1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2013, Joyent Inc. All rights reserved. 25 */ 26 27 /* 28 * Zones 29 * 30 * A zone is a named collection of processes, namespace constraints, 31 * and other system resources which comprise a secure and manageable 32 * application containment facility. 33 * 34 * Zones (represented by the reference counted zone_t) are tracked in 35 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 36 * (zoneid_t) are used to track zone association. Zone IDs are 37 * dynamically generated when the zone is created; if a persistent 38 * identifier is needed (core files, accounting logs, audit trail, 39 * etc.), the zone name should be used. 40 * 41 * 42 * Global Zone: 43 * 44 * The global zone (zoneid 0) is automatically associated with all 45 * system resources that have not been bound to a user-created zone. 46 * This means that even systems where zones are not in active use 47 * have a global zone, and all processes, mounts, etc. are 48 * associated with that zone. The global zone is generally 49 * unconstrained in terms of privileges and access, though the usual 50 * credential and privilege based restrictions apply. 51 * 52 * 53 * Zone States: 54 * 55 * The states in which a zone may be in and the transitions are as 56 * follows: 57 * 58 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 59 * initialized zone is added to the list of active zones on the system but 60 * isn't accessible. 61 * 62 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 63 * not yet completed. Not possible to enter the zone, but attributes can 64 * be retrieved. 65 * 66 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 67 * ready. The zone is made visible after the ZSD constructor callbacks are 68 * executed. A zone remains in this state until it transitions into 69 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 70 * 71 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 72 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 73 * state. 74 * 75 * ZONE_IS_RUNNING: The zone is open for business: zsched has 76 * successfully started init. A zone remains in this state until 77 * zone_shutdown() is called. 78 * 79 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 80 * killing all processes running in the zone. The zone remains 81 * in this state until there are no more user processes running in the zone. 82 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 83 * Since zone_shutdown() is restartable, it may be called successfully 84 * multiple times for the same zone_t. Setting of the zone's state to 85 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 86 * the zone's status without worrying about it being a moving target. 87 * 88 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 89 * are no more user processes in the zone. The zone remains in this 90 * state until there are no more kernel threads associated with the 91 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 92 * fail. 93 * 94 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 95 * have exited. zone_shutdown() returns. Henceforth it is not possible to 96 * join the zone or create kernel threads therein. 97 * 98 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 99 * remains in this state until zsched exits. Calls to zone_find_by_*() 100 * return NULL from now on. 101 * 102 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 103 * processes or threads doing work on behalf of the zone. The zone is 104 * removed from the list of active zones. zone_destroy() returns, and 105 * the zone can be recreated. 106 * 107 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 108 * callbacks are executed, and all memory associated with the zone is 109 * freed. 110 * 111 * Threads can wait for the zone to enter a requested state by using 112 * zone_status_wait() or zone_status_timedwait() with the desired 113 * state passed in as an argument. Zone state transitions are 114 * uni-directional; it is not possible to move back to an earlier state. 115 * 116 * 117 * Zone-Specific Data: 118 * 119 * Subsystems needing to maintain zone-specific data can store that 120 * data using the ZSD mechanism. This provides a zone-specific data 121 * store, similar to thread-specific data (see pthread_getspecific(3C) 122 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 123 * to register callbacks to be invoked when a zone is created, shut 124 * down, or destroyed. This can be used to initialize zone-specific 125 * data for new zones and to clean up when zones go away. 126 * 127 * 128 * Data Structures: 129 * 130 * The per-zone structure (zone_t) is reference counted, and freed 131 * when all references are released. zone_hold and zone_rele can be 132 * used to adjust the reference count. In addition, reference counts 133 * associated with the cred_t structure are tracked separately using 134 * zone_cred_hold and zone_cred_rele. 135 * 136 * Pointers to active zone_t's are stored in two hash tables; one 137 * for searching by id, the other for searching by name. Lookups 138 * can be performed on either basis, using zone_find_by_id and 139 * zone_find_by_name. Both return zone_t pointers with the zone 140 * held, so zone_rele should be called when the pointer is no longer 141 * needed. Zones can also be searched by path; zone_find_by_path 142 * returns the zone with which a path name is associated (global 143 * zone if the path is not within some other zone's file system 144 * hierarchy). This currently requires iterating through each zone, 145 * so it is slower than an id or name search via a hash table. 146 * 147 * 148 * Locking: 149 * 150 * zonehash_lock: This is a top-level global lock used to protect the 151 * zone hash tables and lists. Zones cannot be created or destroyed 152 * while this lock is held. 153 * zone_status_lock: This is a global lock protecting zone state. 154 * Zones cannot change state while this lock is held. It also 155 * protects the list of kernel threads associated with a zone. 156 * zone_lock: This is a per-zone lock used to protect several fields of 157 * the zone_t (see <sys/zone.h> for details). In addition, holding 158 * this lock means that the zone cannot go away. 159 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 160 * related to the zone.max-lwps rctl. 161 * zone_mem_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-locked-memory and zone.max-swap rctls. 163 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 164 * currently just max_lofi 165 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 166 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 167 * list (a list of zones in the ZONE_IS_DEAD state). 168 * 169 * Ordering requirements: 170 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 171 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 172 * 173 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 174 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 175 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 176 * 177 * Blocking memory allocations are permitted while holding any of the 178 * zone locks. 179 * 180 * 181 * System Call Interface: 182 * 183 * The zone subsystem can be managed and queried from user level with 184 * the following system calls (all subcodes of the primary "zone" 185 * system call): 186 * - zone_create: creates a zone with selected attributes (name, 187 * root path, privileges, resource controls, ZFS datasets) 188 * - zone_enter: allows the current process to enter a zone 189 * - zone_getattr: reports attributes of a zone 190 * - zone_setattr: set attributes of a zone 191 * - zone_boot: set 'init' running for the zone 192 * - zone_list: lists all zones active in the system 193 * - zone_lookup: looks up zone id based on name 194 * - zone_shutdown: initiates shutdown process (see states above) 195 * - zone_destroy: completes shutdown process (see states above) 196 * 197 */ 198 199 #include <sys/priv_impl.h> 200 #include <sys/cred.h> 201 #include <c2/audit.h> 202 #include <sys/debug.h> 203 #include <sys/file.h> 204 #include <sys/kmem.h> 205 #include <sys/kstat.h> 206 #include <sys/mutex.h> 207 #include <sys/note.h> 208 #include <sys/pathname.h> 209 #include <sys/proc.h> 210 #include <sys/project.h> 211 #include <sys/sysevent.h> 212 #include <sys/task.h> 213 #include <sys/systm.h> 214 #include <sys/types.h> 215 #include <sys/utsname.h> 216 #include <sys/vnode.h> 217 #include <sys/vfs.h> 218 #include <sys/systeminfo.h> 219 #include <sys/policy.h> 220 #include <sys/cred_impl.h> 221 #include <sys/contract_impl.h> 222 #include <sys/contract/process_impl.h> 223 #include <sys/class.h> 224 #include <sys/pool.h> 225 #include <sys/pool_pset.h> 226 #include <sys/pset.h> 227 #include <sys/strlog.h> 228 #include <sys/sysmacros.h> 229 #include <sys/callb.h> 230 #include <sys/vmparam.h> 231 #include <sys/corectl.h> 232 #include <sys/ipc_impl.h> 233 #include <sys/klpd.h> 234 235 #include <sys/door.h> 236 #include <sys/cpuvar.h> 237 #include <sys/sdt.h> 238 239 #include <sys/uadmin.h> 240 #include <sys/session.h> 241 #include <sys/cmn_err.h> 242 #include <sys/modhash.h> 243 #include <sys/sunddi.h> 244 #include <sys/nvpair.h> 245 #include <sys/rctl.h> 246 #include <sys/fss.h> 247 #include <sys/brand.h> 248 #include <sys/zone.h> 249 #include <net/if.h> 250 #include <sys/cpucaps.h> 251 #include <vm/seg.h> 252 #include <sys/mac.h> 253 254 /* 255 * This constant specifies the number of seconds that threads waiting for 256 * subsystems to release a zone's general-purpose references will wait before 257 * they log the zone's reference counts. The constant's value shouldn't 258 * be so small that reference counts are unnecessarily reported for zones 259 * whose references are slowly released. On the other hand, it shouldn't be so 260 * large that users reboot their systems out of frustration over hung zones 261 * before the system logs the zones' reference counts. 262 */ 263 #define ZONE_DESTROY_TIMEOUT_SECS 60 264 265 /* List of data link IDs which are accessible from the zone */ 266 typedef struct zone_dl { 267 datalink_id_t zdl_id; 268 nvlist_t *zdl_net; 269 list_node_t zdl_linkage; 270 } zone_dl_t; 271 272 /* 273 * cv used to signal that all references to the zone have been released. This 274 * needs to be global since there may be multiple waiters, and the first to 275 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 276 */ 277 static kcondvar_t zone_destroy_cv; 278 /* 279 * Lock used to serialize access to zone_cv. This could have been per-zone, 280 * but then we'd need another lock for zone_destroy_cv, and why bother? 281 */ 282 static kmutex_t zone_status_lock; 283 284 /* 285 * ZSD-related global variables. 286 */ 287 static kmutex_t zsd_key_lock; /* protects the following two */ 288 /* 289 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 290 */ 291 static zone_key_t zsd_keyval = 0; 292 /* 293 * Global list of registered keys. We use this when a new zone is created. 294 */ 295 static list_t zsd_registered_keys; 296 297 int zone_hash_size = 256; 298 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 299 static kmutex_t zonehash_lock; 300 static uint_t zonecount; 301 static id_space_t *zoneid_space; 302 303 /* 304 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 305 * kernel proper runs, and which manages all other zones. 306 * 307 * Although not declared as static, the variable "zone0" should not be used 308 * except for by code that needs to reference the global zone early on in boot, 309 * before it is fully initialized. All other consumers should use 310 * 'global_zone'. 311 */ 312 zone_t zone0; 313 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 314 315 /* 316 * List of active zones, protected by zonehash_lock. 317 */ 318 static list_t zone_active; 319 320 /* 321 * List of destroyed zones that still have outstanding cred references. 322 * Used for debugging. Uses a separate lock to avoid lock ordering 323 * problems in zone_free. 324 */ 325 static list_t zone_deathrow; 326 static kmutex_t zone_deathrow_lock; 327 328 /* number of zones is limited by virtual interface limit in IP */ 329 uint_t maxzones = 8192; 330 331 /* Event channel to sent zone state change notifications */ 332 evchan_t *zone_event_chan; 333 334 /* 335 * This table holds the mapping from kernel zone states to 336 * states visible in the state notification API. 337 * The idea is that we only expose "obvious" states and 338 * do not expose states which are just implementation details. 339 */ 340 const char *zone_status_table[] = { 341 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 342 ZONE_EVENT_INITIALIZED, /* initialized */ 343 ZONE_EVENT_READY, /* ready */ 344 ZONE_EVENT_READY, /* booting */ 345 ZONE_EVENT_RUNNING, /* running */ 346 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 347 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 348 ZONE_EVENT_SHUTTING_DOWN, /* down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 350 ZONE_EVENT_UNINITIALIZED, /* dead */ 351 }; 352 353 /* 354 * This array contains the names of the subsystems listed in zone_ref_subsys_t 355 * (see sys/zone.h). 356 */ 357 static char *zone_ref_subsys_names[] = { 358 "NFS", /* ZONE_REF_NFS */ 359 "NFSv4", /* ZONE_REF_NFSV4 */ 360 "SMBFS", /* ZONE_REF_SMBFS */ 361 "MNTFS", /* ZONE_REF_MNTFS */ 362 "LOFI", /* ZONE_REF_LOFI */ 363 "VFS", /* ZONE_REF_VFS */ 364 "IPC" /* ZONE_REF_IPC */ 365 }; 366 367 /* 368 * This isn't static so lint doesn't complain. 369 */ 370 rctl_hndl_t rc_zone_cpu_shares; 371 rctl_hndl_t rc_zone_locked_mem; 372 rctl_hndl_t rc_zone_max_swap; 373 rctl_hndl_t rc_zone_max_lofi; 374 rctl_hndl_t rc_zone_cpu_cap; 375 rctl_hndl_t rc_zone_nlwps; 376 rctl_hndl_t rc_zone_nprocs; 377 rctl_hndl_t rc_zone_shmmax; 378 rctl_hndl_t rc_zone_shmmni; 379 rctl_hndl_t rc_zone_semmni; 380 rctl_hndl_t rc_zone_msgmni; 381 382 const char * const zone_default_initname = "/sbin/init"; 383 static char * const zone_prefix = "/zone/"; 384 static int zone_shutdown(zoneid_t zoneid); 385 static int zone_add_datalink(zoneid_t, datalink_id_t); 386 static int zone_remove_datalink(zoneid_t, datalink_id_t); 387 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 388 static int zone_set_network(zoneid_t, zone_net_data_t *); 389 static int zone_get_network(zoneid_t, zone_net_data_t *); 390 391 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 392 393 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 394 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 395 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 396 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 397 zone_key_t); 398 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 399 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 400 kmutex_t *); 401 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 402 kmutex_t *); 403 404 /* 405 * Bump this number when you alter the zone syscall interfaces; this is 406 * because we need to have support for previous API versions in libc 407 * to support patching; libc calls into the kernel to determine this number. 408 * 409 * Version 1 of the API is the version originally shipped with Solaris 10 410 * Version 2 alters the zone_create system call in order to support more 411 * arguments by moving the args into a structure; and to do better 412 * error reporting when zone_create() fails. 413 * Version 3 alters the zone_create system call in order to support the 414 * import of ZFS datasets to zones. 415 * Version 4 alters the zone_create system call in order to support 416 * Trusted Extensions. 417 * Version 5 alters the zone_boot system call, and converts its old 418 * bootargs parameter to be set by the zone_setattr API instead. 419 * Version 6 adds the flag argument to zone_create. 420 */ 421 static const int ZONE_SYSCALL_API_VERSION = 6; 422 423 /* 424 * Certain filesystems (such as NFS and autofs) need to know which zone 425 * the mount is being placed in. Because of this, we need to be able to 426 * ensure that a zone isn't in the process of being created/destroyed such 427 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time 428 * it gets added the list of mounted zones, it ends up on the wrong zone's 429 * mount list. Since a zone can't reside on an NFS file system, we don't 430 * have to worry about the zonepath itself. 431 * 432 * The following functions: block_mounts()/resume_mounts() and 433 * mount_in_progress()/mount_completed() are used by zones and the VFS 434 * layer (respectively) to synchronize zone state transitions and new 435 * mounts within a zone. This syncronization is on a per-zone basis, so 436 * activity for one zone will not interfere with activity for another zone. 437 * 438 * The semantics are like a reader-reader lock such that there may 439 * either be multiple mounts (or zone state transitions, if that weren't 440 * serialized by zonehash_lock) in progress at the same time, but not 441 * both. 442 * 443 * We use cv's so the user can ctrl-C out of the operation if it's 444 * taking too long. 445 * 446 * The semantics are such that there is unfair bias towards the 447 * "current" operation. This means that zone halt may starve if 448 * there is a rapid succession of new mounts coming in to the zone. 449 */ 450 /* 451 * Prevent new mounts from progressing to the point of calling 452 * VFS_MOUNT(). If there are already mounts in this "region", wait for 453 * them to complete. 454 */ 455 static int 456 block_mounts(zone_t *zp) 457 { 458 int retval = 0; 459 460 /* 461 * Since it may block for a long time, block_mounts() shouldn't be 462 * called with zonehash_lock held. 463 */ 464 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 465 mutex_enter(&zp->zone_mount_lock); 466 while (zp->zone_mounts_in_progress > 0) { 467 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0) 468 goto signaled; 469 } 470 /* 471 * A negative value of mounts_in_progress indicates that mounts 472 * have been blocked by (-mounts_in_progress) different callers 473 * (remotely possible if two threads enter zone_shutdown at the same 474 * time). 475 */ 476 zp->zone_mounts_in_progress--; 477 retval = 1; 478 signaled: 479 mutex_exit(&zp->zone_mount_lock); 480 return (retval); 481 } 482 483 /* 484 * The VFS layer may progress with new mounts as far as we're concerned. 485 * Allow them to progress if we were the last obstacle. 486 */ 487 static void 488 resume_mounts(zone_t *zp) 489 { 490 mutex_enter(&zp->zone_mount_lock); 491 if (++zp->zone_mounts_in_progress == 0) 492 cv_broadcast(&zp->zone_mount_cv); 493 mutex_exit(&zp->zone_mount_lock); 494 } 495 496 /* 497 * The VFS layer is busy with a mount; this zone should wait until all 498 * of its mounts are completed to progress. 499 */ 500 void 501 mount_in_progress(zone_t *zp) 502 { 503 mutex_enter(&zp->zone_mount_lock); 504 while (zp->zone_mounts_in_progress < 0) 505 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock); 506 zp->zone_mounts_in_progress++; 507 mutex_exit(&zp->zone_mount_lock); 508 } 509 510 /* 511 * VFS is done with one mount; wake up any waiting block_mounts() 512 * callers if this is the last mount. 513 */ 514 void 515 mount_completed(zone_t *zp) 516 { 517 mutex_enter(&zp->zone_mount_lock); 518 if (--zp->zone_mounts_in_progress == 0) 519 cv_broadcast(&zp->zone_mount_cv); 520 mutex_exit(&zp->zone_mount_lock); 521 } 522 523 /* 524 * ZSD routines. 525 * 526 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 527 * defined by the pthread_key_create() and related interfaces. 528 * 529 * Kernel subsystems may register one or more data items and/or 530 * callbacks to be executed when a zone is created, shutdown, or 531 * destroyed. 532 * 533 * Unlike the thread counterpart, destructor callbacks will be executed 534 * even if the data pointer is NULL and/or there are no constructor 535 * callbacks, so it is the responsibility of such callbacks to check for 536 * NULL data values if necessary. 537 * 538 * The locking strategy and overall picture is as follows: 539 * 540 * When someone calls zone_key_create(), a template ZSD entry is added to the 541 * global list "zsd_registered_keys", protected by zsd_key_lock. While 542 * holding that lock all the existing zones are marked as 543 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 544 * zone_zsd list (protected by zone_lock). The global list is updated first 545 * (under zone_key_lock) to make sure that newly created zones use the 546 * most recent list of keys. Then under zonehash_lock we walk the zones 547 * and mark them. Similar locking is used in zone_key_delete(). 548 * 549 * The actual create, shutdown, and destroy callbacks are done without 550 * holding any lock. And zsd_flags are used to ensure that the operations 551 * completed so that when zone_key_create (and zone_create) is done, as well as 552 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 553 * are completed. 554 * 555 * When new zones are created constructor callbacks for all registered ZSD 556 * entries will be called. That also uses the above two phases of marking 557 * what needs to be done, and then running the callbacks without holding 558 * any locks. 559 * 560 * The framework does not provide any locking around zone_getspecific() and 561 * zone_setspecific() apart from that needed for internal consistency, so 562 * callers interested in atomic "test-and-set" semantics will need to provide 563 * their own locking. 564 */ 565 566 /* 567 * Helper function to find the zsd_entry associated with the key in the 568 * given list. 569 */ 570 static struct zsd_entry * 571 zsd_find(list_t *l, zone_key_t key) 572 { 573 struct zsd_entry *zsd; 574 575 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 576 if (zsd->zsd_key == key) { 577 return (zsd); 578 } 579 } 580 return (NULL); 581 } 582 583 /* 584 * Helper function to find the zsd_entry associated with the key in the 585 * given list. Move it to the front of the list. 586 */ 587 static struct zsd_entry * 588 zsd_find_mru(list_t *l, zone_key_t key) 589 { 590 struct zsd_entry *zsd; 591 592 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 593 if (zsd->zsd_key == key) { 594 /* 595 * Move to head of list to keep list in MRU order. 596 */ 597 if (zsd != list_head(l)) { 598 list_remove(l, zsd); 599 list_insert_head(l, zsd); 600 } 601 return (zsd); 602 } 603 } 604 return (NULL); 605 } 606 607 void 608 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 609 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 610 { 611 struct zsd_entry *zsdp; 612 struct zsd_entry *t; 613 struct zone *zone; 614 zone_key_t key; 615 616 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 617 zsdp->zsd_data = NULL; 618 zsdp->zsd_create = create; 619 zsdp->zsd_shutdown = shutdown; 620 zsdp->zsd_destroy = destroy; 621 622 /* 623 * Insert in global list of callbacks. Makes future zone creations 624 * see it. 625 */ 626 mutex_enter(&zsd_key_lock); 627 key = zsdp->zsd_key = ++zsd_keyval; 628 ASSERT(zsd_keyval != 0); 629 list_insert_tail(&zsd_registered_keys, zsdp); 630 mutex_exit(&zsd_key_lock); 631 632 /* 633 * Insert for all existing zones and mark them as needing 634 * a create callback. 635 */ 636 mutex_enter(&zonehash_lock); /* stop the world */ 637 for (zone = list_head(&zone_active); zone != NULL; 638 zone = list_next(&zone_active, zone)) { 639 zone_status_t status; 640 641 mutex_enter(&zone->zone_lock); 642 643 /* Skip zones that are on the way down or not yet up */ 644 status = zone_status_get(zone); 645 if (status >= ZONE_IS_DOWN || 646 status == ZONE_IS_UNINITIALIZED) { 647 mutex_exit(&zone->zone_lock); 648 continue; 649 } 650 651 t = zsd_find_mru(&zone->zone_zsd, key); 652 if (t != NULL) { 653 /* 654 * A zsd_configure already inserted it after 655 * we dropped zsd_key_lock above. 656 */ 657 mutex_exit(&zone->zone_lock); 658 continue; 659 } 660 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 661 t->zsd_key = key; 662 t->zsd_create = create; 663 t->zsd_shutdown = shutdown; 664 t->zsd_destroy = destroy; 665 if (create != NULL) { 666 t->zsd_flags = ZSD_CREATE_NEEDED; 667 DTRACE_PROBE2(zsd__create__needed, 668 zone_t *, zone, zone_key_t, key); 669 } 670 list_insert_tail(&zone->zone_zsd, t); 671 mutex_exit(&zone->zone_lock); 672 } 673 mutex_exit(&zonehash_lock); 674 675 if (create != NULL) { 676 /* Now call the create callback for this key */ 677 zsd_apply_all_zones(zsd_apply_create, key); 678 } 679 /* 680 * It is safe for consumers to use the key now, make it 681 * globally visible. Specifically zone_getspecific() will 682 * always successfully return the zone specific data associated 683 * with the key. 684 */ 685 *keyp = key; 686 687 } 688 689 /* 690 * Function called when a module is being unloaded, or otherwise wishes 691 * to unregister its ZSD key and callbacks. 692 * 693 * Remove from the global list and determine the functions that need to 694 * be called under a global lock. Then call the functions without 695 * holding any locks. Finally free up the zone_zsd entries. (The apply 696 * functions need to access the zone_zsd entries to find zsd_data etc.) 697 */ 698 int 699 zone_key_delete(zone_key_t key) 700 { 701 struct zsd_entry *zsdp = NULL; 702 zone_t *zone; 703 704 mutex_enter(&zsd_key_lock); 705 zsdp = zsd_find_mru(&zsd_registered_keys, key); 706 if (zsdp == NULL) { 707 mutex_exit(&zsd_key_lock); 708 return (-1); 709 } 710 list_remove(&zsd_registered_keys, zsdp); 711 mutex_exit(&zsd_key_lock); 712 713 mutex_enter(&zonehash_lock); 714 for (zone = list_head(&zone_active); zone != NULL; 715 zone = list_next(&zone_active, zone)) { 716 struct zsd_entry *del; 717 718 mutex_enter(&zone->zone_lock); 719 del = zsd_find_mru(&zone->zone_zsd, key); 720 if (del == NULL) { 721 /* 722 * Somebody else got here first e.g the zone going 723 * away. 724 */ 725 mutex_exit(&zone->zone_lock); 726 continue; 727 } 728 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 729 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 730 if (del->zsd_shutdown != NULL && 731 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 732 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 733 DTRACE_PROBE2(zsd__shutdown__needed, 734 zone_t *, zone, zone_key_t, key); 735 } 736 if (del->zsd_destroy != NULL && 737 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 738 del->zsd_flags |= ZSD_DESTROY_NEEDED; 739 DTRACE_PROBE2(zsd__destroy__needed, 740 zone_t *, zone, zone_key_t, key); 741 } 742 mutex_exit(&zone->zone_lock); 743 } 744 mutex_exit(&zonehash_lock); 745 kmem_free(zsdp, sizeof (*zsdp)); 746 747 /* Now call the shutdown and destroy callback for this key */ 748 zsd_apply_all_zones(zsd_apply_shutdown, key); 749 zsd_apply_all_zones(zsd_apply_destroy, key); 750 751 /* Now we can free up the zsdp structures in each zone */ 752 mutex_enter(&zonehash_lock); 753 for (zone = list_head(&zone_active); zone != NULL; 754 zone = list_next(&zone_active, zone)) { 755 struct zsd_entry *del; 756 757 mutex_enter(&zone->zone_lock); 758 del = zsd_find(&zone->zone_zsd, key); 759 if (del != NULL) { 760 list_remove(&zone->zone_zsd, del); 761 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 762 kmem_free(del, sizeof (*del)); 763 } 764 mutex_exit(&zone->zone_lock); 765 } 766 mutex_exit(&zonehash_lock); 767 768 return (0); 769 } 770 771 /* 772 * ZSD counterpart of pthread_setspecific(). 773 * 774 * Since all zsd callbacks, including those with no create function, 775 * have an entry in zone_zsd, if the key is registered it is part of 776 * the zone_zsd list. 777 * Return an error if the key wasn't registerd. 778 */ 779 int 780 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 781 { 782 struct zsd_entry *t; 783 784 mutex_enter(&zone->zone_lock); 785 t = zsd_find_mru(&zone->zone_zsd, key); 786 if (t != NULL) { 787 /* 788 * Replace old value with new 789 */ 790 t->zsd_data = (void *)data; 791 mutex_exit(&zone->zone_lock); 792 return (0); 793 } 794 mutex_exit(&zone->zone_lock); 795 return (-1); 796 } 797 798 /* 799 * ZSD counterpart of pthread_getspecific(). 800 */ 801 void * 802 zone_getspecific(zone_key_t key, zone_t *zone) 803 { 804 struct zsd_entry *t; 805 void *data; 806 807 mutex_enter(&zone->zone_lock); 808 t = zsd_find_mru(&zone->zone_zsd, key); 809 data = (t == NULL ? NULL : t->zsd_data); 810 mutex_exit(&zone->zone_lock); 811 return (data); 812 } 813 814 /* 815 * Function used to initialize a zone's list of ZSD callbacks and data 816 * when the zone is being created. The callbacks are initialized from 817 * the template list (zsd_registered_keys). The constructor callback is 818 * executed later (once the zone exists and with locks dropped). 819 */ 820 static void 821 zone_zsd_configure(zone_t *zone) 822 { 823 struct zsd_entry *zsdp; 824 struct zsd_entry *t; 825 826 ASSERT(MUTEX_HELD(&zonehash_lock)); 827 ASSERT(list_head(&zone->zone_zsd) == NULL); 828 mutex_enter(&zone->zone_lock); 829 mutex_enter(&zsd_key_lock); 830 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 831 zsdp = list_next(&zsd_registered_keys, zsdp)) { 832 /* 833 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 834 * should not have added anything to it. 835 */ 836 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 837 838 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 839 t->zsd_key = zsdp->zsd_key; 840 t->zsd_create = zsdp->zsd_create; 841 t->zsd_shutdown = zsdp->zsd_shutdown; 842 t->zsd_destroy = zsdp->zsd_destroy; 843 if (zsdp->zsd_create != NULL) { 844 t->zsd_flags = ZSD_CREATE_NEEDED; 845 DTRACE_PROBE2(zsd__create__needed, 846 zone_t *, zone, zone_key_t, zsdp->zsd_key); 847 } 848 list_insert_tail(&zone->zone_zsd, t); 849 } 850 mutex_exit(&zsd_key_lock); 851 mutex_exit(&zone->zone_lock); 852 } 853 854 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 855 856 /* 857 * Helper function to execute shutdown or destructor callbacks. 858 */ 859 static void 860 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 861 { 862 struct zsd_entry *t; 863 864 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 865 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 866 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 867 868 /* 869 * Run the callback solely based on what is registered for the zone 870 * in zone_zsd. The global list can change independently of this 871 * as keys are registered and unregistered and we don't register new 872 * callbacks for a zone that is in the process of going away. 873 */ 874 mutex_enter(&zone->zone_lock); 875 for (t = list_head(&zone->zone_zsd); t != NULL; 876 t = list_next(&zone->zone_zsd, t)) { 877 zone_key_t key = t->zsd_key; 878 879 /* Skip if no callbacks registered */ 880 881 if (ct == ZSD_SHUTDOWN) { 882 if (t->zsd_shutdown != NULL && 883 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 884 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 885 DTRACE_PROBE2(zsd__shutdown__needed, 886 zone_t *, zone, zone_key_t, key); 887 } 888 } else { 889 if (t->zsd_destroy != NULL && 890 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 891 t->zsd_flags |= ZSD_DESTROY_NEEDED; 892 DTRACE_PROBE2(zsd__destroy__needed, 893 zone_t *, zone, zone_key_t, key); 894 } 895 } 896 } 897 mutex_exit(&zone->zone_lock); 898 899 /* Now call the shutdown and destroy callback for this key */ 900 zsd_apply_all_keys(zsd_apply_shutdown, zone); 901 zsd_apply_all_keys(zsd_apply_destroy, zone); 902 903 } 904 905 /* 906 * Called when the zone is going away; free ZSD-related memory, and 907 * destroy the zone_zsd list. 908 */ 909 static void 910 zone_free_zsd(zone_t *zone) 911 { 912 struct zsd_entry *t, *next; 913 914 /* 915 * Free all the zsd_entry's we had on this zone. 916 */ 917 mutex_enter(&zone->zone_lock); 918 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 919 next = list_next(&zone->zone_zsd, t); 920 list_remove(&zone->zone_zsd, t); 921 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 922 kmem_free(t, sizeof (*t)); 923 } 924 list_destroy(&zone->zone_zsd); 925 mutex_exit(&zone->zone_lock); 926 927 } 928 929 /* 930 * Apply a function to all zones for particular key value. 931 * 932 * The applyfn has to drop zonehash_lock if it does some work, and 933 * then reacquire it before it returns. 934 * When the lock is dropped we don't follow list_next even 935 * if it is possible to do so without any hazards. This is 936 * because we want the design to allow for the list of zones 937 * to change in any arbitrary way during the time the 938 * lock was dropped. 939 * 940 * It is safe to restart the loop at list_head since the applyfn 941 * changes the zsd_flags as it does work, so a subsequent 942 * pass through will have no effect in applyfn, hence the loop will terminate 943 * in at worst O(N^2). 944 */ 945 static void 946 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 947 { 948 zone_t *zone; 949 950 mutex_enter(&zonehash_lock); 951 zone = list_head(&zone_active); 952 while (zone != NULL) { 953 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 954 /* Lock dropped - restart at head */ 955 zone = list_head(&zone_active); 956 } else { 957 zone = list_next(&zone_active, zone); 958 } 959 } 960 mutex_exit(&zonehash_lock); 961 } 962 963 /* 964 * Apply a function to all keys for a particular zone. 965 * 966 * The applyfn has to drop zonehash_lock if it does some work, and 967 * then reacquire it before it returns. 968 * When the lock is dropped we don't follow list_next even 969 * if it is possible to do so without any hazards. This is 970 * because we want the design to allow for the list of zsd callbacks 971 * to change in any arbitrary way during the time the 972 * lock was dropped. 973 * 974 * It is safe to restart the loop at list_head since the applyfn 975 * changes the zsd_flags as it does work, so a subsequent 976 * pass through will have no effect in applyfn, hence the loop will terminate 977 * in at worst O(N^2). 978 */ 979 static void 980 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 981 { 982 struct zsd_entry *t; 983 984 mutex_enter(&zone->zone_lock); 985 t = list_head(&zone->zone_zsd); 986 while (t != NULL) { 987 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 988 /* Lock dropped - restart at head */ 989 t = list_head(&zone->zone_zsd); 990 } else { 991 t = list_next(&zone->zone_zsd, t); 992 } 993 } 994 mutex_exit(&zone->zone_lock); 995 } 996 997 /* 998 * Call the create function for the zone and key if CREATE_NEEDED 999 * is set. 1000 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1001 * we wait for that thread to complete so that we can ensure that 1002 * all the callbacks are done when we've looped over all zones/keys. 1003 * 1004 * When we call the create function, we drop the global held by the 1005 * caller, and return true to tell the caller it needs to re-evalute the 1006 * state. 1007 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1008 * remains held on exit. 1009 */ 1010 static boolean_t 1011 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1012 zone_t *zone, zone_key_t key) 1013 { 1014 void *result; 1015 struct zsd_entry *t; 1016 boolean_t dropped; 1017 1018 if (lockp != NULL) { 1019 ASSERT(MUTEX_HELD(lockp)); 1020 } 1021 if (zone_lock_held) { 1022 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1023 } else { 1024 mutex_enter(&zone->zone_lock); 1025 } 1026 1027 t = zsd_find(&zone->zone_zsd, key); 1028 if (t == NULL) { 1029 /* 1030 * Somebody else got here first e.g the zone going 1031 * away. 1032 */ 1033 if (!zone_lock_held) 1034 mutex_exit(&zone->zone_lock); 1035 return (B_FALSE); 1036 } 1037 dropped = B_FALSE; 1038 if (zsd_wait_for_inprogress(zone, t, lockp)) 1039 dropped = B_TRUE; 1040 1041 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1042 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1043 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1044 DTRACE_PROBE2(zsd__create__inprogress, 1045 zone_t *, zone, zone_key_t, key); 1046 mutex_exit(&zone->zone_lock); 1047 if (lockp != NULL) 1048 mutex_exit(lockp); 1049 1050 dropped = B_TRUE; 1051 ASSERT(t->zsd_create != NULL); 1052 DTRACE_PROBE2(zsd__create__start, 1053 zone_t *, zone, zone_key_t, key); 1054 1055 result = (*t->zsd_create)(zone->zone_id); 1056 1057 DTRACE_PROBE2(zsd__create__end, 1058 zone_t *, zone, voidn *, result); 1059 1060 ASSERT(result != NULL); 1061 if (lockp != NULL) 1062 mutex_enter(lockp); 1063 mutex_enter(&zone->zone_lock); 1064 t->zsd_data = result; 1065 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1066 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1067 cv_broadcast(&t->zsd_cv); 1068 DTRACE_PROBE2(zsd__create__completed, 1069 zone_t *, zone, zone_key_t, key); 1070 } 1071 if (!zone_lock_held) 1072 mutex_exit(&zone->zone_lock); 1073 return (dropped); 1074 } 1075 1076 /* 1077 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1078 * is set. 1079 * If some other thread gets here first and sets *_INPROGRESS, then 1080 * we wait for that thread to complete so that we can ensure that 1081 * all the callbacks are done when we've looped over all zones/keys. 1082 * 1083 * When we call the shutdown function, we drop the global held by the 1084 * caller, and return true to tell the caller it needs to re-evalute the 1085 * state. 1086 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1087 * remains held on exit. 1088 */ 1089 static boolean_t 1090 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1091 zone_t *zone, zone_key_t key) 1092 { 1093 struct zsd_entry *t; 1094 void *data; 1095 boolean_t dropped; 1096 1097 if (lockp != NULL) { 1098 ASSERT(MUTEX_HELD(lockp)); 1099 } 1100 if (zone_lock_held) { 1101 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1102 } else { 1103 mutex_enter(&zone->zone_lock); 1104 } 1105 1106 t = zsd_find(&zone->zone_zsd, key); 1107 if (t == NULL) { 1108 /* 1109 * Somebody else got here first e.g the zone going 1110 * away. 1111 */ 1112 if (!zone_lock_held) 1113 mutex_exit(&zone->zone_lock); 1114 return (B_FALSE); 1115 } 1116 dropped = B_FALSE; 1117 if (zsd_wait_for_creator(zone, t, lockp)) 1118 dropped = B_TRUE; 1119 1120 if (zsd_wait_for_inprogress(zone, t, lockp)) 1121 dropped = B_TRUE; 1122 1123 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1124 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1125 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1126 DTRACE_PROBE2(zsd__shutdown__inprogress, 1127 zone_t *, zone, zone_key_t, key); 1128 mutex_exit(&zone->zone_lock); 1129 if (lockp != NULL) 1130 mutex_exit(lockp); 1131 dropped = B_TRUE; 1132 1133 ASSERT(t->zsd_shutdown != NULL); 1134 data = t->zsd_data; 1135 1136 DTRACE_PROBE2(zsd__shutdown__start, 1137 zone_t *, zone, zone_key_t, key); 1138 1139 (t->zsd_shutdown)(zone->zone_id, data); 1140 DTRACE_PROBE2(zsd__shutdown__end, 1141 zone_t *, zone, zone_key_t, key); 1142 1143 if (lockp != NULL) 1144 mutex_enter(lockp); 1145 mutex_enter(&zone->zone_lock); 1146 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1147 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1148 cv_broadcast(&t->zsd_cv); 1149 DTRACE_PROBE2(zsd__shutdown__completed, 1150 zone_t *, zone, zone_key_t, key); 1151 } 1152 if (!zone_lock_held) 1153 mutex_exit(&zone->zone_lock); 1154 return (dropped); 1155 } 1156 1157 /* 1158 * Call the destroy function for the zone and key if DESTROY_NEEDED 1159 * is set. 1160 * If some other thread gets here first and sets *_INPROGRESS, then 1161 * we wait for that thread to complete so that we can ensure that 1162 * all the callbacks are done when we've looped over all zones/keys. 1163 * 1164 * When we call the destroy function, we drop the global held by the 1165 * caller, and return true to tell the caller it needs to re-evalute the 1166 * state. 1167 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1168 * remains held on exit. 1169 */ 1170 static boolean_t 1171 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1172 zone_t *zone, zone_key_t key) 1173 { 1174 struct zsd_entry *t; 1175 void *data; 1176 boolean_t dropped; 1177 1178 if (lockp != NULL) { 1179 ASSERT(MUTEX_HELD(lockp)); 1180 } 1181 if (zone_lock_held) { 1182 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1183 } else { 1184 mutex_enter(&zone->zone_lock); 1185 } 1186 1187 t = zsd_find(&zone->zone_zsd, key); 1188 if (t == NULL) { 1189 /* 1190 * Somebody else got here first e.g the zone going 1191 * away. 1192 */ 1193 if (!zone_lock_held) 1194 mutex_exit(&zone->zone_lock); 1195 return (B_FALSE); 1196 } 1197 dropped = B_FALSE; 1198 if (zsd_wait_for_creator(zone, t, lockp)) 1199 dropped = B_TRUE; 1200 1201 if (zsd_wait_for_inprogress(zone, t, lockp)) 1202 dropped = B_TRUE; 1203 1204 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1205 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1206 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1207 DTRACE_PROBE2(zsd__destroy__inprogress, 1208 zone_t *, zone, zone_key_t, key); 1209 mutex_exit(&zone->zone_lock); 1210 if (lockp != NULL) 1211 mutex_exit(lockp); 1212 dropped = B_TRUE; 1213 1214 ASSERT(t->zsd_destroy != NULL); 1215 data = t->zsd_data; 1216 DTRACE_PROBE2(zsd__destroy__start, 1217 zone_t *, zone, zone_key_t, key); 1218 1219 (t->zsd_destroy)(zone->zone_id, data); 1220 DTRACE_PROBE2(zsd__destroy__end, 1221 zone_t *, zone, zone_key_t, key); 1222 1223 if (lockp != NULL) 1224 mutex_enter(lockp); 1225 mutex_enter(&zone->zone_lock); 1226 t->zsd_data = NULL; 1227 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1228 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1229 cv_broadcast(&t->zsd_cv); 1230 DTRACE_PROBE2(zsd__destroy__completed, 1231 zone_t *, zone, zone_key_t, key); 1232 } 1233 if (!zone_lock_held) 1234 mutex_exit(&zone->zone_lock); 1235 return (dropped); 1236 } 1237 1238 /* 1239 * Wait for any CREATE_NEEDED flag to be cleared. 1240 * Returns true if lockp was temporarily dropped while waiting. 1241 */ 1242 static boolean_t 1243 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1244 { 1245 boolean_t dropped = B_FALSE; 1246 1247 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1248 DTRACE_PROBE2(zsd__wait__for__creator, 1249 zone_t *, zone, struct zsd_entry *, t); 1250 if (lockp != NULL) { 1251 dropped = B_TRUE; 1252 mutex_exit(lockp); 1253 } 1254 cv_wait(&t->zsd_cv, &zone->zone_lock); 1255 if (lockp != NULL) { 1256 /* First drop zone_lock to preserve order */ 1257 mutex_exit(&zone->zone_lock); 1258 mutex_enter(lockp); 1259 mutex_enter(&zone->zone_lock); 1260 } 1261 } 1262 return (dropped); 1263 } 1264 1265 /* 1266 * Wait for any INPROGRESS flag to be cleared. 1267 * Returns true if lockp was temporarily dropped while waiting. 1268 */ 1269 static boolean_t 1270 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1271 { 1272 boolean_t dropped = B_FALSE; 1273 1274 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1275 DTRACE_PROBE2(zsd__wait__for__inprogress, 1276 zone_t *, zone, struct zsd_entry *, t); 1277 if (lockp != NULL) { 1278 dropped = B_TRUE; 1279 mutex_exit(lockp); 1280 } 1281 cv_wait(&t->zsd_cv, &zone->zone_lock); 1282 if (lockp != NULL) { 1283 /* First drop zone_lock to preserve order */ 1284 mutex_exit(&zone->zone_lock); 1285 mutex_enter(lockp); 1286 mutex_enter(&zone->zone_lock); 1287 } 1288 } 1289 return (dropped); 1290 } 1291 1292 /* 1293 * Frees memory associated with the zone dataset list. 1294 */ 1295 static void 1296 zone_free_datasets(zone_t *zone) 1297 { 1298 zone_dataset_t *t, *next; 1299 1300 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1301 next = list_next(&zone->zone_datasets, t); 1302 list_remove(&zone->zone_datasets, t); 1303 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1304 kmem_free(t, sizeof (*t)); 1305 } 1306 list_destroy(&zone->zone_datasets); 1307 } 1308 1309 /* 1310 * zone.cpu-shares resource control support. 1311 */ 1312 /*ARGSUSED*/ 1313 static rctl_qty_t 1314 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1315 { 1316 ASSERT(MUTEX_HELD(&p->p_lock)); 1317 return (p->p_zone->zone_shares); 1318 } 1319 1320 /*ARGSUSED*/ 1321 static int 1322 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1323 rctl_qty_t nv) 1324 { 1325 ASSERT(MUTEX_HELD(&p->p_lock)); 1326 ASSERT(e->rcep_t == RCENTITY_ZONE); 1327 if (e->rcep_p.zone == NULL) 1328 return (0); 1329 1330 e->rcep_p.zone->zone_shares = nv; 1331 return (0); 1332 } 1333 1334 static rctl_ops_t zone_cpu_shares_ops = { 1335 rcop_no_action, 1336 zone_cpu_shares_usage, 1337 zone_cpu_shares_set, 1338 rcop_no_test 1339 }; 1340 1341 /* 1342 * zone.cpu-cap resource control support. 1343 */ 1344 /*ARGSUSED*/ 1345 static rctl_qty_t 1346 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1347 { 1348 ASSERT(MUTEX_HELD(&p->p_lock)); 1349 return (cpucaps_zone_get(p->p_zone)); 1350 } 1351 1352 /*ARGSUSED*/ 1353 static int 1354 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1355 rctl_qty_t nv) 1356 { 1357 zone_t *zone = e->rcep_p.zone; 1358 1359 ASSERT(MUTEX_HELD(&p->p_lock)); 1360 ASSERT(e->rcep_t == RCENTITY_ZONE); 1361 1362 if (zone == NULL) 1363 return (0); 1364 1365 /* 1366 * set cap to the new value. 1367 */ 1368 return (cpucaps_zone_set(zone, nv)); 1369 } 1370 1371 static rctl_ops_t zone_cpu_cap_ops = { 1372 rcop_no_action, 1373 zone_cpu_cap_get, 1374 zone_cpu_cap_set, 1375 rcop_no_test 1376 }; 1377 1378 /*ARGSUSED*/ 1379 static rctl_qty_t 1380 zone_lwps_usage(rctl_t *r, proc_t *p) 1381 { 1382 rctl_qty_t nlwps; 1383 zone_t *zone = p->p_zone; 1384 1385 ASSERT(MUTEX_HELD(&p->p_lock)); 1386 1387 mutex_enter(&zone->zone_nlwps_lock); 1388 nlwps = zone->zone_nlwps; 1389 mutex_exit(&zone->zone_nlwps_lock); 1390 1391 return (nlwps); 1392 } 1393 1394 /*ARGSUSED*/ 1395 static int 1396 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1397 rctl_qty_t incr, uint_t flags) 1398 { 1399 rctl_qty_t nlwps; 1400 1401 ASSERT(MUTEX_HELD(&p->p_lock)); 1402 ASSERT(e->rcep_t == RCENTITY_ZONE); 1403 if (e->rcep_p.zone == NULL) 1404 return (0); 1405 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1406 nlwps = e->rcep_p.zone->zone_nlwps; 1407 1408 if (nlwps + incr > rcntl->rcv_value) 1409 return (1); 1410 1411 return (0); 1412 } 1413 1414 /*ARGSUSED*/ 1415 static int 1416 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1417 { 1418 ASSERT(MUTEX_HELD(&p->p_lock)); 1419 ASSERT(e->rcep_t == RCENTITY_ZONE); 1420 if (e->rcep_p.zone == NULL) 1421 return (0); 1422 e->rcep_p.zone->zone_nlwps_ctl = nv; 1423 return (0); 1424 } 1425 1426 static rctl_ops_t zone_lwps_ops = { 1427 rcop_no_action, 1428 zone_lwps_usage, 1429 zone_lwps_set, 1430 zone_lwps_test, 1431 }; 1432 1433 /*ARGSUSED*/ 1434 static rctl_qty_t 1435 zone_procs_usage(rctl_t *r, proc_t *p) 1436 { 1437 rctl_qty_t nprocs; 1438 zone_t *zone = p->p_zone; 1439 1440 ASSERT(MUTEX_HELD(&p->p_lock)); 1441 1442 mutex_enter(&zone->zone_nlwps_lock); 1443 nprocs = zone->zone_nprocs; 1444 mutex_exit(&zone->zone_nlwps_lock); 1445 1446 return (nprocs); 1447 } 1448 1449 /*ARGSUSED*/ 1450 static int 1451 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1452 rctl_qty_t incr, uint_t flags) 1453 { 1454 rctl_qty_t nprocs; 1455 1456 ASSERT(MUTEX_HELD(&p->p_lock)); 1457 ASSERT(e->rcep_t == RCENTITY_ZONE); 1458 if (e->rcep_p.zone == NULL) 1459 return (0); 1460 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1461 nprocs = e->rcep_p.zone->zone_nprocs; 1462 1463 if (nprocs + incr > rcntl->rcv_value) 1464 return (1); 1465 1466 return (0); 1467 } 1468 1469 /*ARGSUSED*/ 1470 static int 1471 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1472 { 1473 ASSERT(MUTEX_HELD(&p->p_lock)); 1474 ASSERT(e->rcep_t == RCENTITY_ZONE); 1475 if (e->rcep_p.zone == NULL) 1476 return (0); 1477 e->rcep_p.zone->zone_nprocs_ctl = nv; 1478 return (0); 1479 } 1480 1481 static rctl_ops_t zone_procs_ops = { 1482 rcop_no_action, 1483 zone_procs_usage, 1484 zone_procs_set, 1485 zone_procs_test, 1486 }; 1487 1488 /*ARGSUSED*/ 1489 static int 1490 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1491 rctl_qty_t incr, uint_t flags) 1492 { 1493 rctl_qty_t v; 1494 ASSERT(MUTEX_HELD(&p->p_lock)); 1495 ASSERT(e->rcep_t == RCENTITY_ZONE); 1496 v = e->rcep_p.zone->zone_shmmax + incr; 1497 if (v > rval->rcv_value) 1498 return (1); 1499 return (0); 1500 } 1501 1502 static rctl_ops_t zone_shmmax_ops = { 1503 rcop_no_action, 1504 rcop_no_usage, 1505 rcop_no_set, 1506 zone_shmmax_test 1507 }; 1508 1509 /*ARGSUSED*/ 1510 static int 1511 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1512 rctl_qty_t incr, uint_t flags) 1513 { 1514 rctl_qty_t v; 1515 ASSERT(MUTEX_HELD(&p->p_lock)); 1516 ASSERT(e->rcep_t == RCENTITY_ZONE); 1517 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1518 if (v > rval->rcv_value) 1519 return (1); 1520 return (0); 1521 } 1522 1523 static rctl_ops_t zone_shmmni_ops = { 1524 rcop_no_action, 1525 rcop_no_usage, 1526 rcop_no_set, 1527 zone_shmmni_test 1528 }; 1529 1530 /*ARGSUSED*/ 1531 static int 1532 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1533 rctl_qty_t incr, uint_t flags) 1534 { 1535 rctl_qty_t v; 1536 ASSERT(MUTEX_HELD(&p->p_lock)); 1537 ASSERT(e->rcep_t == RCENTITY_ZONE); 1538 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1539 if (v > rval->rcv_value) 1540 return (1); 1541 return (0); 1542 } 1543 1544 static rctl_ops_t zone_semmni_ops = { 1545 rcop_no_action, 1546 rcop_no_usage, 1547 rcop_no_set, 1548 zone_semmni_test 1549 }; 1550 1551 /*ARGSUSED*/ 1552 static int 1553 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1554 rctl_qty_t incr, uint_t flags) 1555 { 1556 rctl_qty_t v; 1557 ASSERT(MUTEX_HELD(&p->p_lock)); 1558 ASSERT(e->rcep_t == RCENTITY_ZONE); 1559 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1560 if (v > rval->rcv_value) 1561 return (1); 1562 return (0); 1563 } 1564 1565 static rctl_ops_t zone_msgmni_ops = { 1566 rcop_no_action, 1567 rcop_no_usage, 1568 rcop_no_set, 1569 zone_msgmni_test 1570 }; 1571 1572 /*ARGSUSED*/ 1573 static rctl_qty_t 1574 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1575 { 1576 rctl_qty_t q; 1577 ASSERT(MUTEX_HELD(&p->p_lock)); 1578 mutex_enter(&p->p_zone->zone_mem_lock); 1579 q = p->p_zone->zone_locked_mem; 1580 mutex_exit(&p->p_zone->zone_mem_lock); 1581 return (q); 1582 } 1583 1584 /*ARGSUSED*/ 1585 static int 1586 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1587 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1588 { 1589 rctl_qty_t q; 1590 zone_t *z; 1591 1592 z = e->rcep_p.zone; 1593 ASSERT(MUTEX_HELD(&p->p_lock)); 1594 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1595 q = z->zone_locked_mem; 1596 if (q + incr > rcntl->rcv_value) 1597 return (1); 1598 return (0); 1599 } 1600 1601 /*ARGSUSED*/ 1602 static int 1603 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1604 rctl_qty_t nv) 1605 { 1606 ASSERT(MUTEX_HELD(&p->p_lock)); 1607 ASSERT(e->rcep_t == RCENTITY_ZONE); 1608 if (e->rcep_p.zone == NULL) 1609 return (0); 1610 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1611 return (0); 1612 } 1613 1614 static rctl_ops_t zone_locked_mem_ops = { 1615 rcop_no_action, 1616 zone_locked_mem_usage, 1617 zone_locked_mem_set, 1618 zone_locked_mem_test 1619 }; 1620 1621 /*ARGSUSED*/ 1622 static rctl_qty_t 1623 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1624 { 1625 rctl_qty_t q; 1626 zone_t *z = p->p_zone; 1627 1628 ASSERT(MUTEX_HELD(&p->p_lock)); 1629 mutex_enter(&z->zone_mem_lock); 1630 q = z->zone_max_swap; 1631 mutex_exit(&z->zone_mem_lock); 1632 return (q); 1633 } 1634 1635 /*ARGSUSED*/ 1636 static int 1637 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1638 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1639 { 1640 rctl_qty_t q; 1641 zone_t *z; 1642 1643 z = e->rcep_p.zone; 1644 ASSERT(MUTEX_HELD(&p->p_lock)); 1645 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1646 q = z->zone_max_swap; 1647 if (q + incr > rcntl->rcv_value) 1648 return (1); 1649 return (0); 1650 } 1651 1652 /*ARGSUSED*/ 1653 static int 1654 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1655 rctl_qty_t nv) 1656 { 1657 ASSERT(MUTEX_HELD(&p->p_lock)); 1658 ASSERT(e->rcep_t == RCENTITY_ZONE); 1659 if (e->rcep_p.zone == NULL) 1660 return (0); 1661 e->rcep_p.zone->zone_max_swap_ctl = nv; 1662 return (0); 1663 } 1664 1665 static rctl_ops_t zone_max_swap_ops = { 1666 rcop_no_action, 1667 zone_max_swap_usage, 1668 zone_max_swap_set, 1669 zone_max_swap_test 1670 }; 1671 1672 /*ARGSUSED*/ 1673 static rctl_qty_t 1674 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1675 { 1676 rctl_qty_t q; 1677 zone_t *z = p->p_zone; 1678 1679 ASSERT(MUTEX_HELD(&p->p_lock)); 1680 mutex_enter(&z->zone_rctl_lock); 1681 q = z->zone_max_lofi; 1682 mutex_exit(&z->zone_rctl_lock); 1683 return (q); 1684 } 1685 1686 /*ARGSUSED*/ 1687 static int 1688 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1689 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1690 { 1691 rctl_qty_t q; 1692 zone_t *z; 1693 1694 z = e->rcep_p.zone; 1695 ASSERT(MUTEX_HELD(&p->p_lock)); 1696 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1697 q = z->zone_max_lofi; 1698 if (q + incr > rcntl->rcv_value) 1699 return (1); 1700 return (0); 1701 } 1702 1703 /*ARGSUSED*/ 1704 static int 1705 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1706 rctl_qty_t nv) 1707 { 1708 ASSERT(MUTEX_HELD(&p->p_lock)); 1709 ASSERT(e->rcep_t == RCENTITY_ZONE); 1710 if (e->rcep_p.zone == NULL) 1711 return (0); 1712 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1713 return (0); 1714 } 1715 1716 static rctl_ops_t zone_max_lofi_ops = { 1717 rcop_no_action, 1718 zone_max_lofi_usage, 1719 zone_max_lofi_set, 1720 zone_max_lofi_test 1721 }; 1722 1723 /* 1724 * Helper function to brand the zone with a unique ID. 1725 */ 1726 static void 1727 zone_uniqid(zone_t *zone) 1728 { 1729 static uint64_t uniqid = 0; 1730 1731 ASSERT(MUTEX_HELD(&zonehash_lock)); 1732 zone->zone_uniqid = uniqid++; 1733 } 1734 1735 /* 1736 * Returns a held pointer to the "kcred" for the specified zone. 1737 */ 1738 struct cred * 1739 zone_get_kcred(zoneid_t zoneid) 1740 { 1741 zone_t *zone; 1742 cred_t *cr; 1743 1744 if ((zone = zone_find_by_id(zoneid)) == NULL) 1745 return (NULL); 1746 cr = zone->zone_kcred; 1747 crhold(cr); 1748 zone_rele(zone); 1749 return (cr); 1750 } 1751 1752 static int 1753 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1754 { 1755 zone_t *zone = ksp->ks_private; 1756 zone_kstat_t *zk = ksp->ks_data; 1757 1758 if (rw == KSTAT_WRITE) 1759 return (EACCES); 1760 1761 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1762 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1763 return (0); 1764 } 1765 1766 static int 1767 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1768 { 1769 zone_t *zone = ksp->ks_private; 1770 zone_kstat_t *zk = ksp->ks_data; 1771 1772 if (rw == KSTAT_WRITE) 1773 return (EACCES); 1774 1775 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1776 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1777 return (0); 1778 } 1779 1780 static int 1781 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1782 { 1783 zone_t *zone = ksp->ks_private; 1784 zone_kstat_t *zk = ksp->ks_data; 1785 1786 if (rw == KSTAT_WRITE) 1787 return (EACCES); 1788 1789 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1790 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1791 return (0); 1792 } 1793 1794 static kstat_t * 1795 zone_kstat_create_common(zone_t *zone, char *name, 1796 int (*updatefunc) (kstat_t *, int)) 1797 { 1798 kstat_t *ksp; 1799 zone_kstat_t *zk; 1800 1801 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1802 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1803 KSTAT_FLAG_VIRTUAL); 1804 1805 if (ksp == NULL) 1806 return (NULL); 1807 1808 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1809 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1810 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1811 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1812 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1813 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1814 ksp->ks_update = updatefunc; 1815 ksp->ks_private = zone; 1816 kstat_install(ksp); 1817 return (ksp); 1818 } 1819 1820 static int 1821 zone_misc_kstat_update(kstat_t *ksp, int rw) 1822 { 1823 zone_t *zone = ksp->ks_private; 1824 zone_misc_kstat_t *zmp = ksp->ks_data; 1825 hrtime_t tmp; 1826 1827 if (rw == KSTAT_WRITE) 1828 return (EACCES); 1829 1830 tmp = zone->zone_utime; 1831 scalehrtime(&tmp); 1832 zmp->zm_utime.value.ui64 = tmp; 1833 tmp = zone->zone_stime; 1834 scalehrtime(&tmp); 1835 zmp->zm_stime.value.ui64 = tmp; 1836 tmp = zone->zone_wtime; 1837 scalehrtime(&tmp); 1838 zmp->zm_wtime.value.ui64 = tmp; 1839 1840 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1841 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1842 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1843 1844 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1845 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1846 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1847 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1848 1849 return (0); 1850 } 1851 1852 static kstat_t * 1853 zone_misc_kstat_create(zone_t *zone) 1854 { 1855 kstat_t *ksp; 1856 zone_misc_kstat_t *zmp; 1857 1858 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1859 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1860 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1861 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1862 return (NULL); 1863 1864 if (zone->zone_id != GLOBAL_ZONEID) 1865 kstat_zone_add(ksp, GLOBAL_ZONEID); 1866 1867 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1868 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1869 ksp->ks_lock = &zone->zone_misc_lock; 1870 zone->zone_misc_stats = zmp; 1871 1872 /* The kstat "name" field is not large enough for a full zonename */ 1873 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1874 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1875 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1876 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1877 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1878 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1879 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1880 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1881 KSTAT_DATA_UINT32); 1882 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1883 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1884 KSTAT_DATA_UINT32); 1885 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1886 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1887 1888 1889 ksp->ks_update = zone_misc_kstat_update; 1890 ksp->ks_private = zone; 1891 1892 kstat_install(ksp); 1893 return (ksp); 1894 } 1895 1896 static void 1897 zone_kstat_create(zone_t *zone) 1898 { 1899 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 1900 "lockedmem", zone_lockedmem_kstat_update); 1901 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 1902 "swapresv", zone_swapresv_kstat_update); 1903 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 1904 "nprocs", zone_nprocs_kstat_update); 1905 1906 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 1907 zone->zone_misc_stats = kmem_zalloc( 1908 sizeof (zone_misc_kstat_t), KM_SLEEP); 1909 } 1910 } 1911 1912 static void 1913 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 1914 { 1915 void *data; 1916 1917 if (*pkstat != NULL) { 1918 data = (*pkstat)->ks_data; 1919 kstat_delete(*pkstat); 1920 kmem_free(data, datasz); 1921 *pkstat = NULL; 1922 } 1923 } 1924 1925 static void 1926 zone_kstat_delete(zone_t *zone) 1927 { 1928 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 1929 sizeof (zone_kstat_t)); 1930 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 1931 sizeof (zone_kstat_t)); 1932 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 1933 sizeof (zone_kstat_t)); 1934 zone_kstat_delete_common(&zone->zone_misc_ksp, 1935 sizeof (zone_misc_kstat_t)); 1936 } 1937 1938 /* 1939 * Called very early on in boot to initialize the ZSD list so that 1940 * zone_key_create() can be called before zone_init(). It also initializes 1941 * portions of zone0 which may be used before zone_init() is called. The 1942 * variable "global_zone" will be set when zone0 is fully initialized by 1943 * zone_init(). 1944 */ 1945 void 1946 zone_zsd_init(void) 1947 { 1948 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 1949 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 1950 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 1951 offsetof(struct zsd_entry, zsd_linkage)); 1952 list_create(&zone_active, sizeof (zone_t), 1953 offsetof(zone_t, zone_linkage)); 1954 list_create(&zone_deathrow, sizeof (zone_t), 1955 offsetof(zone_t, zone_linkage)); 1956 1957 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 1958 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 1959 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 1960 zone0.zone_shares = 1; 1961 zone0.zone_nlwps = 0; 1962 zone0.zone_nlwps_ctl = INT_MAX; 1963 zone0.zone_nprocs = 0; 1964 zone0.zone_nprocs_ctl = INT_MAX; 1965 zone0.zone_locked_mem = 0; 1966 zone0.zone_locked_mem_ctl = UINT64_MAX; 1967 ASSERT(zone0.zone_max_swap == 0); 1968 zone0.zone_max_swap_ctl = UINT64_MAX; 1969 zone0.zone_max_lofi = 0; 1970 zone0.zone_max_lofi_ctl = UINT64_MAX; 1971 zone0.zone_shmmax = 0; 1972 zone0.zone_ipc.ipcq_shmmni = 0; 1973 zone0.zone_ipc.ipcq_semmni = 0; 1974 zone0.zone_ipc.ipcq_msgmni = 0; 1975 zone0.zone_name = GLOBAL_ZONENAME; 1976 zone0.zone_nodename = utsname.nodename; 1977 zone0.zone_domain = srpc_domain; 1978 zone0.zone_hostid = HW_INVALID_HOSTID; 1979 zone0.zone_fs_allowed = NULL; 1980 zone0.zone_ref = 1; 1981 zone0.zone_id = GLOBAL_ZONEID; 1982 zone0.zone_status = ZONE_IS_RUNNING; 1983 zone0.zone_rootpath = "/"; 1984 zone0.zone_rootpathlen = 2; 1985 zone0.zone_psetid = ZONE_PS_INVAL; 1986 zone0.zone_ncpus = 0; 1987 zone0.zone_ncpus_online = 0; 1988 zone0.zone_proc_initpid = 1; 1989 zone0.zone_initname = initname; 1990 zone0.zone_lockedmem_kstat = NULL; 1991 zone0.zone_swapresv_kstat = NULL; 1992 zone0.zone_nprocs_kstat = NULL; 1993 1994 zone0.zone_stime = 0; 1995 zone0.zone_utime = 0; 1996 zone0.zone_wtime = 0; 1997 1998 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 1999 offsetof(zone_ref_t, zref_linkage)); 2000 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2001 offsetof(struct zsd_entry, zsd_linkage)); 2002 list_insert_head(&zone_active, &zone0); 2003 2004 /* 2005 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2006 * to anything meaningful. It is assigned to be 'rootdir' in 2007 * vfs_mountroot(). 2008 */ 2009 zone0.zone_rootvp = NULL; 2010 zone0.zone_vfslist = NULL; 2011 zone0.zone_bootargs = initargs; 2012 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2013 /* 2014 * The global zone has all privileges 2015 */ 2016 priv_fillset(zone0.zone_privset); 2017 /* 2018 * Add p0 to the global zone 2019 */ 2020 zone0.zone_zsched = &p0; 2021 p0.p_zone = &zone0; 2022 } 2023 2024 /* 2025 * Compute a hash value based on the contents of the label and the DOI. The 2026 * hash algorithm is somewhat arbitrary, but is based on the observation that 2027 * humans will likely pick labels that differ by amounts that work out to be 2028 * multiples of the number of hash chains, and thus stirring in some primes 2029 * should help. 2030 */ 2031 static uint_t 2032 hash_bylabel(void *hdata, mod_hash_key_t key) 2033 { 2034 const ts_label_t *lab = (ts_label_t *)key; 2035 const uint32_t *up, *ue; 2036 uint_t hash; 2037 int i; 2038 2039 _NOTE(ARGUNUSED(hdata)); 2040 2041 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2042 /* we depend on alignment of label, but not representation */ 2043 up = (const uint32_t *)&lab->tsl_label; 2044 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2045 i = 1; 2046 while (up < ue) { 2047 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2048 hash += *up + (*up << ((i % 16) + 1)); 2049 up++; 2050 i++; 2051 } 2052 return (hash); 2053 } 2054 2055 /* 2056 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2057 * equal). This may need to be changed if less than / greater than is ever 2058 * needed. 2059 */ 2060 static int 2061 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2062 { 2063 ts_label_t *lab1 = (ts_label_t *)key1; 2064 ts_label_t *lab2 = (ts_label_t *)key2; 2065 2066 return (label_equal(lab1, lab2) ? 0 : 1); 2067 } 2068 2069 /* 2070 * Called by main() to initialize the zones framework. 2071 */ 2072 void 2073 zone_init(void) 2074 { 2075 rctl_dict_entry_t *rde; 2076 rctl_val_t *dval; 2077 rctl_set_t *set; 2078 rctl_alloc_gp_t *gp; 2079 rctl_entity_p_t e; 2080 int res; 2081 2082 ASSERT(curproc == &p0); 2083 2084 /* 2085 * Create ID space for zone IDs. ID 0 is reserved for the 2086 * global zone. 2087 */ 2088 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2089 2090 /* 2091 * Initialize generic zone resource controls, if any. 2092 */ 2093 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2094 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2095 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2096 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2097 2098 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2099 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2100 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2101 RCTL_GLOBAL_INFINITE, 2102 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2103 2104 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2105 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2106 INT_MAX, INT_MAX, &zone_lwps_ops); 2107 2108 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2109 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2110 INT_MAX, INT_MAX, &zone_procs_ops); 2111 2112 /* 2113 * System V IPC resource controls 2114 */ 2115 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2116 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2117 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2118 2119 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2120 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2121 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2122 2123 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2124 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2125 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2126 2127 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2128 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2129 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2130 2131 /* 2132 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2133 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2134 */ 2135 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2136 bzero(dval, sizeof (rctl_val_t)); 2137 dval->rcv_value = 1; 2138 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2139 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2140 dval->rcv_action_recip_pid = -1; 2141 2142 rde = rctl_dict_lookup("zone.cpu-shares"); 2143 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2144 2145 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2146 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2147 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2148 &zone_locked_mem_ops); 2149 2150 rc_zone_max_swap = rctl_register("zone.max-swap", 2151 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2152 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2153 &zone_max_swap_ops); 2154 2155 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2156 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2157 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2158 &zone_max_lofi_ops); 2159 2160 /* 2161 * Initialize the ``global zone''. 2162 */ 2163 set = rctl_set_create(); 2164 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2165 mutex_enter(&p0.p_lock); 2166 e.rcep_p.zone = &zone0; 2167 e.rcep_t = RCENTITY_ZONE; 2168 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2169 gp); 2170 2171 zone0.zone_nlwps = p0.p_lwpcnt; 2172 zone0.zone_nprocs = 1; 2173 zone0.zone_ntasks = 1; 2174 mutex_exit(&p0.p_lock); 2175 zone0.zone_restart_init = B_TRUE; 2176 zone0.zone_brand = &native_brand; 2177 rctl_prealloc_destroy(gp); 2178 /* 2179 * pool_default hasn't been initialized yet, so we let pool_init() 2180 * take care of making sure the global zone is in the default pool. 2181 */ 2182 2183 /* 2184 * Initialize global zone kstats 2185 */ 2186 zone_kstat_create(&zone0); 2187 2188 /* 2189 * Initialize zone label. 2190 * mlp are initialized when tnzonecfg is loaded. 2191 */ 2192 zone0.zone_slabel = l_admin_low; 2193 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2194 label_hold(l_admin_low); 2195 2196 /* 2197 * Initialise the lock for the database structure used by mntfs. 2198 */ 2199 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2200 2201 mutex_enter(&zonehash_lock); 2202 zone_uniqid(&zone0); 2203 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2204 2205 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2206 mod_hash_null_valdtor); 2207 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2208 zone_hash_size, mod_hash_null_valdtor); 2209 /* 2210 * maintain zonehashbylabel only for labeled systems 2211 */ 2212 if (is_system_labeled()) 2213 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2214 zone_hash_size, mod_hash_null_keydtor, 2215 mod_hash_null_valdtor, hash_bylabel, NULL, 2216 hash_labelkey_cmp, KM_SLEEP); 2217 zonecount = 1; 2218 2219 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2220 (mod_hash_val_t)&zone0); 2221 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2222 (mod_hash_val_t)&zone0); 2223 if (is_system_labeled()) { 2224 zone0.zone_flags |= ZF_HASHED_LABEL; 2225 (void) mod_hash_insert(zonehashbylabel, 2226 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2227 } 2228 mutex_exit(&zonehash_lock); 2229 2230 /* 2231 * We avoid setting zone_kcred until now, since kcred is initialized 2232 * sometime after zone_zsd_init() and before zone_init(). 2233 */ 2234 zone0.zone_kcred = kcred; 2235 /* 2236 * The global zone is fully initialized (except for zone_rootvp which 2237 * will be set when the root filesystem is mounted). 2238 */ 2239 global_zone = &zone0; 2240 2241 /* 2242 * Setup an event channel to send zone status change notifications on 2243 */ 2244 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2245 EVCH_CREAT); 2246 2247 if (res) 2248 panic("Sysevent_evc_bind failed during zone setup.\n"); 2249 2250 } 2251 2252 static void 2253 zone_free(zone_t *zone) 2254 { 2255 ASSERT(zone != global_zone); 2256 ASSERT(zone->zone_ntasks == 0); 2257 ASSERT(zone->zone_nlwps == 0); 2258 ASSERT(zone->zone_nprocs == 0); 2259 ASSERT(zone->zone_cred_ref == 0); 2260 ASSERT(zone->zone_kcred == NULL); 2261 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2262 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2263 ASSERT(list_is_empty(&zone->zone_ref_list)); 2264 2265 /* 2266 * Remove any zone caps. 2267 */ 2268 cpucaps_zone_remove(zone); 2269 2270 ASSERT(zone->zone_cpucap == NULL); 2271 2272 /* remove from deathrow list */ 2273 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2274 ASSERT(zone->zone_ref == 0); 2275 mutex_enter(&zone_deathrow_lock); 2276 list_remove(&zone_deathrow, zone); 2277 mutex_exit(&zone_deathrow_lock); 2278 } 2279 2280 list_destroy(&zone->zone_ref_list); 2281 zone_free_zsd(zone); 2282 zone_free_datasets(zone); 2283 list_destroy(&zone->zone_dl_list); 2284 2285 if (zone->zone_rootvp != NULL) 2286 VN_RELE(zone->zone_rootvp); 2287 if (zone->zone_rootpath) 2288 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2289 if (zone->zone_name != NULL) 2290 kmem_free(zone->zone_name, ZONENAME_MAX); 2291 if (zone->zone_slabel != NULL) 2292 label_rele(zone->zone_slabel); 2293 if (zone->zone_nodename != NULL) 2294 kmem_free(zone->zone_nodename, _SYS_NMLN); 2295 if (zone->zone_domain != NULL) 2296 kmem_free(zone->zone_domain, _SYS_NMLN); 2297 if (zone->zone_privset != NULL) 2298 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2299 if (zone->zone_rctls != NULL) 2300 rctl_set_free(zone->zone_rctls); 2301 if (zone->zone_bootargs != NULL) 2302 strfree(zone->zone_bootargs); 2303 if (zone->zone_initname != NULL) 2304 strfree(zone->zone_initname); 2305 if (zone->zone_fs_allowed != NULL) 2306 strfree(zone->zone_fs_allowed); 2307 if (zone->zone_pfexecd != NULL) 2308 klpd_freelist(&zone->zone_pfexecd); 2309 id_free(zoneid_space, zone->zone_id); 2310 mutex_destroy(&zone->zone_lock); 2311 cv_destroy(&zone->zone_cv); 2312 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2313 rw_destroy(&zone->zone_mntfs_db_lock); 2314 kmem_free(zone, sizeof (zone_t)); 2315 } 2316 2317 /* 2318 * See block comment at the top of this file for information about zone 2319 * status values. 2320 */ 2321 /* 2322 * Convenience function for setting zone status. 2323 */ 2324 static void 2325 zone_status_set(zone_t *zone, zone_status_t status) 2326 { 2327 2328 nvlist_t *nvl = NULL; 2329 ASSERT(MUTEX_HELD(&zone_status_lock)); 2330 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2331 status >= zone_status_get(zone)); 2332 2333 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2334 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2335 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2336 zone_status_table[status]) || 2337 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2338 zone_status_table[zone->zone_status]) || 2339 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2340 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2341 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2342 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2343 #ifdef DEBUG 2344 (void) printf( 2345 "Failed to allocate and send zone state change event.\n"); 2346 #endif 2347 } 2348 nvlist_free(nvl); 2349 2350 zone->zone_status = status; 2351 2352 cv_broadcast(&zone->zone_cv); 2353 } 2354 2355 /* 2356 * Public function to retrieve the zone status. The zone status may 2357 * change after it is retrieved. 2358 */ 2359 zone_status_t 2360 zone_status_get(zone_t *zone) 2361 { 2362 return (zone->zone_status); 2363 } 2364 2365 static int 2366 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2367 { 2368 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2369 int err = 0; 2370 2371 ASSERT(zone != global_zone); 2372 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2373 goto done; /* EFAULT or ENAMETOOLONG */ 2374 2375 if (zone->zone_bootargs != NULL) 2376 strfree(zone->zone_bootargs); 2377 2378 zone->zone_bootargs = strdup(buf); 2379 2380 done: 2381 kmem_free(buf, BOOTARGS_MAX); 2382 return (err); 2383 } 2384 2385 static int 2386 zone_set_brand(zone_t *zone, const char *brand) 2387 { 2388 struct brand_attr *attrp; 2389 brand_t *bp; 2390 2391 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2392 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2393 kmem_free(attrp, sizeof (struct brand_attr)); 2394 return (EFAULT); 2395 } 2396 2397 bp = brand_register_zone(attrp); 2398 kmem_free(attrp, sizeof (struct brand_attr)); 2399 if (bp == NULL) 2400 return (EINVAL); 2401 2402 /* 2403 * This is the only place where a zone can change it's brand. 2404 * We already need to hold zone_status_lock to check the zone 2405 * status, so we'll just use that lock to serialize zone 2406 * branding requests as well. 2407 */ 2408 mutex_enter(&zone_status_lock); 2409 2410 /* Re-Branding is not allowed and the zone can't be booted yet */ 2411 if ((ZONE_IS_BRANDED(zone)) || 2412 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2413 mutex_exit(&zone_status_lock); 2414 brand_unregister_zone(bp); 2415 return (EINVAL); 2416 } 2417 2418 /* set up the brand specific data */ 2419 zone->zone_brand = bp; 2420 ZBROP(zone)->b_init_brand_data(zone); 2421 2422 mutex_exit(&zone_status_lock); 2423 return (0); 2424 } 2425 2426 static int 2427 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2428 { 2429 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2430 int err = 0; 2431 2432 ASSERT(zone != global_zone); 2433 if ((err = copyinstr(zone_fs_allowed, buf, 2434 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2435 goto done; 2436 2437 if (zone->zone_fs_allowed != NULL) 2438 strfree(zone->zone_fs_allowed); 2439 2440 zone->zone_fs_allowed = strdup(buf); 2441 2442 done: 2443 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2444 return (err); 2445 } 2446 2447 static int 2448 zone_set_initname(zone_t *zone, const char *zone_initname) 2449 { 2450 char initname[INITNAME_SZ]; 2451 size_t len; 2452 int err = 0; 2453 2454 ASSERT(zone != global_zone); 2455 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2456 return (err); /* EFAULT or ENAMETOOLONG */ 2457 2458 if (zone->zone_initname != NULL) 2459 strfree(zone->zone_initname); 2460 2461 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2462 (void) strcpy(zone->zone_initname, initname); 2463 return (0); 2464 } 2465 2466 static int 2467 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2468 { 2469 uint64_t mcap; 2470 int err = 0; 2471 2472 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2473 zone->zone_phys_mcap = mcap; 2474 2475 return (err); 2476 } 2477 2478 static int 2479 zone_set_sched_class(zone_t *zone, const char *new_class) 2480 { 2481 char sched_class[PC_CLNMSZ]; 2482 id_t classid; 2483 int err; 2484 2485 ASSERT(zone != global_zone); 2486 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2487 return (err); /* EFAULT or ENAMETOOLONG */ 2488 2489 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2490 return (set_errno(EINVAL)); 2491 zone->zone_defaultcid = classid; 2492 ASSERT(zone->zone_defaultcid > 0 && 2493 zone->zone_defaultcid < loaded_classes); 2494 2495 return (0); 2496 } 2497 2498 /* 2499 * Block indefinitely waiting for (zone_status >= status) 2500 */ 2501 void 2502 zone_status_wait(zone_t *zone, zone_status_t status) 2503 { 2504 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2505 2506 mutex_enter(&zone_status_lock); 2507 while (zone->zone_status < status) { 2508 cv_wait(&zone->zone_cv, &zone_status_lock); 2509 } 2510 mutex_exit(&zone_status_lock); 2511 } 2512 2513 /* 2514 * Private CPR-safe version of zone_status_wait(). 2515 */ 2516 static void 2517 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2518 { 2519 callb_cpr_t cprinfo; 2520 2521 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2522 2523 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2524 str); 2525 mutex_enter(&zone_status_lock); 2526 while (zone->zone_status < status) { 2527 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2528 cv_wait(&zone->zone_cv, &zone_status_lock); 2529 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2530 } 2531 /* 2532 * zone_status_lock is implicitly released by the following. 2533 */ 2534 CALLB_CPR_EXIT(&cprinfo); 2535 } 2536 2537 /* 2538 * Block until zone enters requested state or signal is received. Return (0) 2539 * if signaled, non-zero otherwise. 2540 */ 2541 int 2542 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2543 { 2544 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2545 2546 mutex_enter(&zone_status_lock); 2547 while (zone->zone_status < status) { 2548 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2549 mutex_exit(&zone_status_lock); 2550 return (0); 2551 } 2552 } 2553 mutex_exit(&zone_status_lock); 2554 return (1); 2555 } 2556 2557 /* 2558 * Block until the zone enters the requested state or the timeout expires, 2559 * whichever happens first. Return (-1) if operation timed out, time remaining 2560 * otherwise. 2561 */ 2562 clock_t 2563 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2564 { 2565 clock_t timeleft = 0; 2566 2567 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2568 2569 mutex_enter(&zone_status_lock); 2570 while (zone->zone_status < status && timeleft != -1) { 2571 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2572 } 2573 mutex_exit(&zone_status_lock); 2574 return (timeleft); 2575 } 2576 2577 /* 2578 * Block until the zone enters the requested state, the current process is 2579 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2580 * operation timed out, 0 if signaled, time remaining otherwise. 2581 */ 2582 clock_t 2583 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2584 { 2585 clock_t timeleft = tim - ddi_get_lbolt(); 2586 2587 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2588 2589 mutex_enter(&zone_status_lock); 2590 while (zone->zone_status < status) { 2591 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2592 tim); 2593 if (timeleft <= 0) 2594 break; 2595 } 2596 mutex_exit(&zone_status_lock); 2597 return (timeleft); 2598 } 2599 2600 /* 2601 * Zones have two reference counts: one for references from credential 2602 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2603 * This is so we can allow a zone to be rebooted while there are still 2604 * outstanding cred references, since certain drivers cache dblks (which 2605 * implicitly results in cached creds). We wait for zone_ref to drop to 2606 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2607 * later freed when the zone_cred_ref drops to 0, though nothing other 2608 * than the zone id and privilege set should be accessed once the zone 2609 * is "dead". 2610 * 2611 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2612 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2613 * to 0. This can be useful to flush out other sources of cached creds 2614 * that may be less innocuous than the driver case. 2615 * 2616 * Zones also provide a tracked reference counting mechanism in which zone 2617 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2618 * debuggers determine the sources of leaked zone references. See 2619 * zone_hold_ref() and zone_rele_ref() below for more information. 2620 */ 2621 2622 int zone_wait_for_cred = 0; 2623 2624 static void 2625 zone_hold_locked(zone_t *z) 2626 { 2627 ASSERT(MUTEX_HELD(&z->zone_lock)); 2628 z->zone_ref++; 2629 ASSERT(z->zone_ref != 0); 2630 } 2631 2632 /* 2633 * Increment the specified zone's reference count. The zone's zone_t structure 2634 * will not be freed as long as the zone's reference count is nonzero. 2635 * Decrement the zone's reference count via zone_rele(). 2636 * 2637 * NOTE: This function should only be used to hold zones for short periods of 2638 * time. Use zone_hold_ref() if the zone must be held for a long time. 2639 */ 2640 void 2641 zone_hold(zone_t *z) 2642 { 2643 mutex_enter(&z->zone_lock); 2644 zone_hold_locked(z); 2645 mutex_exit(&z->zone_lock); 2646 } 2647 2648 /* 2649 * If the non-cred ref count drops to 1 and either the cred ref count 2650 * is 0 or we aren't waiting for cred references, the zone is ready to 2651 * be destroyed. 2652 */ 2653 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2654 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2655 2656 /* 2657 * Common zone reference release function invoked by zone_rele() and 2658 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2659 * zone's subsystem-specific reference counters are not affected by the 2660 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2661 * removed from the specified zone's reference list. ref must be non-NULL iff 2662 * subsys is not ZONE_REF_NUM_SUBSYS. 2663 */ 2664 static void 2665 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2666 { 2667 boolean_t wakeup; 2668 2669 mutex_enter(&z->zone_lock); 2670 ASSERT(z->zone_ref != 0); 2671 z->zone_ref--; 2672 if (subsys != ZONE_REF_NUM_SUBSYS) { 2673 ASSERT(z->zone_subsys_ref[subsys] != 0); 2674 z->zone_subsys_ref[subsys]--; 2675 list_remove(&z->zone_ref_list, ref); 2676 } 2677 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2678 /* no more refs, free the structure */ 2679 mutex_exit(&z->zone_lock); 2680 zone_free(z); 2681 return; 2682 } 2683 /* signal zone_destroy so the zone can finish halting */ 2684 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2685 mutex_exit(&z->zone_lock); 2686 2687 if (wakeup) { 2688 /* 2689 * Grabbing zonehash_lock here effectively synchronizes with 2690 * zone_destroy() to avoid missed signals. 2691 */ 2692 mutex_enter(&zonehash_lock); 2693 cv_broadcast(&zone_destroy_cv); 2694 mutex_exit(&zonehash_lock); 2695 } 2696 } 2697 2698 /* 2699 * Decrement the specified zone's reference count. The specified zone will 2700 * cease to exist after this function returns if the reference count drops to 2701 * zero. This function should be paired with zone_hold(). 2702 */ 2703 void 2704 zone_rele(zone_t *z) 2705 { 2706 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2707 } 2708 2709 /* 2710 * Initialize a zone reference structure. This function must be invoked for 2711 * a reference structure before the structure is passed to zone_hold_ref(). 2712 */ 2713 void 2714 zone_init_ref(zone_ref_t *ref) 2715 { 2716 ref->zref_zone = NULL; 2717 list_link_init(&ref->zref_linkage); 2718 } 2719 2720 /* 2721 * Acquire a reference to zone z. The caller must specify the 2722 * zone_ref_subsys_t constant associated with its subsystem. The specified 2723 * zone_ref_t structure will represent a reference to the specified zone. Use 2724 * zone_rele_ref() to release the reference. 2725 * 2726 * The referenced zone_t structure will not be freed as long as the zone_t's 2727 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2728 * references. 2729 * 2730 * NOTE: The zone_ref_t structure must be initialized before it is used. 2731 * See zone_init_ref() above. 2732 */ 2733 void 2734 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2735 { 2736 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2737 2738 /* 2739 * Prevent consumers from reusing a reference structure before 2740 * releasing it. 2741 */ 2742 VERIFY(ref->zref_zone == NULL); 2743 2744 ref->zref_zone = z; 2745 mutex_enter(&z->zone_lock); 2746 zone_hold_locked(z); 2747 z->zone_subsys_ref[subsys]++; 2748 ASSERT(z->zone_subsys_ref[subsys] != 0); 2749 list_insert_head(&z->zone_ref_list, ref); 2750 mutex_exit(&z->zone_lock); 2751 } 2752 2753 /* 2754 * Release the zone reference represented by the specified zone_ref_t. 2755 * The reference is invalid after it's released; however, the zone_ref_t 2756 * structure can be reused without having to invoke zone_init_ref(). 2757 * subsys should be the same value that was passed to zone_hold_ref() 2758 * when the reference was acquired. 2759 */ 2760 void 2761 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2762 { 2763 zone_rele_common(ref->zref_zone, ref, subsys); 2764 2765 /* 2766 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2767 * when consumers dereference the reference. This helps us catch 2768 * consumers who use released references. Furthermore, this lets 2769 * consumers reuse the zone_ref_t structure without having to 2770 * invoke zone_init_ref(). 2771 */ 2772 ref->zref_zone = NULL; 2773 } 2774 2775 void 2776 zone_cred_hold(zone_t *z) 2777 { 2778 mutex_enter(&z->zone_lock); 2779 z->zone_cred_ref++; 2780 ASSERT(z->zone_cred_ref != 0); 2781 mutex_exit(&z->zone_lock); 2782 } 2783 2784 void 2785 zone_cred_rele(zone_t *z) 2786 { 2787 boolean_t wakeup; 2788 2789 mutex_enter(&z->zone_lock); 2790 ASSERT(z->zone_cred_ref != 0); 2791 z->zone_cred_ref--; 2792 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2793 /* no more refs, free the structure */ 2794 mutex_exit(&z->zone_lock); 2795 zone_free(z); 2796 return; 2797 } 2798 /* 2799 * If zone_destroy is waiting for the cred references to drain 2800 * out, and they have, signal it. 2801 */ 2802 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2803 zone_status_get(z) >= ZONE_IS_DEAD); 2804 mutex_exit(&z->zone_lock); 2805 2806 if (wakeup) { 2807 /* 2808 * Grabbing zonehash_lock here effectively synchronizes with 2809 * zone_destroy() to avoid missed signals. 2810 */ 2811 mutex_enter(&zonehash_lock); 2812 cv_broadcast(&zone_destroy_cv); 2813 mutex_exit(&zonehash_lock); 2814 } 2815 } 2816 2817 void 2818 zone_task_hold(zone_t *z) 2819 { 2820 mutex_enter(&z->zone_lock); 2821 z->zone_ntasks++; 2822 ASSERT(z->zone_ntasks != 0); 2823 mutex_exit(&z->zone_lock); 2824 } 2825 2826 void 2827 zone_task_rele(zone_t *zone) 2828 { 2829 uint_t refcnt; 2830 2831 mutex_enter(&zone->zone_lock); 2832 ASSERT(zone->zone_ntasks != 0); 2833 refcnt = --zone->zone_ntasks; 2834 if (refcnt > 1) { /* Common case */ 2835 mutex_exit(&zone->zone_lock); 2836 return; 2837 } 2838 zone_hold_locked(zone); /* so we can use the zone_t later */ 2839 mutex_exit(&zone->zone_lock); 2840 if (refcnt == 1) { 2841 /* 2842 * See if the zone is shutting down. 2843 */ 2844 mutex_enter(&zone_status_lock); 2845 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2846 goto out; 2847 } 2848 2849 /* 2850 * Make sure the ntasks didn't change since we 2851 * dropped zone_lock. 2852 */ 2853 mutex_enter(&zone->zone_lock); 2854 if (refcnt != zone->zone_ntasks) { 2855 mutex_exit(&zone->zone_lock); 2856 goto out; 2857 } 2858 mutex_exit(&zone->zone_lock); 2859 2860 /* 2861 * No more user processes in the zone. The zone is empty. 2862 */ 2863 zone_status_set(zone, ZONE_IS_EMPTY); 2864 goto out; 2865 } 2866 2867 ASSERT(refcnt == 0); 2868 /* 2869 * zsched has exited; the zone is dead. 2870 */ 2871 zone->zone_zsched = NULL; /* paranoia */ 2872 mutex_enter(&zone_status_lock); 2873 zone_status_set(zone, ZONE_IS_DEAD); 2874 out: 2875 mutex_exit(&zone_status_lock); 2876 zone_rele(zone); 2877 } 2878 2879 zoneid_t 2880 getzoneid(void) 2881 { 2882 return (curproc->p_zone->zone_id); 2883 } 2884 2885 /* 2886 * Internal versions of zone_find_by_*(). These don't zone_hold() or 2887 * check the validity of a zone's state. 2888 */ 2889 static zone_t * 2890 zone_find_all_by_id(zoneid_t zoneid) 2891 { 2892 mod_hash_val_t hv; 2893 zone_t *zone = NULL; 2894 2895 ASSERT(MUTEX_HELD(&zonehash_lock)); 2896 2897 if (mod_hash_find(zonehashbyid, 2898 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 2899 zone = (zone_t *)hv; 2900 return (zone); 2901 } 2902 2903 static zone_t * 2904 zone_find_all_by_label(const ts_label_t *label) 2905 { 2906 mod_hash_val_t hv; 2907 zone_t *zone = NULL; 2908 2909 ASSERT(MUTEX_HELD(&zonehash_lock)); 2910 2911 /* 2912 * zonehashbylabel is not maintained for unlabeled systems 2913 */ 2914 if (!is_system_labeled()) 2915 return (NULL); 2916 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 2917 zone = (zone_t *)hv; 2918 return (zone); 2919 } 2920 2921 static zone_t * 2922 zone_find_all_by_name(char *name) 2923 { 2924 mod_hash_val_t hv; 2925 zone_t *zone = NULL; 2926 2927 ASSERT(MUTEX_HELD(&zonehash_lock)); 2928 2929 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 2930 zone = (zone_t *)hv; 2931 return (zone); 2932 } 2933 2934 /* 2935 * Public interface for looking up a zone by zoneid. Only returns the zone if 2936 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 2937 * Caller must call zone_rele() once it is done with the zone. 2938 * 2939 * The zone may begin the zone_destroy() sequence immediately after this 2940 * function returns, but may be safely used until zone_rele() is called. 2941 */ 2942 zone_t * 2943 zone_find_by_id(zoneid_t zoneid) 2944 { 2945 zone_t *zone; 2946 zone_status_t status; 2947 2948 mutex_enter(&zonehash_lock); 2949 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 2950 mutex_exit(&zonehash_lock); 2951 return (NULL); 2952 } 2953 status = zone_status_get(zone); 2954 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 2955 /* 2956 * For all practical purposes the zone doesn't exist. 2957 */ 2958 mutex_exit(&zonehash_lock); 2959 return (NULL); 2960 } 2961 zone_hold(zone); 2962 mutex_exit(&zonehash_lock); 2963 return (zone); 2964 } 2965 2966 /* 2967 * Similar to zone_find_by_id, but using zone label as the key. 2968 */ 2969 zone_t * 2970 zone_find_by_label(const ts_label_t *label) 2971 { 2972 zone_t *zone; 2973 zone_status_t status; 2974 2975 mutex_enter(&zonehash_lock); 2976 if ((zone = zone_find_all_by_label(label)) == NULL) { 2977 mutex_exit(&zonehash_lock); 2978 return (NULL); 2979 } 2980 2981 status = zone_status_get(zone); 2982 if (status > ZONE_IS_DOWN) { 2983 /* 2984 * For all practical purposes the zone doesn't exist. 2985 */ 2986 mutex_exit(&zonehash_lock); 2987 return (NULL); 2988 } 2989 zone_hold(zone); 2990 mutex_exit(&zonehash_lock); 2991 return (zone); 2992 } 2993 2994 /* 2995 * Similar to zone_find_by_id, but using zone name as the key. 2996 */ 2997 zone_t * 2998 zone_find_by_name(char *name) 2999 { 3000 zone_t *zone; 3001 zone_status_t status; 3002 3003 mutex_enter(&zonehash_lock); 3004 if ((zone = zone_find_all_by_name(name)) == NULL) { 3005 mutex_exit(&zonehash_lock); 3006 return (NULL); 3007 } 3008 status = zone_status_get(zone); 3009 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3010 /* 3011 * For all practical purposes the zone doesn't exist. 3012 */ 3013 mutex_exit(&zonehash_lock); 3014 return (NULL); 3015 } 3016 zone_hold(zone); 3017 mutex_exit(&zonehash_lock); 3018 return (zone); 3019 } 3020 3021 /* 3022 * Similar to zone_find_by_id(), using the path as a key. For instance, 3023 * if there is a zone "foo" rooted at /foo/root, and the path argument 3024 * is "/foo/root/proc", it will return the held zone_t corresponding to 3025 * zone "foo". 3026 * 3027 * zone_find_by_path() always returns a non-NULL value, since at the 3028 * very least every path will be contained in the global zone. 3029 * 3030 * As with the other zone_find_by_*() functions, the caller is 3031 * responsible for zone_rele()ing the return value of this function. 3032 */ 3033 zone_t * 3034 zone_find_by_path(const char *path) 3035 { 3036 zone_t *zone; 3037 zone_t *zret = NULL; 3038 zone_status_t status; 3039 3040 if (path == NULL) { 3041 /* 3042 * Call from rootconf(). 3043 */ 3044 zone_hold(global_zone); 3045 return (global_zone); 3046 } 3047 ASSERT(*path == '/'); 3048 mutex_enter(&zonehash_lock); 3049 for (zone = list_head(&zone_active); zone != NULL; 3050 zone = list_next(&zone_active, zone)) { 3051 if (ZONE_PATH_VISIBLE(path, zone)) 3052 zret = zone; 3053 } 3054 ASSERT(zret != NULL); 3055 status = zone_status_get(zret); 3056 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3057 /* 3058 * Zone practically doesn't exist. 3059 */ 3060 zret = global_zone; 3061 } 3062 zone_hold(zret); 3063 mutex_exit(&zonehash_lock); 3064 return (zret); 3065 } 3066 3067 /* 3068 * Public interface for updating per-zone load averages. Called once per 3069 * second. 3070 * 3071 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3072 */ 3073 void 3074 zone_loadavg_update() 3075 { 3076 zone_t *zp; 3077 zone_status_t status; 3078 struct loadavg_s *lavg; 3079 hrtime_t zone_total; 3080 int i; 3081 hrtime_t hr_avg; 3082 int nrun; 3083 static int64_t f[3] = { 135, 27, 9 }; 3084 int64_t q, r; 3085 3086 mutex_enter(&zonehash_lock); 3087 for (zp = list_head(&zone_active); zp != NULL; 3088 zp = list_next(&zone_active, zp)) { 3089 mutex_enter(&zp->zone_lock); 3090 3091 /* Skip zones that are on the way down or not yet up */ 3092 status = zone_status_get(zp); 3093 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3094 /* For all practical purposes the zone doesn't exist. */ 3095 mutex_exit(&zp->zone_lock); 3096 continue; 3097 } 3098 3099 /* 3100 * Update the 10 second moving average data in zone_loadavg. 3101 */ 3102 lavg = &zp->zone_loadavg; 3103 3104 zone_total = zp->zone_utime + zp->zone_stime + zp->zone_wtime; 3105 scalehrtime(&zone_total); 3106 3107 /* The zone_total should always be increasing. */ 3108 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3109 zone_total - lavg->lg_total : 0; 3110 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3111 /* lg_total holds the prev. 1 sec. total */ 3112 lavg->lg_total = zone_total; 3113 3114 /* 3115 * To simplify the calculation, we don't calculate the load avg. 3116 * until the zone has been up for at least 10 seconds and our 3117 * moving average is thus full. 3118 */ 3119 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3120 lavg->lg_len++; 3121 mutex_exit(&zp->zone_lock); 3122 continue; 3123 } 3124 3125 /* Now calculate the 1min, 5min, 15 min load avg. */ 3126 hr_avg = 0; 3127 for (i = 0; i < S_LOADAVG_SZ; i++) 3128 hr_avg += lavg->lg_loads[i]; 3129 hr_avg = hr_avg / S_LOADAVG_SZ; 3130 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3131 3132 /* Compute load avg. See comment in calcloadavg() */ 3133 for (i = 0; i < 3; i++) { 3134 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3135 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3136 zp->zone_hp_avenrun[i] += 3137 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3138 3139 /* avenrun[] can only hold 31 bits of load avg. */ 3140 if (zp->zone_hp_avenrun[i] < 3141 ((uint64_t)1<<(31+16-FSHIFT))) 3142 zp->zone_avenrun[i] = (int32_t) 3143 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3144 else 3145 zp->zone_avenrun[i] = 0x7fffffff; 3146 } 3147 3148 mutex_exit(&zp->zone_lock); 3149 } 3150 mutex_exit(&zonehash_lock); 3151 } 3152 3153 /* 3154 * Get the number of cpus visible to this zone. The system-wide global 3155 * 'ncpus' is returned if pools are disabled, the caller is in the 3156 * global zone, or a NULL zone argument is passed in. 3157 */ 3158 int 3159 zone_ncpus_get(zone_t *zone) 3160 { 3161 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3162 3163 return (myncpus != 0 ? myncpus : ncpus); 3164 } 3165 3166 /* 3167 * Get the number of online cpus visible to this zone. The system-wide 3168 * global 'ncpus_online' is returned if pools are disabled, the caller 3169 * is in the global zone, or a NULL zone argument is passed in. 3170 */ 3171 int 3172 zone_ncpus_online_get(zone_t *zone) 3173 { 3174 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3175 3176 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3177 } 3178 3179 /* 3180 * Return the pool to which the zone is currently bound. 3181 */ 3182 pool_t * 3183 zone_pool_get(zone_t *zone) 3184 { 3185 ASSERT(pool_lock_held()); 3186 3187 return (zone->zone_pool); 3188 } 3189 3190 /* 3191 * Set the zone's pool pointer and update the zone's visibility to match 3192 * the resources in the new pool. 3193 */ 3194 void 3195 zone_pool_set(zone_t *zone, pool_t *pool) 3196 { 3197 ASSERT(pool_lock_held()); 3198 ASSERT(MUTEX_HELD(&cpu_lock)); 3199 3200 zone->zone_pool = pool; 3201 zone_pset_set(zone, pool->pool_pset->pset_id); 3202 } 3203 3204 /* 3205 * Return the cached value of the id of the processor set to which the 3206 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3207 * facility is disabled. 3208 */ 3209 psetid_t 3210 zone_pset_get(zone_t *zone) 3211 { 3212 ASSERT(MUTEX_HELD(&cpu_lock)); 3213 3214 return (zone->zone_psetid); 3215 } 3216 3217 /* 3218 * Set the cached value of the id of the processor set to which the zone 3219 * is currently bound. Also update the zone's visibility to match the 3220 * resources in the new processor set. 3221 */ 3222 void 3223 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3224 { 3225 psetid_t oldpsetid; 3226 3227 ASSERT(MUTEX_HELD(&cpu_lock)); 3228 oldpsetid = zone_pset_get(zone); 3229 3230 if (oldpsetid == newpsetid) 3231 return; 3232 /* 3233 * Global zone sees all. 3234 */ 3235 if (zone != global_zone) { 3236 zone->zone_psetid = newpsetid; 3237 if (newpsetid != ZONE_PS_INVAL) 3238 pool_pset_visibility_add(newpsetid, zone); 3239 if (oldpsetid != ZONE_PS_INVAL) 3240 pool_pset_visibility_remove(oldpsetid, zone); 3241 } 3242 /* 3243 * Disabling pools, so we should start using the global values 3244 * for ncpus and ncpus_online. 3245 */ 3246 if (newpsetid == ZONE_PS_INVAL) { 3247 zone->zone_ncpus = 0; 3248 zone->zone_ncpus_online = 0; 3249 } 3250 } 3251 3252 /* 3253 * Walk the list of active zones and issue the provided callback for 3254 * each of them. 3255 * 3256 * Caller must not be holding any locks that may be acquired under 3257 * zonehash_lock. See comment at the beginning of the file for a list of 3258 * common locks and their interactions with zones. 3259 */ 3260 int 3261 zone_walk(int (*cb)(zone_t *, void *), void *data) 3262 { 3263 zone_t *zone; 3264 int ret = 0; 3265 zone_status_t status; 3266 3267 mutex_enter(&zonehash_lock); 3268 for (zone = list_head(&zone_active); zone != NULL; 3269 zone = list_next(&zone_active, zone)) { 3270 /* 3271 * Skip zones that shouldn't be externally visible. 3272 */ 3273 status = zone_status_get(zone); 3274 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3275 continue; 3276 /* 3277 * Bail immediately if any callback invocation returns a 3278 * non-zero value. 3279 */ 3280 ret = (*cb)(zone, data); 3281 if (ret != 0) 3282 break; 3283 } 3284 mutex_exit(&zonehash_lock); 3285 return (ret); 3286 } 3287 3288 static int 3289 zone_set_root(zone_t *zone, const char *upath) 3290 { 3291 vnode_t *vp; 3292 int trycount; 3293 int error = 0; 3294 char *path; 3295 struct pathname upn, pn; 3296 size_t pathlen; 3297 3298 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3299 return (error); 3300 3301 pn_alloc(&pn); 3302 3303 /* prevent infinite loop */ 3304 trycount = 10; 3305 for (;;) { 3306 if (--trycount <= 0) { 3307 error = ESTALE; 3308 goto out; 3309 } 3310 3311 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3312 /* 3313 * VOP_ACCESS() may cover 'vp' with a new 3314 * filesystem, if 'vp' is an autoFS vnode. 3315 * Get the new 'vp' if so. 3316 */ 3317 if ((error = 3318 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3319 (!vn_ismntpt(vp) || 3320 (error = traverse(&vp)) == 0)) { 3321 pathlen = pn.pn_pathlen + 2; 3322 path = kmem_alloc(pathlen, KM_SLEEP); 3323 (void) strncpy(path, pn.pn_path, 3324 pn.pn_pathlen + 1); 3325 path[pathlen - 2] = '/'; 3326 path[pathlen - 1] = '\0'; 3327 pn_free(&pn); 3328 pn_free(&upn); 3329 3330 /* Success! */ 3331 break; 3332 } 3333 VN_RELE(vp); 3334 } 3335 if (error != ESTALE) 3336 goto out; 3337 } 3338 3339 ASSERT(error == 0); 3340 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3341 zone->zone_rootpath = path; 3342 zone->zone_rootpathlen = pathlen; 3343 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3344 zone->zone_flags |= ZF_IS_SCRATCH; 3345 return (0); 3346 3347 out: 3348 pn_free(&pn); 3349 pn_free(&upn); 3350 return (error); 3351 } 3352 3353 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3354 ((c) >= 'a' && (c) <= 'z') || \ 3355 ((c) >= 'A' && (c) <= 'Z')) 3356 3357 static int 3358 zone_set_name(zone_t *zone, const char *uname) 3359 { 3360 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3361 size_t len; 3362 int i, err; 3363 3364 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3365 kmem_free(kname, ZONENAME_MAX); 3366 return (err); /* EFAULT or ENAMETOOLONG */ 3367 } 3368 3369 /* must be less than ZONENAME_MAX */ 3370 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3371 kmem_free(kname, ZONENAME_MAX); 3372 return (EINVAL); 3373 } 3374 3375 /* 3376 * Name must start with an alphanumeric and must contain only 3377 * alphanumerics, '-', '_' and '.'. 3378 */ 3379 if (!isalnum(kname[0])) { 3380 kmem_free(kname, ZONENAME_MAX); 3381 return (EINVAL); 3382 } 3383 for (i = 1; i < len - 1; i++) { 3384 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3385 kname[i] != '.') { 3386 kmem_free(kname, ZONENAME_MAX); 3387 return (EINVAL); 3388 } 3389 } 3390 3391 zone->zone_name = kname; 3392 return (0); 3393 } 3394 3395 /* 3396 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3397 * is NULL or it points to a zone with no hostid emulation, then the machine's 3398 * hostid (i.e., the global zone's hostid) is returned. This function returns 3399 * zero if neither the zone nor the host machine (global zone) have hostids. It 3400 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3401 * hostid and the machine's hostid is invalid. 3402 */ 3403 uint32_t 3404 zone_get_hostid(zone_t *zonep) 3405 { 3406 unsigned long machine_hostid; 3407 3408 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3409 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3410 return (HW_INVALID_HOSTID); 3411 return ((uint32_t)machine_hostid); 3412 } 3413 return (zonep->zone_hostid); 3414 } 3415 3416 /* 3417 * Similar to thread_create(), but makes sure the thread is in the appropriate 3418 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3419 */ 3420 /*ARGSUSED*/ 3421 kthread_t * 3422 zthread_create( 3423 caddr_t stk, 3424 size_t stksize, 3425 void (*proc)(), 3426 void *arg, 3427 size_t len, 3428 pri_t pri) 3429 { 3430 kthread_t *t; 3431 zone_t *zone = curproc->p_zone; 3432 proc_t *pp = zone->zone_zsched; 3433 3434 zone_hold(zone); /* Reference to be dropped when thread exits */ 3435 3436 /* 3437 * No-one should be trying to create threads if the zone is shutting 3438 * down and there aren't any kernel threads around. See comment 3439 * in zthread_exit(). 3440 */ 3441 ASSERT(!(zone->zone_kthreads == NULL && 3442 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3443 /* 3444 * Create a thread, but don't let it run until we've finished setting 3445 * things up. 3446 */ 3447 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3448 ASSERT(t->t_forw == NULL); 3449 mutex_enter(&zone_status_lock); 3450 if (zone->zone_kthreads == NULL) { 3451 t->t_forw = t->t_back = t; 3452 } else { 3453 kthread_t *tx = zone->zone_kthreads; 3454 3455 t->t_forw = tx; 3456 t->t_back = tx->t_back; 3457 tx->t_back->t_forw = t; 3458 tx->t_back = t; 3459 } 3460 zone->zone_kthreads = t; 3461 mutex_exit(&zone_status_lock); 3462 3463 mutex_enter(&pp->p_lock); 3464 t->t_proc_flag |= TP_ZTHREAD; 3465 project_rele(t->t_proj); 3466 t->t_proj = project_hold(pp->p_task->tk_proj); 3467 3468 /* 3469 * Setup complete, let it run. 3470 */ 3471 thread_lock(t); 3472 t->t_schedflag |= TS_ALLSTART; 3473 setrun_locked(t); 3474 thread_unlock(t); 3475 3476 mutex_exit(&pp->p_lock); 3477 3478 return (t); 3479 } 3480 3481 /* 3482 * Similar to thread_exit(). Must be called by threads created via 3483 * zthread_exit(). 3484 */ 3485 void 3486 zthread_exit(void) 3487 { 3488 kthread_t *t = curthread; 3489 proc_t *pp = curproc; 3490 zone_t *zone = pp->p_zone; 3491 3492 mutex_enter(&zone_status_lock); 3493 3494 /* 3495 * Reparent to p0 3496 */ 3497 kpreempt_disable(); 3498 mutex_enter(&pp->p_lock); 3499 t->t_proc_flag &= ~TP_ZTHREAD; 3500 t->t_procp = &p0; 3501 hat_thread_exit(t); 3502 mutex_exit(&pp->p_lock); 3503 kpreempt_enable(); 3504 3505 if (t->t_back == t) { 3506 ASSERT(t->t_forw == t); 3507 /* 3508 * If the zone is empty, once the thread count 3509 * goes to zero no further kernel threads can be 3510 * created. This is because if the creator is a process 3511 * in the zone, then it must have exited before the zone 3512 * state could be set to ZONE_IS_EMPTY. 3513 * Otherwise, if the creator is a kernel thread in the 3514 * zone, the thread count is non-zero. 3515 * 3516 * This really means that non-zone kernel threads should 3517 * not create zone kernel threads. 3518 */ 3519 zone->zone_kthreads = NULL; 3520 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3521 zone_status_set(zone, ZONE_IS_DOWN); 3522 /* 3523 * Remove any CPU caps on this zone. 3524 */ 3525 cpucaps_zone_remove(zone); 3526 } 3527 } else { 3528 t->t_forw->t_back = t->t_back; 3529 t->t_back->t_forw = t->t_forw; 3530 if (zone->zone_kthreads == t) 3531 zone->zone_kthreads = t->t_forw; 3532 } 3533 mutex_exit(&zone_status_lock); 3534 zone_rele(zone); 3535 thread_exit(); 3536 /* NOTREACHED */ 3537 } 3538 3539 static void 3540 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3541 { 3542 vnode_t *oldvp; 3543 3544 /* we're going to hold a reference here to the directory */ 3545 VN_HOLD(vp); 3546 3547 /* update abs cwd/root path see c2/audit.c */ 3548 if (AU_AUDITING()) 3549 audit_chdirec(vp, vpp); 3550 3551 mutex_enter(&pp->p_lock); 3552 oldvp = *vpp; 3553 *vpp = vp; 3554 mutex_exit(&pp->p_lock); 3555 if (oldvp != NULL) 3556 VN_RELE(oldvp); 3557 } 3558 3559 /* 3560 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3561 */ 3562 static int 3563 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3564 { 3565 nvpair_t *nvp = NULL; 3566 boolean_t priv_set = B_FALSE; 3567 boolean_t limit_set = B_FALSE; 3568 boolean_t action_set = B_FALSE; 3569 3570 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3571 const char *name; 3572 uint64_t ui64; 3573 3574 name = nvpair_name(nvp); 3575 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3576 return (EINVAL); 3577 (void) nvpair_value_uint64(nvp, &ui64); 3578 if (strcmp(name, "privilege") == 0) { 3579 /* 3580 * Currently only privileged values are allowed, but 3581 * this may change in the future. 3582 */ 3583 if (ui64 != RCPRIV_PRIVILEGED) 3584 return (EINVAL); 3585 rv->rcv_privilege = ui64; 3586 priv_set = B_TRUE; 3587 } else if (strcmp(name, "limit") == 0) { 3588 rv->rcv_value = ui64; 3589 limit_set = B_TRUE; 3590 } else if (strcmp(name, "action") == 0) { 3591 if (ui64 != RCTL_LOCAL_NOACTION && 3592 ui64 != RCTL_LOCAL_DENY) 3593 return (EINVAL); 3594 rv->rcv_flagaction = ui64; 3595 action_set = B_TRUE; 3596 } else { 3597 return (EINVAL); 3598 } 3599 } 3600 3601 if (!(priv_set && limit_set && action_set)) 3602 return (EINVAL); 3603 rv->rcv_action_signal = 0; 3604 rv->rcv_action_recipient = NULL; 3605 rv->rcv_action_recip_pid = -1; 3606 rv->rcv_firing_time = 0; 3607 3608 return (0); 3609 } 3610 3611 /* 3612 * Non-global zone version of start_init. 3613 */ 3614 void 3615 zone_start_init(void) 3616 { 3617 proc_t *p = ttoproc(curthread); 3618 zone_t *z = p->p_zone; 3619 3620 ASSERT(!INGLOBALZONE(curproc)); 3621 3622 /* 3623 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3624 * storing just the pid of init is sufficient. 3625 */ 3626 z->zone_proc_initpid = p->p_pid; 3627 3628 /* 3629 * We maintain zone_boot_err so that we can return the cause of the 3630 * failure back to the caller of the zone_boot syscall. 3631 */ 3632 p->p_zone->zone_boot_err = start_init_common(); 3633 3634 /* 3635 * We will prevent booting zones from becoming running zones if the 3636 * global zone is shutting down. 3637 */ 3638 mutex_enter(&zone_status_lock); 3639 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3640 ZONE_IS_SHUTTING_DOWN) { 3641 /* 3642 * Make sure we are still in the booting state-- we could have 3643 * raced and already be shutting down, or even further along. 3644 */ 3645 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3646 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3647 } 3648 mutex_exit(&zone_status_lock); 3649 /* It's gone bad, dispose of the process */ 3650 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3651 mutex_enter(&p->p_lock); 3652 ASSERT(p->p_flag & SEXITLWPS); 3653 lwp_exit(); 3654 } 3655 } else { 3656 if (zone_status_get(z) == ZONE_IS_BOOTING) 3657 zone_status_set(z, ZONE_IS_RUNNING); 3658 mutex_exit(&zone_status_lock); 3659 /* cause the process to return to userland. */ 3660 lwp_rtt(); 3661 } 3662 } 3663 3664 struct zsched_arg { 3665 zone_t *zone; 3666 nvlist_t *nvlist; 3667 }; 3668 3669 /* 3670 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3671 * anything to do with scheduling, but rather with the fact that 3672 * per-zone kernel threads are parented to zsched, just like regular 3673 * kernel threads are parented to sched (p0). 3674 * 3675 * zsched is also responsible for launching init for the zone. 3676 */ 3677 static void 3678 zsched(void *arg) 3679 { 3680 struct zsched_arg *za = arg; 3681 proc_t *pp = curproc; 3682 proc_t *initp = proc_init; 3683 zone_t *zone = za->zone; 3684 cred_t *cr, *oldcred; 3685 rctl_set_t *set; 3686 rctl_alloc_gp_t *gp; 3687 contract_t *ct = NULL; 3688 task_t *tk, *oldtk; 3689 rctl_entity_p_t e; 3690 kproject_t *pj; 3691 3692 nvlist_t *nvl = za->nvlist; 3693 nvpair_t *nvp = NULL; 3694 3695 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3696 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3697 PTOU(pp)->u_argc = 0; 3698 PTOU(pp)->u_argv = NULL; 3699 PTOU(pp)->u_envp = NULL; 3700 closeall(P_FINFO(pp)); 3701 3702 /* 3703 * We are this zone's "zsched" process. As the zone isn't generally 3704 * visible yet we don't need to grab any locks before initializing its 3705 * zone_proc pointer. 3706 */ 3707 zone_hold(zone); /* this hold is released by zone_destroy() */ 3708 zone->zone_zsched = pp; 3709 mutex_enter(&pp->p_lock); 3710 pp->p_zone = zone; 3711 mutex_exit(&pp->p_lock); 3712 3713 /* 3714 * Disassociate process from its 'parent'; parent ourselves to init 3715 * (pid 1) and change other values as needed. 3716 */ 3717 sess_create(); 3718 3719 mutex_enter(&pidlock); 3720 proc_detach(pp); 3721 pp->p_ppid = 1; 3722 pp->p_flag |= SZONETOP; 3723 pp->p_ancpid = 1; 3724 pp->p_parent = initp; 3725 pp->p_psibling = NULL; 3726 if (initp->p_child) 3727 initp->p_child->p_psibling = pp; 3728 pp->p_sibling = initp->p_child; 3729 initp->p_child = pp; 3730 3731 /* Decrement what newproc() incremented. */ 3732 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3733 /* 3734 * Our credentials are about to become kcred-like, so we don't care 3735 * about the caller's ruid. 3736 */ 3737 upcount_inc(crgetruid(kcred), zone->zone_id); 3738 mutex_exit(&pidlock); 3739 3740 /* 3741 * getting out of global zone, so decrement lwp and process counts 3742 */ 3743 pj = pp->p_task->tk_proj; 3744 mutex_enter(&global_zone->zone_nlwps_lock); 3745 pj->kpj_nlwps -= pp->p_lwpcnt; 3746 global_zone->zone_nlwps -= pp->p_lwpcnt; 3747 pj->kpj_nprocs--; 3748 global_zone->zone_nprocs--; 3749 mutex_exit(&global_zone->zone_nlwps_lock); 3750 3751 /* 3752 * Decrement locked memory counts on old zone and project. 3753 */ 3754 mutex_enter(&global_zone->zone_mem_lock); 3755 global_zone->zone_locked_mem -= pp->p_locked_mem; 3756 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3757 mutex_exit(&global_zone->zone_mem_lock); 3758 3759 /* 3760 * Create and join a new task in project '0' of this zone. 3761 * 3762 * We don't need to call holdlwps() since we know we're the only lwp in 3763 * this process. 3764 * 3765 * task_join() returns with p_lock held. 3766 */ 3767 tk = task_create(0, zone); 3768 mutex_enter(&cpu_lock); 3769 oldtk = task_join(tk, 0); 3770 3771 pj = pp->p_task->tk_proj; 3772 3773 mutex_enter(&zone->zone_mem_lock); 3774 zone->zone_locked_mem += pp->p_locked_mem; 3775 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3776 mutex_exit(&zone->zone_mem_lock); 3777 3778 /* 3779 * add lwp and process counts to zsched's zone, and increment 3780 * project's task and process count due to the task created in 3781 * the above task_create. 3782 */ 3783 mutex_enter(&zone->zone_nlwps_lock); 3784 pj->kpj_nlwps += pp->p_lwpcnt; 3785 pj->kpj_ntasks += 1; 3786 zone->zone_nlwps += pp->p_lwpcnt; 3787 pj->kpj_nprocs++; 3788 zone->zone_nprocs++; 3789 mutex_exit(&zone->zone_nlwps_lock); 3790 3791 mutex_exit(&curproc->p_lock); 3792 mutex_exit(&cpu_lock); 3793 task_rele(oldtk); 3794 3795 /* 3796 * The process was created by a process in the global zone, hence the 3797 * credentials are wrong. We might as well have kcred-ish credentials. 3798 */ 3799 cr = zone->zone_kcred; 3800 crhold(cr); 3801 mutex_enter(&pp->p_crlock); 3802 oldcred = pp->p_cred; 3803 pp->p_cred = cr; 3804 mutex_exit(&pp->p_crlock); 3805 crfree(oldcred); 3806 3807 /* 3808 * Hold credentials again (for thread) 3809 */ 3810 crhold(cr); 3811 3812 /* 3813 * p_lwpcnt can't change since this is a kernel process. 3814 */ 3815 crset(pp, cr); 3816 3817 /* 3818 * Chroot 3819 */ 3820 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3821 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3822 3823 /* 3824 * Initialize zone's rctl set. 3825 */ 3826 set = rctl_set_create(); 3827 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3828 mutex_enter(&pp->p_lock); 3829 e.rcep_p.zone = zone; 3830 e.rcep_t = RCENTITY_ZONE; 3831 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3832 mutex_exit(&pp->p_lock); 3833 rctl_prealloc_destroy(gp); 3834 3835 /* 3836 * Apply the rctls passed in to zone_create(). This is basically a list 3837 * assignment: all of the old values are removed and the new ones 3838 * inserted. That is, if an empty list is passed in, all values are 3839 * removed. 3840 */ 3841 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3842 rctl_dict_entry_t *rde; 3843 rctl_hndl_t hndl; 3844 char *name; 3845 nvlist_t **nvlarray; 3846 uint_t i, nelem; 3847 int error; /* For ASSERT()s */ 3848 3849 name = nvpair_name(nvp); 3850 hndl = rctl_hndl_lookup(name); 3851 ASSERT(hndl != -1); 3852 rde = rctl_dict_lookup_hndl(hndl); 3853 ASSERT(rde != NULL); 3854 3855 for (; /* ever */; ) { 3856 rctl_val_t oval; 3857 3858 mutex_enter(&pp->p_lock); 3859 error = rctl_local_get(hndl, NULL, &oval, pp); 3860 mutex_exit(&pp->p_lock); 3861 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 3862 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 3863 if (oval.rcv_privilege == RCPRIV_SYSTEM) 3864 break; 3865 mutex_enter(&pp->p_lock); 3866 error = rctl_local_delete(hndl, &oval, pp); 3867 mutex_exit(&pp->p_lock); 3868 ASSERT(error == 0); 3869 } 3870 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 3871 ASSERT(error == 0); 3872 for (i = 0; i < nelem; i++) { 3873 rctl_val_t *nvalp; 3874 3875 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 3876 error = nvlist2rctlval(nvlarray[i], nvalp); 3877 ASSERT(error == 0); 3878 /* 3879 * rctl_local_insert can fail if the value being 3880 * inserted is a duplicate; this is OK. 3881 */ 3882 mutex_enter(&pp->p_lock); 3883 if (rctl_local_insert(hndl, nvalp, pp) != 0) 3884 kmem_cache_free(rctl_val_cache, nvalp); 3885 mutex_exit(&pp->p_lock); 3886 } 3887 } 3888 /* 3889 * Tell the world that we're done setting up. 3890 * 3891 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 3892 * and atomically set the zone's processor set visibility. Once 3893 * we drop pool_lock() this zone will automatically get updated 3894 * to reflect any future changes to the pools configuration. 3895 * 3896 * Note that after we drop the locks below (zonehash_lock in 3897 * particular) other operations such as a zone_getattr call can 3898 * now proceed and observe the zone. That is the reason for doing a 3899 * state transition to the INITIALIZED state. 3900 */ 3901 pool_lock(); 3902 mutex_enter(&cpu_lock); 3903 mutex_enter(&zonehash_lock); 3904 zone_uniqid(zone); 3905 zone_zsd_configure(zone); 3906 if (pool_state == POOL_ENABLED) 3907 zone_pset_set(zone, pool_default->pool_pset->pset_id); 3908 mutex_enter(&zone_status_lock); 3909 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 3910 zone_status_set(zone, ZONE_IS_INITIALIZED); 3911 mutex_exit(&zone_status_lock); 3912 mutex_exit(&zonehash_lock); 3913 mutex_exit(&cpu_lock); 3914 pool_unlock(); 3915 3916 /* Now call the create callback for this key */ 3917 zsd_apply_all_keys(zsd_apply_create, zone); 3918 3919 /* The callbacks are complete. Mark ZONE_IS_READY */ 3920 mutex_enter(&zone_status_lock); 3921 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 3922 zone_status_set(zone, ZONE_IS_READY); 3923 mutex_exit(&zone_status_lock); 3924 3925 /* 3926 * Once we see the zone transition to the ZONE_IS_BOOTING state, 3927 * we launch init, and set the state to running. 3928 */ 3929 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 3930 3931 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 3932 id_t cid; 3933 3934 /* 3935 * Ok, this is a little complicated. We need to grab the 3936 * zone's pool's scheduling class ID; note that by now, we 3937 * are already bound to a pool if we need to be (zoneadmd 3938 * will have done that to us while we're in the READY 3939 * state). *But* the scheduling class for the zone's 'init' 3940 * must be explicitly passed to newproc, which doesn't 3941 * respect pool bindings. 3942 * 3943 * We hold the pool_lock across the call to newproc() to 3944 * close the obvious race: the pool's scheduling class 3945 * could change before we manage to create the LWP with 3946 * classid 'cid'. 3947 */ 3948 pool_lock(); 3949 if (zone->zone_defaultcid > 0) 3950 cid = zone->zone_defaultcid; 3951 else 3952 cid = pool_get_class(zone->zone_pool); 3953 if (cid == -1) 3954 cid = defaultcid; 3955 3956 /* 3957 * If this fails, zone_boot will ultimately fail. The 3958 * state of the zone will be set to SHUTTING_DOWN-- userland 3959 * will have to tear down the zone, and fail, or try again. 3960 */ 3961 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 3962 minclsyspri - 1, &ct, 0)) != 0) { 3963 mutex_enter(&zone_status_lock); 3964 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 3965 mutex_exit(&zone_status_lock); 3966 } else { 3967 zone->zone_boot_time = gethrestime_sec(); 3968 } 3969 3970 pool_unlock(); 3971 } 3972 3973 /* 3974 * Wait for zone_destroy() to be called. This is what we spend 3975 * most of our life doing. 3976 */ 3977 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 3978 3979 if (ct) 3980 /* 3981 * At this point the process contract should be empty. 3982 * (Though if it isn't, it's not the end of the world.) 3983 */ 3984 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 3985 3986 /* 3987 * Allow kcred to be freed when all referring processes 3988 * (including this one) go away. We can't just do this in 3989 * zone_free because we need to wait for the zone_cred_ref to 3990 * drop to 0 before calling zone_free, and the existence of 3991 * zone_kcred will prevent that. Thus, we call crfree here to 3992 * balance the crdup in zone_create. The crhold calls earlier 3993 * in zsched will be dropped when the thread and process exit. 3994 */ 3995 crfree(zone->zone_kcred); 3996 zone->zone_kcred = NULL; 3997 3998 exit(CLD_EXITED, 0); 3999 } 4000 4001 /* 4002 * Helper function to determine if there are any submounts of the 4003 * provided path. Used to make sure the zone doesn't "inherit" any 4004 * mounts from before it is created. 4005 */ 4006 static uint_t 4007 zone_mount_count(const char *rootpath) 4008 { 4009 vfs_t *vfsp; 4010 uint_t count = 0; 4011 size_t rootpathlen = strlen(rootpath); 4012 4013 /* 4014 * Holding zonehash_lock prevents race conditions with 4015 * vfs_list_add()/vfs_list_remove() since we serialize with 4016 * zone_find_by_path(). 4017 */ 4018 ASSERT(MUTEX_HELD(&zonehash_lock)); 4019 /* 4020 * The rootpath must end with a '/' 4021 */ 4022 ASSERT(rootpath[rootpathlen - 1] == '/'); 4023 4024 /* 4025 * This intentionally does not count the rootpath itself if that 4026 * happens to be a mount point. 4027 */ 4028 vfs_list_read_lock(); 4029 vfsp = rootvfs; 4030 do { 4031 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4032 rootpathlen) == 0) 4033 count++; 4034 vfsp = vfsp->vfs_next; 4035 } while (vfsp != rootvfs); 4036 vfs_list_unlock(); 4037 return (count); 4038 } 4039 4040 /* 4041 * Helper function to make sure that a zone created on 'rootpath' 4042 * wouldn't end up containing other zones' rootpaths. 4043 */ 4044 static boolean_t 4045 zone_is_nested(const char *rootpath) 4046 { 4047 zone_t *zone; 4048 size_t rootpathlen = strlen(rootpath); 4049 size_t len; 4050 4051 ASSERT(MUTEX_HELD(&zonehash_lock)); 4052 4053 /* 4054 * zone_set_root() appended '/' and '\0' at the end of rootpath 4055 */ 4056 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4057 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4058 return (B_TRUE); 4059 4060 for (zone = list_head(&zone_active); zone != NULL; 4061 zone = list_next(&zone_active, zone)) { 4062 if (zone == global_zone) 4063 continue; 4064 len = strlen(zone->zone_rootpath); 4065 if (strncmp(rootpath, zone->zone_rootpath, 4066 MIN(rootpathlen, len)) == 0) 4067 return (B_TRUE); 4068 } 4069 return (B_FALSE); 4070 } 4071 4072 static int 4073 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4074 size_t zone_privssz) 4075 { 4076 priv_set_t *privs; 4077 4078 if (zone_privssz < sizeof (priv_set_t)) 4079 return (ENOMEM); 4080 4081 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4082 4083 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4084 kmem_free(privs, sizeof (priv_set_t)); 4085 return (EFAULT); 4086 } 4087 4088 zone->zone_privset = privs; 4089 return (0); 4090 } 4091 4092 /* 4093 * We make creative use of nvlists to pass in rctls from userland. The list is 4094 * a list of the following structures: 4095 * 4096 * (name = rctl_name, value = nvpair_list_array) 4097 * 4098 * Where each element of the nvpair_list_array is of the form: 4099 * 4100 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4101 * (name = "limit", value = uint64_t), 4102 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4103 */ 4104 static int 4105 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4106 { 4107 nvpair_t *nvp = NULL; 4108 nvlist_t *nvl = NULL; 4109 char *kbuf; 4110 int error; 4111 rctl_val_t rv; 4112 4113 *nvlp = NULL; 4114 4115 if (buflen == 0) 4116 return (0); 4117 4118 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4119 return (ENOMEM); 4120 if (copyin(ubuf, kbuf, buflen)) { 4121 error = EFAULT; 4122 goto out; 4123 } 4124 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4125 /* 4126 * nvl may have been allocated/free'd, but the value set to 4127 * non-NULL, so we reset it here. 4128 */ 4129 nvl = NULL; 4130 error = EINVAL; 4131 goto out; 4132 } 4133 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4134 rctl_dict_entry_t *rde; 4135 rctl_hndl_t hndl; 4136 nvlist_t **nvlarray; 4137 uint_t i, nelem; 4138 char *name; 4139 4140 error = EINVAL; 4141 name = nvpair_name(nvp); 4142 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4143 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4144 goto out; 4145 } 4146 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4147 goto out; 4148 } 4149 rde = rctl_dict_lookup_hndl(hndl); 4150 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4151 ASSERT(error == 0); 4152 for (i = 0; i < nelem; i++) { 4153 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4154 goto out; 4155 } 4156 if (rctl_invalid_value(rde, &rv)) { 4157 error = EINVAL; 4158 goto out; 4159 } 4160 } 4161 error = 0; 4162 *nvlp = nvl; 4163 out: 4164 kmem_free(kbuf, buflen); 4165 if (error && nvl != NULL) 4166 nvlist_free(nvl); 4167 return (error); 4168 } 4169 4170 int 4171 zone_create_error(int er_error, int er_ext, int *er_out) { 4172 if (er_out != NULL) { 4173 if (copyout(&er_ext, er_out, sizeof (int))) { 4174 return (set_errno(EFAULT)); 4175 } 4176 } 4177 return (set_errno(er_error)); 4178 } 4179 4180 static int 4181 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4182 { 4183 ts_label_t *tsl; 4184 bslabel_t blab; 4185 4186 /* Get label from user */ 4187 if (copyin(lab, &blab, sizeof (blab)) != 0) 4188 return (EFAULT); 4189 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4190 if (tsl == NULL) 4191 return (ENOMEM); 4192 4193 zone->zone_slabel = tsl; 4194 return (0); 4195 } 4196 4197 /* 4198 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4199 */ 4200 static int 4201 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4202 { 4203 char *kbuf; 4204 char *dataset, *next; 4205 zone_dataset_t *zd; 4206 size_t len; 4207 4208 if (ubuf == NULL || buflen == 0) 4209 return (0); 4210 4211 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4212 return (ENOMEM); 4213 4214 if (copyin(ubuf, kbuf, buflen) != 0) { 4215 kmem_free(kbuf, buflen); 4216 return (EFAULT); 4217 } 4218 4219 dataset = next = kbuf; 4220 for (;;) { 4221 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4222 4223 next = strchr(dataset, ','); 4224 4225 if (next == NULL) 4226 len = strlen(dataset); 4227 else 4228 len = next - dataset; 4229 4230 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4231 bcopy(dataset, zd->zd_dataset, len); 4232 zd->zd_dataset[len] = '\0'; 4233 4234 list_insert_head(&zone->zone_datasets, zd); 4235 4236 if (next == NULL) 4237 break; 4238 4239 dataset = next + 1; 4240 } 4241 4242 kmem_free(kbuf, buflen); 4243 return (0); 4244 } 4245 4246 /* 4247 * System call to create/initialize a new zone named 'zone_name', rooted 4248 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4249 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4250 * with labeling set by 'match', 'doi', and 'label'. 4251 * 4252 * If extended error is non-null, we may use it to return more detailed 4253 * error information. 4254 */ 4255 static zoneid_t 4256 zone_create(const char *zone_name, const char *zone_root, 4257 const priv_set_t *zone_privs, size_t zone_privssz, 4258 caddr_t rctlbuf, size_t rctlbufsz, 4259 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4260 int match, uint32_t doi, const bslabel_t *label, 4261 int flags) 4262 { 4263 struct zsched_arg zarg; 4264 nvlist_t *rctls = NULL; 4265 proc_t *pp = curproc; 4266 zone_t *zone, *ztmp; 4267 zoneid_t zoneid; 4268 int error; 4269 int error2 = 0; 4270 char *str; 4271 cred_t *zkcr; 4272 boolean_t insert_label_hash; 4273 4274 if (secpolicy_zone_config(CRED()) != 0) 4275 return (set_errno(EPERM)); 4276 4277 /* can't boot zone from within chroot environment */ 4278 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4279 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4280 extended_error)); 4281 4282 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4283 zoneid = zone->zone_id = id_alloc(zoneid_space); 4284 zone->zone_status = ZONE_IS_UNINITIALIZED; 4285 zone->zone_pool = pool_default; 4286 zone->zone_pool_mod = gethrtime(); 4287 zone->zone_psetid = ZONE_PS_INVAL; 4288 zone->zone_ncpus = 0; 4289 zone->zone_ncpus_online = 0; 4290 zone->zone_restart_init = B_TRUE; 4291 zone->zone_brand = &native_brand; 4292 zone->zone_initname = NULL; 4293 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4294 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4295 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4296 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4297 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4298 offsetof(zone_ref_t, zref_linkage)); 4299 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4300 offsetof(struct zsd_entry, zsd_linkage)); 4301 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4302 offsetof(zone_dataset_t, zd_linkage)); 4303 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4304 offsetof(zone_dl_t, zdl_linkage)); 4305 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4306 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4307 4308 if (flags & ZCF_NET_EXCL) { 4309 zone->zone_flags |= ZF_NET_EXCL; 4310 } 4311 4312 if ((error = zone_set_name(zone, zone_name)) != 0) { 4313 zone_free(zone); 4314 return (zone_create_error(error, 0, extended_error)); 4315 } 4316 4317 if ((error = zone_set_root(zone, zone_root)) != 0) { 4318 zone_free(zone); 4319 return (zone_create_error(error, 0, extended_error)); 4320 } 4321 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4322 zone_free(zone); 4323 return (zone_create_error(error, 0, extended_error)); 4324 } 4325 4326 /* initialize node name to be the same as zone name */ 4327 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4328 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4329 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4330 4331 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4332 zone->zone_domain[0] = '\0'; 4333 zone->zone_hostid = HW_INVALID_HOSTID; 4334 zone->zone_shares = 1; 4335 zone->zone_shmmax = 0; 4336 zone->zone_ipc.ipcq_shmmni = 0; 4337 zone->zone_ipc.ipcq_semmni = 0; 4338 zone->zone_ipc.ipcq_msgmni = 0; 4339 zone->zone_bootargs = NULL; 4340 zone->zone_fs_allowed = NULL; 4341 zone->zone_initname = 4342 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4343 (void) strcpy(zone->zone_initname, zone_default_initname); 4344 zone->zone_nlwps = 0; 4345 zone->zone_nlwps_ctl = INT_MAX; 4346 zone->zone_nprocs = 0; 4347 zone->zone_nprocs_ctl = INT_MAX; 4348 zone->zone_locked_mem = 0; 4349 zone->zone_locked_mem_ctl = UINT64_MAX; 4350 zone->zone_max_swap = 0; 4351 zone->zone_max_swap_ctl = UINT64_MAX; 4352 zone->zone_max_lofi = 0; 4353 zone->zone_max_lofi_ctl = UINT64_MAX; 4354 zone0.zone_lockedmem_kstat = NULL; 4355 zone0.zone_swapresv_kstat = NULL; 4356 4357 /* 4358 * Zsched initializes the rctls. 4359 */ 4360 zone->zone_rctls = NULL; 4361 4362 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4363 zone_free(zone); 4364 return (zone_create_error(error, 0, extended_error)); 4365 } 4366 4367 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4368 zone_free(zone); 4369 return (set_errno(error)); 4370 } 4371 4372 /* 4373 * Read in the trusted system parameters: 4374 * match flag and sensitivity label. 4375 */ 4376 zone->zone_match = match; 4377 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4378 /* Fail if requested to set doi to anything but system's doi */ 4379 if (doi != 0 && doi != default_doi) { 4380 zone_free(zone); 4381 return (set_errno(EINVAL)); 4382 } 4383 /* Always apply system's doi to the zone */ 4384 error = zone_set_label(zone, label, default_doi); 4385 if (error != 0) { 4386 zone_free(zone); 4387 return (set_errno(error)); 4388 } 4389 insert_label_hash = B_TRUE; 4390 } else { 4391 /* all zones get an admin_low label if system is not labeled */ 4392 zone->zone_slabel = l_admin_low; 4393 label_hold(l_admin_low); 4394 insert_label_hash = B_FALSE; 4395 } 4396 4397 /* 4398 * Stop all lwps since that's what normally happens as part of fork(). 4399 * This needs to happen before we grab any locks to avoid deadlock 4400 * (another lwp in the process could be waiting for the held lock). 4401 */ 4402 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4403 zone_free(zone); 4404 if (rctls) 4405 nvlist_free(rctls); 4406 return (zone_create_error(error, 0, extended_error)); 4407 } 4408 4409 if (block_mounts(zone) == 0) { 4410 mutex_enter(&pp->p_lock); 4411 if (curthread != pp->p_agenttp) 4412 continuelwps(pp); 4413 mutex_exit(&pp->p_lock); 4414 zone_free(zone); 4415 if (rctls) 4416 nvlist_free(rctls); 4417 return (zone_create_error(error, 0, extended_error)); 4418 } 4419 4420 /* 4421 * Set up credential for kernel access. After this, any errors 4422 * should go through the dance in errout rather than calling 4423 * zone_free directly. 4424 */ 4425 zone->zone_kcred = crdup(kcred); 4426 crsetzone(zone->zone_kcred, zone); 4427 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4428 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4429 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4430 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4431 4432 mutex_enter(&zonehash_lock); 4433 /* 4434 * Make sure zone doesn't already exist. 4435 * 4436 * If the system and zone are labeled, 4437 * make sure no other zone exists that has the same label. 4438 */ 4439 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4440 (insert_label_hash && 4441 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4442 zone_status_t status; 4443 4444 status = zone_status_get(ztmp); 4445 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4446 error = EEXIST; 4447 else 4448 error = EBUSY; 4449 4450 if (insert_label_hash) 4451 error2 = ZE_LABELINUSE; 4452 4453 goto errout; 4454 } 4455 4456 /* 4457 * Don't allow zone creations which would cause one zone's rootpath to 4458 * be accessible from that of another (non-global) zone. 4459 */ 4460 if (zone_is_nested(zone->zone_rootpath)) { 4461 error = EBUSY; 4462 goto errout; 4463 } 4464 4465 ASSERT(zonecount != 0); /* check for leaks */ 4466 if (zonecount + 1 > maxzones) { 4467 error = ENOMEM; 4468 goto errout; 4469 } 4470 4471 if (zone_mount_count(zone->zone_rootpath) != 0) { 4472 error = EBUSY; 4473 error2 = ZE_AREMOUNTS; 4474 goto errout; 4475 } 4476 4477 /* 4478 * Zone is still incomplete, but we need to drop all locks while 4479 * zsched() initializes this zone's kernel process. We 4480 * optimistically add the zone to the hashtable and associated 4481 * lists so a parallel zone_create() doesn't try to create the 4482 * same zone. 4483 */ 4484 zonecount++; 4485 (void) mod_hash_insert(zonehashbyid, 4486 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4487 (mod_hash_val_t)(uintptr_t)zone); 4488 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4489 (void) strcpy(str, zone->zone_name); 4490 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4491 (mod_hash_val_t)(uintptr_t)zone); 4492 if (insert_label_hash) { 4493 (void) mod_hash_insert(zonehashbylabel, 4494 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4495 zone->zone_flags |= ZF_HASHED_LABEL; 4496 } 4497 4498 /* 4499 * Insert into active list. At this point there are no 'hold's 4500 * on the zone, but everyone else knows not to use it, so we can 4501 * continue to use it. zsched() will do a zone_hold() if the 4502 * newproc() is successful. 4503 */ 4504 list_insert_tail(&zone_active, zone); 4505 mutex_exit(&zonehash_lock); 4506 4507 zarg.zone = zone; 4508 zarg.nvlist = rctls; 4509 /* 4510 * The process, task, and project rctls are probably wrong; 4511 * we need an interface to get the default values of all rctls, 4512 * and initialize zsched appropriately. I'm not sure that that 4513 * makes much of a difference, though. 4514 */ 4515 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4516 if (error != 0) { 4517 /* 4518 * We need to undo all globally visible state. 4519 */ 4520 mutex_enter(&zonehash_lock); 4521 list_remove(&zone_active, zone); 4522 if (zone->zone_flags & ZF_HASHED_LABEL) { 4523 ASSERT(zone->zone_slabel != NULL); 4524 (void) mod_hash_destroy(zonehashbylabel, 4525 (mod_hash_key_t)zone->zone_slabel); 4526 } 4527 (void) mod_hash_destroy(zonehashbyname, 4528 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4529 (void) mod_hash_destroy(zonehashbyid, 4530 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4531 ASSERT(zonecount > 1); 4532 zonecount--; 4533 goto errout; 4534 } 4535 4536 /* 4537 * Zone creation can't fail from now on. 4538 */ 4539 4540 /* 4541 * Create zone kstats 4542 */ 4543 zone_kstat_create(zone); 4544 4545 /* 4546 * Let the other lwps continue. 4547 */ 4548 mutex_enter(&pp->p_lock); 4549 if (curthread != pp->p_agenttp) 4550 continuelwps(pp); 4551 mutex_exit(&pp->p_lock); 4552 4553 /* 4554 * Wait for zsched to finish initializing the zone. 4555 */ 4556 zone_status_wait(zone, ZONE_IS_READY); 4557 /* 4558 * The zone is fully visible, so we can let mounts progress. 4559 */ 4560 resume_mounts(zone); 4561 if (rctls) 4562 nvlist_free(rctls); 4563 4564 return (zoneid); 4565 4566 errout: 4567 mutex_exit(&zonehash_lock); 4568 /* 4569 * Let the other lwps continue. 4570 */ 4571 mutex_enter(&pp->p_lock); 4572 if (curthread != pp->p_agenttp) 4573 continuelwps(pp); 4574 mutex_exit(&pp->p_lock); 4575 4576 resume_mounts(zone); 4577 if (rctls) 4578 nvlist_free(rctls); 4579 /* 4580 * There is currently one reference to the zone, a cred_ref from 4581 * zone_kcred. To free the zone, we call crfree, which will call 4582 * zone_cred_rele, which will call zone_free. 4583 */ 4584 ASSERT(zone->zone_cred_ref == 1); 4585 ASSERT(zone->zone_kcred->cr_ref == 1); 4586 ASSERT(zone->zone_ref == 0); 4587 zkcr = zone->zone_kcred; 4588 zone->zone_kcred = NULL; 4589 crfree(zkcr); /* triggers call to zone_free */ 4590 return (zone_create_error(error, error2, extended_error)); 4591 } 4592 4593 /* 4594 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4595 * the heavy lifting. initname is the path to the program to launch 4596 * at the "top" of the zone; if this is NULL, we use the system default, 4597 * which is stored at zone_default_initname. 4598 */ 4599 static int 4600 zone_boot(zoneid_t zoneid) 4601 { 4602 int err; 4603 zone_t *zone; 4604 4605 if (secpolicy_zone_config(CRED()) != 0) 4606 return (set_errno(EPERM)); 4607 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4608 return (set_errno(EINVAL)); 4609 4610 mutex_enter(&zonehash_lock); 4611 /* 4612 * Look for zone under hash lock to prevent races with calls to 4613 * zone_shutdown, zone_destroy, etc. 4614 */ 4615 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4616 mutex_exit(&zonehash_lock); 4617 return (set_errno(EINVAL)); 4618 } 4619 4620 mutex_enter(&zone_status_lock); 4621 if (zone_status_get(zone) != ZONE_IS_READY) { 4622 mutex_exit(&zone_status_lock); 4623 mutex_exit(&zonehash_lock); 4624 return (set_errno(EINVAL)); 4625 } 4626 zone_status_set(zone, ZONE_IS_BOOTING); 4627 mutex_exit(&zone_status_lock); 4628 4629 zone_hold(zone); /* so we can use the zone_t later */ 4630 mutex_exit(&zonehash_lock); 4631 4632 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4633 zone_rele(zone); 4634 return (set_errno(EINTR)); 4635 } 4636 4637 /* 4638 * Boot (starting init) might have failed, in which case the zone 4639 * will go to the SHUTTING_DOWN state; an appropriate errno will 4640 * be placed in zone->zone_boot_err, and so we return that. 4641 */ 4642 err = zone->zone_boot_err; 4643 zone_rele(zone); 4644 return (err ? set_errno(err) : 0); 4645 } 4646 4647 /* 4648 * Kills all user processes in the zone, waiting for them all to exit 4649 * before returning. 4650 */ 4651 static int 4652 zone_empty(zone_t *zone) 4653 { 4654 int waitstatus; 4655 4656 /* 4657 * We need to drop zonehash_lock before killing all 4658 * processes, otherwise we'll deadlock with zone_find_* 4659 * which can be called from the exit path. 4660 */ 4661 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4662 while ((waitstatus = zone_status_timedwait_sig(zone, 4663 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4664 killall(zone->zone_id); 4665 } 4666 /* 4667 * return EINTR if we were signaled 4668 */ 4669 if (waitstatus == 0) 4670 return (EINTR); 4671 return (0); 4672 } 4673 4674 /* 4675 * This function implements the policy for zone visibility. 4676 * 4677 * In standard Solaris, a non-global zone can only see itself. 4678 * 4679 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4680 * it dominates. For this test, the label of the global zone is treated as 4681 * admin_high so it is special-cased instead of being checked for dominance. 4682 * 4683 * Returns true if zone attributes are viewable, false otherwise. 4684 */ 4685 static boolean_t 4686 zone_list_access(zone_t *zone) 4687 { 4688 4689 if (curproc->p_zone == global_zone || 4690 curproc->p_zone == zone) { 4691 return (B_TRUE); 4692 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4693 bslabel_t *curproc_label; 4694 bslabel_t *zone_label; 4695 4696 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4697 zone_label = label2bslabel(zone->zone_slabel); 4698 4699 if (zone->zone_id != GLOBAL_ZONEID && 4700 bldominates(curproc_label, zone_label)) { 4701 return (B_TRUE); 4702 } else { 4703 return (B_FALSE); 4704 } 4705 } else { 4706 return (B_FALSE); 4707 } 4708 } 4709 4710 /* 4711 * Systemcall to start the zone's halt sequence. By the time this 4712 * function successfully returns, all user processes and kernel threads 4713 * executing in it will have exited, ZSD shutdown callbacks executed, 4714 * and the zone status set to ZONE_IS_DOWN. 4715 * 4716 * It is possible that the call will interrupt itself if the caller is the 4717 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4718 */ 4719 static int 4720 zone_shutdown(zoneid_t zoneid) 4721 { 4722 int error; 4723 zone_t *zone; 4724 zone_status_t status; 4725 4726 if (secpolicy_zone_config(CRED()) != 0) 4727 return (set_errno(EPERM)); 4728 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4729 return (set_errno(EINVAL)); 4730 4731 mutex_enter(&zonehash_lock); 4732 /* 4733 * Look for zone under hash lock to prevent races with other 4734 * calls to zone_shutdown and zone_destroy. 4735 */ 4736 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4737 mutex_exit(&zonehash_lock); 4738 return (set_errno(EINVAL)); 4739 } 4740 4741 /* 4742 * We have to drop zonehash_lock before calling block_mounts. 4743 * Hold the zone so we can continue to use the zone_t. 4744 */ 4745 zone_hold(zone); 4746 mutex_exit(&zonehash_lock); 4747 4748 /* 4749 * Block mounts so that VFS_MOUNT() can get an accurate view of 4750 * the zone's status with regards to ZONE_IS_SHUTTING down. 4751 * 4752 * e.g. NFS can fail the mount if it determines that the zone 4753 * has already begun the shutdown sequence. 4754 * 4755 */ 4756 if (block_mounts(zone) == 0) { 4757 zone_rele(zone); 4758 return (set_errno(EINTR)); 4759 } 4760 4761 mutex_enter(&zonehash_lock); 4762 mutex_enter(&zone_status_lock); 4763 status = zone_status_get(zone); 4764 /* 4765 * Fail if the zone isn't fully initialized yet. 4766 */ 4767 if (status < ZONE_IS_READY) { 4768 mutex_exit(&zone_status_lock); 4769 mutex_exit(&zonehash_lock); 4770 resume_mounts(zone); 4771 zone_rele(zone); 4772 return (set_errno(EINVAL)); 4773 } 4774 /* 4775 * If conditions required for zone_shutdown() to return have been met, 4776 * return success. 4777 */ 4778 if (status >= ZONE_IS_DOWN) { 4779 mutex_exit(&zone_status_lock); 4780 mutex_exit(&zonehash_lock); 4781 resume_mounts(zone); 4782 zone_rele(zone); 4783 return (0); 4784 } 4785 /* 4786 * If zone_shutdown() hasn't been called before, go through the motions. 4787 * If it has, there's nothing to do but wait for the kernel threads to 4788 * drain. 4789 */ 4790 if (status < ZONE_IS_EMPTY) { 4791 uint_t ntasks; 4792 4793 mutex_enter(&zone->zone_lock); 4794 if ((ntasks = zone->zone_ntasks) != 1) { 4795 /* 4796 * There's still stuff running. 4797 */ 4798 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4799 } 4800 mutex_exit(&zone->zone_lock); 4801 if (ntasks == 1) { 4802 /* 4803 * The only way to create another task is through 4804 * zone_enter(), which will block until we drop 4805 * zonehash_lock. The zone is empty. 4806 */ 4807 if (zone->zone_kthreads == NULL) { 4808 /* 4809 * Skip ahead to ZONE_IS_DOWN 4810 */ 4811 zone_status_set(zone, ZONE_IS_DOWN); 4812 } else { 4813 zone_status_set(zone, ZONE_IS_EMPTY); 4814 } 4815 } 4816 } 4817 mutex_exit(&zone_status_lock); 4818 mutex_exit(&zonehash_lock); 4819 resume_mounts(zone); 4820 4821 if (error = zone_empty(zone)) { 4822 zone_rele(zone); 4823 return (set_errno(error)); 4824 } 4825 /* 4826 * After the zone status goes to ZONE_IS_DOWN this zone will no 4827 * longer be notified of changes to the pools configuration, so 4828 * in order to not end up with a stale pool pointer, we point 4829 * ourselves at the default pool and remove all resource 4830 * visibility. This is especially important as the zone_t may 4831 * languish on the deathrow for a very long time waiting for 4832 * cred's to drain out. 4833 * 4834 * This rebinding of the zone can happen multiple times 4835 * (presumably due to interrupted or parallel systemcalls) 4836 * without any adverse effects. 4837 */ 4838 if (pool_lock_intr() != 0) { 4839 zone_rele(zone); 4840 return (set_errno(EINTR)); 4841 } 4842 if (pool_state == POOL_ENABLED) { 4843 mutex_enter(&cpu_lock); 4844 zone_pool_set(zone, pool_default); 4845 /* 4846 * The zone no longer needs to be able to see any cpus. 4847 */ 4848 zone_pset_set(zone, ZONE_PS_INVAL); 4849 mutex_exit(&cpu_lock); 4850 } 4851 pool_unlock(); 4852 4853 /* 4854 * ZSD shutdown callbacks can be executed multiple times, hence 4855 * it is safe to not be holding any locks across this call. 4856 */ 4857 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 4858 4859 mutex_enter(&zone_status_lock); 4860 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 4861 zone_status_set(zone, ZONE_IS_DOWN); 4862 mutex_exit(&zone_status_lock); 4863 4864 /* 4865 * Wait for kernel threads to drain. 4866 */ 4867 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 4868 zone_rele(zone); 4869 return (set_errno(EINTR)); 4870 } 4871 4872 /* 4873 * Zone can be become down/destroyable even if the above wait 4874 * returns EINTR, so any code added here may never execute. 4875 * (i.e. don't add code here) 4876 */ 4877 4878 zone_rele(zone); 4879 return (0); 4880 } 4881 4882 /* 4883 * Log the specified zone's reference counts. The caller should not be 4884 * holding the zone's zone_lock. 4885 */ 4886 static void 4887 zone_log_refcounts(zone_t *zone) 4888 { 4889 char *buffer; 4890 char *buffer_position; 4891 uint32_t buffer_size; 4892 uint32_t index; 4893 uint_t ref; 4894 uint_t cred_ref; 4895 4896 /* 4897 * Construct a string representing the subsystem-specific reference 4898 * counts. The counts are printed in ascending order by index into the 4899 * zone_t::zone_subsys_ref array. The list will be surrounded by 4900 * square brackets [] and will only contain nonzero reference counts. 4901 * 4902 * The buffer will hold two square bracket characters plus ten digits, 4903 * one colon, one space, one comma, and some characters for a 4904 * subsystem name per subsystem-specific reference count. (Unsigned 32- 4905 * bit integers have at most ten decimal digits.) The last 4906 * reference count's comma is replaced by the closing square 4907 * bracket and a NULL character to terminate the string. 4908 * 4909 * NOTE: We have to grab the zone's zone_lock to create a consistent 4910 * snapshot of the zone's reference counters. 4911 * 4912 * First, figure out how much space the string buffer will need. 4913 * The buffer's size is stored in buffer_size. 4914 */ 4915 buffer_size = 2; /* for the square brackets */ 4916 mutex_enter(&zone->zone_lock); 4917 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 4918 ref = zone->zone_ref; 4919 cred_ref = zone->zone_cred_ref; 4920 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 4921 if (zone->zone_subsys_ref[index] != 0) 4922 buffer_size += strlen(zone_ref_subsys_names[index]) + 4923 13; 4924 if (buffer_size == 2) { 4925 /* 4926 * No subsystems had nonzero reference counts. Don't bother 4927 * with allocating a buffer; just log the general-purpose and 4928 * credential reference counts. 4929 */ 4930 mutex_exit(&zone->zone_lock); 4931 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4932 "Zone '%s' (ID: %d) is shutting down, but %u zone " 4933 "references and %u credential references are still extant", 4934 zone->zone_name, zone->zone_id, ref, cred_ref); 4935 return; 4936 } 4937 4938 /* 4939 * buffer_size contains the exact number of characters that the 4940 * buffer will need. Allocate the buffer and fill it with nonzero 4941 * subsystem-specific reference counts. Surround the results with 4942 * square brackets afterwards. 4943 */ 4944 buffer = kmem_alloc(buffer_size, KM_SLEEP); 4945 buffer_position = &buffer[1]; 4946 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 4947 /* 4948 * NOTE: The DDI's version of sprintf() returns a pointer to 4949 * the modified buffer rather than the number of bytes written 4950 * (as in snprintf(3C)). This is unfortunate and annoying. 4951 * Therefore, we'll use snprintf() with INT_MAX to get the 4952 * number of bytes written. Using INT_MAX is safe because 4953 * the buffer is perfectly sized for the data: we'll never 4954 * overrun the buffer. 4955 */ 4956 if (zone->zone_subsys_ref[index] != 0) 4957 buffer_position += snprintf(buffer_position, INT_MAX, 4958 "%s: %u,", zone_ref_subsys_names[index], 4959 zone->zone_subsys_ref[index]); 4960 } 4961 mutex_exit(&zone->zone_lock); 4962 buffer[0] = '['; 4963 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 4964 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 4965 buffer_position[-1] = ']'; 4966 4967 /* 4968 * Log the reference counts and free the message buffer. 4969 */ 4970 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 4971 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 4972 "%u credential references are still extant %s", zone->zone_name, 4973 zone->zone_id, ref, cred_ref, buffer); 4974 kmem_free(buffer, buffer_size); 4975 } 4976 4977 /* 4978 * Systemcall entry point to finalize the zone halt process. The caller 4979 * must have already successfully called zone_shutdown(). 4980 * 4981 * Upon successful completion, the zone will have been fully destroyed: 4982 * zsched will have exited, destructor callbacks executed, and the zone 4983 * removed from the list of active zones. 4984 */ 4985 static int 4986 zone_destroy(zoneid_t zoneid) 4987 { 4988 uint64_t uniqid; 4989 zone_t *zone; 4990 zone_status_t status; 4991 clock_t wait_time; 4992 boolean_t log_refcounts; 4993 4994 if (secpolicy_zone_config(CRED()) != 0) 4995 return (set_errno(EPERM)); 4996 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4997 return (set_errno(EINVAL)); 4998 4999 mutex_enter(&zonehash_lock); 5000 /* 5001 * Look for zone under hash lock to prevent races with other 5002 * calls to zone_destroy. 5003 */ 5004 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5005 mutex_exit(&zonehash_lock); 5006 return (set_errno(EINVAL)); 5007 } 5008 5009 if (zone_mount_count(zone->zone_rootpath) != 0) { 5010 mutex_exit(&zonehash_lock); 5011 return (set_errno(EBUSY)); 5012 } 5013 mutex_enter(&zone_status_lock); 5014 status = zone_status_get(zone); 5015 if (status < ZONE_IS_DOWN) { 5016 mutex_exit(&zone_status_lock); 5017 mutex_exit(&zonehash_lock); 5018 return (set_errno(EBUSY)); 5019 } else if (status == ZONE_IS_DOWN) { 5020 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5021 } 5022 mutex_exit(&zone_status_lock); 5023 zone_hold(zone); 5024 mutex_exit(&zonehash_lock); 5025 5026 /* 5027 * wait for zsched to exit 5028 */ 5029 zone_status_wait(zone, ZONE_IS_DEAD); 5030 zone_zsd_callbacks(zone, ZSD_DESTROY); 5031 zone->zone_netstack = NULL; 5032 uniqid = zone->zone_uniqid; 5033 zone_rele(zone); 5034 zone = NULL; /* potentially free'd */ 5035 5036 log_refcounts = B_FALSE; 5037 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5038 mutex_enter(&zonehash_lock); 5039 for (; /* ever */; ) { 5040 boolean_t unref; 5041 boolean_t refs_have_been_logged; 5042 5043 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5044 zone->zone_uniqid != uniqid) { 5045 /* 5046 * The zone has gone away. Necessary conditions 5047 * are met, so we return success. 5048 */ 5049 mutex_exit(&zonehash_lock); 5050 return (0); 5051 } 5052 mutex_enter(&zone->zone_lock); 5053 unref = ZONE_IS_UNREF(zone); 5054 refs_have_been_logged = (zone->zone_flags & 5055 ZF_REFCOUNTS_LOGGED); 5056 mutex_exit(&zone->zone_lock); 5057 if (unref) { 5058 /* 5059 * There is only one reference to the zone -- that 5060 * added when the zone was added to the hashtables -- 5061 * and things will remain this way until we drop 5062 * zonehash_lock... we can go ahead and cleanup the 5063 * zone. 5064 */ 5065 break; 5066 } 5067 5068 /* 5069 * Wait for zone_rele_common() or zone_cred_rele() to signal 5070 * zone_destroy_cv. zone_destroy_cv is signaled only when 5071 * some zone's general-purpose reference count reaches one. 5072 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5073 * on zone_destroy_cv, then log the zone's reference counts and 5074 * continue to wait for zone_rele() and zone_cred_rele(). 5075 */ 5076 if (!refs_have_been_logged) { 5077 if (!log_refcounts) { 5078 /* 5079 * This thread hasn't timed out waiting on 5080 * zone_destroy_cv yet. Wait wait_time clock 5081 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5082 * seconds) for the zone's references to clear. 5083 */ 5084 ASSERT(wait_time > 0); 5085 wait_time = cv_reltimedwait_sig( 5086 &zone_destroy_cv, &zonehash_lock, wait_time, 5087 TR_SEC); 5088 if (wait_time > 0) { 5089 /* 5090 * A thread in zone_rele() or 5091 * zone_cred_rele() signaled 5092 * zone_destroy_cv before this thread's 5093 * wait timed out. The zone might have 5094 * only one reference left; find out! 5095 */ 5096 continue; 5097 } else if (wait_time == 0) { 5098 /* The thread's process was signaled. */ 5099 mutex_exit(&zonehash_lock); 5100 return (set_errno(EINTR)); 5101 } 5102 5103 /* 5104 * The thread timed out while waiting on 5105 * zone_destroy_cv. Even though the thread 5106 * timed out, it has to check whether another 5107 * thread woke up from zone_destroy_cv and 5108 * destroyed the zone. 5109 * 5110 * If the zone still exists and has more than 5111 * one unreleased general-purpose reference, 5112 * then log the zone's reference counts. 5113 */ 5114 log_refcounts = B_TRUE; 5115 continue; 5116 } 5117 5118 /* 5119 * The thread already timed out on zone_destroy_cv while 5120 * waiting for subsystems to release the zone's last 5121 * general-purpose references. Log the zone's reference 5122 * counts and wait indefinitely on zone_destroy_cv. 5123 */ 5124 zone_log_refcounts(zone); 5125 } 5126 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5127 /* The thread's process was signaled. */ 5128 mutex_exit(&zonehash_lock); 5129 return (set_errno(EINTR)); 5130 } 5131 } 5132 5133 /* 5134 * Remove CPU cap for this zone now since we're not going to 5135 * fail below this point. 5136 */ 5137 cpucaps_zone_remove(zone); 5138 5139 /* Get rid of the zone's kstats */ 5140 zone_kstat_delete(zone); 5141 5142 /* remove the pfexecd doors */ 5143 if (zone->zone_pfexecd != NULL) { 5144 klpd_freelist(&zone->zone_pfexecd); 5145 zone->zone_pfexecd = NULL; 5146 } 5147 5148 /* free brand specific data */ 5149 if (ZONE_IS_BRANDED(zone)) 5150 ZBROP(zone)->b_free_brand_data(zone); 5151 5152 /* Say goodbye to brand framework. */ 5153 brand_unregister_zone(zone->zone_brand); 5154 5155 /* 5156 * It is now safe to let the zone be recreated; remove it from the 5157 * lists. The memory will not be freed until the last cred 5158 * reference goes away. 5159 */ 5160 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5161 zonecount--; 5162 /* remove from active list and hash tables */ 5163 list_remove(&zone_active, zone); 5164 (void) mod_hash_destroy(zonehashbyname, 5165 (mod_hash_key_t)zone->zone_name); 5166 (void) mod_hash_destroy(zonehashbyid, 5167 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5168 if (zone->zone_flags & ZF_HASHED_LABEL) 5169 (void) mod_hash_destroy(zonehashbylabel, 5170 (mod_hash_key_t)zone->zone_slabel); 5171 mutex_exit(&zonehash_lock); 5172 5173 /* 5174 * Release the root vnode; we're not using it anymore. Nor should any 5175 * other thread that might access it exist. 5176 */ 5177 if (zone->zone_rootvp != NULL) { 5178 VN_RELE(zone->zone_rootvp); 5179 zone->zone_rootvp = NULL; 5180 } 5181 5182 /* add to deathrow list */ 5183 mutex_enter(&zone_deathrow_lock); 5184 list_insert_tail(&zone_deathrow, zone); 5185 mutex_exit(&zone_deathrow_lock); 5186 5187 /* 5188 * Drop last reference (which was added by zsched()), this will 5189 * free the zone unless there are outstanding cred references. 5190 */ 5191 zone_rele(zone); 5192 return (0); 5193 } 5194 5195 /* 5196 * Systemcall entry point for zone_getattr(2). 5197 */ 5198 static ssize_t 5199 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5200 { 5201 size_t size; 5202 int error = 0, err; 5203 zone_t *zone; 5204 char *zonepath; 5205 char *outstr; 5206 zone_status_t zone_status; 5207 pid_t initpid; 5208 boolean_t global = (curzone == global_zone); 5209 boolean_t inzone = (curzone->zone_id == zoneid); 5210 ushort_t flags; 5211 zone_net_data_t *zbuf; 5212 5213 mutex_enter(&zonehash_lock); 5214 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5215 mutex_exit(&zonehash_lock); 5216 return (set_errno(EINVAL)); 5217 } 5218 zone_status = zone_status_get(zone); 5219 if (zone_status < ZONE_IS_INITIALIZED) { 5220 mutex_exit(&zonehash_lock); 5221 return (set_errno(EINVAL)); 5222 } 5223 zone_hold(zone); 5224 mutex_exit(&zonehash_lock); 5225 5226 /* 5227 * If not in the global zone, don't show information about other zones, 5228 * unless the system is labeled and the local zone's label dominates 5229 * the other zone. 5230 */ 5231 if (!zone_list_access(zone)) { 5232 zone_rele(zone); 5233 return (set_errno(EINVAL)); 5234 } 5235 5236 switch (attr) { 5237 case ZONE_ATTR_ROOT: 5238 if (global) { 5239 /* 5240 * Copy the path to trim the trailing "/" (except for 5241 * the global zone). 5242 */ 5243 if (zone != global_zone) 5244 size = zone->zone_rootpathlen - 1; 5245 else 5246 size = zone->zone_rootpathlen; 5247 zonepath = kmem_alloc(size, KM_SLEEP); 5248 bcopy(zone->zone_rootpath, zonepath, size); 5249 zonepath[size - 1] = '\0'; 5250 } else { 5251 if (inzone || !is_system_labeled()) { 5252 /* 5253 * Caller is not in the global zone. 5254 * if the query is on the current zone 5255 * or the system is not labeled, 5256 * just return faked-up path for current zone. 5257 */ 5258 zonepath = "/"; 5259 size = 2; 5260 } else { 5261 /* 5262 * Return related path for current zone. 5263 */ 5264 int prefix_len = strlen(zone_prefix); 5265 int zname_len = strlen(zone->zone_name); 5266 5267 size = prefix_len + zname_len + 1; 5268 zonepath = kmem_alloc(size, KM_SLEEP); 5269 bcopy(zone_prefix, zonepath, prefix_len); 5270 bcopy(zone->zone_name, zonepath + 5271 prefix_len, zname_len); 5272 zonepath[size - 1] = '\0'; 5273 } 5274 } 5275 if (bufsize > size) 5276 bufsize = size; 5277 if (buf != NULL) { 5278 err = copyoutstr(zonepath, buf, bufsize, NULL); 5279 if (err != 0 && err != ENAMETOOLONG) 5280 error = EFAULT; 5281 } 5282 if (global || (is_system_labeled() && !inzone)) 5283 kmem_free(zonepath, size); 5284 break; 5285 5286 case ZONE_ATTR_NAME: 5287 size = strlen(zone->zone_name) + 1; 5288 if (bufsize > size) 5289 bufsize = size; 5290 if (buf != NULL) { 5291 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5292 if (err != 0 && err != ENAMETOOLONG) 5293 error = EFAULT; 5294 } 5295 break; 5296 5297 case ZONE_ATTR_STATUS: 5298 /* 5299 * Since we're not holding zonehash_lock, the zone status 5300 * may be anything; leave it up to userland to sort it out. 5301 */ 5302 size = sizeof (zone_status); 5303 if (bufsize > size) 5304 bufsize = size; 5305 zone_status = zone_status_get(zone); 5306 if (buf != NULL && 5307 copyout(&zone_status, buf, bufsize) != 0) 5308 error = EFAULT; 5309 break; 5310 case ZONE_ATTR_FLAGS: 5311 size = sizeof (zone->zone_flags); 5312 if (bufsize > size) 5313 bufsize = size; 5314 flags = zone->zone_flags; 5315 if (buf != NULL && 5316 copyout(&flags, buf, bufsize) != 0) 5317 error = EFAULT; 5318 break; 5319 case ZONE_ATTR_PRIVSET: 5320 size = sizeof (priv_set_t); 5321 if (bufsize > size) 5322 bufsize = size; 5323 if (buf != NULL && 5324 copyout(zone->zone_privset, buf, bufsize) != 0) 5325 error = EFAULT; 5326 break; 5327 case ZONE_ATTR_UNIQID: 5328 size = sizeof (zone->zone_uniqid); 5329 if (bufsize > size) 5330 bufsize = size; 5331 if (buf != NULL && 5332 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5333 error = EFAULT; 5334 break; 5335 case ZONE_ATTR_POOLID: 5336 { 5337 pool_t *pool; 5338 poolid_t poolid; 5339 5340 if (pool_lock_intr() != 0) { 5341 error = EINTR; 5342 break; 5343 } 5344 pool = zone_pool_get(zone); 5345 poolid = pool->pool_id; 5346 pool_unlock(); 5347 size = sizeof (poolid); 5348 if (bufsize > size) 5349 bufsize = size; 5350 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5351 error = EFAULT; 5352 } 5353 break; 5354 case ZONE_ATTR_SLBL: 5355 size = sizeof (bslabel_t); 5356 if (bufsize > size) 5357 bufsize = size; 5358 if (zone->zone_slabel == NULL) 5359 error = EINVAL; 5360 else if (buf != NULL && 5361 copyout(label2bslabel(zone->zone_slabel), buf, 5362 bufsize) != 0) 5363 error = EFAULT; 5364 break; 5365 case ZONE_ATTR_INITPID: 5366 size = sizeof (initpid); 5367 if (bufsize > size) 5368 bufsize = size; 5369 initpid = zone->zone_proc_initpid; 5370 if (initpid == -1) { 5371 error = ESRCH; 5372 break; 5373 } 5374 if (buf != NULL && 5375 copyout(&initpid, buf, bufsize) != 0) 5376 error = EFAULT; 5377 break; 5378 case ZONE_ATTR_BRAND: 5379 size = strlen(zone->zone_brand->b_name) + 1; 5380 5381 if (bufsize > size) 5382 bufsize = size; 5383 if (buf != NULL) { 5384 err = copyoutstr(zone->zone_brand->b_name, buf, 5385 bufsize, NULL); 5386 if (err != 0 && err != ENAMETOOLONG) 5387 error = EFAULT; 5388 } 5389 break; 5390 case ZONE_ATTR_INITNAME: 5391 size = strlen(zone->zone_initname) + 1; 5392 if (bufsize > size) 5393 bufsize = size; 5394 if (buf != NULL) { 5395 err = copyoutstr(zone->zone_initname, buf, bufsize, 5396 NULL); 5397 if (err != 0 && err != ENAMETOOLONG) 5398 error = EFAULT; 5399 } 5400 break; 5401 case ZONE_ATTR_BOOTARGS: 5402 if (zone->zone_bootargs == NULL) 5403 outstr = ""; 5404 else 5405 outstr = zone->zone_bootargs; 5406 size = strlen(outstr) + 1; 5407 if (bufsize > size) 5408 bufsize = size; 5409 if (buf != NULL) { 5410 err = copyoutstr(outstr, buf, bufsize, NULL); 5411 if (err != 0 && err != ENAMETOOLONG) 5412 error = EFAULT; 5413 } 5414 break; 5415 case ZONE_ATTR_PHYS_MCAP: 5416 size = sizeof (zone->zone_phys_mcap); 5417 if (bufsize > size) 5418 bufsize = size; 5419 if (buf != NULL && 5420 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5421 error = EFAULT; 5422 break; 5423 case ZONE_ATTR_SCHED_CLASS: 5424 mutex_enter(&class_lock); 5425 5426 if (zone->zone_defaultcid >= loaded_classes) 5427 outstr = ""; 5428 else 5429 outstr = sclass[zone->zone_defaultcid].cl_name; 5430 size = strlen(outstr) + 1; 5431 if (bufsize > size) 5432 bufsize = size; 5433 if (buf != NULL) { 5434 err = copyoutstr(outstr, buf, bufsize, NULL); 5435 if (err != 0 && err != ENAMETOOLONG) 5436 error = EFAULT; 5437 } 5438 5439 mutex_exit(&class_lock); 5440 break; 5441 case ZONE_ATTR_HOSTID: 5442 if (zone->zone_hostid != HW_INVALID_HOSTID && 5443 bufsize == sizeof (zone->zone_hostid)) { 5444 size = sizeof (zone->zone_hostid); 5445 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5446 bufsize) != 0) 5447 error = EFAULT; 5448 } else { 5449 error = EINVAL; 5450 } 5451 break; 5452 case ZONE_ATTR_FS_ALLOWED: 5453 if (zone->zone_fs_allowed == NULL) 5454 outstr = ""; 5455 else 5456 outstr = zone->zone_fs_allowed; 5457 size = strlen(outstr) + 1; 5458 if (bufsize > size) 5459 bufsize = size; 5460 if (buf != NULL) { 5461 err = copyoutstr(outstr, buf, bufsize, NULL); 5462 if (err != 0 && err != ENAMETOOLONG) 5463 error = EFAULT; 5464 } 5465 break; 5466 case ZONE_ATTR_NETWORK: 5467 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5468 if (copyin(buf, zbuf, bufsize) != 0) { 5469 error = EFAULT; 5470 } else { 5471 error = zone_get_network(zoneid, zbuf); 5472 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5473 error = EFAULT; 5474 } 5475 kmem_free(zbuf, bufsize); 5476 break; 5477 default: 5478 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5479 size = bufsize; 5480 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5481 } else { 5482 error = EINVAL; 5483 } 5484 } 5485 zone_rele(zone); 5486 5487 if (error) 5488 return (set_errno(error)); 5489 return ((ssize_t)size); 5490 } 5491 5492 /* 5493 * Systemcall entry point for zone_setattr(2). 5494 */ 5495 /*ARGSUSED*/ 5496 static int 5497 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5498 { 5499 zone_t *zone; 5500 zone_status_t zone_status; 5501 int err = -1; 5502 zone_net_data_t *zbuf; 5503 5504 if (secpolicy_zone_config(CRED()) != 0) 5505 return (set_errno(EPERM)); 5506 5507 /* 5508 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5509 * global zone. 5510 */ 5511 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5512 return (set_errno(EINVAL)); 5513 } 5514 5515 mutex_enter(&zonehash_lock); 5516 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5517 mutex_exit(&zonehash_lock); 5518 return (set_errno(EINVAL)); 5519 } 5520 zone_hold(zone); 5521 mutex_exit(&zonehash_lock); 5522 5523 /* 5524 * At present most attributes can only be set on non-running, 5525 * non-global zones. 5526 */ 5527 zone_status = zone_status_get(zone); 5528 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5529 err = EINVAL; 5530 goto done; 5531 } 5532 5533 switch (attr) { 5534 case ZONE_ATTR_INITNAME: 5535 err = zone_set_initname(zone, (const char *)buf); 5536 break; 5537 case ZONE_ATTR_INITNORESTART: 5538 zone->zone_restart_init = B_FALSE; 5539 err = 0; 5540 break; 5541 case ZONE_ATTR_BOOTARGS: 5542 err = zone_set_bootargs(zone, (const char *)buf); 5543 break; 5544 case ZONE_ATTR_BRAND: 5545 err = zone_set_brand(zone, (const char *)buf); 5546 break; 5547 case ZONE_ATTR_FS_ALLOWED: 5548 err = zone_set_fs_allowed(zone, (const char *)buf); 5549 break; 5550 case ZONE_ATTR_PHYS_MCAP: 5551 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5552 break; 5553 case ZONE_ATTR_SCHED_CLASS: 5554 err = zone_set_sched_class(zone, (const char *)buf); 5555 break; 5556 case ZONE_ATTR_HOSTID: 5557 if (bufsize == sizeof (zone->zone_hostid)) { 5558 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5559 err = 0; 5560 else 5561 err = EFAULT; 5562 } else { 5563 err = EINVAL; 5564 } 5565 break; 5566 case ZONE_ATTR_NETWORK: 5567 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5568 err = EINVAL; 5569 break; 5570 } 5571 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5572 if (copyin(buf, zbuf, bufsize) != 0) { 5573 kmem_free(zbuf, bufsize); 5574 err = EFAULT; 5575 break; 5576 } 5577 err = zone_set_network(zoneid, zbuf); 5578 kmem_free(zbuf, bufsize); 5579 break; 5580 default: 5581 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5582 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5583 else 5584 err = EINVAL; 5585 } 5586 5587 done: 5588 zone_rele(zone); 5589 ASSERT(err != -1); 5590 return (err != 0 ? set_errno(err) : 0); 5591 } 5592 5593 /* 5594 * Return zero if the process has at least one vnode mapped in to its 5595 * address space which shouldn't be allowed to change zones. 5596 * 5597 * Also return zero if the process has any shared mappings which reserve 5598 * swap. This is because the counting for zone.max-swap does not allow swap 5599 * reservation to be shared between zones. zone swap reservation is counted 5600 * on zone->zone_max_swap. 5601 */ 5602 static int 5603 as_can_change_zones(void) 5604 { 5605 proc_t *pp = curproc; 5606 struct seg *seg; 5607 struct as *as = pp->p_as; 5608 vnode_t *vp; 5609 int allow = 1; 5610 5611 ASSERT(pp->p_as != &kas); 5612 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 5613 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5614 5615 /* 5616 * Cannot enter zone with shared anon memory which 5617 * reserves swap. See comment above. 5618 */ 5619 if (seg_can_change_zones(seg) == B_FALSE) { 5620 allow = 0; 5621 break; 5622 } 5623 /* 5624 * if we can't get a backing vnode for this segment then skip 5625 * it. 5626 */ 5627 vp = NULL; 5628 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5629 continue; 5630 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5631 allow = 0; 5632 break; 5633 } 5634 } 5635 AS_LOCK_EXIT(as, &as->a_lock); 5636 return (allow); 5637 } 5638 5639 /* 5640 * Count swap reserved by curproc's address space 5641 */ 5642 static size_t 5643 as_swresv(void) 5644 { 5645 proc_t *pp = curproc; 5646 struct seg *seg; 5647 struct as *as = pp->p_as; 5648 size_t swap = 0; 5649 5650 ASSERT(pp->p_as != &kas); 5651 ASSERT(AS_WRITE_HELD(as, &as->a_lock)); 5652 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5653 swap += seg_swresv(seg); 5654 5655 return (swap); 5656 } 5657 5658 /* 5659 * Systemcall entry point for zone_enter(). 5660 * 5661 * The current process is injected into said zone. In the process 5662 * it will change its project membership, privileges, rootdir/cwd, 5663 * zone-wide rctls, and pool association to match those of the zone. 5664 * 5665 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5666 * state will transition it to ZONE_IS_RUNNING. Processes may only 5667 * enter a zone that is "ready" or "running". 5668 */ 5669 static int 5670 zone_enter(zoneid_t zoneid) 5671 { 5672 zone_t *zone; 5673 vnode_t *vp; 5674 proc_t *pp = curproc; 5675 contract_t *ct; 5676 cont_process_t *ctp; 5677 task_t *tk, *oldtk; 5678 kproject_t *zone_proj0; 5679 cred_t *cr, *newcr; 5680 pool_t *oldpool, *newpool; 5681 sess_t *sp; 5682 uid_t uid; 5683 zone_status_t status; 5684 int err = 0; 5685 rctl_entity_p_t e; 5686 size_t swap; 5687 kthread_id_t t; 5688 5689 if (secpolicy_zone_config(CRED()) != 0) 5690 return (set_errno(EPERM)); 5691 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5692 return (set_errno(EINVAL)); 5693 5694 /* 5695 * Stop all lwps so we don't need to hold a lock to look at 5696 * curproc->p_zone. This needs to happen before we grab any 5697 * locks to avoid deadlock (another lwp in the process could 5698 * be waiting for the held lock). 5699 */ 5700 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5701 return (set_errno(EINTR)); 5702 5703 /* 5704 * Make sure we're not changing zones with files open or mapped in 5705 * to our address space which shouldn't be changing zones. 5706 */ 5707 if (!files_can_change_zones()) { 5708 err = EBADF; 5709 goto out; 5710 } 5711 if (!as_can_change_zones()) { 5712 err = EFAULT; 5713 goto out; 5714 } 5715 5716 mutex_enter(&zonehash_lock); 5717 if (pp->p_zone != global_zone) { 5718 mutex_exit(&zonehash_lock); 5719 err = EINVAL; 5720 goto out; 5721 } 5722 5723 zone = zone_find_all_by_id(zoneid); 5724 if (zone == NULL) { 5725 mutex_exit(&zonehash_lock); 5726 err = EINVAL; 5727 goto out; 5728 } 5729 5730 /* 5731 * To prevent processes in a zone from holding contracts on 5732 * extrazonal resources, and to avoid process contract 5733 * memberships which span zones, contract holders and processes 5734 * which aren't the sole members of their encapsulating process 5735 * contracts are not allowed to zone_enter. 5736 */ 5737 ctp = pp->p_ct_process; 5738 ct = &ctp->conp_contract; 5739 mutex_enter(&ct->ct_lock); 5740 mutex_enter(&pp->p_lock); 5741 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5742 mutex_exit(&pp->p_lock); 5743 mutex_exit(&ct->ct_lock); 5744 mutex_exit(&zonehash_lock); 5745 err = EINVAL; 5746 goto out; 5747 } 5748 5749 /* 5750 * Moreover, we don't allow processes whose encapsulating 5751 * process contracts have inherited extrazonal contracts. 5752 * While it would be easier to eliminate all process contracts 5753 * with inherited contracts, we need to be able to give a 5754 * restarted init (or other zone-penetrating process) its 5755 * predecessor's contracts. 5756 */ 5757 if (ctp->conp_ninherited != 0) { 5758 contract_t *next; 5759 for (next = list_head(&ctp->conp_inherited); next; 5760 next = list_next(&ctp->conp_inherited, next)) { 5761 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5762 mutex_exit(&pp->p_lock); 5763 mutex_exit(&ct->ct_lock); 5764 mutex_exit(&zonehash_lock); 5765 err = EINVAL; 5766 goto out; 5767 } 5768 } 5769 } 5770 5771 mutex_exit(&pp->p_lock); 5772 mutex_exit(&ct->ct_lock); 5773 5774 status = zone_status_get(zone); 5775 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5776 /* 5777 * Can't join 5778 */ 5779 mutex_exit(&zonehash_lock); 5780 err = EINVAL; 5781 goto out; 5782 } 5783 5784 /* 5785 * Make sure new priv set is within the permitted set for caller 5786 */ 5787 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5788 mutex_exit(&zonehash_lock); 5789 err = EPERM; 5790 goto out; 5791 } 5792 /* 5793 * We want to momentarily drop zonehash_lock while we optimistically 5794 * bind curproc to the pool it should be running in. This is safe 5795 * since the zone can't disappear (we have a hold on it). 5796 */ 5797 zone_hold(zone); 5798 mutex_exit(&zonehash_lock); 5799 5800 /* 5801 * Grab pool_lock to keep the pools configuration from changing 5802 * and to stop ourselves from getting rebound to another pool 5803 * until we join the zone. 5804 */ 5805 if (pool_lock_intr() != 0) { 5806 zone_rele(zone); 5807 err = EINTR; 5808 goto out; 5809 } 5810 ASSERT(secpolicy_pool(CRED()) == 0); 5811 /* 5812 * Bind ourselves to the pool currently associated with the zone. 5813 */ 5814 oldpool = curproc->p_pool; 5815 newpool = zone_pool_get(zone); 5816 if (pool_state == POOL_ENABLED && newpool != oldpool && 5817 (err = pool_do_bind(newpool, P_PID, P_MYID, 5818 POOL_BIND_ALL)) != 0) { 5819 pool_unlock(); 5820 zone_rele(zone); 5821 goto out; 5822 } 5823 5824 /* 5825 * Grab cpu_lock now; we'll need it later when we call 5826 * task_join(). 5827 */ 5828 mutex_enter(&cpu_lock); 5829 mutex_enter(&zonehash_lock); 5830 /* 5831 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 5832 */ 5833 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 5834 /* 5835 * Can't join anymore. 5836 */ 5837 mutex_exit(&zonehash_lock); 5838 mutex_exit(&cpu_lock); 5839 if (pool_state == POOL_ENABLED && 5840 newpool != oldpool) 5841 (void) pool_do_bind(oldpool, P_PID, P_MYID, 5842 POOL_BIND_ALL); 5843 pool_unlock(); 5844 zone_rele(zone); 5845 err = EINVAL; 5846 goto out; 5847 } 5848 5849 /* 5850 * a_lock must be held while transfering locked memory and swap 5851 * reservation from the global zone to the non global zone because 5852 * asynchronous faults on the processes' address space can lock 5853 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 5854 * segments respectively. 5855 */ 5856 AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER); 5857 swap = as_swresv(); 5858 mutex_enter(&pp->p_lock); 5859 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 5860 /* verify that we do not exceed and task or lwp limits */ 5861 mutex_enter(&zone->zone_nlwps_lock); 5862 /* add new lwps to zone and zone's proj0 */ 5863 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 5864 zone->zone_nlwps += pp->p_lwpcnt; 5865 /* add 1 task to zone's proj0 */ 5866 zone_proj0->kpj_ntasks += 1; 5867 5868 zone_proj0->kpj_nprocs++; 5869 zone->zone_nprocs++; 5870 mutex_exit(&zone->zone_nlwps_lock); 5871 5872 mutex_enter(&zone->zone_mem_lock); 5873 zone->zone_locked_mem += pp->p_locked_mem; 5874 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 5875 zone->zone_max_swap += swap; 5876 mutex_exit(&zone->zone_mem_lock); 5877 5878 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5879 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 5880 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 5881 5882 /* remove lwps and process from proc's old zone and old project */ 5883 mutex_enter(&pp->p_zone->zone_nlwps_lock); 5884 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 5885 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 5886 pp->p_task->tk_proj->kpj_nprocs--; 5887 pp->p_zone->zone_nprocs--; 5888 mutex_exit(&pp->p_zone->zone_nlwps_lock); 5889 5890 mutex_enter(&pp->p_zone->zone_mem_lock); 5891 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 5892 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 5893 pp->p_zone->zone_max_swap -= swap; 5894 mutex_exit(&pp->p_zone->zone_mem_lock); 5895 5896 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5897 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 5898 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 5899 5900 pp->p_flag |= SZONETOP; 5901 pp->p_zone = zone; 5902 mutex_exit(&pp->p_lock); 5903 AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock); 5904 5905 /* 5906 * Joining the zone cannot fail from now on. 5907 * 5908 * This means that a lot of the following code can be commonized and 5909 * shared with zsched(). 5910 */ 5911 5912 /* 5913 * If the process contract fmri was inherited, we need to 5914 * flag this so that any contract status will not leak 5915 * extra zone information, svc_fmri in this case 5916 */ 5917 if (ctp->conp_svc_ctid != ct->ct_id) { 5918 mutex_enter(&ct->ct_lock); 5919 ctp->conp_svc_zone_enter = ct->ct_id; 5920 mutex_exit(&ct->ct_lock); 5921 } 5922 5923 /* 5924 * Reset the encapsulating process contract's zone. 5925 */ 5926 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 5927 contract_setzuniqid(ct, zone->zone_uniqid); 5928 5929 /* 5930 * Create a new task and associate the process with the project keyed 5931 * by (projid,zoneid). 5932 * 5933 * We might as well be in project 0; the global zone's projid doesn't 5934 * make much sense in a zone anyhow. 5935 * 5936 * This also increments zone_ntasks, and returns with p_lock held. 5937 */ 5938 tk = task_create(0, zone); 5939 oldtk = task_join(tk, 0); 5940 mutex_exit(&cpu_lock); 5941 5942 /* 5943 * call RCTLOP_SET functions on this proc 5944 */ 5945 e.rcep_p.zone = zone; 5946 e.rcep_t = RCENTITY_ZONE; 5947 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 5948 RCD_CALLBACK); 5949 mutex_exit(&pp->p_lock); 5950 5951 /* 5952 * We don't need to hold any of zsched's locks here; not only do we know 5953 * the process and zone aren't going away, we know its session isn't 5954 * changing either. 5955 * 5956 * By joining zsched's session here, we mimic the behavior in the 5957 * global zone of init's sid being the pid of sched. We extend this 5958 * to all zlogin-like zone_enter()'ing processes as well. 5959 */ 5960 mutex_enter(&pidlock); 5961 sp = zone->zone_zsched->p_sessp; 5962 sess_hold(zone->zone_zsched); 5963 mutex_enter(&pp->p_lock); 5964 pgexit(pp); 5965 sess_rele(pp->p_sessp, B_TRUE); 5966 pp->p_sessp = sp; 5967 pgjoin(pp, zone->zone_zsched->p_pidp); 5968 5969 /* 5970 * If any threads are scheduled to be placed on zone wait queue they 5971 * should abandon the idea since the wait queue is changing. 5972 * We need to be holding pidlock & p_lock to do this. 5973 */ 5974 if ((t = pp->p_tlist) != NULL) { 5975 do { 5976 thread_lock(t); 5977 /* 5978 * Kick this thread so that he doesn't sit 5979 * on a wrong wait queue. 5980 */ 5981 if (ISWAITING(t)) 5982 setrun_locked(t); 5983 5984 if (t->t_schedflag & TS_ANYWAITQ) 5985 t->t_schedflag &= ~ TS_ANYWAITQ; 5986 5987 thread_unlock(t); 5988 } while ((t = t->t_forw) != pp->p_tlist); 5989 } 5990 5991 /* 5992 * If there is a default scheduling class for the zone and it is not 5993 * the class we are currently in, change all of the threads in the 5994 * process to the new class. We need to be holding pidlock & p_lock 5995 * when we call parmsset so this is a good place to do it. 5996 */ 5997 if (zone->zone_defaultcid > 0 && 5998 zone->zone_defaultcid != curthread->t_cid) { 5999 pcparms_t pcparms; 6000 6001 pcparms.pc_cid = zone->zone_defaultcid; 6002 pcparms.pc_clparms[0] = 0; 6003 6004 /* 6005 * If setting the class fails, we still want to enter the zone. 6006 */ 6007 if ((t = pp->p_tlist) != NULL) { 6008 do { 6009 (void) parmsset(&pcparms, t); 6010 } while ((t = t->t_forw) != pp->p_tlist); 6011 } 6012 } 6013 6014 mutex_exit(&pp->p_lock); 6015 mutex_exit(&pidlock); 6016 6017 mutex_exit(&zonehash_lock); 6018 /* 6019 * We're firmly in the zone; let pools progress. 6020 */ 6021 pool_unlock(); 6022 task_rele(oldtk); 6023 /* 6024 * We don't need to retain a hold on the zone since we already 6025 * incremented zone_ntasks, so the zone isn't going anywhere. 6026 */ 6027 zone_rele(zone); 6028 6029 /* 6030 * Chroot 6031 */ 6032 vp = zone->zone_rootvp; 6033 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6034 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6035 6036 /* 6037 * Change process credentials 6038 */ 6039 newcr = cralloc(); 6040 mutex_enter(&pp->p_crlock); 6041 cr = pp->p_cred; 6042 crcopy_to(cr, newcr); 6043 crsetzone(newcr, zone); 6044 pp->p_cred = newcr; 6045 6046 /* 6047 * Restrict all process privilege sets to zone limit 6048 */ 6049 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6050 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6051 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6052 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6053 mutex_exit(&pp->p_crlock); 6054 crset(pp, newcr); 6055 6056 /* 6057 * Adjust upcount to reflect zone entry. 6058 */ 6059 uid = crgetruid(newcr); 6060 mutex_enter(&pidlock); 6061 upcount_dec(uid, GLOBAL_ZONEID); 6062 upcount_inc(uid, zoneid); 6063 mutex_exit(&pidlock); 6064 6065 /* 6066 * Set up core file path and content. 6067 */ 6068 set_core_defaults(); 6069 6070 out: 6071 /* 6072 * Let the other lwps continue. 6073 */ 6074 mutex_enter(&pp->p_lock); 6075 if (curthread != pp->p_agenttp) 6076 continuelwps(pp); 6077 mutex_exit(&pp->p_lock); 6078 6079 return (err != 0 ? set_errno(err) : 0); 6080 } 6081 6082 /* 6083 * Systemcall entry point for zone_list(2). 6084 * 6085 * Processes running in a (non-global) zone only see themselves. 6086 * On labeled systems, they see all zones whose label they dominate. 6087 */ 6088 static int 6089 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6090 { 6091 zoneid_t *zoneids; 6092 zone_t *zone, *myzone; 6093 uint_t user_nzones, real_nzones; 6094 uint_t domi_nzones; 6095 int error; 6096 6097 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6098 return (set_errno(EFAULT)); 6099 6100 myzone = curproc->p_zone; 6101 if (myzone != global_zone) { 6102 bslabel_t *mybslab; 6103 6104 if (!is_system_labeled()) { 6105 /* just return current zone */ 6106 real_nzones = domi_nzones = 1; 6107 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6108 zoneids[0] = myzone->zone_id; 6109 } else { 6110 /* return all zones that are dominated */ 6111 mutex_enter(&zonehash_lock); 6112 real_nzones = zonecount; 6113 domi_nzones = 0; 6114 if (real_nzones > 0) { 6115 zoneids = kmem_alloc(real_nzones * 6116 sizeof (zoneid_t), KM_SLEEP); 6117 mybslab = label2bslabel(myzone->zone_slabel); 6118 for (zone = list_head(&zone_active); 6119 zone != NULL; 6120 zone = list_next(&zone_active, zone)) { 6121 if (zone->zone_id == GLOBAL_ZONEID) 6122 continue; 6123 if (zone != myzone && 6124 (zone->zone_flags & ZF_IS_SCRATCH)) 6125 continue; 6126 /* 6127 * Note that a label always dominates 6128 * itself, so myzone is always included 6129 * in the list. 6130 */ 6131 if (bldominates(mybslab, 6132 label2bslabel(zone->zone_slabel))) { 6133 zoneids[domi_nzones++] = 6134 zone->zone_id; 6135 } 6136 } 6137 } 6138 mutex_exit(&zonehash_lock); 6139 } 6140 } else { 6141 mutex_enter(&zonehash_lock); 6142 real_nzones = zonecount; 6143 domi_nzones = 0; 6144 if (real_nzones > 0) { 6145 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 6146 KM_SLEEP); 6147 for (zone = list_head(&zone_active); zone != NULL; 6148 zone = list_next(&zone_active, zone)) 6149 zoneids[domi_nzones++] = zone->zone_id; 6150 ASSERT(domi_nzones == real_nzones); 6151 } 6152 mutex_exit(&zonehash_lock); 6153 } 6154 6155 /* 6156 * If user has allocated space for fewer entries than we found, then 6157 * return only up to his limit. Either way, tell him exactly how many 6158 * we found. 6159 */ 6160 if (domi_nzones < user_nzones) 6161 user_nzones = domi_nzones; 6162 error = 0; 6163 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6164 error = EFAULT; 6165 } else if (zoneidlist != NULL && user_nzones != 0) { 6166 if (copyout(zoneids, zoneidlist, 6167 user_nzones * sizeof (zoneid_t)) != 0) 6168 error = EFAULT; 6169 } 6170 6171 if (real_nzones > 0) 6172 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6173 6174 if (error != 0) 6175 return (set_errno(error)); 6176 else 6177 return (0); 6178 } 6179 6180 /* 6181 * Systemcall entry point for zone_lookup(2). 6182 * 6183 * Non-global zones are only able to see themselves and (on labeled systems) 6184 * the zones they dominate. 6185 */ 6186 static zoneid_t 6187 zone_lookup(const char *zone_name) 6188 { 6189 char *kname; 6190 zone_t *zone; 6191 zoneid_t zoneid; 6192 int err; 6193 6194 if (zone_name == NULL) { 6195 /* return caller's zone id */ 6196 return (getzoneid()); 6197 } 6198 6199 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6200 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6201 kmem_free(kname, ZONENAME_MAX); 6202 return (set_errno(err)); 6203 } 6204 6205 mutex_enter(&zonehash_lock); 6206 zone = zone_find_all_by_name(kname); 6207 kmem_free(kname, ZONENAME_MAX); 6208 /* 6209 * In a non-global zone, can only lookup global and own name. 6210 * In Trusted Extensions zone label dominance rules apply. 6211 */ 6212 if (zone == NULL || 6213 zone_status_get(zone) < ZONE_IS_READY || 6214 !zone_list_access(zone)) { 6215 mutex_exit(&zonehash_lock); 6216 return (set_errno(EINVAL)); 6217 } else { 6218 zoneid = zone->zone_id; 6219 mutex_exit(&zonehash_lock); 6220 return (zoneid); 6221 } 6222 } 6223 6224 static int 6225 zone_version(int *version_arg) 6226 { 6227 int version = ZONE_SYSCALL_API_VERSION; 6228 6229 if (copyout(&version, version_arg, sizeof (int)) != 0) 6230 return (set_errno(EFAULT)); 6231 return (0); 6232 } 6233 6234 /* ARGSUSED */ 6235 long 6236 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6237 { 6238 zone_def zs; 6239 int err; 6240 6241 switch (cmd) { 6242 case ZONE_CREATE: 6243 if (get_udatamodel() == DATAMODEL_NATIVE) { 6244 if (copyin(arg1, &zs, sizeof (zone_def))) { 6245 return (set_errno(EFAULT)); 6246 } 6247 } else { 6248 #ifdef _SYSCALL32_IMPL 6249 zone_def32 zs32; 6250 6251 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6252 return (set_errno(EFAULT)); 6253 } 6254 zs.zone_name = 6255 (const char *)(unsigned long)zs32.zone_name; 6256 zs.zone_root = 6257 (const char *)(unsigned long)zs32.zone_root; 6258 zs.zone_privs = 6259 (const struct priv_set *) 6260 (unsigned long)zs32.zone_privs; 6261 zs.zone_privssz = zs32.zone_privssz; 6262 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6263 zs.rctlbufsz = zs32.rctlbufsz; 6264 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6265 zs.zfsbufsz = zs32.zfsbufsz; 6266 zs.extended_error = 6267 (int *)(unsigned long)zs32.extended_error; 6268 zs.match = zs32.match; 6269 zs.doi = zs32.doi; 6270 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6271 zs.flags = zs32.flags; 6272 #else 6273 panic("get_udatamodel() returned bogus result\n"); 6274 #endif 6275 } 6276 6277 return (zone_create(zs.zone_name, zs.zone_root, 6278 zs.zone_privs, zs.zone_privssz, 6279 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6280 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6281 zs.extended_error, zs.match, zs.doi, 6282 zs.label, zs.flags)); 6283 case ZONE_BOOT: 6284 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6285 case ZONE_DESTROY: 6286 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6287 case ZONE_GETATTR: 6288 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6289 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6290 case ZONE_SETATTR: 6291 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6292 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6293 case ZONE_ENTER: 6294 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6295 case ZONE_LIST: 6296 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6297 case ZONE_SHUTDOWN: 6298 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6299 case ZONE_LOOKUP: 6300 return (zone_lookup((const char *)arg1)); 6301 case ZONE_VERSION: 6302 return (zone_version((int *)arg1)); 6303 case ZONE_ADD_DATALINK: 6304 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6305 (datalink_id_t)(uintptr_t)arg2)); 6306 case ZONE_DEL_DATALINK: 6307 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6308 (datalink_id_t)(uintptr_t)arg2)); 6309 case ZONE_CHECK_DATALINK: { 6310 zoneid_t zoneid; 6311 boolean_t need_copyout; 6312 6313 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6314 return (EFAULT); 6315 need_copyout = (zoneid == ALL_ZONES); 6316 err = zone_check_datalink(&zoneid, 6317 (datalink_id_t)(uintptr_t)arg2); 6318 if (err == 0 && need_copyout) { 6319 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6320 err = EFAULT; 6321 } 6322 return (err == 0 ? 0 : set_errno(err)); 6323 } 6324 case ZONE_LIST_DATALINK: 6325 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6326 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6327 default: 6328 return (set_errno(EINVAL)); 6329 } 6330 } 6331 6332 struct zarg { 6333 zone_t *zone; 6334 zone_cmd_arg_t arg; 6335 }; 6336 6337 static int 6338 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6339 { 6340 char *buf; 6341 size_t buflen; 6342 int error; 6343 6344 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6345 buf = kmem_alloc(buflen, KM_SLEEP); 6346 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6347 error = door_ki_open(buf, doorp); 6348 kmem_free(buf, buflen); 6349 return (error); 6350 } 6351 6352 static void 6353 zone_release_door(door_handle_t *doorp) 6354 { 6355 door_ki_rele(*doorp); 6356 *doorp = NULL; 6357 } 6358 6359 static void 6360 zone_ki_call_zoneadmd(struct zarg *zargp) 6361 { 6362 door_handle_t door = NULL; 6363 door_arg_t darg, save_arg; 6364 char *zone_name; 6365 size_t zone_namelen; 6366 zoneid_t zoneid; 6367 zone_t *zone; 6368 zone_cmd_arg_t arg; 6369 uint64_t uniqid; 6370 size_t size; 6371 int error; 6372 int retry; 6373 6374 zone = zargp->zone; 6375 arg = zargp->arg; 6376 kmem_free(zargp, sizeof (*zargp)); 6377 6378 zone_namelen = strlen(zone->zone_name) + 1; 6379 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6380 bcopy(zone->zone_name, zone_name, zone_namelen); 6381 zoneid = zone->zone_id; 6382 uniqid = zone->zone_uniqid; 6383 /* 6384 * zoneadmd may be down, but at least we can empty out the zone. 6385 * We can ignore the return value of zone_empty() since we're called 6386 * from a kernel thread and know we won't be delivered any signals. 6387 */ 6388 ASSERT(curproc == &p0); 6389 (void) zone_empty(zone); 6390 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6391 zone_rele(zone); 6392 6393 size = sizeof (arg); 6394 darg.rbuf = (char *)&arg; 6395 darg.data_ptr = (char *)&arg; 6396 darg.rsize = size; 6397 darg.data_size = size; 6398 darg.desc_ptr = NULL; 6399 darg.desc_num = 0; 6400 6401 save_arg = darg; 6402 /* 6403 * Since we're not holding a reference to the zone, any number of 6404 * things can go wrong, including the zone disappearing before we get a 6405 * chance to talk to zoneadmd. 6406 */ 6407 for (retry = 0; /* forever */; retry++) { 6408 if (door == NULL && 6409 (error = zone_lookup_door(zone_name, &door)) != 0) { 6410 goto next; 6411 } 6412 ASSERT(door != NULL); 6413 6414 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6415 SIZE_MAX, 0)) == 0) { 6416 break; 6417 } 6418 switch (error) { 6419 case EINTR: 6420 /* FALLTHROUGH */ 6421 case EAGAIN: /* process may be forking */ 6422 /* 6423 * Back off for a bit 6424 */ 6425 break; 6426 case EBADF: 6427 zone_release_door(&door); 6428 if (zone_lookup_door(zone_name, &door) != 0) { 6429 /* 6430 * zoneadmd may be dead, but it may come back to 6431 * life later. 6432 */ 6433 break; 6434 } 6435 break; 6436 default: 6437 cmn_err(CE_WARN, 6438 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6439 error); 6440 goto out; 6441 } 6442 next: 6443 /* 6444 * If this isn't the same zone_t that we originally had in mind, 6445 * then this is the same as if two kadmin requests come in at 6446 * the same time: the first one wins. This means we lose, so we 6447 * bail. 6448 */ 6449 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6450 /* 6451 * Problem is solved. 6452 */ 6453 break; 6454 } 6455 if (zone->zone_uniqid != uniqid) { 6456 /* 6457 * zoneid recycled 6458 */ 6459 zone_rele(zone); 6460 break; 6461 } 6462 /* 6463 * We could zone_status_timedwait(), but there doesn't seem to 6464 * be much point in doing that (plus, it would mean that 6465 * zone_free() isn't called until this thread exits). 6466 */ 6467 zone_rele(zone); 6468 delay(hz); 6469 darg = save_arg; 6470 } 6471 out: 6472 if (door != NULL) { 6473 zone_release_door(&door); 6474 } 6475 kmem_free(zone_name, zone_namelen); 6476 thread_exit(); 6477 } 6478 6479 /* 6480 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6481 * kadmin(). The caller is a process in the zone. 6482 * 6483 * In order to shutdown the zone, we will hand off control to zoneadmd 6484 * (running in the global zone) via a door. We do a half-hearted job at 6485 * killing all processes in the zone, create a kernel thread to contact 6486 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6487 * a form of generation number used to let zoneadmd (as well as 6488 * zone_destroy()) know exactly which zone they're re talking about. 6489 */ 6490 int 6491 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6492 { 6493 struct zarg *zargp; 6494 zone_cmd_t zcmd; 6495 zone_t *zone; 6496 6497 zone = curproc->p_zone; 6498 ASSERT(getzoneid() != GLOBAL_ZONEID); 6499 6500 switch (cmd) { 6501 case A_SHUTDOWN: 6502 switch (fcn) { 6503 case AD_HALT: 6504 case AD_POWEROFF: 6505 zcmd = Z_HALT; 6506 break; 6507 case AD_BOOT: 6508 zcmd = Z_REBOOT; 6509 break; 6510 case AD_IBOOT: 6511 case AD_SBOOT: 6512 case AD_SIBOOT: 6513 case AD_NOSYNC: 6514 return (ENOTSUP); 6515 default: 6516 return (EINVAL); 6517 } 6518 break; 6519 case A_REBOOT: 6520 zcmd = Z_REBOOT; 6521 break; 6522 case A_FTRACE: 6523 case A_REMOUNT: 6524 case A_FREEZE: 6525 case A_DUMP: 6526 case A_CONFIG: 6527 return (ENOTSUP); 6528 default: 6529 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6530 return (EINVAL); 6531 } 6532 6533 if (secpolicy_zone_admin(credp, B_FALSE)) 6534 return (EPERM); 6535 mutex_enter(&zone_status_lock); 6536 6537 /* 6538 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6539 * is in the zone. 6540 */ 6541 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6542 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6543 /* 6544 * This zone is already on its way down. 6545 */ 6546 mutex_exit(&zone_status_lock); 6547 return (0); 6548 } 6549 /* 6550 * Prevent future zone_enter()s 6551 */ 6552 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6553 mutex_exit(&zone_status_lock); 6554 6555 /* 6556 * Kill everyone now and call zoneadmd later. 6557 * zone_ki_call_zoneadmd() will do a more thorough job of this 6558 * later. 6559 */ 6560 killall(zone->zone_id); 6561 /* 6562 * Now, create the thread to contact zoneadmd and do the rest of the 6563 * work. This thread can't be created in our zone otherwise 6564 * zone_destroy() would deadlock. 6565 */ 6566 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6567 zargp->arg.cmd = zcmd; 6568 zargp->arg.uniqid = zone->zone_uniqid; 6569 zargp->zone = zone; 6570 (void) strcpy(zargp->arg.locale, "C"); 6571 /* mdep was already copied in for us by uadmin */ 6572 if (mdep != NULL) 6573 (void) strlcpy(zargp->arg.bootbuf, mdep, 6574 sizeof (zargp->arg.bootbuf)); 6575 zone_hold(zone); 6576 6577 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6578 TS_RUN, minclsyspri); 6579 exit(CLD_EXITED, 0); 6580 6581 return (EINVAL); 6582 } 6583 6584 /* 6585 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6586 * status to ZONE_IS_SHUTTING_DOWN. 6587 * 6588 * This function also shuts down all running zones to ensure that they won't 6589 * fork new processes. 6590 */ 6591 void 6592 zone_shutdown_global(void) 6593 { 6594 zone_t *current_zonep; 6595 6596 ASSERT(INGLOBALZONE(curproc)); 6597 mutex_enter(&zonehash_lock); 6598 mutex_enter(&zone_status_lock); 6599 6600 /* Modify the global zone's status first. */ 6601 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6602 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6603 6604 /* 6605 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6606 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6607 * could cause assertions to fail (e.g., assertions about a zone's 6608 * state during initialization, readying, or booting) or produce races. 6609 * We'll let threads continue to initialize and ready new zones: they'll 6610 * fail to boot the new zones when they see that the global zone is 6611 * shutting down. 6612 */ 6613 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6614 current_zonep = list_next(&zone_active, current_zonep)) { 6615 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6616 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6617 } 6618 mutex_exit(&zone_status_lock); 6619 mutex_exit(&zonehash_lock); 6620 } 6621 6622 /* 6623 * Returns true if the named dataset is visible in the current zone. 6624 * The 'write' parameter is set to 1 if the dataset is also writable. 6625 */ 6626 int 6627 zone_dataset_visible(const char *dataset, int *write) 6628 { 6629 static int zfstype = -1; 6630 zone_dataset_t *zd; 6631 size_t len; 6632 zone_t *zone = curproc->p_zone; 6633 const char *name = NULL; 6634 vfs_t *vfsp = NULL; 6635 6636 if (dataset[0] == '\0') 6637 return (0); 6638 6639 /* 6640 * Walk the list once, looking for datasets which match exactly, or 6641 * specify a dataset underneath an exported dataset. If found, return 6642 * true and note that it is writable. 6643 */ 6644 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6645 zd = list_next(&zone->zone_datasets, zd)) { 6646 6647 len = strlen(zd->zd_dataset); 6648 if (strlen(dataset) >= len && 6649 bcmp(dataset, zd->zd_dataset, len) == 0 && 6650 (dataset[len] == '\0' || dataset[len] == '/' || 6651 dataset[len] == '@')) { 6652 if (write) 6653 *write = 1; 6654 return (1); 6655 } 6656 } 6657 6658 /* 6659 * Walk the list a second time, searching for datasets which are parents 6660 * of exported datasets. These should be visible, but read-only. 6661 * 6662 * Note that we also have to support forms such as 'pool/dataset/', with 6663 * a trailing slash. 6664 */ 6665 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6666 zd = list_next(&zone->zone_datasets, zd)) { 6667 6668 len = strlen(dataset); 6669 if (dataset[len - 1] == '/') 6670 len--; /* Ignore trailing slash */ 6671 if (len < strlen(zd->zd_dataset) && 6672 bcmp(dataset, zd->zd_dataset, len) == 0 && 6673 zd->zd_dataset[len] == '/') { 6674 if (write) 6675 *write = 0; 6676 return (1); 6677 } 6678 } 6679 6680 /* 6681 * We reach here if the given dataset is not found in the zone_dataset 6682 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6683 * instead of delegation. For this we search for the dataset in the 6684 * zone_vfslist of this zone. If found, return true and note that it is 6685 * not writable. 6686 */ 6687 6688 /* 6689 * Initialize zfstype if it is not initialized yet. 6690 */ 6691 if (zfstype == -1) { 6692 struct vfssw *vswp = vfs_getvfssw("zfs"); 6693 zfstype = vswp - vfssw; 6694 vfs_unrefvfssw(vswp); 6695 } 6696 6697 vfs_list_read_lock(); 6698 vfsp = zone->zone_vfslist; 6699 do { 6700 ASSERT(vfsp); 6701 if (vfsp->vfs_fstype == zfstype) { 6702 name = refstr_value(vfsp->vfs_resource); 6703 6704 /* 6705 * Check if we have an exact match. 6706 */ 6707 if (strcmp(dataset, name) == 0) { 6708 vfs_list_unlock(); 6709 if (write) 6710 *write = 0; 6711 return (1); 6712 } 6713 /* 6714 * We need to check if we are looking for parents of 6715 * a dataset. These should be visible, but read-only. 6716 */ 6717 len = strlen(dataset); 6718 if (dataset[len - 1] == '/') 6719 len--; 6720 6721 if (len < strlen(name) && 6722 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6723 vfs_list_unlock(); 6724 if (write) 6725 *write = 0; 6726 return (1); 6727 } 6728 } 6729 vfsp = vfsp->vfs_zone_next; 6730 } while (vfsp != zone->zone_vfslist); 6731 6732 vfs_list_unlock(); 6733 return (0); 6734 } 6735 6736 /* 6737 * zone_find_by_any_path() - 6738 * 6739 * kernel-private routine similar to zone_find_by_path(), but which 6740 * effectively compares against zone paths rather than zonerootpath 6741 * (i.e., the last component of zonerootpaths, which should be "root/", 6742 * are not compared.) This is done in order to accurately identify all 6743 * paths, whether zone-visible or not, including those which are parallel 6744 * to /root/, such as /dev/, /home/, etc... 6745 * 6746 * If the specified path does not fall under any zone path then global 6747 * zone is returned. 6748 * 6749 * The treat_abs parameter indicates whether the path should be treated as 6750 * an absolute path although it does not begin with "/". (This supports 6751 * nfs mount syntax such as host:any/path.) 6752 * 6753 * The caller is responsible for zone_rele of the returned zone. 6754 */ 6755 zone_t * 6756 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6757 { 6758 zone_t *zone; 6759 int path_offset = 0; 6760 6761 if (path == NULL) { 6762 zone_hold(global_zone); 6763 return (global_zone); 6764 } 6765 6766 if (*path != '/') { 6767 ASSERT(treat_abs); 6768 path_offset = 1; 6769 } 6770 6771 mutex_enter(&zonehash_lock); 6772 for (zone = list_head(&zone_active); zone != NULL; 6773 zone = list_next(&zone_active, zone)) { 6774 char *c; 6775 size_t pathlen; 6776 char *rootpath_start; 6777 6778 if (zone == global_zone) /* skip global zone */ 6779 continue; 6780 6781 /* scan backwards to find start of last component */ 6782 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 6783 do { 6784 c--; 6785 } while (*c != '/'); 6786 6787 pathlen = c - zone->zone_rootpath + 1 - path_offset; 6788 rootpath_start = (zone->zone_rootpath + path_offset); 6789 if (strncmp(path, rootpath_start, pathlen) == 0) 6790 break; 6791 } 6792 if (zone == NULL) 6793 zone = global_zone; 6794 zone_hold(zone); 6795 mutex_exit(&zonehash_lock); 6796 return (zone); 6797 } 6798 6799 /* 6800 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 6801 * zone_dl_t pointer if found, and NULL otherwise. 6802 */ 6803 static zone_dl_t * 6804 zone_find_dl(zone_t *zone, datalink_id_t linkid) 6805 { 6806 zone_dl_t *zdl; 6807 6808 ASSERT(mutex_owned(&zone->zone_lock)); 6809 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6810 zdl = list_next(&zone->zone_dl_list, zdl)) { 6811 if (zdl->zdl_id == linkid) 6812 break; 6813 } 6814 return (zdl); 6815 } 6816 6817 static boolean_t 6818 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 6819 { 6820 boolean_t exists; 6821 6822 mutex_enter(&zone->zone_lock); 6823 exists = (zone_find_dl(zone, linkid) != NULL); 6824 mutex_exit(&zone->zone_lock); 6825 return (exists); 6826 } 6827 6828 /* 6829 * Add an data link name for the zone. 6830 */ 6831 static int 6832 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 6833 { 6834 zone_dl_t *zdl; 6835 zone_t *zone; 6836 zone_t *thiszone; 6837 6838 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 6839 return (set_errno(ENXIO)); 6840 6841 /* Verify that the datalink ID doesn't already belong to a zone. */ 6842 mutex_enter(&zonehash_lock); 6843 for (zone = list_head(&zone_active); zone != NULL; 6844 zone = list_next(&zone_active, zone)) { 6845 if (zone_dl_exists(zone, linkid)) { 6846 mutex_exit(&zonehash_lock); 6847 zone_rele(thiszone); 6848 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 6849 } 6850 } 6851 6852 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 6853 zdl->zdl_id = linkid; 6854 zdl->zdl_net = NULL; 6855 mutex_enter(&thiszone->zone_lock); 6856 list_insert_head(&thiszone->zone_dl_list, zdl); 6857 mutex_exit(&thiszone->zone_lock); 6858 mutex_exit(&zonehash_lock); 6859 zone_rele(thiszone); 6860 return (0); 6861 } 6862 6863 static int 6864 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 6865 { 6866 zone_dl_t *zdl; 6867 zone_t *zone; 6868 int err = 0; 6869 6870 if ((zone = zone_find_by_id(zoneid)) == NULL) 6871 return (set_errno(EINVAL)); 6872 6873 mutex_enter(&zone->zone_lock); 6874 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 6875 err = ENXIO; 6876 } else { 6877 list_remove(&zone->zone_dl_list, zdl); 6878 if (zdl->zdl_net != NULL) 6879 nvlist_free(zdl->zdl_net); 6880 kmem_free(zdl, sizeof (zone_dl_t)); 6881 } 6882 mutex_exit(&zone->zone_lock); 6883 zone_rele(zone); 6884 return (err == 0 ? 0 : set_errno(err)); 6885 } 6886 6887 /* 6888 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 6889 * the linkid. Otherwise we just check if the specified zoneidp has been 6890 * assigned the supplied linkid. 6891 */ 6892 int 6893 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 6894 { 6895 zone_t *zone; 6896 int err = ENXIO; 6897 6898 if (*zoneidp != ALL_ZONES) { 6899 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 6900 if (zone_dl_exists(zone, linkid)) 6901 err = 0; 6902 zone_rele(zone); 6903 } 6904 return (err); 6905 } 6906 6907 mutex_enter(&zonehash_lock); 6908 for (zone = list_head(&zone_active); zone != NULL; 6909 zone = list_next(&zone_active, zone)) { 6910 if (zone_dl_exists(zone, linkid)) { 6911 *zoneidp = zone->zone_id; 6912 err = 0; 6913 break; 6914 } 6915 } 6916 mutex_exit(&zonehash_lock); 6917 return (err); 6918 } 6919 6920 /* 6921 * Get the list of datalink IDs assigned to a zone. 6922 * 6923 * On input, *nump is the number of datalink IDs that can fit in the supplied 6924 * idarray. Upon return, *nump is either set to the number of datalink IDs 6925 * that were placed in the array if the array was large enough, or to the 6926 * number of datalink IDs that the function needs to place in the array if the 6927 * array is too small. 6928 */ 6929 static int 6930 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 6931 { 6932 uint_t num, dlcount; 6933 zone_t *zone; 6934 zone_dl_t *zdl; 6935 datalink_id_t *idptr = idarray; 6936 6937 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 6938 return (set_errno(EFAULT)); 6939 if ((zone = zone_find_by_id(zoneid)) == NULL) 6940 return (set_errno(ENXIO)); 6941 6942 num = 0; 6943 mutex_enter(&zone->zone_lock); 6944 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 6945 zdl = list_next(&zone->zone_dl_list, zdl)) { 6946 /* 6947 * If the list is bigger than what the caller supplied, just 6948 * count, don't do copyout. 6949 */ 6950 if (++num > dlcount) 6951 continue; 6952 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 6953 mutex_exit(&zone->zone_lock); 6954 zone_rele(zone); 6955 return (set_errno(EFAULT)); 6956 } 6957 idptr++; 6958 } 6959 mutex_exit(&zone->zone_lock); 6960 zone_rele(zone); 6961 6962 /* Increased or decreased, caller should be notified. */ 6963 if (num != dlcount) { 6964 if (copyout(&num, nump, sizeof (num)) != 0) 6965 return (set_errno(EFAULT)); 6966 } 6967 return (0); 6968 } 6969 6970 /* 6971 * Public interface for looking up a zone by zoneid. It's a customized version 6972 * for netstack_zone_create(). It can only be called from the zsd create 6973 * callbacks, since it doesn't have reference on the zone structure hence if 6974 * it is called elsewhere the zone could disappear after the zonehash_lock 6975 * is dropped. 6976 * 6977 * Furthermore it 6978 * 1. Doesn't check the status of the zone. 6979 * 2. It will be called even before zone_init is called, in that case the 6980 * address of zone0 is returned directly, and netstack_zone_create() 6981 * will only assign a value to zone0.zone_netstack, won't break anything. 6982 * 3. Returns without the zone being held. 6983 */ 6984 zone_t * 6985 zone_find_by_id_nolock(zoneid_t zoneid) 6986 { 6987 zone_t *zone; 6988 6989 mutex_enter(&zonehash_lock); 6990 if (zonehashbyid == NULL) 6991 zone = &zone0; 6992 else 6993 zone = zone_find_all_by_id(zoneid); 6994 mutex_exit(&zonehash_lock); 6995 return (zone); 6996 } 6997 6998 /* 6999 * Walk the datalinks for a given zone 7000 */ 7001 int 7002 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 7003 void *data) 7004 { 7005 zone_t *zone; 7006 zone_dl_t *zdl; 7007 datalink_id_t *idarray; 7008 uint_t idcount = 0; 7009 int i, ret = 0; 7010 7011 if ((zone = zone_find_by_id(zoneid)) == NULL) 7012 return (ENOENT); 7013 7014 /* 7015 * We first build an array of linkid's so that we can walk these and 7016 * execute the callback with the zone_lock dropped. 7017 */ 7018 mutex_enter(&zone->zone_lock); 7019 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7020 zdl = list_next(&zone->zone_dl_list, zdl)) { 7021 idcount++; 7022 } 7023 7024 if (idcount == 0) { 7025 mutex_exit(&zone->zone_lock); 7026 zone_rele(zone); 7027 return (0); 7028 } 7029 7030 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7031 if (idarray == NULL) { 7032 mutex_exit(&zone->zone_lock); 7033 zone_rele(zone); 7034 return (ENOMEM); 7035 } 7036 7037 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7038 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7039 idarray[i] = zdl->zdl_id; 7040 } 7041 7042 mutex_exit(&zone->zone_lock); 7043 7044 for (i = 0; i < idcount && ret == 0; i++) { 7045 if ((ret = (*cb)(idarray[i], data)) != 0) 7046 break; 7047 } 7048 7049 zone_rele(zone); 7050 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7051 return (ret); 7052 } 7053 7054 static char * 7055 zone_net_type2name(int type) 7056 { 7057 switch (type) { 7058 case ZONE_NETWORK_ADDRESS: 7059 return (ZONE_NET_ADDRNAME); 7060 case ZONE_NETWORK_DEFROUTER: 7061 return (ZONE_NET_RTRNAME); 7062 default: 7063 return (NULL); 7064 } 7065 } 7066 7067 static int 7068 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7069 { 7070 zone_t *zone; 7071 zone_dl_t *zdl; 7072 nvlist_t *nvl; 7073 int err = 0; 7074 uint8_t *new = NULL; 7075 char *nvname; 7076 int bufsize; 7077 datalink_id_t linkid = znbuf->zn_linkid; 7078 7079 if (secpolicy_zone_config(CRED()) != 0) 7080 return (set_errno(EPERM)); 7081 7082 if (zoneid == GLOBAL_ZONEID) 7083 return (set_errno(EINVAL)); 7084 7085 nvname = zone_net_type2name(znbuf->zn_type); 7086 bufsize = znbuf->zn_len; 7087 new = znbuf->zn_val; 7088 if (nvname == NULL) 7089 return (set_errno(EINVAL)); 7090 7091 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7092 return (set_errno(EINVAL)); 7093 } 7094 7095 mutex_enter(&zone->zone_lock); 7096 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7097 err = ENXIO; 7098 goto done; 7099 } 7100 if ((nvl = zdl->zdl_net) == NULL) { 7101 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7102 err = ENOMEM; 7103 goto done; 7104 } else { 7105 zdl->zdl_net = nvl; 7106 } 7107 } 7108 if (nvlist_exists(nvl, nvname)) { 7109 err = EINVAL; 7110 goto done; 7111 } 7112 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7113 ASSERT(err == 0); 7114 done: 7115 mutex_exit(&zone->zone_lock); 7116 zone_rele(zone); 7117 if (err != 0) 7118 return (set_errno(err)); 7119 else 7120 return (0); 7121 } 7122 7123 static int 7124 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7125 { 7126 zone_t *zone; 7127 zone_dl_t *zdl; 7128 nvlist_t *nvl; 7129 uint8_t *ptr; 7130 uint_t psize; 7131 int err = 0; 7132 char *nvname; 7133 int bufsize; 7134 void *buf; 7135 datalink_id_t linkid = znbuf->zn_linkid; 7136 7137 if (zoneid == GLOBAL_ZONEID) 7138 return (set_errno(EINVAL)); 7139 7140 nvname = zone_net_type2name(znbuf->zn_type); 7141 bufsize = znbuf->zn_len; 7142 buf = znbuf->zn_val; 7143 7144 if (nvname == NULL) 7145 return (set_errno(EINVAL)); 7146 if ((zone = zone_find_by_id(zoneid)) == NULL) 7147 return (set_errno(EINVAL)); 7148 7149 mutex_enter(&zone->zone_lock); 7150 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7151 err = ENXIO; 7152 goto done; 7153 } 7154 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7155 err = ENOENT; 7156 goto done; 7157 } 7158 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7159 ASSERT(err == 0); 7160 7161 if (psize > bufsize) { 7162 err = ENOBUFS; 7163 goto done; 7164 } 7165 znbuf->zn_len = psize; 7166 bcopy(ptr, buf, psize); 7167 done: 7168 mutex_exit(&zone->zone_lock); 7169 zone_rele(zone); 7170 if (err != 0) 7171 return (set_errno(err)); 7172 else 7173 return (0); 7174 } 7175