 2499 2500 bp = brand_register_zone(attrp); 2501 kmem_free(attrp, sizeof (struct brand_attr)); 2502 if (bp == NULL) 2503 return (EINVAL); 2504 2505 /* 2506 * This is the only place where a zone can change it's brand. 2507 * We already need to hold zone_status_lock to check the zone 2508 * status, so we'll just use that lock to serialize zone 2509 * branding requests as well. 2510 */ 2511 mutex_enter(&zone_status_lock); 2512 2513 /* Re-Branding is not allowed and the zone can't be booted yet */ 2514 if ((ZONE_IS_BRANDED(zone)) || 2515 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2516 mutex_exit(&zone_status_lock); 2517 brand_unregister_zone(bp); 2518 return (EINVAL); 2519 } 2520 2521 /* set up the brand specific data */ 2522 zone->zone_brand = bp; 2523 ZBROP(zone)->b_init_brand_data(zone); 2524 2525 mutex_exit(&zone_status_lock); 2526 return (0); 2527 } 2528 2529 static int 2530 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2531 { 2532 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2533 int err = 0; 2534 2535 ASSERT(zone != global_zone); 2536 if ((err = copyinstr(zone_fs_allowed, buf, 2537 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2538 goto done; 2539 2540 if (zone->zone_fs_allowed != NULL) 2541 strfree(zone->zone_fs_allowed); 2542 2543 zone->zone_fs_allowed = strdup(buf); 2544 2545 done: 2546 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2547 return (err); 2548 } 2549 2550 static int 2551 zone_set_initname(zone_t *zone, const char *zone_initname) 2552 { 2553 char initname[INITNAME_SZ]; 2554 size_t len; 2555 int err = 0; 2556 2557 ASSERT(zone != global_zone); 2558 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2559 return (err); /* EFAULT or ENAMETOOLONG */ 2560 2561 if (zone->zone_initname != NULL) 2562 strfree(zone->zone_initname); 2563 2564 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2565 (void) strcpy(zone->zone_initname, initname); 2566 return (0); 2567 } 2568 2569 static int 2570 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2571 { 2572 uint64_t mcap; 2573 int err = 0; 2574 2575 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2576 zone->zone_phys_mcap = mcap; 2577 2578 return (err); 2579 } 2580 2581 static int 2582 zone_set_sched_class(zone_t *zone, const char *new_class) 2583 { 2584 char sched_class[PC_CLNMSZ]; 2585 id_t classid; 2586 int err; 2587 2588 ASSERT(zone != global_zone); 2589 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2590 return (err); /* EFAULT or ENAMETOOLONG */ 2591 2592 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2593 return (set_errno(EINVAL)); 2594 zone->zone_defaultcid = classid; 2595 ASSERT(zone->zone_defaultcid > 0 && 2596 zone->zone_defaultcid < loaded_classes); 2597 2598 return (0); 2599 } 2600 2601 /* 2602 * Block indefinitely waiting for (zone_status >= status) 2603 */ 2604 void 2605 zone_status_wait(zone_t *zone, zone_status_t status) 2606 { 2607 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2608 2609 mutex_enter(&zone_status_lock); 2610 while (zone->zone_status < status) { 2611 cv_wait(&zone->zone_cv, &zone_status_lock); 2612 } 2613 mutex_exit(&zone_status_lock); 2614 } 2615 2616 /* 2617 * Private CPR-safe version of zone_status_wait(). 2618 */ 2619 static void 2620 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2621 { 2622 callb_cpr_t cprinfo; 2623 2624 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2625 2626 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2627 str); 2628 mutex_enter(&zone_status_lock); 2629 while (zone->zone_status < status) { 2630 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2631 cv_wait(&zone->zone_cv, &zone_status_lock); 2632 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2633 } 2634 /* 2635 * zone_status_lock is implicitly released by the following. 2636 */ 2637 CALLB_CPR_EXIT(&cprinfo); 2638 } 2639 2640 /* 2641 * Block until zone enters requested state or signal is received. Return (0) 2642 * if signaled, non-zero otherwise. 2643 */ 2644 int 2645 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2646 { 2647 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2648 2649 mutex_enter(&zone_status_lock); 2650 while (zone->zone_status < status) { 2651 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2652 mutex_exit(&zone_status_lock); 2653 return (0); 2654 } 2655 } 2656 mutex_exit(&zone_status_lock); 2657 return (1); 2658 } 2659 2660 /* 2661 * Block until the zone enters the requested state or the timeout expires, 2662 * whichever happens first. Return (-1) if operation timed out, time remaining 2663 * otherwise. 2664 */ 2665 clock_t 2666 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2667 { 2668 clock_t timeleft = 0; 2669 2670 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2671 2672 mutex_enter(&zone_status_lock); 2673 while (zone->zone_status < status && timeleft != -1) { 2674 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2675 } 2676 mutex_exit(&zone_status_lock); 2677 return (timeleft); 2678 } 2679 2680 /* 2681 * Block until the zone enters the requested state, the current process is 2682 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2683 * operation timed out, 0 if signaled, time remaining otherwise. 2684 */ 2685 clock_t 2686 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2687 { 2688 clock_t timeleft = tim - ddi_get_lbolt(); 2689 2690 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2691 2692 mutex_enter(&zone_status_lock); 2693 while (zone->zone_status < status) { 2694 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2695 tim); 2696 if (timeleft <= 0) 2697 break; 2698 } 2699 mutex_exit(&zone_status_lock); 2700 return (timeleft); 2701 } 2702 2703 /* 2704 * Zones have two reference counts: one for references from credential 2705 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2706 * This is so we can allow a zone to be rebooted while there are still 2707 * outstanding cred references, since certain drivers cache dblks (which 2708 * implicitly results in cached creds). We wait for zone_ref to drop to 2709 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2710 * later freed when the zone_cred_ref drops to 0, though nothing other 2711 * than the zone id and privilege set should be accessed once the zone 2712 * is "dead". 2713 * 2714 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2715 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2716 * to 0. This can be useful to flush out other sources of cached creds 2717 * that may be less innocuous than the driver case. 2718 * 2719 * Zones also provide a tracked reference counting mechanism in which zone 2720 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2721 * debuggers determine the sources of leaked zone references. See 2722 * zone_hold_ref() and zone_rele_ref() below for more information. 2723 */ 2724 2725 int zone_wait_for_cred = 0; 2726 2727 static void 2728 zone_hold_locked(zone_t *z) 2729 { 2730 ASSERT(MUTEX_HELD(&z->zone_lock)); 2731 z->zone_ref++; 2732 ASSERT(z->zone_ref != 0); 2733 } 2734 2735 /* 2736 * Increment the specified zone's reference count. The zone's zone_t structure 2737 * will not be freed as long as the zone's reference count is nonzero. 2738 * Decrement the zone's reference count via zone_rele(). 2739 * 2740 * NOTE: This function should only be used to hold zones for short periods of 2741 * time. Use zone_hold_ref() if the zone must be held for a long time. 2742 */ 2743 void 2744 zone_hold(zone_t *z) 2745 { 2746 mutex_enter(&z->zone_lock); 2747 zone_hold_locked(z); 2748 mutex_exit(&z->zone_lock); 2749 } 2750 2751 /* 2752 * If the non-cred ref count drops to 1 and either the cred ref count 2753 * is 0 or we aren't waiting for cred references, the zone is ready to 2754 * be destroyed. 2755 */ 2756 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2757 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2758 2759 /* 2760 * Common zone reference release function invoked by zone_rele() and 2761 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2762 * zone's subsystem-specific reference counters are not affected by the 2763 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2764 * removed from the specified zone's reference list. ref must be non-NULL iff 2765 * subsys is not ZONE_REF_NUM_SUBSYS. 2766 */ 2767 static void 2768 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2769 { 2770 boolean_t wakeup; 2771 2772 mutex_enter(&z->zone_lock); 2773 ASSERT(z->zone_ref != 0); 2774 z->zone_ref--; 2775 if (subsys != ZONE_REF_NUM_SUBSYS) { 2776 ASSERT(z->zone_subsys_ref[subsys] != 0); 2777 z->zone_subsys_ref[subsys]--; 2778 list_remove(&z->zone_ref_list, ref); 2779 } 2780 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2781 /* no more refs, free the structure */ 2782 mutex_exit(&z->zone_lock); 2783 zone_free(z); 2784 return; 2785 } 2786 /* signal zone_destroy so the zone can finish halting */ 2787 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2788 mutex_exit(&z->zone_lock); 2789 2790 if (wakeup) { 2791 /* 2792 * Grabbing zonehash_lock here effectively synchronizes with 2793 * zone_destroy() to avoid missed signals. 2794 */ 2795 mutex_enter(&zonehash_lock); 2796 cv_broadcast(&zone_destroy_cv); 2797 mutex_exit(&zonehash_lock); 2798 } 2799 } 2800 2801 /* 2802 * Decrement the specified zone's reference count. The specified zone will 2803 * cease to exist after this function returns if the reference count drops to 2804 * zero. This function should be paired with zone_hold(). 2805 */ 2806 void 2807 zone_rele(zone_t *z) 2808 { 2809 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2810 } 2811 2812 /* 2813 * Initialize a zone reference structure. This function must be invoked for 2814 * a reference structure before the structure is passed to zone_hold_ref(). 2815 */ 2816 void 2817 zone_init_ref(zone_ref_t *ref) 2818 { 2819 ref->zref_zone = NULL; 2820 list_link_init(&ref->zref_linkage); 2821 } 2822 2823 /* 2824 * Acquire a reference to zone z. The caller must specify the 2825 * zone_ref_subsys_t constant associated with its subsystem. The specified 2826 * zone_ref_t structure will represent a reference to the specified zone. Use 2827 * zone_rele_ref() to release the reference. 2828 * 2829 * The referenced zone_t structure will not be freed as long as the zone_t's 2830 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2831 * references. 2832 * 2833 * NOTE: The zone_ref_t structure must be initialized before it is used. 2834 * See zone_init_ref() above. 2835 */ 2836 void 2837 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2838 { 2839 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2840 2841 /* 2842 * Prevent consumers from reusing a reference structure before 2843 * releasing it. 2844 */ 2845 VERIFY(ref->zref_zone == NULL); 2846 2847 ref->zref_zone = z; 2848 mutex_enter(&z->zone_lock); 2849 zone_hold_locked(z); 2850 z->zone_subsys_ref[subsys]++; 2851 ASSERT(z->zone_subsys_ref[subsys] != 0); 2852 list_insert_head(&z->zone_ref_list, ref); 2853 mutex_exit(&z->zone_lock); 2854 } 2855 2856 /* 2857 * Release the zone reference represented by the specified zone_ref_t. 2858 * The reference is invalid after it's released; however, the zone_ref_t 2859 * structure can be reused without having to invoke zone_init_ref(). 2860 * subsys should be the same value that was passed to zone_hold_ref() 2861 * when the reference was acquired. 2862 */ 2863 void 2864 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2865 { 2866 zone_rele_common(ref->zref_zone, ref, subsys); 2867 2868 /* 2869 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2870 * when consumers dereference the reference. This helps us catch 2871 * consumers who use released references. Furthermore, this lets 2872 * consumers reuse the zone_ref_t structure without having to 2873 * invoke zone_init_ref(). 2874 */ 2875 ref->zref_zone = NULL; 2876 } 2877 2878 void 2879 zone_cred_hold(zone_t *z) 2880 { 2881 mutex_enter(&z->zone_lock); 2882 z->zone_cred_ref++; 2883 ASSERT(z->zone_cred_ref != 0); 2884 mutex_exit(&z->zone_lock); 2885 } 2886 2887 void 2888 zone_cred_rele(zone_t *z) 2889 { 2890 boolean_t wakeup; 2891 2892 mutex_enter(&z->zone_lock); 2893 ASSERT(z->zone_cred_ref != 0); 2894 z->zone_cred_ref--; 2895 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2896 /* no more refs, free the structure */ 2897 mutex_exit(&z->zone_lock); 2898 zone_free(z); 2899 return; 2900 } 2901 /* 2902 * If zone_destroy is waiting for the cred references to drain 2903 * out, and they have, signal it. 2904 */ 2905 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2906 zone_status_get(z) >= ZONE_IS_DEAD); 2907 mutex_exit(&z->zone_lock); 2908 2909 if (wakeup) { 2910 /* 2911 * Grabbing zonehash_lock here effectively synchronizes with 2912 * zone_destroy() to avoid missed signals. 2913 */ 2914 mutex_enter(&zonehash_lock); 2915 cv_broadcast(&zone_destroy_cv); 2916 mutex_exit(&zonehash_lock); 2917 } 2918 } 2919 2920 void 2921 zone_task_hold(zone_t *z) 2922 { 2923 mutex_enter(&z->zone_lock); 2924 z->zone_ntasks++; 2925 ASSERT(z->zone_ntasks != 0); 2926 mutex_exit(&z->zone_lock); 2927 } 2928 2929 void 2930 zone_task_rele(zone_t *zone) 2931 { 2932 uint_t refcnt; 2933 2934 mutex_enter(&zone->zone_lock); 2935 ASSERT(zone->zone_ntasks != 0); 2936 refcnt = --zone->zone_ntasks; 2937 if (refcnt > 1) { /* Common case */ 2938 mutex_exit(&zone->zone_lock); 2939 return; 2940 } 2941 zone_hold_locked(zone); /* so we can use the zone_t later */ 2942 mutex_exit(&zone->zone_lock); 2943 if (refcnt == 1) { 2944 /* 2945 * See if the zone is shutting down. 2946 */ 2947 mutex_enter(&zone_status_lock); 2948 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2949 goto out; 2950 } 2951 2952 /* 2953 * Make sure the ntasks didn't change since we 2954 * dropped zone_lock. 2955 */ 2956 mutex_enter(&zone->zone_lock); 2957 if (refcnt != zone->zone_ntasks) { 2958 mutex_exit(&zone->zone_lock); 2959 goto out; 2960 } 2961 mutex_exit(&zone->zone_lock); 2962 2963 /* 2964 * No more user processes in the zone. The zone is empty. 2965 */ 2966 zone_status_set(zone, ZONE_IS_EMPTY); 2967 goto out; 2968 } 2969 2970 ASSERT(refcnt == 0); 2971 /* 2972 * zsched has exited; the zone is dead. 2973 */ 2974 zone->zone_zsched = NULL; /* paranoia */ 2975 mutex_enter(&zone_status_lock); 2976 zone_status_set(zone, ZONE_IS_DEAD); 2977 out: 2978 mutex_exit(&zone_status_lock); 2979 zone_rele(zone); 2980 } 2981 2982 zoneid_t 2983 getzoneid(void) 2984 { 2985 return (curproc->p_zone->zone_id); 2986 } 2987 2988 /* 2989 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2990 * check the validity of a zone's state. 2991 */ 2992 static zone_t * 2993 zone_find_all_by_id(zoneid_t zoneid) 2994 { 2995 mod_hash_val_t hv; 2996 zone_t *zone = NULL; 2997 2998 ASSERT(MUTEX_HELD(&zonehash_lock)); 2999 3000 if (mod_hash_find(zonehashbyid, 3001 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 3002 zone = (zone_t *)hv; 3003 return (zone); 3004 } 3005 3006 static zone_t * 3007 zone_find_all_by_label(const ts_label_t *label) 3008 { 3009 mod_hash_val_t hv; 3010 zone_t *zone = NULL; 3011 3012 ASSERT(MUTEX_HELD(&zonehash_lock)); 3013 3014 /* 3015 * zonehashbylabel is not maintained for unlabeled systems 3016 */ 3017 if (!is_system_labeled()) 3018 return (NULL); 3019 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 3020 zone = (zone_t *)hv; 3021 return (zone); 3022 } 3023 3024 static zone_t * 3025 zone_find_all_by_name(char *name) 3026 { 3027 mod_hash_val_t hv; 3028 zone_t *zone = NULL; 3029 3030 ASSERT(MUTEX_HELD(&zonehash_lock)); 3031 3032 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 3033 zone = (zone_t *)hv; 3034 return (zone); 3035 } 3036 3037 /* 3038 * Public interface for looking up a zone by zoneid. Only returns the zone if 3039 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 3040 * Caller must call zone_rele() once it is done with the zone. 3041 * 3042 * The zone may begin the zone_destroy() sequence immediately after this 3043 * function returns, but may be safely used until zone_rele() is called. 3044 */ 3045 zone_t * 3046 zone_find_by_id(zoneid_t zoneid) 3047 { 3048 zone_t *zone; 3049 zone_status_t status; 3050 3051 mutex_enter(&zonehash_lock); 3052 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3053 mutex_exit(&zonehash_lock); 3054 return (NULL); 3055 } 3056 status = zone_status_get(zone); 3057 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3058 /* 3059 * For all practical purposes the zone doesn't exist. 3060 */ 3061 mutex_exit(&zonehash_lock); 3062 return (NULL); 3063 } 3064 zone_hold(zone); 3065 mutex_exit(&zonehash_lock); 3066 return (zone); 3067 } 3068 3069 /* 3070 * Similar to zone_find_by_id, but using zone label as the key. 3071 */ 3072 zone_t * 3073 zone_find_by_label(const ts_label_t *label) 3074 { 3075 zone_t *zone; 3076 zone_status_t status; 3077 3078 mutex_enter(&zonehash_lock); 3079 if ((zone = zone_find_all_by_label(label)) == NULL) { 3080 mutex_exit(&zonehash_lock); 3081 return (NULL); 3082 } 3083 3084 status = zone_status_get(zone); 3085 if (status > ZONE_IS_DOWN) { 3086 /* 3087 * For all practical purposes the zone doesn't exist. 3088 */ 3089 mutex_exit(&zonehash_lock); 3090 return (NULL); 3091 } 3092 zone_hold(zone); 3093 mutex_exit(&zonehash_lock); 3094 return (zone); 3095 } 3096 3097 /* 3098 * Similar to zone_find_by_id, but using zone name as the key. 3099 */ 3100 zone_t * 3101 zone_find_by_name(char *name) 3102 { 3103 zone_t *zone; 3104 zone_status_t status; 3105 3106 mutex_enter(&zonehash_lock); 3107 if ((zone = zone_find_all_by_name(name)) == NULL) { 3108 mutex_exit(&zonehash_lock); 3109 return (NULL); 3110 } 3111 status = zone_status_get(zone); 3112 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3113 /* 3114 * For all practical purposes the zone doesn't exist. 3115 */ 3116 mutex_exit(&zonehash_lock); 3117 return (NULL); 3118 } 3119 zone_hold(zone); 3120 mutex_exit(&zonehash_lock); 3121 return (zone); 3122 } 3123 3124 /* 3125 * Similar to zone_find_by_id(), using the path as a key. For instance, 3126 * if there is a zone "foo" rooted at /foo/root, and the path argument 3127 * is "/foo/root/proc", it will return the held zone_t corresponding to 3128 * zone "foo". 3129 * 3130 * zone_find_by_path() always returns a non-NULL value, since at the 3131 * very least every path will be contained in the global zone. 3132 * 3133 * As with the other zone_find_by_*() functions, the caller is 3134 * responsible for zone_rele()ing the return value of this function. 3135 */ 3136 zone_t * 3137 zone_find_by_path(const char *path) 3138 { 3139 zone_t *zone; 3140 zone_t *zret = NULL; 3141 zone_status_t status; 3142 3143 if (path == NULL) { 3144 /* 3145 * Call from rootconf(). 3146 */ 3147 zone_hold(global_zone); 3148 return (global_zone); 3149 } 3150 ASSERT(*path == '/'); 3151 mutex_enter(&zonehash_lock); 3152 for (zone = list_head(&zone_active); zone != NULL; 3153 zone = list_next(&zone_active, zone)) { 3154 if (ZONE_PATH_VISIBLE(path, zone)) 3155 zret = zone; 3156 } 3157 ASSERT(zret != NULL); 3158 status = zone_status_get(zret); 3159 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3160 /* 3161 * Zone practically doesn't exist. 3162 */ 3163 zret = global_zone; 3164 } 3165 zone_hold(zret); 3166 mutex_exit(&zonehash_lock); 3167 return (zret); 3168 } 3169 3170 /* 3171 * Public interface for updating per-zone load averages. Called once per 3172 * second. 3173 * 3174 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3175 */ 3176 void 3177 zone_loadavg_update() 3178 { 3179 zone_t *zp; 3180 zone_status_t status; 3181 struct loadavg_s *lavg; 3182 hrtime_t zone_total; 3183 int i; 3184 hrtime_t hr_avg; 3185 int nrun; 3186 static int64_t f[3] = { 135, 27, 9 }; 3187 int64_t q, r; 3188 3189 mutex_enter(&zonehash_lock); 3190 for (zp = list_head(&zone_active); zp != NULL; 3191 zp = list_next(&zone_active, zp)) { 3192 mutex_enter(&zp->zone_lock); 3193 3194 /* Skip zones that are on the way down or not yet up */ 3195 status = zone_status_get(zp); 3196 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3197 /* For all practical purposes the zone doesn't exist. */ 3198 mutex_exit(&zp->zone_lock); 3199 continue; 3200 } 3201 3202 /* 3203 * Update the 10 second moving average data in zone_loadavg. 3204 */ 3205 lavg = &zp->zone_loadavg; 3206 3207 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime; 3208 scalehrtime(&zone_total); 3209 3210 /* The zone_total should always be increasing. */ 3211 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3212 zone_total - lavg->lg_total : 0; 3213 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3214 /* lg_total holds the prev. 1 sec. total */ 3215 lavg->lg_total = zone_total; 3216 3217 /* 3218 * To simplify the calculation, we don't calculate the load avg. 3219 * until the zone has been up for at least 10 seconds and our 3220 * moving average is thus full. 3221 */ 3222 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3223 lavg->lg_len++; 3224 mutex_exit(&zp->zone_lock); 3225 continue; 3226 } 3227 3228 /* Now calculate the 1min, 5min, 15 min load avg. */ 3229 hr_avg = 0; 3230 for (i = 0; i < S_LOADAVG_SZ; i++) 3231 hr_avg += lavg->lg_loads[i]; 3232 hr_avg = hr_avg / S_LOADAVG_SZ; 3233 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3234 3235 /* Compute load avg. See comment in calcloadavg() */ 3236 for (i = 0; i < 3; i++) { 3237 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3238 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3239 zp->zone_hp_avenrun[i] += 3240 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3241 3242 /* avenrun[] can only hold 31 bits of load avg. */ 3243 if (zp->zone_hp_avenrun[i] < 3244 ((uint64_t)1<<(31+16-FSHIFT))) 3245 zp->zone_avenrun[i] = (int32_t) 3246 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3247 else 3248 zp->zone_avenrun[i] = 0x7fffffff; 3249 } 3250 3251 mutex_exit(&zp->zone_lock); 3252 } 3253 mutex_exit(&zonehash_lock); 3254 } 3255 3256 /* 3257 * Get the number of cpus visible to this zone. The system-wide global 3258 * 'ncpus' is returned if pools are disabled, the caller is in the 3259 * global zone, or a NULL zone argument is passed in. 3260 */ 3261 int 3262 zone_ncpus_get(zone_t *zone) 3263 { 3264 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3265 3266 return (myncpus != 0 ? myncpus : ncpus); 3267 } 3268 3269 /* 3270 * Get the number of online cpus visible to this zone. The system-wide 3271 * global 'ncpus_online' is returned if pools are disabled, the caller 3272 * is in the global zone, or a NULL zone argument is passed in. 3273 */ 3274 int 3275 zone_ncpus_online_get(zone_t *zone) 3276 { 3277 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3278 3279 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3280 } 3281 3282 /* 3283 * Return the pool to which the zone is currently bound. 3284 */ 3285 pool_t * 3286 zone_pool_get(zone_t *zone) 3287 { 3288 ASSERT(pool_lock_held()); 3289 3290 return (zone->zone_pool); 3291 } 3292 3293 /* 3294 * Set the zone's pool pointer and update the zone's visibility to match 3295 * the resources in the new pool. 3296 */ 3297 void 3298 zone_pool_set(zone_t *zone, pool_t *pool) 3299 { 3300 ASSERT(pool_lock_held()); 3301 ASSERT(MUTEX_HELD(&cpu_lock)); 3302 3303 zone->zone_pool = pool; 3304 zone_pset_set(zone, pool->pool_pset->pset_id); 3305 } 3306 3307 /* 3308 * Return the cached value of the id of the processor set to which the 3309 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3310 * facility is disabled. 3311 */ 3312 psetid_t 3313 zone_pset_get(zone_t *zone) 3314 { 3315 ASSERT(MUTEX_HELD(&cpu_lock)); 3316 3317 return (zone->zone_psetid); 3318 } 3319 3320 /* 3321 * Set the cached value of the id of the processor set to which the zone 3322 * is currently bound. Also update the zone's visibility to match the 3323 * resources in the new processor set. 3324 */ 3325 void 3326 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3327 { 3328 psetid_t oldpsetid; 3329 3330 ASSERT(MUTEX_HELD(&cpu_lock)); 3331 oldpsetid = zone_pset_get(zone); 3332 3333 if (oldpsetid == newpsetid) 3334 return; 3335 /* 3336 * Global zone sees all. 3337 */ 3338 if (zone != global_zone) { 3339 zone->zone_psetid = newpsetid; 3340 if (newpsetid != ZONE_PS_INVAL) 3341 pool_pset_visibility_add(newpsetid, zone); 3342 if (oldpsetid != ZONE_PS_INVAL) 3343 pool_pset_visibility_remove(oldpsetid, zone); 3344 } 3345 /* 3346 * Disabling pools, so we should start using the global values 3347 * for ncpus and ncpus_online. 3348 */ 3349 if (newpsetid == ZONE_PS_INVAL) { 3350 zone->zone_ncpus = 0; 3351 zone->zone_ncpus_online = 0; 3352 } 3353 } 3354 3355 /* 3356 * Walk the list of active zones and issue the provided callback for 3357 * each of them. 3358 * 3359 * Caller must not be holding any locks that may be acquired under 3360 * zonehash_lock. See comment at the beginning of the file for a list of 3361 * common locks and their interactions with zones. 3362 */ 3363 int 3364 zone_walk(int (*cb)(zone_t *, void *), void *data) 3365 { 3366 zone_t *zone; 3367 int ret = 0; 3368 zone_status_t status; 3369 3370 mutex_enter(&zonehash_lock); 3371 for (zone = list_head(&zone_active); zone != NULL; 3372 zone = list_next(&zone_active, zone)) { 3373 /* 3374 * Skip zones that shouldn't be externally visible. 3375 */ 3376 status = zone_status_get(zone); 3377 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3378 continue; 3379 /* 3380 * Bail immediately if any callback invocation returns a 3381 * non-zero value. 3382 */ 3383 ret = (*cb)(zone, data); 3384 if (ret != 0) 3385 break; 3386 } 3387 mutex_exit(&zonehash_lock); 3388 return (ret); 3389 } 3390 3391 static int 3392 zone_set_root(zone_t *zone, const char *upath) 3393 { 3394 vnode_t *vp; 3395 int trycount; 3396 int error = 0; 3397 char *path; 3398 struct pathname upn, pn; 3399 size_t pathlen; 3400 3401 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3402 return (error); 3403 3404 pn_alloc(&pn); 3405 3406 /* prevent infinite loop */ 3407 trycount = 10; 3408 for (;;) { 3409 if (--trycount <= 0) { 3410 error = ESTALE; 3411 goto out; 3412 } 3413 3414 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3415 /* 3416 * VOP_ACCESS() may cover 'vp' with a new 3417 * filesystem, if 'vp' is an autoFS vnode. 3418 * Get the new 'vp' if so. 3419 */ 3420 if ((error = 3421 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3422 (!vn_ismntpt(vp) || 3423 (error = traverse(&vp)) == 0)) { 3424 pathlen = pn.pn_pathlen + 2; 3425 path = kmem_alloc(pathlen, KM_SLEEP); 3426 (void) strncpy(path, pn.pn_path, 3427 pn.pn_pathlen + 1); 3428 path[pathlen - 2] = '/'; 3429 path[pathlen - 1] = '\0'; 3430 pn_free(&pn); 3431 pn_free(&upn); 3432 3433 /* Success! */ 3434 break; 3435 } 3436 VN_RELE(vp); 3437 } 3438 if (error != ESTALE) 3439 goto out; 3440 } 3441 3442 ASSERT(error == 0); 3443 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3444 zone->zone_rootpath = path; 3445 zone->zone_rootpathlen = pathlen; 3446 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3447 zone->zone_flags |= ZF_IS_SCRATCH; 3448 return (0); 3449 3450 out: 3451 pn_free(&pn); 3452 pn_free(&upn); 3453 return (error); 3454 } 3455 3456 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3457 ((c) >= 'a' && (c) <= 'z') || \ 3458 ((c) >= 'A' && (c) <= 'Z')) 3459 3460 static int 3461 zone_set_name(zone_t *zone, const char *uname) 3462 { 3463 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3464 size_t len; 3465 int i, err; 3466 3467 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3468 kmem_free(kname, ZONENAME_MAX); 3469 return (err); /* EFAULT or ENAMETOOLONG */ 3470 } 3471 3472 /* must be less than ZONENAME_MAX */ 3473 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3474 kmem_free(kname, ZONENAME_MAX); 3475 return (EINVAL); 3476 } 3477 3478 /* 3479 * Name must start with an alphanumeric and must contain only 3480 * alphanumerics, '-', '_' and '.'. 3481 */ 3482 if (!isalnum(kname[0])) { 3483 kmem_free(kname, ZONENAME_MAX); 3484 return (EINVAL); 3485 } 3486 for (i = 1; i < len - 1; i++) { 3487 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3488 kname[i] != '.') { 3489 kmem_free(kname, ZONENAME_MAX); 3490 return (EINVAL); 3491 } 3492 } 3493 3494 zone->zone_name = kname; 3495 return (0); 3496 } 3497 3498 /* 3499 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3500 * is NULL or it points to a zone with no hostid emulation, then the machine's 3501 * hostid (i.e., the global zone's hostid) is returned. This function returns 3502 * zero if neither the zone nor the host machine (global zone) have hostids. It 3503 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3504 * hostid and the machine's hostid is invalid. 3505 */ 3506 uint32_t 3507 zone_get_hostid(zone_t *zonep) 3508 { 3509 unsigned long machine_hostid; 3510 3511 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3512 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3513 return (HW_INVALID_HOSTID); 3514 return ((uint32_t)machine_hostid); 3515 } 3516 return (zonep->zone_hostid); 3517 } 3518 3519 /* 3520 * Similar to thread_create(), but makes sure the thread is in the appropriate 3521 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3522 */ 3523 /*ARGSUSED*/ 3524 kthread_t * 3525 zthread_create( 3526 caddr_t stk, 3527 size_t stksize, 3528 void (*proc)(), 3529 void *arg, 3530 size_t len, 3531 pri_t pri) 3532 { 3533 kthread_t *t; 3534 zone_t *zone = curproc->p_zone; 3535 proc_t *pp = zone->zone_zsched; 3536 3537 zone_hold(zone); /* Reference to be dropped when thread exits */ 3538 3539 /* 3540 * No-one should be trying to create threads if the zone is shutting 3541 * down and there aren't any kernel threads around. See comment 3542 * in zthread_exit(). 3543 */ 3544 ASSERT(!(zone->zone_kthreads == NULL && 3545 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3546 /* 3547 * Create a thread, but don't let it run until we've finished setting 3548 * things up. 3549 */ 3550 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3551 ASSERT(t->t_forw == NULL); 3552 mutex_enter(&zone_status_lock); 3553 if (zone->zone_kthreads == NULL) { 3554 t->t_forw = t->t_back = t; 3555 } else { 3556 kthread_t *tx = zone->zone_kthreads; 3557 3558 t->t_forw = tx; 3559 t->t_back = tx->t_back; 3560 tx->t_back->t_forw = t; 3561 tx->t_back = t; 3562 } 3563 zone->zone_kthreads = t; 3564 mutex_exit(&zone_status_lock); 3565 3566 mutex_enter(&pp->p_lock); 3567 t->t_proc_flag |= TP_ZTHREAD; 3568 project_rele(t->t_proj); 3569 t->t_proj = project_hold(pp->p_task->tk_proj); 3570 3571 /* 3572 * Setup complete, let it run. 3573 */ 3574 thread_lock(t); 3575 t->t_schedflag |= TS_ALLSTART; 3576 setrun_locked(t); 3577 thread_unlock(t); 3578 3579 mutex_exit(&pp->p_lock); 3580 3581 return (t); 3582 } 3583 3584 /* 3585 * Similar to thread_exit(). Must be called by threads created via 3586 * zthread_exit(). 3587 */ 3588 void 3589 zthread_exit(void) 3590 { 3591 kthread_t *t = curthread; 3592 proc_t *pp = curproc; 3593 zone_t *zone = pp->p_zone; 3594 3595 mutex_enter(&zone_status_lock); 3596 3597 /* 3598 * Reparent to p0 3599 */ 3600 kpreempt_disable(); 3601 mutex_enter(&pp->p_lock); 3602 t->t_proc_flag &= ~TP_ZTHREAD; 3603 t->t_procp = &p0; 3604 hat_thread_exit(t); 3605 mutex_exit(&pp->p_lock); 3606 kpreempt_enable(); 3607 3608 if (t->t_back == t) { 3609 ASSERT(t->t_forw == t); 3610 /* 3611 * If the zone is empty, once the thread count 3612 * goes to zero no further kernel threads can be 3613 * created. This is because if the creator is a process 3614 * in the zone, then it must have exited before the zone 3615 * state could be set to ZONE_IS_EMPTY. 3616 * Otherwise, if the creator is a kernel thread in the 3617 * zone, the thread count is non-zero. 3618 * 3619 * This really means that non-zone kernel threads should 3620 * not create zone kernel threads. 3621 */ 3622 zone->zone_kthreads = NULL; 3623 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3624 zone_status_set(zone, ZONE_IS_DOWN); 3625 /* 3626 * Remove any CPU caps on this zone. 3627 */ 3628 cpucaps_zone_remove(zone); 3629 } 3630 } else { 3631 t->t_forw->t_back = t->t_back; 3632 t->t_back->t_forw = t->t_forw; 3633 if (zone->zone_kthreads == t) 3634 zone->zone_kthreads = t->t_forw; 3635 } 3636 mutex_exit(&zone_status_lock); 3637 zone_rele(zone); 3638 thread_exit(); 3639 /* NOTREACHED */ 3640 } 3641 3642 static void 3643 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3644 { 3645 vnode_t *oldvp; 3646 3647 /* we're going to hold a reference here to the directory */ 3648 VN_HOLD(vp); 3649 3650 /* update abs cwd/root path see c2/audit.c */ 3651 if (AU_AUDITING()) 3652 audit_chdirec(vp, vpp); 3653 3654 mutex_enter(&pp->p_lock); 3655 oldvp = *vpp; 3656 *vpp = vp; 3657 mutex_exit(&pp->p_lock); 3658 if (oldvp != NULL) 3659 VN_RELE(oldvp); 3660 } 3661 3662 /* 3663 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3664 */ 3665 static int 3666 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3667 { 3668 nvpair_t *nvp = NULL; 3669 boolean_t priv_set = B_FALSE; 3670 boolean_t limit_set = B_FALSE; 3671 boolean_t action_set = B_FALSE; 3672 3673 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3674 const char *name; 3675 uint64_t ui64; 3676 3677 name = nvpair_name(nvp); 3678 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3679 return (EINVAL); 3680 (void) nvpair_value_uint64(nvp, &ui64); 3681 if (strcmp(name, "privilege") == 0) { 3682 /* 3683 * Currently only privileged values are allowed, but 3684 * this may change in the future. 3685 */ 3686 if (ui64 != RCPRIV_PRIVILEGED) 3687 return (EINVAL); 3688 rv->rcv_privilege = ui64; 3689 priv_set = B_TRUE; 3690 } else if (strcmp(name, "limit") == 0) { 3691 rv->rcv_value = ui64; 3692 limit_set = B_TRUE; 3693 } else if (strcmp(name, "action") == 0) { 3694 if (ui64 != RCTL_LOCAL_NOACTION && 3695 ui64 != RCTL_LOCAL_DENY) 3696 return (EINVAL); 3697 rv->rcv_flagaction = ui64; 3698 action_set = B_TRUE; 3699 } else { 3700 return (EINVAL); 3701 } 3702 } 3703 3704 if (!(priv_set && limit_set && action_set)) 3705 return (EINVAL); 3706 rv->rcv_action_signal = 0; 3707 rv->rcv_action_recipient = NULL; 3708 rv->rcv_action_recip_pid = -1; 3709 rv->rcv_firing_time = 0; 3710 3711 return (0); 3712 } 3713 3714 /* 3715 * Non-global zone version of start_init. 3716 */ 3717 void 3718 zone_start_init(void) 3719 { 3720 proc_t *p = ttoproc(curthread); 3721 zone_t *z = p->p_zone; 3722 3723 ASSERT(!INGLOBALZONE(curproc)); 3724 3725 /* 3726 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3727 * storing just the pid of init is sufficient. 3728 */ 3729 z->zone_proc_initpid = p->p_pid; 3730 3731 /* 3732 * We maintain zone_boot_err so that we can return the cause of the 3733 * failure back to the caller of the zone_boot syscall. 3734 */ 3735 p->p_zone->zone_boot_err = start_init_common(); 3736 3737 /* 3738 * We will prevent booting zones from becoming running zones if the 3739 * global zone is shutting down. 3740 */ 3741 mutex_enter(&zone_status_lock); 3742 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3743 ZONE_IS_SHUTTING_DOWN) { 3744 /* 3745 * Make sure we are still in the booting state-- we could have 3746 * raced and already be shutting down, or even further along. 3747 */ 3748 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3749 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3750 } 3751 mutex_exit(&zone_status_lock); 3752 /* It's gone bad, dispose of the process */ 3753 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3754 mutex_enter(&p->p_lock); 3755 ASSERT(p->p_flag & SEXITLWPS); 3756 lwp_exit(); 3757 } 3758 } else { 3759 if (zone_status_get(z) == ZONE_IS_BOOTING) 3760 zone_status_set(z, ZONE_IS_RUNNING); 3761 mutex_exit(&zone_status_lock); 3762 /* cause the process to return to userland. */ 3763 lwp_rtt(); 3764 } 3765 } 3766 3767 struct zsched_arg { 3768 zone_t *zone; 3769 nvlist_t *nvlist; 3770 }; 3771 3772 /* 3773 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3774 * anything to do with scheduling, but rather with the fact that 3775 * per-zone kernel threads are parented to zsched, just like regular 3776 * kernel threads are parented to sched (p0). 3777 * 3778 * zsched is also responsible for launching init for the zone. 3779 */ 3780 static void 3781 zsched(void *arg) 3782 { 3783 struct zsched_arg *za = arg; 3784 proc_t *pp = curproc; 3785 proc_t *initp = proc_init; 3786 zone_t *zone = za->zone; 3787 cred_t *cr, *oldcred; 3788 rctl_set_t *set; 3789 rctl_alloc_gp_t *gp; 3790 contract_t *ct = NULL; 3791 task_t *tk, *oldtk; 3792 rctl_entity_p_t e; 3793 kproject_t *pj; 3794 3795 nvlist_t *nvl = za->nvlist; 3796 nvpair_t *nvp = NULL; 3797 3798 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3799 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3800 PTOU(pp)->u_argc = 0; 3801 PTOU(pp)->u_argv = NULL; 3802 PTOU(pp)->u_envp = NULL; 3803 closeall(P_FINFO(pp)); 3804 3805 /* 3806 * We are this zone's "zsched" process. As the zone isn't generally 3807 * visible yet we don't need to grab any locks before initializing its 3808 * zone_proc pointer. 3809 */ 3810 zone_hold(zone); /* this hold is released by zone_destroy() */ 3811 zone->zone_zsched = pp; 3812 mutex_enter(&pp->p_lock); 3813 pp->p_zone = zone; 3814 mutex_exit(&pp->p_lock); 3815 3816 /* 3817 * Disassociate process from its 'parent'; parent ourselves to init 3818 * (pid 1) and change other values as needed. 3819 */ 3820 sess_create(); 3821 3822 mutex_enter(&pidlock); 3823 proc_detach(pp); 3824 pp->p_ppid = 1; 3825 pp->p_flag |= SZONETOP; 3826 pp->p_ancpid = 1; 3827 pp->p_parent = initp; 3828 pp->p_psibling = NULL; 3829 if (initp->p_child) 3830 initp->p_child->p_psibling = pp; 3831 pp->p_sibling = initp->p_child; 3832 initp->p_child = pp; 3833 3834 /* Decrement what newproc() incremented. */ 3835 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3836 /* 3837 * Our credentials are about to become kcred-like, so we don't care 3838 * about the caller's ruid. 3839 */ 3840 upcount_inc(crgetruid(kcred), zone->zone_id); 3841 mutex_exit(&pidlock); 3842 3843 /* 3844 * getting out of global zone, so decrement lwp and process counts 3845 */ 3846 pj = pp->p_task->tk_proj; 3847 mutex_enter(&global_zone->zone_nlwps_lock); 3848 pj->kpj_nlwps -= pp->p_lwpcnt; 3849 global_zone->zone_nlwps -= pp->p_lwpcnt; 3850 pj->kpj_nprocs--; 3851 global_zone->zone_nprocs--; 3852 mutex_exit(&global_zone->zone_nlwps_lock); 3853 3854 /* 3855 * Decrement locked memory counts on old zone and project. 3856 */ 3857 mutex_enter(&global_zone->zone_mem_lock); 3858 global_zone->zone_locked_mem -= pp->p_locked_mem; 3859 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3860 mutex_exit(&global_zone->zone_mem_lock); 3861 3862 /* 3863 * Create and join a new task in project '0' of this zone. 3864 * 3865 * We don't need to call holdlwps() since we know we're the only lwp in 3866 * this process. 3867 * 3868 * task_join() returns with p_lock held. 3869 */ 3870 tk = task_create(0, zone); 3871 mutex_enter(&cpu_lock); 3872 oldtk = task_join(tk, 0); 3873 3874 pj = pp->p_task->tk_proj; 3875 3876 mutex_enter(&zone->zone_mem_lock); 3877 zone->zone_locked_mem += pp->p_locked_mem; 3878 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3879 mutex_exit(&zone->zone_mem_lock); 3880 3881 /* 3882 * add lwp and process counts to zsched's zone, and increment 3883 * project's task and process count due to the task created in 3884 * the above task_create. 3885 */ 3886 mutex_enter(&zone->zone_nlwps_lock); 3887 pj->kpj_nlwps += pp->p_lwpcnt; 3888 pj->kpj_ntasks += 1; 3889 zone->zone_nlwps += pp->p_lwpcnt; 3890 pj->kpj_nprocs++; 3891 zone->zone_nprocs++; 3892 mutex_exit(&zone->zone_nlwps_lock); 3893 3894 mutex_exit(&curproc->p_lock); 3895 mutex_exit(&cpu_lock); 3896 task_rele(oldtk); 3897 3898 /* 3899 * The process was created by a process in the global zone, hence the 3900 * credentials are wrong. We might as well have kcred-ish credentials. 3901 */ 3902 cr = zone->zone_kcred; 3903 crhold(cr); 3904 mutex_enter(&pp->p_crlock); 3905 oldcred = pp->p_cred; 3906 pp->p_cred = cr; 3907 mutex_exit(&pp->p_crlock); 3908 crfree(oldcred); 3909 3910 /* 3911 * Hold credentials again (for thread) 3912 */ 3913 crhold(cr); 3914 3915 /* 3916 * p_lwpcnt can't change since this is a kernel process. 3917 */ 3918 crset(pp, cr); 3919 3920 /* 3921 * Chroot 3922 */ 3923 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3924 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3925 3926 /* 3927 * Initialize zone's rctl set. 3928 */ 3929 set = rctl_set_create(); 3930 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3931 mutex_enter(&pp->p_lock); 3932 e.rcep_p.zone = zone; 3933 e.rcep_t = RCENTITY_ZONE; 3934 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3935 mutex_exit(&pp->p_lock); 3936 rctl_prealloc_destroy(gp); 3937 3938 /* 3939 * Apply the rctls passed in to zone_create(). This is basically a list 3940 * assignment: all of the old values are removed and the new ones 3941 * inserted. That is, if an empty list is passed in, all values are 3942 * removed. 3943 */ 3944 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3945 rctl_dict_entry_t *rde; 3946 rctl_hndl_t hndl; 3947 char *name; 3948 nvlist_t **nvlarray; 3949 uint_t i, nelem; 3950 int error; /* For ASSERT()s */ 3951 3952 name = nvpair_name(nvp); 3953 hndl = rctl_hndl_lookup(name); 3954 ASSERT(hndl != -1); 3955 rde = rctl_dict_lookup_hndl(hndl); 3956 ASSERT(rde != NULL); 3957 3958 for (; /* ever */; ) { 3959 rctl_val_t oval; 3960 3961 mutex_enter(&pp->p_lock); 3962 error = rctl_local_get(hndl, NULL, &oval, pp); 3963 mutex_exit(&pp->p_lock); 3964 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3965 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3966 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3967 break; 3968 mutex_enter(&pp->p_lock); 3969 error = rctl_local_delete(hndl, &oval, pp); 3970 mutex_exit(&pp->p_lock); 3971 ASSERT(error == 0); 3972 } 3973 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3974 ASSERT(error == 0); 3975 for (i = 0; i < nelem; i++) { 3976 rctl_val_t *nvalp; 3977 3978 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3979 error = nvlist2rctlval(nvlarray[i], nvalp); 3980 ASSERT(error == 0); 3981 /* 3982 * rctl_local_insert can fail if the value being 3983 * inserted is a duplicate; this is OK. 3984 */ 3985 mutex_enter(&pp->p_lock); 3986 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3987 kmem_cache_free(rctl_val_cache, nvalp); 3988 mutex_exit(&pp->p_lock); 3989 } 3990 } 3991 /* 3992 * Tell the world that we're done setting up. 3993 * 3994 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3995 * and atomically set the zone's processor set visibility. Once 3996 * we drop pool_lock() this zone will automatically get updated 3997 * to reflect any future changes to the pools configuration. 3998 * 3999 * Note that after we drop the locks below (zonehash_lock in 4000 * particular) other operations such as a zone_getattr call can 4001 * now proceed and observe the zone. That is the reason for doing a 4002 * state transition to the INITIALIZED state. 4003 */ 4004 pool_lock(); 4005 mutex_enter(&cpu_lock); 4006 mutex_enter(&zonehash_lock); 4007 zone_uniqid(zone); 4008 zone_zsd_configure(zone); 4009 if (pool_state == POOL_ENABLED) 4010 zone_pset_set(zone, pool_default->pool_pset->pset_id); 4011 mutex_enter(&zone_status_lock); 4012 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 4013 zone_status_set(zone, ZONE_IS_INITIALIZED); 4014 mutex_exit(&zone_status_lock); 4015 mutex_exit(&zonehash_lock); 4016 mutex_exit(&cpu_lock); 4017 pool_unlock(); 4018 4019 /* Now call the create callback for this key */ 4020 zsd_apply_all_keys(zsd_apply_create, zone); 4021 4022 /* The callbacks are complete. Mark ZONE_IS_READY */ 4023 mutex_enter(&zone_status_lock); 4024 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 4025 zone_status_set(zone, ZONE_IS_READY); 4026 mutex_exit(&zone_status_lock); 4027 4028 /* 4029 * Once we see the zone transition to the ZONE_IS_BOOTING state, 4030 * we launch init, and set the state to running. 4031 */ 4032 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 4033 4034 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 4035 id_t cid; 4036 4037 /* 4038 * Ok, this is a little complicated. We need to grab the 4039 * zone's pool's scheduling class ID; note that by now, we 4040 * are already bound to a pool if we need to be (zoneadmd 4041 * will have done that to us while we're in the READY 4042 * state). *But* the scheduling class for the zone's 'init' 4043 * must be explicitly passed to newproc, which doesn't 4044 * respect pool bindings. 4045 * 4046 * We hold the pool_lock across the call to newproc() to 4047 * close the obvious race: the pool's scheduling class 4048 * could change before we manage to create the LWP with 4049 * classid 'cid'. 4050 */ 4051 pool_lock(); 4052 if (zone->zone_defaultcid > 0) 4053 cid = zone->zone_defaultcid; 4054 else 4055 cid = pool_get_class(zone->zone_pool); 4056 if (cid == -1) 4057 cid = defaultcid; 4058 4059 /* 4060 * If this fails, zone_boot will ultimately fail. The 4061 * state of the zone will be set to SHUTTING_DOWN-- userland 4062 * will have to tear down the zone, and fail, or try again. 4063 */ 4064 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 4065 minclsyspri - 1, &ct, 0)) != 0) { 4066 mutex_enter(&zone_status_lock); 4067 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4068 mutex_exit(&zone_status_lock); 4069 } else { 4070 zone->zone_boot_time = gethrestime_sec(); 4071 } 4072 4073 pool_unlock(); 4074 } 4075 4076 /* 4077 * Wait for zone_destroy() to be called. This is what we spend 4078 * most of our life doing. 4079 */ 4080 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 4081 4082 if (ct) 4083 /* 4084 * At this point the process contract should be empty. 4085 * (Though if it isn't, it's not the end of the world.) 4086 */ 4087 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 4088 4089 /* 4090 * Allow kcred to be freed when all referring processes 4091 * (including this one) go away. We can't just do this in 4092 * zone_free because we need to wait for the zone_cred_ref to 4093 * drop to 0 before calling zone_free, and the existence of 4094 * zone_kcred will prevent that. Thus, we call crfree here to 4095 * balance the crdup in zone_create. The crhold calls earlier 4096 * in zsched will be dropped when the thread and process exit. 4097 */ 4098 crfree(zone->zone_kcred); 4099 zone->zone_kcred = NULL; 4100 4101 exit(CLD_EXITED, 0); 4102 } 4103 4104 /* 4105 * Helper function to determine if there are any submounts of the 4106 * provided path. Used to make sure the zone doesn't "inherit" any 4107 * mounts from before it is created. 4108 */ 4109 static uint_t 4110 zone_mount_count(const char *rootpath) 4111 { 4112 vfs_t *vfsp; 4113 uint_t count = 0; 4114 size_t rootpathlen = strlen(rootpath); 4115 4116 /* 4117 * Holding zonehash_lock prevents race conditions with 4118 * vfs_list_add()/vfs_list_remove() since we serialize with 4119 * zone_find_by_path(). 4120 */ 4121 ASSERT(MUTEX_HELD(&zonehash_lock)); 4122 /* 4123 * The rootpath must end with a '/' 4124 */ 4125 ASSERT(rootpath[rootpathlen - 1] == '/'); 4126 4127 /* 4128 * This intentionally does not count the rootpath itself if that 4129 * happens to be a mount point. 4130 */ 4131 vfs_list_read_lock(); 4132 vfsp = rootvfs; 4133 do { 4134 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4135 rootpathlen) == 0) 4136 count++; 4137 vfsp = vfsp->vfs_next; 4138 } while (vfsp != rootvfs); 4139 vfs_list_unlock(); 4140 return (count); 4141 } 4142 4143 /* 4144 * Helper function to make sure that a zone created on 'rootpath' 4145 * wouldn't end up containing other zones' rootpaths. 4146 */ 4147 static boolean_t 4148 zone_is_nested(const char *rootpath) 4149 { 4150 zone_t *zone; 4151 size_t rootpathlen = strlen(rootpath); 4152 size_t len; 4153 4154 ASSERT(MUTEX_HELD(&zonehash_lock)); 4155 4156 /* 4157 * zone_set_root() appended '/' and '\0' at the end of rootpath 4158 */ 4159 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4160 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4161 return (B_TRUE); 4162 4163 for (zone = list_head(&zone_active); zone != NULL; 4164 zone = list_next(&zone_active, zone)) { 4165 if (zone == global_zone) 4166 continue; 4167 len = strlen(zone->zone_rootpath); 4168 if (strncmp(rootpath, zone->zone_rootpath, 4169 MIN(rootpathlen, len)) == 0) 4170 return (B_TRUE); 4171 } 4172 return (B_FALSE); 4173 } 4174 4175 static int 4176 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4177 size_t zone_privssz) 4178 { 4179 priv_set_t *privs; 4180 4181 if (zone_privssz < sizeof (priv_set_t)) 4182 return (ENOMEM); 4183 4184 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4185 4186 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4187 kmem_free(privs, sizeof (priv_set_t)); 4188 return (EFAULT); 4189 } 4190 4191 zone->zone_privset = privs; 4192 return (0); 4193 } 4194 4195 /* 4196 * We make creative use of nvlists to pass in rctls from userland. The list is 4197 * a list of the following structures: 4198 * 4199 * (name = rctl_name, value = nvpair_list_array) 4200 * 4201 * Where each element of the nvpair_list_array is of the form: 4202 * 4203 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4204 * (name = "limit", value = uint64_t), 4205 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4206 */ 4207 static int 4208 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4209 { 4210 nvpair_t *nvp = NULL; 4211 nvlist_t *nvl = NULL; 4212 char *kbuf; 4213 int error; 4214 rctl_val_t rv; 4215 4216 *nvlp = NULL; 4217 4218 if (buflen == 0) 4219 return (0); 4220 4221 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4222 return (ENOMEM); 4223 if (copyin(ubuf, kbuf, buflen)) { 4224 error = EFAULT; 4225 goto out; 4226 } 4227 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4228 /* 4229 * nvl may have been allocated/free'd, but the value set to 4230 * non-NULL, so we reset it here. 4231 */ 4232 nvl = NULL; 4233 error = EINVAL; 4234 goto out; 4235 } 4236 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4237 rctl_dict_entry_t *rde; 4238 rctl_hndl_t hndl; 4239 nvlist_t **nvlarray; 4240 uint_t i, nelem; 4241 char *name; 4242 4243 error = EINVAL; 4244 name = nvpair_name(nvp); 4245 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4246 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4247 goto out; 4248 } 4249 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4250 goto out; 4251 } 4252 rde = rctl_dict_lookup_hndl(hndl); 4253 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4254 ASSERT(error == 0); 4255 for (i = 0; i < nelem; i++) { 4256 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4257 goto out; 4258 } 4259 if (rctl_invalid_value(rde, &rv)) { 4260 error = EINVAL; 4261 goto out; 4262 } 4263 } 4264 error = 0; 4265 *nvlp = nvl; 4266 out: 4267 kmem_free(kbuf, buflen); 4268 if (error && nvl != NULL) 4269 nvlist_free(nvl); 4270 return (error); 4271 } 4272 4273 int 4274 zone_create_error(int er_error, int er_ext, int *er_out) { 4275 if (er_out != NULL) { 4276 if (copyout(&er_ext, er_out, sizeof (int))) { 4277 return (set_errno(EFAULT)); 4278 } 4279 } 4280 return (set_errno(er_error)); 4281 } 4282 4283 static int 4284 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4285 { 4286 ts_label_t *tsl; 4287 bslabel_t blab; 4288 4289 /* Get label from user */ 4290 if (copyin(lab, &blab, sizeof (blab)) != 0) 4291 return (EFAULT); 4292 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4293 if (tsl == NULL) 4294 return (ENOMEM); 4295 4296 zone->zone_slabel = tsl; 4297 return (0); 4298 } 4299 4300 /* 4301 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4302 */ 4303 static int 4304 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4305 { 4306 char *kbuf; 4307 char *dataset, *next; 4308 zone_dataset_t *zd; 4309 size_t len; 4310 4311 if (ubuf == NULL || buflen == 0) 4312 return (0); 4313 4314 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4315 return (ENOMEM); 4316 4317 if (copyin(ubuf, kbuf, buflen) != 0) { 4318 kmem_free(kbuf, buflen); 4319 return (EFAULT); 4320 } 4321 4322 dataset = next = kbuf; 4323 for (;;) { 4324 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4325 4326 next = strchr(dataset, ','); 4327 4328 if (next == NULL) 4329 len = strlen(dataset); 4330 else 4331 len = next - dataset; 4332 4333 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4334 bcopy(dataset, zd->zd_dataset, len); 4335 zd->zd_dataset[len] = '\0'; 4336 4337 list_insert_head(&zone->zone_datasets, zd); 4338 4339 if (next == NULL) 4340 break; 4341 4342 dataset = next + 1; 4343 } 4344 4345 kmem_free(kbuf, buflen); 4346 return (0); 4347 } 4348 4349 /* 4350 * System call to create/initialize a new zone named 'zone_name', rooted 4351 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4352 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4353 * with labeling set by 'match', 'doi', and 'label'. 4354 * 4355 * If extended error is non-null, we may use it to return more detailed 4356 * error information. 4357 */ 4358 static zoneid_t 4359 zone_create(const char *zone_name, const char *zone_root, 4360 const priv_set_t *zone_privs, size_t zone_privssz, 4361 caddr_t rctlbuf, size_t rctlbufsz, 4362 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4363 int match, uint32_t doi, const bslabel_t *label, 4364 int flags) 4365 { 4366 struct zsched_arg zarg; 4367 nvlist_t *rctls = NULL; 4368 proc_t *pp = curproc; 4369 zone_t *zone, *ztmp; 4370 zoneid_t zoneid; 4371 int error; 4372 int error2 = 0; 4373 char *str; 4374 cred_t *zkcr; 4375 boolean_t insert_label_hash; 4376 4377 if (secpolicy_zone_config(CRED()) != 0) 4378 return (set_errno(EPERM)); 4379 4380 /* can't boot zone from within chroot environment */ 4381 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4382 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4383 extended_error)); 4384 4385 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4386 zoneid = zone->zone_id = id_alloc(zoneid_space); 4387 zone->zone_status = ZONE_IS_UNINITIALIZED; 4388 zone->zone_pool = pool_default; 4389 zone->zone_pool_mod = gethrtime(); 4390 zone->zone_psetid = ZONE_PS_INVAL; 4391 zone->zone_ncpus = 0; 4392 zone->zone_ncpus_online = 0; 4393 zone->zone_restart_init = B_TRUE; 4394 zone->zone_brand = &native_brand; 4395 zone->zone_initname = NULL; 4396 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4397 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4398 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4399 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4400 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4401 offsetof(zone_ref_t, zref_linkage)); 4402 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4403 offsetof(struct zsd_entry, zsd_linkage)); 4404 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4405 offsetof(zone_dataset_t, zd_linkage)); 4406 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4407 offsetof(zone_dl_t, zdl_linkage)); 4408 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4409 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4410 4411 if (flags & ZCF_NET_EXCL) { 4412 zone->zone_flags |= ZF_NET_EXCL; 4413 } 4414 4415 if ((error = zone_set_name(zone, zone_name)) != 0) { 4416 zone_free(zone); 4417 return (zone_create_error(error, 0, extended_error)); 4418 } 4419 4420 if ((error = zone_set_root(zone, zone_root)) != 0) { 4421 zone_free(zone); 4422 return (zone_create_error(error, 0, extended_error)); 4423 } 4424 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4425 zone_free(zone); 4426 return (zone_create_error(error, 0, extended_error)); 4427 } 4428 4429 /* initialize node name to be the same as zone name */ 4430 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4431 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4432 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4433 4434 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4435 zone->zone_domain[0] = '\0'; 4436 zone->zone_hostid = HW_INVALID_HOSTID; 4437 zone->zone_shares = 1; 4438 zone->zone_shmmax = 0; 4439 zone->zone_ipc.ipcq_shmmni = 0; 4440 zone->zone_ipc.ipcq_semmni = 0; 4441 zone->zone_ipc.ipcq_msgmni = 0; 4442 zone->zone_bootargs = NULL; 4443 zone->zone_fs_allowed = NULL; 4444 zone->zone_initname = 4445 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4446 (void) strcpy(zone->zone_initname, zone_default_initname); 4447 zone->zone_nlwps = 0; 4448 zone->zone_nlwps_ctl = INT_MAX; 4449 zone->zone_nprocs = 0; 4450 zone->zone_nprocs_ctl = INT_MAX; 4451 zone->zone_locked_mem = 0; 4452 zone->zone_locked_mem_ctl = UINT64_MAX; 4453 zone->zone_max_swap = 0; 4454 zone->zone_max_swap_ctl = UINT64_MAX; 4455 zone->zone_max_lofi = 0; 4456 zone->zone_max_lofi_ctl = UINT64_MAX; 4457 zone0.zone_lockedmem_kstat = NULL; 4458 zone0.zone_swapresv_kstat = NULL; 4459 4460 /* 4461 * Zsched initializes the rctls. 4462 */ 4463 zone->zone_rctls = NULL; 4464 4465 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4466 zone_free(zone); 4467 return (zone_create_error(error, 0, extended_error)); 4468 } 4469 4470 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4471 zone_free(zone); 4472 return (set_errno(error)); 4473 } 4474 4475 /* 4476 * Read in the trusted system parameters: 4477 * match flag and sensitivity label. 4478 */ 4479 zone->zone_match = match; 4480 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4481 /* Fail if requested to set doi to anything but system's doi */ 4482 if (doi != 0 && doi != default_doi) { 4483 zone_free(zone); 4484 return (set_errno(EINVAL)); 4485 } 4486 /* Always apply system's doi to the zone */ 4487 error = zone_set_label(zone, label, default_doi); 4488 if (error != 0) { 4489 zone_free(zone); 4490 return (set_errno(error)); 4491 } 4492 insert_label_hash = B_TRUE; 4493 } else { 4494 /* all zones get an admin_low label if system is not labeled */ 4495 zone->zone_slabel = l_admin_low; 4496 label_hold(l_admin_low); 4497 insert_label_hash = B_FALSE; 4498 } 4499 4500 /* 4501 * Stop all lwps since that's what normally happens as part of fork(). 4502 * This needs to happen before we grab any locks to avoid deadlock 4503 * (another lwp in the process could be waiting for the held lock). 4504 */ 4505 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4506 zone_free(zone); 4507 nvlist_free(rctls); 4508 return (zone_create_error(error, 0, extended_error)); 4509 } 4510 4511 if (block_mounts(zone) == 0) { 4512 mutex_enter(&pp->p_lock); 4513 if (curthread != pp->p_agenttp) 4514 continuelwps(pp); 4515 mutex_exit(&pp->p_lock); 4516 zone_free(zone); 4517 nvlist_free(rctls); 4518 return (zone_create_error(error, 0, extended_error)); 4519 } 4520 4521 /* 4522 * Set up credential for kernel access. After this, any errors 4523 * should go through the dance in errout rather than calling 4524 * zone_free directly. 4525 */ 4526 zone->zone_kcred = crdup(kcred); 4527 crsetzone(zone->zone_kcred, zone); 4528 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4529 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4530 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4531 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4532 4533 mutex_enter(&zonehash_lock); 4534 /* 4535 * Make sure zone doesn't already exist. 4536 * 4537 * If the system and zone are labeled, 4538 * make sure no other zone exists that has the same label. 4539 */ 4540 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4541 (insert_label_hash && 4542 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4543 zone_status_t status; 4544 4545 status = zone_status_get(ztmp); 4546 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4547 error = EEXIST; 4548 else 4549 error = EBUSY; 4550 4551 if (insert_label_hash) 4552 error2 = ZE_LABELINUSE; 4553 4554 goto errout; 4555 } 4556 4557 /* 4558 * Don't allow zone creations which would cause one zone's rootpath to 4559 * be accessible from that of another (non-global) zone. 4560 */ 4561 if (zone_is_nested(zone->zone_rootpath)) { 4562 error = EBUSY; 4563 goto errout; 4564 } 4565 4566 ASSERT(zonecount != 0); /* check for leaks */ 4567 if (zonecount + 1 > maxzones) { 4568 error = ENOMEM; 4569 goto errout; 4570 } 4571 4572 if (zone_mount_count(zone->zone_rootpath) != 0) { 4573 error = EBUSY; 4574 error2 = ZE_AREMOUNTS; 4575 goto errout; 4576 } 4577 4578 /* 4579 * Zone is still incomplete, but we need to drop all locks while 4580 * zsched() initializes this zone's kernel process. We 4581 * optimistically add the zone to the hashtable and associated 4582 * lists so a parallel zone_create() doesn't try to create the 4583 * same zone. 4584 */ 4585 zonecount++; 4586 (void) mod_hash_insert(zonehashbyid, 4587 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4588 (mod_hash_val_t)(uintptr_t)zone); 4589 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4590 (void) strcpy(str, zone->zone_name); 4591 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4592 (mod_hash_val_t)(uintptr_t)zone); 4593 if (insert_label_hash) { 4594 (void) mod_hash_insert(zonehashbylabel, 4595 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4596 zone->zone_flags |= ZF_HASHED_LABEL; 4597 } 4598 4599 /* 4600 * Insert into active list. At this point there are no 'hold's 4601 * on the zone, but everyone else knows not to use it, so we can 4602 * continue to use it. zsched() will do a zone_hold() if the 4603 * newproc() is successful. 4604 */ 4605 list_insert_tail(&zone_active, zone); 4606 mutex_exit(&zonehash_lock); 4607 4608 zarg.zone = zone; 4609 zarg.nvlist = rctls; 4610 /* 4611 * The process, task, and project rctls are probably wrong; 4612 * we need an interface to get the default values of all rctls, 4613 * and initialize zsched appropriately. I'm not sure that that 4614 * makes much of a difference, though. 4615 */ 4616 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4617 if (error != 0) { 4618 /* 4619 * We need to undo all globally visible state. 4620 */ 4621 mutex_enter(&zonehash_lock); 4622 list_remove(&zone_active, zone); 4623 if (zone->zone_flags & ZF_HASHED_LABEL) { 4624 ASSERT(zone->zone_slabel != NULL); 4625 (void) mod_hash_destroy(zonehashbylabel, 4626 (mod_hash_key_t)zone->zone_slabel); 4627 } 4628 (void) mod_hash_destroy(zonehashbyname, 4629 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4630 (void) mod_hash_destroy(zonehashbyid, 4631 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4632 ASSERT(zonecount > 1); 4633 zonecount--; 4634 goto errout; 4635 } 4636 4637 /* 4638 * Zone creation can't fail from now on. 4639 */ 4640 4641 /* 4642 * Create zone kstats 4643 */ 4644 zone_kstat_create(zone); 4645 4646 /* 4647 * Let the other lwps continue. 4648 */ 4649 mutex_enter(&pp->p_lock); 4650 if (curthread != pp->p_agenttp) 4651 continuelwps(pp); 4652 mutex_exit(&pp->p_lock); 4653 4654 /* 4655 * Wait for zsched to finish initializing the zone. 4656 */ 4657 zone_status_wait(zone, ZONE_IS_READY); 4658 /* 4659 * The zone is fully visible, so we can let mounts progress. 4660 */ 4661 resume_mounts(zone); 4662 nvlist_free(rctls); 4663 4664 return (zoneid); 4665 4666 errout: 4667 mutex_exit(&zonehash_lock); 4668 /* 4669 * Let the other lwps continue. 4670 */ 4671 mutex_enter(&pp->p_lock); 4672 if (curthread != pp->p_agenttp) 4673 continuelwps(pp); 4674 mutex_exit(&pp->p_lock); 4675 4676 resume_mounts(zone); 4677 nvlist_free(rctls); 4678 /* 4679 * There is currently one reference to the zone, a cred_ref from 4680 * zone_kcred. To free the zone, we call crfree, which will call 4681 * zone_cred_rele, which will call zone_free. 4682 */ 4683 ASSERT(zone->zone_cred_ref == 1); 4684 ASSERT(zone->zone_kcred->cr_ref == 1); 4685 ASSERT(zone->zone_ref == 0); 4686 zkcr = zone->zone_kcred; 4687 zone->zone_kcred = NULL; 4688 crfree(zkcr); /* triggers call to zone_free */ 4689 return (zone_create_error(error, error2, extended_error)); 4690 } 4691 4692 /* 4693 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4694 * the heavy lifting. initname is the path to the program to launch 4695 * at the "top" of the zone; if this is NULL, we use the system default, 4696 * which is stored at zone_default_initname. 4697 */ 4698 static int 4699 zone_boot(zoneid_t zoneid) 4700 { 4701 int err; 4702 zone_t *zone; 4703 4704 if (secpolicy_zone_config(CRED()) != 0) 4705 return (set_errno(EPERM)); 4706 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4707 return (set_errno(EINVAL)); 4708 4709 mutex_enter(&zonehash_lock); 4710 /* 4711 * Look for zone under hash lock to prevent races with calls to 4712 * zone_shutdown, zone_destroy, etc. 4713 */ 4714 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4715 mutex_exit(&zonehash_lock); 4716 return (set_errno(EINVAL)); 4717 } 4718 4719 mutex_enter(&zone_status_lock); 4720 if (zone_status_get(zone) != ZONE_IS_READY) { 4721 mutex_exit(&zone_status_lock); 4722 mutex_exit(&zonehash_lock); 4723 return (set_errno(EINVAL)); 4724 } 4725 zone_status_set(zone, ZONE_IS_BOOTING); 4726 mutex_exit(&zone_status_lock); 4727 4728 zone_hold(zone); /* so we can use the zone_t later */ 4729 mutex_exit(&zonehash_lock); 4730 4731 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4732 zone_rele(zone); 4733 return (set_errno(EINTR)); 4734 } 4735 4736 /* 4737 * Boot (starting init) might have failed, in which case the zone 4738 * will go to the SHUTTING_DOWN state; an appropriate errno will 4739 * be placed in zone->zone_boot_err, and so we return that. 4740 */ 4741 err = zone->zone_boot_err; 4742 zone_rele(zone); 4743 return (err ? set_errno(err) : 0); 4744 } 4745 4746 /* 4747 * Kills all user processes in the zone, waiting for them all to exit 4748 * before returning. 4749 */ 4750 static int 4751 zone_empty(zone_t *zone) 4752 { 4753 int waitstatus; 4754 4755 /* 4756 * We need to drop zonehash_lock before killing all 4757 * processes, otherwise we'll deadlock with zone_find_* 4758 * which can be called from the exit path. 4759 */ 4760 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4761 while ((waitstatus = zone_status_timedwait_sig(zone, 4762 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4763 killall(zone->zone_id); 4764 } 4765 /* 4766 * return EINTR if we were signaled 4767 */ 4768 if (waitstatus == 0) 4769 return (EINTR); 4770 return (0); 4771 } 4772 4773 /* 4774 * This function implements the policy for zone visibility. 4775 * 4776 * In standard Solaris, a non-global zone can only see itself. 4777 * 4778 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4779 * it dominates. For this test, the label of the global zone is treated as 4780 * admin_high so it is special-cased instead of being checked for dominance. 4781 * 4782 * Returns true if zone attributes are viewable, false otherwise. 4783 */ 4784 static boolean_t 4785 zone_list_access(zone_t *zone) 4786 { 4787 4788 if (curproc->p_zone == global_zone || 4789 curproc->p_zone == zone) { 4790 return (B_TRUE); 4791 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4792 bslabel_t *curproc_label; 4793 bslabel_t *zone_label; 4794 4795 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4796 zone_label = label2bslabel(zone->zone_slabel); 4797 4798 if (zone->zone_id != GLOBAL_ZONEID && 4799 bldominates(curproc_label, zone_label)) { 4800 return (B_TRUE); 4801 } else { 4802 return (B_FALSE); 4803 } 4804 } else { 4805 return (B_FALSE); 4806 } 4807 } 4808 4809 /* 4810 * Systemcall to start the zone's halt sequence. By the time this 4811 * function successfully returns, all user processes and kernel threads 4812 * executing in it will have exited, ZSD shutdown callbacks executed, 4813 * and the zone status set to ZONE_IS_DOWN. 4814 * 4815 * It is possible that the call will interrupt itself if the caller is the 4816 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4817 */ 4818 static int 4819 zone_shutdown(zoneid_t zoneid) 4820 { 4821 int error; 4822 zone_t *zone; 4823 zone_status_t status; 4824 4825 if (secpolicy_zone_config(CRED()) != 0) 4826 return (set_errno(EPERM)); 4827 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4828 return (set_errno(EINVAL)); 4829 4830 mutex_enter(&zonehash_lock); 4831 /* 4832 * Look for zone under hash lock to prevent races with other 4833 * calls to zone_shutdown and zone_destroy. 4834 */ 4835 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4836 mutex_exit(&zonehash_lock); 4837 return (set_errno(EINVAL)); 4838 } 4839 4840 /* 4841 * We have to drop zonehash_lock before calling block_mounts. 4842 * Hold the zone so we can continue to use the zone_t. 4843 */ 4844 zone_hold(zone); 4845 mutex_exit(&zonehash_lock); 4846 4847 /* 4848 * Block mounts so that VFS_MOUNT() can get an accurate view of 4849 * the zone's status with regards to ZONE_IS_SHUTTING down. 4850 * 4851 * e.g. NFS can fail the mount if it determines that the zone 4852 * has already begun the shutdown sequence. 4853 * 4854 */ 4855 if (block_mounts(zone) == 0) { 4856 zone_rele(zone); 4857 return (set_errno(EINTR)); 4858 } 4859 4860 mutex_enter(&zonehash_lock); 4861 mutex_enter(&zone_status_lock); 4862 status = zone_status_get(zone); 4863 /* 4864 * Fail if the zone isn't fully initialized yet. 4865 */ 4866 if (status < ZONE_IS_READY) { 4867 mutex_exit(&zone_status_lock); 4868 mutex_exit(&zonehash_lock); 4869 resume_mounts(zone); 4870 zone_rele(zone); 4871 return (set_errno(EINVAL)); 4872 } 4873 /* 4874 * If conditions required for zone_shutdown() to return have been met, 4875 * return success. 4876 */ 4877 if (status >= ZONE_IS_DOWN) { 4878 mutex_exit(&zone_status_lock); 4879 mutex_exit(&zonehash_lock); 4880 resume_mounts(zone); 4881 zone_rele(zone); 4882 return (0); 4883 } 4884 /* 4885 * If zone_shutdown() hasn't been called before, go through the motions. 4886 * If it has, there's nothing to do but wait for the kernel threads to 4887 * drain. 4888 */ 4889 if (status < ZONE_IS_EMPTY) { 4890 uint_t ntasks; 4891 4892 mutex_enter(&zone->zone_lock); 4893 if ((ntasks = zone->zone_ntasks) != 1) { 4894 /* 4895 * There's still stuff running. 4896 */ 4897 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4898 } 4899 mutex_exit(&zone->zone_lock); 4900 if (ntasks == 1) { 4901 /* 4902 * The only way to create another task is through 4903 * zone_enter(), which will block until we drop 4904 * zonehash_lock. The zone is empty. 4905 */ 4906 if (zone->zone_kthreads == NULL) { 4907 /* 4908 * Skip ahead to ZONE_IS_DOWN 4909 */ 4910 zone_status_set(zone, ZONE_IS_DOWN); 4911 } else { 4912 zone_status_set(zone, ZONE_IS_EMPTY); 4913 } 4914 } 4915 } 4916 mutex_exit(&zone_status_lock); 4917 mutex_exit(&zonehash_lock); 4918 resume_mounts(zone); 4919 4920 if (error = zone_empty(zone)) { 4921 zone_rele(zone); 4922 return (set_errno(error)); 4923 } 4924 /* 4925 * After the zone status goes to ZONE_IS_DOWN this zone will no 4926 * longer be notified of changes to the pools configuration, so 4927 * in order to not end up with a stale pool pointer, we point 4928 * ourselves at the default pool and remove all resource 4929 * visibility. This is especially important as the zone_t may 4930 * languish on the deathrow for a very long time waiting for 4931 * cred's to drain out. 4932 * 4933 * This rebinding of the zone can happen multiple times 4934 * (presumably due to interrupted or parallel systemcalls) 4935 * without any adverse effects. 4936 */ 4937 if (pool_lock_intr() != 0) { 4938 zone_rele(zone); 4939 return (set_errno(EINTR)); 4940 } 4941 if (pool_state == POOL_ENABLED) { 4942 mutex_enter(&cpu_lock); 4943 zone_pool_set(zone, pool_default); 4944 /* 4945 * The zone no longer needs to be able to see any cpus. 4946 */ 4947 zone_pset_set(zone, ZONE_PS_INVAL); 4948 mutex_exit(&cpu_lock); 4949 } 4950 pool_unlock(); 4951 4952 /* 4953 * ZSD shutdown callbacks can be executed multiple times, hence 4954 * it is safe to not be holding any locks across this call. 4955 */ 4956 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4957 4958 mutex_enter(&zone_status_lock); 4959 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4960 zone_status_set(zone, ZONE_IS_DOWN); 4961 mutex_exit(&zone_status_lock); 4962 4963 /* 4964 * Wait for kernel threads to drain. 4965 */ 4966 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4967 zone_rele(zone); 4968 return (set_errno(EINTR)); 4969 } 4970 4971 /* 4972 * Zone can be become down/destroyable even if the above wait 4973 * returns EINTR, so any code added here may never execute. 4974 * (i.e. don't add code here) 4975 */ 4976 4977 zone_rele(zone); 4978 return (0); 4979 } 4980 4981 /* 4982 * Log the specified zone's reference counts. The caller should not be 4983 * holding the zone's zone_lock. 4984 */ 4985 static void 4986 zone_log_refcounts(zone_t *zone) 4987 { 4988 char *buffer; 4989 char *buffer_position; 4990 uint32_t buffer_size; 4991 uint32_t index; 4992 uint_t ref; 4993 uint_t cred_ref; 4994 4995 /* 4996 * Construct a string representing the subsystem-specific reference 4997 * counts. The counts are printed in ascending order by index into the 4998 * zone_t::zone_subsys_ref array. The list will be surrounded by 4999 * square brackets [] and will only contain nonzero reference counts. 5000 * 5001 * The buffer will hold two square bracket characters plus ten digits, 5002 * one colon, one space, one comma, and some characters for a 5003 * subsystem name per subsystem-specific reference count. (Unsigned 32- 5004 * bit integers have at most ten decimal digits.) The last 5005 * reference count's comma is replaced by the closing square 5006 * bracket and a NULL character to terminate the string. 5007 * 5008 * NOTE: We have to grab the zone's zone_lock to create a consistent 5009 * snapshot of the zone's reference counters. 5010 * 5011 * First, figure out how much space the string buffer will need. 5012 * The buffer's size is stored in buffer_size. 5013 */ 5014 buffer_size = 2; /* for the square brackets */ 5015 mutex_enter(&zone->zone_lock); 5016 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 5017 ref = zone->zone_ref; 5018 cred_ref = zone->zone_cred_ref; 5019 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 5020 if (zone->zone_subsys_ref[index] != 0) 5021 buffer_size += strlen(zone_ref_subsys_names[index]) + 5022 13; 5023 if (buffer_size == 2) { 5024 /* 5025 * No subsystems had nonzero reference counts. Don't bother 5026 * with allocating a buffer; just log the general-purpose and 5027 * credential reference counts. 5028 */ 5029 mutex_exit(&zone->zone_lock); 5030 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5031 "Zone '%s' (ID: %d) is shutting down, but %u zone " 5032 "references and %u credential references are still extant", 5033 zone->zone_name, zone->zone_id, ref, cred_ref); 5034 return; 5035 } 5036 5037 /* 5038 * buffer_size contains the exact number of characters that the 5039 * buffer will need. Allocate the buffer and fill it with nonzero 5040 * subsystem-specific reference counts. Surround the results with 5041 * square brackets afterwards. 5042 */ 5043 buffer = kmem_alloc(buffer_size, KM_SLEEP); 5044 buffer_position = &buffer[1]; 5045 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 5046 /* 5047 * NOTE: The DDI's version of sprintf() returns a pointer to 5048 * the modified buffer rather than the number of bytes written 5049 * (as in snprintf(3C)). This is unfortunate and annoying. 5050 * Therefore, we'll use snprintf() with INT_MAX to get the 5051 * number of bytes written. Using INT_MAX is safe because 5052 * the buffer is perfectly sized for the data: we'll never 5053 * overrun the buffer. 5054 */ 5055 if (zone->zone_subsys_ref[index] != 0) 5056 buffer_position += snprintf(buffer_position, INT_MAX, 5057 "%s: %u,", zone_ref_subsys_names[index], 5058 zone->zone_subsys_ref[index]); 5059 } 5060 mutex_exit(&zone->zone_lock); 5061 buffer[0] = '['; 5062 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 5063 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 5064 buffer_position[-1] = ']'; 5065 5066 /* 5067 * Log the reference counts and free the message buffer. 5068 */ 5069 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5070 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 5071 "%u credential references are still extant %s", zone->zone_name, 5072 zone->zone_id, ref, cred_ref, buffer); 5073 kmem_free(buffer, buffer_size); 5074 } 5075 5076 /* 5077 * Systemcall entry point to finalize the zone halt process. The caller 5078 * must have already successfully called zone_shutdown(). 5079 * 5080 * Upon successful completion, the zone will have been fully destroyed: 5081 * zsched will have exited, destructor callbacks executed, and the zone 5082 * removed from the list of active zones. 5083 */ 5084 static int 5085 zone_destroy(zoneid_t zoneid) 5086 { 5087 uint64_t uniqid; 5088 zone_t *zone; 5089 zone_status_t status; 5090 clock_t wait_time; 5091 boolean_t log_refcounts; 5092 5093 if (secpolicy_zone_config(CRED()) != 0) 5094 return (set_errno(EPERM)); 5095 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5096 return (set_errno(EINVAL)); 5097 5098 mutex_enter(&zonehash_lock); 5099 /* 5100 * Look for zone under hash lock to prevent races with other 5101 * calls to zone_destroy. 5102 */ 5103 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5104 mutex_exit(&zonehash_lock); 5105 return (set_errno(EINVAL)); 5106 } 5107 5108 if (zone_mount_count(zone->zone_rootpath) != 0) { 5109 mutex_exit(&zonehash_lock); 5110 return (set_errno(EBUSY)); 5111 } 5112 mutex_enter(&zone_status_lock); 5113 status = zone_status_get(zone); 5114 if (status < ZONE_IS_DOWN) { 5115 mutex_exit(&zone_status_lock); 5116 mutex_exit(&zonehash_lock); 5117 return (set_errno(EBUSY)); 5118 } else if (status == ZONE_IS_DOWN) { 5119 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5120 } 5121 mutex_exit(&zone_status_lock); 5122 zone_hold(zone); 5123 mutex_exit(&zonehash_lock); 5124 5125 /* 5126 * wait for zsched to exit 5127 */ 5128 zone_status_wait(zone, ZONE_IS_DEAD); 5129 zone_zsd_callbacks(zone, ZSD_DESTROY); 5130 zone->zone_netstack = NULL; 5131 uniqid = zone->zone_uniqid; 5132 zone_rele(zone); 5133 zone = NULL; /* potentially free'd */ 5134 5135 log_refcounts = B_FALSE; 5136 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5137 mutex_enter(&zonehash_lock); 5138 for (; /* ever */; ) { 5139 boolean_t unref; 5140 boolean_t refs_have_been_logged; 5141 5142 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5143 zone->zone_uniqid != uniqid) { 5144 /* 5145 * The zone has gone away. Necessary conditions 5146 * are met, so we return success. 5147 */ 5148 mutex_exit(&zonehash_lock); 5149 return (0); 5150 } 5151 mutex_enter(&zone->zone_lock); 5152 unref = ZONE_IS_UNREF(zone); 5153 refs_have_been_logged = (zone->zone_flags & 5154 ZF_REFCOUNTS_LOGGED); 5155 mutex_exit(&zone->zone_lock); 5156 if (unref) { 5157 /* 5158 * There is only one reference to the zone -- that 5159 * added when the zone was added to the hashtables -- 5160 * and things will remain this way until we drop 5161 * zonehash_lock... we can go ahead and cleanup the 5162 * zone. 5163 */ 5164 break; 5165 } 5166 5167 /* 5168 * Wait for zone_rele_common() or zone_cred_rele() to signal 5169 * zone_destroy_cv. zone_destroy_cv is signaled only when 5170 * some zone's general-purpose reference count reaches one. 5171 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5172 * on zone_destroy_cv, then log the zone's reference counts and 5173 * continue to wait for zone_rele() and zone_cred_rele(). 5174 */ 5175 if (!refs_have_been_logged) { 5176 if (!log_refcounts) { 5177 /* 5178 * This thread hasn't timed out waiting on 5179 * zone_destroy_cv yet. Wait wait_time clock 5180 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5181 * seconds) for the zone's references to clear. 5182 */ 5183 ASSERT(wait_time > 0); 5184 wait_time = cv_reltimedwait_sig( 5185 &zone_destroy_cv, &zonehash_lock, wait_time, 5186 TR_SEC); 5187 if (wait_time > 0) { 5188 /* 5189 * A thread in zone_rele() or 5190 * zone_cred_rele() signaled 5191 * zone_destroy_cv before this thread's 5192 * wait timed out. The zone might have 5193 * only one reference left; find out! 5194 */ 5195 continue; 5196 } else if (wait_time == 0) { 5197 /* The thread's process was signaled. */ 5198 mutex_exit(&zonehash_lock); 5199 return (set_errno(EINTR)); 5200 } 5201 5202 /* 5203 * The thread timed out while waiting on 5204 * zone_destroy_cv. Even though the thread 5205 * timed out, it has to check whether another 5206 * thread woke up from zone_destroy_cv and 5207 * destroyed the zone. 5208 * 5209 * If the zone still exists and has more than 5210 * one unreleased general-purpose reference, 5211 * then log the zone's reference counts. 5212 */ 5213 log_refcounts = B_TRUE; 5214 continue; 5215 } 5216 5217 /* 5218 * The thread already timed out on zone_destroy_cv while 5219 * waiting for subsystems to release the zone's last 5220 * general-purpose references. Log the zone's reference 5221 * counts and wait indefinitely on zone_destroy_cv. 5222 */ 5223 zone_log_refcounts(zone); 5224 } 5225 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5226 /* The thread's process was signaled. */ 5227 mutex_exit(&zonehash_lock); 5228 return (set_errno(EINTR)); 5229 } 5230 } 5231 5232 /* 5233 * Remove CPU cap for this zone now since we're not going to 5234 * fail below this point. 5235 */ 5236 cpucaps_zone_remove(zone); 5237 5238 /* Get rid of the zone's kstats */ 5239 zone_kstat_delete(zone); 5240 5241 /* remove the pfexecd doors */ 5242 if (zone->zone_pfexecd != NULL) { 5243 klpd_freelist(&zone->zone_pfexecd); 5244 zone->zone_pfexecd = NULL; 5245 } 5246 5247 /* free brand specific data */ 5248 if (ZONE_IS_BRANDED(zone)) 5249 ZBROP(zone)->b_free_brand_data(zone); 5250 5251 /* Say goodbye to brand framework. */ 5252 brand_unregister_zone(zone->zone_brand); 5253 5254 /* 5255 * It is now safe to let the zone be recreated; remove it from the 5256 * lists. The memory will not be freed until the last cred 5257 * reference goes away. 5258 */ 5259 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5260 zonecount--; 5261 /* remove from active list and hash tables */ 5262 list_remove(&zone_active, zone); 5263 (void) mod_hash_destroy(zonehashbyname, 5264 (mod_hash_key_t)zone->zone_name); 5265 (void) mod_hash_destroy(zonehashbyid, 5266 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5267 if (zone->zone_flags & ZF_HASHED_LABEL) 5268 (void) mod_hash_destroy(zonehashbylabel, 5269 (mod_hash_key_t)zone->zone_slabel); 5270 mutex_exit(&zonehash_lock); 5271 5272 /* 5273 * Release the root vnode; we're not using it anymore. Nor should any 5274 * other thread that might access it exist. 5275 */ 5276 if (zone->zone_rootvp != NULL) { 5277 VN_RELE(zone->zone_rootvp); 5278 zone->zone_rootvp = NULL; 5279 } 5280 5281 /* add to deathrow list */ 5282 mutex_enter(&zone_deathrow_lock); 5283 list_insert_tail(&zone_deathrow, zone); 5284 mutex_exit(&zone_deathrow_lock); 5285 5286 /* 5287 * Drop last reference (which was added by zsched()), this will 5288 * free the zone unless there are outstanding cred references. 5289 */ 5290 zone_rele(zone); 5291 return (0); 5292 } 5293 5294 /* 5295 * Systemcall entry point for zone_getattr(2). 5296 */ 5297 static ssize_t 5298 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5299 { 5300 size_t size; 5301 int error = 0, err; 5302 zone_t *zone; 5303 char *zonepath; 5304 char *outstr; 5305 zone_status_t zone_status; 5306 pid_t initpid; 5307 boolean_t global = (curzone == global_zone); 5308 boolean_t inzone = (curzone->zone_id == zoneid); 5309 ushort_t flags; 5310 zone_net_data_t *zbuf; 5311 5312 mutex_enter(&zonehash_lock); 5313 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5314 mutex_exit(&zonehash_lock); 5315 return (set_errno(EINVAL)); 5316 } 5317 zone_status = zone_status_get(zone); 5318 if (zone_status < ZONE_IS_INITIALIZED) { 5319 mutex_exit(&zonehash_lock); 5320 return (set_errno(EINVAL)); 5321 } 5322 zone_hold(zone); 5323 mutex_exit(&zonehash_lock); 5324 5325 /* 5326 * If not in the global zone, don't show information about other zones, 5327 * unless the system is labeled and the local zone's label dominates 5328 * the other zone. 5329 */ 5330 if (!zone_list_access(zone)) { 5331 zone_rele(zone); 5332 return (set_errno(EINVAL)); 5333 } 5334 5335 switch (attr) { 5336 case ZONE_ATTR_ROOT: 5337 if (global) { 5338 /* 5339 * Copy the path to trim the trailing "/" (except for 5340 * the global zone). 5341 */ 5342 if (zone != global_zone) 5343 size = zone->zone_rootpathlen - 1; 5344 else 5345 size = zone->zone_rootpathlen; 5346 zonepath = kmem_alloc(size, KM_SLEEP); 5347 bcopy(zone->zone_rootpath, zonepath, size); 5348 zonepath[size - 1] = '\0'; 5349 } else { 5350 if (inzone || !is_system_labeled()) { 5351 /* 5352 * Caller is not in the global zone. 5353 * if the query is on the current zone 5354 * or the system is not labeled, 5355 * just return faked-up path for current zone. 5356 */ 5357 zonepath = "/"; 5358 size = 2; 5359 } else { 5360 /* 5361 * Return related path for current zone. 5362 */ 5363 int prefix_len = strlen(zone_prefix); 5364 int zname_len = strlen(zone->zone_name); 5365 5366 size = prefix_len + zname_len + 1; 5367 zonepath = kmem_alloc(size, KM_SLEEP); 5368 bcopy(zone_prefix, zonepath, prefix_len); 5369 bcopy(zone->zone_name, zonepath + 5370 prefix_len, zname_len); 5371 zonepath[size - 1] = '\0'; 5372 } 5373 } 5374 if (bufsize > size) 5375 bufsize = size; 5376 if (buf != NULL) { 5377 err = copyoutstr(zonepath, buf, bufsize, NULL); 5378 if (err != 0 && err != ENAMETOOLONG) 5379 error = EFAULT; 5380 } 5381 if (global || (is_system_labeled() && !inzone)) 5382 kmem_free(zonepath, size); 5383 break; 5384 5385 case ZONE_ATTR_NAME: 5386 size = strlen(zone->zone_name) + 1; 5387 if (bufsize > size) 5388 bufsize = size; 5389 if (buf != NULL) { 5390 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5391 if (err != 0 && err != ENAMETOOLONG) 5392 error = EFAULT; 5393 } 5394 break; 5395 5396 case ZONE_ATTR_STATUS: 5397 /* 5398 * Since we're not holding zonehash_lock, the zone status 5399 * may be anything; leave it up to userland to sort it out. 5400 */ 5401 size = sizeof (zone_status); 5402 if (bufsize > size) 5403 bufsize = size; 5404 zone_status = zone_status_get(zone); 5405 if (buf != NULL && 5406 copyout(&zone_status, buf, bufsize) != 0) 5407 error = EFAULT; 5408 break; 5409 case ZONE_ATTR_FLAGS: 5410 size = sizeof (zone->zone_flags); 5411 if (bufsize > size) 5412 bufsize = size; 5413 flags = zone->zone_flags; 5414 if (buf != NULL && 5415 copyout(&flags, buf, bufsize) != 0) 5416 error = EFAULT; 5417 break; 5418 case ZONE_ATTR_PRIVSET: 5419 size = sizeof (priv_set_t); 5420 if (bufsize > size) 5421 bufsize = size; 5422 if (buf != NULL && 5423 copyout(zone->zone_privset, buf, bufsize) != 0) 5424 error = EFAULT; 5425 break; 5426 case ZONE_ATTR_UNIQID: 5427 size = sizeof (zone->zone_uniqid); 5428 if (bufsize > size) 5429 bufsize = size; 5430 if (buf != NULL && 5431 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5432 error = EFAULT; 5433 break; 5434 case ZONE_ATTR_POOLID: 5435 { 5436 pool_t *pool; 5437 poolid_t poolid; 5438 5439 if (pool_lock_intr() != 0) { 5440 error = EINTR; 5441 break; 5442 } 5443 pool = zone_pool_get(zone); 5444 poolid = pool->pool_id; 5445 pool_unlock(); 5446 size = sizeof (poolid); 5447 if (bufsize > size) 5448 bufsize = size; 5449 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5450 error = EFAULT; 5451 } 5452 break; 5453 case ZONE_ATTR_SLBL: 5454 size = sizeof (bslabel_t); 5455 if (bufsize > size) 5456 bufsize = size; 5457 if (zone->zone_slabel == NULL) 5458 error = EINVAL; 5459 else if (buf != NULL && 5460 copyout(label2bslabel(zone->zone_slabel), buf, 5461 bufsize) != 0) 5462 error = EFAULT; 5463 break; 5464 case ZONE_ATTR_INITPID: 5465 size = sizeof (initpid); 5466 if (bufsize > size) 5467 bufsize = size; 5468 initpid = zone->zone_proc_initpid; 5469 if (initpid == -1) { 5470 error = ESRCH; 5471 break; 5472 } 5473 if (buf != NULL && 5474 copyout(&initpid, buf, bufsize) != 0) 5475 error = EFAULT; 5476 break; 5477 case ZONE_ATTR_BRAND: 5478 size = strlen(zone->zone_brand->b_name) + 1; 5479 5480 if (bufsize > size) 5481 bufsize = size; 5482 if (buf != NULL) { 5483 err = copyoutstr(zone->zone_brand->b_name, buf, 5484 bufsize, NULL); 5485 if (err != 0 && err != ENAMETOOLONG) 5486 error = EFAULT; 5487 } 5488 break; 5489 case ZONE_ATTR_INITNAME: 5490 size = strlen(zone->zone_initname) + 1; 5491 if (bufsize > size) 5492 bufsize = size; 5493 if (buf != NULL) { 5494 err = copyoutstr(zone->zone_initname, buf, bufsize, 5495 NULL); 5496 if (err != 0 && err != ENAMETOOLONG) 5497 error = EFAULT; 5498 } 5499 break; 5500 case ZONE_ATTR_BOOTARGS: 5501 if (zone->zone_bootargs == NULL) 5502 outstr = ""; 5503 else 5504 outstr = zone->zone_bootargs; 5505 size = strlen(outstr) + 1; 5506 if (bufsize > size) 5507 bufsize = size; 5508 if (buf != NULL) { 5509 err = copyoutstr(outstr, buf, bufsize, NULL); 5510 if (err != 0 && err != ENAMETOOLONG) 5511 error = EFAULT; 5512 } 5513 break; 5514 case ZONE_ATTR_PHYS_MCAP: 5515 size = sizeof (zone->zone_phys_mcap); 5516 if (bufsize > size) 5517 bufsize = size; 5518 if (buf != NULL && 5519 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5520 error = EFAULT; 5521 break; 5522 case ZONE_ATTR_SCHED_CLASS: 5523 mutex_enter(&class_lock); 5524 5525 if (zone->zone_defaultcid >= loaded_classes) 5526 outstr = ""; 5527 else 5528 outstr = sclass[zone->zone_defaultcid].cl_name; 5529 size = strlen(outstr) + 1; 5530 if (bufsize > size) 5531 bufsize = size; 5532 if (buf != NULL) { 5533 err = copyoutstr(outstr, buf, bufsize, NULL); 5534 if (err != 0 && err != ENAMETOOLONG) 5535 error = EFAULT; 5536 } 5537 5538 mutex_exit(&class_lock); 5539 break; 5540 case ZONE_ATTR_HOSTID: 5541 if (zone->zone_hostid != HW_INVALID_HOSTID && 5542 bufsize == sizeof (zone->zone_hostid)) { 5543 size = sizeof (zone->zone_hostid); 5544 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5545 bufsize) != 0) 5546 error = EFAULT; 5547 } else { 5548 error = EINVAL; 5549 } 5550 break; 5551 case ZONE_ATTR_FS_ALLOWED: 5552 if (zone->zone_fs_allowed == NULL) 5553 outstr = ""; 5554 else 5555 outstr = zone->zone_fs_allowed; 5556 size = strlen(outstr) + 1; 5557 if (bufsize > size) 5558 bufsize = size; 5559 if (buf != NULL) { 5560 err = copyoutstr(outstr, buf, bufsize, NULL); 5561 if (err != 0 && err != ENAMETOOLONG) 5562 error = EFAULT; 5563 } 5564 break; 5565 case ZONE_ATTR_NETWORK: 5566 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5567 if (copyin(buf, zbuf, bufsize) != 0) { 5568 error = EFAULT; 5569 } else { 5570 error = zone_get_network(zoneid, zbuf); 5571 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5572 error = EFAULT; 5573 } 5574 kmem_free(zbuf, bufsize); 5575 break; 5576 default: 5577 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5578 size = bufsize; 5579 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5580 } else { 5581 error = EINVAL; 5582 } 5583 } 5584 zone_rele(zone); 5585 5586 if (error) 5587 return (set_errno(error)); 5588 return ((ssize_t)size); 5589 } 5590 5591 /* 5592 * Systemcall entry point for zone_setattr(2). 5593 */ 5594 /*ARGSUSED*/ 5595 static int 5596 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5597 { 5598 zone_t *zone; 5599 zone_status_t zone_status; 5600 int err = -1; 5601 zone_net_data_t *zbuf; 5602 5603 if (secpolicy_zone_config(CRED()) != 0) 5604 return (set_errno(EPERM)); 5605 5606 /* 5607 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5608 * global zone. 5609 */ 5610 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5611 return (set_errno(EINVAL)); 5612 } 5613 5614 mutex_enter(&zonehash_lock); 5615 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5616 mutex_exit(&zonehash_lock); 5617 return (set_errno(EINVAL)); 5618 } 5619 zone_hold(zone); 5620 mutex_exit(&zonehash_lock); 5621 5622 /* 5623 * At present most attributes can only be set on non-running, 5624 * non-global zones. 5625 */ 5626 zone_status = zone_status_get(zone); 5627 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5628 err = EINVAL; 5629 goto done; 5630 } 5631 5632 switch (attr) { 5633 case ZONE_ATTR_INITNAME: 5634 err = zone_set_initname(zone, (const char *)buf); 5635 break; 5636 case ZONE_ATTR_INITNORESTART: 5637 zone->zone_restart_init = B_FALSE; 5638 err = 0; 5639 break; 5640 case ZONE_ATTR_BOOTARGS: 5641 err = zone_set_bootargs(zone, (const char *)buf); 5642 break; 5643 case ZONE_ATTR_BRAND: 5644 err = zone_set_brand(zone, (const char *)buf); 5645 break; 5646 case ZONE_ATTR_FS_ALLOWED: 5647 err = zone_set_fs_allowed(zone, (const char *)buf); 5648 break; 5649 case ZONE_ATTR_PHYS_MCAP: 5650 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5651 break; 5652 case ZONE_ATTR_SCHED_CLASS: 5653 err = zone_set_sched_class(zone, (const char *)buf); 5654 break; 5655 case ZONE_ATTR_HOSTID: 5656 if (bufsize == sizeof (zone->zone_hostid)) { 5657 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5658 err = 0; 5659 else 5660 err = EFAULT; 5661 } else { 5662 err = EINVAL; 5663 } 5664 break; 5665 case ZONE_ATTR_NETWORK: 5666 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5667 err = EINVAL; 5668 break; 5669 } 5670 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5671 if (copyin(buf, zbuf, bufsize) != 0) { 5672 kmem_free(zbuf, bufsize); 5673 err = EFAULT; 5674 break; 5675 } 5676 err = zone_set_network(zoneid, zbuf); 5677 kmem_free(zbuf, bufsize); 5678 break; 5679 default: 5680 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5681 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5682 else 5683 err = EINVAL; 5684 } 5685 5686 done: 5687 zone_rele(zone); 5688 ASSERT(err != -1); 5689 return (err != 0 ? set_errno(err) : 0); 5690 } 5691 5692 /* 5693 * Return zero if the process has at least one vnode mapped in to its 5694 * address space which shouldn't be allowed to change zones. 5695 * 5696 * Also return zero if the process has any shared mappings which reserve 5697 * swap. This is because the counting for zone.max-swap does not allow swap 5698 * reservation to be shared between zones. zone swap reservation is counted 5699 * on zone->zone_max_swap. 5700 */ 5701 static int 5702 as_can_change_zones(void) 5703 { 5704 proc_t *pp = curproc; 5705 struct seg *seg; 5706 struct as *as = pp->p_as; 5707 vnode_t *vp; 5708 int allow = 1; 5709 5710 ASSERT(pp->p_as != &kas); 5711 AS_LOCK_ENTER(as, RW_READER); 5712 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5713 5714 /* 5715 * Cannot enter zone with shared anon memory which 5716 * reserves swap. See comment above. 5717 */ 5718 if (seg_can_change_zones(seg) == B_FALSE) { 5719 allow = 0; 5720 break; 5721 } 5722 /* 5723 * if we can't get a backing vnode for this segment then skip 5724 * it. 5725 */ 5726 vp = NULL; 5727 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5728 continue; 5729 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5730 allow = 0; 5731 break; 5732 } 5733 } 5734 AS_LOCK_EXIT(as); 5735 return (allow); 5736 } 5737 5738 /* 5739 * Count swap reserved by curproc's address space 5740 */ 5741 static size_t 5742 as_swresv(void) 5743 { 5744 proc_t *pp = curproc; 5745 struct seg *seg; 5746 struct as *as = pp->p_as; 5747 size_t swap = 0; 5748 5749 ASSERT(pp->p_as != &kas); 5750 ASSERT(AS_WRITE_HELD(as)); 5751 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5752 swap += seg_swresv(seg); 5753 5754 return (swap); 5755 } 5756 5757 /* 5758 * Systemcall entry point for zone_enter(). 5759 * 5760 * The current process is injected into said zone. In the process 5761 * it will change its project membership, privileges, rootdir/cwd, 5762 * zone-wide rctls, and pool association to match those of the zone. 5763 * 5764 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5765 * state will transition it to ZONE_IS_RUNNING. Processes may only 5766 * enter a zone that is "ready" or "running". 5767 */ 5768 static int 5769 zone_enter(zoneid_t zoneid) 5770 { 5771 zone_t *zone; 5772 vnode_t *vp; 5773 proc_t *pp = curproc; 5774 contract_t *ct; 5775 cont_process_t *ctp; 5776 task_t *tk, *oldtk; 5777 kproject_t *zone_proj0; 5778 cred_t *cr, *newcr; 5779 pool_t *oldpool, *newpool; 5780 sess_t *sp; 5781 uid_t uid; 5782 zone_status_t status; 5783 int err = 0; 5784 rctl_entity_p_t e; 5785 size_t swap; 5786 kthread_id_t t; 5787 5788 if (secpolicy_zone_config(CRED()) != 0) 5789 return (set_errno(EPERM)); 5790 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5791 return (set_errno(EINVAL)); 5792 5793 /* 5794 * Stop all lwps so we don't need to hold a lock to look at 5795 * curproc->p_zone. This needs to happen before we grab any 5796 * locks to avoid deadlock (another lwp in the process could 5797 * be waiting for the held lock). 5798 */ 5799 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5800 return (set_errno(EINTR)); 5801 5802 /* 5803 * Make sure we're not changing zones with files open or mapped in 5804 * to our address space which shouldn't be changing zones. 5805 */ 5806 if (!files_can_change_zones()) { 5807 err = EBADF; 5808 goto out; 5809 } 5810 if (!as_can_change_zones()) { 5811 err = EFAULT; 5812 goto out; 5813 } 5814 5815 mutex_enter(&zonehash_lock); 5816 if (pp->p_zone != global_zone) { 5817 mutex_exit(&zonehash_lock); 5818 err = EINVAL; 5819 goto out; 5820 } 5821 5822 zone = zone_find_all_by_id(zoneid); 5823 if (zone == NULL) { 5824 mutex_exit(&zonehash_lock); 5825 err = EINVAL; 5826 goto out; 5827 } 5828 5829 /* 5830 * To prevent processes in a zone from holding contracts on 5831 * extrazonal resources, and to avoid process contract 5832 * memberships which span zones, contract holders and processes 5833 * which aren't the sole members of their encapsulating process 5834 * contracts are not allowed to zone_enter. 5835 */ 5836 ctp = pp->p_ct_process; 5837 ct = &ctp->conp_contract; 5838 mutex_enter(&ct->ct_lock); 5839 mutex_enter(&pp->p_lock); 5840 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5841 mutex_exit(&pp->p_lock); 5842 mutex_exit(&ct->ct_lock); 5843 mutex_exit(&zonehash_lock); 5844 err = EINVAL; 5845 goto out; 5846 } 5847 5848 /* 5849 * Moreover, we don't allow processes whose encapsulating 5850 * process contracts have inherited extrazonal contracts. 5851 * While it would be easier to eliminate all process contracts 5852 * with inherited contracts, we need to be able to give a 5853 * restarted init (or other zone-penetrating process) its 5854 * predecessor's contracts. 5855 */ 5856 if (ctp->conp_ninherited != 0) { 5857 contract_t *next; 5858 for (next = list_head(&ctp->conp_inherited); next; 5859 next = list_next(&ctp->conp_inherited, next)) { 5860 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5861 mutex_exit(&pp->p_lock); 5862 mutex_exit(&ct->ct_lock); 5863 mutex_exit(&zonehash_lock); 5864 err = EINVAL; 5865 goto out; 5866 } 5867 } 5868 } 5869 5870 mutex_exit(&pp->p_lock); 5871 mutex_exit(&ct->ct_lock); 5872 5873 status = zone_status_get(zone); 5874 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5875 /* 5876 * Can't join 5877 */ 5878 mutex_exit(&zonehash_lock); 5879 err = EINVAL; 5880 goto out; 5881 } 5882 5883 /* 5884 * Make sure new priv set is within the permitted set for caller 5885 */ 5886 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5887 mutex_exit(&zonehash_lock); 5888 err = EPERM; 5889 goto out; 5890 } 5891 /* 5892 * We want to momentarily drop zonehash_lock while we optimistically 5893 * bind curproc to the pool it should be running in. This is safe 5894 * since the zone can't disappear (we have a hold on it). 5895 */ 5896 zone_hold(zone); 5897 mutex_exit(&zonehash_lock); 5898 5899 /* 5900 * Grab pool_lock to keep the pools configuration from changing 5901 * and to stop ourselves from getting rebound to another pool 5902 * until we join the zone. 5903 */ 5904 if (pool_lock_intr() != 0) { 5905 zone_rele(zone); 5906 err = EINTR; 5907 goto out; 5908 } 5909 ASSERT(secpolicy_pool(CRED()) == 0); 5910 /* 5911 * Bind ourselves to the pool currently associated with the zone. 5912 */ 5913 oldpool = curproc->p_pool; 5914 newpool = zone_pool_get(zone); 5915 if (pool_state == POOL_ENABLED && newpool != oldpool && 5916 (err = pool_do_bind(newpool, P_PID, P_MYID, 5917 POOL_BIND_ALL)) != 0) { 5918 pool_unlock(); 5919 zone_rele(zone); 5920 goto out; 5921 } 5922 5923 /* 5924 * Grab cpu_lock now; we'll need it later when we call 5925 * task_join(). 5926 */ 5927 mutex_enter(&cpu_lock); 5928 mutex_enter(&zonehash_lock); 5929 /* 5930 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5931 */ 5932 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5933 /* 5934 * Can't join anymore. 5935 */ 5936 mutex_exit(&zonehash_lock); 5937 mutex_exit(&cpu_lock); 5938 if (pool_state == POOL_ENABLED && 5939 newpool != oldpool) 5940 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5941 POOL_BIND_ALL); 5942 pool_unlock(); 5943 zone_rele(zone); 5944 err = EINVAL; 5945 goto out; 5946 } 5947 5948 /* 5949 * a_lock must be held while transfering locked memory and swap 5950 * reservation from the global zone to the non global zone because 5951 * asynchronous faults on the processes' address space can lock 5952 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5953 * segments respectively. 5954 */ 5955 AS_LOCK_ENTER(pp->p_as, RW_WRITER); 5956 swap = as_swresv(); 5957 mutex_enter(&pp->p_lock); 5958 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5959 /* verify that we do not exceed and task or lwp limits */ 5960 mutex_enter(&zone->zone_nlwps_lock); 5961 /* add new lwps to zone and zone's proj0 */ 5962 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5963 zone->zone_nlwps += pp->p_lwpcnt; 5964 /* add 1 task to zone's proj0 */ 5965 zone_proj0->kpj_ntasks += 1; 5966 5967 zone_proj0->kpj_nprocs++; 5968 zone->zone_nprocs++; 5969 mutex_exit(&zone->zone_nlwps_lock); 5970 5971 mutex_enter(&zone->zone_mem_lock); 5972 zone->zone_locked_mem += pp->p_locked_mem; 5973 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5974 zone->zone_max_swap += swap; 5975 mutex_exit(&zone->zone_mem_lock); 5976 5977 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5978 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5979 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5980 5981 /* remove lwps and process from proc's old zone and old project */ 5982 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5983 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5984 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5985 pp->p_task->tk_proj->kpj_nprocs--; 5986 pp->p_zone->zone_nprocs--; 5987 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5988 5989 mutex_enter(&pp->p_zone->zone_mem_lock); 5990 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5991 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5992 pp->p_zone->zone_max_swap -= swap; 5993 mutex_exit(&pp->p_zone->zone_mem_lock); 5994 5995 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5996 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5997 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5998 5999 pp->p_flag |= SZONETOP; 6000 pp->p_zone = zone; 6001 mutex_exit(&pp->p_lock); 6002 AS_LOCK_EXIT(pp->p_as); 6003 6004 /* 6005 * Joining the zone cannot fail from now on. 6006 * 6007 * This means that a lot of the following code can be commonized and 6008 * shared with zsched(). 6009 */ 6010 6011 /* 6012 * If the process contract fmri was inherited, we need to 6013 * flag this so that any contract status will not leak 6014 * extra zone information, svc_fmri in this case 6015 */ 6016 if (ctp->conp_svc_ctid != ct->ct_id) { 6017 mutex_enter(&ct->ct_lock); 6018 ctp->conp_svc_zone_enter = ct->ct_id; 6019 mutex_exit(&ct->ct_lock); 6020 } 6021 6022 /* 6023 * Reset the encapsulating process contract's zone. 6024 */ 6025 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 6026 contract_setzuniqid(ct, zone->zone_uniqid); 6027 6028 /* 6029 * Create a new task and associate the process with the project keyed 6030 * by (projid,zoneid). 6031 * 6032 * We might as well be in project 0; the global zone's projid doesn't 6033 * make much sense in a zone anyhow. 6034 * 6035 * This also increments zone_ntasks, and returns with p_lock held. 6036 */ 6037 tk = task_create(0, zone); 6038 oldtk = task_join(tk, 0); 6039 mutex_exit(&cpu_lock); 6040 6041 /* 6042 * call RCTLOP_SET functions on this proc 6043 */ 6044 e.rcep_p.zone = zone; 6045 e.rcep_t = RCENTITY_ZONE; 6046 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 6047 RCD_CALLBACK); 6048 mutex_exit(&pp->p_lock); 6049 6050 /* 6051 * We don't need to hold any of zsched's locks here; not only do we know 6052 * the process and zone aren't going away, we know its session isn't 6053 * changing either. 6054 * 6055 * By joining zsched's session here, we mimic the behavior in the 6056 * global zone of init's sid being the pid of sched. We extend this 6057 * to all zlogin-like zone_enter()'ing processes as well. 6058 */ 6059 mutex_enter(&pidlock); 6060 sp = zone->zone_zsched->p_sessp; 6061 sess_hold(zone->zone_zsched); 6062 mutex_enter(&pp->p_lock); 6063 pgexit(pp); 6064 sess_rele(pp->p_sessp, B_TRUE); 6065 pp->p_sessp = sp; 6066 pgjoin(pp, zone->zone_zsched->p_pidp); 6067 6068 /* 6069 * If any threads are scheduled to be placed on zone wait queue they 6070 * should abandon the idea since the wait queue is changing. 6071 * We need to be holding pidlock & p_lock to do this. 6072 */ 6073 if ((t = pp->p_tlist) != NULL) { 6074 do { 6075 thread_lock(t); 6076 /* 6077 * Kick this thread so that he doesn't sit 6078 * on a wrong wait queue. 6079 */ 6080 if (ISWAITING(t)) 6081 setrun_locked(t); 6082 6083 if (t->t_schedflag & TS_ANYWAITQ) 6084 t->t_schedflag &= ~ TS_ANYWAITQ; 6085 6086 thread_unlock(t); 6087 } while ((t = t->t_forw) != pp->p_tlist); 6088 } 6089 6090 /* 6091 * If there is a default scheduling class for the zone and it is not 6092 * the class we are currently in, change all of the threads in the 6093 * process to the new class. We need to be holding pidlock & p_lock 6094 * when we call parmsset so this is a good place to do it. 6095 */ 6096 if (zone->zone_defaultcid > 0 && 6097 zone->zone_defaultcid != curthread->t_cid) { 6098 pcparms_t pcparms; 6099 6100 pcparms.pc_cid = zone->zone_defaultcid; 6101 pcparms.pc_clparms[0] = 0; 6102 6103 /* 6104 * If setting the class fails, we still want to enter the zone. 6105 */ 6106 if ((t = pp->p_tlist) != NULL) { 6107 do { 6108 (void) parmsset(&pcparms, t); 6109 } while ((t = t->t_forw) != pp->p_tlist); 6110 } 6111 } 6112 6113 mutex_exit(&pp->p_lock); 6114 mutex_exit(&pidlock); 6115 6116 mutex_exit(&zonehash_lock); 6117 /* 6118 * We're firmly in the zone; let pools progress. 6119 */ 6120 pool_unlock(); 6121 task_rele(oldtk); 6122 /* 6123 * We don't need to retain a hold on the zone since we already 6124 * incremented zone_ntasks, so the zone isn't going anywhere. 6125 */ 6126 zone_rele(zone); 6127 6128 /* 6129 * Chroot 6130 */ 6131 vp = zone->zone_rootvp; 6132 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6133 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6134 6135 /* 6136 * Change process credentials 6137 */ 6138 newcr = cralloc(); 6139 mutex_enter(&pp->p_crlock); 6140 cr = pp->p_cred; 6141 crcopy_to(cr, newcr); 6142 crsetzone(newcr, zone); 6143 pp->p_cred = newcr; 6144 6145 /* 6146 * Restrict all process privilege sets to zone limit 6147 */ 6148 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6149 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6150 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6151 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6152 mutex_exit(&pp->p_crlock); 6153 crset(pp, newcr); 6154 6155 /* 6156 * Adjust upcount to reflect zone entry. 6157 */ 6158 uid = crgetruid(newcr); 6159 mutex_enter(&pidlock); 6160 upcount_dec(uid, GLOBAL_ZONEID); 6161 upcount_inc(uid, zoneid); 6162 mutex_exit(&pidlock); 6163 6164 /* 6165 * Set up core file path and content. 6166 */ 6167 set_core_defaults(); 6168 6169 out: 6170 /* 6171 * Let the other lwps continue. 6172 */ 6173 mutex_enter(&pp->p_lock); 6174 if (curthread != pp->p_agenttp) 6175 continuelwps(pp); 6176 mutex_exit(&pp->p_lock); 6177 6178 return (err != 0 ? set_errno(err) : 0); 6179 } 6180 6181 /* 6182 * Systemcall entry point for zone_list(2). 6183 * 6184 * Processes running in a (non-global) zone only see themselves. 6185 * On labeled systems, they see all zones whose label they dominate. 6186 */ 6187 static int 6188 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6189 { 6190 zoneid_t *zoneids; 6191 zone_t *zone, *myzone; 6192 uint_t user_nzones, real_nzones; 6193 uint_t domi_nzones; 6194 int error; 6195 6196 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6197 return (set_errno(EFAULT)); 6198 6199 myzone = curproc->p_zone; 6200 if (myzone != global_zone) { 6201 bslabel_t *mybslab; 6202 6203 if (!is_system_labeled()) { 6204 /* just return current zone */ 6205 real_nzones = domi_nzones = 1; 6206 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6207 zoneids[0] = myzone->zone_id; 6208 } else { 6209 /* return all zones that are dominated */ 6210 mutex_enter(&zonehash_lock); 6211 real_nzones = zonecount; 6212 domi_nzones = 0; 6213 if (real_nzones > 0) { 6214 zoneids = kmem_alloc(real_nzones * 6215 sizeof (zoneid_t), KM_SLEEP); 6216 mybslab = label2bslabel(myzone->zone_slabel); 6217 for (zone = list_head(&zone_active); 6218 zone != NULL; 6219 zone = list_next(&zone_active, zone)) { 6220 if (zone->zone_id == GLOBAL_ZONEID) 6221 continue; 6222 if (zone != myzone && 6223 (zone->zone_flags & ZF_IS_SCRATCH)) 6224 continue; 6225 /* 6226 * Note that a label always dominates 6227 * itself, so myzone is always included 6228 * in the list. 6229 */ 6230 if (bldominates(mybslab, 6231 label2bslabel(zone->zone_slabel))) { 6232 zoneids[domi_nzones++] = 6233 zone->zone_id; 6234 } 6235 } 6236 } 6237 mutex_exit(&zonehash_lock); 6238 } 6239 } else { 6240 mutex_enter(&zonehash_lock); 6241 real_nzones = zonecount; 6242 domi_nzones = 0; 6243 if (real_nzones > 0) { 6244 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 6245 KM_SLEEP); 6246 for (zone = list_head(&zone_active); zone != NULL; 6247 zone = list_next(&zone_active, zone)) 6248 zoneids[domi_nzones++] = zone->zone_id; 6249 ASSERT(domi_nzones == real_nzones); 6250 } 6251 mutex_exit(&zonehash_lock); 6252 } 6253 6254 /* 6255 * If user has allocated space for fewer entries than we found, then 6256 * return only up to his limit. Either way, tell him exactly how many 6257 * we found. 6258 */ 6259 if (domi_nzones < user_nzones) 6260 user_nzones = domi_nzones; 6261 error = 0; 6262 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6263 error = EFAULT; 6264 } else if (zoneidlist != NULL && user_nzones != 0) { 6265 if (copyout(zoneids, zoneidlist, 6266 user_nzones * sizeof (zoneid_t)) != 0) 6267 error = EFAULT; 6268 } 6269 6270 if (real_nzones > 0) 6271 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6272 6273 if (error != 0) 6274 return (set_errno(error)); 6275 else 6276 return (0); 6277 } 6278 6279 /* 6280 * Systemcall entry point for zone_lookup(2). 6281 * 6282 * Non-global zones are only able to see themselves and (on labeled systems) 6283 * the zones they dominate. 6284 */ 6285 static zoneid_t 6286 zone_lookup(const char *zone_name) 6287 { 6288 char *kname; 6289 zone_t *zone; 6290 zoneid_t zoneid; 6291 int err; 6292 6293 if (zone_name == NULL) { 6294 /* return caller's zone id */ 6295 return (getzoneid()); 6296 } 6297 6298 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6299 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6300 kmem_free(kname, ZONENAME_MAX); 6301 return (set_errno(err)); 6302 } 6303 6304 mutex_enter(&zonehash_lock); 6305 zone = zone_find_all_by_name(kname); 6306 kmem_free(kname, ZONENAME_MAX); 6307 /* 6308 * In a non-global zone, can only lookup global and own name. 6309 * In Trusted Extensions zone label dominance rules apply. 6310 */ 6311 if (zone == NULL || 6312 zone_status_get(zone) < ZONE_IS_READY || 6313 !zone_list_access(zone)) { 6314 mutex_exit(&zonehash_lock); 6315 return (set_errno(EINVAL)); 6316 } else { 6317 zoneid = zone->zone_id; 6318 mutex_exit(&zonehash_lock); 6319 return (zoneid); 6320 } 6321 } 6322 6323 static int 6324 zone_version(int *version_arg) 6325 { 6326 int version = ZONE_SYSCALL_API_VERSION; 6327 6328 if (copyout(&version, version_arg, sizeof (int)) != 0) 6329 return (set_errno(EFAULT)); 6330 return (0); 6331 } 6332 6333 /* ARGSUSED */ 6334 long 6335 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6336 { 6337 zone_def zs; 6338 int err; 6339 6340 switch (cmd) { 6341 case ZONE_CREATE: 6342 if (get_udatamodel() == DATAMODEL_NATIVE) { 6343 if (copyin(arg1, &zs, sizeof (zone_def))) { 6344 return (set_errno(EFAULT)); 6345 } 6346 } else { 6347 #ifdef _SYSCALL32_IMPL 6348 zone_def32 zs32; 6349 6350 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6351 return (set_errno(EFAULT)); 6352 } 6353 zs.zone_name = 6354 (const char *)(unsigned long)zs32.zone_name; 6355 zs.zone_root = 6356 (const char *)(unsigned long)zs32.zone_root; 6357 zs.zone_privs = 6358 (const struct priv_set *) 6359 (unsigned long)zs32.zone_privs; 6360 zs.zone_privssz = zs32.zone_privssz; 6361 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6362 zs.rctlbufsz = zs32.rctlbufsz; 6363 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6364 zs.zfsbufsz = zs32.zfsbufsz; 6365 zs.extended_error = 6366 (int *)(unsigned long)zs32.extended_error; 6367 zs.match = zs32.match; 6368 zs.doi = zs32.doi; 6369 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6370 zs.flags = zs32.flags; 6371 #else 6372 panic("get_udatamodel() returned bogus result\n"); 6373 #endif 6374 } 6375 6376 return (zone_create(zs.zone_name, zs.zone_root, 6377 zs.zone_privs, zs.zone_privssz, 6378 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6379 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6380 zs.extended_error, zs.match, zs.doi, 6381 zs.label, zs.flags)); 6382 case ZONE_BOOT: 6383 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6384 case ZONE_DESTROY: 6385 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6386 case ZONE_GETATTR: 6387 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6388 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6389 case ZONE_SETATTR: 6390 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6391 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6392 case ZONE_ENTER: 6393 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6394 case ZONE_LIST: 6395 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6396 case ZONE_SHUTDOWN: 6397 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6398 case ZONE_LOOKUP: 6399 return (zone_lookup((const char *)arg1)); 6400 case ZONE_VERSION: 6401 return (zone_version((int *)arg1)); 6402 case ZONE_ADD_DATALINK: 6403 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6404 (datalink_id_t)(uintptr_t)arg2)); 6405 case ZONE_DEL_DATALINK: 6406 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6407 (datalink_id_t)(uintptr_t)arg2)); 6408 case ZONE_CHECK_DATALINK: { 6409 zoneid_t zoneid; 6410 boolean_t need_copyout; 6411 6412 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6413 return (EFAULT); 6414 need_copyout = (zoneid == ALL_ZONES); 6415 err = zone_check_datalink(&zoneid, 6416 (datalink_id_t)(uintptr_t)arg2); 6417 if (err == 0 && need_copyout) { 6418 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6419 err = EFAULT; 6420 } 6421 return (err == 0 ? 0 : set_errno(err)); 6422 } 6423 case ZONE_LIST_DATALINK: 6424 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6425 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6426 default: 6427 return (set_errno(EINVAL)); 6428 } 6429 } 6430 6431 struct zarg { 6432 zone_t *zone; 6433 zone_cmd_arg_t arg; 6434 }; 6435 6436 static int 6437 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6438 { 6439 char *buf; 6440 size_t buflen; 6441 int error; 6442 6443 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6444 buf = kmem_alloc(buflen, KM_SLEEP); 6445 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6446 error = door_ki_open(buf, doorp); 6447 kmem_free(buf, buflen); 6448 return (error); 6449 } 6450 6451 static void 6452 zone_release_door(door_handle_t *doorp) 6453 { 6454 door_ki_rele(*doorp); 6455 *doorp = NULL; 6456 } 6457 6458 static void 6459 zone_ki_call_zoneadmd(struct zarg *zargp) 6460 { 6461 door_handle_t door = NULL; 6462 door_arg_t darg, save_arg; 6463 char *zone_name; 6464 size_t zone_namelen; 6465 zoneid_t zoneid; 6466 zone_t *zone; 6467 zone_cmd_arg_t arg; 6468 uint64_t uniqid; 6469 size_t size; 6470 int error; 6471 int retry; 6472 6473 zone = zargp->zone; 6474 arg = zargp->arg; 6475 kmem_free(zargp, sizeof (*zargp)); 6476 6477 zone_namelen = strlen(zone->zone_name) + 1; 6478 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6479 bcopy(zone->zone_name, zone_name, zone_namelen); 6480 zoneid = zone->zone_id; 6481 uniqid = zone->zone_uniqid; 6482 /* 6483 * zoneadmd may be down, but at least we can empty out the zone. 6484 * We can ignore the return value of zone_empty() since we're called 6485 * from a kernel thread and know we won't be delivered any signals. 6486 */ 6487 ASSERT(curproc == &p0); 6488 (void) zone_empty(zone); 6489 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6490 zone_rele(zone); 6491 6492 size = sizeof (arg); 6493 darg.rbuf = (char *)&arg; 6494 darg.data_ptr = (char *)&arg; 6495 darg.rsize = size; 6496 darg.data_size = size; 6497 darg.desc_ptr = NULL; 6498 darg.desc_num = 0; 6499 6500 save_arg = darg; 6501 /* 6502 * Since we're not holding a reference to the zone, any number of 6503 * things can go wrong, including the zone disappearing before we get a 6504 * chance to talk to zoneadmd. 6505 */ 6506 for (retry = 0; /* forever */; retry++) { 6507 if (door == NULL && 6508 (error = zone_lookup_door(zone_name, &door)) != 0) { 6509 goto next; 6510 } 6511 ASSERT(door != NULL); 6512 6513 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6514 SIZE_MAX, 0)) == 0) { 6515 break; 6516 } 6517 switch (error) { 6518 case EINTR: 6519 /* FALLTHROUGH */ 6520 case EAGAIN: /* process may be forking */ 6521 /* 6522 * Back off for a bit 6523 */ 6524 break; 6525 case EBADF: 6526 zone_release_door(&door); 6527 if (zone_lookup_door(zone_name, &door) != 0) { 6528 /* 6529 * zoneadmd may be dead, but it may come back to 6530 * life later. 6531 */ 6532 break; 6533 } 6534 break; 6535 default: 6536 cmn_err(CE_WARN, 6537 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6538 error); 6539 goto out; 6540 } 6541 next: 6542 /* 6543 * If this isn't the same zone_t that we originally had in mind, 6544 * then this is the same as if two kadmin requests come in at 6545 * the same time: the first one wins. This means we lose, so we 6546 * bail. 6547 */ 6548 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6549 /* 6550 * Problem is solved. 6551 */ 6552 break; 6553 } 6554 if (zone->zone_uniqid != uniqid) { 6555 /* 6556 * zoneid recycled 6557 */ 6558 zone_rele(zone); 6559 break; 6560 } 6561 /* 6562 * We could zone_status_timedwait(), but there doesn't seem to 6563 * be much point in doing that (plus, it would mean that 6564 * zone_free() isn't called until this thread exits). 6565 */ 6566 zone_rele(zone); 6567 delay(hz); 6568 darg = save_arg; 6569 } 6570 out: 6571 if (door != NULL) { 6572 zone_release_door(&door); 6573 } 6574 kmem_free(zone_name, zone_namelen); 6575 thread_exit(); 6576 } 6577 6578 /* 6579 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6580 * kadmin(). The caller is a process in the zone. 6581 * 6582 * In order to shutdown the zone, we will hand off control to zoneadmd 6583 * (running in the global zone) via a door. We do a half-hearted job at 6584 * killing all processes in the zone, create a kernel thread to contact 6585 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6586 * a form of generation number used to let zoneadmd (as well as 6587 * zone_destroy()) know exactly which zone they're re talking about. 6588 */ 6589 int 6590 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6591 { 6592 struct zarg *zargp; 6593 zone_cmd_t zcmd; 6594 zone_t *zone; 6595 6596 zone = curproc->p_zone; 6597 ASSERT(getzoneid() != GLOBAL_ZONEID); 6598 6599 switch (cmd) { 6600 case A_SHUTDOWN: 6601 switch (fcn) { 6602 case AD_HALT: 6603 case AD_POWEROFF: 6604 zcmd = Z_HALT; 6605 break; 6606 case AD_BOOT: 6607 zcmd = Z_REBOOT; 6608 break; 6609 case AD_IBOOT: 6610 case AD_SBOOT: 6611 case AD_SIBOOT: 6612 case AD_NOSYNC: 6613 return (ENOTSUP); 6614 default: 6615 return (EINVAL); 6616 } 6617 break; 6618 case A_REBOOT: 6619 zcmd = Z_REBOOT; 6620 break; 6621 case A_FTRACE: 6622 case A_REMOUNT: 6623 case A_FREEZE: 6624 case A_DUMP: 6625 case A_CONFIG: 6626 return (ENOTSUP); 6627 default: 6628 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6629 return (EINVAL); 6630 } 6631 6632 if (secpolicy_zone_admin(credp, B_FALSE)) 6633 return (EPERM); 6634 mutex_enter(&zone_status_lock); 6635 6636 /* 6637 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6638 * is in the zone. 6639 */ 6640 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6641 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6642 /* 6643 * This zone is already on its way down. 6644 */ 6645 mutex_exit(&zone_status_lock); 6646 return (0); 6647 } 6648 /* 6649 * Prevent future zone_enter()s 6650 */ 6651 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6652 mutex_exit(&zone_status_lock); 6653 6654 /* 6655 * Kill everyone now and call zoneadmd later. 6656 * zone_ki_call_zoneadmd() will do a more thorough job of this 6657 * later. 6658 */ 6659 killall(zone->zone_id); 6660 /* 6661 * Now, create the thread to contact zoneadmd and do the rest of the 6662 * work. This thread can't be created in our zone otherwise 6663 * zone_destroy() would deadlock. 6664 */ 6665 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6666 zargp->arg.cmd = zcmd; 6667 zargp->arg.uniqid = zone->zone_uniqid; 6668 zargp->zone = zone; 6669 (void) strcpy(zargp->arg.locale, "C"); 6670 /* mdep was already copied in for us by uadmin */ 6671 if (mdep != NULL) 6672 (void) strlcpy(zargp->arg.bootbuf, mdep, 6673 sizeof (zargp->arg.bootbuf)); 6674 zone_hold(zone); 6675 6676 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6677 TS_RUN, minclsyspri); 6678 exit(CLD_EXITED, 0); 6679 6680 return (EINVAL); 6681 } 6682 6683 /* 6684 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6685 * status to ZONE_IS_SHUTTING_DOWN. 6686 * 6687 * This function also shuts down all running zones to ensure that they won't 6688 * fork new processes. 6689 */ 6690 void 6691 zone_shutdown_global(void) 6692 { 6693 zone_t *current_zonep; 6694 6695 ASSERT(INGLOBALZONE(curproc)); 6696 mutex_enter(&zonehash_lock); 6697 mutex_enter(&zone_status_lock); 6698 6699 /* Modify the global zone's status first. */ 6700 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6701 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6702 6703 /* 6704 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6705 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6706 * could cause assertions to fail (e.g., assertions about a zone's 6707 * state during initialization, readying, or booting) or produce races. 6708 * We'll let threads continue to initialize and ready new zones: they'll 6709 * fail to boot the new zones when they see that the global zone is 6710 * shutting down. 6711 */ 6712 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6713 current_zonep = list_next(&zone_active, current_zonep)) { 6714 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6715 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6716 } 6717 mutex_exit(&zone_status_lock); 6718 mutex_exit(&zonehash_lock); 6719 } 6720 6721 /* 6722 * Returns true if the named dataset is visible in the current zone. 6723 * The 'write' parameter is set to 1 if the dataset is also writable. 6724 */ 6725 int 6726 zone_dataset_visible(const char *dataset, int *write) 6727 { 6728 static int zfstype = -1; 6729 zone_dataset_t *zd; 6730 size_t len; 6731 zone_t *zone = curproc->p_zone; 6732 const char *name = NULL; 6733 vfs_t *vfsp = NULL; 6734 6735 if (dataset[0] == '\0') 6736 return (0); 6737 6738 /* 6739 * Walk the list once, looking for datasets which match exactly, or 6740 * specify a dataset underneath an exported dataset. If found, return 6741 * true and note that it is writable. 6742 */ 6743 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6744 zd = list_next(&zone->zone_datasets, zd)) { 6745 6746 len = strlen(zd->zd_dataset); 6747 if (strlen(dataset) >= len && 6748 bcmp(dataset, zd->zd_dataset, len) == 0 && 6749 (dataset[len] == '\0' || dataset[len] == '/' || 6750 dataset[len] == '@')) { 6751 if (write) 6752 *write = 1; 6753 return (1); 6754 } 6755 } 6756 6757 /* 6758 * Walk the list a second time, searching for datasets which are parents 6759 * of exported datasets. These should be visible, but read-only. 6760 * 6761 * Note that we also have to support forms such as 'pool/dataset/', with 6762 * a trailing slash. 6763 */ 6764 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6765 zd = list_next(&zone->zone_datasets, zd)) { 6766 6767 len = strlen(dataset); 6768 if (dataset[len - 1] == '/') 6769 len--; /* Ignore trailing slash */ 6770 if (len < strlen(zd->zd_dataset) && 6771 bcmp(dataset, zd->zd_dataset, len) == 0 && 6772 zd->zd_dataset[len] == '/') { 6773 if (write) 6774 *write = 0; 6775 return (1); 6776 } 6777 } 6778 6779 /* 6780 * We reach here if the given dataset is not found in the zone_dataset 6781 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6782 * instead of delegation. For this we search for the dataset in the 6783 * zone_vfslist of this zone. If found, return true and note that it is 6784 * not writable. 6785 */ 6786 6787 /* 6788 * Initialize zfstype if it is not initialized yet. 6789 */ 6790 if (zfstype == -1) { 6791 struct vfssw *vswp = vfs_getvfssw("zfs"); 6792 zfstype = vswp - vfssw; 6793 vfs_unrefvfssw(vswp); 6794 } 6795 6796 vfs_list_read_lock(); 6797 vfsp = zone->zone_vfslist; 6798 do { 6799 ASSERT(vfsp); 6800 if (vfsp->vfs_fstype == zfstype) { 6801 name = refstr_value(vfsp->vfs_resource); 6802 6803 /* 6804 * Check if we have an exact match. 6805 */ 6806 if (strcmp(dataset, name) == 0) { 6807 vfs_list_unlock(); 6808 if (write) 6809 *write = 0; 6810 return (1); 6811 } 6812 /* 6813 * We need to check if we are looking for parents of 6814 * a dataset. These should be visible, but read-only. 6815 */ 6816 len = strlen(dataset); 6817 if (dataset[len - 1] == '/') 6818 len--; 6819 6820 if (len < strlen(name) && 6821 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6822 vfs_list_unlock(); 6823 if (write) 6824 *write = 0; 6825 return (1); 6826 } 6827 } 6828 vfsp = vfsp->vfs_zone_next; 6829 } while (vfsp != zone->zone_vfslist); 6830 6831 vfs_list_unlock(); 6832 return (0); 6833 } 6834 6835 /* 6836 * zone_find_by_any_path() - 6837 * 6838 * kernel-private routine similar to zone_find_by_path(), but which 6839 * effectively compares against zone paths rather than zonerootpath 6840 * (i.e., the last component of zonerootpaths, which should be "root/", 6841 * are not compared.) This is done in order to accurately identify all 6842 * paths, whether zone-visible or not, including those which are parallel 6843 * to /root/, such as /dev/, /home/, etc... 6844 * 6845 * If the specified path does not fall under any zone path then global 6846 * zone is returned. 6847 * 6848 * The treat_abs parameter indicates whether the path should be treated as 6849 * an absolute path although it does not begin with "/". (This supports 6850 * nfs mount syntax such as host:any/path.) 6851 * 6852 * The caller is responsible for zone_rele of the returned zone. 6853 */ 6854 zone_t * 6855 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6856 { 6857 zone_t *zone; 6858 int path_offset = 0; 6859 6860 if (path == NULL) { 6861 zone_hold(global_zone); 6862 return (global_zone); 6863 } 6864 6865 if (*path != '/') { 6866 ASSERT(treat_abs); 6867 path_offset = 1; 6868 } 6869 6870 mutex_enter(&zonehash_lock); 6871 for (zone = list_head(&zone_active); zone != NULL; 6872 zone = list_next(&zone_active, zone)) { 6873 char *c; 6874 size_t pathlen; 6875 char *rootpath_start; 6876 6877 if (zone == global_zone) /* skip global zone */ 6878 continue; 6879 6880 /* scan backwards to find start of last component */ 6881 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6882 do { 6883 c--; 6884 } while (*c != '/'); 6885 6886 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6887 rootpath_start = (zone->zone_rootpath + path_offset); 6888 if (strncmp(path, rootpath_start, pathlen) == 0) 6889 break; 6890 } 6891 if (zone == NULL) 6892 zone = global_zone; 6893 zone_hold(zone); 6894 mutex_exit(&zonehash_lock); 6895 return (zone); 6896 } 6897 6898 /* 6899 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6900 * zone_dl_t pointer if found, and NULL otherwise. 6901 */ 6902 static zone_dl_t * 6903 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6904 { 6905 zone_dl_t *zdl; 6906 6907 ASSERT(mutex_owned(&zone->zone_lock)); 6908 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6909 zdl = list_next(&zone->zone_dl_list, zdl)) { 6910 if (zdl->zdl_id == linkid) 6911 break; 6912 } 6913 return (zdl); 6914 } 6915 6916 static boolean_t 6917 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6918 { 6919 boolean_t exists; 6920 6921 mutex_enter(&zone->zone_lock); 6922 exists = (zone_find_dl(zone, linkid) != NULL); 6923 mutex_exit(&zone->zone_lock); 6924 return (exists); 6925 } 6926 6927 /* 6928 * Add an data link name for the zone. 6929 */ 6930 static int 6931 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6932 { 6933 zone_dl_t *zdl; 6934 zone_t *zone; 6935 zone_t *thiszone; 6936 6937 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6938 return (set_errno(ENXIO)); 6939 6940 /* Verify that the datalink ID doesn't already belong to a zone. */ 6941 mutex_enter(&zonehash_lock); 6942 for (zone = list_head(&zone_active); zone != NULL; 6943 zone = list_next(&zone_active, zone)) { 6944 if (zone_dl_exists(zone, linkid)) { 6945 mutex_exit(&zonehash_lock); 6946 zone_rele(thiszone); 6947 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6948 } 6949 } 6950 6951 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6952 zdl->zdl_id = linkid; 6953 zdl->zdl_net = NULL; 6954 mutex_enter(&thiszone->zone_lock); 6955 list_insert_head(&thiszone->zone_dl_list, zdl); 6956 mutex_exit(&thiszone->zone_lock); 6957 mutex_exit(&zonehash_lock); 6958 zone_rele(thiszone); 6959 return (0); 6960 } 6961 6962 static int 6963 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6964 { 6965 zone_dl_t *zdl; 6966 zone_t *zone; 6967 int err = 0; 6968 6969 if ((zone = zone_find_by_id(zoneid)) == NULL) 6970 return (set_errno(EINVAL)); 6971 6972 mutex_enter(&zone->zone_lock); 6973 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6974 err = ENXIO; 6975 } else { 6976 list_remove(&zone->zone_dl_list, zdl); 6977 nvlist_free(zdl->zdl_net); 6978 kmem_free(zdl, sizeof (zone_dl_t)); 6979 } 6980 mutex_exit(&zone->zone_lock); 6981 zone_rele(zone); 6982 return (err == 0 ? 0 : set_errno(err)); 6983 } 6984 6985 /* 6986 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6987 * the linkid. Otherwise we just check if the specified zoneidp has been 6988 * assigned the supplied linkid. 6989 */ 6990 int 6991 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6992 { 6993 zone_t *zone; 6994 int err = ENXIO; 6995 6996 if (*zoneidp != ALL_ZONES) { 6997 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6998 if (zone_dl_exists(zone, linkid)) 6999 err = 0; 7000 zone_rele(zone); 7001 } 7002 return (err); 7003 } 7004 7005 mutex_enter(&zonehash_lock); 7006 for (zone = list_head(&zone_active); zone != NULL; 7007 zone = list_next(&zone_active, zone)) { 7008 if (zone_dl_exists(zone, linkid)) { 7009 *zoneidp = zone->zone_id; 7010 err = 0; 7011 break; 7012 } 7013 } 7014 mutex_exit(&zonehash_lock); 7015 return (err); 7016 } 7017 7018 /* 7019 * Get the list of datalink IDs assigned to a zone. 7020 * 7021 * On input, *nump is the number of datalink IDs that can fit in the supplied 7022 * idarray. Upon return, *nump is either set to the number of datalink IDs 7023 * that were placed in the array if the array was large enough, or to the 7024 * number of datalink IDs that the function needs to place in the array if the 7025 * array is too small. 7026 */ 7027 static int 7028 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 7029 { 7030 uint_t num, dlcount; 7031 zone_t *zone; 7032 zone_dl_t *zdl; 7033 datalink_id_t *idptr = idarray; 7034 7035 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 7036 return (set_errno(EFAULT)); 7037 if ((zone = zone_find_by_id(zoneid)) == NULL) 7038 return (set_errno(ENXIO)); 7039 7040 num = 0; 7041 mutex_enter(&zone->zone_lock); 7042 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7043 zdl = list_next(&zone->zone_dl_list, zdl)) { 7044 /* 7045 * If the list is bigger than what the caller supplied, just 7046 * count, don't do copyout. 7047 */ 7048 if (++num > dlcount) 7049 continue; 7050 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 7051 mutex_exit(&zone->zone_lock); 7052 zone_rele(zone); 7053 return (set_errno(EFAULT)); 7054 } 7055 idptr++; 7056 } 7057 mutex_exit(&zone->zone_lock); 7058 zone_rele(zone); 7059 7060 /* Increased or decreased, caller should be notified. */ 7061 if (num != dlcount) { 7062 if (copyout(&num, nump, sizeof (num)) != 0) 7063 return (set_errno(EFAULT)); 7064 } 7065 return (0); 7066 } 7067 7068 /* 7069 * Public interface for looking up a zone by zoneid. It's a customized version 7070 * for netstack_zone_create(). It can only be called from the zsd create 7071 * callbacks, since it doesn't have reference on the zone structure hence if 7072 * it is called elsewhere the zone could disappear after the zonehash_lock 7073 * is dropped. 7074 * 7075 * Furthermore it 7076 * 1. Doesn't check the status of the zone. 7077 * 2. It will be called even before zone_init is called, in that case the 7078 * address of zone0 is returned directly, and netstack_zone_create() 7079 * will only assign a value to zone0.zone_netstack, won't break anything. 7080 * 3. Returns without the zone being held. 7081 */ 7082 zone_t * 7083 zone_find_by_id_nolock(zoneid_t zoneid) 7084 { 7085 zone_t *zone; 7086 7087 mutex_enter(&zonehash_lock); 7088 if (zonehashbyid == NULL) 7089 zone = &zone0; 7090 else 7091 zone = zone_find_all_by_id(zoneid); 7092 mutex_exit(&zonehash_lock); 7093 return (zone); 7094 } 7095 7096 /* 7097 * Walk the datalinks for a given zone 7098 */ 7099 int 7100 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 7101 void *data) 7102 { 7103 zone_t *zone; 7104 zone_dl_t *zdl; 7105 datalink_id_t *idarray; 7106 uint_t idcount = 0; 7107 int i, ret = 0; 7108 7109 if ((zone = zone_find_by_id(zoneid)) == NULL) 7110 return (ENOENT); 7111 7112 /* 7113 * We first build an array of linkid's so that we can walk these and 7114 * execute the callback with the zone_lock dropped. 7115 */ 7116 mutex_enter(&zone->zone_lock); 7117 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7118 zdl = list_next(&zone->zone_dl_list, zdl)) { 7119 idcount++; 7120 } 7121 7122 if (idcount == 0) { 7123 mutex_exit(&zone->zone_lock); 7124 zone_rele(zone); 7125 return (0); 7126 } 7127 7128 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7129 if (idarray == NULL) { 7130 mutex_exit(&zone->zone_lock); 7131 zone_rele(zone); 7132 return (ENOMEM); 7133 } 7134 7135 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7136 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7137 idarray[i] = zdl->zdl_id; 7138 } 7139 7140 mutex_exit(&zone->zone_lock); 7141 7142 for (i = 0; i < idcount && ret == 0; i++) { 7143 if ((ret = (*cb)(idarray[i], data)) != 0) 7144 break; 7145 } 7146 7147 zone_rele(zone); 7148 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7149 return (ret); 7150 } 7151 7152 static char * 7153 zone_net_type2name(int type) 7154 { 7155 switch (type) { 7156 case ZONE_NETWORK_ADDRESS: 7157 return (ZONE_NET_ADDRNAME); 7158 case ZONE_NETWORK_DEFROUTER: 7159 return (ZONE_NET_RTRNAME); 7160 default: 7161 return (NULL); 7162 } 7163 } 7164 7165 static int 7166 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7167 { 7168 zone_t *zone; 7169 zone_dl_t *zdl; 7170 nvlist_t *nvl; 7171 int err = 0; 7172 uint8_t *new = NULL; 7173 char *nvname; 7174 int bufsize; 7175 datalink_id_t linkid = znbuf->zn_linkid; 7176 7177 if (secpolicy_zone_config(CRED()) != 0) 7178 return (set_errno(EPERM)); 7179 7180 if (zoneid == GLOBAL_ZONEID) 7181 return (set_errno(EINVAL)); 7182 7183 nvname = zone_net_type2name(znbuf->zn_type); 7184 bufsize = znbuf->zn_len; 7185 new = znbuf->zn_val; 7186 if (nvname == NULL) 7187 return (set_errno(EINVAL)); 7188 7189 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7190 return (set_errno(EINVAL)); 7191 } 7192 7193 mutex_enter(&zone->zone_lock); 7194 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7195 err = ENXIO; 7196 goto done; 7197 } 7198 if ((nvl = zdl->zdl_net) == NULL) { 7199 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7200 err = ENOMEM; 7201 goto done; 7202 } else { 7203 zdl->zdl_net = nvl; 7204 } 7205 } 7206 if (nvlist_exists(nvl, nvname)) { 7207 err = EINVAL; 7208 goto done; 7209 } 7210 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7211 ASSERT(err == 0); 7212 done: 7213 mutex_exit(&zone->zone_lock); 7214 zone_rele(zone); 7215 if (err != 0) 7216 return (set_errno(err)); 7217 else 7218 return (0); 7219 } 7220 7221 static int 7222 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7223 { 7224 zone_t *zone; 7225 zone_dl_t *zdl; 7226 nvlist_t *nvl; 7227 uint8_t *ptr; 7228 uint_t psize; 7229 int err = 0; 7230 char *nvname; 7231 int bufsize; 7232 void *buf; 7233 datalink_id_t linkid = znbuf->zn_linkid; 7234 7235 if (zoneid == GLOBAL_ZONEID) 7236 return (set_errno(EINVAL)); 7237 7238 nvname = zone_net_type2name(znbuf->zn_type); 7239 bufsize = znbuf->zn_len; 7240 buf = znbuf->zn_val; 7241 7242 if (nvname == NULL) 7243 return (set_errno(EINVAL)); 7244 if ((zone = zone_find_by_id(zoneid)) == NULL) 7245 return (set_errno(EINVAL)); 7246 7247 mutex_enter(&zone->zone_lock); 7248 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7249 err = ENXIO; 7250 goto done; 7251 } 7252 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7253 err = ENOENT; 7254 goto done; 7255 } 7256 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7257 ASSERT(err == 0); 7258 7259 if (psize > bufsize) { 7260 err = ENOBUFS; 7261 goto done; 7262 } 7263 znbuf->zn_len = psize; 7264 bcopy(ptr, buf, psize); 7265 done: 7266 mutex_exit(&zone->zone_lock); 7267 zone_rele(zone); 7268 if (err != 0) 7269 return (set_errno(err)); 7270 else 7271 return (0); 7272 } 7273