xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision 34841cc2abc43146ada78560d5f179be666acbda)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Zones
29  *
30  *   A zone is a named collection of processes, namespace constraints,
31  *   and other system resources which comprise a secure and manageable
32  *   application containment facility.
33  *
34  *   Zones (represented by the reference counted zone_t) are tracked in
35  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
36  *   (zoneid_t) are used to track zone association.  Zone IDs are
37  *   dynamically generated when the zone is created; if a persistent
38  *   identifier is needed (core files, accounting logs, audit trail,
39  *   etc.), the zone name should be used.
40  *
41  *
42  *   Global Zone:
43  *
44  *   The global zone (zoneid 0) is automatically associated with all
45  *   system resources that have not been bound to a user-created zone.
46  *   This means that even systems where zones are not in active use
47  *   have a global zone, and all processes, mounts, etc. are
48  *   associated with that zone.  The global zone is generally
49  *   unconstrained in terms of privileges and access, though the usual
50  *   credential and privilege based restrictions apply.
51  *
52  *
53  *   Zone States:
54  *
55  *   The states in which a zone may be in and the transitions are as
56  *   follows:
57  *
58  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59  *   initialized zone is added to the list of active zones on the system but
60  *   isn't accessible.
61  *
62  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63  *   not yet completed. Not possible to enter the zone, but attributes can
64  *   be retrieved.
65  *
66  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67  *   ready.  The zone is made visible after the ZSD constructor callbacks are
68  *   executed.  A zone remains in this state until it transitions into
69  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70  *
71  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73  *   state.
74  *
75  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
76  *   successfully started init.   A zone remains in this state until
77  *   zone_shutdown() is called.
78  *
79  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80  *   killing all processes running in the zone. The zone remains
81  *   in this state until there are no more user processes running in the zone.
82  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83  *   Since zone_shutdown() is restartable, it may be called successfully
84  *   multiple times for the same zone_t.  Setting of the zone's state to
85  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86  *   the zone's status without worrying about it being a moving target.
87  *
88  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89  *   are no more user processes in the zone.  The zone remains in this
90  *   state until there are no more kernel threads associated with the
91  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
92  *   fail.
93  *
94  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
96  *   join the zone or create kernel threads therein.
97  *
98  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
100  *   return NULL from now on.
101  *
102  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
103  *   processes or threads doing work on behalf of the zone.  The zone is
104  *   removed from the list of active zones.  zone_destroy() returns, and
105  *   the zone can be recreated.
106  *
107  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108  *   callbacks are executed, and all memory associated with the zone is
109  *   freed.
110  *
111  *   Threads can wait for the zone to enter a requested state by using
112  *   zone_status_wait() or zone_status_timedwait() with the desired
113  *   state passed in as an argument.  Zone state transitions are
114  *   uni-directional; it is not possible to move back to an earlier state.
115  *
116  *
117  *   Zone-Specific Data:
118  *
119  *   Subsystems needing to maintain zone-specific data can store that
120  *   data using the ZSD mechanism.  This provides a zone-specific data
121  *   store, similar to thread-specific data (see pthread_getspecific(3C)
122  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
123  *   to register callbacks to be invoked when a zone is created, shut
124  *   down, or destroyed.  This can be used to initialize zone-specific
125  *   data for new zones and to clean up when zones go away.
126  *
127  *
128  *   Data Structures:
129  *
130  *   The per-zone structure (zone_t) is reference counted, and freed
131  *   when all references are released.  zone_hold and zone_rele can be
132  *   used to adjust the reference count.  In addition, reference counts
133  *   associated with the cred_t structure are tracked separately using
134  *   zone_cred_hold and zone_cred_rele.
135  *
136  *   Pointers to active zone_t's are stored in two hash tables; one
137  *   for searching by id, the other for searching by name.  Lookups
138  *   can be performed on either basis, using zone_find_by_id and
139  *   zone_find_by_name.  Both return zone_t pointers with the zone
140  *   held, so zone_rele should be called when the pointer is no longer
141  *   needed.  Zones can also be searched by path; zone_find_by_path
142  *   returns the zone with which a path name is associated (global
143  *   zone if the path is not within some other zone's file system
144  *   hierarchy).  This currently requires iterating through each zone,
145  *   so it is slower than an id or name search via a hash table.
146  *
147  *
148  *   Locking:
149  *
150  *   zonehash_lock: This is a top-level global lock used to protect the
151  *       zone hash tables and lists.  Zones cannot be created or destroyed
152  *       while this lock is held.
153  *   zone_status_lock: This is a global lock protecting zone state.
154  *       Zones cannot change state while this lock is held.  It also
155  *       protects the list of kernel threads associated with a zone.
156  *   zone_lock: This is a per-zone lock used to protect several fields of
157  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
158  *       this lock means that the zone cannot go away.
159  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
160  *	 related to the zone.max-lwps rctl.
161  *   zone_mem_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
163  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
164  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
165  *       list (a list of zones in the ZONE_IS_DEAD state).
166  *
167  *   Ordering requirements:
168  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
169  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
170  *
171  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
172  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
173  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
174  *
175  *   Blocking memory allocations are permitted while holding any of the
176  *   zone locks.
177  *
178  *
179  *   System Call Interface:
180  *
181  *   The zone subsystem can be managed and queried from user level with
182  *   the following system calls (all subcodes of the primary "zone"
183  *   system call):
184  *   - zone_create: creates a zone with selected attributes (name,
185  *     root path, privileges, resource controls, ZFS datasets)
186  *   - zone_enter: allows the current process to enter a zone
187  *   - zone_getattr: reports attributes of a zone
188  *   - zone_setattr: set attributes of a zone
189  *   - zone_boot: set 'init' running for the zone
190  *   - zone_list: lists all zones active in the system
191  *   - zone_lookup: looks up zone id based on name
192  *   - zone_shutdown: initiates shutdown process (see states above)
193  *   - zone_destroy: completes shutdown process (see states above)
194  *
195  */
196 
197 #include <sys/priv_impl.h>
198 #include <sys/cred.h>
199 #include <c2/audit.h>
200 #include <sys/debug.h>
201 #include <sys/file.h>
202 #include <sys/kmem.h>
203 #include <sys/kstat.h>
204 #include <sys/mutex.h>
205 #include <sys/note.h>
206 #include <sys/pathname.h>
207 #include <sys/proc.h>
208 #include <sys/project.h>
209 #include <sys/sysevent.h>
210 #include <sys/task.h>
211 #include <sys/systm.h>
212 #include <sys/types.h>
213 #include <sys/utsname.h>
214 #include <sys/vnode.h>
215 #include <sys/vfs.h>
216 #include <sys/systeminfo.h>
217 #include <sys/policy.h>
218 #include <sys/cred_impl.h>
219 #include <sys/contract_impl.h>
220 #include <sys/contract/process_impl.h>
221 #include <sys/class.h>
222 #include <sys/pool.h>
223 #include <sys/pool_pset.h>
224 #include <sys/pset.h>
225 #include <sys/sysmacros.h>
226 #include <sys/callb.h>
227 #include <sys/vmparam.h>
228 #include <sys/corectl.h>
229 #include <sys/ipc_impl.h>
230 
231 #include <sys/door.h>
232 #include <sys/cpuvar.h>
233 #include <sys/sdt.h>
234 
235 #include <sys/uadmin.h>
236 #include <sys/session.h>
237 #include <sys/cmn_err.h>
238 #include <sys/modhash.h>
239 #include <sys/sunddi.h>
240 #include <sys/nvpair.h>
241 #include <sys/rctl.h>
242 #include <sys/fss.h>
243 #include <sys/brand.h>
244 #include <sys/zone.h>
245 #include <net/if.h>
246 #include <sys/cpucaps.h>
247 #include <vm/seg.h>
248 
249 /*
250  * cv used to signal that all references to the zone have been released.  This
251  * needs to be global since there may be multiple waiters, and the first to
252  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
253  */
254 static kcondvar_t zone_destroy_cv;
255 /*
256  * Lock used to serialize access to zone_cv.  This could have been per-zone,
257  * but then we'd need another lock for zone_destroy_cv, and why bother?
258  */
259 static kmutex_t zone_status_lock;
260 
261 /*
262  * ZSD-related global variables.
263  */
264 static kmutex_t zsd_key_lock;	/* protects the following two */
265 /*
266  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
267  */
268 static zone_key_t zsd_keyval = 0;
269 /*
270  * Global list of registered keys.  We use this when a new zone is created.
271  */
272 static list_t zsd_registered_keys;
273 
274 int zone_hash_size = 256;
275 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
276 static kmutex_t zonehash_lock;
277 static uint_t zonecount;
278 static id_space_t *zoneid_space;
279 
280 /*
281  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
282  * kernel proper runs, and which manages all other zones.
283  *
284  * Although not declared as static, the variable "zone0" should not be used
285  * except for by code that needs to reference the global zone early on in boot,
286  * before it is fully initialized.  All other consumers should use
287  * 'global_zone'.
288  */
289 zone_t zone0;
290 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
291 
292 /*
293  * List of active zones, protected by zonehash_lock.
294  */
295 static list_t zone_active;
296 
297 /*
298  * List of destroyed zones that still have outstanding cred references.
299  * Used for debugging.  Uses a separate lock to avoid lock ordering
300  * problems in zone_free.
301  */
302 static list_t zone_deathrow;
303 static kmutex_t zone_deathrow_lock;
304 
305 /* number of zones is limited by virtual interface limit in IP */
306 uint_t maxzones = 8192;
307 
308 /* Event channel to sent zone state change notifications */
309 evchan_t *zone_event_chan;
310 
311 /*
312  * This table holds the mapping from kernel zone states to
313  * states visible in the state notification API.
314  * The idea is that we only expose "obvious" states and
315  * do not expose states which are just implementation details.
316  */
317 const char  *zone_status_table[] = {
318 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
319 	ZONE_EVENT_INITIALIZED,		/* initialized */
320 	ZONE_EVENT_READY,		/* ready */
321 	ZONE_EVENT_READY,		/* booting */
322 	ZONE_EVENT_RUNNING,		/* running */
323 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
324 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
325 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
326 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
327 	ZONE_EVENT_UNINITIALIZED,	/* dead */
328 };
329 
330 /*
331  * This isn't static so lint doesn't complain.
332  */
333 rctl_hndl_t rc_zone_cpu_shares;
334 rctl_hndl_t rc_zone_locked_mem;
335 rctl_hndl_t rc_zone_max_swap;
336 rctl_hndl_t rc_zone_cpu_cap;
337 rctl_hndl_t rc_zone_nlwps;
338 rctl_hndl_t rc_zone_shmmax;
339 rctl_hndl_t rc_zone_shmmni;
340 rctl_hndl_t rc_zone_semmni;
341 rctl_hndl_t rc_zone_msgmni;
342 /*
343  * Synchronization primitives used to synchronize between mounts and zone
344  * creation/destruction.
345  */
346 static int mounts_in_progress;
347 static kcondvar_t mount_cv;
348 static kmutex_t mount_lock;
349 
350 const char * const zone_default_initname = "/sbin/init";
351 static char * const zone_prefix = "/zone/";
352 static int zone_shutdown(zoneid_t zoneid);
353 static int zone_add_datalink(zoneid_t, char *);
354 static int zone_remove_datalink(zoneid_t, char *);
355 static int zone_check_datalink(zoneid_t *, char *);
356 static int zone_list_datalink(zoneid_t, int *, char *);
357 
358 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
359 
360 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
361 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
362 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
363 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
364     zone_key_t);
365 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
366 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
367     kmutex_t *);
368 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
369     kmutex_t *);
370 
371 /*
372  * Bump this number when you alter the zone syscall interfaces; this is
373  * because we need to have support for previous API versions in libc
374  * to support patching; libc calls into the kernel to determine this number.
375  *
376  * Version 1 of the API is the version originally shipped with Solaris 10
377  * Version 2 alters the zone_create system call in order to support more
378  *     arguments by moving the args into a structure; and to do better
379  *     error reporting when zone_create() fails.
380  * Version 3 alters the zone_create system call in order to support the
381  *     import of ZFS datasets to zones.
382  * Version 4 alters the zone_create system call in order to support
383  *     Trusted Extensions.
384  * Version 5 alters the zone_boot system call, and converts its old
385  *     bootargs parameter to be set by the zone_setattr API instead.
386  * Version 6 adds the flag argument to zone_create.
387  */
388 static const int ZONE_SYSCALL_API_VERSION = 6;
389 
390 /*
391  * Certain filesystems (such as NFS and autofs) need to know which zone
392  * the mount is being placed in.  Because of this, we need to be able to
393  * ensure that a zone isn't in the process of being created such that
394  * nfs_mount() thinks it is in the global zone, while by the time it
395  * gets added the list of mounted zones, it ends up on zoneA's mount
396  * list.
397  *
398  * The following functions: block_mounts()/resume_mounts() and
399  * mount_in_progress()/mount_completed() are used by zones and the VFS
400  * layer (respectively) to synchronize zone creation and new mounts.
401  *
402  * The semantics are like a reader-reader lock such that there may
403  * either be multiple mounts (or zone creations, if that weren't
404  * serialized by zonehash_lock) in progress at the same time, but not
405  * both.
406  *
407  * We use cv's so the user can ctrl-C out of the operation if it's
408  * taking too long.
409  *
410  * The semantics are such that there is unfair bias towards the
411  * "current" operation.  This means that zone creations may starve if
412  * there is a rapid succession of new mounts coming in to the system, or
413  * there is a remote possibility that zones will be created at such a
414  * rate that new mounts will not be able to proceed.
415  */
416 /*
417  * Prevent new mounts from progressing to the point of calling
418  * VFS_MOUNT().  If there are already mounts in this "region", wait for
419  * them to complete.
420  */
421 static int
422 block_mounts(void)
423 {
424 	int retval = 0;
425 
426 	/*
427 	 * Since it may block for a long time, block_mounts() shouldn't be
428 	 * called with zonehash_lock held.
429 	 */
430 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
431 	mutex_enter(&mount_lock);
432 	while (mounts_in_progress > 0) {
433 		if (cv_wait_sig(&mount_cv, &mount_lock) == 0)
434 			goto signaled;
435 	}
436 	/*
437 	 * A negative value of mounts_in_progress indicates that mounts
438 	 * have been blocked by (-mounts_in_progress) different callers.
439 	 */
440 	mounts_in_progress--;
441 	retval = 1;
442 signaled:
443 	mutex_exit(&mount_lock);
444 	return (retval);
445 }
446 
447 /*
448  * The VFS layer may progress with new mounts as far as we're concerned.
449  * Allow them to progress if we were the last obstacle.
450  */
451 static void
452 resume_mounts(void)
453 {
454 	mutex_enter(&mount_lock);
455 	if (++mounts_in_progress == 0)
456 		cv_broadcast(&mount_cv);
457 	mutex_exit(&mount_lock);
458 }
459 
460 /*
461  * The VFS layer is busy with a mount; zones should wait until all
462  * mounts are completed to progress.
463  */
464 void
465 mount_in_progress(void)
466 {
467 	mutex_enter(&mount_lock);
468 	while (mounts_in_progress < 0)
469 		cv_wait(&mount_cv, &mount_lock);
470 	mounts_in_progress++;
471 	mutex_exit(&mount_lock);
472 }
473 
474 /*
475  * VFS is done with one mount; wake up any waiting block_mounts()
476  * callers if this is the last mount.
477  */
478 void
479 mount_completed(void)
480 {
481 	mutex_enter(&mount_lock);
482 	if (--mounts_in_progress == 0)
483 		cv_broadcast(&mount_cv);
484 	mutex_exit(&mount_lock);
485 }
486 
487 /*
488  * ZSD routines.
489  *
490  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
491  * defined by the pthread_key_create() and related interfaces.
492  *
493  * Kernel subsystems may register one or more data items and/or
494  * callbacks to be executed when a zone is created, shutdown, or
495  * destroyed.
496  *
497  * Unlike the thread counterpart, destructor callbacks will be executed
498  * even if the data pointer is NULL and/or there are no constructor
499  * callbacks, so it is the responsibility of such callbacks to check for
500  * NULL data values if necessary.
501  *
502  * The locking strategy and overall picture is as follows:
503  *
504  * When someone calls zone_key_create(), a template ZSD entry is added to the
505  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
506  * holding that lock all the existing zones are marked as
507  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
508  * zone_zsd list (protected by zone_lock). The global list is updated first
509  * (under zone_key_lock) to make sure that newly created zones use the
510  * most recent list of keys. Then under zonehash_lock we walk the zones
511  * and mark them.  Similar locking is used in zone_key_delete().
512  *
513  * The actual create, shutdown, and destroy callbacks are done without
514  * holding any lock. And zsd_flags are used to ensure that the operations
515  * completed so that when zone_key_create (and zone_create) is done, as well as
516  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
517  * are completed.
518  *
519  * When new zones are created constructor callbacks for all registered ZSD
520  * entries will be called. That also uses the above two phases of marking
521  * what needs to be done, and then running the callbacks without holding
522  * any locks.
523  *
524  * The framework does not provide any locking around zone_getspecific() and
525  * zone_setspecific() apart from that needed for internal consistency, so
526  * callers interested in atomic "test-and-set" semantics will need to provide
527  * their own locking.
528  */
529 
530 /*
531  * Helper function to find the zsd_entry associated with the key in the
532  * given list.
533  */
534 static struct zsd_entry *
535 zsd_find(list_t *l, zone_key_t key)
536 {
537 	struct zsd_entry *zsd;
538 
539 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
540 		if (zsd->zsd_key == key) {
541 			return (zsd);
542 		}
543 	}
544 	return (NULL);
545 }
546 
547 /*
548  * Helper function to find the zsd_entry associated with the key in the
549  * given list. Move it to the front of the list.
550  */
551 static struct zsd_entry *
552 zsd_find_mru(list_t *l, zone_key_t key)
553 {
554 	struct zsd_entry *zsd;
555 
556 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
557 		if (zsd->zsd_key == key) {
558 			/*
559 			 * Move to head of list to keep list in MRU order.
560 			 */
561 			if (zsd != list_head(l)) {
562 				list_remove(l, zsd);
563 				list_insert_head(l, zsd);
564 			}
565 			return (zsd);
566 		}
567 	}
568 	return (NULL);
569 }
570 
571 void
572 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
573     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
574 {
575 	struct zsd_entry *zsdp;
576 	struct zsd_entry *t;
577 	struct zone *zone;
578 	zone_key_t  key;
579 
580 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
581 	zsdp->zsd_data = NULL;
582 	zsdp->zsd_create = create;
583 	zsdp->zsd_shutdown = shutdown;
584 	zsdp->zsd_destroy = destroy;
585 
586 	/*
587 	 * Insert in global list of callbacks. Makes future zone creations
588 	 * see it.
589 	 */
590 	mutex_enter(&zsd_key_lock);
591 	*keyp = key = zsdp->zsd_key = ++zsd_keyval;
592 	ASSERT(zsd_keyval != 0);
593 	list_insert_tail(&zsd_registered_keys, zsdp);
594 	mutex_exit(&zsd_key_lock);
595 
596 	/*
597 	 * Insert for all existing zones and mark them as needing
598 	 * a create callback.
599 	 */
600 	mutex_enter(&zonehash_lock);	/* stop the world */
601 	for (zone = list_head(&zone_active); zone != NULL;
602 	    zone = list_next(&zone_active, zone)) {
603 		zone_status_t status;
604 
605 		mutex_enter(&zone->zone_lock);
606 
607 		/* Skip zones that are on the way down or not yet up */
608 		status = zone_status_get(zone);
609 		if (status >= ZONE_IS_DOWN ||
610 		    status == ZONE_IS_UNINITIALIZED) {
611 			mutex_exit(&zone->zone_lock);
612 			continue;
613 		}
614 
615 		t = zsd_find_mru(&zone->zone_zsd, key);
616 		if (t != NULL) {
617 			/*
618 			 * A zsd_configure already inserted it after
619 			 * we dropped zsd_key_lock above.
620 			 */
621 			mutex_exit(&zone->zone_lock);
622 			continue;
623 		}
624 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
625 		t->zsd_key = key;
626 		t->zsd_create = create;
627 		t->zsd_shutdown = shutdown;
628 		t->zsd_destroy = destroy;
629 		if (create != NULL) {
630 			t->zsd_flags = ZSD_CREATE_NEEDED;
631 			DTRACE_PROBE2(zsd__create__needed,
632 			    zone_t *, zone, zone_key_t, key);
633 		}
634 		list_insert_tail(&zone->zone_zsd, t);
635 		mutex_exit(&zone->zone_lock);
636 	}
637 	mutex_exit(&zonehash_lock);
638 
639 	if (create != NULL) {
640 		/* Now call the create callback for this key */
641 		zsd_apply_all_zones(zsd_apply_create, key);
642 	}
643 }
644 
645 /*
646  * Function called when a module is being unloaded, or otherwise wishes
647  * to unregister its ZSD key and callbacks.
648  *
649  * Remove from the global list and determine the functions that need to
650  * be called under a global lock. Then call the functions without
651  * holding any locks. Finally free up the zone_zsd entries. (The apply
652  * functions need to access the zone_zsd entries to find zsd_data etc.)
653  */
654 int
655 zone_key_delete(zone_key_t key)
656 {
657 	struct zsd_entry *zsdp = NULL;
658 	zone_t *zone;
659 
660 	mutex_enter(&zsd_key_lock);
661 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
662 	if (zsdp == NULL) {
663 		mutex_exit(&zsd_key_lock);
664 		return (-1);
665 	}
666 	list_remove(&zsd_registered_keys, zsdp);
667 	mutex_exit(&zsd_key_lock);
668 
669 	mutex_enter(&zonehash_lock);
670 	for (zone = list_head(&zone_active); zone != NULL;
671 	    zone = list_next(&zone_active, zone)) {
672 		struct zsd_entry *del;
673 
674 		mutex_enter(&zone->zone_lock);
675 		del = zsd_find_mru(&zone->zone_zsd, key);
676 		if (del == NULL) {
677 			/*
678 			 * Somebody else got here first e.g the zone going
679 			 * away.
680 			 */
681 			mutex_exit(&zone->zone_lock);
682 			continue;
683 		}
684 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
685 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
686 		if (del->zsd_shutdown != NULL &&
687 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
688 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
689 			DTRACE_PROBE2(zsd__shutdown__needed,
690 			    zone_t *, zone, zone_key_t, key);
691 		}
692 		if (del->zsd_destroy != NULL &&
693 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
694 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
695 			DTRACE_PROBE2(zsd__destroy__needed,
696 			    zone_t *, zone, zone_key_t, key);
697 		}
698 		mutex_exit(&zone->zone_lock);
699 	}
700 	mutex_exit(&zonehash_lock);
701 	kmem_free(zsdp, sizeof (*zsdp));
702 
703 	/* Now call the shutdown and destroy callback for this key */
704 	zsd_apply_all_zones(zsd_apply_shutdown, key);
705 	zsd_apply_all_zones(zsd_apply_destroy, key);
706 
707 	/* Now we can free up the zsdp structures in each zone */
708 	mutex_enter(&zonehash_lock);
709 	for (zone = list_head(&zone_active); zone != NULL;
710 	    zone = list_next(&zone_active, zone)) {
711 		struct zsd_entry *del;
712 
713 		mutex_enter(&zone->zone_lock);
714 		del = zsd_find(&zone->zone_zsd, key);
715 		if (del != NULL) {
716 			list_remove(&zone->zone_zsd, del);
717 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
718 			kmem_free(del, sizeof (*del));
719 		}
720 		mutex_exit(&zone->zone_lock);
721 	}
722 	mutex_exit(&zonehash_lock);
723 
724 	return (0);
725 }
726 
727 /*
728  * ZSD counterpart of pthread_setspecific().
729  *
730  * Since all zsd callbacks, including those with no create function,
731  * have an entry in zone_zsd, if the key is registered it is part of
732  * the zone_zsd list.
733  * Return an error if the key wasn't registerd.
734  */
735 int
736 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
737 {
738 	struct zsd_entry *t;
739 
740 	mutex_enter(&zone->zone_lock);
741 	t = zsd_find_mru(&zone->zone_zsd, key);
742 	if (t != NULL) {
743 		/*
744 		 * Replace old value with new
745 		 */
746 		t->zsd_data = (void *)data;
747 		mutex_exit(&zone->zone_lock);
748 		return (0);
749 	}
750 	mutex_exit(&zone->zone_lock);
751 	return (-1);
752 }
753 
754 /*
755  * ZSD counterpart of pthread_getspecific().
756  */
757 void *
758 zone_getspecific(zone_key_t key, zone_t *zone)
759 {
760 	struct zsd_entry *t;
761 	void *data;
762 
763 	mutex_enter(&zone->zone_lock);
764 	t = zsd_find_mru(&zone->zone_zsd, key);
765 	data = (t == NULL ? NULL : t->zsd_data);
766 	mutex_exit(&zone->zone_lock);
767 	return (data);
768 }
769 
770 /*
771  * Function used to initialize a zone's list of ZSD callbacks and data
772  * when the zone is being created.  The callbacks are initialized from
773  * the template list (zsd_registered_keys). The constructor callback is
774  * executed later (once the zone exists and with locks dropped).
775  */
776 static void
777 zone_zsd_configure(zone_t *zone)
778 {
779 	struct zsd_entry *zsdp;
780 	struct zsd_entry *t;
781 
782 	ASSERT(MUTEX_HELD(&zonehash_lock));
783 	ASSERT(list_head(&zone->zone_zsd) == NULL);
784 	mutex_enter(&zone->zone_lock);
785 	mutex_enter(&zsd_key_lock);
786 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
787 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
788 		/*
789 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
790 		 * should not have added anything to it.
791 		 */
792 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
793 
794 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
795 		t->zsd_key = zsdp->zsd_key;
796 		t->zsd_create = zsdp->zsd_create;
797 		t->zsd_shutdown = zsdp->zsd_shutdown;
798 		t->zsd_destroy = zsdp->zsd_destroy;
799 		if (zsdp->zsd_create != NULL) {
800 			t->zsd_flags = ZSD_CREATE_NEEDED;
801 			DTRACE_PROBE2(zsd__create__needed,
802 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
803 		}
804 		list_insert_tail(&zone->zone_zsd, t);
805 	}
806 	mutex_exit(&zsd_key_lock);
807 	mutex_exit(&zone->zone_lock);
808 }
809 
810 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
811 
812 /*
813  * Helper function to execute shutdown or destructor callbacks.
814  */
815 static void
816 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
817 {
818 	struct zsd_entry *t;
819 
820 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
821 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
822 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
823 
824 	/*
825 	 * Run the callback solely based on what is registered for the zone
826 	 * in zone_zsd. The global list can change independently of this
827 	 * as keys are registered and unregistered and we don't register new
828 	 * callbacks for a zone that is in the process of going away.
829 	 */
830 	mutex_enter(&zone->zone_lock);
831 	for (t = list_head(&zone->zone_zsd); t != NULL;
832 	    t = list_next(&zone->zone_zsd, t)) {
833 		zone_key_t key = t->zsd_key;
834 
835 		/* Skip if no callbacks registered */
836 
837 		if (ct == ZSD_SHUTDOWN) {
838 			if (t->zsd_shutdown != NULL &&
839 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
840 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
841 				DTRACE_PROBE2(zsd__shutdown__needed,
842 				    zone_t *, zone, zone_key_t, key);
843 			}
844 		} else {
845 			if (t->zsd_destroy != NULL &&
846 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
847 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
848 				DTRACE_PROBE2(zsd__destroy__needed,
849 				    zone_t *, zone, zone_key_t, key);
850 			}
851 		}
852 	}
853 	mutex_exit(&zone->zone_lock);
854 
855 	/* Now call the shutdown and destroy callback for this key */
856 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
857 	zsd_apply_all_keys(zsd_apply_destroy, zone);
858 
859 }
860 
861 /*
862  * Called when the zone is going away; free ZSD-related memory, and
863  * destroy the zone_zsd list.
864  */
865 static void
866 zone_free_zsd(zone_t *zone)
867 {
868 	struct zsd_entry *t, *next;
869 
870 	/*
871 	 * Free all the zsd_entry's we had on this zone.
872 	 */
873 	mutex_enter(&zone->zone_lock);
874 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
875 		next = list_next(&zone->zone_zsd, t);
876 		list_remove(&zone->zone_zsd, t);
877 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
878 		kmem_free(t, sizeof (*t));
879 	}
880 	list_destroy(&zone->zone_zsd);
881 	mutex_exit(&zone->zone_lock);
882 
883 }
884 
885 /*
886  * Apply a function to all zones for particular key value.
887  *
888  * The applyfn has to drop zonehash_lock if it does some work, and
889  * then reacquire it before it returns.
890  * When the lock is dropped we don't follow list_next even
891  * if it is possible to do so without any hazards. This is
892  * because we want the design to allow for the list of zones
893  * to change in any arbitrary way during the time the
894  * lock was dropped.
895  *
896  * It is safe to restart the loop at list_head since the applyfn
897  * changes the zsd_flags as it does work, so a subsequent
898  * pass through will have no effect in applyfn, hence the loop will terminate
899  * in at worst O(N^2).
900  */
901 static void
902 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
903 {
904 	zone_t *zone;
905 
906 	mutex_enter(&zonehash_lock);
907 	zone = list_head(&zone_active);
908 	while (zone != NULL) {
909 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
910 			/* Lock dropped - restart at head */
911 			zone = list_head(&zone_active);
912 		} else {
913 			zone = list_next(&zone_active, zone);
914 		}
915 	}
916 	mutex_exit(&zonehash_lock);
917 }
918 
919 /*
920  * Apply a function to all keys for a particular zone.
921  *
922  * The applyfn has to drop zonehash_lock if it does some work, and
923  * then reacquire it before it returns.
924  * When the lock is dropped we don't follow list_next even
925  * if it is possible to do so without any hazards. This is
926  * because we want the design to allow for the list of zsd callbacks
927  * to change in any arbitrary way during the time the
928  * lock was dropped.
929  *
930  * It is safe to restart the loop at list_head since the applyfn
931  * changes the zsd_flags as it does work, so a subsequent
932  * pass through will have no effect in applyfn, hence the loop will terminate
933  * in at worst O(N^2).
934  */
935 static void
936 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
937 {
938 	struct zsd_entry *t;
939 
940 	mutex_enter(&zone->zone_lock);
941 	t = list_head(&zone->zone_zsd);
942 	while (t != NULL) {
943 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
944 			/* Lock dropped - restart at head */
945 			t = list_head(&zone->zone_zsd);
946 		} else {
947 			t = list_next(&zone->zone_zsd, t);
948 		}
949 	}
950 	mutex_exit(&zone->zone_lock);
951 }
952 
953 /*
954  * Call the create function for the zone and key if CREATE_NEEDED
955  * is set.
956  * If some other thread gets here first and sets CREATE_INPROGRESS, then
957  * we wait for that thread to complete so that we can ensure that
958  * all the callbacks are done when we've looped over all zones/keys.
959  *
960  * When we call the create function, we drop the global held by the
961  * caller, and return true to tell the caller it needs to re-evalute the
962  * state.
963  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
964  * remains held on exit.
965  */
966 static boolean_t
967 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
968     zone_t *zone, zone_key_t key)
969 {
970 	void *result;
971 	struct zsd_entry *t;
972 	boolean_t dropped;
973 
974 	if (lockp != NULL) {
975 		ASSERT(MUTEX_HELD(lockp));
976 	}
977 	if (zone_lock_held) {
978 		ASSERT(MUTEX_HELD(&zone->zone_lock));
979 	} else {
980 		mutex_enter(&zone->zone_lock);
981 	}
982 
983 	t = zsd_find(&zone->zone_zsd, key);
984 	if (t == NULL) {
985 		/*
986 		 * Somebody else got here first e.g the zone going
987 		 * away.
988 		 */
989 		if (!zone_lock_held)
990 			mutex_exit(&zone->zone_lock);
991 		return (B_FALSE);
992 	}
993 	dropped = B_FALSE;
994 	if (zsd_wait_for_inprogress(zone, t, lockp))
995 		dropped = B_TRUE;
996 
997 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
998 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
999 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1000 		DTRACE_PROBE2(zsd__create__inprogress,
1001 		    zone_t *, zone, zone_key_t, key);
1002 		mutex_exit(&zone->zone_lock);
1003 		if (lockp != NULL)
1004 			mutex_exit(lockp);
1005 
1006 		dropped = B_TRUE;
1007 		ASSERT(t->zsd_create != NULL);
1008 		DTRACE_PROBE2(zsd__create__start,
1009 		    zone_t *, zone, zone_key_t, key);
1010 
1011 		result = (*t->zsd_create)(zone->zone_id);
1012 
1013 		DTRACE_PROBE2(zsd__create__end,
1014 		    zone_t *, zone, voidn *, result);
1015 
1016 		ASSERT(result != NULL);
1017 		if (lockp != NULL)
1018 			mutex_enter(lockp);
1019 		mutex_enter(&zone->zone_lock);
1020 		t->zsd_data = result;
1021 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1022 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1023 		cv_broadcast(&t->zsd_cv);
1024 		DTRACE_PROBE2(zsd__create__completed,
1025 		    zone_t *, zone, zone_key_t, key);
1026 	}
1027 	if (!zone_lock_held)
1028 		mutex_exit(&zone->zone_lock);
1029 	return (dropped);
1030 }
1031 
1032 /*
1033  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1034  * is set.
1035  * If some other thread gets here first and sets *_INPROGRESS, then
1036  * we wait for that thread to complete so that we can ensure that
1037  * all the callbacks are done when we've looped over all zones/keys.
1038  *
1039  * When we call the shutdown function, we drop the global held by the
1040  * caller, and return true to tell the caller it needs to re-evalute the
1041  * state.
1042  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1043  * remains held on exit.
1044  */
1045 static boolean_t
1046 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1047     zone_t *zone, zone_key_t key)
1048 {
1049 	struct zsd_entry *t;
1050 	void *data;
1051 	boolean_t dropped;
1052 
1053 	if (lockp != NULL) {
1054 		ASSERT(MUTEX_HELD(lockp));
1055 	}
1056 	if (zone_lock_held) {
1057 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1058 	} else {
1059 		mutex_enter(&zone->zone_lock);
1060 	}
1061 
1062 	t = zsd_find(&zone->zone_zsd, key);
1063 	if (t == NULL) {
1064 		/*
1065 		 * Somebody else got here first e.g the zone going
1066 		 * away.
1067 		 */
1068 		if (!zone_lock_held)
1069 			mutex_exit(&zone->zone_lock);
1070 		return (B_FALSE);
1071 	}
1072 	dropped = B_FALSE;
1073 	if (zsd_wait_for_creator(zone, t, lockp))
1074 		dropped = B_TRUE;
1075 
1076 	if (zsd_wait_for_inprogress(zone, t, lockp))
1077 		dropped = B_TRUE;
1078 
1079 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1080 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1081 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1082 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1083 		    zone_t *, zone, zone_key_t, key);
1084 		mutex_exit(&zone->zone_lock);
1085 		if (lockp != NULL)
1086 			mutex_exit(lockp);
1087 		dropped = B_TRUE;
1088 
1089 		ASSERT(t->zsd_shutdown != NULL);
1090 		data = t->zsd_data;
1091 
1092 		DTRACE_PROBE2(zsd__shutdown__start,
1093 		    zone_t *, zone, zone_key_t, key);
1094 
1095 		(t->zsd_shutdown)(zone->zone_id, data);
1096 		DTRACE_PROBE2(zsd__shutdown__end,
1097 		    zone_t *, zone, zone_key_t, key);
1098 
1099 		if (lockp != NULL)
1100 			mutex_enter(lockp);
1101 		mutex_enter(&zone->zone_lock);
1102 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1103 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1104 		cv_broadcast(&t->zsd_cv);
1105 		DTRACE_PROBE2(zsd__shutdown__completed,
1106 		    zone_t *, zone, zone_key_t, key);
1107 	}
1108 	if (!zone_lock_held)
1109 		mutex_exit(&zone->zone_lock);
1110 	return (dropped);
1111 }
1112 
1113 /*
1114  * Call the destroy function for the zone and key if DESTROY_NEEDED
1115  * is set.
1116  * If some other thread gets here first and sets *_INPROGRESS, then
1117  * we wait for that thread to complete so that we can ensure that
1118  * all the callbacks are done when we've looped over all zones/keys.
1119  *
1120  * When we call the destroy function, we drop the global held by the
1121  * caller, and return true to tell the caller it needs to re-evalute the
1122  * state.
1123  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1124  * remains held on exit.
1125  */
1126 static boolean_t
1127 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1128     zone_t *zone, zone_key_t key)
1129 {
1130 	struct zsd_entry *t;
1131 	void *data;
1132 	boolean_t dropped;
1133 
1134 	if (lockp != NULL) {
1135 		ASSERT(MUTEX_HELD(lockp));
1136 	}
1137 	if (zone_lock_held) {
1138 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1139 	} else {
1140 		mutex_enter(&zone->zone_lock);
1141 	}
1142 
1143 	t = zsd_find(&zone->zone_zsd, key);
1144 	if (t == NULL) {
1145 		/*
1146 		 * Somebody else got here first e.g the zone going
1147 		 * away.
1148 		 */
1149 		if (!zone_lock_held)
1150 			mutex_exit(&zone->zone_lock);
1151 		return (B_FALSE);
1152 	}
1153 	dropped = B_FALSE;
1154 	if (zsd_wait_for_creator(zone, t, lockp))
1155 		dropped = B_TRUE;
1156 
1157 	if (zsd_wait_for_inprogress(zone, t, lockp))
1158 		dropped = B_TRUE;
1159 
1160 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1161 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1162 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1163 		DTRACE_PROBE2(zsd__destroy__inprogress,
1164 		    zone_t *, zone, zone_key_t, key);
1165 		mutex_exit(&zone->zone_lock);
1166 		if (lockp != NULL)
1167 			mutex_exit(lockp);
1168 		dropped = B_TRUE;
1169 
1170 		ASSERT(t->zsd_destroy != NULL);
1171 		data = t->zsd_data;
1172 		DTRACE_PROBE2(zsd__destroy__start,
1173 		    zone_t *, zone, zone_key_t, key);
1174 
1175 		(t->zsd_destroy)(zone->zone_id, data);
1176 		DTRACE_PROBE2(zsd__destroy__end,
1177 		    zone_t *, zone, zone_key_t, key);
1178 
1179 		if (lockp != NULL)
1180 			mutex_enter(lockp);
1181 		mutex_enter(&zone->zone_lock);
1182 		t->zsd_data = NULL;
1183 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1184 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1185 		cv_broadcast(&t->zsd_cv);
1186 		DTRACE_PROBE2(zsd__destroy__completed,
1187 		    zone_t *, zone, zone_key_t, key);
1188 	}
1189 	if (!zone_lock_held)
1190 		mutex_exit(&zone->zone_lock);
1191 	return (dropped);
1192 }
1193 
1194 /*
1195  * Wait for any CREATE_NEEDED flag to be cleared.
1196  * Returns true if lockp was temporarily dropped while waiting.
1197  */
1198 static boolean_t
1199 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1200 {
1201 	boolean_t dropped = B_FALSE;
1202 
1203 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1204 		DTRACE_PROBE2(zsd__wait__for__creator,
1205 		    zone_t *, zone, struct zsd_entry *, t);
1206 		if (lockp != NULL) {
1207 			dropped = B_TRUE;
1208 			mutex_exit(lockp);
1209 		}
1210 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1211 		if (lockp != NULL) {
1212 			/* First drop zone_lock to preserve order */
1213 			mutex_exit(&zone->zone_lock);
1214 			mutex_enter(lockp);
1215 			mutex_enter(&zone->zone_lock);
1216 		}
1217 	}
1218 	return (dropped);
1219 }
1220 
1221 /*
1222  * Wait for any INPROGRESS flag to be cleared.
1223  * Returns true if lockp was temporarily dropped while waiting.
1224  */
1225 static boolean_t
1226 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1227 {
1228 	boolean_t dropped = B_FALSE;
1229 
1230 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1231 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1232 		    zone_t *, zone, struct zsd_entry *, t);
1233 		if (lockp != NULL) {
1234 			dropped = B_TRUE;
1235 			mutex_exit(lockp);
1236 		}
1237 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1238 		if (lockp != NULL) {
1239 			/* First drop zone_lock to preserve order */
1240 			mutex_exit(&zone->zone_lock);
1241 			mutex_enter(lockp);
1242 			mutex_enter(&zone->zone_lock);
1243 		}
1244 	}
1245 	return (dropped);
1246 }
1247 
1248 /*
1249  * Frees memory associated with the zone dataset list.
1250  */
1251 static void
1252 zone_free_datasets(zone_t *zone)
1253 {
1254 	zone_dataset_t *t, *next;
1255 
1256 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1257 		next = list_next(&zone->zone_datasets, t);
1258 		list_remove(&zone->zone_datasets, t);
1259 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1260 		kmem_free(t, sizeof (*t));
1261 	}
1262 	list_destroy(&zone->zone_datasets);
1263 }
1264 
1265 /*
1266  * zone.cpu-shares resource control support.
1267  */
1268 /*ARGSUSED*/
1269 static rctl_qty_t
1270 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1271 {
1272 	ASSERT(MUTEX_HELD(&p->p_lock));
1273 	return (p->p_zone->zone_shares);
1274 }
1275 
1276 /*ARGSUSED*/
1277 static int
1278 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1279     rctl_qty_t nv)
1280 {
1281 	ASSERT(MUTEX_HELD(&p->p_lock));
1282 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1283 	if (e->rcep_p.zone == NULL)
1284 		return (0);
1285 
1286 	e->rcep_p.zone->zone_shares = nv;
1287 	return (0);
1288 }
1289 
1290 static rctl_ops_t zone_cpu_shares_ops = {
1291 	rcop_no_action,
1292 	zone_cpu_shares_usage,
1293 	zone_cpu_shares_set,
1294 	rcop_no_test
1295 };
1296 
1297 /*
1298  * zone.cpu-cap resource control support.
1299  */
1300 /*ARGSUSED*/
1301 static rctl_qty_t
1302 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1303 {
1304 	ASSERT(MUTEX_HELD(&p->p_lock));
1305 	return (cpucaps_zone_get(p->p_zone));
1306 }
1307 
1308 /*ARGSUSED*/
1309 static int
1310 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1311     rctl_qty_t nv)
1312 {
1313 	zone_t *zone = e->rcep_p.zone;
1314 
1315 	ASSERT(MUTEX_HELD(&p->p_lock));
1316 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1317 
1318 	if (zone == NULL)
1319 		return (0);
1320 
1321 	/*
1322 	 * set cap to the new value.
1323 	 */
1324 	return (cpucaps_zone_set(zone, nv));
1325 }
1326 
1327 static rctl_ops_t zone_cpu_cap_ops = {
1328 	rcop_no_action,
1329 	zone_cpu_cap_get,
1330 	zone_cpu_cap_set,
1331 	rcop_no_test
1332 };
1333 
1334 /*ARGSUSED*/
1335 static rctl_qty_t
1336 zone_lwps_usage(rctl_t *r, proc_t *p)
1337 {
1338 	rctl_qty_t nlwps;
1339 	zone_t *zone = p->p_zone;
1340 
1341 	ASSERT(MUTEX_HELD(&p->p_lock));
1342 
1343 	mutex_enter(&zone->zone_nlwps_lock);
1344 	nlwps = zone->zone_nlwps;
1345 	mutex_exit(&zone->zone_nlwps_lock);
1346 
1347 	return (nlwps);
1348 }
1349 
1350 /*ARGSUSED*/
1351 static int
1352 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1353     rctl_qty_t incr, uint_t flags)
1354 {
1355 	rctl_qty_t nlwps;
1356 
1357 	ASSERT(MUTEX_HELD(&p->p_lock));
1358 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1359 	if (e->rcep_p.zone == NULL)
1360 		return (0);
1361 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1362 	nlwps = e->rcep_p.zone->zone_nlwps;
1363 
1364 	if (nlwps + incr > rcntl->rcv_value)
1365 		return (1);
1366 
1367 	return (0);
1368 }
1369 
1370 /*ARGSUSED*/
1371 static int
1372 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1373 {
1374 	ASSERT(MUTEX_HELD(&p->p_lock));
1375 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1376 	if (e->rcep_p.zone == NULL)
1377 		return (0);
1378 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1379 	return (0);
1380 }
1381 
1382 static rctl_ops_t zone_lwps_ops = {
1383 	rcop_no_action,
1384 	zone_lwps_usage,
1385 	zone_lwps_set,
1386 	zone_lwps_test,
1387 };
1388 
1389 /*ARGSUSED*/
1390 static int
1391 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1392     rctl_qty_t incr, uint_t flags)
1393 {
1394 	rctl_qty_t v;
1395 	ASSERT(MUTEX_HELD(&p->p_lock));
1396 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1397 	v = e->rcep_p.zone->zone_shmmax + incr;
1398 	if (v > rval->rcv_value)
1399 		return (1);
1400 	return (0);
1401 }
1402 
1403 static rctl_ops_t zone_shmmax_ops = {
1404 	rcop_no_action,
1405 	rcop_no_usage,
1406 	rcop_no_set,
1407 	zone_shmmax_test
1408 };
1409 
1410 /*ARGSUSED*/
1411 static int
1412 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1413     rctl_qty_t incr, uint_t flags)
1414 {
1415 	rctl_qty_t v;
1416 	ASSERT(MUTEX_HELD(&p->p_lock));
1417 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1418 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1419 	if (v > rval->rcv_value)
1420 		return (1);
1421 	return (0);
1422 }
1423 
1424 static rctl_ops_t zone_shmmni_ops = {
1425 	rcop_no_action,
1426 	rcop_no_usage,
1427 	rcop_no_set,
1428 	zone_shmmni_test
1429 };
1430 
1431 /*ARGSUSED*/
1432 static int
1433 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1434     rctl_qty_t incr, uint_t flags)
1435 {
1436 	rctl_qty_t v;
1437 	ASSERT(MUTEX_HELD(&p->p_lock));
1438 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1439 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1440 	if (v > rval->rcv_value)
1441 		return (1);
1442 	return (0);
1443 }
1444 
1445 static rctl_ops_t zone_semmni_ops = {
1446 	rcop_no_action,
1447 	rcop_no_usage,
1448 	rcop_no_set,
1449 	zone_semmni_test
1450 };
1451 
1452 /*ARGSUSED*/
1453 static int
1454 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1455     rctl_qty_t incr, uint_t flags)
1456 {
1457 	rctl_qty_t v;
1458 	ASSERT(MUTEX_HELD(&p->p_lock));
1459 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1460 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1461 	if (v > rval->rcv_value)
1462 		return (1);
1463 	return (0);
1464 }
1465 
1466 static rctl_ops_t zone_msgmni_ops = {
1467 	rcop_no_action,
1468 	rcop_no_usage,
1469 	rcop_no_set,
1470 	zone_msgmni_test
1471 };
1472 
1473 /*ARGSUSED*/
1474 static rctl_qty_t
1475 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1476 {
1477 	rctl_qty_t q;
1478 	ASSERT(MUTEX_HELD(&p->p_lock));
1479 	mutex_enter(&p->p_zone->zone_mem_lock);
1480 	q = p->p_zone->zone_locked_mem;
1481 	mutex_exit(&p->p_zone->zone_mem_lock);
1482 	return (q);
1483 }
1484 
1485 /*ARGSUSED*/
1486 static int
1487 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1488     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1489 {
1490 	rctl_qty_t q;
1491 	zone_t *z;
1492 
1493 	z = e->rcep_p.zone;
1494 	ASSERT(MUTEX_HELD(&p->p_lock));
1495 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1496 	q = z->zone_locked_mem;
1497 	if (q + incr > rcntl->rcv_value)
1498 		return (1);
1499 	return (0);
1500 }
1501 
1502 /*ARGSUSED*/
1503 static int
1504 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1505     rctl_qty_t nv)
1506 {
1507 	ASSERT(MUTEX_HELD(&p->p_lock));
1508 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1509 	if (e->rcep_p.zone == NULL)
1510 		return (0);
1511 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1512 	return (0);
1513 }
1514 
1515 static rctl_ops_t zone_locked_mem_ops = {
1516 	rcop_no_action,
1517 	zone_locked_mem_usage,
1518 	zone_locked_mem_set,
1519 	zone_locked_mem_test
1520 };
1521 
1522 /*ARGSUSED*/
1523 static rctl_qty_t
1524 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1525 {
1526 	rctl_qty_t q;
1527 	zone_t *z = p->p_zone;
1528 
1529 	ASSERT(MUTEX_HELD(&p->p_lock));
1530 	mutex_enter(&z->zone_mem_lock);
1531 	q = z->zone_max_swap;
1532 	mutex_exit(&z->zone_mem_lock);
1533 	return (q);
1534 }
1535 
1536 /*ARGSUSED*/
1537 static int
1538 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1539     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1540 {
1541 	rctl_qty_t q;
1542 	zone_t *z;
1543 
1544 	z = e->rcep_p.zone;
1545 	ASSERT(MUTEX_HELD(&p->p_lock));
1546 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1547 	q = z->zone_max_swap;
1548 	if (q + incr > rcntl->rcv_value)
1549 		return (1);
1550 	return (0);
1551 }
1552 
1553 /*ARGSUSED*/
1554 static int
1555 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1556     rctl_qty_t nv)
1557 {
1558 	ASSERT(MUTEX_HELD(&p->p_lock));
1559 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1560 	if (e->rcep_p.zone == NULL)
1561 		return (0);
1562 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1563 	return (0);
1564 }
1565 
1566 static rctl_ops_t zone_max_swap_ops = {
1567 	rcop_no_action,
1568 	zone_max_swap_usage,
1569 	zone_max_swap_set,
1570 	zone_max_swap_test
1571 };
1572 
1573 /*
1574  * Helper function to brand the zone with a unique ID.
1575  */
1576 static void
1577 zone_uniqid(zone_t *zone)
1578 {
1579 	static uint64_t uniqid = 0;
1580 
1581 	ASSERT(MUTEX_HELD(&zonehash_lock));
1582 	zone->zone_uniqid = uniqid++;
1583 }
1584 
1585 /*
1586  * Returns a held pointer to the "kcred" for the specified zone.
1587  */
1588 struct cred *
1589 zone_get_kcred(zoneid_t zoneid)
1590 {
1591 	zone_t *zone;
1592 	cred_t *cr;
1593 
1594 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1595 		return (NULL);
1596 	cr = zone->zone_kcred;
1597 	crhold(cr);
1598 	zone_rele(zone);
1599 	return (cr);
1600 }
1601 
1602 static int
1603 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1604 {
1605 	zone_t *zone = ksp->ks_private;
1606 	zone_kstat_t *zk = ksp->ks_data;
1607 
1608 	if (rw == KSTAT_WRITE)
1609 		return (EACCES);
1610 
1611 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1612 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1613 	return (0);
1614 }
1615 
1616 static int
1617 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1618 {
1619 	zone_t *zone = ksp->ks_private;
1620 	zone_kstat_t *zk = ksp->ks_data;
1621 
1622 	if (rw == KSTAT_WRITE)
1623 		return (EACCES);
1624 
1625 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1626 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1627 	return (0);
1628 }
1629 
1630 static void
1631 zone_kstat_create(zone_t *zone)
1632 {
1633 	kstat_t *ksp;
1634 	zone_kstat_t *zk;
1635 
1636 	ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED,
1637 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1638 	    KSTAT_FLAG_VIRTUAL);
1639 
1640 	if (ksp == NULL)
1641 		return;
1642 
1643 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1644 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1645 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1646 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1647 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1648 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1649 	ksp->ks_update = zone_lockedmem_kstat_update;
1650 	ksp->ks_private = zone;
1651 	kstat_install(ksp);
1652 
1653 	zone->zone_lockedmem_kstat = ksp;
1654 
1655 	ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED,
1656 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1657 	    KSTAT_FLAG_VIRTUAL);
1658 
1659 	if (ksp == NULL)
1660 		return;
1661 
1662 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1663 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1664 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1665 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1666 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1667 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1668 	ksp->ks_update = zone_swapresv_kstat_update;
1669 	ksp->ks_private = zone;
1670 	kstat_install(ksp);
1671 
1672 	zone->zone_swapresv_kstat = ksp;
1673 }
1674 
1675 static void
1676 zone_kstat_delete(zone_t *zone)
1677 {
1678 	void *data;
1679 
1680 	if (zone->zone_lockedmem_kstat != NULL) {
1681 		data = zone->zone_lockedmem_kstat->ks_data;
1682 		kstat_delete(zone->zone_lockedmem_kstat);
1683 		kmem_free(data, sizeof (zone_kstat_t));
1684 	}
1685 	if (zone->zone_swapresv_kstat != NULL) {
1686 		data = zone->zone_swapresv_kstat->ks_data;
1687 		kstat_delete(zone->zone_swapresv_kstat);
1688 		kmem_free(data, sizeof (zone_kstat_t));
1689 	}
1690 }
1691 
1692 /*
1693  * Called very early on in boot to initialize the ZSD list so that
1694  * zone_key_create() can be called before zone_init().  It also initializes
1695  * portions of zone0 which may be used before zone_init() is called.  The
1696  * variable "global_zone" will be set when zone0 is fully initialized by
1697  * zone_init().
1698  */
1699 void
1700 zone_zsd_init(void)
1701 {
1702 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
1703 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
1704 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
1705 	    offsetof(struct zsd_entry, zsd_linkage));
1706 	list_create(&zone_active, sizeof (zone_t),
1707 	    offsetof(zone_t, zone_linkage));
1708 	list_create(&zone_deathrow, sizeof (zone_t),
1709 	    offsetof(zone_t, zone_linkage));
1710 
1711 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
1712 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
1713 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
1714 	zone0.zone_shares = 1;
1715 	zone0.zone_nlwps = 0;
1716 	zone0.zone_nlwps_ctl = INT_MAX;
1717 	zone0.zone_locked_mem = 0;
1718 	zone0.zone_locked_mem_ctl = UINT64_MAX;
1719 	ASSERT(zone0.zone_max_swap == 0);
1720 	zone0.zone_max_swap_ctl = UINT64_MAX;
1721 	zone0.zone_shmmax = 0;
1722 	zone0.zone_ipc.ipcq_shmmni = 0;
1723 	zone0.zone_ipc.ipcq_semmni = 0;
1724 	zone0.zone_ipc.ipcq_msgmni = 0;
1725 	zone0.zone_name = GLOBAL_ZONENAME;
1726 	zone0.zone_nodename = utsname.nodename;
1727 	zone0.zone_domain = srpc_domain;
1728 	zone0.zone_hostid = HW_INVALID_HOSTID;
1729 	zone0.zone_ref = 1;
1730 	zone0.zone_id = GLOBAL_ZONEID;
1731 	zone0.zone_status = ZONE_IS_RUNNING;
1732 	zone0.zone_rootpath = "/";
1733 	zone0.zone_rootpathlen = 2;
1734 	zone0.zone_psetid = ZONE_PS_INVAL;
1735 	zone0.zone_ncpus = 0;
1736 	zone0.zone_ncpus_online = 0;
1737 	zone0.zone_proc_initpid = 1;
1738 	zone0.zone_initname = initname;
1739 	zone0.zone_lockedmem_kstat = NULL;
1740 	zone0.zone_swapresv_kstat = NULL;
1741 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
1742 	    offsetof(struct zsd_entry, zsd_linkage));
1743 	list_insert_head(&zone_active, &zone0);
1744 
1745 	/*
1746 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
1747 	 * to anything meaningful.  It is assigned to be 'rootdir' in
1748 	 * vfs_mountroot().
1749 	 */
1750 	zone0.zone_rootvp = NULL;
1751 	zone0.zone_vfslist = NULL;
1752 	zone0.zone_bootargs = initargs;
1753 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
1754 	/*
1755 	 * The global zone has all privileges
1756 	 */
1757 	priv_fillset(zone0.zone_privset);
1758 	/*
1759 	 * Add p0 to the global zone
1760 	 */
1761 	zone0.zone_zsched = &p0;
1762 	p0.p_zone = &zone0;
1763 }
1764 
1765 /*
1766  * Compute a hash value based on the contents of the label and the DOI.  The
1767  * hash algorithm is somewhat arbitrary, but is based on the observation that
1768  * humans will likely pick labels that differ by amounts that work out to be
1769  * multiples of the number of hash chains, and thus stirring in some primes
1770  * should help.
1771  */
1772 static uint_t
1773 hash_bylabel(void *hdata, mod_hash_key_t key)
1774 {
1775 	const ts_label_t *lab = (ts_label_t *)key;
1776 	const uint32_t *up, *ue;
1777 	uint_t hash;
1778 	int i;
1779 
1780 	_NOTE(ARGUNUSED(hdata));
1781 
1782 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
1783 	/* we depend on alignment of label, but not representation */
1784 	up = (const uint32_t *)&lab->tsl_label;
1785 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
1786 	i = 1;
1787 	while (up < ue) {
1788 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
1789 		hash += *up + (*up << ((i % 16) + 1));
1790 		up++;
1791 		i++;
1792 	}
1793 	return (hash);
1794 }
1795 
1796 /*
1797  * All that mod_hash cares about here is zero (equal) versus non-zero (not
1798  * equal).  This may need to be changed if less than / greater than is ever
1799  * needed.
1800  */
1801 static int
1802 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1803 {
1804 	ts_label_t *lab1 = (ts_label_t *)key1;
1805 	ts_label_t *lab2 = (ts_label_t *)key2;
1806 
1807 	return (label_equal(lab1, lab2) ? 0 : 1);
1808 }
1809 
1810 /*
1811  * Called by main() to initialize the zones framework.
1812  */
1813 void
1814 zone_init(void)
1815 {
1816 	rctl_dict_entry_t *rde;
1817 	rctl_val_t *dval;
1818 	rctl_set_t *set;
1819 	rctl_alloc_gp_t *gp;
1820 	rctl_entity_p_t e;
1821 	int res;
1822 
1823 	ASSERT(curproc == &p0);
1824 
1825 	/*
1826 	 * Create ID space for zone IDs.  ID 0 is reserved for the
1827 	 * global zone.
1828 	 */
1829 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
1830 
1831 	/*
1832 	 * Initialize generic zone resource controls, if any.
1833 	 */
1834 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
1835 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
1836 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
1837 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
1838 
1839 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
1840 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
1841 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
1842 	    RCTL_GLOBAL_INFINITE,
1843 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
1844 
1845 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
1846 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
1847 	    INT_MAX, INT_MAX, &zone_lwps_ops);
1848 	/*
1849 	 * System V IPC resource controls
1850 	 */
1851 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
1852 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1853 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
1854 
1855 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
1856 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1857 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
1858 
1859 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
1860 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1861 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
1862 
1863 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
1864 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1865 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
1866 
1867 	/*
1868 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
1869 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
1870 	 */
1871 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
1872 	bzero(dval, sizeof (rctl_val_t));
1873 	dval->rcv_value = 1;
1874 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
1875 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
1876 	dval->rcv_action_recip_pid = -1;
1877 
1878 	rde = rctl_dict_lookup("zone.cpu-shares");
1879 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
1880 
1881 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
1882 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
1883 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
1884 	    &zone_locked_mem_ops);
1885 
1886 	rc_zone_max_swap = rctl_register("zone.max-swap",
1887 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
1888 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
1889 	    &zone_max_swap_ops);
1890 
1891 	/*
1892 	 * Initialize the ``global zone''.
1893 	 */
1894 	set = rctl_set_create();
1895 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
1896 	mutex_enter(&p0.p_lock);
1897 	e.rcep_p.zone = &zone0;
1898 	e.rcep_t = RCENTITY_ZONE;
1899 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
1900 	    gp);
1901 
1902 	zone0.zone_nlwps = p0.p_lwpcnt;
1903 	zone0.zone_ntasks = 1;
1904 	mutex_exit(&p0.p_lock);
1905 	zone0.zone_restart_init = B_TRUE;
1906 	zone0.zone_brand = &native_brand;
1907 	rctl_prealloc_destroy(gp);
1908 	/*
1909 	 * pool_default hasn't been initialized yet, so we let pool_init()
1910 	 * take care of making sure the global zone is in the default pool.
1911 	 */
1912 
1913 	/*
1914 	 * Initialize global zone kstats
1915 	 */
1916 	zone_kstat_create(&zone0);
1917 
1918 	/*
1919 	 * Initialize zone label.
1920 	 * mlp are initialized when tnzonecfg is loaded.
1921 	 */
1922 	zone0.zone_slabel = l_admin_low;
1923 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
1924 	label_hold(l_admin_low);
1925 
1926 	mutex_enter(&zonehash_lock);
1927 	zone_uniqid(&zone0);
1928 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
1929 
1930 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
1931 	    mod_hash_null_valdtor);
1932 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
1933 	    zone_hash_size, mod_hash_null_valdtor);
1934 	/*
1935 	 * maintain zonehashbylabel only for labeled systems
1936 	 */
1937 	if (is_system_labeled())
1938 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
1939 		    zone_hash_size, mod_hash_null_keydtor,
1940 		    mod_hash_null_valdtor, hash_bylabel, NULL,
1941 		    hash_labelkey_cmp, KM_SLEEP);
1942 	zonecount = 1;
1943 
1944 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
1945 	    (mod_hash_val_t)&zone0);
1946 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
1947 	    (mod_hash_val_t)&zone0);
1948 	if (is_system_labeled()) {
1949 		zone0.zone_flags |= ZF_HASHED_LABEL;
1950 		(void) mod_hash_insert(zonehashbylabel,
1951 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
1952 	}
1953 	mutex_exit(&zonehash_lock);
1954 
1955 	/*
1956 	 * We avoid setting zone_kcred until now, since kcred is initialized
1957 	 * sometime after zone_zsd_init() and before zone_init().
1958 	 */
1959 	zone0.zone_kcred = kcred;
1960 	/*
1961 	 * The global zone is fully initialized (except for zone_rootvp which
1962 	 * will be set when the root filesystem is mounted).
1963 	 */
1964 	global_zone = &zone0;
1965 
1966 	/*
1967 	 * Setup an event channel to send zone status change notifications on
1968 	 */
1969 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
1970 	    EVCH_CREAT);
1971 
1972 	if (res)
1973 		panic("Sysevent_evc_bind failed during zone setup.\n");
1974 
1975 }
1976 
1977 static void
1978 zone_free(zone_t *zone)
1979 {
1980 	ASSERT(zone != global_zone);
1981 	ASSERT(zone->zone_ntasks == 0);
1982 	ASSERT(zone->zone_nlwps == 0);
1983 	ASSERT(zone->zone_cred_ref == 0);
1984 	ASSERT(zone->zone_kcred == NULL);
1985 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
1986 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
1987 
1988 	/*
1989 	 * Remove any zone caps.
1990 	 */
1991 	cpucaps_zone_remove(zone);
1992 
1993 	ASSERT(zone->zone_cpucap == NULL);
1994 
1995 	/* remove from deathrow list */
1996 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
1997 		ASSERT(zone->zone_ref == 0);
1998 		mutex_enter(&zone_deathrow_lock);
1999 		list_remove(&zone_deathrow, zone);
2000 		mutex_exit(&zone_deathrow_lock);
2001 	}
2002 
2003 	zone_free_zsd(zone);
2004 	zone_free_datasets(zone);
2005 
2006 	if (zone->zone_rootvp != NULL)
2007 		VN_RELE(zone->zone_rootvp);
2008 	if (zone->zone_rootpath)
2009 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2010 	if (zone->zone_name != NULL)
2011 		kmem_free(zone->zone_name, ZONENAME_MAX);
2012 	if (zone->zone_slabel != NULL)
2013 		label_rele(zone->zone_slabel);
2014 	if (zone->zone_nodename != NULL)
2015 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2016 	if (zone->zone_domain != NULL)
2017 		kmem_free(zone->zone_domain, _SYS_NMLN);
2018 	if (zone->zone_privset != NULL)
2019 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2020 	if (zone->zone_rctls != NULL)
2021 		rctl_set_free(zone->zone_rctls);
2022 	if (zone->zone_bootargs != NULL)
2023 		kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1);
2024 	if (zone->zone_initname != NULL)
2025 		kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1);
2026 	id_free(zoneid_space, zone->zone_id);
2027 	mutex_destroy(&zone->zone_lock);
2028 	cv_destroy(&zone->zone_cv);
2029 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2030 	kmem_free(zone, sizeof (zone_t));
2031 }
2032 
2033 /*
2034  * See block comment at the top of this file for information about zone
2035  * status values.
2036  */
2037 /*
2038  * Convenience function for setting zone status.
2039  */
2040 static void
2041 zone_status_set(zone_t *zone, zone_status_t status)
2042 {
2043 
2044 	nvlist_t *nvl = NULL;
2045 	ASSERT(MUTEX_HELD(&zone_status_lock));
2046 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2047 	    status >= zone_status_get(zone));
2048 
2049 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2050 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2051 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2052 	    zone_status_table[status]) ||
2053 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2054 	    zone_status_table[zone->zone_status]) ||
2055 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2056 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2057 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2058 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2059 #ifdef DEBUG
2060 		(void) printf(
2061 		    "Failed to allocate and send zone state change event.\n");
2062 #endif
2063 	}
2064 	nvlist_free(nvl);
2065 
2066 	zone->zone_status = status;
2067 
2068 	cv_broadcast(&zone->zone_cv);
2069 }
2070 
2071 /*
2072  * Public function to retrieve the zone status.  The zone status may
2073  * change after it is retrieved.
2074  */
2075 zone_status_t
2076 zone_status_get(zone_t *zone)
2077 {
2078 	return (zone->zone_status);
2079 }
2080 
2081 static int
2082 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2083 {
2084 	char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2085 	int err = 0;
2086 
2087 	ASSERT(zone != global_zone);
2088 	if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0)
2089 		goto done;	/* EFAULT or ENAMETOOLONG */
2090 
2091 	if (zone->zone_bootargs != NULL)
2092 		kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1);
2093 
2094 	zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP);
2095 	(void) strcpy(zone->zone_bootargs, bootargs);
2096 
2097 done:
2098 	kmem_free(bootargs, BOOTARGS_MAX);
2099 	return (err);
2100 }
2101 
2102 static int
2103 zone_set_brand(zone_t *zone, const char *brand)
2104 {
2105 	struct brand_attr *attrp;
2106 	brand_t *bp;
2107 
2108 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2109 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2110 		kmem_free(attrp, sizeof (struct brand_attr));
2111 		return (EFAULT);
2112 	}
2113 
2114 	bp = brand_register_zone(attrp);
2115 	kmem_free(attrp, sizeof (struct brand_attr));
2116 	if (bp == NULL)
2117 		return (EINVAL);
2118 
2119 	/*
2120 	 * This is the only place where a zone can change it's brand.
2121 	 * We already need to hold zone_status_lock to check the zone
2122 	 * status, so we'll just use that lock to serialize zone
2123 	 * branding requests as well.
2124 	 */
2125 	mutex_enter(&zone_status_lock);
2126 
2127 	/* Re-Branding is not allowed and the zone can't be booted yet */
2128 	if ((ZONE_IS_BRANDED(zone)) ||
2129 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2130 		mutex_exit(&zone_status_lock);
2131 		brand_unregister_zone(bp);
2132 		return (EINVAL);
2133 	}
2134 
2135 	/* set up the brand specific data */
2136 	zone->zone_brand = bp;
2137 	ZBROP(zone)->b_init_brand_data(zone);
2138 
2139 	mutex_exit(&zone_status_lock);
2140 	return (0);
2141 }
2142 
2143 static int
2144 zone_set_initname(zone_t *zone, const char *zone_initname)
2145 {
2146 	char initname[INITNAME_SZ];
2147 	size_t len;
2148 	int err = 0;
2149 
2150 	ASSERT(zone != global_zone);
2151 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2152 		return (err);	/* EFAULT or ENAMETOOLONG */
2153 
2154 	if (zone->zone_initname != NULL)
2155 		kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1);
2156 
2157 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2158 	(void) strcpy(zone->zone_initname, initname);
2159 	return (0);
2160 }
2161 
2162 static int
2163 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2164 {
2165 	uint64_t mcap;
2166 	int err = 0;
2167 
2168 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2169 		zone->zone_phys_mcap = mcap;
2170 
2171 	return (err);
2172 }
2173 
2174 static int
2175 zone_set_sched_class(zone_t *zone, const char *new_class)
2176 {
2177 	char sched_class[PC_CLNMSZ];
2178 	id_t classid;
2179 	int err;
2180 
2181 	ASSERT(zone != global_zone);
2182 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2183 		return (err);	/* EFAULT or ENAMETOOLONG */
2184 
2185 	if (getcid(sched_class, &classid) != 0 || classid == syscid)
2186 		return (set_errno(EINVAL));
2187 	zone->zone_defaultcid = classid;
2188 	ASSERT(zone->zone_defaultcid > 0 &&
2189 	    zone->zone_defaultcid < loaded_classes);
2190 
2191 	return (0);
2192 }
2193 
2194 /*
2195  * Block indefinitely waiting for (zone_status >= status)
2196  */
2197 void
2198 zone_status_wait(zone_t *zone, zone_status_t status)
2199 {
2200 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2201 
2202 	mutex_enter(&zone_status_lock);
2203 	while (zone->zone_status < status) {
2204 		cv_wait(&zone->zone_cv, &zone_status_lock);
2205 	}
2206 	mutex_exit(&zone_status_lock);
2207 }
2208 
2209 /*
2210  * Private CPR-safe version of zone_status_wait().
2211  */
2212 static void
2213 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2214 {
2215 	callb_cpr_t cprinfo;
2216 
2217 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2218 
2219 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2220 	    str);
2221 	mutex_enter(&zone_status_lock);
2222 	while (zone->zone_status < status) {
2223 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2224 		cv_wait(&zone->zone_cv, &zone_status_lock);
2225 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2226 	}
2227 	/*
2228 	 * zone_status_lock is implicitly released by the following.
2229 	 */
2230 	CALLB_CPR_EXIT(&cprinfo);
2231 }
2232 
2233 /*
2234  * Block until zone enters requested state or signal is received.  Return (0)
2235  * if signaled, non-zero otherwise.
2236  */
2237 int
2238 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2239 {
2240 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2241 
2242 	mutex_enter(&zone_status_lock);
2243 	while (zone->zone_status < status) {
2244 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2245 			mutex_exit(&zone_status_lock);
2246 			return (0);
2247 		}
2248 	}
2249 	mutex_exit(&zone_status_lock);
2250 	return (1);
2251 }
2252 
2253 /*
2254  * Block until the zone enters the requested state or the timeout expires,
2255  * whichever happens first.  Return (-1) if operation timed out, time remaining
2256  * otherwise.
2257  */
2258 clock_t
2259 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2260 {
2261 	clock_t timeleft = 0;
2262 
2263 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2264 
2265 	mutex_enter(&zone_status_lock);
2266 	while (zone->zone_status < status && timeleft != -1) {
2267 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2268 	}
2269 	mutex_exit(&zone_status_lock);
2270 	return (timeleft);
2271 }
2272 
2273 /*
2274  * Block until the zone enters the requested state, the current process is
2275  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2276  * operation timed out, 0 if signaled, time remaining otherwise.
2277  */
2278 clock_t
2279 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2280 {
2281 	clock_t timeleft = tim - lbolt;
2282 
2283 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2284 
2285 	mutex_enter(&zone_status_lock);
2286 	while (zone->zone_status < status) {
2287 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2288 		    tim);
2289 		if (timeleft <= 0)
2290 			break;
2291 	}
2292 	mutex_exit(&zone_status_lock);
2293 	return (timeleft);
2294 }
2295 
2296 /*
2297  * Zones have two reference counts: one for references from credential
2298  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2299  * This is so we can allow a zone to be rebooted while there are still
2300  * outstanding cred references, since certain drivers cache dblks (which
2301  * implicitly results in cached creds).  We wait for zone_ref to drop to
2302  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2303  * later freed when the zone_cred_ref drops to 0, though nothing other
2304  * than the zone id and privilege set should be accessed once the zone
2305  * is "dead".
2306  *
2307  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2308  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2309  * to 0.  This can be useful to flush out other sources of cached creds
2310  * that may be less innocuous than the driver case.
2311  */
2312 
2313 int zone_wait_for_cred = 0;
2314 
2315 static void
2316 zone_hold_locked(zone_t *z)
2317 {
2318 	ASSERT(MUTEX_HELD(&z->zone_lock));
2319 	z->zone_ref++;
2320 	ASSERT(z->zone_ref != 0);
2321 }
2322 
2323 void
2324 zone_hold(zone_t *z)
2325 {
2326 	mutex_enter(&z->zone_lock);
2327 	zone_hold_locked(z);
2328 	mutex_exit(&z->zone_lock);
2329 }
2330 
2331 /*
2332  * If the non-cred ref count drops to 1 and either the cred ref count
2333  * is 0 or we aren't waiting for cred references, the zone is ready to
2334  * be destroyed.
2335  */
2336 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2337 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2338 
2339 void
2340 zone_rele(zone_t *z)
2341 {
2342 	boolean_t wakeup;
2343 
2344 	mutex_enter(&z->zone_lock);
2345 	ASSERT(z->zone_ref != 0);
2346 	z->zone_ref--;
2347 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2348 		/* no more refs, free the structure */
2349 		mutex_exit(&z->zone_lock);
2350 		zone_free(z);
2351 		return;
2352 	}
2353 	/* signal zone_destroy so the zone can finish halting */
2354 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2355 	mutex_exit(&z->zone_lock);
2356 
2357 	if (wakeup) {
2358 		/*
2359 		 * Grabbing zonehash_lock here effectively synchronizes with
2360 		 * zone_destroy() to avoid missed signals.
2361 		 */
2362 		mutex_enter(&zonehash_lock);
2363 		cv_broadcast(&zone_destroy_cv);
2364 		mutex_exit(&zonehash_lock);
2365 	}
2366 }
2367 
2368 void
2369 zone_cred_hold(zone_t *z)
2370 {
2371 	mutex_enter(&z->zone_lock);
2372 	z->zone_cred_ref++;
2373 	ASSERT(z->zone_cred_ref != 0);
2374 	mutex_exit(&z->zone_lock);
2375 }
2376 
2377 void
2378 zone_cred_rele(zone_t *z)
2379 {
2380 	boolean_t wakeup;
2381 
2382 	mutex_enter(&z->zone_lock);
2383 	ASSERT(z->zone_cred_ref != 0);
2384 	z->zone_cred_ref--;
2385 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2386 		/* no more refs, free the structure */
2387 		mutex_exit(&z->zone_lock);
2388 		zone_free(z);
2389 		return;
2390 	}
2391 	/*
2392 	 * If zone_destroy is waiting for the cred references to drain
2393 	 * out, and they have, signal it.
2394 	 */
2395 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2396 	    zone_status_get(z) >= ZONE_IS_DEAD);
2397 	mutex_exit(&z->zone_lock);
2398 
2399 	if (wakeup) {
2400 		/*
2401 		 * Grabbing zonehash_lock here effectively synchronizes with
2402 		 * zone_destroy() to avoid missed signals.
2403 		 */
2404 		mutex_enter(&zonehash_lock);
2405 		cv_broadcast(&zone_destroy_cv);
2406 		mutex_exit(&zonehash_lock);
2407 	}
2408 }
2409 
2410 void
2411 zone_task_hold(zone_t *z)
2412 {
2413 	mutex_enter(&z->zone_lock);
2414 	z->zone_ntasks++;
2415 	ASSERT(z->zone_ntasks != 0);
2416 	mutex_exit(&z->zone_lock);
2417 }
2418 
2419 void
2420 zone_task_rele(zone_t *zone)
2421 {
2422 	uint_t refcnt;
2423 
2424 	mutex_enter(&zone->zone_lock);
2425 	ASSERT(zone->zone_ntasks != 0);
2426 	refcnt = --zone->zone_ntasks;
2427 	if (refcnt > 1)	{	/* Common case */
2428 		mutex_exit(&zone->zone_lock);
2429 		return;
2430 	}
2431 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2432 	mutex_exit(&zone->zone_lock);
2433 	if (refcnt == 1) {
2434 		/*
2435 		 * See if the zone is shutting down.
2436 		 */
2437 		mutex_enter(&zone_status_lock);
2438 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2439 			goto out;
2440 		}
2441 
2442 		/*
2443 		 * Make sure the ntasks didn't change since we
2444 		 * dropped zone_lock.
2445 		 */
2446 		mutex_enter(&zone->zone_lock);
2447 		if (refcnt != zone->zone_ntasks) {
2448 			mutex_exit(&zone->zone_lock);
2449 			goto out;
2450 		}
2451 		mutex_exit(&zone->zone_lock);
2452 
2453 		/*
2454 		 * No more user processes in the zone.  The zone is empty.
2455 		 */
2456 		zone_status_set(zone, ZONE_IS_EMPTY);
2457 		goto out;
2458 	}
2459 
2460 	ASSERT(refcnt == 0);
2461 	/*
2462 	 * zsched has exited; the zone is dead.
2463 	 */
2464 	zone->zone_zsched = NULL;		/* paranoia */
2465 	mutex_enter(&zone_status_lock);
2466 	zone_status_set(zone, ZONE_IS_DEAD);
2467 out:
2468 	mutex_exit(&zone_status_lock);
2469 	zone_rele(zone);
2470 }
2471 
2472 zoneid_t
2473 getzoneid(void)
2474 {
2475 	return (curproc->p_zone->zone_id);
2476 }
2477 
2478 /*
2479  * Internal versions of zone_find_by_*().  These don't zone_hold() or
2480  * check the validity of a zone's state.
2481  */
2482 static zone_t *
2483 zone_find_all_by_id(zoneid_t zoneid)
2484 {
2485 	mod_hash_val_t hv;
2486 	zone_t *zone = NULL;
2487 
2488 	ASSERT(MUTEX_HELD(&zonehash_lock));
2489 
2490 	if (mod_hash_find(zonehashbyid,
2491 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2492 		zone = (zone_t *)hv;
2493 	return (zone);
2494 }
2495 
2496 static zone_t *
2497 zone_find_all_by_label(const ts_label_t *label)
2498 {
2499 	mod_hash_val_t hv;
2500 	zone_t *zone = NULL;
2501 
2502 	ASSERT(MUTEX_HELD(&zonehash_lock));
2503 
2504 	/*
2505 	 * zonehashbylabel is not maintained for unlabeled systems
2506 	 */
2507 	if (!is_system_labeled())
2508 		return (NULL);
2509 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2510 		zone = (zone_t *)hv;
2511 	return (zone);
2512 }
2513 
2514 static zone_t *
2515 zone_find_all_by_name(char *name)
2516 {
2517 	mod_hash_val_t hv;
2518 	zone_t *zone = NULL;
2519 
2520 	ASSERT(MUTEX_HELD(&zonehash_lock));
2521 
2522 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2523 		zone = (zone_t *)hv;
2524 	return (zone);
2525 }
2526 
2527 /*
2528  * Public interface for looking up a zone by zoneid.  Only returns the zone if
2529  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2530  * Caller must call zone_rele() once it is done with the zone.
2531  *
2532  * The zone may begin the zone_destroy() sequence immediately after this
2533  * function returns, but may be safely used until zone_rele() is called.
2534  */
2535 zone_t *
2536 zone_find_by_id(zoneid_t zoneid)
2537 {
2538 	zone_t *zone;
2539 	zone_status_t status;
2540 
2541 	mutex_enter(&zonehash_lock);
2542 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2543 		mutex_exit(&zonehash_lock);
2544 		return (NULL);
2545 	}
2546 	status = zone_status_get(zone);
2547 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2548 		/*
2549 		 * For all practical purposes the zone doesn't exist.
2550 		 */
2551 		mutex_exit(&zonehash_lock);
2552 		return (NULL);
2553 	}
2554 	zone_hold(zone);
2555 	mutex_exit(&zonehash_lock);
2556 	return (zone);
2557 }
2558 
2559 /*
2560  * Similar to zone_find_by_id, but using zone label as the key.
2561  */
2562 zone_t *
2563 zone_find_by_label(const ts_label_t *label)
2564 {
2565 	zone_t *zone;
2566 	zone_status_t status;
2567 
2568 	mutex_enter(&zonehash_lock);
2569 	if ((zone = zone_find_all_by_label(label)) == NULL) {
2570 		mutex_exit(&zonehash_lock);
2571 		return (NULL);
2572 	}
2573 
2574 	status = zone_status_get(zone);
2575 	if (status > ZONE_IS_DOWN) {
2576 		/*
2577 		 * For all practical purposes the zone doesn't exist.
2578 		 */
2579 		mutex_exit(&zonehash_lock);
2580 		return (NULL);
2581 	}
2582 	zone_hold(zone);
2583 	mutex_exit(&zonehash_lock);
2584 	return (zone);
2585 }
2586 
2587 /*
2588  * Similar to zone_find_by_id, but using zone name as the key.
2589  */
2590 zone_t *
2591 zone_find_by_name(char *name)
2592 {
2593 	zone_t *zone;
2594 	zone_status_t status;
2595 
2596 	mutex_enter(&zonehash_lock);
2597 	if ((zone = zone_find_all_by_name(name)) == NULL) {
2598 		mutex_exit(&zonehash_lock);
2599 		return (NULL);
2600 	}
2601 	status = zone_status_get(zone);
2602 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2603 		/*
2604 		 * For all practical purposes the zone doesn't exist.
2605 		 */
2606 		mutex_exit(&zonehash_lock);
2607 		return (NULL);
2608 	}
2609 	zone_hold(zone);
2610 	mutex_exit(&zonehash_lock);
2611 	return (zone);
2612 }
2613 
2614 /*
2615  * Similar to zone_find_by_id(), using the path as a key.  For instance,
2616  * if there is a zone "foo" rooted at /foo/root, and the path argument
2617  * is "/foo/root/proc", it will return the held zone_t corresponding to
2618  * zone "foo".
2619  *
2620  * zone_find_by_path() always returns a non-NULL value, since at the
2621  * very least every path will be contained in the global zone.
2622  *
2623  * As with the other zone_find_by_*() functions, the caller is
2624  * responsible for zone_rele()ing the return value of this function.
2625  */
2626 zone_t *
2627 zone_find_by_path(const char *path)
2628 {
2629 	zone_t *zone;
2630 	zone_t *zret = NULL;
2631 	zone_status_t status;
2632 
2633 	if (path == NULL) {
2634 		/*
2635 		 * Call from rootconf().
2636 		 */
2637 		zone_hold(global_zone);
2638 		return (global_zone);
2639 	}
2640 	ASSERT(*path == '/');
2641 	mutex_enter(&zonehash_lock);
2642 	for (zone = list_head(&zone_active); zone != NULL;
2643 	    zone = list_next(&zone_active, zone)) {
2644 		if (ZONE_PATH_VISIBLE(path, zone))
2645 			zret = zone;
2646 	}
2647 	ASSERT(zret != NULL);
2648 	status = zone_status_get(zret);
2649 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2650 		/*
2651 		 * Zone practically doesn't exist.
2652 		 */
2653 		zret = global_zone;
2654 	}
2655 	zone_hold(zret);
2656 	mutex_exit(&zonehash_lock);
2657 	return (zret);
2658 }
2659 
2660 /*
2661  * Get the number of cpus visible to this zone.  The system-wide global
2662  * 'ncpus' is returned if pools are disabled, the caller is in the
2663  * global zone, or a NULL zone argument is passed in.
2664  */
2665 int
2666 zone_ncpus_get(zone_t *zone)
2667 {
2668 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
2669 
2670 	return (myncpus != 0 ? myncpus : ncpus);
2671 }
2672 
2673 /*
2674  * Get the number of online cpus visible to this zone.  The system-wide
2675  * global 'ncpus_online' is returned if pools are disabled, the caller
2676  * is in the global zone, or a NULL zone argument is passed in.
2677  */
2678 int
2679 zone_ncpus_online_get(zone_t *zone)
2680 {
2681 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
2682 
2683 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
2684 }
2685 
2686 /*
2687  * Return the pool to which the zone is currently bound.
2688  */
2689 pool_t *
2690 zone_pool_get(zone_t *zone)
2691 {
2692 	ASSERT(pool_lock_held());
2693 
2694 	return (zone->zone_pool);
2695 }
2696 
2697 /*
2698  * Set the zone's pool pointer and update the zone's visibility to match
2699  * the resources in the new pool.
2700  */
2701 void
2702 zone_pool_set(zone_t *zone, pool_t *pool)
2703 {
2704 	ASSERT(pool_lock_held());
2705 	ASSERT(MUTEX_HELD(&cpu_lock));
2706 
2707 	zone->zone_pool = pool;
2708 	zone_pset_set(zone, pool->pool_pset->pset_id);
2709 }
2710 
2711 /*
2712  * Return the cached value of the id of the processor set to which the
2713  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
2714  * facility is disabled.
2715  */
2716 psetid_t
2717 zone_pset_get(zone_t *zone)
2718 {
2719 	ASSERT(MUTEX_HELD(&cpu_lock));
2720 
2721 	return (zone->zone_psetid);
2722 }
2723 
2724 /*
2725  * Set the cached value of the id of the processor set to which the zone
2726  * is currently bound.  Also update the zone's visibility to match the
2727  * resources in the new processor set.
2728  */
2729 void
2730 zone_pset_set(zone_t *zone, psetid_t newpsetid)
2731 {
2732 	psetid_t oldpsetid;
2733 
2734 	ASSERT(MUTEX_HELD(&cpu_lock));
2735 	oldpsetid = zone_pset_get(zone);
2736 
2737 	if (oldpsetid == newpsetid)
2738 		return;
2739 	/*
2740 	 * Global zone sees all.
2741 	 */
2742 	if (zone != global_zone) {
2743 		zone->zone_psetid = newpsetid;
2744 		if (newpsetid != ZONE_PS_INVAL)
2745 			pool_pset_visibility_add(newpsetid, zone);
2746 		if (oldpsetid != ZONE_PS_INVAL)
2747 			pool_pset_visibility_remove(oldpsetid, zone);
2748 	}
2749 	/*
2750 	 * Disabling pools, so we should start using the global values
2751 	 * for ncpus and ncpus_online.
2752 	 */
2753 	if (newpsetid == ZONE_PS_INVAL) {
2754 		zone->zone_ncpus = 0;
2755 		zone->zone_ncpus_online = 0;
2756 	}
2757 }
2758 
2759 /*
2760  * Walk the list of active zones and issue the provided callback for
2761  * each of them.
2762  *
2763  * Caller must not be holding any locks that may be acquired under
2764  * zonehash_lock.  See comment at the beginning of the file for a list of
2765  * common locks and their interactions with zones.
2766  */
2767 int
2768 zone_walk(int (*cb)(zone_t *, void *), void *data)
2769 {
2770 	zone_t *zone;
2771 	int ret = 0;
2772 	zone_status_t status;
2773 
2774 	mutex_enter(&zonehash_lock);
2775 	for (zone = list_head(&zone_active); zone != NULL;
2776 	    zone = list_next(&zone_active, zone)) {
2777 		/*
2778 		 * Skip zones that shouldn't be externally visible.
2779 		 */
2780 		status = zone_status_get(zone);
2781 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
2782 			continue;
2783 		/*
2784 		 * Bail immediately if any callback invocation returns a
2785 		 * non-zero value.
2786 		 */
2787 		ret = (*cb)(zone, data);
2788 		if (ret != 0)
2789 			break;
2790 	}
2791 	mutex_exit(&zonehash_lock);
2792 	return (ret);
2793 }
2794 
2795 static int
2796 zone_set_root(zone_t *zone, const char *upath)
2797 {
2798 	vnode_t *vp;
2799 	int trycount;
2800 	int error = 0;
2801 	char *path;
2802 	struct pathname upn, pn;
2803 	size_t pathlen;
2804 
2805 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
2806 		return (error);
2807 
2808 	pn_alloc(&pn);
2809 
2810 	/* prevent infinite loop */
2811 	trycount = 10;
2812 	for (;;) {
2813 		if (--trycount <= 0) {
2814 			error = ESTALE;
2815 			goto out;
2816 		}
2817 
2818 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
2819 			/*
2820 			 * VOP_ACCESS() may cover 'vp' with a new
2821 			 * filesystem, if 'vp' is an autoFS vnode.
2822 			 * Get the new 'vp' if so.
2823 			 */
2824 			if ((error =
2825 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
2826 			    (!vn_ismntpt(vp) ||
2827 			    (error = traverse(&vp)) == 0)) {
2828 				pathlen = pn.pn_pathlen + 2;
2829 				path = kmem_alloc(pathlen, KM_SLEEP);
2830 				(void) strncpy(path, pn.pn_path,
2831 				    pn.pn_pathlen + 1);
2832 				path[pathlen - 2] = '/';
2833 				path[pathlen - 1] = '\0';
2834 				pn_free(&pn);
2835 				pn_free(&upn);
2836 
2837 				/* Success! */
2838 				break;
2839 			}
2840 			VN_RELE(vp);
2841 		}
2842 		if (error != ESTALE)
2843 			goto out;
2844 	}
2845 
2846 	ASSERT(error == 0);
2847 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
2848 	zone->zone_rootpath = path;
2849 	zone->zone_rootpathlen = pathlen;
2850 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
2851 		zone->zone_flags |= ZF_IS_SCRATCH;
2852 	return (0);
2853 
2854 out:
2855 	pn_free(&pn);
2856 	pn_free(&upn);
2857 	return (error);
2858 }
2859 
2860 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
2861 			((c) >= 'a' && (c) <= 'z') || \
2862 			((c) >= 'A' && (c) <= 'Z'))
2863 
2864 static int
2865 zone_set_name(zone_t *zone, const char *uname)
2866 {
2867 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
2868 	size_t len;
2869 	int i, err;
2870 
2871 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
2872 		kmem_free(kname, ZONENAME_MAX);
2873 		return (err);	/* EFAULT or ENAMETOOLONG */
2874 	}
2875 
2876 	/* must be less than ZONENAME_MAX */
2877 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
2878 		kmem_free(kname, ZONENAME_MAX);
2879 		return (EINVAL);
2880 	}
2881 
2882 	/*
2883 	 * Name must start with an alphanumeric and must contain only
2884 	 * alphanumerics, '-', '_' and '.'.
2885 	 */
2886 	if (!isalnum(kname[0])) {
2887 		kmem_free(kname, ZONENAME_MAX);
2888 		return (EINVAL);
2889 	}
2890 	for (i = 1; i < len - 1; i++) {
2891 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
2892 		    kname[i] != '.') {
2893 			kmem_free(kname, ZONENAME_MAX);
2894 			return (EINVAL);
2895 		}
2896 	}
2897 
2898 	zone->zone_name = kname;
2899 	return (0);
2900 }
2901 
2902 /*
2903  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
2904  * is NULL or it points to a zone with no hostid emulation, then the machine's
2905  * hostid (i.e., the global zone's hostid) is returned.  This function returns
2906  * zero if neither the zone nor the host machine (global zone) have hostids.  It
2907  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
2908  * hostid and the machine's hostid is invalid.
2909  */
2910 uint32_t
2911 zone_get_hostid(zone_t *zonep)
2912 {
2913 	unsigned long machine_hostid;
2914 
2915 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
2916 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
2917 			return (HW_INVALID_HOSTID);
2918 		return ((uint32_t)machine_hostid);
2919 	}
2920 	return (zonep->zone_hostid);
2921 }
2922 
2923 /*
2924  * Similar to thread_create(), but makes sure the thread is in the appropriate
2925  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
2926  */
2927 /*ARGSUSED*/
2928 kthread_t *
2929 zthread_create(
2930     caddr_t stk,
2931     size_t stksize,
2932     void (*proc)(),
2933     void *arg,
2934     size_t len,
2935     pri_t pri)
2936 {
2937 	kthread_t *t;
2938 	zone_t *zone = curproc->p_zone;
2939 	proc_t *pp = zone->zone_zsched;
2940 
2941 	zone_hold(zone);	/* Reference to be dropped when thread exits */
2942 
2943 	/*
2944 	 * No-one should be trying to create threads if the zone is shutting
2945 	 * down and there aren't any kernel threads around.  See comment
2946 	 * in zthread_exit().
2947 	 */
2948 	ASSERT(!(zone->zone_kthreads == NULL &&
2949 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
2950 	/*
2951 	 * Create a thread, but don't let it run until we've finished setting
2952 	 * things up.
2953 	 */
2954 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
2955 	ASSERT(t->t_forw == NULL);
2956 	mutex_enter(&zone_status_lock);
2957 	if (zone->zone_kthreads == NULL) {
2958 		t->t_forw = t->t_back = t;
2959 	} else {
2960 		kthread_t *tx = zone->zone_kthreads;
2961 
2962 		t->t_forw = tx;
2963 		t->t_back = tx->t_back;
2964 		tx->t_back->t_forw = t;
2965 		tx->t_back = t;
2966 	}
2967 	zone->zone_kthreads = t;
2968 	mutex_exit(&zone_status_lock);
2969 
2970 	mutex_enter(&pp->p_lock);
2971 	t->t_proc_flag |= TP_ZTHREAD;
2972 	project_rele(t->t_proj);
2973 	t->t_proj = project_hold(pp->p_task->tk_proj);
2974 
2975 	/*
2976 	 * Setup complete, let it run.
2977 	 */
2978 	thread_lock(t);
2979 	t->t_schedflag |= TS_ALLSTART;
2980 	setrun_locked(t);
2981 	thread_unlock(t);
2982 
2983 	mutex_exit(&pp->p_lock);
2984 
2985 	return (t);
2986 }
2987 
2988 /*
2989  * Similar to thread_exit().  Must be called by threads created via
2990  * zthread_exit().
2991  */
2992 void
2993 zthread_exit(void)
2994 {
2995 	kthread_t *t = curthread;
2996 	proc_t *pp = curproc;
2997 	zone_t *zone = pp->p_zone;
2998 
2999 	mutex_enter(&zone_status_lock);
3000 
3001 	/*
3002 	 * Reparent to p0
3003 	 */
3004 	kpreempt_disable();
3005 	mutex_enter(&pp->p_lock);
3006 	t->t_proc_flag &= ~TP_ZTHREAD;
3007 	t->t_procp = &p0;
3008 	hat_thread_exit(t);
3009 	mutex_exit(&pp->p_lock);
3010 	kpreempt_enable();
3011 
3012 	if (t->t_back == t) {
3013 		ASSERT(t->t_forw == t);
3014 		/*
3015 		 * If the zone is empty, once the thread count
3016 		 * goes to zero no further kernel threads can be
3017 		 * created.  This is because if the creator is a process
3018 		 * in the zone, then it must have exited before the zone
3019 		 * state could be set to ZONE_IS_EMPTY.
3020 		 * Otherwise, if the creator is a kernel thread in the
3021 		 * zone, the thread count is non-zero.
3022 		 *
3023 		 * This really means that non-zone kernel threads should
3024 		 * not create zone kernel threads.
3025 		 */
3026 		zone->zone_kthreads = NULL;
3027 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3028 			zone_status_set(zone, ZONE_IS_DOWN);
3029 			/*
3030 			 * Remove any CPU caps on this zone.
3031 			 */
3032 			cpucaps_zone_remove(zone);
3033 		}
3034 	} else {
3035 		t->t_forw->t_back = t->t_back;
3036 		t->t_back->t_forw = t->t_forw;
3037 		if (zone->zone_kthreads == t)
3038 			zone->zone_kthreads = t->t_forw;
3039 	}
3040 	mutex_exit(&zone_status_lock);
3041 	zone_rele(zone);
3042 	thread_exit();
3043 	/* NOTREACHED */
3044 }
3045 
3046 static void
3047 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3048 {
3049 	vnode_t *oldvp;
3050 
3051 	/* we're going to hold a reference here to the directory */
3052 	VN_HOLD(vp);
3053 
3054 	if (audit_active)	/* update abs cwd/root path see c2audit.c */
3055 		audit_chdirec(vp, vpp);
3056 
3057 	mutex_enter(&pp->p_lock);
3058 	oldvp = *vpp;
3059 	*vpp = vp;
3060 	mutex_exit(&pp->p_lock);
3061 	if (oldvp != NULL)
3062 		VN_RELE(oldvp);
3063 }
3064 
3065 /*
3066  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3067  */
3068 static int
3069 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3070 {
3071 	nvpair_t *nvp = NULL;
3072 	boolean_t priv_set = B_FALSE;
3073 	boolean_t limit_set = B_FALSE;
3074 	boolean_t action_set = B_FALSE;
3075 
3076 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3077 		const char *name;
3078 		uint64_t ui64;
3079 
3080 		name = nvpair_name(nvp);
3081 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3082 			return (EINVAL);
3083 		(void) nvpair_value_uint64(nvp, &ui64);
3084 		if (strcmp(name, "privilege") == 0) {
3085 			/*
3086 			 * Currently only privileged values are allowed, but
3087 			 * this may change in the future.
3088 			 */
3089 			if (ui64 != RCPRIV_PRIVILEGED)
3090 				return (EINVAL);
3091 			rv->rcv_privilege = ui64;
3092 			priv_set = B_TRUE;
3093 		} else if (strcmp(name, "limit") == 0) {
3094 			rv->rcv_value = ui64;
3095 			limit_set = B_TRUE;
3096 		} else if (strcmp(name, "action") == 0) {
3097 			if (ui64 != RCTL_LOCAL_NOACTION &&
3098 			    ui64 != RCTL_LOCAL_DENY)
3099 				return (EINVAL);
3100 			rv->rcv_flagaction = ui64;
3101 			action_set = B_TRUE;
3102 		} else {
3103 			return (EINVAL);
3104 		}
3105 	}
3106 
3107 	if (!(priv_set && limit_set && action_set))
3108 		return (EINVAL);
3109 	rv->rcv_action_signal = 0;
3110 	rv->rcv_action_recipient = NULL;
3111 	rv->rcv_action_recip_pid = -1;
3112 	rv->rcv_firing_time = 0;
3113 
3114 	return (0);
3115 }
3116 
3117 /*
3118  * Non-global zone version of start_init.
3119  */
3120 void
3121 zone_start_init(void)
3122 {
3123 	proc_t *p = ttoproc(curthread);
3124 	zone_t *z = p->p_zone;
3125 
3126 	ASSERT(!INGLOBALZONE(curproc));
3127 
3128 	/*
3129 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3130 	 * storing just the pid of init is sufficient.
3131 	 */
3132 	z->zone_proc_initpid = p->p_pid;
3133 
3134 	/*
3135 	 * We maintain zone_boot_err so that we can return the cause of the
3136 	 * failure back to the caller of the zone_boot syscall.
3137 	 */
3138 	p->p_zone->zone_boot_err = start_init_common();
3139 
3140 	/*
3141 	 * We will prevent booting zones from becoming running zones if the
3142 	 * global zone is shutting down.
3143 	 */
3144 	mutex_enter(&zone_status_lock);
3145 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3146 	    ZONE_IS_SHUTTING_DOWN) {
3147 		/*
3148 		 * Make sure we are still in the booting state-- we could have
3149 		 * raced and already be shutting down, or even further along.
3150 		 */
3151 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3152 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3153 		}
3154 		mutex_exit(&zone_status_lock);
3155 		/* It's gone bad, dispose of the process */
3156 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3157 			mutex_enter(&p->p_lock);
3158 			ASSERT(p->p_flag & SEXITLWPS);
3159 			lwp_exit();
3160 		}
3161 	} else {
3162 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3163 			zone_status_set(z, ZONE_IS_RUNNING);
3164 		mutex_exit(&zone_status_lock);
3165 		/* cause the process to return to userland. */
3166 		lwp_rtt();
3167 	}
3168 }
3169 
3170 struct zsched_arg {
3171 	zone_t *zone;
3172 	nvlist_t *nvlist;
3173 };
3174 
3175 /*
3176  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3177  * anything to do with scheduling, but rather with the fact that
3178  * per-zone kernel threads are parented to zsched, just like regular
3179  * kernel threads are parented to sched (p0).
3180  *
3181  * zsched is also responsible for launching init for the zone.
3182  */
3183 static void
3184 zsched(void *arg)
3185 {
3186 	struct zsched_arg *za = arg;
3187 	proc_t *pp = curproc;
3188 	proc_t *initp = proc_init;
3189 	zone_t *zone = za->zone;
3190 	cred_t *cr, *oldcred;
3191 	rctl_set_t *set;
3192 	rctl_alloc_gp_t *gp;
3193 	contract_t *ct = NULL;
3194 	task_t *tk, *oldtk;
3195 	rctl_entity_p_t e;
3196 	kproject_t *pj;
3197 
3198 	nvlist_t *nvl = za->nvlist;
3199 	nvpair_t *nvp = NULL;
3200 
3201 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3202 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3203 	PTOU(pp)->u_argc = 0;
3204 	PTOU(pp)->u_argv = NULL;
3205 	PTOU(pp)->u_envp = NULL;
3206 	closeall(P_FINFO(pp));
3207 
3208 	/*
3209 	 * We are this zone's "zsched" process.  As the zone isn't generally
3210 	 * visible yet we don't need to grab any locks before initializing its
3211 	 * zone_proc pointer.
3212 	 */
3213 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3214 	zone->zone_zsched = pp;
3215 	mutex_enter(&pp->p_lock);
3216 	pp->p_zone = zone;
3217 	mutex_exit(&pp->p_lock);
3218 
3219 	/*
3220 	 * Disassociate process from its 'parent'; parent ourselves to init
3221 	 * (pid 1) and change other values as needed.
3222 	 */
3223 	sess_create();
3224 
3225 	mutex_enter(&pidlock);
3226 	proc_detach(pp);
3227 	pp->p_ppid = 1;
3228 	pp->p_flag |= SZONETOP;
3229 	pp->p_ancpid = 1;
3230 	pp->p_parent = initp;
3231 	pp->p_psibling = NULL;
3232 	if (initp->p_child)
3233 		initp->p_child->p_psibling = pp;
3234 	pp->p_sibling = initp->p_child;
3235 	initp->p_child = pp;
3236 
3237 	/* Decrement what newproc() incremented. */
3238 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3239 	/*
3240 	 * Our credentials are about to become kcred-like, so we don't care
3241 	 * about the caller's ruid.
3242 	 */
3243 	upcount_inc(crgetruid(kcred), zone->zone_id);
3244 	mutex_exit(&pidlock);
3245 
3246 	/*
3247 	 * getting out of global zone, so decrement lwp counts
3248 	 */
3249 	pj = pp->p_task->tk_proj;
3250 	mutex_enter(&global_zone->zone_nlwps_lock);
3251 	pj->kpj_nlwps -= pp->p_lwpcnt;
3252 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3253 	mutex_exit(&global_zone->zone_nlwps_lock);
3254 
3255 	/*
3256 	 * Decrement locked memory counts on old zone and project.
3257 	 */
3258 	mutex_enter(&global_zone->zone_mem_lock);
3259 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3260 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3261 	mutex_exit(&global_zone->zone_mem_lock);
3262 
3263 	/*
3264 	 * Create and join a new task in project '0' of this zone.
3265 	 *
3266 	 * We don't need to call holdlwps() since we know we're the only lwp in
3267 	 * this process.
3268 	 *
3269 	 * task_join() returns with p_lock held.
3270 	 */
3271 	tk = task_create(0, zone);
3272 	mutex_enter(&cpu_lock);
3273 	oldtk = task_join(tk, 0);
3274 
3275 	pj = pp->p_task->tk_proj;
3276 
3277 	mutex_enter(&zone->zone_mem_lock);
3278 	zone->zone_locked_mem += pp->p_locked_mem;
3279 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3280 	mutex_exit(&zone->zone_mem_lock);
3281 
3282 	/*
3283 	 * add lwp counts to zsched's zone, and increment project's task count
3284 	 * due to the task created in the above tasksys_settaskid
3285 	 */
3286 
3287 	mutex_enter(&zone->zone_nlwps_lock);
3288 	pj->kpj_nlwps += pp->p_lwpcnt;
3289 	pj->kpj_ntasks += 1;
3290 	zone->zone_nlwps += pp->p_lwpcnt;
3291 	mutex_exit(&zone->zone_nlwps_lock);
3292 
3293 	mutex_exit(&curproc->p_lock);
3294 	mutex_exit(&cpu_lock);
3295 	task_rele(oldtk);
3296 
3297 	/*
3298 	 * The process was created by a process in the global zone, hence the
3299 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3300 	 */
3301 	cr = zone->zone_kcred;
3302 	crhold(cr);
3303 	mutex_enter(&pp->p_crlock);
3304 	oldcred = pp->p_cred;
3305 	pp->p_cred = cr;
3306 	mutex_exit(&pp->p_crlock);
3307 	crfree(oldcred);
3308 
3309 	/*
3310 	 * Hold credentials again (for thread)
3311 	 */
3312 	crhold(cr);
3313 
3314 	/*
3315 	 * p_lwpcnt can't change since this is a kernel process.
3316 	 */
3317 	crset(pp, cr);
3318 
3319 	/*
3320 	 * Chroot
3321 	 */
3322 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3323 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3324 
3325 	/*
3326 	 * Initialize zone's rctl set.
3327 	 */
3328 	set = rctl_set_create();
3329 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3330 	mutex_enter(&pp->p_lock);
3331 	e.rcep_p.zone = zone;
3332 	e.rcep_t = RCENTITY_ZONE;
3333 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3334 	mutex_exit(&pp->p_lock);
3335 	rctl_prealloc_destroy(gp);
3336 
3337 	/*
3338 	 * Apply the rctls passed in to zone_create().  This is basically a list
3339 	 * assignment: all of the old values are removed and the new ones
3340 	 * inserted.  That is, if an empty list is passed in, all values are
3341 	 * removed.
3342 	 */
3343 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3344 		rctl_dict_entry_t *rde;
3345 		rctl_hndl_t hndl;
3346 		char *name;
3347 		nvlist_t **nvlarray;
3348 		uint_t i, nelem;
3349 		int error;	/* For ASSERT()s */
3350 
3351 		name = nvpair_name(nvp);
3352 		hndl = rctl_hndl_lookup(name);
3353 		ASSERT(hndl != -1);
3354 		rde = rctl_dict_lookup_hndl(hndl);
3355 		ASSERT(rde != NULL);
3356 
3357 		for (; /* ever */; ) {
3358 			rctl_val_t oval;
3359 
3360 			mutex_enter(&pp->p_lock);
3361 			error = rctl_local_get(hndl, NULL, &oval, pp);
3362 			mutex_exit(&pp->p_lock);
3363 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3364 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3365 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3366 				break;
3367 			mutex_enter(&pp->p_lock);
3368 			error = rctl_local_delete(hndl, &oval, pp);
3369 			mutex_exit(&pp->p_lock);
3370 			ASSERT(error == 0);
3371 		}
3372 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3373 		ASSERT(error == 0);
3374 		for (i = 0; i < nelem; i++) {
3375 			rctl_val_t *nvalp;
3376 
3377 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3378 			error = nvlist2rctlval(nvlarray[i], nvalp);
3379 			ASSERT(error == 0);
3380 			/*
3381 			 * rctl_local_insert can fail if the value being
3382 			 * inserted is a duplicate; this is OK.
3383 			 */
3384 			mutex_enter(&pp->p_lock);
3385 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
3386 				kmem_cache_free(rctl_val_cache, nvalp);
3387 			mutex_exit(&pp->p_lock);
3388 		}
3389 	}
3390 	/*
3391 	 * Tell the world that we're done setting up.
3392 	 *
3393 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3394 	 * and atomically set the zone's processor set visibility.  Once
3395 	 * we drop pool_lock() this zone will automatically get updated
3396 	 * to reflect any future changes to the pools configuration.
3397 	 *
3398 	 * Note that after we drop the locks below (zonehash_lock in
3399 	 * particular) other operations such as a zone_getattr call can
3400 	 * now proceed and observe the zone. That is the reason for doing a
3401 	 * state transition to the INITIALIZED state.
3402 	 */
3403 	pool_lock();
3404 	mutex_enter(&cpu_lock);
3405 	mutex_enter(&zonehash_lock);
3406 	zone_uniqid(zone);
3407 	zone_zsd_configure(zone);
3408 	if (pool_state == POOL_ENABLED)
3409 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
3410 	mutex_enter(&zone_status_lock);
3411 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3412 	zone_status_set(zone, ZONE_IS_INITIALIZED);
3413 	mutex_exit(&zone_status_lock);
3414 	mutex_exit(&zonehash_lock);
3415 	mutex_exit(&cpu_lock);
3416 	pool_unlock();
3417 
3418 	/* Now call the create callback for this key */
3419 	zsd_apply_all_keys(zsd_apply_create, zone);
3420 
3421 	/* The callbacks are complete. Mark ZONE_IS_READY */
3422 	mutex_enter(&zone_status_lock);
3423 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3424 	zone_status_set(zone, ZONE_IS_READY);
3425 	mutex_exit(&zone_status_lock);
3426 
3427 	/*
3428 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3429 	 * we launch init, and set the state to running.
3430 	 */
3431 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3432 
3433 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3434 		id_t cid;
3435 
3436 		/*
3437 		 * Ok, this is a little complicated.  We need to grab the
3438 		 * zone's pool's scheduling class ID; note that by now, we
3439 		 * are already bound to a pool if we need to be (zoneadmd
3440 		 * will have done that to us while we're in the READY
3441 		 * state).  *But* the scheduling class for the zone's 'init'
3442 		 * must be explicitly passed to newproc, which doesn't
3443 		 * respect pool bindings.
3444 		 *
3445 		 * We hold the pool_lock across the call to newproc() to
3446 		 * close the obvious race: the pool's scheduling class
3447 		 * could change before we manage to create the LWP with
3448 		 * classid 'cid'.
3449 		 */
3450 		pool_lock();
3451 		if (zone->zone_defaultcid > 0)
3452 			cid = zone->zone_defaultcid;
3453 		else
3454 			cid = pool_get_class(zone->zone_pool);
3455 		if (cid == -1)
3456 			cid = defaultcid;
3457 
3458 		/*
3459 		 * If this fails, zone_boot will ultimately fail.  The
3460 		 * state of the zone will be set to SHUTTING_DOWN-- userland
3461 		 * will have to tear down the zone, and fail, or try again.
3462 		 */
3463 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
3464 		    minclsyspri - 1, &ct)) != 0) {
3465 			mutex_enter(&zone_status_lock);
3466 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3467 			mutex_exit(&zone_status_lock);
3468 		}
3469 		pool_unlock();
3470 	}
3471 
3472 	/*
3473 	 * Wait for zone_destroy() to be called.  This is what we spend
3474 	 * most of our life doing.
3475 	 */
3476 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
3477 
3478 	if (ct)
3479 		/*
3480 		 * At this point the process contract should be empty.
3481 		 * (Though if it isn't, it's not the end of the world.)
3482 		 */
3483 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
3484 
3485 	/*
3486 	 * Allow kcred to be freed when all referring processes
3487 	 * (including this one) go away.  We can't just do this in
3488 	 * zone_free because we need to wait for the zone_cred_ref to
3489 	 * drop to 0 before calling zone_free, and the existence of
3490 	 * zone_kcred will prevent that.  Thus, we call crfree here to
3491 	 * balance the crdup in zone_create.  The crhold calls earlier
3492 	 * in zsched will be dropped when the thread and process exit.
3493 	 */
3494 	crfree(zone->zone_kcred);
3495 	zone->zone_kcred = NULL;
3496 
3497 	exit(CLD_EXITED, 0);
3498 }
3499 
3500 /*
3501  * Helper function to determine if there are any submounts of the
3502  * provided path.  Used to make sure the zone doesn't "inherit" any
3503  * mounts from before it is created.
3504  */
3505 static uint_t
3506 zone_mount_count(const char *rootpath)
3507 {
3508 	vfs_t *vfsp;
3509 	uint_t count = 0;
3510 	size_t rootpathlen = strlen(rootpath);
3511 
3512 	/*
3513 	 * Holding zonehash_lock prevents race conditions with
3514 	 * vfs_list_add()/vfs_list_remove() since we serialize with
3515 	 * zone_find_by_path().
3516 	 */
3517 	ASSERT(MUTEX_HELD(&zonehash_lock));
3518 	/*
3519 	 * The rootpath must end with a '/'
3520 	 */
3521 	ASSERT(rootpath[rootpathlen - 1] == '/');
3522 
3523 	/*
3524 	 * This intentionally does not count the rootpath itself if that
3525 	 * happens to be a mount point.
3526 	 */
3527 	vfs_list_read_lock();
3528 	vfsp = rootvfs;
3529 	do {
3530 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
3531 		    rootpathlen) == 0)
3532 			count++;
3533 		vfsp = vfsp->vfs_next;
3534 	} while (vfsp != rootvfs);
3535 	vfs_list_unlock();
3536 	return (count);
3537 }
3538 
3539 /*
3540  * Helper function to make sure that a zone created on 'rootpath'
3541  * wouldn't end up containing other zones' rootpaths.
3542  */
3543 static boolean_t
3544 zone_is_nested(const char *rootpath)
3545 {
3546 	zone_t *zone;
3547 	size_t rootpathlen = strlen(rootpath);
3548 	size_t len;
3549 
3550 	ASSERT(MUTEX_HELD(&zonehash_lock));
3551 
3552 	/*
3553 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
3554 	 */
3555 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
3556 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
3557 		return (B_TRUE);
3558 
3559 	for (zone = list_head(&zone_active); zone != NULL;
3560 	    zone = list_next(&zone_active, zone)) {
3561 		if (zone == global_zone)
3562 			continue;
3563 		len = strlen(zone->zone_rootpath);
3564 		if (strncmp(rootpath, zone->zone_rootpath,
3565 		    MIN(rootpathlen, len)) == 0)
3566 			return (B_TRUE);
3567 	}
3568 	return (B_FALSE);
3569 }
3570 
3571 static int
3572 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
3573     size_t zone_privssz)
3574 {
3575 	priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
3576 
3577 	if (zone_privssz < sizeof (priv_set_t))
3578 		return (set_errno(ENOMEM));
3579 
3580 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
3581 		kmem_free(privs, sizeof (priv_set_t));
3582 		return (EFAULT);
3583 	}
3584 
3585 	zone->zone_privset = privs;
3586 	return (0);
3587 }
3588 
3589 /*
3590  * We make creative use of nvlists to pass in rctls from userland.  The list is
3591  * a list of the following structures:
3592  *
3593  * (name = rctl_name, value = nvpair_list_array)
3594  *
3595  * Where each element of the nvpair_list_array is of the form:
3596  *
3597  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
3598  * 	(name = "limit", value = uint64_t),
3599  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
3600  */
3601 static int
3602 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
3603 {
3604 	nvpair_t *nvp = NULL;
3605 	nvlist_t *nvl = NULL;
3606 	char *kbuf;
3607 	int error;
3608 	rctl_val_t rv;
3609 
3610 	*nvlp = NULL;
3611 
3612 	if (buflen == 0)
3613 		return (0);
3614 
3615 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
3616 		return (ENOMEM);
3617 	if (copyin(ubuf, kbuf, buflen)) {
3618 		error = EFAULT;
3619 		goto out;
3620 	}
3621 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
3622 		/*
3623 		 * nvl may have been allocated/free'd, but the value set to
3624 		 * non-NULL, so we reset it here.
3625 		 */
3626 		nvl = NULL;
3627 		error = EINVAL;
3628 		goto out;
3629 	}
3630 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3631 		rctl_dict_entry_t *rde;
3632 		rctl_hndl_t hndl;
3633 		nvlist_t **nvlarray;
3634 		uint_t i, nelem;
3635 		char *name;
3636 
3637 		error = EINVAL;
3638 		name = nvpair_name(nvp);
3639 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
3640 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
3641 			goto out;
3642 		}
3643 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
3644 			goto out;
3645 		}
3646 		rde = rctl_dict_lookup_hndl(hndl);
3647 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3648 		ASSERT(error == 0);
3649 		for (i = 0; i < nelem; i++) {
3650 			if (error = nvlist2rctlval(nvlarray[i], &rv))
3651 				goto out;
3652 		}
3653 		if (rctl_invalid_value(rde, &rv)) {
3654 			error = EINVAL;
3655 			goto out;
3656 		}
3657 	}
3658 	error = 0;
3659 	*nvlp = nvl;
3660 out:
3661 	kmem_free(kbuf, buflen);
3662 	if (error && nvl != NULL)
3663 		nvlist_free(nvl);
3664 	return (error);
3665 }
3666 
3667 int
3668 zone_create_error(int er_error, int er_ext, int *er_out) {
3669 	if (er_out != NULL) {
3670 		if (copyout(&er_ext, er_out, sizeof (int))) {
3671 			return (set_errno(EFAULT));
3672 		}
3673 	}
3674 	return (set_errno(er_error));
3675 }
3676 
3677 static int
3678 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
3679 {
3680 	ts_label_t *tsl;
3681 	bslabel_t blab;
3682 
3683 	/* Get label from user */
3684 	if (copyin(lab, &blab, sizeof (blab)) != 0)
3685 		return (EFAULT);
3686 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
3687 	if (tsl == NULL)
3688 		return (ENOMEM);
3689 
3690 	zone->zone_slabel = tsl;
3691 	return (0);
3692 }
3693 
3694 /*
3695  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
3696  */
3697 static int
3698 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
3699 {
3700 	char *kbuf;
3701 	char *dataset, *next;
3702 	zone_dataset_t *zd;
3703 	size_t len;
3704 
3705 	if (ubuf == NULL || buflen == 0)
3706 		return (0);
3707 
3708 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
3709 		return (ENOMEM);
3710 
3711 	if (copyin(ubuf, kbuf, buflen) != 0) {
3712 		kmem_free(kbuf, buflen);
3713 		return (EFAULT);
3714 	}
3715 
3716 	dataset = next = kbuf;
3717 	for (;;) {
3718 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
3719 
3720 		next = strchr(dataset, ',');
3721 
3722 		if (next == NULL)
3723 			len = strlen(dataset);
3724 		else
3725 			len = next - dataset;
3726 
3727 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
3728 		bcopy(dataset, zd->zd_dataset, len);
3729 		zd->zd_dataset[len] = '\0';
3730 
3731 		list_insert_head(&zone->zone_datasets, zd);
3732 
3733 		if (next == NULL)
3734 			break;
3735 
3736 		dataset = next + 1;
3737 	}
3738 
3739 	kmem_free(kbuf, buflen);
3740 	return (0);
3741 }
3742 
3743 /*
3744  * System call to create/initialize a new zone named 'zone_name', rooted
3745  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
3746  * and initialized with the zone-wide rctls described in 'rctlbuf', and
3747  * with labeling set by 'match', 'doi', and 'label'.
3748  *
3749  * If extended error is non-null, we may use it to return more detailed
3750  * error information.
3751  */
3752 static zoneid_t
3753 zone_create(const char *zone_name, const char *zone_root,
3754     const priv_set_t *zone_privs, size_t zone_privssz,
3755     caddr_t rctlbuf, size_t rctlbufsz,
3756     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
3757     int match, uint32_t doi, const bslabel_t *label,
3758     int flags)
3759 {
3760 	struct zsched_arg zarg;
3761 	nvlist_t *rctls = NULL;
3762 	proc_t *pp = curproc;
3763 	zone_t *zone, *ztmp;
3764 	zoneid_t zoneid;
3765 	int error;
3766 	int error2 = 0;
3767 	char *str;
3768 	cred_t *zkcr;
3769 	boolean_t insert_label_hash;
3770 
3771 	if (secpolicy_zone_config(CRED()) != 0)
3772 		return (set_errno(EPERM));
3773 
3774 	/* can't boot zone from within chroot environment */
3775 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
3776 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
3777 		    extended_error));
3778 
3779 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
3780 	zoneid = zone->zone_id = id_alloc(zoneid_space);
3781 	zone->zone_status = ZONE_IS_UNINITIALIZED;
3782 	zone->zone_pool = pool_default;
3783 	zone->zone_pool_mod = gethrtime();
3784 	zone->zone_psetid = ZONE_PS_INVAL;
3785 	zone->zone_ncpus = 0;
3786 	zone->zone_ncpus_online = 0;
3787 	zone->zone_restart_init = B_TRUE;
3788 	zone->zone_brand = &native_brand;
3789 	zone->zone_initname = NULL;
3790 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
3791 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
3792 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
3793 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
3794 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
3795 	    offsetof(struct zsd_entry, zsd_linkage));
3796 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
3797 	    offsetof(zone_dataset_t, zd_linkage));
3798 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
3799 
3800 	if (flags & ZCF_NET_EXCL) {
3801 		zone->zone_flags |= ZF_NET_EXCL;
3802 	}
3803 
3804 	if ((error = zone_set_name(zone, zone_name)) != 0) {
3805 		zone_free(zone);
3806 		return (zone_create_error(error, 0, extended_error));
3807 	}
3808 
3809 	if ((error = zone_set_root(zone, zone_root)) != 0) {
3810 		zone_free(zone);
3811 		return (zone_create_error(error, 0, extended_error));
3812 	}
3813 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
3814 		zone_free(zone);
3815 		return (zone_create_error(error, 0, extended_error));
3816 	}
3817 
3818 	/* initialize node name to be the same as zone name */
3819 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
3820 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
3821 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
3822 
3823 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
3824 	zone->zone_domain[0] = '\0';
3825 	zone->zone_hostid = HW_INVALID_HOSTID;
3826 	zone->zone_shares = 1;
3827 	zone->zone_shmmax = 0;
3828 	zone->zone_ipc.ipcq_shmmni = 0;
3829 	zone->zone_ipc.ipcq_semmni = 0;
3830 	zone->zone_ipc.ipcq_msgmni = 0;
3831 	zone->zone_bootargs = NULL;
3832 	zone->zone_initname =
3833 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
3834 	(void) strcpy(zone->zone_initname, zone_default_initname);
3835 	zone->zone_nlwps = 0;
3836 	zone->zone_nlwps_ctl = INT_MAX;
3837 	zone->zone_locked_mem = 0;
3838 	zone->zone_locked_mem_ctl = UINT64_MAX;
3839 	zone->zone_max_swap = 0;
3840 	zone->zone_max_swap_ctl = UINT64_MAX;
3841 	zone0.zone_lockedmem_kstat = NULL;
3842 	zone0.zone_swapresv_kstat = NULL;
3843 
3844 	/*
3845 	 * Zsched initializes the rctls.
3846 	 */
3847 	zone->zone_rctls = NULL;
3848 
3849 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
3850 		zone_free(zone);
3851 		return (zone_create_error(error, 0, extended_error));
3852 	}
3853 
3854 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
3855 		zone_free(zone);
3856 		return (set_errno(error));
3857 	}
3858 
3859 	/*
3860 	 * Read in the trusted system parameters:
3861 	 * match flag and sensitivity label.
3862 	 */
3863 	zone->zone_match = match;
3864 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
3865 		/* Fail if requested to set doi to anything but system's doi */
3866 		if (doi != 0 && doi != default_doi) {
3867 			zone_free(zone);
3868 			return (set_errno(EINVAL));
3869 		}
3870 		/* Always apply system's doi to the zone */
3871 		error = zone_set_label(zone, label, default_doi);
3872 		if (error != 0) {
3873 			zone_free(zone);
3874 			return (set_errno(error));
3875 		}
3876 		insert_label_hash = B_TRUE;
3877 	} else {
3878 		/* all zones get an admin_low label if system is not labeled */
3879 		zone->zone_slabel = l_admin_low;
3880 		label_hold(l_admin_low);
3881 		insert_label_hash = B_FALSE;
3882 	}
3883 
3884 	/*
3885 	 * Stop all lwps since that's what normally happens as part of fork().
3886 	 * This needs to happen before we grab any locks to avoid deadlock
3887 	 * (another lwp in the process could be waiting for the held lock).
3888 	 */
3889 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
3890 		zone_free(zone);
3891 		if (rctls)
3892 			nvlist_free(rctls);
3893 		return (zone_create_error(error, 0, extended_error));
3894 	}
3895 
3896 	if (block_mounts() == 0) {
3897 		mutex_enter(&pp->p_lock);
3898 		if (curthread != pp->p_agenttp)
3899 			continuelwps(pp);
3900 		mutex_exit(&pp->p_lock);
3901 		zone_free(zone);
3902 		if (rctls)
3903 			nvlist_free(rctls);
3904 		return (zone_create_error(error, 0, extended_error));
3905 	}
3906 
3907 	/*
3908 	 * Set up credential for kernel access.  After this, any errors
3909 	 * should go through the dance in errout rather than calling
3910 	 * zone_free directly.
3911 	 */
3912 	zone->zone_kcred = crdup(kcred);
3913 	crsetzone(zone->zone_kcred, zone);
3914 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
3915 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
3916 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
3917 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
3918 
3919 	mutex_enter(&zonehash_lock);
3920 	/*
3921 	 * Make sure zone doesn't already exist.
3922 	 *
3923 	 * If the system and zone are labeled,
3924 	 * make sure no other zone exists that has the same label.
3925 	 */
3926 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
3927 	    (insert_label_hash &&
3928 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
3929 		zone_status_t status;
3930 
3931 		status = zone_status_get(ztmp);
3932 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
3933 			error = EEXIST;
3934 		else
3935 			error = EBUSY;
3936 
3937 		if (insert_label_hash)
3938 			error2 = ZE_LABELINUSE;
3939 
3940 		goto errout;
3941 	}
3942 
3943 	/*
3944 	 * Don't allow zone creations which would cause one zone's rootpath to
3945 	 * be accessible from that of another (non-global) zone.
3946 	 */
3947 	if (zone_is_nested(zone->zone_rootpath)) {
3948 		error = EBUSY;
3949 		goto errout;
3950 	}
3951 
3952 	ASSERT(zonecount != 0);		/* check for leaks */
3953 	if (zonecount + 1 > maxzones) {
3954 		error = ENOMEM;
3955 		goto errout;
3956 	}
3957 
3958 	if (zone_mount_count(zone->zone_rootpath) != 0) {
3959 		error = EBUSY;
3960 		error2 = ZE_AREMOUNTS;
3961 		goto errout;
3962 	}
3963 
3964 	/*
3965 	 * Zone is still incomplete, but we need to drop all locks while
3966 	 * zsched() initializes this zone's kernel process.  We
3967 	 * optimistically add the zone to the hashtable and associated
3968 	 * lists so a parallel zone_create() doesn't try to create the
3969 	 * same zone.
3970 	 */
3971 	zonecount++;
3972 	(void) mod_hash_insert(zonehashbyid,
3973 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
3974 	    (mod_hash_val_t)(uintptr_t)zone);
3975 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
3976 	(void) strcpy(str, zone->zone_name);
3977 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
3978 	    (mod_hash_val_t)(uintptr_t)zone);
3979 	if (insert_label_hash) {
3980 		(void) mod_hash_insert(zonehashbylabel,
3981 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
3982 		zone->zone_flags |= ZF_HASHED_LABEL;
3983 	}
3984 
3985 	/*
3986 	 * Insert into active list.  At this point there are no 'hold's
3987 	 * on the zone, but everyone else knows not to use it, so we can
3988 	 * continue to use it.  zsched() will do a zone_hold() if the
3989 	 * newproc() is successful.
3990 	 */
3991 	list_insert_tail(&zone_active, zone);
3992 	mutex_exit(&zonehash_lock);
3993 
3994 	zarg.zone = zone;
3995 	zarg.nvlist = rctls;
3996 	/*
3997 	 * The process, task, and project rctls are probably wrong;
3998 	 * we need an interface to get the default values of all rctls,
3999 	 * and initialize zsched appropriately.  I'm not sure that that
4000 	 * makes much of a difference, though.
4001 	 */
4002 	if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) {
4003 		/*
4004 		 * We need to undo all globally visible state.
4005 		 */
4006 		mutex_enter(&zonehash_lock);
4007 		list_remove(&zone_active, zone);
4008 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4009 			ASSERT(zone->zone_slabel != NULL);
4010 			(void) mod_hash_destroy(zonehashbylabel,
4011 			    (mod_hash_key_t)zone->zone_slabel);
4012 		}
4013 		(void) mod_hash_destroy(zonehashbyname,
4014 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4015 		(void) mod_hash_destroy(zonehashbyid,
4016 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4017 		ASSERT(zonecount > 1);
4018 		zonecount--;
4019 		goto errout;
4020 	}
4021 
4022 	/*
4023 	 * Zone creation can't fail from now on.
4024 	 */
4025 
4026 	/*
4027 	 * Create zone kstats
4028 	 */
4029 	zone_kstat_create(zone);
4030 
4031 	/*
4032 	 * Let the other lwps continue.
4033 	 */
4034 	mutex_enter(&pp->p_lock);
4035 	if (curthread != pp->p_agenttp)
4036 		continuelwps(pp);
4037 	mutex_exit(&pp->p_lock);
4038 
4039 	/*
4040 	 * Wait for zsched to finish initializing the zone.
4041 	 */
4042 	zone_status_wait(zone, ZONE_IS_READY);
4043 	/*
4044 	 * The zone is fully visible, so we can let mounts progress.
4045 	 */
4046 	resume_mounts();
4047 	if (rctls)
4048 		nvlist_free(rctls);
4049 
4050 	return (zoneid);
4051 
4052 errout:
4053 	mutex_exit(&zonehash_lock);
4054 	/*
4055 	 * Let the other lwps continue.
4056 	 */
4057 	mutex_enter(&pp->p_lock);
4058 	if (curthread != pp->p_agenttp)
4059 		continuelwps(pp);
4060 	mutex_exit(&pp->p_lock);
4061 
4062 	resume_mounts();
4063 	if (rctls)
4064 		nvlist_free(rctls);
4065 	/*
4066 	 * There is currently one reference to the zone, a cred_ref from
4067 	 * zone_kcred.  To free the zone, we call crfree, which will call
4068 	 * zone_cred_rele, which will call zone_free.
4069 	 */
4070 	ASSERT(zone->zone_cred_ref == 1);	/* for zone_kcred */
4071 	ASSERT(zone->zone_kcred->cr_ref == 1);
4072 	ASSERT(zone->zone_ref == 0);
4073 	zkcr = zone->zone_kcred;
4074 	zone->zone_kcred = NULL;
4075 	crfree(zkcr);				/* triggers call to zone_free */
4076 	return (zone_create_error(error, error2, extended_error));
4077 }
4078 
4079 /*
4080  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4081  * the heavy lifting.  initname is the path to the program to launch
4082  * at the "top" of the zone; if this is NULL, we use the system default,
4083  * which is stored at zone_default_initname.
4084  */
4085 static int
4086 zone_boot(zoneid_t zoneid)
4087 {
4088 	int err;
4089 	zone_t *zone;
4090 
4091 	if (secpolicy_zone_config(CRED()) != 0)
4092 		return (set_errno(EPERM));
4093 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4094 		return (set_errno(EINVAL));
4095 
4096 	mutex_enter(&zonehash_lock);
4097 	/*
4098 	 * Look for zone under hash lock to prevent races with calls to
4099 	 * zone_shutdown, zone_destroy, etc.
4100 	 */
4101 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4102 		mutex_exit(&zonehash_lock);
4103 		return (set_errno(EINVAL));
4104 	}
4105 
4106 	mutex_enter(&zone_status_lock);
4107 	if (zone_status_get(zone) != ZONE_IS_READY) {
4108 		mutex_exit(&zone_status_lock);
4109 		mutex_exit(&zonehash_lock);
4110 		return (set_errno(EINVAL));
4111 	}
4112 	zone_status_set(zone, ZONE_IS_BOOTING);
4113 	mutex_exit(&zone_status_lock);
4114 
4115 	zone_hold(zone);	/* so we can use the zone_t later */
4116 	mutex_exit(&zonehash_lock);
4117 
4118 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4119 		zone_rele(zone);
4120 		return (set_errno(EINTR));
4121 	}
4122 
4123 	/*
4124 	 * Boot (starting init) might have failed, in which case the zone
4125 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4126 	 * be placed in zone->zone_boot_err, and so we return that.
4127 	 */
4128 	err = zone->zone_boot_err;
4129 	zone_rele(zone);
4130 	return (err ? set_errno(err) : 0);
4131 }
4132 
4133 /*
4134  * Kills all user processes in the zone, waiting for them all to exit
4135  * before returning.
4136  */
4137 static int
4138 zone_empty(zone_t *zone)
4139 {
4140 	int waitstatus;
4141 
4142 	/*
4143 	 * We need to drop zonehash_lock before killing all
4144 	 * processes, otherwise we'll deadlock with zone_find_*
4145 	 * which can be called from the exit path.
4146 	 */
4147 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4148 	while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz,
4149 	    ZONE_IS_EMPTY)) == -1) {
4150 		killall(zone->zone_id);
4151 	}
4152 	/*
4153 	 * return EINTR if we were signaled
4154 	 */
4155 	if (waitstatus == 0)
4156 		return (EINTR);
4157 	return (0);
4158 }
4159 
4160 /*
4161  * This function implements the policy for zone visibility.
4162  *
4163  * In standard Solaris, a non-global zone can only see itself.
4164  *
4165  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4166  * it dominates. For this test, the label of the global zone is treated as
4167  * admin_high so it is special-cased instead of being checked for dominance.
4168  *
4169  * Returns true if zone attributes are viewable, false otherwise.
4170  */
4171 static boolean_t
4172 zone_list_access(zone_t *zone)
4173 {
4174 
4175 	if (curproc->p_zone == global_zone ||
4176 	    curproc->p_zone == zone) {
4177 		return (B_TRUE);
4178 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4179 		bslabel_t *curproc_label;
4180 		bslabel_t *zone_label;
4181 
4182 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4183 		zone_label = label2bslabel(zone->zone_slabel);
4184 
4185 		if (zone->zone_id != GLOBAL_ZONEID &&
4186 		    bldominates(curproc_label, zone_label)) {
4187 			return (B_TRUE);
4188 		} else {
4189 			return (B_FALSE);
4190 		}
4191 	} else {
4192 		return (B_FALSE);
4193 	}
4194 }
4195 
4196 /*
4197  * Systemcall to start the zone's halt sequence.  By the time this
4198  * function successfully returns, all user processes and kernel threads
4199  * executing in it will have exited, ZSD shutdown callbacks executed,
4200  * and the zone status set to ZONE_IS_DOWN.
4201  *
4202  * It is possible that the call will interrupt itself if the caller is the
4203  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4204  */
4205 static int
4206 zone_shutdown(zoneid_t zoneid)
4207 {
4208 	int error;
4209 	zone_t *zone;
4210 	zone_status_t status;
4211 
4212 	if (secpolicy_zone_config(CRED()) != 0)
4213 		return (set_errno(EPERM));
4214 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4215 		return (set_errno(EINVAL));
4216 
4217 	/*
4218 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4219 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4220 	 *
4221 	 * e.g. NFS can fail the mount if it determines that the zone
4222 	 * has already begun the shutdown sequence.
4223 	 */
4224 	if (block_mounts() == 0)
4225 		return (set_errno(EINTR));
4226 	mutex_enter(&zonehash_lock);
4227 	/*
4228 	 * Look for zone under hash lock to prevent races with other
4229 	 * calls to zone_shutdown and zone_destroy.
4230 	 */
4231 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4232 		mutex_exit(&zonehash_lock);
4233 		resume_mounts();
4234 		return (set_errno(EINVAL));
4235 	}
4236 	mutex_enter(&zone_status_lock);
4237 	status = zone_status_get(zone);
4238 	/*
4239 	 * Fail if the zone isn't fully initialized yet.
4240 	 */
4241 	if (status < ZONE_IS_READY) {
4242 		mutex_exit(&zone_status_lock);
4243 		mutex_exit(&zonehash_lock);
4244 		resume_mounts();
4245 		return (set_errno(EINVAL));
4246 	}
4247 	/*
4248 	 * If conditions required for zone_shutdown() to return have been met,
4249 	 * return success.
4250 	 */
4251 	if (status >= ZONE_IS_DOWN) {
4252 		mutex_exit(&zone_status_lock);
4253 		mutex_exit(&zonehash_lock);
4254 		resume_mounts();
4255 		return (0);
4256 	}
4257 	/*
4258 	 * If zone_shutdown() hasn't been called before, go through the motions.
4259 	 * If it has, there's nothing to do but wait for the kernel threads to
4260 	 * drain.
4261 	 */
4262 	if (status < ZONE_IS_EMPTY) {
4263 		uint_t ntasks;
4264 
4265 		mutex_enter(&zone->zone_lock);
4266 		if ((ntasks = zone->zone_ntasks) != 1) {
4267 			/*
4268 			 * There's still stuff running.
4269 			 */
4270 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4271 		}
4272 		mutex_exit(&zone->zone_lock);
4273 		if (ntasks == 1) {
4274 			/*
4275 			 * The only way to create another task is through
4276 			 * zone_enter(), which will block until we drop
4277 			 * zonehash_lock.  The zone is empty.
4278 			 */
4279 			if (zone->zone_kthreads == NULL) {
4280 				/*
4281 				 * Skip ahead to ZONE_IS_DOWN
4282 				 */
4283 				zone_status_set(zone, ZONE_IS_DOWN);
4284 			} else {
4285 				zone_status_set(zone, ZONE_IS_EMPTY);
4286 			}
4287 		}
4288 	}
4289 	zone_hold(zone);	/* so we can use the zone_t later */
4290 	mutex_exit(&zone_status_lock);
4291 	mutex_exit(&zonehash_lock);
4292 	resume_mounts();
4293 
4294 	if (error = zone_empty(zone)) {
4295 		zone_rele(zone);
4296 		return (set_errno(error));
4297 	}
4298 	/*
4299 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
4300 	 * longer be notified of changes to the pools configuration, so
4301 	 * in order to not end up with a stale pool pointer, we point
4302 	 * ourselves at the default pool and remove all resource
4303 	 * visibility.  This is especially important as the zone_t may
4304 	 * languish on the deathrow for a very long time waiting for
4305 	 * cred's to drain out.
4306 	 *
4307 	 * This rebinding of the zone can happen multiple times
4308 	 * (presumably due to interrupted or parallel systemcalls)
4309 	 * without any adverse effects.
4310 	 */
4311 	if (pool_lock_intr() != 0) {
4312 		zone_rele(zone);
4313 		return (set_errno(EINTR));
4314 	}
4315 	if (pool_state == POOL_ENABLED) {
4316 		mutex_enter(&cpu_lock);
4317 		zone_pool_set(zone, pool_default);
4318 		/*
4319 		 * The zone no longer needs to be able to see any cpus.
4320 		 */
4321 		zone_pset_set(zone, ZONE_PS_INVAL);
4322 		mutex_exit(&cpu_lock);
4323 	}
4324 	pool_unlock();
4325 
4326 	/*
4327 	 * ZSD shutdown callbacks can be executed multiple times, hence
4328 	 * it is safe to not be holding any locks across this call.
4329 	 */
4330 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4331 
4332 	mutex_enter(&zone_status_lock);
4333 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4334 		zone_status_set(zone, ZONE_IS_DOWN);
4335 	mutex_exit(&zone_status_lock);
4336 
4337 	/*
4338 	 * Wait for kernel threads to drain.
4339 	 */
4340 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4341 		zone_rele(zone);
4342 		return (set_errno(EINTR));
4343 	}
4344 
4345 	/*
4346 	 * Zone can be become down/destroyable even if the above wait
4347 	 * returns EINTR, so any code added here may never execute.
4348 	 * (i.e. don't add code here)
4349 	 */
4350 
4351 	zone_rele(zone);
4352 	return (0);
4353 }
4354 
4355 /*
4356  * Systemcall entry point to finalize the zone halt process.  The caller
4357  * must have already successfully called zone_shutdown().
4358  *
4359  * Upon successful completion, the zone will have been fully destroyed:
4360  * zsched will have exited, destructor callbacks executed, and the zone
4361  * removed from the list of active zones.
4362  */
4363 static int
4364 zone_destroy(zoneid_t zoneid)
4365 {
4366 	uint64_t uniqid;
4367 	zone_t *zone;
4368 	zone_status_t status;
4369 
4370 	if (secpolicy_zone_config(CRED()) != 0)
4371 		return (set_errno(EPERM));
4372 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4373 		return (set_errno(EINVAL));
4374 
4375 	mutex_enter(&zonehash_lock);
4376 	/*
4377 	 * Look for zone under hash lock to prevent races with other
4378 	 * calls to zone_destroy.
4379 	 */
4380 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4381 		mutex_exit(&zonehash_lock);
4382 		return (set_errno(EINVAL));
4383 	}
4384 
4385 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4386 		mutex_exit(&zonehash_lock);
4387 		return (set_errno(EBUSY));
4388 	}
4389 	mutex_enter(&zone_status_lock);
4390 	status = zone_status_get(zone);
4391 	if (status < ZONE_IS_DOWN) {
4392 		mutex_exit(&zone_status_lock);
4393 		mutex_exit(&zonehash_lock);
4394 		return (set_errno(EBUSY));
4395 	} else if (status == ZONE_IS_DOWN) {
4396 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
4397 	}
4398 	mutex_exit(&zone_status_lock);
4399 	zone_hold(zone);
4400 	mutex_exit(&zonehash_lock);
4401 
4402 	/*
4403 	 * wait for zsched to exit
4404 	 */
4405 	zone_status_wait(zone, ZONE_IS_DEAD);
4406 	zone_zsd_callbacks(zone, ZSD_DESTROY);
4407 	zone->zone_netstack = NULL;
4408 	uniqid = zone->zone_uniqid;
4409 	zone_rele(zone);
4410 	zone = NULL;	/* potentially free'd */
4411 
4412 	mutex_enter(&zonehash_lock);
4413 	for (; /* ever */; ) {
4414 		boolean_t unref;
4415 
4416 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
4417 		    zone->zone_uniqid != uniqid) {
4418 			/*
4419 			 * The zone has gone away.  Necessary conditions
4420 			 * are met, so we return success.
4421 			 */
4422 			mutex_exit(&zonehash_lock);
4423 			return (0);
4424 		}
4425 		mutex_enter(&zone->zone_lock);
4426 		unref = ZONE_IS_UNREF(zone);
4427 		mutex_exit(&zone->zone_lock);
4428 		if (unref) {
4429 			/*
4430 			 * There is only one reference to the zone -- that
4431 			 * added when the zone was added to the hashtables --
4432 			 * and things will remain this way until we drop
4433 			 * zonehash_lock... we can go ahead and cleanup the
4434 			 * zone.
4435 			 */
4436 			break;
4437 		}
4438 
4439 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
4440 			/* Signaled */
4441 			mutex_exit(&zonehash_lock);
4442 			return (set_errno(EINTR));
4443 		}
4444 
4445 	}
4446 
4447 	/*
4448 	 * Remove CPU cap for this zone now since we're not going to
4449 	 * fail below this point.
4450 	 */
4451 	cpucaps_zone_remove(zone);
4452 
4453 	/* Get rid of the zone's kstats */
4454 	zone_kstat_delete(zone);
4455 
4456 	/* free brand specific data */
4457 	if (ZONE_IS_BRANDED(zone))
4458 		ZBROP(zone)->b_free_brand_data(zone);
4459 
4460 	/* Say goodbye to brand framework. */
4461 	brand_unregister_zone(zone->zone_brand);
4462 
4463 	/*
4464 	 * It is now safe to let the zone be recreated; remove it from the
4465 	 * lists.  The memory will not be freed until the last cred
4466 	 * reference goes away.
4467 	 */
4468 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
4469 	zonecount--;
4470 	/* remove from active list and hash tables */
4471 	list_remove(&zone_active, zone);
4472 	(void) mod_hash_destroy(zonehashbyname,
4473 	    (mod_hash_key_t)zone->zone_name);
4474 	(void) mod_hash_destroy(zonehashbyid,
4475 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4476 	if (zone->zone_flags & ZF_HASHED_LABEL)
4477 		(void) mod_hash_destroy(zonehashbylabel,
4478 		    (mod_hash_key_t)zone->zone_slabel);
4479 	mutex_exit(&zonehash_lock);
4480 
4481 	/*
4482 	 * Release the root vnode; we're not using it anymore.  Nor should any
4483 	 * other thread that might access it exist.
4484 	 */
4485 	if (zone->zone_rootvp != NULL) {
4486 		VN_RELE(zone->zone_rootvp);
4487 		zone->zone_rootvp = NULL;
4488 	}
4489 
4490 	/* add to deathrow list */
4491 	mutex_enter(&zone_deathrow_lock);
4492 	list_insert_tail(&zone_deathrow, zone);
4493 	mutex_exit(&zone_deathrow_lock);
4494 
4495 	/*
4496 	 * Drop last reference (which was added by zsched()), this will
4497 	 * free the zone unless there are outstanding cred references.
4498 	 */
4499 	zone_rele(zone);
4500 	return (0);
4501 }
4502 
4503 /*
4504  * Systemcall entry point for zone_getattr(2).
4505  */
4506 static ssize_t
4507 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
4508 {
4509 	size_t size;
4510 	int error = 0, err;
4511 	zone_t *zone;
4512 	char *zonepath;
4513 	char *outstr;
4514 	zone_status_t zone_status;
4515 	pid_t initpid;
4516 	boolean_t global = (curzone == global_zone);
4517 	boolean_t inzone = (curzone->zone_id == zoneid);
4518 	ushort_t flags;
4519 
4520 	mutex_enter(&zonehash_lock);
4521 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4522 		mutex_exit(&zonehash_lock);
4523 		return (set_errno(EINVAL));
4524 	}
4525 	zone_status = zone_status_get(zone);
4526 	if (zone_status < ZONE_IS_INITIALIZED) {
4527 		mutex_exit(&zonehash_lock);
4528 		return (set_errno(EINVAL));
4529 	}
4530 	zone_hold(zone);
4531 	mutex_exit(&zonehash_lock);
4532 
4533 	/*
4534 	 * If not in the global zone, don't show information about other zones,
4535 	 * unless the system is labeled and the local zone's label dominates
4536 	 * the other zone.
4537 	 */
4538 	if (!zone_list_access(zone)) {
4539 		zone_rele(zone);
4540 		return (set_errno(EINVAL));
4541 	}
4542 
4543 	switch (attr) {
4544 	case ZONE_ATTR_ROOT:
4545 		if (global) {
4546 			/*
4547 			 * Copy the path to trim the trailing "/" (except for
4548 			 * the global zone).
4549 			 */
4550 			if (zone != global_zone)
4551 				size = zone->zone_rootpathlen - 1;
4552 			else
4553 				size = zone->zone_rootpathlen;
4554 			zonepath = kmem_alloc(size, KM_SLEEP);
4555 			bcopy(zone->zone_rootpath, zonepath, size);
4556 			zonepath[size - 1] = '\0';
4557 		} else {
4558 			if (inzone || !is_system_labeled()) {
4559 				/*
4560 				 * Caller is not in the global zone.
4561 				 * if the query is on the current zone
4562 				 * or the system is not labeled,
4563 				 * just return faked-up path for current zone.
4564 				 */
4565 				zonepath = "/";
4566 				size = 2;
4567 			} else {
4568 				/*
4569 				 * Return related path for current zone.
4570 				 */
4571 				int prefix_len = strlen(zone_prefix);
4572 				int zname_len = strlen(zone->zone_name);
4573 
4574 				size = prefix_len + zname_len + 1;
4575 				zonepath = kmem_alloc(size, KM_SLEEP);
4576 				bcopy(zone_prefix, zonepath, prefix_len);
4577 				bcopy(zone->zone_name, zonepath +
4578 				    prefix_len, zname_len);
4579 				zonepath[size - 1] = '\0';
4580 			}
4581 		}
4582 		if (bufsize > size)
4583 			bufsize = size;
4584 		if (buf != NULL) {
4585 			err = copyoutstr(zonepath, buf, bufsize, NULL);
4586 			if (err != 0 && err != ENAMETOOLONG)
4587 				error = EFAULT;
4588 		}
4589 		if (global || (is_system_labeled() && !inzone))
4590 			kmem_free(zonepath, size);
4591 		break;
4592 
4593 	case ZONE_ATTR_NAME:
4594 		size = strlen(zone->zone_name) + 1;
4595 		if (bufsize > size)
4596 			bufsize = size;
4597 		if (buf != NULL) {
4598 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
4599 			if (err != 0 && err != ENAMETOOLONG)
4600 				error = EFAULT;
4601 		}
4602 		break;
4603 
4604 	case ZONE_ATTR_STATUS:
4605 		/*
4606 		 * Since we're not holding zonehash_lock, the zone status
4607 		 * may be anything; leave it up to userland to sort it out.
4608 		 */
4609 		size = sizeof (zone_status);
4610 		if (bufsize > size)
4611 			bufsize = size;
4612 		zone_status = zone_status_get(zone);
4613 		if (buf != NULL &&
4614 		    copyout(&zone_status, buf, bufsize) != 0)
4615 			error = EFAULT;
4616 		break;
4617 	case ZONE_ATTR_FLAGS:
4618 		size = sizeof (zone->zone_flags);
4619 		if (bufsize > size)
4620 			bufsize = size;
4621 		flags = zone->zone_flags;
4622 		if (buf != NULL &&
4623 		    copyout(&flags, buf, bufsize) != 0)
4624 			error = EFAULT;
4625 		break;
4626 	case ZONE_ATTR_PRIVSET:
4627 		size = sizeof (priv_set_t);
4628 		if (bufsize > size)
4629 			bufsize = size;
4630 		if (buf != NULL &&
4631 		    copyout(zone->zone_privset, buf, bufsize) != 0)
4632 			error = EFAULT;
4633 		break;
4634 	case ZONE_ATTR_UNIQID:
4635 		size = sizeof (zone->zone_uniqid);
4636 		if (bufsize > size)
4637 			bufsize = size;
4638 		if (buf != NULL &&
4639 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
4640 			error = EFAULT;
4641 		break;
4642 	case ZONE_ATTR_POOLID:
4643 		{
4644 			pool_t *pool;
4645 			poolid_t poolid;
4646 
4647 			if (pool_lock_intr() != 0) {
4648 				error = EINTR;
4649 				break;
4650 			}
4651 			pool = zone_pool_get(zone);
4652 			poolid = pool->pool_id;
4653 			pool_unlock();
4654 			size = sizeof (poolid);
4655 			if (bufsize > size)
4656 				bufsize = size;
4657 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
4658 				error = EFAULT;
4659 		}
4660 		break;
4661 	case ZONE_ATTR_SLBL:
4662 		size = sizeof (bslabel_t);
4663 		if (bufsize > size)
4664 			bufsize = size;
4665 		if (zone->zone_slabel == NULL)
4666 			error = EINVAL;
4667 		else if (buf != NULL &&
4668 		    copyout(label2bslabel(zone->zone_slabel), buf,
4669 		    bufsize) != 0)
4670 			error = EFAULT;
4671 		break;
4672 	case ZONE_ATTR_INITPID:
4673 		size = sizeof (initpid);
4674 		if (bufsize > size)
4675 			bufsize = size;
4676 		initpid = zone->zone_proc_initpid;
4677 		if (initpid == -1) {
4678 			error = ESRCH;
4679 			break;
4680 		}
4681 		if (buf != NULL &&
4682 		    copyout(&initpid, buf, bufsize) != 0)
4683 			error = EFAULT;
4684 		break;
4685 	case ZONE_ATTR_BRAND:
4686 		size = strlen(zone->zone_brand->b_name) + 1;
4687 
4688 		if (bufsize > size)
4689 			bufsize = size;
4690 		if (buf != NULL) {
4691 			err = copyoutstr(zone->zone_brand->b_name, buf,
4692 			    bufsize, NULL);
4693 			if (err != 0 && err != ENAMETOOLONG)
4694 				error = EFAULT;
4695 		}
4696 		break;
4697 	case ZONE_ATTR_INITNAME:
4698 		size = strlen(zone->zone_initname) + 1;
4699 		if (bufsize > size)
4700 			bufsize = size;
4701 		if (buf != NULL) {
4702 			err = copyoutstr(zone->zone_initname, buf, bufsize,
4703 			    NULL);
4704 			if (err != 0 && err != ENAMETOOLONG)
4705 				error = EFAULT;
4706 		}
4707 		break;
4708 	case ZONE_ATTR_BOOTARGS:
4709 		if (zone->zone_bootargs == NULL)
4710 			outstr = "";
4711 		else
4712 			outstr = zone->zone_bootargs;
4713 		size = strlen(outstr) + 1;
4714 		if (bufsize > size)
4715 			bufsize = size;
4716 		if (buf != NULL) {
4717 			err = copyoutstr(outstr, buf, bufsize, NULL);
4718 			if (err != 0 && err != ENAMETOOLONG)
4719 				error = EFAULT;
4720 		}
4721 		break;
4722 	case ZONE_ATTR_PHYS_MCAP:
4723 		size = sizeof (zone->zone_phys_mcap);
4724 		if (bufsize > size)
4725 			bufsize = size;
4726 		if (buf != NULL &&
4727 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
4728 			error = EFAULT;
4729 		break;
4730 	case ZONE_ATTR_SCHED_CLASS:
4731 		mutex_enter(&class_lock);
4732 
4733 		if (zone->zone_defaultcid >= loaded_classes)
4734 			outstr = "";
4735 		else
4736 			outstr = sclass[zone->zone_defaultcid].cl_name;
4737 		size = strlen(outstr) + 1;
4738 		if (bufsize > size)
4739 			bufsize = size;
4740 		if (buf != NULL) {
4741 			err = copyoutstr(outstr, buf, bufsize, NULL);
4742 			if (err != 0 && err != ENAMETOOLONG)
4743 				error = EFAULT;
4744 		}
4745 
4746 		mutex_exit(&class_lock);
4747 		break;
4748 	case ZONE_ATTR_HOSTID:
4749 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
4750 		    bufsize == sizeof (zone->zone_hostid)) {
4751 			size = sizeof (zone->zone_hostid);
4752 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
4753 			    bufsize) != 0)
4754 				error = EFAULT;
4755 		} else {
4756 			error = EINVAL;
4757 		}
4758 		break;
4759 	default:
4760 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
4761 			size = bufsize;
4762 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
4763 		} else {
4764 			error = EINVAL;
4765 		}
4766 	}
4767 	zone_rele(zone);
4768 
4769 	if (error)
4770 		return (set_errno(error));
4771 	return ((ssize_t)size);
4772 }
4773 
4774 /*
4775  * Systemcall entry point for zone_setattr(2).
4776  */
4777 /*ARGSUSED*/
4778 static int
4779 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
4780 {
4781 	zone_t *zone;
4782 	zone_status_t zone_status;
4783 	int err;
4784 
4785 	if (secpolicy_zone_config(CRED()) != 0)
4786 		return (set_errno(EPERM));
4787 
4788 	/*
4789 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
4790 	 * global zone.
4791 	 */
4792 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
4793 		return (set_errno(EINVAL));
4794 	}
4795 
4796 	mutex_enter(&zonehash_lock);
4797 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4798 		mutex_exit(&zonehash_lock);
4799 		return (set_errno(EINVAL));
4800 	}
4801 	zone_hold(zone);
4802 	mutex_exit(&zonehash_lock);
4803 
4804 	/*
4805 	 * At present most attributes can only be set on non-running,
4806 	 * non-global zones.
4807 	 */
4808 	zone_status = zone_status_get(zone);
4809 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY)
4810 		goto done;
4811 
4812 	switch (attr) {
4813 	case ZONE_ATTR_INITNAME:
4814 		err = zone_set_initname(zone, (const char *)buf);
4815 		break;
4816 	case ZONE_ATTR_BOOTARGS:
4817 		err = zone_set_bootargs(zone, (const char *)buf);
4818 		break;
4819 	case ZONE_ATTR_BRAND:
4820 		err = zone_set_brand(zone, (const char *)buf);
4821 		break;
4822 	case ZONE_ATTR_PHYS_MCAP:
4823 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
4824 		break;
4825 	case ZONE_ATTR_SCHED_CLASS:
4826 		err = zone_set_sched_class(zone, (const char *)buf);
4827 		break;
4828 	case ZONE_ATTR_HOSTID:
4829 		if (bufsize == sizeof (zone->zone_hostid)) {
4830 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
4831 				err = 0;
4832 			else
4833 				err = EFAULT;
4834 		} else {
4835 			err = EINVAL;
4836 		}
4837 		break;
4838 	default:
4839 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
4840 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
4841 		else
4842 			err = EINVAL;
4843 	}
4844 
4845 done:
4846 	zone_rele(zone);
4847 	return (err != 0 ? set_errno(err) : 0);
4848 }
4849 
4850 /*
4851  * Return zero if the process has at least one vnode mapped in to its
4852  * address space which shouldn't be allowed to change zones.
4853  *
4854  * Also return zero if the process has any shared mappings which reserve
4855  * swap.  This is because the counting for zone.max-swap does not allow swap
4856  * reservation to be shared between zones.  zone swap reservation is counted
4857  * on zone->zone_max_swap.
4858  */
4859 static int
4860 as_can_change_zones(void)
4861 {
4862 	proc_t *pp = curproc;
4863 	struct seg *seg;
4864 	struct as *as = pp->p_as;
4865 	vnode_t *vp;
4866 	int allow = 1;
4867 
4868 	ASSERT(pp->p_as != &kas);
4869 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
4870 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
4871 
4872 		/*
4873 		 * Cannot enter zone with shared anon memory which
4874 		 * reserves swap.  See comment above.
4875 		 */
4876 		if (seg_can_change_zones(seg) == B_FALSE) {
4877 			allow = 0;
4878 			break;
4879 		}
4880 		/*
4881 		 * if we can't get a backing vnode for this segment then skip
4882 		 * it.
4883 		 */
4884 		vp = NULL;
4885 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
4886 			continue;
4887 		if (!vn_can_change_zones(vp)) { /* bail on first match */
4888 			allow = 0;
4889 			break;
4890 		}
4891 	}
4892 	AS_LOCK_EXIT(as, &as->a_lock);
4893 	return (allow);
4894 }
4895 
4896 /*
4897  * Count swap reserved by curproc's address space
4898  */
4899 static size_t
4900 as_swresv(void)
4901 {
4902 	proc_t *pp = curproc;
4903 	struct seg *seg;
4904 	struct as *as = pp->p_as;
4905 	size_t swap = 0;
4906 
4907 	ASSERT(pp->p_as != &kas);
4908 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
4909 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
4910 		swap += seg_swresv(seg);
4911 
4912 	return (swap);
4913 }
4914 
4915 /*
4916  * Systemcall entry point for zone_enter().
4917  *
4918  * The current process is injected into said zone.  In the process
4919  * it will change its project membership, privileges, rootdir/cwd,
4920  * zone-wide rctls, and pool association to match those of the zone.
4921  *
4922  * The first zone_enter() called while the zone is in the ZONE_IS_READY
4923  * state will transition it to ZONE_IS_RUNNING.  Processes may only
4924  * enter a zone that is "ready" or "running".
4925  */
4926 static int
4927 zone_enter(zoneid_t zoneid)
4928 {
4929 	zone_t *zone;
4930 	vnode_t *vp;
4931 	proc_t *pp = curproc;
4932 	contract_t *ct;
4933 	cont_process_t *ctp;
4934 	task_t *tk, *oldtk;
4935 	kproject_t *zone_proj0;
4936 	cred_t *cr, *newcr;
4937 	pool_t *oldpool, *newpool;
4938 	sess_t *sp;
4939 	uid_t uid;
4940 	zone_status_t status;
4941 	int err = 0;
4942 	rctl_entity_p_t e;
4943 	size_t swap;
4944 	kthread_id_t t;
4945 
4946 	if (secpolicy_zone_config(CRED()) != 0)
4947 		return (set_errno(EPERM));
4948 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4949 		return (set_errno(EINVAL));
4950 
4951 	/*
4952 	 * Stop all lwps so we don't need to hold a lock to look at
4953 	 * curproc->p_zone.  This needs to happen before we grab any
4954 	 * locks to avoid deadlock (another lwp in the process could
4955 	 * be waiting for the held lock).
4956 	 */
4957 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
4958 		return (set_errno(EINTR));
4959 
4960 	/*
4961 	 * Make sure we're not changing zones with files open or mapped in
4962 	 * to our address space which shouldn't be changing zones.
4963 	 */
4964 	if (!files_can_change_zones()) {
4965 		err = EBADF;
4966 		goto out;
4967 	}
4968 	if (!as_can_change_zones()) {
4969 		err = EFAULT;
4970 		goto out;
4971 	}
4972 
4973 	mutex_enter(&zonehash_lock);
4974 	if (pp->p_zone != global_zone) {
4975 		mutex_exit(&zonehash_lock);
4976 		err = EINVAL;
4977 		goto out;
4978 	}
4979 
4980 	zone = zone_find_all_by_id(zoneid);
4981 	if (zone == NULL) {
4982 		mutex_exit(&zonehash_lock);
4983 		err = EINVAL;
4984 		goto out;
4985 	}
4986 
4987 	/*
4988 	 * To prevent processes in a zone from holding contracts on
4989 	 * extrazonal resources, and to avoid process contract
4990 	 * memberships which span zones, contract holders and processes
4991 	 * which aren't the sole members of their encapsulating process
4992 	 * contracts are not allowed to zone_enter.
4993 	 */
4994 	ctp = pp->p_ct_process;
4995 	ct = &ctp->conp_contract;
4996 	mutex_enter(&ct->ct_lock);
4997 	mutex_enter(&pp->p_lock);
4998 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
4999 		mutex_exit(&pp->p_lock);
5000 		mutex_exit(&ct->ct_lock);
5001 		mutex_exit(&zonehash_lock);
5002 		err = EINVAL;
5003 		goto out;
5004 	}
5005 
5006 	/*
5007 	 * Moreover, we don't allow processes whose encapsulating
5008 	 * process contracts have inherited extrazonal contracts.
5009 	 * While it would be easier to eliminate all process contracts
5010 	 * with inherited contracts, we need to be able to give a
5011 	 * restarted init (or other zone-penetrating process) its
5012 	 * predecessor's contracts.
5013 	 */
5014 	if (ctp->conp_ninherited != 0) {
5015 		contract_t *next;
5016 		for (next = list_head(&ctp->conp_inherited); next;
5017 		    next = list_next(&ctp->conp_inherited, next)) {
5018 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5019 				mutex_exit(&pp->p_lock);
5020 				mutex_exit(&ct->ct_lock);
5021 				mutex_exit(&zonehash_lock);
5022 				err = EINVAL;
5023 				goto out;
5024 			}
5025 		}
5026 	}
5027 
5028 	mutex_exit(&pp->p_lock);
5029 	mutex_exit(&ct->ct_lock);
5030 
5031 	status = zone_status_get(zone);
5032 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5033 		/*
5034 		 * Can't join
5035 		 */
5036 		mutex_exit(&zonehash_lock);
5037 		err = EINVAL;
5038 		goto out;
5039 	}
5040 
5041 	/*
5042 	 * Make sure new priv set is within the permitted set for caller
5043 	 */
5044 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5045 		mutex_exit(&zonehash_lock);
5046 		err = EPERM;
5047 		goto out;
5048 	}
5049 	/*
5050 	 * We want to momentarily drop zonehash_lock while we optimistically
5051 	 * bind curproc to the pool it should be running in.  This is safe
5052 	 * since the zone can't disappear (we have a hold on it).
5053 	 */
5054 	zone_hold(zone);
5055 	mutex_exit(&zonehash_lock);
5056 
5057 	/*
5058 	 * Grab pool_lock to keep the pools configuration from changing
5059 	 * and to stop ourselves from getting rebound to another pool
5060 	 * until we join the zone.
5061 	 */
5062 	if (pool_lock_intr() != 0) {
5063 		zone_rele(zone);
5064 		err = EINTR;
5065 		goto out;
5066 	}
5067 	ASSERT(secpolicy_pool(CRED()) == 0);
5068 	/*
5069 	 * Bind ourselves to the pool currently associated with the zone.
5070 	 */
5071 	oldpool = curproc->p_pool;
5072 	newpool = zone_pool_get(zone);
5073 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
5074 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
5075 	    POOL_BIND_ALL)) != 0) {
5076 		pool_unlock();
5077 		zone_rele(zone);
5078 		goto out;
5079 	}
5080 
5081 	/*
5082 	 * Grab cpu_lock now; we'll need it later when we call
5083 	 * task_join().
5084 	 */
5085 	mutex_enter(&cpu_lock);
5086 	mutex_enter(&zonehash_lock);
5087 	/*
5088 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5089 	 */
5090 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5091 		/*
5092 		 * Can't join anymore.
5093 		 */
5094 		mutex_exit(&zonehash_lock);
5095 		mutex_exit(&cpu_lock);
5096 		if (pool_state == POOL_ENABLED &&
5097 		    newpool != oldpool)
5098 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
5099 			    POOL_BIND_ALL);
5100 		pool_unlock();
5101 		zone_rele(zone);
5102 		err = EINVAL;
5103 		goto out;
5104 	}
5105 
5106 	/*
5107 	 * a_lock must be held while transfering locked memory and swap
5108 	 * reservation from the global zone to the non global zone because
5109 	 * asynchronous faults on the processes' address space can lock
5110 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5111 	 * segments respectively.
5112 	 */
5113 	AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER);
5114 	swap = as_swresv();
5115 	mutex_enter(&pp->p_lock);
5116 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5117 	/* verify that we do not exceed and task or lwp limits */
5118 	mutex_enter(&zone->zone_nlwps_lock);
5119 	/* add new lwps to zone and zone's proj0 */
5120 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5121 	zone->zone_nlwps += pp->p_lwpcnt;
5122 	/* add 1 task to zone's proj0 */
5123 	zone_proj0->kpj_ntasks += 1;
5124 	mutex_exit(&zone->zone_nlwps_lock);
5125 
5126 	mutex_enter(&zone->zone_mem_lock);
5127 	zone->zone_locked_mem += pp->p_locked_mem;
5128 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5129 	zone->zone_max_swap += swap;
5130 	mutex_exit(&zone->zone_mem_lock);
5131 
5132 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5133 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5134 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5135 
5136 	/* remove lwps from proc's old zone and old project */
5137 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
5138 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5139 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5140 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
5141 
5142 	mutex_enter(&pp->p_zone->zone_mem_lock);
5143 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5144 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5145 	pp->p_zone->zone_max_swap -= swap;
5146 	mutex_exit(&pp->p_zone->zone_mem_lock);
5147 
5148 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5149 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5150 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5151 
5152 	pp->p_flag |= SZONETOP;
5153 	pp->p_zone = zone;
5154 	mutex_exit(&pp->p_lock);
5155 	AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock);
5156 
5157 	/*
5158 	 * Joining the zone cannot fail from now on.
5159 	 *
5160 	 * This means that a lot of the following code can be commonized and
5161 	 * shared with zsched().
5162 	 */
5163 
5164 	/*
5165 	 * If the process contract fmri was inherited, we need to
5166 	 * flag this so that any contract status will not leak
5167 	 * extra zone information, svc_fmri in this case
5168 	 */
5169 	if (ctp->conp_svc_ctid != ct->ct_id) {
5170 		mutex_enter(&ct->ct_lock);
5171 		ctp->conp_svc_zone_enter = ct->ct_id;
5172 		mutex_exit(&ct->ct_lock);
5173 	}
5174 
5175 	/*
5176 	 * Reset the encapsulating process contract's zone.
5177 	 */
5178 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5179 	contract_setzuniqid(ct, zone->zone_uniqid);
5180 
5181 	/*
5182 	 * Create a new task and associate the process with the project keyed
5183 	 * by (projid,zoneid).
5184 	 *
5185 	 * We might as well be in project 0; the global zone's projid doesn't
5186 	 * make much sense in a zone anyhow.
5187 	 *
5188 	 * This also increments zone_ntasks, and returns with p_lock held.
5189 	 */
5190 	tk = task_create(0, zone);
5191 	oldtk = task_join(tk, 0);
5192 	mutex_exit(&cpu_lock);
5193 
5194 	/*
5195 	 * call RCTLOP_SET functions on this proc
5196 	 */
5197 	e.rcep_p.zone = zone;
5198 	e.rcep_t = RCENTITY_ZONE;
5199 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
5200 	    RCD_CALLBACK);
5201 	mutex_exit(&pp->p_lock);
5202 
5203 	/*
5204 	 * We don't need to hold any of zsched's locks here; not only do we know
5205 	 * the process and zone aren't going away, we know its session isn't
5206 	 * changing either.
5207 	 *
5208 	 * By joining zsched's session here, we mimic the behavior in the
5209 	 * global zone of init's sid being the pid of sched.  We extend this
5210 	 * to all zlogin-like zone_enter()'ing processes as well.
5211 	 */
5212 	mutex_enter(&pidlock);
5213 	sp = zone->zone_zsched->p_sessp;
5214 	sess_hold(zone->zone_zsched);
5215 	mutex_enter(&pp->p_lock);
5216 	pgexit(pp);
5217 	sess_rele(pp->p_sessp, B_TRUE);
5218 	pp->p_sessp = sp;
5219 	pgjoin(pp, zone->zone_zsched->p_pidp);
5220 
5221 	/*
5222 	 * If any threads are scheduled to be placed on zone wait queue they
5223 	 * should abandon the idea since the wait queue is changing.
5224 	 * We need to be holding pidlock & p_lock to do this.
5225 	 */
5226 	if ((t = pp->p_tlist) != NULL) {
5227 		do {
5228 			thread_lock(t);
5229 			/*
5230 			 * Kick this thread so that he doesn't sit
5231 			 * on a wrong wait queue.
5232 			 */
5233 			if (ISWAITING(t))
5234 				setrun_locked(t);
5235 
5236 			if (t->t_schedflag & TS_ANYWAITQ)
5237 				t->t_schedflag &= ~ TS_ANYWAITQ;
5238 
5239 			thread_unlock(t);
5240 		} while ((t = t->t_forw) != pp->p_tlist);
5241 	}
5242 
5243 	/*
5244 	 * If there is a default scheduling class for the zone and it is not
5245 	 * the class we are currently in, change all of the threads in the
5246 	 * process to the new class.  We need to be holding pidlock & p_lock
5247 	 * when we call parmsset so this is a good place to do it.
5248 	 */
5249 	if (zone->zone_defaultcid > 0 &&
5250 	    zone->zone_defaultcid != curthread->t_cid) {
5251 		pcparms_t pcparms;
5252 
5253 		pcparms.pc_cid = zone->zone_defaultcid;
5254 		pcparms.pc_clparms[0] = 0;
5255 
5256 		/*
5257 		 * If setting the class fails, we still want to enter the zone.
5258 		 */
5259 		if ((t = pp->p_tlist) != NULL) {
5260 			do {
5261 				(void) parmsset(&pcparms, t);
5262 			} while ((t = t->t_forw) != pp->p_tlist);
5263 		}
5264 	}
5265 
5266 	mutex_exit(&pp->p_lock);
5267 	mutex_exit(&pidlock);
5268 
5269 	mutex_exit(&zonehash_lock);
5270 	/*
5271 	 * We're firmly in the zone; let pools progress.
5272 	 */
5273 	pool_unlock();
5274 	task_rele(oldtk);
5275 	/*
5276 	 * We don't need to retain a hold on the zone since we already
5277 	 * incremented zone_ntasks, so the zone isn't going anywhere.
5278 	 */
5279 	zone_rele(zone);
5280 
5281 	/*
5282 	 * Chroot
5283 	 */
5284 	vp = zone->zone_rootvp;
5285 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
5286 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
5287 
5288 	/*
5289 	 * Change process credentials
5290 	 */
5291 	newcr = cralloc();
5292 	mutex_enter(&pp->p_crlock);
5293 	cr = pp->p_cred;
5294 	crcopy_to(cr, newcr);
5295 	crsetzone(newcr, zone);
5296 	pp->p_cred = newcr;
5297 
5298 	/*
5299 	 * Restrict all process privilege sets to zone limit
5300 	 */
5301 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
5302 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
5303 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
5304 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
5305 	mutex_exit(&pp->p_crlock);
5306 	crset(pp, newcr);
5307 
5308 	/*
5309 	 * Adjust upcount to reflect zone entry.
5310 	 */
5311 	uid = crgetruid(newcr);
5312 	mutex_enter(&pidlock);
5313 	upcount_dec(uid, GLOBAL_ZONEID);
5314 	upcount_inc(uid, zoneid);
5315 	mutex_exit(&pidlock);
5316 
5317 	/*
5318 	 * Set up core file path and content.
5319 	 */
5320 	set_core_defaults();
5321 
5322 out:
5323 	/*
5324 	 * Let the other lwps continue.
5325 	 */
5326 	mutex_enter(&pp->p_lock);
5327 	if (curthread != pp->p_agenttp)
5328 		continuelwps(pp);
5329 	mutex_exit(&pp->p_lock);
5330 
5331 	return (err != 0 ? set_errno(err) : 0);
5332 }
5333 
5334 /*
5335  * Systemcall entry point for zone_list(2).
5336  *
5337  * Processes running in a (non-global) zone only see themselves.
5338  * On labeled systems, they see all zones whose label they dominate.
5339  */
5340 static int
5341 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
5342 {
5343 	zoneid_t *zoneids;
5344 	zone_t *zone, *myzone;
5345 	uint_t user_nzones, real_nzones;
5346 	uint_t domi_nzones;
5347 	int error;
5348 
5349 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
5350 		return (set_errno(EFAULT));
5351 
5352 	myzone = curproc->p_zone;
5353 	if (myzone != global_zone) {
5354 		bslabel_t *mybslab;
5355 
5356 		if (!is_system_labeled()) {
5357 			/* just return current zone */
5358 			real_nzones = domi_nzones = 1;
5359 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
5360 			zoneids[0] = myzone->zone_id;
5361 		} else {
5362 			/* return all zones that are dominated */
5363 			mutex_enter(&zonehash_lock);
5364 			real_nzones = zonecount;
5365 			domi_nzones = 0;
5366 			if (real_nzones > 0) {
5367 				zoneids = kmem_alloc(real_nzones *
5368 				    sizeof (zoneid_t), KM_SLEEP);
5369 				mybslab = label2bslabel(myzone->zone_slabel);
5370 				for (zone = list_head(&zone_active);
5371 				    zone != NULL;
5372 				    zone = list_next(&zone_active, zone)) {
5373 					if (zone->zone_id == GLOBAL_ZONEID)
5374 						continue;
5375 					if (zone != myzone &&
5376 					    (zone->zone_flags & ZF_IS_SCRATCH))
5377 						continue;
5378 					/*
5379 					 * Note that a label always dominates
5380 					 * itself, so myzone is always included
5381 					 * in the list.
5382 					 */
5383 					if (bldominates(mybslab,
5384 					    label2bslabel(zone->zone_slabel))) {
5385 						zoneids[domi_nzones++] =
5386 						    zone->zone_id;
5387 					}
5388 				}
5389 			}
5390 			mutex_exit(&zonehash_lock);
5391 		}
5392 	} else {
5393 		mutex_enter(&zonehash_lock);
5394 		real_nzones = zonecount;
5395 		domi_nzones = 0;
5396 		if (real_nzones > 0) {
5397 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
5398 			    KM_SLEEP);
5399 			for (zone = list_head(&zone_active); zone != NULL;
5400 			    zone = list_next(&zone_active, zone))
5401 				zoneids[domi_nzones++] = zone->zone_id;
5402 			ASSERT(domi_nzones == real_nzones);
5403 		}
5404 		mutex_exit(&zonehash_lock);
5405 	}
5406 
5407 	/*
5408 	 * If user has allocated space for fewer entries than we found, then
5409 	 * return only up to his limit.  Either way, tell him exactly how many
5410 	 * we found.
5411 	 */
5412 	if (domi_nzones < user_nzones)
5413 		user_nzones = domi_nzones;
5414 	error = 0;
5415 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
5416 		error = EFAULT;
5417 	} else if (zoneidlist != NULL && user_nzones != 0) {
5418 		if (copyout(zoneids, zoneidlist,
5419 		    user_nzones * sizeof (zoneid_t)) != 0)
5420 			error = EFAULT;
5421 	}
5422 
5423 	if (real_nzones > 0)
5424 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
5425 
5426 	if (error != 0)
5427 		return (set_errno(error));
5428 	else
5429 		return (0);
5430 }
5431 
5432 /*
5433  * Systemcall entry point for zone_lookup(2).
5434  *
5435  * Non-global zones are only able to see themselves and (on labeled systems)
5436  * the zones they dominate.
5437  */
5438 static zoneid_t
5439 zone_lookup(const char *zone_name)
5440 {
5441 	char *kname;
5442 	zone_t *zone;
5443 	zoneid_t zoneid;
5444 	int err;
5445 
5446 	if (zone_name == NULL) {
5447 		/* return caller's zone id */
5448 		return (getzoneid());
5449 	}
5450 
5451 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
5452 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
5453 		kmem_free(kname, ZONENAME_MAX);
5454 		return (set_errno(err));
5455 	}
5456 
5457 	mutex_enter(&zonehash_lock);
5458 	zone = zone_find_all_by_name(kname);
5459 	kmem_free(kname, ZONENAME_MAX);
5460 	/*
5461 	 * In a non-global zone, can only lookup global and own name.
5462 	 * In Trusted Extensions zone label dominance rules apply.
5463 	 */
5464 	if (zone == NULL ||
5465 	    zone_status_get(zone) < ZONE_IS_READY ||
5466 	    !zone_list_access(zone)) {
5467 		mutex_exit(&zonehash_lock);
5468 		return (set_errno(EINVAL));
5469 	} else {
5470 		zoneid = zone->zone_id;
5471 		mutex_exit(&zonehash_lock);
5472 		return (zoneid);
5473 	}
5474 }
5475 
5476 static int
5477 zone_version(int *version_arg)
5478 {
5479 	int version = ZONE_SYSCALL_API_VERSION;
5480 
5481 	if (copyout(&version, version_arg, sizeof (int)) != 0)
5482 		return (set_errno(EFAULT));
5483 	return (0);
5484 }
5485 
5486 /* ARGSUSED */
5487 long
5488 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
5489 {
5490 	zone_def zs;
5491 
5492 	switch (cmd) {
5493 	case ZONE_CREATE:
5494 		if (get_udatamodel() == DATAMODEL_NATIVE) {
5495 			if (copyin(arg1, &zs, sizeof (zone_def))) {
5496 				return (set_errno(EFAULT));
5497 			}
5498 		} else {
5499 #ifdef _SYSCALL32_IMPL
5500 			zone_def32 zs32;
5501 
5502 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
5503 				return (set_errno(EFAULT));
5504 			}
5505 			zs.zone_name =
5506 			    (const char *)(unsigned long)zs32.zone_name;
5507 			zs.zone_root =
5508 			    (const char *)(unsigned long)zs32.zone_root;
5509 			zs.zone_privs =
5510 			    (const struct priv_set *)
5511 			    (unsigned long)zs32.zone_privs;
5512 			zs.zone_privssz = zs32.zone_privssz;
5513 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
5514 			zs.rctlbufsz = zs32.rctlbufsz;
5515 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
5516 			zs.zfsbufsz = zs32.zfsbufsz;
5517 			zs.extended_error =
5518 			    (int *)(unsigned long)zs32.extended_error;
5519 			zs.match = zs32.match;
5520 			zs.doi = zs32.doi;
5521 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
5522 			zs.flags = zs32.flags;
5523 #else
5524 			panic("get_udatamodel() returned bogus result\n");
5525 #endif
5526 		}
5527 
5528 		return (zone_create(zs.zone_name, zs.zone_root,
5529 		    zs.zone_privs, zs.zone_privssz,
5530 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
5531 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
5532 		    zs.extended_error, zs.match, zs.doi,
5533 		    zs.label, zs.flags));
5534 	case ZONE_BOOT:
5535 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
5536 	case ZONE_DESTROY:
5537 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
5538 	case ZONE_GETATTR:
5539 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
5540 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
5541 	case ZONE_SETATTR:
5542 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
5543 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
5544 	case ZONE_ENTER:
5545 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
5546 	case ZONE_LIST:
5547 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
5548 	case ZONE_SHUTDOWN:
5549 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
5550 	case ZONE_LOOKUP:
5551 		return (zone_lookup((const char *)arg1));
5552 	case ZONE_VERSION:
5553 		return (zone_version((int *)arg1));
5554 	case ZONE_ADD_DATALINK:
5555 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
5556 		    (char *)arg2));
5557 	case ZONE_DEL_DATALINK:
5558 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
5559 		    (char *)arg2));
5560 	case ZONE_CHECK_DATALINK:
5561 		return (zone_check_datalink((zoneid_t *)arg1, (char *)arg2));
5562 	case ZONE_LIST_DATALINK:
5563 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
5564 		    (int *)arg2, (char *)arg3));
5565 	default:
5566 		return (set_errno(EINVAL));
5567 	}
5568 }
5569 
5570 struct zarg {
5571 	zone_t *zone;
5572 	zone_cmd_arg_t arg;
5573 };
5574 
5575 static int
5576 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
5577 {
5578 	char *buf;
5579 	size_t buflen;
5580 	int error;
5581 
5582 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
5583 	buf = kmem_alloc(buflen, KM_SLEEP);
5584 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
5585 	error = door_ki_open(buf, doorp);
5586 	kmem_free(buf, buflen);
5587 	return (error);
5588 }
5589 
5590 static void
5591 zone_release_door(door_handle_t *doorp)
5592 {
5593 	door_ki_rele(*doorp);
5594 	*doorp = NULL;
5595 }
5596 
5597 static void
5598 zone_ki_call_zoneadmd(struct zarg *zargp)
5599 {
5600 	door_handle_t door = NULL;
5601 	door_arg_t darg, save_arg;
5602 	char *zone_name;
5603 	size_t zone_namelen;
5604 	zoneid_t zoneid;
5605 	zone_t *zone;
5606 	zone_cmd_arg_t arg;
5607 	uint64_t uniqid;
5608 	size_t size;
5609 	int error;
5610 	int retry;
5611 
5612 	zone = zargp->zone;
5613 	arg = zargp->arg;
5614 	kmem_free(zargp, sizeof (*zargp));
5615 
5616 	zone_namelen = strlen(zone->zone_name) + 1;
5617 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
5618 	bcopy(zone->zone_name, zone_name, zone_namelen);
5619 	zoneid = zone->zone_id;
5620 	uniqid = zone->zone_uniqid;
5621 	/*
5622 	 * zoneadmd may be down, but at least we can empty out the zone.
5623 	 * We can ignore the return value of zone_empty() since we're called
5624 	 * from a kernel thread and know we won't be delivered any signals.
5625 	 */
5626 	ASSERT(curproc == &p0);
5627 	(void) zone_empty(zone);
5628 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
5629 	zone_rele(zone);
5630 
5631 	size = sizeof (arg);
5632 	darg.rbuf = (char *)&arg;
5633 	darg.data_ptr = (char *)&arg;
5634 	darg.rsize = size;
5635 	darg.data_size = size;
5636 	darg.desc_ptr = NULL;
5637 	darg.desc_num = 0;
5638 
5639 	save_arg = darg;
5640 	/*
5641 	 * Since we're not holding a reference to the zone, any number of
5642 	 * things can go wrong, including the zone disappearing before we get a
5643 	 * chance to talk to zoneadmd.
5644 	 */
5645 	for (retry = 0; /* forever */; retry++) {
5646 		if (door == NULL &&
5647 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
5648 			goto next;
5649 		}
5650 		ASSERT(door != NULL);
5651 
5652 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
5653 		    SIZE_MAX, 0)) == 0) {
5654 			break;
5655 		}
5656 		switch (error) {
5657 		case EINTR:
5658 			/* FALLTHROUGH */
5659 		case EAGAIN:	/* process may be forking */
5660 			/*
5661 			 * Back off for a bit
5662 			 */
5663 			break;
5664 		case EBADF:
5665 			zone_release_door(&door);
5666 			if (zone_lookup_door(zone_name, &door) != 0) {
5667 				/*
5668 				 * zoneadmd may be dead, but it may come back to
5669 				 * life later.
5670 				 */
5671 				break;
5672 			}
5673 			break;
5674 		default:
5675 			cmn_err(CE_WARN,
5676 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
5677 			    error);
5678 			goto out;
5679 		}
5680 next:
5681 		/*
5682 		 * If this isn't the same zone_t that we originally had in mind,
5683 		 * then this is the same as if two kadmin requests come in at
5684 		 * the same time: the first one wins.  This means we lose, so we
5685 		 * bail.
5686 		 */
5687 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
5688 			/*
5689 			 * Problem is solved.
5690 			 */
5691 			break;
5692 		}
5693 		if (zone->zone_uniqid != uniqid) {
5694 			/*
5695 			 * zoneid recycled
5696 			 */
5697 			zone_rele(zone);
5698 			break;
5699 		}
5700 		/*
5701 		 * We could zone_status_timedwait(), but there doesn't seem to
5702 		 * be much point in doing that (plus, it would mean that
5703 		 * zone_free() isn't called until this thread exits).
5704 		 */
5705 		zone_rele(zone);
5706 		delay(hz);
5707 		darg = save_arg;
5708 	}
5709 out:
5710 	if (door != NULL) {
5711 		zone_release_door(&door);
5712 	}
5713 	kmem_free(zone_name, zone_namelen);
5714 	thread_exit();
5715 }
5716 
5717 /*
5718  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
5719  * kadmin().  The caller is a process in the zone.
5720  *
5721  * In order to shutdown the zone, we will hand off control to zoneadmd
5722  * (running in the global zone) via a door.  We do a half-hearted job at
5723  * killing all processes in the zone, create a kernel thread to contact
5724  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
5725  * a form of generation number used to let zoneadmd (as well as
5726  * zone_destroy()) know exactly which zone they're re talking about.
5727  */
5728 int
5729 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
5730 {
5731 	struct zarg *zargp;
5732 	zone_cmd_t zcmd;
5733 	zone_t *zone;
5734 
5735 	zone = curproc->p_zone;
5736 	ASSERT(getzoneid() != GLOBAL_ZONEID);
5737 
5738 	switch (cmd) {
5739 	case A_SHUTDOWN:
5740 		switch (fcn) {
5741 		case AD_HALT:
5742 		case AD_POWEROFF:
5743 			zcmd = Z_HALT;
5744 			break;
5745 		case AD_BOOT:
5746 			zcmd = Z_REBOOT;
5747 			break;
5748 		case AD_IBOOT:
5749 		case AD_SBOOT:
5750 		case AD_SIBOOT:
5751 		case AD_NOSYNC:
5752 			return (ENOTSUP);
5753 		default:
5754 			return (EINVAL);
5755 		}
5756 		break;
5757 	case A_REBOOT:
5758 		zcmd = Z_REBOOT;
5759 		break;
5760 	case A_FTRACE:
5761 	case A_REMOUNT:
5762 	case A_FREEZE:
5763 	case A_DUMP:
5764 	case A_CONFIG:
5765 		return (ENOTSUP);
5766 	default:
5767 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
5768 		return (EINVAL);
5769 	}
5770 
5771 	if (secpolicy_zone_admin(credp, B_FALSE))
5772 		return (EPERM);
5773 	mutex_enter(&zone_status_lock);
5774 
5775 	/*
5776 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
5777 	 * is in the zone.
5778 	 */
5779 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
5780 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
5781 		/*
5782 		 * This zone is already on its way down.
5783 		 */
5784 		mutex_exit(&zone_status_lock);
5785 		return (0);
5786 	}
5787 	/*
5788 	 * Prevent future zone_enter()s
5789 	 */
5790 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
5791 	mutex_exit(&zone_status_lock);
5792 
5793 	/*
5794 	 * Kill everyone now and call zoneadmd later.
5795 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
5796 	 * later.
5797 	 */
5798 	killall(zone->zone_id);
5799 	/*
5800 	 * Now, create the thread to contact zoneadmd and do the rest of the
5801 	 * work.  This thread can't be created in our zone otherwise
5802 	 * zone_destroy() would deadlock.
5803 	 */
5804 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
5805 	zargp->arg.cmd = zcmd;
5806 	zargp->arg.uniqid = zone->zone_uniqid;
5807 	zargp->zone = zone;
5808 	(void) strcpy(zargp->arg.locale, "C");
5809 	/* mdep was already copied in for us by uadmin */
5810 	if (mdep != NULL)
5811 		(void) strlcpy(zargp->arg.bootbuf, mdep,
5812 		    sizeof (zargp->arg.bootbuf));
5813 	zone_hold(zone);
5814 
5815 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
5816 	    TS_RUN, minclsyspri);
5817 	exit(CLD_EXITED, 0);
5818 
5819 	return (EINVAL);
5820 }
5821 
5822 /*
5823  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
5824  * status to ZONE_IS_SHUTTING_DOWN.
5825  *
5826  * This function also shuts down all running zones to ensure that they won't
5827  * fork new processes.
5828  */
5829 void
5830 zone_shutdown_global(void)
5831 {
5832 	zone_t *current_zonep;
5833 
5834 	ASSERT(INGLOBALZONE(curproc));
5835 	mutex_enter(&zonehash_lock);
5836 	mutex_enter(&zone_status_lock);
5837 
5838 	/* Modify the global zone's status first. */
5839 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
5840 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
5841 
5842 	/*
5843 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
5844 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
5845 	 * could cause assertions to fail (e.g., assertions about a zone's
5846 	 * state during initialization, readying, or booting) or produce races.
5847 	 * We'll let threads continue to initialize and ready new zones: they'll
5848 	 * fail to boot the new zones when they see that the global zone is
5849 	 * shutting down.
5850 	 */
5851 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
5852 	    current_zonep = list_next(&zone_active, current_zonep)) {
5853 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
5854 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
5855 	}
5856 	mutex_exit(&zone_status_lock);
5857 	mutex_exit(&zonehash_lock);
5858 }
5859 
5860 /*
5861  * Returns true if the named dataset is visible in the current zone.
5862  * The 'write' parameter is set to 1 if the dataset is also writable.
5863  */
5864 int
5865 zone_dataset_visible(const char *dataset, int *write)
5866 {
5867 	zone_dataset_t *zd;
5868 	size_t len;
5869 	zone_t *zone = curproc->p_zone;
5870 
5871 	if (dataset[0] == '\0')
5872 		return (0);
5873 
5874 	/*
5875 	 * Walk the list once, looking for datasets which match exactly, or
5876 	 * specify a dataset underneath an exported dataset.  If found, return
5877 	 * true and note that it is writable.
5878 	 */
5879 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
5880 	    zd = list_next(&zone->zone_datasets, zd)) {
5881 
5882 		len = strlen(zd->zd_dataset);
5883 		if (strlen(dataset) >= len &&
5884 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
5885 		    (dataset[len] == '\0' || dataset[len] == '/' ||
5886 		    dataset[len] == '@')) {
5887 			if (write)
5888 				*write = 1;
5889 			return (1);
5890 		}
5891 	}
5892 
5893 	/*
5894 	 * Walk the list a second time, searching for datasets which are parents
5895 	 * of exported datasets.  These should be visible, but read-only.
5896 	 *
5897 	 * Note that we also have to support forms such as 'pool/dataset/', with
5898 	 * a trailing slash.
5899 	 */
5900 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
5901 	    zd = list_next(&zone->zone_datasets, zd)) {
5902 
5903 		len = strlen(dataset);
5904 		if (dataset[len - 1] == '/')
5905 			len--;	/* Ignore trailing slash */
5906 		if (len < strlen(zd->zd_dataset) &&
5907 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
5908 		    zd->zd_dataset[len] == '/') {
5909 			if (write)
5910 				*write = 0;
5911 			return (1);
5912 		}
5913 	}
5914 
5915 	return (0);
5916 }
5917 
5918 /*
5919  * zone_find_by_any_path() -
5920  *
5921  * kernel-private routine similar to zone_find_by_path(), but which
5922  * effectively compares against zone paths rather than zonerootpath
5923  * (i.e., the last component of zonerootpaths, which should be "root/",
5924  * are not compared.)  This is done in order to accurately identify all
5925  * paths, whether zone-visible or not, including those which are parallel
5926  * to /root/, such as /dev/, /home/, etc...
5927  *
5928  * If the specified path does not fall under any zone path then global
5929  * zone is returned.
5930  *
5931  * The treat_abs parameter indicates whether the path should be treated as
5932  * an absolute path although it does not begin with "/".  (This supports
5933  * nfs mount syntax such as host:any/path.)
5934  *
5935  * The caller is responsible for zone_rele of the returned zone.
5936  */
5937 zone_t *
5938 zone_find_by_any_path(const char *path, boolean_t treat_abs)
5939 {
5940 	zone_t *zone;
5941 	int path_offset = 0;
5942 
5943 	if (path == NULL) {
5944 		zone_hold(global_zone);
5945 		return (global_zone);
5946 	}
5947 
5948 	if (*path != '/') {
5949 		ASSERT(treat_abs);
5950 		path_offset = 1;
5951 	}
5952 
5953 	mutex_enter(&zonehash_lock);
5954 	for (zone = list_head(&zone_active); zone != NULL;
5955 	    zone = list_next(&zone_active, zone)) {
5956 		char	*c;
5957 		size_t	pathlen;
5958 		char *rootpath_start;
5959 
5960 		if (zone == global_zone)	/* skip global zone */
5961 			continue;
5962 
5963 		/* scan backwards to find start of last component */
5964 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
5965 		do {
5966 			c--;
5967 		} while (*c != '/');
5968 
5969 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
5970 		rootpath_start = (zone->zone_rootpath + path_offset);
5971 		if (strncmp(path, rootpath_start, pathlen) == 0)
5972 			break;
5973 	}
5974 	if (zone == NULL)
5975 		zone = global_zone;
5976 	zone_hold(zone);
5977 	mutex_exit(&zonehash_lock);
5978 	return (zone);
5979 }
5980 
5981 /* List of data link names which are accessible from the zone */
5982 struct dlnamelist {
5983 	char			dlnl_name[LIFNAMSIZ];
5984 	struct dlnamelist	*dlnl_next;
5985 };
5986 
5987 
5988 /*
5989  * Check whether the datalink name (dlname) itself is present.
5990  * Return true if found.
5991  */
5992 static boolean_t
5993 zone_dlname(zone_t *zone, char *dlname)
5994 {
5995 	struct dlnamelist *dlnl;
5996 	boolean_t found = B_FALSE;
5997 
5998 	mutex_enter(&zone->zone_lock);
5999 	for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) {
6000 		if (strncmp(dlnl->dlnl_name, dlname, LIFNAMSIZ) == 0) {
6001 			found = B_TRUE;
6002 			break;
6003 		}
6004 	}
6005 	mutex_exit(&zone->zone_lock);
6006 	return (found);
6007 }
6008 
6009 /*
6010  * Add an data link name for the zone. Does not check for duplicates.
6011  */
6012 static int
6013 zone_add_datalink(zoneid_t zoneid, char *dlname)
6014 {
6015 	struct dlnamelist *dlnl;
6016 	zone_t *zone;
6017 	zone_t *thiszone;
6018 	int err;
6019 
6020 	dlnl = kmem_zalloc(sizeof (struct dlnamelist), KM_SLEEP);
6021 	if ((err = copyinstr(dlname, dlnl->dlnl_name, LIFNAMSIZ, NULL)) != 0) {
6022 		kmem_free(dlnl, sizeof (struct dlnamelist));
6023 		return (set_errno(err));
6024 	}
6025 
6026 	thiszone = zone_find_by_id(zoneid);
6027 	if (thiszone == NULL) {
6028 		kmem_free(dlnl, sizeof (struct dlnamelist));
6029 		return (set_errno(ENXIO));
6030 	}
6031 
6032 	/*
6033 	 * Verify that the datalink name isn't already used by a different
6034 	 * zone while allowing duplicate entries for the same zone (e.g. due
6035 	 * to both using IPv4 and IPv6 on an interface)
6036 	 */
6037 	mutex_enter(&zonehash_lock);
6038 	for (zone = list_head(&zone_active); zone != NULL;
6039 	    zone = list_next(&zone_active, zone)) {
6040 		if (zone->zone_id == zoneid)
6041 			continue;
6042 
6043 		if (zone_dlname(zone, dlnl->dlnl_name)) {
6044 			mutex_exit(&zonehash_lock);
6045 			zone_rele(thiszone);
6046 			kmem_free(dlnl, sizeof (struct dlnamelist));
6047 			return (set_errno(EPERM));
6048 		}
6049 	}
6050 	mutex_enter(&thiszone->zone_lock);
6051 	dlnl->dlnl_next = thiszone->zone_dl_list;
6052 	thiszone->zone_dl_list = dlnl;
6053 	mutex_exit(&thiszone->zone_lock);
6054 	mutex_exit(&zonehash_lock);
6055 	zone_rele(thiszone);
6056 	return (0);
6057 }
6058 
6059 static int
6060 zone_remove_datalink(zoneid_t zoneid, char *dlname)
6061 {
6062 	struct dlnamelist *dlnl, *odlnl, **dlnlp;
6063 	zone_t *zone;
6064 	int err;
6065 
6066 	dlnl = kmem_zalloc(sizeof (struct dlnamelist), KM_SLEEP);
6067 	if ((err = copyinstr(dlname, dlnl->dlnl_name, LIFNAMSIZ, NULL)) != 0) {
6068 		kmem_free(dlnl, sizeof (struct dlnamelist));
6069 		return (set_errno(err));
6070 	}
6071 	zone = zone_find_by_id(zoneid);
6072 	if (zone == NULL) {
6073 		kmem_free(dlnl, sizeof (struct dlnamelist));
6074 		return (set_errno(EINVAL));
6075 	}
6076 
6077 	mutex_enter(&zone->zone_lock);
6078 	/* Look for match */
6079 	dlnlp = &zone->zone_dl_list;
6080 	while (*dlnlp != NULL) {
6081 		if (strncmp(dlnl->dlnl_name, (*dlnlp)->dlnl_name,
6082 		    LIFNAMSIZ) == 0)
6083 			goto found;
6084 		dlnlp = &((*dlnlp)->dlnl_next);
6085 	}
6086 	mutex_exit(&zone->zone_lock);
6087 	zone_rele(zone);
6088 	kmem_free(dlnl, sizeof (struct dlnamelist));
6089 	return (set_errno(ENXIO));
6090 
6091 found:
6092 	odlnl = *dlnlp;
6093 	*dlnlp = (*dlnlp)->dlnl_next;
6094 	kmem_free(odlnl, sizeof (struct dlnamelist));
6095 
6096 	mutex_exit(&zone->zone_lock);
6097 	zone_rele(zone);
6098 	kmem_free(dlnl, sizeof (struct dlnamelist));
6099 	return (0);
6100 }
6101 
6102 /*
6103  * Using the zoneidp as ALL_ZONES, we can lookup which zone is using datalink
6104  * name (dlname); otherwise we just check if the specified zoneidp has access
6105  * to the datalink name.
6106  */
6107 static int
6108 zone_check_datalink(zoneid_t *zoneidp, char *dlname)
6109 {
6110 	zoneid_t id;
6111 	char *dln;
6112 	zone_t *zone;
6113 	int err = 0;
6114 	boolean_t allzones = B_FALSE;
6115 
6116 	if (copyin(zoneidp, &id, sizeof (id)) != 0) {
6117 		return (set_errno(EFAULT));
6118 	}
6119 	dln = kmem_zalloc(LIFNAMSIZ, KM_SLEEP);
6120 	if ((err = copyinstr(dlname, dln, LIFNAMSIZ, NULL)) != 0) {
6121 		kmem_free(dln, LIFNAMSIZ);
6122 		return (set_errno(err));
6123 	}
6124 
6125 	if (id == ALL_ZONES)
6126 		allzones = B_TRUE;
6127 
6128 	/*
6129 	 * Check whether datalink name is already used.
6130 	 */
6131 	mutex_enter(&zonehash_lock);
6132 	for (zone = list_head(&zone_active); zone != NULL;
6133 	    zone = list_next(&zone_active, zone)) {
6134 		if (allzones || (id == zone->zone_id)) {
6135 			if (!zone_dlname(zone, dln))
6136 				continue;
6137 			if (allzones)
6138 				err = copyout(&zone->zone_id, zoneidp,
6139 				    sizeof (*zoneidp));
6140 
6141 			mutex_exit(&zonehash_lock);
6142 			kmem_free(dln, LIFNAMSIZ);
6143 			return (err ? set_errno(EFAULT) : 0);
6144 		}
6145 	}
6146 
6147 	/* datalink name is not found in any active zone. */
6148 	mutex_exit(&zonehash_lock);
6149 	kmem_free(dln, LIFNAMSIZ);
6150 	return (set_errno(ENXIO));
6151 }
6152 
6153 /*
6154  * Get the names of the datalinks assigned to a zone.
6155  * Here *nump is the number of datalinks, and the assumption
6156  * is that the caller will guarantee that the the supplied buffer is
6157  * big enough to hold at least #*nump datalink names, that is,
6158  * LIFNAMSIZ X *nump
6159  * On return, *nump will be the "new" number of datalinks, if it
6160  * ever changed.
6161  */
6162 static int
6163 zone_list_datalink(zoneid_t zoneid, int *nump, char *buf)
6164 {
6165 	int num, dlcount;
6166 	zone_t *zone;
6167 	struct dlnamelist *dlnl;
6168 	char *ptr;
6169 
6170 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6171 		return (set_errno(EFAULT));
6172 
6173 	zone = zone_find_by_id(zoneid);
6174 	if (zone == NULL) {
6175 		return (set_errno(ENXIO));
6176 	}
6177 
6178 	num = 0;
6179 	mutex_enter(&zone->zone_lock);
6180 	ptr = buf;
6181 	for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) {
6182 		/*
6183 		 * If the list changed and the new number is bigger
6184 		 * than what the caller supplied, just count, don't
6185 		 * do copyout
6186 		 */
6187 		if (++num > dlcount)
6188 			continue;
6189 		if (copyout(dlnl->dlnl_name, ptr, LIFNAMSIZ) != 0) {
6190 			mutex_exit(&zone->zone_lock);
6191 			zone_rele(zone);
6192 			return (set_errno(EFAULT));
6193 		}
6194 		ptr += LIFNAMSIZ;
6195 	}
6196 	mutex_exit(&zone->zone_lock);
6197 	zone_rele(zone);
6198 
6199 	/* Increased or decreased, caller should be notified. */
6200 	if (num != dlcount) {
6201 		if (copyout(&num, nump, sizeof (num)) != 0) {
6202 			return (set_errno(EFAULT));
6203 		}
6204 	}
6205 	return (0);
6206 }
6207 
6208 /*
6209  * Public interface for looking up a zone by zoneid. It's a customized version
6210  * for netstack_zone_create(). It can only be called from the zsd create
6211  * callbacks, since it doesn't have reference on the zone structure hence if
6212  * it is called elsewhere the zone could disappear after the zonehash_lock
6213  * is dropped.
6214  *
6215  * Furthermore it
6216  * 1. Doesn't check the status of the zone.
6217  * 2. It will be called even before zone_init is called, in that case the
6218  *    address of zone0 is returned directly, and netstack_zone_create()
6219  *    will only assign a value to zone0.zone_netstack, won't break anything.
6220  * 3. Returns without the zone being held.
6221  */
6222 zone_t *
6223 zone_find_by_id_nolock(zoneid_t zoneid)
6224 {
6225 	zone_t *zone;
6226 
6227 	mutex_enter(&zonehash_lock);
6228 	if (zonehashbyid == NULL)
6229 		zone = &zone0;
6230 	else
6231 		zone = zone_find_all_by_id(zoneid);
6232 	mutex_exit(&zonehash_lock);
6233 	return (zone);
6234 }
6235 
6236 /*
6237  * Walk the datalinks for a given zone
6238  */
6239 int
6240 zone_datalink_walk(zoneid_t zoneid, int (*cb)(const char *, void *), void *data)
6241 {
6242 	zone_t *zone;
6243 	struct dlnamelist *dlnl;
6244 	int ret = 0;
6245 
6246 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6247 		return (ENOENT);
6248 
6249 	mutex_enter(&zone->zone_lock);
6250 	for (dlnl = zone->zone_dl_list; dlnl != NULL; dlnl = dlnl->dlnl_next) {
6251 		if ((ret = (*cb)(dlnl->dlnl_name, data)) != 0)
6252 			break;
6253 	}
6254 	mutex_exit(&zone->zone_lock);
6255 	zone_rele(zone);
6256 	return (ret);
6257 }
6258