xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision 201ceb75ab95f9bf1f42ea1dc9ab363b43ba47cf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent Inc. All rights reserved.
25  * Copyright (c) 2016 by Delphix. All rights reserved.
26  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27  */
28 
29 /*
30  * Zones
31  *
32  *   A zone is a named collection of processes, namespace constraints,
33  *   and other system resources which comprise a secure and manageable
34  *   application containment facility.
35  *
36  *   Zones (represented by the reference counted zone_t) are tracked in
37  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
38  *   (zoneid_t) are used to track zone association.  Zone IDs are
39  *   dynamically generated when the zone is created; if a persistent
40  *   identifier is needed (core files, accounting logs, audit trail,
41  *   etc.), the zone name should be used.
42  *
43  *
44  *   Global Zone:
45  *
46  *   The global zone (zoneid 0) is automatically associated with all
47  *   system resources that have not been bound to a user-created zone.
48  *   This means that even systems where zones are not in active use
49  *   have a global zone, and all processes, mounts, etc. are
50  *   associated with that zone.  The global zone is generally
51  *   unconstrained in terms of privileges and access, though the usual
52  *   credential and privilege based restrictions apply.
53  *
54  *
55  *   Zone States:
56  *
57  *   The states in which a zone may be in and the transitions are as
58  *   follows:
59  *
60  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
61  *   initialized zone is added to the list of active zones on the system but
62  *   isn't accessible.
63  *
64  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
65  *   not yet completed. Not possible to enter the zone, but attributes can
66  *   be retrieved.
67  *
68  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
69  *   ready.  The zone is made visible after the ZSD constructor callbacks are
70  *   executed.  A zone remains in this state until it transitions into
71  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
72  *
73  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
74  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
75  *   state.
76  *
77  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
78  *   successfully started init.   A zone remains in this state until
79  *   zone_shutdown() is called.
80  *
81  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
82  *   killing all processes running in the zone. The zone remains
83  *   in this state until there are no more user processes running in the zone.
84  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
85  *   Since zone_shutdown() is restartable, it may be called successfully
86  *   multiple times for the same zone_t.  Setting of the zone's state to
87  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
88  *   the zone's status without worrying about it being a moving target.
89  *
90  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
91  *   are no more user processes in the zone.  The zone remains in this
92  *   state until there are no more kernel threads associated with the
93  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
94  *   fail.
95  *
96  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
97  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
98  *   join the zone or create kernel threads therein.
99  *
100  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
101  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
102  *   return NULL from now on.
103  *
104  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
105  *   processes or threads doing work on behalf of the zone.  The zone is
106  *   removed from the list of active zones.  zone_destroy() returns, and
107  *   the zone can be recreated.
108  *
109  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
110  *   callbacks are executed, and all memory associated with the zone is
111  *   freed.
112  *
113  *   Threads can wait for the zone to enter a requested state by using
114  *   zone_status_wait() or zone_status_timedwait() with the desired
115  *   state passed in as an argument.  Zone state transitions are
116  *   uni-directional; it is not possible to move back to an earlier state.
117  *
118  *
119  *   Zone-Specific Data:
120  *
121  *   Subsystems needing to maintain zone-specific data can store that
122  *   data using the ZSD mechanism.  This provides a zone-specific data
123  *   store, similar to thread-specific data (see pthread_getspecific(3C)
124  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
125  *   to register callbacks to be invoked when a zone is created, shut
126  *   down, or destroyed.  This can be used to initialize zone-specific
127  *   data for new zones and to clean up when zones go away.
128  *
129  *
130  *   Data Structures:
131  *
132  *   The per-zone structure (zone_t) is reference counted, and freed
133  *   when all references are released.  zone_hold and zone_rele can be
134  *   used to adjust the reference count.  In addition, reference counts
135  *   associated with the cred_t structure are tracked separately using
136  *   zone_cred_hold and zone_cred_rele.
137  *
138  *   Pointers to active zone_t's are stored in two hash tables; one
139  *   for searching by id, the other for searching by name.  Lookups
140  *   can be performed on either basis, using zone_find_by_id and
141  *   zone_find_by_name.  Both return zone_t pointers with the zone
142  *   held, so zone_rele should be called when the pointer is no longer
143  *   needed.  Zones can also be searched by path; zone_find_by_path
144  *   returns the zone with which a path name is associated (global
145  *   zone if the path is not within some other zone's file system
146  *   hierarchy).  This currently requires iterating through each zone,
147  *   so it is slower than an id or name search via a hash table.
148  *
149  *
150  *   Locking:
151  *
152  *   zonehash_lock: This is a top-level global lock used to protect the
153  *       zone hash tables and lists.  Zones cannot be created or destroyed
154  *       while this lock is held.
155  *   zone_status_lock: This is a global lock protecting zone state.
156  *       Zones cannot change state while this lock is held.  It also
157  *       protects the list of kernel threads associated with a zone.
158  *   zone_lock: This is a per-zone lock used to protect several fields of
159  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
160  *       this lock means that the zone cannot go away.
161  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-lwps rctl.
163  *   zone_mem_lock: This is a per-zone lock used to protect the fields
164  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
165  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
166  *       currently just max_lofi
167  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
168  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
169  *       list (a list of zones in the ZONE_IS_DEAD state).
170  *
171  *   Ordering requirements:
172  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
173  *       zone_lock --> zsd_key_lock --> pidlock --> p_lock
174  *
175  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
176  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
177  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
178  *
179  *   Blocking memory allocations are permitted while holding any of the
180  *   zone locks.
181  *
182  *
183  *   System Call Interface:
184  *
185  *   The zone subsystem can be managed and queried from user level with
186  *   the following system calls (all subcodes of the primary "zone"
187  *   system call):
188  *   - zone_create: creates a zone with selected attributes (name,
189  *     root path, privileges, resource controls, ZFS datasets)
190  *   - zone_enter: allows the current process to enter a zone
191  *   - zone_getattr: reports attributes of a zone
192  *   - zone_setattr: set attributes of a zone
193  *   - zone_boot: set 'init' running for the zone
194  *   - zone_list: lists all zones active in the system
195  *   - zone_lookup: looks up zone id based on name
196  *   - zone_shutdown: initiates shutdown process (see states above)
197  *   - zone_destroy: completes shutdown process (see states above)
198  *
199  */
200 
201 #include <sys/priv_impl.h>
202 #include <sys/cred.h>
203 #include <c2/audit.h>
204 #include <sys/debug.h>
205 #include <sys/file.h>
206 #include <sys/kmem.h>
207 #include <sys/kstat.h>
208 #include <sys/mutex.h>
209 #include <sys/note.h>
210 #include <sys/pathname.h>
211 #include <sys/proc.h>
212 #include <sys/project.h>
213 #include <sys/sysevent.h>
214 #include <sys/task.h>
215 #include <sys/systm.h>
216 #include <sys/types.h>
217 #include <sys/utsname.h>
218 #include <sys/vnode.h>
219 #include <sys/vfs.h>
220 #include <sys/systeminfo.h>
221 #include <sys/policy.h>
222 #include <sys/cred_impl.h>
223 #include <sys/contract_impl.h>
224 #include <sys/contract/process_impl.h>
225 #include <sys/class.h>
226 #include <sys/pool.h>
227 #include <sys/pool_pset.h>
228 #include <sys/pset.h>
229 #include <sys/strlog.h>
230 #include <sys/sysmacros.h>
231 #include <sys/callb.h>
232 #include <sys/vmparam.h>
233 #include <sys/corectl.h>
234 #include <sys/ipc_impl.h>
235 #include <sys/klpd.h>
236 
237 #include <sys/door.h>
238 #include <sys/cpuvar.h>
239 #include <sys/sdt.h>
240 
241 #include <sys/uadmin.h>
242 #include <sys/session.h>
243 #include <sys/cmn_err.h>
244 #include <sys/modhash.h>
245 #include <sys/sunddi.h>
246 #include <sys/nvpair.h>
247 #include <sys/rctl.h>
248 #include <sys/fss.h>
249 #include <sys/brand.h>
250 #include <sys/zone.h>
251 #include <net/if.h>
252 #include <sys/cpucaps.h>
253 #include <vm/seg.h>
254 #include <sys/mac.h>
255 
256 /*
257  * This constant specifies the number of seconds that threads waiting for
258  * subsystems to release a zone's general-purpose references will wait before
259  * they log the zone's reference counts.  The constant's value shouldn't
260  * be so small that reference counts are unnecessarily reported for zones
261  * whose references are slowly released.  On the other hand, it shouldn't be so
262  * large that users reboot their systems out of frustration over hung zones
263  * before the system logs the zones' reference counts.
264  */
265 #define	ZONE_DESTROY_TIMEOUT_SECS	60
266 
267 /* List of data link IDs which are accessible from the zone */
268 typedef struct zone_dl {
269 	datalink_id_t	zdl_id;
270 	nvlist_t	*zdl_net;
271 	list_node_t	zdl_linkage;
272 } zone_dl_t;
273 
274 /*
275  * cv used to signal that all references to the zone have been released.  This
276  * needs to be global since there may be multiple waiters, and the first to
277  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
278  */
279 static kcondvar_t zone_destroy_cv;
280 /*
281  * Lock used to serialize access to zone_cv.  This could have been per-zone,
282  * but then we'd need another lock for zone_destroy_cv, and why bother?
283  */
284 static kmutex_t zone_status_lock;
285 
286 /*
287  * ZSD-related global variables.
288  */
289 static kmutex_t zsd_key_lock;	/* protects the following two */
290 /*
291  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
292  */
293 static zone_key_t zsd_keyval = 0;
294 /*
295  * Global list of registered keys.  We use this when a new zone is created.
296  */
297 static list_t zsd_registered_keys;
298 
299 int zone_hash_size = 256;
300 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
301 static kmutex_t zonehash_lock;
302 static uint_t zonecount;
303 static id_space_t *zoneid_space;
304 
305 /*
306  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
307  * kernel proper runs, and which manages all other zones.
308  *
309  * Although not declared as static, the variable "zone0" should not be used
310  * except for by code that needs to reference the global zone early on in boot,
311  * before it is fully initialized.  All other consumers should use
312  * 'global_zone'.
313  */
314 zone_t zone0;
315 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
316 
317 /*
318  * List of active zones, protected by zonehash_lock.
319  */
320 static list_t zone_active;
321 
322 /*
323  * List of destroyed zones that still have outstanding cred references.
324  * Used for debugging.  Uses a separate lock to avoid lock ordering
325  * problems in zone_free.
326  */
327 static list_t zone_deathrow;
328 static kmutex_t zone_deathrow_lock;
329 
330 /* number of zones is limited by virtual interface limit in IP */
331 uint_t maxzones = 8192;
332 
333 /* Event channel to sent zone state change notifications */
334 evchan_t *zone_event_chan;
335 
336 /*
337  * This table holds the mapping from kernel zone states to
338  * states visible in the state notification API.
339  * The idea is that we only expose "obvious" states and
340  * do not expose states which are just implementation details.
341  */
342 const char  *zone_status_table[] = {
343 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
344 	ZONE_EVENT_INITIALIZED,		/* initialized */
345 	ZONE_EVENT_READY,		/* ready */
346 	ZONE_EVENT_READY,		/* booting */
347 	ZONE_EVENT_RUNNING,		/* running */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
350 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
351 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
352 	ZONE_EVENT_UNINITIALIZED,	/* dead */
353 };
354 
355 /*
356  * This array contains the names of the subsystems listed in zone_ref_subsys_t
357  * (see sys/zone.h).
358  */
359 static char *zone_ref_subsys_names[] = {
360 	"NFS",		/* ZONE_REF_NFS */
361 	"NFSv4",	/* ZONE_REF_NFSV4 */
362 	"SMBFS",	/* ZONE_REF_SMBFS */
363 	"MNTFS",	/* ZONE_REF_MNTFS */
364 	"LOFI",		/* ZONE_REF_LOFI */
365 	"VFS",		/* ZONE_REF_VFS */
366 	"IPC"		/* ZONE_REF_IPC */
367 };
368 
369 /*
370  * This isn't static so lint doesn't complain.
371  */
372 rctl_hndl_t rc_zone_cpu_shares;
373 rctl_hndl_t rc_zone_locked_mem;
374 rctl_hndl_t rc_zone_max_swap;
375 rctl_hndl_t rc_zone_max_lofi;
376 rctl_hndl_t rc_zone_cpu_cap;
377 rctl_hndl_t rc_zone_nlwps;
378 rctl_hndl_t rc_zone_nprocs;
379 rctl_hndl_t rc_zone_shmmax;
380 rctl_hndl_t rc_zone_shmmni;
381 rctl_hndl_t rc_zone_semmni;
382 rctl_hndl_t rc_zone_msgmni;
383 
384 const char * const zone_default_initname = "/sbin/init";
385 static char * const zone_prefix = "/zone/";
386 static int zone_shutdown(zoneid_t zoneid);
387 static int zone_add_datalink(zoneid_t, datalink_id_t);
388 static int zone_remove_datalink(zoneid_t, datalink_id_t);
389 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
390 static int zone_set_network(zoneid_t, zone_net_data_t *);
391 static int zone_get_network(zoneid_t, zone_net_data_t *);
392 
393 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
394 
395 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
396 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
397 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
398 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
399     zone_key_t);
400 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
401 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
402     kmutex_t *);
403 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
404     kmutex_t *);
405 
406 /*
407  * Bump this number when you alter the zone syscall interfaces; this is
408  * because we need to have support for previous API versions in libc
409  * to support patching; libc calls into the kernel to determine this number.
410  *
411  * Version 1 of the API is the version originally shipped with Solaris 10
412  * Version 2 alters the zone_create system call in order to support more
413  *     arguments by moving the args into a structure; and to do better
414  *     error reporting when zone_create() fails.
415  * Version 3 alters the zone_create system call in order to support the
416  *     import of ZFS datasets to zones.
417  * Version 4 alters the zone_create system call in order to support
418  *     Trusted Extensions.
419  * Version 5 alters the zone_boot system call, and converts its old
420  *     bootargs parameter to be set by the zone_setattr API instead.
421  * Version 6 adds the flag argument to zone_create.
422  */
423 static const int ZONE_SYSCALL_API_VERSION = 6;
424 
425 /*
426  * Certain filesystems (such as NFS and autofs) need to know which zone
427  * the mount is being placed in.  Because of this, we need to be able to
428  * ensure that a zone isn't in the process of being created/destroyed such
429  * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
430  * it gets added the list of mounted zones, it ends up on the wrong zone's
431  * mount list. Since a zone can't reside on an NFS file system, we don't
432  * have to worry about the zonepath itself.
433  *
434  * The following functions: block_mounts()/resume_mounts() and
435  * mount_in_progress()/mount_completed() are used by zones and the VFS
436  * layer (respectively) to synchronize zone state transitions and new
437  * mounts within a zone. This syncronization is on a per-zone basis, so
438  * activity for one zone will not interfere with activity for another zone.
439  *
440  * The semantics are like a reader-reader lock such that there may
441  * either be multiple mounts (or zone state transitions, if that weren't
442  * serialized by zonehash_lock) in progress at the same time, but not
443  * both.
444  *
445  * We use cv's so the user can ctrl-C out of the operation if it's
446  * taking too long.
447  *
448  * The semantics are such that there is unfair bias towards the
449  * "current" operation.  This means that zone halt may starve if
450  * there is a rapid succession of new mounts coming in to the zone.
451  */
452 /*
453  * Prevent new mounts from progressing to the point of calling
454  * VFS_MOUNT().  If there are already mounts in this "region", wait for
455  * them to complete.
456  */
457 static int
458 block_mounts(zone_t *zp)
459 {
460 	int retval = 0;
461 
462 	/*
463 	 * Since it may block for a long time, block_mounts() shouldn't be
464 	 * called with zonehash_lock held.
465 	 */
466 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
467 	mutex_enter(&zp->zone_mount_lock);
468 	while (zp->zone_mounts_in_progress > 0) {
469 		if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
470 			goto signaled;
471 	}
472 	/*
473 	 * A negative value of mounts_in_progress indicates that mounts
474 	 * have been blocked by (-mounts_in_progress) different callers
475 	 * (remotely possible if two threads enter zone_shutdown at the same
476 	 * time).
477 	 */
478 	zp->zone_mounts_in_progress--;
479 	retval = 1;
480 signaled:
481 	mutex_exit(&zp->zone_mount_lock);
482 	return (retval);
483 }
484 
485 /*
486  * The VFS layer may progress with new mounts as far as we're concerned.
487  * Allow them to progress if we were the last obstacle.
488  */
489 static void
490 resume_mounts(zone_t *zp)
491 {
492 	mutex_enter(&zp->zone_mount_lock);
493 	if (++zp->zone_mounts_in_progress == 0)
494 		cv_broadcast(&zp->zone_mount_cv);
495 	mutex_exit(&zp->zone_mount_lock);
496 }
497 
498 /*
499  * The VFS layer is busy with a mount; this zone should wait until all
500  * of its mounts are completed to progress.
501  */
502 void
503 mount_in_progress(zone_t *zp)
504 {
505 	mutex_enter(&zp->zone_mount_lock);
506 	while (zp->zone_mounts_in_progress < 0)
507 		cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
508 	zp->zone_mounts_in_progress++;
509 	mutex_exit(&zp->zone_mount_lock);
510 }
511 
512 /*
513  * VFS is done with one mount; wake up any waiting block_mounts()
514  * callers if this is the last mount.
515  */
516 void
517 mount_completed(zone_t *zp)
518 {
519 	mutex_enter(&zp->zone_mount_lock);
520 	if (--zp->zone_mounts_in_progress == 0)
521 		cv_broadcast(&zp->zone_mount_cv);
522 	mutex_exit(&zp->zone_mount_lock);
523 }
524 
525 /*
526  * ZSD routines.
527  *
528  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
529  * defined by the pthread_key_create() and related interfaces.
530  *
531  * Kernel subsystems may register one or more data items and/or
532  * callbacks to be executed when a zone is created, shutdown, or
533  * destroyed.
534  *
535  * Unlike the thread counterpart, destructor callbacks will be executed
536  * even if the data pointer is NULL and/or there are no constructor
537  * callbacks, so it is the responsibility of such callbacks to check for
538  * NULL data values if necessary.
539  *
540  * The locking strategy and overall picture is as follows:
541  *
542  * When someone calls zone_key_create(), a template ZSD entry is added to the
543  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
544  * holding that lock all the existing zones are marked as
545  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
546  * zone_zsd list (protected by zone_lock). The global list is updated first
547  * (under zone_key_lock) to make sure that newly created zones use the
548  * most recent list of keys. Then under zonehash_lock we walk the zones
549  * and mark them.  Similar locking is used in zone_key_delete().
550  *
551  * The actual create, shutdown, and destroy callbacks are done without
552  * holding any lock. And zsd_flags are used to ensure that the operations
553  * completed so that when zone_key_create (and zone_create) is done, as well as
554  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
555  * are completed.
556  *
557  * When new zones are created constructor callbacks for all registered ZSD
558  * entries will be called. That also uses the above two phases of marking
559  * what needs to be done, and then running the callbacks without holding
560  * any locks.
561  *
562  * The framework does not provide any locking around zone_getspecific() and
563  * zone_setspecific() apart from that needed for internal consistency, so
564  * callers interested in atomic "test-and-set" semantics will need to provide
565  * their own locking.
566  */
567 
568 /*
569  * Helper function to find the zsd_entry associated with the key in the
570  * given list.
571  */
572 static struct zsd_entry *
573 zsd_find(list_t *l, zone_key_t key)
574 {
575 	struct zsd_entry *zsd;
576 
577 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
578 		if (zsd->zsd_key == key) {
579 			return (zsd);
580 		}
581 	}
582 	return (NULL);
583 }
584 
585 /*
586  * Helper function to find the zsd_entry associated with the key in the
587  * given list. Move it to the front of the list.
588  */
589 static struct zsd_entry *
590 zsd_find_mru(list_t *l, zone_key_t key)
591 {
592 	struct zsd_entry *zsd;
593 
594 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
595 		if (zsd->zsd_key == key) {
596 			/*
597 			 * Move to head of list to keep list in MRU order.
598 			 */
599 			if (zsd != list_head(l)) {
600 				list_remove(l, zsd);
601 				list_insert_head(l, zsd);
602 			}
603 			return (zsd);
604 		}
605 	}
606 	return (NULL);
607 }
608 
609 void
610 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
611     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
612 {
613 	struct zsd_entry *zsdp;
614 	struct zsd_entry *t;
615 	struct zone *zone;
616 	zone_key_t  key;
617 
618 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
619 	zsdp->zsd_data = NULL;
620 	zsdp->zsd_create = create;
621 	zsdp->zsd_shutdown = shutdown;
622 	zsdp->zsd_destroy = destroy;
623 
624 	/*
625 	 * Insert in global list of callbacks. Makes future zone creations
626 	 * see it.
627 	 */
628 	mutex_enter(&zsd_key_lock);
629 	key = zsdp->zsd_key = ++zsd_keyval;
630 	ASSERT(zsd_keyval != 0);
631 	list_insert_tail(&zsd_registered_keys, zsdp);
632 	mutex_exit(&zsd_key_lock);
633 
634 	/*
635 	 * Insert for all existing zones and mark them as needing
636 	 * a create callback.
637 	 */
638 	mutex_enter(&zonehash_lock);	/* stop the world */
639 	for (zone = list_head(&zone_active); zone != NULL;
640 	    zone = list_next(&zone_active, zone)) {
641 		zone_status_t status;
642 
643 		mutex_enter(&zone->zone_lock);
644 
645 		/* Skip zones that are on the way down or not yet up */
646 		status = zone_status_get(zone);
647 		if (status >= ZONE_IS_DOWN ||
648 		    status == ZONE_IS_UNINITIALIZED) {
649 			mutex_exit(&zone->zone_lock);
650 			continue;
651 		}
652 
653 		t = zsd_find_mru(&zone->zone_zsd, key);
654 		if (t != NULL) {
655 			/*
656 			 * A zsd_configure already inserted it after
657 			 * we dropped zsd_key_lock above.
658 			 */
659 			mutex_exit(&zone->zone_lock);
660 			continue;
661 		}
662 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
663 		t->zsd_key = key;
664 		t->zsd_create = create;
665 		t->zsd_shutdown = shutdown;
666 		t->zsd_destroy = destroy;
667 		if (create != NULL) {
668 			t->zsd_flags = ZSD_CREATE_NEEDED;
669 			DTRACE_PROBE2(zsd__create__needed,
670 			    zone_t *, zone, zone_key_t, key);
671 		}
672 		list_insert_tail(&zone->zone_zsd, t);
673 		mutex_exit(&zone->zone_lock);
674 	}
675 	mutex_exit(&zonehash_lock);
676 
677 	if (create != NULL) {
678 		/* Now call the create callback for this key */
679 		zsd_apply_all_zones(zsd_apply_create, key);
680 	}
681 	/*
682 	 * It is safe for consumers to use the key now, make it
683 	 * globally visible. Specifically zone_getspecific() will
684 	 * always successfully return the zone specific data associated
685 	 * with the key.
686 	 */
687 	*keyp = key;
688 
689 }
690 
691 /*
692  * Function called when a module is being unloaded, or otherwise wishes
693  * to unregister its ZSD key and callbacks.
694  *
695  * Remove from the global list and determine the functions that need to
696  * be called under a global lock. Then call the functions without
697  * holding any locks. Finally free up the zone_zsd entries. (The apply
698  * functions need to access the zone_zsd entries to find zsd_data etc.)
699  */
700 int
701 zone_key_delete(zone_key_t key)
702 {
703 	struct zsd_entry *zsdp = NULL;
704 	zone_t *zone;
705 
706 	mutex_enter(&zsd_key_lock);
707 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
708 	if (zsdp == NULL) {
709 		mutex_exit(&zsd_key_lock);
710 		return (-1);
711 	}
712 	list_remove(&zsd_registered_keys, zsdp);
713 	mutex_exit(&zsd_key_lock);
714 
715 	mutex_enter(&zonehash_lock);
716 	for (zone = list_head(&zone_active); zone != NULL;
717 	    zone = list_next(&zone_active, zone)) {
718 		struct zsd_entry *del;
719 
720 		mutex_enter(&zone->zone_lock);
721 		del = zsd_find_mru(&zone->zone_zsd, key);
722 		if (del == NULL) {
723 			/*
724 			 * Somebody else got here first e.g the zone going
725 			 * away.
726 			 */
727 			mutex_exit(&zone->zone_lock);
728 			continue;
729 		}
730 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
731 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
732 		if (del->zsd_shutdown != NULL &&
733 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
734 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
735 			DTRACE_PROBE2(zsd__shutdown__needed,
736 			    zone_t *, zone, zone_key_t, key);
737 		}
738 		if (del->zsd_destroy != NULL &&
739 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
740 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
741 			DTRACE_PROBE2(zsd__destroy__needed,
742 			    zone_t *, zone, zone_key_t, key);
743 		}
744 		mutex_exit(&zone->zone_lock);
745 	}
746 	mutex_exit(&zonehash_lock);
747 	kmem_free(zsdp, sizeof (*zsdp));
748 
749 	/* Now call the shutdown and destroy callback for this key */
750 	zsd_apply_all_zones(zsd_apply_shutdown, key);
751 	zsd_apply_all_zones(zsd_apply_destroy, key);
752 
753 	/* Now we can free up the zsdp structures in each zone */
754 	mutex_enter(&zonehash_lock);
755 	for (zone = list_head(&zone_active); zone != NULL;
756 	    zone = list_next(&zone_active, zone)) {
757 		struct zsd_entry *del;
758 
759 		mutex_enter(&zone->zone_lock);
760 		del = zsd_find(&zone->zone_zsd, key);
761 		if (del != NULL) {
762 			list_remove(&zone->zone_zsd, del);
763 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
764 			kmem_free(del, sizeof (*del));
765 		}
766 		mutex_exit(&zone->zone_lock);
767 	}
768 	mutex_exit(&zonehash_lock);
769 
770 	return (0);
771 }
772 
773 /*
774  * ZSD counterpart of pthread_setspecific().
775  *
776  * Since all zsd callbacks, including those with no create function,
777  * have an entry in zone_zsd, if the key is registered it is part of
778  * the zone_zsd list.
779  * Return an error if the key wasn't registerd.
780  */
781 int
782 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
783 {
784 	struct zsd_entry *t;
785 
786 	mutex_enter(&zone->zone_lock);
787 	t = zsd_find_mru(&zone->zone_zsd, key);
788 	if (t != NULL) {
789 		/*
790 		 * Replace old value with new
791 		 */
792 		t->zsd_data = (void *)data;
793 		mutex_exit(&zone->zone_lock);
794 		return (0);
795 	}
796 	mutex_exit(&zone->zone_lock);
797 	return (-1);
798 }
799 
800 /*
801  * ZSD counterpart of pthread_getspecific().
802  */
803 void *
804 zone_getspecific(zone_key_t key, zone_t *zone)
805 {
806 	struct zsd_entry *t;
807 	void *data;
808 
809 	mutex_enter(&zone->zone_lock);
810 	t = zsd_find_mru(&zone->zone_zsd, key);
811 	data = (t == NULL ? NULL : t->zsd_data);
812 	mutex_exit(&zone->zone_lock);
813 	return (data);
814 }
815 
816 /*
817  * Function used to initialize a zone's list of ZSD callbacks and data
818  * when the zone is being created.  The callbacks are initialized from
819  * the template list (zsd_registered_keys). The constructor callback is
820  * executed later (once the zone exists and with locks dropped).
821  */
822 static void
823 zone_zsd_configure(zone_t *zone)
824 {
825 	struct zsd_entry *zsdp;
826 	struct zsd_entry *t;
827 
828 	ASSERT(MUTEX_HELD(&zonehash_lock));
829 	ASSERT(list_head(&zone->zone_zsd) == NULL);
830 	mutex_enter(&zone->zone_lock);
831 	mutex_enter(&zsd_key_lock);
832 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
833 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
834 		/*
835 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
836 		 * should not have added anything to it.
837 		 */
838 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
839 
840 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
841 		t->zsd_key = zsdp->zsd_key;
842 		t->zsd_create = zsdp->zsd_create;
843 		t->zsd_shutdown = zsdp->zsd_shutdown;
844 		t->zsd_destroy = zsdp->zsd_destroy;
845 		if (zsdp->zsd_create != NULL) {
846 			t->zsd_flags = ZSD_CREATE_NEEDED;
847 			DTRACE_PROBE2(zsd__create__needed,
848 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
849 		}
850 		list_insert_tail(&zone->zone_zsd, t);
851 	}
852 	mutex_exit(&zsd_key_lock);
853 	mutex_exit(&zone->zone_lock);
854 }
855 
856 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
857 
858 /*
859  * Helper function to execute shutdown or destructor callbacks.
860  */
861 static void
862 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
863 {
864 	struct zsd_entry *t;
865 
866 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
867 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
868 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
869 
870 	/*
871 	 * Run the callback solely based on what is registered for the zone
872 	 * in zone_zsd. The global list can change independently of this
873 	 * as keys are registered and unregistered and we don't register new
874 	 * callbacks for a zone that is in the process of going away.
875 	 */
876 	mutex_enter(&zone->zone_lock);
877 	for (t = list_head(&zone->zone_zsd); t != NULL;
878 	    t = list_next(&zone->zone_zsd, t)) {
879 		zone_key_t key = t->zsd_key;
880 
881 		/* Skip if no callbacks registered */
882 
883 		if (ct == ZSD_SHUTDOWN) {
884 			if (t->zsd_shutdown != NULL &&
885 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
886 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
887 				DTRACE_PROBE2(zsd__shutdown__needed,
888 				    zone_t *, zone, zone_key_t, key);
889 			}
890 		} else {
891 			if (t->zsd_destroy != NULL &&
892 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
893 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
894 				DTRACE_PROBE2(zsd__destroy__needed,
895 				    zone_t *, zone, zone_key_t, key);
896 			}
897 		}
898 	}
899 	mutex_exit(&zone->zone_lock);
900 
901 	/* Now call the shutdown and destroy callback for this key */
902 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
903 	zsd_apply_all_keys(zsd_apply_destroy, zone);
904 
905 }
906 
907 /*
908  * Called when the zone is going away; free ZSD-related memory, and
909  * destroy the zone_zsd list.
910  */
911 static void
912 zone_free_zsd(zone_t *zone)
913 {
914 	struct zsd_entry *t, *next;
915 
916 	/*
917 	 * Free all the zsd_entry's we had on this zone.
918 	 */
919 	mutex_enter(&zone->zone_lock);
920 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
921 		next = list_next(&zone->zone_zsd, t);
922 		list_remove(&zone->zone_zsd, t);
923 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
924 		kmem_free(t, sizeof (*t));
925 	}
926 	list_destroy(&zone->zone_zsd);
927 	mutex_exit(&zone->zone_lock);
928 
929 }
930 
931 /*
932  * Apply a function to all zones for particular key value.
933  *
934  * The applyfn has to drop zonehash_lock if it does some work, and
935  * then reacquire it before it returns.
936  * When the lock is dropped we don't follow list_next even
937  * if it is possible to do so without any hazards. This is
938  * because we want the design to allow for the list of zones
939  * to change in any arbitrary way during the time the
940  * lock was dropped.
941  *
942  * It is safe to restart the loop at list_head since the applyfn
943  * changes the zsd_flags as it does work, so a subsequent
944  * pass through will have no effect in applyfn, hence the loop will terminate
945  * in at worst O(N^2).
946  */
947 static void
948 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
949 {
950 	zone_t *zone;
951 
952 	mutex_enter(&zonehash_lock);
953 	zone = list_head(&zone_active);
954 	while (zone != NULL) {
955 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
956 			/* Lock dropped - restart at head */
957 			zone = list_head(&zone_active);
958 		} else {
959 			zone = list_next(&zone_active, zone);
960 		}
961 	}
962 	mutex_exit(&zonehash_lock);
963 }
964 
965 /*
966  * Apply a function to all keys for a particular zone.
967  *
968  * The applyfn has to drop zonehash_lock if it does some work, and
969  * then reacquire it before it returns.
970  * When the lock is dropped we don't follow list_next even
971  * if it is possible to do so without any hazards. This is
972  * because we want the design to allow for the list of zsd callbacks
973  * to change in any arbitrary way during the time the
974  * lock was dropped.
975  *
976  * It is safe to restart the loop at list_head since the applyfn
977  * changes the zsd_flags as it does work, so a subsequent
978  * pass through will have no effect in applyfn, hence the loop will terminate
979  * in at worst O(N^2).
980  */
981 static void
982 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
983 {
984 	struct zsd_entry *t;
985 
986 	mutex_enter(&zone->zone_lock);
987 	t = list_head(&zone->zone_zsd);
988 	while (t != NULL) {
989 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
990 			/* Lock dropped - restart at head */
991 			t = list_head(&zone->zone_zsd);
992 		} else {
993 			t = list_next(&zone->zone_zsd, t);
994 		}
995 	}
996 	mutex_exit(&zone->zone_lock);
997 }
998 
999 /*
1000  * Call the create function for the zone and key if CREATE_NEEDED
1001  * is set.
1002  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1003  * we wait for that thread to complete so that we can ensure that
1004  * all the callbacks are done when we've looped over all zones/keys.
1005  *
1006  * When we call the create function, we drop the global held by the
1007  * caller, and return true to tell the caller it needs to re-evalute the
1008  * state.
1009  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1010  * remains held on exit.
1011  */
1012 static boolean_t
1013 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1014     zone_t *zone, zone_key_t key)
1015 {
1016 	void *result;
1017 	struct zsd_entry *t;
1018 	boolean_t dropped;
1019 
1020 	if (lockp != NULL) {
1021 		ASSERT(MUTEX_HELD(lockp));
1022 	}
1023 	if (zone_lock_held) {
1024 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1025 	} else {
1026 		mutex_enter(&zone->zone_lock);
1027 	}
1028 
1029 	t = zsd_find(&zone->zone_zsd, key);
1030 	if (t == NULL) {
1031 		/*
1032 		 * Somebody else got here first e.g the zone going
1033 		 * away.
1034 		 */
1035 		if (!zone_lock_held)
1036 			mutex_exit(&zone->zone_lock);
1037 		return (B_FALSE);
1038 	}
1039 	dropped = B_FALSE;
1040 	if (zsd_wait_for_inprogress(zone, t, lockp))
1041 		dropped = B_TRUE;
1042 
1043 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1044 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1045 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1046 		DTRACE_PROBE2(zsd__create__inprogress,
1047 		    zone_t *, zone, zone_key_t, key);
1048 		mutex_exit(&zone->zone_lock);
1049 		if (lockp != NULL)
1050 			mutex_exit(lockp);
1051 
1052 		dropped = B_TRUE;
1053 		ASSERT(t->zsd_create != NULL);
1054 		DTRACE_PROBE2(zsd__create__start,
1055 		    zone_t *, zone, zone_key_t, key);
1056 
1057 		result = (*t->zsd_create)(zone->zone_id);
1058 
1059 		DTRACE_PROBE2(zsd__create__end,
1060 		    zone_t *, zone, voidn *, result);
1061 
1062 		ASSERT(result != NULL);
1063 		if (lockp != NULL)
1064 			mutex_enter(lockp);
1065 		mutex_enter(&zone->zone_lock);
1066 		t->zsd_data = result;
1067 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1068 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1069 		cv_broadcast(&t->zsd_cv);
1070 		DTRACE_PROBE2(zsd__create__completed,
1071 		    zone_t *, zone, zone_key_t, key);
1072 	}
1073 	if (!zone_lock_held)
1074 		mutex_exit(&zone->zone_lock);
1075 	return (dropped);
1076 }
1077 
1078 /*
1079  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1080  * is set.
1081  * If some other thread gets here first and sets *_INPROGRESS, then
1082  * we wait for that thread to complete so that we can ensure that
1083  * all the callbacks are done when we've looped over all zones/keys.
1084  *
1085  * When we call the shutdown function, we drop the global held by the
1086  * caller, and return true to tell the caller it needs to re-evalute the
1087  * state.
1088  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1089  * remains held on exit.
1090  */
1091 static boolean_t
1092 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1093     zone_t *zone, zone_key_t key)
1094 {
1095 	struct zsd_entry *t;
1096 	void *data;
1097 	boolean_t dropped;
1098 
1099 	if (lockp != NULL) {
1100 		ASSERT(MUTEX_HELD(lockp));
1101 	}
1102 	if (zone_lock_held) {
1103 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1104 	} else {
1105 		mutex_enter(&zone->zone_lock);
1106 	}
1107 
1108 	t = zsd_find(&zone->zone_zsd, key);
1109 	if (t == NULL) {
1110 		/*
1111 		 * Somebody else got here first e.g the zone going
1112 		 * away.
1113 		 */
1114 		if (!zone_lock_held)
1115 			mutex_exit(&zone->zone_lock);
1116 		return (B_FALSE);
1117 	}
1118 	dropped = B_FALSE;
1119 	if (zsd_wait_for_creator(zone, t, lockp))
1120 		dropped = B_TRUE;
1121 
1122 	if (zsd_wait_for_inprogress(zone, t, lockp))
1123 		dropped = B_TRUE;
1124 
1125 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1126 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1127 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1128 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1129 		    zone_t *, zone, zone_key_t, key);
1130 		mutex_exit(&zone->zone_lock);
1131 		if (lockp != NULL)
1132 			mutex_exit(lockp);
1133 		dropped = B_TRUE;
1134 
1135 		ASSERT(t->zsd_shutdown != NULL);
1136 		data = t->zsd_data;
1137 
1138 		DTRACE_PROBE2(zsd__shutdown__start,
1139 		    zone_t *, zone, zone_key_t, key);
1140 
1141 		(t->zsd_shutdown)(zone->zone_id, data);
1142 		DTRACE_PROBE2(zsd__shutdown__end,
1143 		    zone_t *, zone, zone_key_t, key);
1144 
1145 		if (lockp != NULL)
1146 			mutex_enter(lockp);
1147 		mutex_enter(&zone->zone_lock);
1148 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1149 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1150 		cv_broadcast(&t->zsd_cv);
1151 		DTRACE_PROBE2(zsd__shutdown__completed,
1152 		    zone_t *, zone, zone_key_t, key);
1153 	}
1154 	if (!zone_lock_held)
1155 		mutex_exit(&zone->zone_lock);
1156 	return (dropped);
1157 }
1158 
1159 /*
1160  * Call the destroy function for the zone and key if DESTROY_NEEDED
1161  * is set.
1162  * If some other thread gets here first and sets *_INPROGRESS, then
1163  * we wait for that thread to complete so that we can ensure that
1164  * all the callbacks are done when we've looped over all zones/keys.
1165  *
1166  * When we call the destroy function, we drop the global held by the
1167  * caller, and return true to tell the caller it needs to re-evalute the
1168  * state.
1169  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1170  * remains held on exit.
1171  */
1172 static boolean_t
1173 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1174     zone_t *zone, zone_key_t key)
1175 {
1176 	struct zsd_entry *t;
1177 	void *data;
1178 	boolean_t dropped;
1179 
1180 	if (lockp != NULL) {
1181 		ASSERT(MUTEX_HELD(lockp));
1182 	}
1183 	if (zone_lock_held) {
1184 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1185 	} else {
1186 		mutex_enter(&zone->zone_lock);
1187 	}
1188 
1189 	t = zsd_find(&zone->zone_zsd, key);
1190 	if (t == NULL) {
1191 		/*
1192 		 * Somebody else got here first e.g the zone going
1193 		 * away.
1194 		 */
1195 		if (!zone_lock_held)
1196 			mutex_exit(&zone->zone_lock);
1197 		return (B_FALSE);
1198 	}
1199 	dropped = B_FALSE;
1200 	if (zsd_wait_for_creator(zone, t, lockp))
1201 		dropped = B_TRUE;
1202 
1203 	if (zsd_wait_for_inprogress(zone, t, lockp))
1204 		dropped = B_TRUE;
1205 
1206 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1207 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1208 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1209 		DTRACE_PROBE2(zsd__destroy__inprogress,
1210 		    zone_t *, zone, zone_key_t, key);
1211 		mutex_exit(&zone->zone_lock);
1212 		if (lockp != NULL)
1213 			mutex_exit(lockp);
1214 		dropped = B_TRUE;
1215 
1216 		ASSERT(t->zsd_destroy != NULL);
1217 		data = t->zsd_data;
1218 		DTRACE_PROBE2(zsd__destroy__start,
1219 		    zone_t *, zone, zone_key_t, key);
1220 
1221 		(t->zsd_destroy)(zone->zone_id, data);
1222 		DTRACE_PROBE2(zsd__destroy__end,
1223 		    zone_t *, zone, zone_key_t, key);
1224 
1225 		if (lockp != NULL)
1226 			mutex_enter(lockp);
1227 		mutex_enter(&zone->zone_lock);
1228 		t->zsd_data = NULL;
1229 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1230 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1231 		cv_broadcast(&t->zsd_cv);
1232 		DTRACE_PROBE2(zsd__destroy__completed,
1233 		    zone_t *, zone, zone_key_t, key);
1234 	}
1235 	if (!zone_lock_held)
1236 		mutex_exit(&zone->zone_lock);
1237 	return (dropped);
1238 }
1239 
1240 /*
1241  * Wait for any CREATE_NEEDED flag to be cleared.
1242  * Returns true if lockp was temporarily dropped while waiting.
1243  */
1244 static boolean_t
1245 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1246 {
1247 	boolean_t dropped = B_FALSE;
1248 
1249 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1250 		DTRACE_PROBE2(zsd__wait__for__creator,
1251 		    zone_t *, zone, struct zsd_entry *, t);
1252 		if (lockp != NULL) {
1253 			dropped = B_TRUE;
1254 			mutex_exit(lockp);
1255 		}
1256 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1257 		if (lockp != NULL) {
1258 			/* First drop zone_lock to preserve order */
1259 			mutex_exit(&zone->zone_lock);
1260 			mutex_enter(lockp);
1261 			mutex_enter(&zone->zone_lock);
1262 		}
1263 	}
1264 	return (dropped);
1265 }
1266 
1267 /*
1268  * Wait for any INPROGRESS flag to be cleared.
1269  * Returns true if lockp was temporarily dropped while waiting.
1270  */
1271 static boolean_t
1272 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1273 {
1274 	boolean_t dropped = B_FALSE;
1275 
1276 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1277 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1278 		    zone_t *, zone, struct zsd_entry *, t);
1279 		if (lockp != NULL) {
1280 			dropped = B_TRUE;
1281 			mutex_exit(lockp);
1282 		}
1283 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1284 		if (lockp != NULL) {
1285 			/* First drop zone_lock to preserve order */
1286 			mutex_exit(&zone->zone_lock);
1287 			mutex_enter(lockp);
1288 			mutex_enter(&zone->zone_lock);
1289 		}
1290 	}
1291 	return (dropped);
1292 }
1293 
1294 /*
1295  * Frees memory associated with the zone dataset list.
1296  */
1297 static void
1298 zone_free_datasets(zone_t *zone)
1299 {
1300 	zone_dataset_t *t, *next;
1301 
1302 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1303 		next = list_next(&zone->zone_datasets, t);
1304 		list_remove(&zone->zone_datasets, t);
1305 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1306 		kmem_free(t, sizeof (*t));
1307 	}
1308 	list_destroy(&zone->zone_datasets);
1309 }
1310 
1311 /*
1312  * zone.cpu-shares resource control support.
1313  */
1314 /*ARGSUSED*/
1315 static rctl_qty_t
1316 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1317 {
1318 	ASSERT(MUTEX_HELD(&p->p_lock));
1319 	return (p->p_zone->zone_shares);
1320 }
1321 
1322 /*ARGSUSED*/
1323 static int
1324 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1325     rctl_qty_t nv)
1326 {
1327 	ASSERT(MUTEX_HELD(&p->p_lock));
1328 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1329 	if (e->rcep_p.zone == NULL)
1330 		return (0);
1331 
1332 	e->rcep_p.zone->zone_shares = nv;
1333 	return (0);
1334 }
1335 
1336 static rctl_ops_t zone_cpu_shares_ops = {
1337 	rcop_no_action,
1338 	zone_cpu_shares_usage,
1339 	zone_cpu_shares_set,
1340 	rcop_no_test
1341 };
1342 
1343 /*
1344  * zone.cpu-cap resource control support.
1345  */
1346 /*ARGSUSED*/
1347 static rctl_qty_t
1348 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1349 {
1350 	ASSERT(MUTEX_HELD(&p->p_lock));
1351 	return (cpucaps_zone_get(p->p_zone));
1352 }
1353 
1354 /*ARGSUSED*/
1355 static int
1356 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1357     rctl_qty_t nv)
1358 {
1359 	zone_t *zone = e->rcep_p.zone;
1360 
1361 	ASSERT(MUTEX_HELD(&p->p_lock));
1362 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1363 
1364 	if (zone == NULL)
1365 		return (0);
1366 
1367 	/*
1368 	 * set cap to the new value.
1369 	 */
1370 	return (cpucaps_zone_set(zone, nv));
1371 }
1372 
1373 static rctl_ops_t zone_cpu_cap_ops = {
1374 	rcop_no_action,
1375 	zone_cpu_cap_get,
1376 	zone_cpu_cap_set,
1377 	rcop_no_test
1378 };
1379 
1380 /*ARGSUSED*/
1381 static rctl_qty_t
1382 zone_lwps_usage(rctl_t *r, proc_t *p)
1383 {
1384 	rctl_qty_t nlwps;
1385 	zone_t *zone = p->p_zone;
1386 
1387 	ASSERT(MUTEX_HELD(&p->p_lock));
1388 
1389 	mutex_enter(&zone->zone_nlwps_lock);
1390 	nlwps = zone->zone_nlwps;
1391 	mutex_exit(&zone->zone_nlwps_lock);
1392 
1393 	return (nlwps);
1394 }
1395 
1396 /*ARGSUSED*/
1397 static int
1398 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1399     rctl_qty_t incr, uint_t flags)
1400 {
1401 	rctl_qty_t nlwps;
1402 
1403 	ASSERT(MUTEX_HELD(&p->p_lock));
1404 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1405 	if (e->rcep_p.zone == NULL)
1406 		return (0);
1407 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1408 	nlwps = e->rcep_p.zone->zone_nlwps;
1409 
1410 	if (nlwps + incr > rcntl->rcv_value)
1411 		return (1);
1412 
1413 	return (0);
1414 }
1415 
1416 /*ARGSUSED*/
1417 static int
1418 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1419 {
1420 	ASSERT(MUTEX_HELD(&p->p_lock));
1421 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1422 	if (e->rcep_p.zone == NULL)
1423 		return (0);
1424 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1425 	return (0);
1426 }
1427 
1428 static rctl_ops_t zone_lwps_ops = {
1429 	rcop_no_action,
1430 	zone_lwps_usage,
1431 	zone_lwps_set,
1432 	zone_lwps_test,
1433 };
1434 
1435 /*ARGSUSED*/
1436 static rctl_qty_t
1437 zone_procs_usage(rctl_t *r, proc_t *p)
1438 {
1439 	rctl_qty_t nprocs;
1440 	zone_t *zone = p->p_zone;
1441 
1442 	ASSERT(MUTEX_HELD(&p->p_lock));
1443 
1444 	mutex_enter(&zone->zone_nlwps_lock);
1445 	nprocs = zone->zone_nprocs;
1446 	mutex_exit(&zone->zone_nlwps_lock);
1447 
1448 	return (nprocs);
1449 }
1450 
1451 /*ARGSUSED*/
1452 static int
1453 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1454     rctl_qty_t incr, uint_t flags)
1455 {
1456 	rctl_qty_t nprocs;
1457 
1458 	ASSERT(MUTEX_HELD(&p->p_lock));
1459 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1460 	if (e->rcep_p.zone == NULL)
1461 		return (0);
1462 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1463 	nprocs = e->rcep_p.zone->zone_nprocs;
1464 
1465 	if (nprocs + incr > rcntl->rcv_value)
1466 		return (1);
1467 
1468 	return (0);
1469 }
1470 
1471 /*ARGSUSED*/
1472 static int
1473 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1474 {
1475 	ASSERT(MUTEX_HELD(&p->p_lock));
1476 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1477 	if (e->rcep_p.zone == NULL)
1478 		return (0);
1479 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1480 	return (0);
1481 }
1482 
1483 static rctl_ops_t zone_procs_ops = {
1484 	rcop_no_action,
1485 	zone_procs_usage,
1486 	zone_procs_set,
1487 	zone_procs_test,
1488 };
1489 
1490 /*ARGSUSED*/
1491 static rctl_qty_t
1492 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1493 {
1494 	ASSERT(MUTEX_HELD(&p->p_lock));
1495 	return (p->p_zone->zone_shmmax);
1496 }
1497 
1498 /*ARGSUSED*/
1499 static int
1500 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1501     rctl_qty_t incr, uint_t flags)
1502 {
1503 	rctl_qty_t v;
1504 	ASSERT(MUTEX_HELD(&p->p_lock));
1505 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1506 	v = e->rcep_p.zone->zone_shmmax + incr;
1507 	if (v > rval->rcv_value)
1508 		return (1);
1509 	return (0);
1510 }
1511 
1512 static rctl_ops_t zone_shmmax_ops = {
1513 	rcop_no_action,
1514 	zone_shmmax_usage,
1515 	rcop_no_set,
1516 	zone_shmmax_test
1517 };
1518 
1519 /*ARGSUSED*/
1520 static rctl_qty_t
1521 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1522 {
1523 	ASSERT(MUTEX_HELD(&p->p_lock));
1524 	return (p->p_zone->zone_ipc.ipcq_shmmni);
1525 }
1526 
1527 /*ARGSUSED*/
1528 static int
1529 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1530     rctl_qty_t incr, uint_t flags)
1531 {
1532 	rctl_qty_t v;
1533 	ASSERT(MUTEX_HELD(&p->p_lock));
1534 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1535 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1536 	if (v > rval->rcv_value)
1537 		return (1);
1538 	return (0);
1539 }
1540 
1541 static rctl_ops_t zone_shmmni_ops = {
1542 	rcop_no_action,
1543 	zone_shmmni_usage,
1544 	rcop_no_set,
1545 	zone_shmmni_test
1546 };
1547 
1548 /*ARGSUSED*/
1549 static rctl_qty_t
1550 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1551 {
1552 	ASSERT(MUTEX_HELD(&p->p_lock));
1553 	return (p->p_zone->zone_ipc.ipcq_semmni);
1554 }
1555 
1556 /*ARGSUSED*/
1557 static int
1558 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1559     rctl_qty_t incr, uint_t flags)
1560 {
1561 	rctl_qty_t v;
1562 	ASSERT(MUTEX_HELD(&p->p_lock));
1563 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1564 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1565 	if (v > rval->rcv_value)
1566 		return (1);
1567 	return (0);
1568 }
1569 
1570 static rctl_ops_t zone_semmni_ops = {
1571 	rcop_no_action,
1572 	zone_semmni_usage,
1573 	rcop_no_set,
1574 	zone_semmni_test
1575 };
1576 
1577 /*ARGSUSED*/
1578 static rctl_qty_t
1579 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1580 {
1581 	ASSERT(MUTEX_HELD(&p->p_lock));
1582 	return (p->p_zone->zone_ipc.ipcq_msgmni);
1583 }
1584 
1585 /*ARGSUSED*/
1586 static int
1587 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1588     rctl_qty_t incr, uint_t flags)
1589 {
1590 	rctl_qty_t v;
1591 	ASSERT(MUTEX_HELD(&p->p_lock));
1592 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1593 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1594 	if (v > rval->rcv_value)
1595 		return (1);
1596 	return (0);
1597 }
1598 
1599 static rctl_ops_t zone_msgmni_ops = {
1600 	rcop_no_action,
1601 	zone_msgmni_usage,
1602 	rcop_no_set,
1603 	zone_msgmni_test
1604 };
1605 
1606 /*ARGSUSED*/
1607 static rctl_qty_t
1608 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1609 {
1610 	rctl_qty_t q;
1611 	ASSERT(MUTEX_HELD(&p->p_lock));
1612 	mutex_enter(&p->p_zone->zone_mem_lock);
1613 	q = p->p_zone->zone_locked_mem;
1614 	mutex_exit(&p->p_zone->zone_mem_lock);
1615 	return (q);
1616 }
1617 
1618 /*ARGSUSED*/
1619 static int
1620 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1621     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1622 {
1623 	rctl_qty_t q;
1624 	zone_t *z;
1625 
1626 	z = e->rcep_p.zone;
1627 	ASSERT(MUTEX_HELD(&p->p_lock));
1628 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1629 	q = z->zone_locked_mem;
1630 	if (q + incr > rcntl->rcv_value)
1631 		return (1);
1632 	return (0);
1633 }
1634 
1635 /*ARGSUSED*/
1636 static int
1637 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1638     rctl_qty_t nv)
1639 {
1640 	ASSERT(MUTEX_HELD(&p->p_lock));
1641 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1642 	if (e->rcep_p.zone == NULL)
1643 		return (0);
1644 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1645 	return (0);
1646 }
1647 
1648 static rctl_ops_t zone_locked_mem_ops = {
1649 	rcop_no_action,
1650 	zone_locked_mem_usage,
1651 	zone_locked_mem_set,
1652 	zone_locked_mem_test
1653 };
1654 
1655 /*ARGSUSED*/
1656 static rctl_qty_t
1657 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1658 {
1659 	rctl_qty_t q;
1660 	zone_t *z = p->p_zone;
1661 
1662 	ASSERT(MUTEX_HELD(&p->p_lock));
1663 	mutex_enter(&z->zone_mem_lock);
1664 	q = z->zone_max_swap;
1665 	mutex_exit(&z->zone_mem_lock);
1666 	return (q);
1667 }
1668 
1669 /*ARGSUSED*/
1670 static int
1671 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1672     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1673 {
1674 	rctl_qty_t q;
1675 	zone_t *z;
1676 
1677 	z = e->rcep_p.zone;
1678 	ASSERT(MUTEX_HELD(&p->p_lock));
1679 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1680 	q = z->zone_max_swap;
1681 	if (q + incr > rcntl->rcv_value)
1682 		return (1);
1683 	return (0);
1684 }
1685 
1686 /*ARGSUSED*/
1687 static int
1688 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1689     rctl_qty_t nv)
1690 {
1691 	ASSERT(MUTEX_HELD(&p->p_lock));
1692 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1693 	if (e->rcep_p.zone == NULL)
1694 		return (0);
1695 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1696 	return (0);
1697 }
1698 
1699 static rctl_ops_t zone_max_swap_ops = {
1700 	rcop_no_action,
1701 	zone_max_swap_usage,
1702 	zone_max_swap_set,
1703 	zone_max_swap_test
1704 };
1705 
1706 /*ARGSUSED*/
1707 static rctl_qty_t
1708 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1709 {
1710 	rctl_qty_t q;
1711 	zone_t *z = p->p_zone;
1712 
1713 	ASSERT(MUTEX_HELD(&p->p_lock));
1714 	mutex_enter(&z->zone_rctl_lock);
1715 	q = z->zone_max_lofi;
1716 	mutex_exit(&z->zone_rctl_lock);
1717 	return (q);
1718 }
1719 
1720 /*ARGSUSED*/
1721 static int
1722 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1723     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1724 {
1725 	rctl_qty_t q;
1726 	zone_t *z;
1727 
1728 	z = e->rcep_p.zone;
1729 	ASSERT(MUTEX_HELD(&p->p_lock));
1730 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1731 	q = z->zone_max_lofi;
1732 	if (q + incr > rcntl->rcv_value)
1733 		return (1);
1734 	return (0);
1735 }
1736 
1737 /*ARGSUSED*/
1738 static int
1739 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1740     rctl_qty_t nv)
1741 {
1742 	ASSERT(MUTEX_HELD(&p->p_lock));
1743 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1744 	if (e->rcep_p.zone == NULL)
1745 		return (0);
1746 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1747 	return (0);
1748 }
1749 
1750 static rctl_ops_t zone_max_lofi_ops = {
1751 	rcop_no_action,
1752 	zone_max_lofi_usage,
1753 	zone_max_lofi_set,
1754 	zone_max_lofi_test
1755 };
1756 
1757 /*
1758  * Helper function to brand the zone with a unique ID.
1759  */
1760 static void
1761 zone_uniqid(zone_t *zone)
1762 {
1763 	static uint64_t uniqid = 0;
1764 
1765 	ASSERT(MUTEX_HELD(&zonehash_lock));
1766 	zone->zone_uniqid = uniqid++;
1767 }
1768 
1769 /*
1770  * Returns a held pointer to the "kcred" for the specified zone.
1771  */
1772 struct cred *
1773 zone_get_kcred(zoneid_t zoneid)
1774 {
1775 	zone_t *zone;
1776 	cred_t *cr;
1777 
1778 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1779 		return (NULL);
1780 	cr = zone->zone_kcred;
1781 	crhold(cr);
1782 	zone_rele(zone);
1783 	return (cr);
1784 }
1785 
1786 static int
1787 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1788 {
1789 	zone_t *zone = ksp->ks_private;
1790 	zone_kstat_t *zk = ksp->ks_data;
1791 
1792 	if (rw == KSTAT_WRITE)
1793 		return (EACCES);
1794 
1795 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1796 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1797 	return (0);
1798 }
1799 
1800 static int
1801 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1802 {
1803 	zone_t *zone = ksp->ks_private;
1804 	zone_kstat_t *zk = ksp->ks_data;
1805 
1806 	if (rw == KSTAT_WRITE)
1807 		return (EACCES);
1808 
1809 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1810 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1811 	return (0);
1812 }
1813 
1814 static int
1815 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1816 {
1817 	zone_t *zone = ksp->ks_private;
1818 	zone_kstat_t *zk = ksp->ks_data;
1819 
1820 	if (rw == KSTAT_WRITE)
1821 		return (EACCES);
1822 
1823 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1824 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1825 	return (0);
1826 }
1827 
1828 static kstat_t *
1829 zone_kstat_create_common(zone_t *zone, char *name,
1830     int (*updatefunc) (kstat_t *, int))
1831 {
1832 	kstat_t *ksp;
1833 	zone_kstat_t *zk;
1834 
1835 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1836 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1837 	    KSTAT_FLAG_VIRTUAL);
1838 
1839 	if (ksp == NULL)
1840 		return (NULL);
1841 
1842 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1843 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1844 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1845 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1846 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1847 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1848 	ksp->ks_update = updatefunc;
1849 	ksp->ks_private = zone;
1850 	kstat_install(ksp);
1851 	return (ksp);
1852 }
1853 
1854 
1855 static int
1856 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1857 {
1858 	zone_t *zone = ksp->ks_private;
1859 	zone_mcap_kstat_t *zmp = ksp->ks_data;
1860 
1861 	if (rw == KSTAT_WRITE)
1862 		return (EACCES);
1863 
1864 	zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1865 	zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1866 	zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1867 	zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1868 	zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1869 
1870 	return (0);
1871 }
1872 
1873 static kstat_t *
1874 zone_mcap_kstat_create(zone_t *zone)
1875 {
1876 	kstat_t *ksp;
1877 	zone_mcap_kstat_t *zmp;
1878 
1879 	if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1880 	    zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1881 	    sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1882 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1883 		return (NULL);
1884 
1885 	if (zone->zone_id != GLOBAL_ZONEID)
1886 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1887 
1888 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1889 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1890 	ksp->ks_lock = &zone->zone_mcap_lock;
1891 	zone->zone_mcap_stats = zmp;
1892 
1893 	/* The kstat "name" field is not large enough for a full zonename */
1894 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1895 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1896 	kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1897 	kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1898 	kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1899 	kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1900 	kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1901 	    KSTAT_DATA_UINT64);
1902 
1903 	ksp->ks_update = zone_mcap_kstat_update;
1904 	ksp->ks_private = zone;
1905 
1906 	kstat_install(ksp);
1907 	return (ksp);
1908 }
1909 
1910 static int
1911 zone_misc_kstat_update(kstat_t *ksp, int rw)
1912 {
1913 	zone_t *zone = ksp->ks_private;
1914 	zone_misc_kstat_t *zmp = ksp->ks_data;
1915 	hrtime_t hrtime;
1916 	uint64_t tmp;
1917 
1918 	if (rw == KSTAT_WRITE)
1919 		return (EACCES);
1920 
1921 	tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_STIME);
1922 	hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1923 	scalehrtime(&hrtime);
1924 	zmp->zm_stime.value.ui64 = hrtime;
1925 
1926 	tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_UTIME);
1927 	hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1928 	scalehrtime(&hrtime);
1929 	zmp->zm_utime.value.ui64 = hrtime;
1930 
1931 	tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_WTIME);
1932 	hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1933 	scalehrtime(&hrtime);
1934 	zmp->zm_wtime.value.ui64 = hrtime;
1935 
1936 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1937 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1938 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1939 
1940 	zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1941 	zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1942 	zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1943 	zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1944 
1945 	zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1946 
1947 	zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1948 	zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1949 
1950 	return (0);
1951 }
1952 
1953 static kstat_t *
1954 zone_misc_kstat_create(zone_t *zone)
1955 {
1956 	kstat_t *ksp;
1957 	zone_misc_kstat_t *zmp;
1958 
1959 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1960 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1961 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1962 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1963 		return (NULL);
1964 
1965 	if (zone->zone_id != GLOBAL_ZONEID)
1966 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1967 
1968 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1969 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1970 	ksp->ks_lock = &zone->zone_misc_lock;
1971 	zone->zone_misc_stats = zmp;
1972 
1973 	/* The kstat "name" field is not large enough for a full zonename */
1974 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1975 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1976 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1977 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1978 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1979 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1980 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1981 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1982 	    KSTAT_DATA_UINT32);
1983 	kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1984 	kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1985 	    KSTAT_DATA_UINT32);
1986 	kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1987 	kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1988 	kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1989 	    KSTAT_DATA_UINT32);
1990 	kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1991 	kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1992 
1993 	ksp->ks_update = zone_misc_kstat_update;
1994 	ksp->ks_private = zone;
1995 
1996 	kstat_install(ksp);
1997 	return (ksp);
1998 }
1999 
2000 static void
2001 zone_kstat_create(zone_t *zone)
2002 {
2003 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
2004 	    "lockedmem", zone_lockedmem_kstat_update);
2005 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
2006 	    "swapresv", zone_swapresv_kstat_update);
2007 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
2008 	    "nprocs", zone_nprocs_kstat_update);
2009 
2010 	if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2011 		zone->zone_mcap_stats = kmem_zalloc(
2012 		    sizeof (zone_mcap_kstat_t), KM_SLEEP);
2013 	}
2014 
2015 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2016 		zone->zone_misc_stats = kmem_zalloc(
2017 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
2018 	}
2019 }
2020 
2021 static void
2022 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2023 {
2024 	void *data;
2025 
2026 	if (*pkstat != NULL) {
2027 		data = (*pkstat)->ks_data;
2028 		kstat_delete(*pkstat);
2029 		kmem_free(data, datasz);
2030 		*pkstat = NULL;
2031 	}
2032 }
2033 
2034 static void
2035 zone_kstat_delete(zone_t *zone)
2036 {
2037 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2038 	    sizeof (zone_kstat_t));
2039 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2040 	    sizeof (zone_kstat_t));
2041 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2042 	    sizeof (zone_kstat_t));
2043 	zone_kstat_delete_common(&zone->zone_mcap_ksp,
2044 	    sizeof (zone_mcap_kstat_t));
2045 	zone_kstat_delete_common(&zone->zone_misc_ksp,
2046 	    sizeof (zone_misc_kstat_t));
2047 }
2048 
2049 /*
2050  * Called very early on in boot to initialize the ZSD list so that
2051  * zone_key_create() can be called before zone_init().  It also initializes
2052  * portions of zone0 which may be used before zone_init() is called.  The
2053  * variable "global_zone" will be set when zone0 is fully initialized by
2054  * zone_init().
2055  */
2056 void
2057 zone_zsd_init(void)
2058 {
2059 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2060 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2061 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2062 	    offsetof(struct zsd_entry, zsd_linkage));
2063 	list_create(&zone_active, sizeof (zone_t),
2064 	    offsetof(zone_t, zone_linkage));
2065 	list_create(&zone_deathrow, sizeof (zone_t),
2066 	    offsetof(zone_t, zone_linkage));
2067 
2068 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2069 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2070 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2071 	zone0.zone_shares = 1;
2072 	zone0.zone_nlwps = 0;
2073 	zone0.zone_nlwps_ctl = INT_MAX;
2074 	zone0.zone_nprocs = 0;
2075 	zone0.zone_nprocs_ctl = INT_MAX;
2076 	zone0.zone_locked_mem = 0;
2077 	zone0.zone_locked_mem_ctl = UINT64_MAX;
2078 	ASSERT(zone0.zone_max_swap == 0);
2079 	zone0.zone_max_swap_ctl = UINT64_MAX;
2080 	zone0.zone_max_lofi = 0;
2081 	zone0.zone_max_lofi_ctl = UINT64_MAX;
2082 	zone0.zone_shmmax = 0;
2083 	zone0.zone_ipc.ipcq_shmmni = 0;
2084 	zone0.zone_ipc.ipcq_semmni = 0;
2085 	zone0.zone_ipc.ipcq_msgmni = 0;
2086 	zone0.zone_name = GLOBAL_ZONENAME;
2087 	zone0.zone_nodename = utsname.nodename;
2088 	zone0.zone_domain = srpc_domain;
2089 	zone0.zone_hostid = HW_INVALID_HOSTID;
2090 	zone0.zone_fs_allowed = NULL;
2091 	psecflags_default(&zone0.zone_secflags);
2092 	zone0.zone_ref = 1;
2093 	zone0.zone_id = GLOBAL_ZONEID;
2094 	zone0.zone_status = ZONE_IS_RUNNING;
2095 	zone0.zone_rootpath = "/";
2096 	zone0.zone_rootpathlen = 2;
2097 	zone0.zone_psetid = ZONE_PS_INVAL;
2098 	zone0.zone_ncpus = 0;
2099 	zone0.zone_ncpus_online = 0;
2100 	zone0.zone_proc_initpid = 1;
2101 	zone0.zone_initname = initname;
2102 	zone0.zone_lockedmem_kstat = NULL;
2103 	zone0.zone_swapresv_kstat = NULL;
2104 	zone0.zone_nprocs_kstat = NULL;
2105 
2106 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2107 	    offsetof(zone_ref_t, zref_linkage));
2108 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2109 	    offsetof(struct zsd_entry, zsd_linkage));
2110 	list_insert_head(&zone_active, &zone0);
2111 
2112 	/*
2113 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2114 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2115 	 * vfs_mountroot().
2116 	 */
2117 	zone0.zone_rootvp = NULL;
2118 	zone0.zone_vfslist = NULL;
2119 	zone0.zone_bootargs = initargs;
2120 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2121 	/*
2122 	 * The global zone has all privileges
2123 	 */
2124 	priv_fillset(zone0.zone_privset);
2125 	/*
2126 	 * Add p0 to the global zone
2127 	 */
2128 	zone0.zone_zsched = &p0;
2129 	p0.p_zone = &zone0;
2130 }
2131 
2132 /*
2133  * Compute a hash value based on the contents of the label and the DOI.  The
2134  * hash algorithm is somewhat arbitrary, but is based on the observation that
2135  * humans will likely pick labels that differ by amounts that work out to be
2136  * multiples of the number of hash chains, and thus stirring in some primes
2137  * should help.
2138  */
2139 static uint_t
2140 hash_bylabel(void *hdata, mod_hash_key_t key)
2141 {
2142 	const ts_label_t *lab = (ts_label_t *)key;
2143 	const uint32_t *up, *ue;
2144 	uint_t hash;
2145 	int i;
2146 
2147 	_NOTE(ARGUNUSED(hdata));
2148 
2149 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2150 	/* we depend on alignment of label, but not representation */
2151 	up = (const uint32_t *)&lab->tsl_label;
2152 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2153 	i = 1;
2154 	while (up < ue) {
2155 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2156 		hash += *up + (*up << ((i % 16) + 1));
2157 		up++;
2158 		i++;
2159 	}
2160 	return (hash);
2161 }
2162 
2163 /*
2164  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2165  * equal).  This may need to be changed if less than / greater than is ever
2166  * needed.
2167  */
2168 static int
2169 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2170 {
2171 	ts_label_t *lab1 = (ts_label_t *)key1;
2172 	ts_label_t *lab2 = (ts_label_t *)key2;
2173 
2174 	return (label_equal(lab1, lab2) ? 0 : 1);
2175 }
2176 
2177 /*
2178  * Called by main() to initialize the zones framework.
2179  */
2180 void
2181 zone_init(void)
2182 {
2183 	rctl_dict_entry_t *rde;
2184 	rctl_val_t *dval;
2185 	rctl_set_t *set;
2186 	rctl_alloc_gp_t *gp;
2187 	rctl_entity_p_t e;
2188 	int res;
2189 
2190 	ASSERT(curproc == &p0);
2191 
2192 	/*
2193 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2194 	 * global zone.
2195 	 */
2196 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2197 
2198 	/*
2199 	 * Initialize generic zone resource controls, if any.
2200 	 */
2201 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2202 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2203 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2204 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2205 
2206 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2207 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2208 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2209 	    RCTL_GLOBAL_INFINITE,
2210 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2211 
2212 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2213 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2214 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2215 
2216 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2217 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2218 	    INT_MAX, INT_MAX, &zone_procs_ops);
2219 
2220 	/*
2221 	 * System V IPC resource controls
2222 	 */
2223 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2224 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2225 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2226 
2227 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2228 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2229 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2230 
2231 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2232 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2233 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2234 
2235 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2236 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2237 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2238 
2239 	/*
2240 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2241 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2242 	 */
2243 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2244 	bzero(dval, sizeof (rctl_val_t));
2245 	dval->rcv_value = 1;
2246 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2247 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2248 	dval->rcv_action_recip_pid = -1;
2249 
2250 	rde = rctl_dict_lookup("zone.cpu-shares");
2251 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2252 
2253 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2254 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2255 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2256 	    &zone_locked_mem_ops);
2257 
2258 	rc_zone_max_swap = rctl_register("zone.max-swap",
2259 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2260 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2261 	    &zone_max_swap_ops);
2262 
2263 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2264 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2265 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2266 	    &zone_max_lofi_ops);
2267 
2268 	/*
2269 	 * Initialize the ``global zone''.
2270 	 */
2271 	set = rctl_set_create();
2272 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2273 	mutex_enter(&p0.p_lock);
2274 	e.rcep_p.zone = &zone0;
2275 	e.rcep_t = RCENTITY_ZONE;
2276 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2277 	    gp);
2278 
2279 	zone0.zone_nlwps = p0.p_lwpcnt;
2280 	zone0.zone_nprocs = 1;
2281 	zone0.zone_ntasks = 1;
2282 	mutex_exit(&p0.p_lock);
2283 	zone0.zone_restart_init = B_TRUE;
2284 	zone0.zone_reboot_on_init_exit = B_FALSE;
2285 	zone0.zone_restart_init_0 = B_FALSE;
2286 	zone0.zone_brand = &native_brand;
2287 	rctl_prealloc_destroy(gp);
2288 	/*
2289 	 * pool_default hasn't been initialized yet, so we let pool_init()
2290 	 * take care of making sure the global zone is in the default pool.
2291 	 */
2292 
2293 	/*
2294 	 * Initialize global zone kstats
2295 	 */
2296 	zone_kstat_create(&zone0);
2297 
2298 	/*
2299 	 * Initialize zone label.
2300 	 * mlp are initialized when tnzonecfg is loaded.
2301 	 */
2302 	zone0.zone_slabel = l_admin_low;
2303 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2304 	label_hold(l_admin_low);
2305 
2306 	/*
2307 	 * Initialise the lock for the database structure used by mntfs.
2308 	 */
2309 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2310 
2311 	zone0.zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
2312 
2313 	mutex_enter(&zonehash_lock);
2314 	zone_uniqid(&zone0);
2315 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2316 
2317 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2318 	    mod_hash_null_valdtor);
2319 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2320 	    zone_hash_size, mod_hash_null_valdtor);
2321 	/*
2322 	 * maintain zonehashbylabel only for labeled systems
2323 	 */
2324 	if (is_system_labeled())
2325 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2326 		    zone_hash_size, mod_hash_null_keydtor,
2327 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2328 		    hash_labelkey_cmp, KM_SLEEP);
2329 	zonecount = 1;
2330 
2331 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2332 	    (mod_hash_val_t)&zone0);
2333 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2334 	    (mod_hash_val_t)&zone0);
2335 	if (is_system_labeled()) {
2336 		zone0.zone_flags |= ZF_HASHED_LABEL;
2337 		(void) mod_hash_insert(zonehashbylabel,
2338 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2339 	}
2340 	mutex_exit(&zonehash_lock);
2341 
2342 	/*
2343 	 * We avoid setting zone_kcred until now, since kcred is initialized
2344 	 * sometime after zone_zsd_init() and before zone_init().
2345 	 */
2346 	zone0.zone_kcred = kcred;
2347 	/*
2348 	 * The global zone is fully initialized (except for zone_rootvp which
2349 	 * will be set when the root filesystem is mounted).
2350 	 */
2351 	global_zone = &zone0;
2352 
2353 	/*
2354 	 * Setup an event channel to send zone status change notifications on
2355 	 */
2356 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2357 	    EVCH_CREAT);
2358 
2359 	if (res)
2360 		panic("Sysevent_evc_bind failed during zone setup.\n");
2361 
2362 }
2363 
2364 static void
2365 zone_free(zone_t *zone)
2366 {
2367 	zone_dl_t *zdl;
2368 
2369 	ASSERT(zone != global_zone);
2370 	ASSERT(zone->zone_ntasks == 0);
2371 	ASSERT(zone->zone_nlwps == 0);
2372 	ASSERT(zone->zone_nprocs == 0);
2373 	ASSERT(zone->zone_cred_ref == 0);
2374 	ASSERT(zone->zone_kcred == NULL);
2375 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2376 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2377 	ASSERT(list_is_empty(&zone->zone_ref_list));
2378 
2379 	/*
2380 	 * Remove any zone caps.
2381 	 */
2382 	cpucaps_zone_remove(zone);
2383 
2384 	ASSERT(zone->zone_cpucap == NULL);
2385 
2386 	/* remove from deathrow list */
2387 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2388 		ASSERT(zone->zone_ref == 0);
2389 		mutex_enter(&zone_deathrow_lock);
2390 		list_remove(&zone_deathrow, zone);
2391 		mutex_exit(&zone_deathrow_lock);
2392 	}
2393 
2394 	list_destroy(&zone->zone_ref_list);
2395 	zone_free_zsd(zone);
2396 	zone_free_datasets(zone);
2397 
2398 	/*
2399 	 * While dlmgmtd should have removed all of these, it could have left
2400 	 * something behind or crashed. In which case it's not safe for us to
2401 	 * assume that the list is empty which list_destroy() will ASSERT. We
2402 	 * clean up for our userland comrades which may have crashed, or worse,
2403 	 * been disabled by SMF.
2404 	 */
2405 	while ((zdl = list_remove_head(&zone->zone_dl_list)) != NULL) {
2406 		if (zdl->zdl_net != NULL)
2407 			nvlist_free(zdl->zdl_net);
2408 		kmem_free(zdl, sizeof (zone_dl_t));
2409 	}
2410 	list_destroy(&zone->zone_dl_list);
2411 
2412 	cpu_uarray_free(zone->zone_ustate);
2413 
2414 	if (zone->zone_rootvp != NULL)
2415 		VN_RELE(zone->zone_rootvp);
2416 	if (zone->zone_rootpath)
2417 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2418 	if (zone->zone_name != NULL)
2419 		kmem_free(zone->zone_name, ZONENAME_MAX);
2420 	if (zone->zone_slabel != NULL)
2421 		label_rele(zone->zone_slabel);
2422 	if (zone->zone_nodename != NULL)
2423 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2424 	if (zone->zone_domain != NULL)
2425 		kmem_free(zone->zone_domain, _SYS_NMLN);
2426 	if (zone->zone_privset != NULL)
2427 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2428 	if (zone->zone_rctls != NULL)
2429 		rctl_set_free(zone->zone_rctls);
2430 	if (zone->zone_bootargs != NULL)
2431 		strfree(zone->zone_bootargs);
2432 	if (zone->zone_initname != NULL)
2433 		strfree(zone->zone_initname);
2434 	if (zone->zone_fs_allowed != NULL)
2435 		strfree(zone->zone_fs_allowed);
2436 	if (zone->zone_pfexecd != NULL)
2437 		klpd_freelist(&zone->zone_pfexecd);
2438 	id_free(zoneid_space, zone->zone_id);
2439 	mutex_destroy(&zone->zone_lock);
2440 	cv_destroy(&zone->zone_cv);
2441 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2442 	rw_destroy(&zone->zone_mntfs_db_lock);
2443 	kmem_free(zone, sizeof (zone_t));
2444 }
2445 
2446 /*
2447  * See block comment at the top of this file for information about zone
2448  * status values.
2449  */
2450 /*
2451  * Convenience function for setting zone status.
2452  */
2453 static void
2454 zone_status_set(zone_t *zone, zone_status_t status)
2455 {
2456 
2457 	nvlist_t *nvl = NULL;
2458 	ASSERT(MUTEX_HELD(&zone_status_lock));
2459 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2460 	    status >= zone_status_get(zone));
2461 
2462 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2463 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2464 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2465 	    zone_status_table[status]) ||
2466 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2467 	    zone_status_table[zone->zone_status]) ||
2468 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2469 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2470 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2471 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2472 #ifdef DEBUG
2473 		(void) printf(
2474 		    "Failed to allocate and send zone state change event.\n");
2475 #endif
2476 	}
2477 	nvlist_free(nvl);
2478 
2479 	zone->zone_status = status;
2480 
2481 	cv_broadcast(&zone->zone_cv);
2482 }
2483 
2484 /*
2485  * Public function to retrieve the zone status.  The zone status may
2486  * change after it is retrieved.
2487  */
2488 zone_status_t
2489 zone_status_get(zone_t *zone)
2490 {
2491 	return (zone->zone_status);
2492 }
2493 
2494 static int
2495 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2496 {
2497 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2498 	int err = 0;
2499 
2500 	ASSERT(zone != global_zone);
2501 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2502 		goto done;	/* EFAULT or ENAMETOOLONG */
2503 
2504 	if (zone->zone_bootargs != NULL)
2505 		strfree(zone->zone_bootargs);
2506 
2507 	zone->zone_bootargs = strdup(buf);
2508 
2509 done:
2510 	kmem_free(buf, BOOTARGS_MAX);
2511 	return (err);
2512 }
2513 
2514 static int
2515 zone_set_brand(zone_t *zone, const char *brand)
2516 {
2517 	struct brand_attr *attrp;
2518 	brand_t *bp;
2519 
2520 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2521 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2522 		kmem_free(attrp, sizeof (struct brand_attr));
2523 		return (EFAULT);
2524 	}
2525 
2526 	bp = brand_register_zone(attrp);
2527 	kmem_free(attrp, sizeof (struct brand_attr));
2528 	if (bp == NULL)
2529 		return (EINVAL);
2530 
2531 	/*
2532 	 * This is the only place where a zone can change it's brand.
2533 	 * We already need to hold zone_status_lock to check the zone
2534 	 * status, so we'll just use that lock to serialize zone
2535 	 * branding requests as well.
2536 	 */
2537 	mutex_enter(&zone_status_lock);
2538 
2539 	/* Re-Branding is not allowed and the zone can't be booted yet */
2540 	if ((ZONE_IS_BRANDED(zone)) ||
2541 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2542 		mutex_exit(&zone_status_lock);
2543 		brand_unregister_zone(bp);
2544 		return (EINVAL);
2545 	}
2546 
2547 	/* set up the brand specific data */
2548 	zone->zone_brand = bp;
2549 	ZBROP(zone)->b_init_brand_data(zone);
2550 
2551 	mutex_exit(&zone_status_lock);
2552 	return (0);
2553 }
2554 
2555 static int
2556 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags)
2557 {
2558 	int err = 0;
2559 	psecflags_t psf;
2560 
2561 	ASSERT(zone != global_zone);
2562 
2563 	if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0)
2564 		return (err);
2565 
2566 	if (zone_status_get(zone) > ZONE_IS_READY)
2567 		return (EINVAL);
2568 
2569 	if (!psecflags_validate(&psf))
2570 		return (EINVAL);
2571 
2572 	(void) memcpy(&zone->zone_secflags, &psf, sizeof (psf));
2573 
2574 	/* Set security flags on the zone's zsched */
2575 	(void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags,
2576 	    sizeof (zone->zone_zsched->p_secflags));
2577 
2578 	return (0);
2579 }
2580 
2581 static int
2582 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2583 {
2584 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2585 	int err = 0;
2586 
2587 	ASSERT(zone != global_zone);
2588 	if ((err = copyinstr(zone_fs_allowed, buf,
2589 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2590 		goto done;
2591 
2592 	if (zone->zone_fs_allowed != NULL)
2593 		strfree(zone->zone_fs_allowed);
2594 
2595 	zone->zone_fs_allowed = strdup(buf);
2596 
2597 done:
2598 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2599 	return (err);
2600 }
2601 
2602 static int
2603 zone_set_initname(zone_t *zone, const char *zone_initname)
2604 {
2605 	char initname[INITNAME_SZ];
2606 	size_t len;
2607 	int err = 0;
2608 
2609 	ASSERT(zone != global_zone);
2610 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2611 		return (err);	/* EFAULT or ENAMETOOLONG */
2612 
2613 	if (zone->zone_initname != NULL)
2614 		strfree(zone->zone_initname);
2615 
2616 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2617 	(void) strcpy(zone->zone_initname, initname);
2618 	return (0);
2619 }
2620 
2621 static int
2622 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2623 {
2624 	uint64_t mcap;
2625 	int err = 0;
2626 
2627 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2628 		zone->zone_phys_mcap = mcap;
2629 
2630 	return (err);
2631 }
2632 
2633 static int
2634 zone_set_sched_class(zone_t *zone, const char *new_class)
2635 {
2636 	char sched_class[PC_CLNMSZ];
2637 	id_t classid;
2638 	int err;
2639 
2640 	ASSERT(zone != global_zone);
2641 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2642 		return (err);	/* EFAULT or ENAMETOOLONG */
2643 
2644 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2645 		return (set_errno(EINVAL));
2646 	zone->zone_defaultcid = classid;
2647 	ASSERT(zone->zone_defaultcid > 0 &&
2648 	    zone->zone_defaultcid < loaded_classes);
2649 
2650 	return (0);
2651 }
2652 
2653 /*
2654  * Block indefinitely waiting for (zone_status >= status)
2655  */
2656 void
2657 zone_status_wait(zone_t *zone, zone_status_t status)
2658 {
2659 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2660 
2661 	mutex_enter(&zone_status_lock);
2662 	while (zone->zone_status < status) {
2663 		cv_wait(&zone->zone_cv, &zone_status_lock);
2664 	}
2665 	mutex_exit(&zone_status_lock);
2666 }
2667 
2668 /*
2669  * Private CPR-safe version of zone_status_wait().
2670  */
2671 static void
2672 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2673 {
2674 	callb_cpr_t cprinfo;
2675 
2676 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2677 
2678 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2679 	    str);
2680 	mutex_enter(&zone_status_lock);
2681 	while (zone->zone_status < status) {
2682 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2683 		cv_wait(&zone->zone_cv, &zone_status_lock);
2684 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2685 	}
2686 	/*
2687 	 * zone_status_lock is implicitly released by the following.
2688 	 */
2689 	CALLB_CPR_EXIT(&cprinfo);
2690 }
2691 
2692 /*
2693  * Block until zone enters requested state or signal is received.  Return (0)
2694  * if signaled, non-zero otherwise.
2695  */
2696 int
2697 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2698 {
2699 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2700 
2701 	mutex_enter(&zone_status_lock);
2702 	while (zone->zone_status < status) {
2703 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2704 			mutex_exit(&zone_status_lock);
2705 			return (0);
2706 		}
2707 	}
2708 	mutex_exit(&zone_status_lock);
2709 	return (1);
2710 }
2711 
2712 /*
2713  * Block until the zone enters the requested state or the timeout expires,
2714  * whichever happens first.  Return (-1) if operation timed out, time remaining
2715  * otherwise.
2716  */
2717 clock_t
2718 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2719 {
2720 	clock_t timeleft = 0;
2721 
2722 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2723 
2724 	mutex_enter(&zone_status_lock);
2725 	while (zone->zone_status < status && timeleft != -1) {
2726 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2727 	}
2728 	mutex_exit(&zone_status_lock);
2729 	return (timeleft);
2730 }
2731 
2732 /*
2733  * Block until the zone enters the requested state, the current process is
2734  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2735  * operation timed out, 0 if signaled, time remaining otherwise.
2736  */
2737 clock_t
2738 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2739 {
2740 	clock_t timeleft = tim - ddi_get_lbolt();
2741 
2742 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2743 
2744 	mutex_enter(&zone_status_lock);
2745 	while (zone->zone_status < status) {
2746 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2747 		    tim);
2748 		if (timeleft <= 0)
2749 			break;
2750 	}
2751 	mutex_exit(&zone_status_lock);
2752 	return (timeleft);
2753 }
2754 
2755 /*
2756  * Zones have two reference counts: one for references from credential
2757  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2758  * This is so we can allow a zone to be rebooted while there are still
2759  * outstanding cred references, since certain drivers cache dblks (which
2760  * implicitly results in cached creds).  We wait for zone_ref to drop to
2761  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2762  * later freed when the zone_cred_ref drops to 0, though nothing other
2763  * than the zone id and privilege set should be accessed once the zone
2764  * is "dead".
2765  *
2766  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2767  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2768  * to 0.  This can be useful to flush out other sources of cached creds
2769  * that may be less innocuous than the driver case.
2770  *
2771  * Zones also provide a tracked reference counting mechanism in which zone
2772  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2773  * debuggers determine the sources of leaked zone references.  See
2774  * zone_hold_ref() and zone_rele_ref() below for more information.
2775  */
2776 
2777 int zone_wait_for_cred = 0;
2778 
2779 static void
2780 zone_hold_locked(zone_t *z)
2781 {
2782 	ASSERT(MUTEX_HELD(&z->zone_lock));
2783 	z->zone_ref++;
2784 	ASSERT(z->zone_ref != 0);
2785 }
2786 
2787 /*
2788  * Increment the specified zone's reference count.  The zone's zone_t structure
2789  * will not be freed as long as the zone's reference count is nonzero.
2790  * Decrement the zone's reference count via zone_rele().
2791  *
2792  * NOTE: This function should only be used to hold zones for short periods of
2793  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2794  */
2795 void
2796 zone_hold(zone_t *z)
2797 {
2798 	mutex_enter(&z->zone_lock);
2799 	zone_hold_locked(z);
2800 	mutex_exit(&z->zone_lock);
2801 }
2802 
2803 /*
2804  * If the non-cred ref count drops to 1 and either the cred ref count
2805  * is 0 or we aren't waiting for cred references, the zone is ready to
2806  * be destroyed.
2807  */
2808 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2809 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2810 
2811 /*
2812  * Common zone reference release function invoked by zone_rele() and
2813  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2814  * zone's subsystem-specific reference counters are not affected by the
2815  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2816  * removed from the specified zone's reference list.  ref must be non-NULL iff
2817  * subsys is not ZONE_REF_NUM_SUBSYS.
2818  */
2819 static void
2820 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2821 {
2822 	boolean_t wakeup;
2823 
2824 	mutex_enter(&z->zone_lock);
2825 	ASSERT(z->zone_ref != 0);
2826 	z->zone_ref--;
2827 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2828 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2829 		z->zone_subsys_ref[subsys]--;
2830 		list_remove(&z->zone_ref_list, ref);
2831 	}
2832 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2833 		/* no more refs, free the structure */
2834 		mutex_exit(&z->zone_lock);
2835 		zone_free(z);
2836 		return;
2837 	}
2838 	/* signal zone_destroy so the zone can finish halting */
2839 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2840 	mutex_exit(&z->zone_lock);
2841 
2842 	if (wakeup) {
2843 		/*
2844 		 * Grabbing zonehash_lock here effectively synchronizes with
2845 		 * zone_destroy() to avoid missed signals.
2846 		 */
2847 		mutex_enter(&zonehash_lock);
2848 		cv_broadcast(&zone_destroy_cv);
2849 		mutex_exit(&zonehash_lock);
2850 	}
2851 }
2852 
2853 /*
2854  * Decrement the specified zone's reference count.  The specified zone will
2855  * cease to exist after this function returns if the reference count drops to
2856  * zero.  This function should be paired with zone_hold().
2857  */
2858 void
2859 zone_rele(zone_t *z)
2860 {
2861 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2862 }
2863 
2864 /*
2865  * Initialize a zone reference structure.  This function must be invoked for
2866  * a reference structure before the structure is passed to zone_hold_ref().
2867  */
2868 void
2869 zone_init_ref(zone_ref_t *ref)
2870 {
2871 	ref->zref_zone = NULL;
2872 	list_link_init(&ref->zref_linkage);
2873 }
2874 
2875 /*
2876  * Acquire a reference to zone z.  The caller must specify the
2877  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2878  * zone_ref_t structure will represent a reference to the specified zone.  Use
2879  * zone_rele_ref() to release the reference.
2880  *
2881  * The referenced zone_t structure will not be freed as long as the zone_t's
2882  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2883  * references.
2884  *
2885  * NOTE: The zone_ref_t structure must be initialized before it is used.
2886  * See zone_init_ref() above.
2887  */
2888 void
2889 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2890 {
2891 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2892 
2893 	/*
2894 	 * Prevent consumers from reusing a reference structure before
2895 	 * releasing it.
2896 	 */
2897 	VERIFY(ref->zref_zone == NULL);
2898 
2899 	ref->zref_zone = z;
2900 	mutex_enter(&z->zone_lock);
2901 	zone_hold_locked(z);
2902 	z->zone_subsys_ref[subsys]++;
2903 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2904 	list_insert_head(&z->zone_ref_list, ref);
2905 	mutex_exit(&z->zone_lock);
2906 }
2907 
2908 /*
2909  * Release the zone reference represented by the specified zone_ref_t.
2910  * The reference is invalid after it's released; however, the zone_ref_t
2911  * structure can be reused without having to invoke zone_init_ref().
2912  * subsys should be the same value that was passed to zone_hold_ref()
2913  * when the reference was acquired.
2914  */
2915 void
2916 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2917 {
2918 	zone_rele_common(ref->zref_zone, ref, subsys);
2919 
2920 	/*
2921 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2922 	 * when consumers dereference the reference.  This helps us catch
2923 	 * consumers who use released references.  Furthermore, this lets
2924 	 * consumers reuse the zone_ref_t structure without having to
2925 	 * invoke zone_init_ref().
2926 	 */
2927 	ref->zref_zone = NULL;
2928 }
2929 
2930 void
2931 zone_cred_hold(zone_t *z)
2932 {
2933 	mutex_enter(&z->zone_lock);
2934 	z->zone_cred_ref++;
2935 	ASSERT(z->zone_cred_ref != 0);
2936 	mutex_exit(&z->zone_lock);
2937 }
2938 
2939 void
2940 zone_cred_rele(zone_t *z)
2941 {
2942 	boolean_t wakeup;
2943 
2944 	mutex_enter(&z->zone_lock);
2945 	ASSERT(z->zone_cred_ref != 0);
2946 	z->zone_cred_ref--;
2947 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2948 		/* no more refs, free the structure */
2949 		mutex_exit(&z->zone_lock);
2950 		zone_free(z);
2951 		return;
2952 	}
2953 	/*
2954 	 * If zone_destroy is waiting for the cred references to drain
2955 	 * out, and they have, signal it.
2956 	 */
2957 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2958 	    zone_status_get(z) >= ZONE_IS_DEAD);
2959 	mutex_exit(&z->zone_lock);
2960 
2961 	if (wakeup) {
2962 		/*
2963 		 * Grabbing zonehash_lock here effectively synchronizes with
2964 		 * zone_destroy() to avoid missed signals.
2965 		 */
2966 		mutex_enter(&zonehash_lock);
2967 		cv_broadcast(&zone_destroy_cv);
2968 		mutex_exit(&zonehash_lock);
2969 	}
2970 }
2971 
2972 void
2973 zone_task_hold(zone_t *z)
2974 {
2975 	mutex_enter(&z->zone_lock);
2976 	z->zone_ntasks++;
2977 	ASSERT(z->zone_ntasks != 0);
2978 	mutex_exit(&z->zone_lock);
2979 }
2980 
2981 void
2982 zone_task_rele(zone_t *zone)
2983 {
2984 	uint_t refcnt;
2985 
2986 	mutex_enter(&zone->zone_lock);
2987 	ASSERT(zone->zone_ntasks != 0);
2988 	refcnt = --zone->zone_ntasks;
2989 	if (refcnt > 1)	{	/* Common case */
2990 		mutex_exit(&zone->zone_lock);
2991 		return;
2992 	}
2993 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2994 	mutex_exit(&zone->zone_lock);
2995 	if (refcnt == 1) {
2996 		/*
2997 		 * See if the zone is shutting down.
2998 		 */
2999 		mutex_enter(&zone_status_lock);
3000 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
3001 			goto out;
3002 		}
3003 
3004 		/*
3005 		 * Make sure the ntasks didn't change since we
3006 		 * dropped zone_lock.
3007 		 */
3008 		mutex_enter(&zone->zone_lock);
3009 		if (refcnt != zone->zone_ntasks) {
3010 			mutex_exit(&zone->zone_lock);
3011 			goto out;
3012 		}
3013 		mutex_exit(&zone->zone_lock);
3014 
3015 		/*
3016 		 * No more user processes in the zone.  The zone is empty.
3017 		 */
3018 		zone_status_set(zone, ZONE_IS_EMPTY);
3019 		goto out;
3020 	}
3021 
3022 	ASSERT(refcnt == 0);
3023 	/*
3024 	 * zsched has exited; the zone is dead.
3025 	 */
3026 	zone->zone_zsched = NULL;		/* paranoia */
3027 	mutex_enter(&zone_status_lock);
3028 	zone_status_set(zone, ZONE_IS_DEAD);
3029 out:
3030 	mutex_exit(&zone_status_lock);
3031 	zone_rele(zone);
3032 }
3033 
3034 zoneid_t
3035 getzoneid(void)
3036 {
3037 	return (curproc->p_zone->zone_id);
3038 }
3039 
3040 /*
3041  * Internal versions of zone_find_by_*().  These don't zone_hold() or
3042  * check the validity of a zone's state.
3043  */
3044 static zone_t *
3045 zone_find_all_by_id(zoneid_t zoneid)
3046 {
3047 	mod_hash_val_t hv;
3048 	zone_t *zone = NULL;
3049 
3050 	ASSERT(MUTEX_HELD(&zonehash_lock));
3051 
3052 	if (mod_hash_find(zonehashbyid,
3053 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
3054 		zone = (zone_t *)hv;
3055 	return (zone);
3056 }
3057 
3058 static zone_t *
3059 zone_find_all_by_label(const ts_label_t *label)
3060 {
3061 	mod_hash_val_t hv;
3062 	zone_t *zone = NULL;
3063 
3064 	ASSERT(MUTEX_HELD(&zonehash_lock));
3065 
3066 	/*
3067 	 * zonehashbylabel is not maintained for unlabeled systems
3068 	 */
3069 	if (!is_system_labeled())
3070 		return (NULL);
3071 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
3072 		zone = (zone_t *)hv;
3073 	return (zone);
3074 }
3075 
3076 static zone_t *
3077 zone_find_all_by_name(char *name)
3078 {
3079 	mod_hash_val_t hv;
3080 	zone_t *zone = NULL;
3081 
3082 	ASSERT(MUTEX_HELD(&zonehash_lock));
3083 
3084 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3085 		zone = (zone_t *)hv;
3086 	return (zone);
3087 }
3088 
3089 /*
3090  * Public interface for looking up a zone by zoneid.  Only returns the zone if
3091  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3092  * Caller must call zone_rele() once it is done with the zone.
3093  *
3094  * The zone may begin the zone_destroy() sequence immediately after this
3095  * function returns, but may be safely used until zone_rele() is called.
3096  */
3097 zone_t *
3098 zone_find_by_id(zoneid_t zoneid)
3099 {
3100 	zone_t *zone;
3101 	zone_status_t status;
3102 
3103 	mutex_enter(&zonehash_lock);
3104 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3105 		mutex_exit(&zonehash_lock);
3106 		return (NULL);
3107 	}
3108 	status = zone_status_get(zone);
3109 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3110 		/*
3111 		 * For all practical purposes the zone doesn't exist.
3112 		 */
3113 		mutex_exit(&zonehash_lock);
3114 		return (NULL);
3115 	}
3116 	zone_hold(zone);
3117 	mutex_exit(&zonehash_lock);
3118 	return (zone);
3119 }
3120 
3121 /*
3122  * Similar to zone_find_by_id, but using zone label as the key.
3123  */
3124 zone_t *
3125 zone_find_by_label(const ts_label_t *label)
3126 {
3127 	zone_t *zone;
3128 	zone_status_t status;
3129 
3130 	mutex_enter(&zonehash_lock);
3131 	if ((zone = zone_find_all_by_label(label)) == NULL) {
3132 		mutex_exit(&zonehash_lock);
3133 		return (NULL);
3134 	}
3135 
3136 	status = zone_status_get(zone);
3137 	if (status > ZONE_IS_DOWN) {
3138 		/*
3139 		 * For all practical purposes the zone doesn't exist.
3140 		 */
3141 		mutex_exit(&zonehash_lock);
3142 		return (NULL);
3143 	}
3144 	zone_hold(zone);
3145 	mutex_exit(&zonehash_lock);
3146 	return (zone);
3147 }
3148 
3149 /*
3150  * Similar to zone_find_by_id, but using zone name as the key.
3151  */
3152 zone_t *
3153 zone_find_by_name(char *name)
3154 {
3155 	zone_t *zone;
3156 	zone_status_t status;
3157 
3158 	mutex_enter(&zonehash_lock);
3159 	if ((zone = zone_find_all_by_name(name)) == NULL) {
3160 		mutex_exit(&zonehash_lock);
3161 		return (NULL);
3162 	}
3163 	status = zone_status_get(zone);
3164 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3165 		/*
3166 		 * For all practical purposes the zone doesn't exist.
3167 		 */
3168 		mutex_exit(&zonehash_lock);
3169 		return (NULL);
3170 	}
3171 	zone_hold(zone);
3172 	mutex_exit(&zonehash_lock);
3173 	return (zone);
3174 }
3175 
3176 /*
3177  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3178  * if there is a zone "foo" rooted at /foo/root, and the path argument
3179  * is "/foo/root/proc", it will return the held zone_t corresponding to
3180  * zone "foo".
3181  *
3182  * zone_find_by_path() always returns a non-NULL value, since at the
3183  * very least every path will be contained in the global zone.
3184  *
3185  * As with the other zone_find_by_*() functions, the caller is
3186  * responsible for zone_rele()ing the return value of this function.
3187  */
3188 zone_t *
3189 zone_find_by_path(const char *path)
3190 {
3191 	zone_t *zone;
3192 	zone_t *zret = NULL;
3193 	zone_status_t status;
3194 
3195 	if (path == NULL) {
3196 		/*
3197 		 * Call from rootconf().
3198 		 */
3199 		zone_hold(global_zone);
3200 		return (global_zone);
3201 	}
3202 	ASSERT(*path == '/');
3203 	mutex_enter(&zonehash_lock);
3204 	for (zone = list_head(&zone_active); zone != NULL;
3205 	    zone = list_next(&zone_active, zone)) {
3206 		if (ZONE_PATH_VISIBLE(path, zone))
3207 			zret = zone;
3208 	}
3209 	ASSERT(zret != NULL);
3210 	status = zone_status_get(zret);
3211 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3212 		/*
3213 		 * Zone practically doesn't exist.
3214 		 */
3215 		zret = global_zone;
3216 	}
3217 	zone_hold(zret);
3218 	mutex_exit(&zonehash_lock);
3219 	return (zret);
3220 }
3221 
3222 /*
3223  * Public interface for updating per-zone load averages.  Called once per
3224  * second.
3225  *
3226  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3227  */
3228 void
3229 zone_loadavg_update(void)
3230 {
3231 	zone_t *zp;
3232 	zone_status_t status;
3233 	struct loadavg_s *lavg;
3234 	hrtime_t zone_total;
3235 	uint64_t tmp;
3236 	int i;
3237 	hrtime_t hr_avg;
3238 	int nrun;
3239 	static int64_t f[3] = { 135, 27, 9 };
3240 	int64_t q, r;
3241 
3242 	mutex_enter(&zonehash_lock);
3243 	for (zp = list_head(&zone_active); zp != NULL;
3244 	    zp = list_next(&zone_active, zp)) {
3245 		mutex_enter(&zp->zone_lock);
3246 
3247 		/* Skip zones that are on the way down or not yet up */
3248 		status = zone_status_get(zp);
3249 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3250 			/* For all practical purposes the zone doesn't exist. */
3251 			mutex_exit(&zp->zone_lock);
3252 			continue;
3253 		}
3254 
3255 		/*
3256 		 * Update the 10 second moving average data in zone_loadavg.
3257 		 */
3258 		lavg = &zp->zone_loadavg;
3259 
3260 		tmp = cpu_uarray_sum_all(zp->zone_ustate);
3261 		zone_total = UINT64_OVERFLOW_TO_INT64(tmp);
3262 
3263 		scalehrtime(&zone_total);
3264 
3265 		/* The zone_total should always be increasing. */
3266 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3267 		    zone_total - lavg->lg_total : 0;
3268 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3269 		/* lg_total holds the prev. 1 sec. total */
3270 		lavg->lg_total = zone_total;
3271 
3272 		/*
3273 		 * To simplify the calculation, we don't calculate the load avg.
3274 		 * until the zone has been up for at least 10 seconds and our
3275 		 * moving average is thus full.
3276 		 */
3277 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3278 			lavg->lg_len++;
3279 			mutex_exit(&zp->zone_lock);
3280 			continue;
3281 		}
3282 
3283 		/* Now calculate the 1min, 5min, 15 min load avg. */
3284 		hr_avg = 0;
3285 		for (i = 0; i < S_LOADAVG_SZ; i++)
3286 			hr_avg += lavg->lg_loads[i];
3287 		hr_avg = hr_avg / S_LOADAVG_SZ;
3288 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3289 
3290 		/* Compute load avg. See comment in calcloadavg() */
3291 		for (i = 0; i < 3; i++) {
3292 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3293 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3294 			zp->zone_hp_avenrun[i] +=
3295 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3296 
3297 			/* avenrun[] can only hold 31 bits of load avg. */
3298 			if (zp->zone_hp_avenrun[i] <
3299 			    ((uint64_t)1<<(31+16-FSHIFT)))
3300 				zp->zone_avenrun[i] = (int32_t)
3301 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3302 			else
3303 				zp->zone_avenrun[i] = 0x7fffffff;
3304 		}
3305 
3306 		mutex_exit(&zp->zone_lock);
3307 	}
3308 	mutex_exit(&zonehash_lock);
3309 }
3310 
3311 /*
3312  * Get the number of cpus visible to this zone.  The system-wide global
3313  * 'ncpus' is returned if pools are disabled, the caller is in the
3314  * global zone, or a NULL zone argument is passed in.
3315  */
3316 int
3317 zone_ncpus_get(zone_t *zone)
3318 {
3319 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3320 
3321 	return (myncpus != 0 ? myncpus : ncpus);
3322 }
3323 
3324 /*
3325  * Get the number of online cpus visible to this zone.  The system-wide
3326  * global 'ncpus_online' is returned if pools are disabled, the caller
3327  * is in the global zone, or a NULL zone argument is passed in.
3328  */
3329 int
3330 zone_ncpus_online_get(zone_t *zone)
3331 {
3332 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3333 
3334 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3335 }
3336 
3337 /*
3338  * Return the pool to which the zone is currently bound.
3339  */
3340 pool_t *
3341 zone_pool_get(zone_t *zone)
3342 {
3343 	ASSERT(pool_lock_held());
3344 
3345 	return (zone->zone_pool);
3346 }
3347 
3348 /*
3349  * Set the zone's pool pointer and update the zone's visibility to match
3350  * the resources in the new pool.
3351  */
3352 void
3353 zone_pool_set(zone_t *zone, pool_t *pool)
3354 {
3355 	ASSERT(pool_lock_held());
3356 	ASSERT(MUTEX_HELD(&cpu_lock));
3357 
3358 	zone->zone_pool = pool;
3359 	zone_pset_set(zone, pool->pool_pset->pset_id);
3360 }
3361 
3362 /*
3363  * Return the cached value of the id of the processor set to which the
3364  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3365  * facility is disabled.
3366  */
3367 psetid_t
3368 zone_pset_get(zone_t *zone)
3369 {
3370 	ASSERT(MUTEX_HELD(&cpu_lock));
3371 
3372 	return (zone->zone_psetid);
3373 }
3374 
3375 /*
3376  * Set the cached value of the id of the processor set to which the zone
3377  * is currently bound.  Also update the zone's visibility to match the
3378  * resources in the new processor set.
3379  */
3380 void
3381 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3382 {
3383 	psetid_t oldpsetid;
3384 
3385 	ASSERT(MUTEX_HELD(&cpu_lock));
3386 	oldpsetid = zone_pset_get(zone);
3387 
3388 	if (oldpsetid == newpsetid)
3389 		return;
3390 	/*
3391 	 * Global zone sees all.
3392 	 */
3393 	if (zone != global_zone) {
3394 		zone->zone_psetid = newpsetid;
3395 		if (newpsetid != ZONE_PS_INVAL)
3396 			pool_pset_visibility_add(newpsetid, zone);
3397 		if (oldpsetid != ZONE_PS_INVAL)
3398 			pool_pset_visibility_remove(oldpsetid, zone);
3399 	}
3400 	/*
3401 	 * Disabling pools, so we should start using the global values
3402 	 * for ncpus and ncpus_online.
3403 	 */
3404 	if (newpsetid == ZONE_PS_INVAL) {
3405 		zone->zone_ncpus = 0;
3406 		zone->zone_ncpus_online = 0;
3407 	}
3408 }
3409 
3410 /*
3411  * Walk the list of active zones and issue the provided callback for
3412  * each of them.
3413  *
3414  * Caller must not be holding any locks that may be acquired under
3415  * zonehash_lock.  See comment at the beginning of the file for a list of
3416  * common locks and their interactions with zones.
3417  */
3418 int
3419 zone_walk(int (*cb)(zone_t *, void *), void *data)
3420 {
3421 	zone_t *zone;
3422 	int ret = 0;
3423 	zone_status_t status;
3424 
3425 	mutex_enter(&zonehash_lock);
3426 	for (zone = list_head(&zone_active); zone != NULL;
3427 	    zone = list_next(&zone_active, zone)) {
3428 		/*
3429 		 * Skip zones that shouldn't be externally visible.
3430 		 */
3431 		status = zone_status_get(zone);
3432 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3433 			continue;
3434 		/*
3435 		 * Bail immediately if any callback invocation returns a
3436 		 * non-zero value.
3437 		 */
3438 		ret = (*cb)(zone, data);
3439 		if (ret != 0)
3440 			break;
3441 	}
3442 	mutex_exit(&zonehash_lock);
3443 	return (ret);
3444 }
3445 
3446 static int
3447 zone_set_root(zone_t *zone, const char *upath)
3448 {
3449 	vnode_t *vp;
3450 	int trycount;
3451 	int error = 0;
3452 	char *path;
3453 	struct pathname upn, pn;
3454 	size_t pathlen;
3455 
3456 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3457 		return (error);
3458 
3459 	pn_alloc(&pn);
3460 
3461 	/* prevent infinite loop */
3462 	trycount = 10;
3463 	for (;;) {
3464 		if (--trycount <= 0) {
3465 			error = ESTALE;
3466 			goto out;
3467 		}
3468 
3469 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3470 			/*
3471 			 * VOP_ACCESS() may cover 'vp' with a new
3472 			 * filesystem, if 'vp' is an autoFS vnode.
3473 			 * Get the new 'vp' if so.
3474 			 */
3475 			if ((error =
3476 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3477 			    (!vn_ismntpt(vp) ||
3478 			    (error = traverse(&vp)) == 0)) {
3479 				pathlen = pn.pn_pathlen + 2;
3480 				path = kmem_alloc(pathlen, KM_SLEEP);
3481 				(void) strncpy(path, pn.pn_path,
3482 				    pn.pn_pathlen + 1);
3483 				path[pathlen - 2] = '/';
3484 				path[pathlen - 1] = '\0';
3485 				pn_free(&pn);
3486 				pn_free(&upn);
3487 
3488 				/* Success! */
3489 				break;
3490 			}
3491 			VN_RELE(vp);
3492 		}
3493 		if (error != ESTALE)
3494 			goto out;
3495 	}
3496 
3497 	ASSERT(error == 0);
3498 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3499 	zone->zone_rootpath = path;
3500 	zone->zone_rootpathlen = pathlen;
3501 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3502 		zone->zone_flags |= ZF_IS_SCRATCH;
3503 	return (0);
3504 
3505 out:
3506 	pn_free(&pn);
3507 	pn_free(&upn);
3508 	return (error);
3509 }
3510 
3511 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3512 			((c) >= 'a' && (c) <= 'z') || \
3513 			((c) >= 'A' && (c) <= 'Z'))
3514 
3515 static int
3516 zone_set_name(zone_t *zone, const char *uname)
3517 {
3518 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3519 	size_t len;
3520 	int i, err;
3521 
3522 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3523 		kmem_free(kname, ZONENAME_MAX);
3524 		return (err);	/* EFAULT or ENAMETOOLONG */
3525 	}
3526 
3527 	/* must be less than ZONENAME_MAX */
3528 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3529 		kmem_free(kname, ZONENAME_MAX);
3530 		return (EINVAL);
3531 	}
3532 
3533 	/*
3534 	 * Name must start with an alphanumeric and must contain only
3535 	 * alphanumerics, '-', '_' and '.'.
3536 	 */
3537 	if (!isalnum(kname[0])) {
3538 		kmem_free(kname, ZONENAME_MAX);
3539 		return (EINVAL);
3540 	}
3541 	for (i = 1; i < len - 1; i++) {
3542 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3543 		    kname[i] != '.') {
3544 			kmem_free(kname, ZONENAME_MAX);
3545 			return (EINVAL);
3546 		}
3547 	}
3548 
3549 	zone->zone_name = kname;
3550 	return (0);
3551 }
3552 
3553 /*
3554  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3555  * is NULL or it points to a zone with no hostid emulation, then the machine's
3556  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3557  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3558  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3559  * hostid and the machine's hostid is invalid.
3560  */
3561 uint32_t
3562 zone_get_hostid(zone_t *zonep)
3563 {
3564 	unsigned long machine_hostid;
3565 
3566 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3567 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3568 			return (HW_INVALID_HOSTID);
3569 		return ((uint32_t)machine_hostid);
3570 	}
3571 	return (zonep->zone_hostid);
3572 }
3573 
3574 /*
3575  * Similar to thread_create(), but makes sure the thread is in the appropriate
3576  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3577  */
3578 /*ARGSUSED*/
3579 kthread_t *
3580 zthread_create(
3581     caddr_t stk,
3582     size_t stksize,
3583     void (*proc)(),
3584     void *arg,
3585     size_t len,
3586     pri_t pri)
3587 {
3588 	kthread_t *t;
3589 	zone_t *zone = curproc->p_zone;
3590 	proc_t *pp = zone->zone_zsched;
3591 
3592 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3593 
3594 	/*
3595 	 * No-one should be trying to create threads if the zone is shutting
3596 	 * down and there aren't any kernel threads around.  See comment
3597 	 * in zthread_exit().
3598 	 */
3599 	ASSERT(!(zone->zone_kthreads == NULL &&
3600 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3601 	/*
3602 	 * Create a thread, but don't let it run until we've finished setting
3603 	 * things up.
3604 	 */
3605 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3606 	ASSERT(t->t_forw == NULL);
3607 	mutex_enter(&zone_status_lock);
3608 	if (zone->zone_kthreads == NULL) {
3609 		t->t_forw = t->t_back = t;
3610 	} else {
3611 		kthread_t *tx = zone->zone_kthreads;
3612 
3613 		t->t_forw = tx;
3614 		t->t_back = tx->t_back;
3615 		tx->t_back->t_forw = t;
3616 		tx->t_back = t;
3617 	}
3618 	zone->zone_kthreads = t;
3619 	mutex_exit(&zone_status_lock);
3620 
3621 	mutex_enter(&pp->p_lock);
3622 	t->t_proc_flag |= TP_ZTHREAD;
3623 	project_rele(t->t_proj);
3624 	t->t_proj = project_hold(pp->p_task->tk_proj);
3625 
3626 	/*
3627 	 * Setup complete, let it run.
3628 	 */
3629 	thread_lock(t);
3630 	t->t_schedflag |= TS_ALLSTART;
3631 	setrun_locked(t);
3632 	thread_unlock(t);
3633 
3634 	mutex_exit(&pp->p_lock);
3635 
3636 	return (t);
3637 }
3638 
3639 /*
3640  * Similar to thread_exit().  Must be called by threads created via
3641  * zthread_exit().
3642  */
3643 void
3644 zthread_exit(void)
3645 {
3646 	kthread_t *t = curthread;
3647 	proc_t *pp = curproc;
3648 	zone_t *zone = pp->p_zone;
3649 
3650 	mutex_enter(&zone_status_lock);
3651 
3652 	/*
3653 	 * Reparent to p0
3654 	 */
3655 	kpreempt_disable();
3656 	mutex_enter(&pp->p_lock);
3657 	t->t_proc_flag &= ~TP_ZTHREAD;
3658 	t->t_procp = &p0;
3659 	hat_thread_exit(t);
3660 	mutex_exit(&pp->p_lock);
3661 	kpreempt_enable();
3662 
3663 	if (t->t_back == t) {
3664 		ASSERT(t->t_forw == t);
3665 		/*
3666 		 * If the zone is empty, once the thread count
3667 		 * goes to zero no further kernel threads can be
3668 		 * created.  This is because if the creator is a process
3669 		 * in the zone, then it must have exited before the zone
3670 		 * state could be set to ZONE_IS_EMPTY.
3671 		 * Otherwise, if the creator is a kernel thread in the
3672 		 * zone, the thread count is non-zero.
3673 		 *
3674 		 * This really means that non-zone kernel threads should
3675 		 * not create zone kernel threads.
3676 		 */
3677 		zone->zone_kthreads = NULL;
3678 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3679 			zone_status_set(zone, ZONE_IS_DOWN);
3680 			/*
3681 			 * Remove any CPU caps on this zone.
3682 			 */
3683 			cpucaps_zone_remove(zone);
3684 		}
3685 	} else {
3686 		t->t_forw->t_back = t->t_back;
3687 		t->t_back->t_forw = t->t_forw;
3688 		if (zone->zone_kthreads == t)
3689 			zone->zone_kthreads = t->t_forw;
3690 	}
3691 	mutex_exit(&zone_status_lock);
3692 	zone_rele(zone);
3693 	thread_exit();
3694 	/* NOTREACHED */
3695 }
3696 
3697 static void
3698 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3699 {
3700 	vnode_t *oldvp;
3701 
3702 	/* we're going to hold a reference here to the directory */
3703 	VN_HOLD(vp);
3704 
3705 	/* update abs cwd/root path see c2/audit.c */
3706 	if (AU_AUDITING())
3707 		audit_chdirec(vp, vpp);
3708 
3709 	mutex_enter(&pp->p_lock);
3710 	oldvp = *vpp;
3711 	*vpp = vp;
3712 	mutex_exit(&pp->p_lock);
3713 	if (oldvp != NULL)
3714 		VN_RELE(oldvp);
3715 }
3716 
3717 /*
3718  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3719  */
3720 static int
3721 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3722 {
3723 	nvpair_t *nvp = NULL;
3724 	boolean_t priv_set = B_FALSE;
3725 	boolean_t limit_set = B_FALSE;
3726 	boolean_t action_set = B_FALSE;
3727 
3728 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3729 		const char *name;
3730 		uint64_t ui64;
3731 
3732 		name = nvpair_name(nvp);
3733 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3734 			return (EINVAL);
3735 		(void) nvpair_value_uint64(nvp, &ui64);
3736 		if (strcmp(name, "privilege") == 0) {
3737 			/*
3738 			 * Currently only privileged values are allowed, but
3739 			 * this may change in the future.
3740 			 */
3741 			if (ui64 != RCPRIV_PRIVILEGED)
3742 				return (EINVAL);
3743 			rv->rcv_privilege = ui64;
3744 			priv_set = B_TRUE;
3745 		} else if (strcmp(name, "limit") == 0) {
3746 			rv->rcv_value = ui64;
3747 			limit_set = B_TRUE;
3748 		} else if (strcmp(name, "action") == 0) {
3749 			if (ui64 != RCTL_LOCAL_NOACTION &&
3750 			    ui64 != RCTL_LOCAL_DENY)
3751 				return (EINVAL);
3752 			rv->rcv_flagaction = ui64;
3753 			action_set = B_TRUE;
3754 		} else {
3755 			return (EINVAL);
3756 		}
3757 	}
3758 
3759 	if (!(priv_set && limit_set && action_set))
3760 		return (EINVAL);
3761 	rv->rcv_action_signal = 0;
3762 	rv->rcv_action_recipient = NULL;
3763 	rv->rcv_action_recip_pid = -1;
3764 	rv->rcv_firing_time = 0;
3765 
3766 	return (0);
3767 }
3768 
3769 /*
3770  * Non-global zone version of start_init.
3771  */
3772 void
3773 zone_start_init(void)
3774 {
3775 	proc_t *p = ttoproc(curthread);
3776 	zone_t *z = p->p_zone;
3777 
3778 	ASSERT(!INGLOBALZONE(curproc));
3779 
3780 	/*
3781 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3782 	 * storing just the pid of init is sufficient.
3783 	 */
3784 	z->zone_proc_initpid = p->p_pid;
3785 
3786 	/*
3787 	 * We maintain zone_boot_err so that we can return the cause of the
3788 	 * failure back to the caller of the zone_boot syscall.
3789 	 */
3790 	p->p_zone->zone_boot_err = start_init_common();
3791 
3792 	/*
3793 	 * We will prevent booting zones from becoming running zones if the
3794 	 * global zone is shutting down.
3795 	 */
3796 	mutex_enter(&zone_status_lock);
3797 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3798 	    ZONE_IS_SHUTTING_DOWN) {
3799 		/*
3800 		 * Make sure we are still in the booting state-- we could have
3801 		 * raced and already be shutting down, or even further along.
3802 		 */
3803 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3804 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3805 		}
3806 		mutex_exit(&zone_status_lock);
3807 		/* It's gone bad, dispose of the process */
3808 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3809 			mutex_enter(&p->p_lock);
3810 			ASSERT(p->p_flag & SEXITLWPS);
3811 			lwp_exit();
3812 		}
3813 	} else {
3814 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3815 			zone_status_set(z, ZONE_IS_RUNNING);
3816 		mutex_exit(&zone_status_lock);
3817 		/* cause the process to return to userland. */
3818 		lwp_rtt();
3819 	}
3820 }
3821 
3822 struct zsched_arg {
3823 	zone_t *zone;
3824 	nvlist_t *nvlist;
3825 };
3826 
3827 /*
3828  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3829  * anything to do with scheduling, but rather with the fact that
3830  * per-zone kernel threads are parented to zsched, just like regular
3831  * kernel threads are parented to sched (p0).
3832  *
3833  * zsched is also responsible for launching init for the zone.
3834  */
3835 static void
3836 zsched(void *arg)
3837 {
3838 	struct zsched_arg *za = arg;
3839 	proc_t *pp = curproc;
3840 	proc_t *initp = proc_init;
3841 	zone_t *zone = za->zone;
3842 	cred_t *cr, *oldcred;
3843 	rctl_set_t *set;
3844 	rctl_alloc_gp_t *gp;
3845 	contract_t *ct = NULL;
3846 	task_t *tk, *oldtk;
3847 	rctl_entity_p_t e;
3848 	kproject_t *pj;
3849 
3850 	nvlist_t *nvl = za->nvlist;
3851 	nvpair_t *nvp = NULL;
3852 
3853 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3854 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3855 	PTOU(pp)->u_argc = 0;
3856 	PTOU(pp)->u_argv = 0;
3857 	PTOU(pp)->u_envp = 0;
3858 	PTOU(pp)->u_commpagep = 0;
3859 	closeall(P_FINFO(pp));
3860 
3861 	/*
3862 	 * We are this zone's "zsched" process.  As the zone isn't generally
3863 	 * visible yet we don't need to grab any locks before initializing its
3864 	 * zone_proc pointer.
3865 	 */
3866 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3867 	zone->zone_zsched = pp;
3868 	mutex_enter(&pp->p_lock);
3869 	pp->p_zone = zone;
3870 	mutex_exit(&pp->p_lock);
3871 
3872 	/*
3873 	 * Disassociate process from its 'parent'; parent ourselves to init
3874 	 * (pid 1) and change other values as needed.
3875 	 */
3876 	sess_create();
3877 
3878 	mutex_enter(&pidlock);
3879 	proc_detach(pp);
3880 	pp->p_ppid = 1;
3881 	pp->p_flag |= SZONETOP;
3882 	pp->p_ancpid = 1;
3883 	pp->p_parent = initp;
3884 	pp->p_psibling = NULL;
3885 	if (initp->p_child)
3886 		initp->p_child->p_psibling = pp;
3887 	pp->p_sibling = initp->p_child;
3888 	initp->p_child = pp;
3889 
3890 	/* Decrement what newproc() incremented. */
3891 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3892 	/*
3893 	 * Our credentials are about to become kcred-like, so we don't care
3894 	 * about the caller's ruid.
3895 	 */
3896 	upcount_inc(crgetruid(kcred), zone->zone_id);
3897 	mutex_exit(&pidlock);
3898 
3899 	/*
3900 	 * getting out of global zone, so decrement lwp and process counts
3901 	 */
3902 	pj = pp->p_task->tk_proj;
3903 	mutex_enter(&global_zone->zone_nlwps_lock);
3904 	pj->kpj_nlwps -= pp->p_lwpcnt;
3905 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3906 	pj->kpj_nprocs--;
3907 	global_zone->zone_nprocs--;
3908 	mutex_exit(&global_zone->zone_nlwps_lock);
3909 
3910 	/*
3911 	 * Decrement locked memory counts on old zone and project.
3912 	 */
3913 	mutex_enter(&global_zone->zone_mem_lock);
3914 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3915 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3916 	mutex_exit(&global_zone->zone_mem_lock);
3917 
3918 	/*
3919 	 * Create and join a new task in project '0' of this zone.
3920 	 *
3921 	 * We don't need to call holdlwps() since we know we're the only lwp in
3922 	 * this process.
3923 	 *
3924 	 * task_join() returns with p_lock held.
3925 	 */
3926 	tk = task_create(0, zone);
3927 	mutex_enter(&cpu_lock);
3928 	oldtk = task_join(tk, 0);
3929 
3930 	pj = pp->p_task->tk_proj;
3931 
3932 	mutex_enter(&zone->zone_mem_lock);
3933 	zone->zone_locked_mem += pp->p_locked_mem;
3934 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3935 	mutex_exit(&zone->zone_mem_lock);
3936 
3937 	/*
3938 	 * add lwp and process counts to zsched's zone, and increment
3939 	 * project's task and process count due to the task created in
3940 	 * the above task_create.
3941 	 */
3942 	mutex_enter(&zone->zone_nlwps_lock);
3943 	pj->kpj_nlwps += pp->p_lwpcnt;
3944 	pj->kpj_ntasks += 1;
3945 	zone->zone_nlwps += pp->p_lwpcnt;
3946 	pj->kpj_nprocs++;
3947 	zone->zone_nprocs++;
3948 	mutex_exit(&zone->zone_nlwps_lock);
3949 
3950 	mutex_exit(&curproc->p_lock);
3951 	mutex_exit(&cpu_lock);
3952 	task_rele(oldtk);
3953 
3954 	/*
3955 	 * The process was created by a process in the global zone, hence the
3956 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3957 	 */
3958 	cr = zone->zone_kcred;
3959 	crhold(cr);
3960 	mutex_enter(&pp->p_crlock);
3961 	oldcred = pp->p_cred;
3962 	pp->p_cred = cr;
3963 	mutex_exit(&pp->p_crlock);
3964 	crfree(oldcred);
3965 
3966 	/*
3967 	 * Hold credentials again (for thread)
3968 	 */
3969 	crhold(cr);
3970 
3971 	/*
3972 	 * p_lwpcnt can't change since this is a kernel process.
3973 	 */
3974 	crset(pp, cr);
3975 
3976 	/*
3977 	 * Chroot
3978 	 */
3979 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3980 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3981 
3982 	/*
3983 	 * Initialize zone's rctl set.
3984 	 */
3985 	set = rctl_set_create();
3986 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3987 	mutex_enter(&pp->p_lock);
3988 	e.rcep_p.zone = zone;
3989 	e.rcep_t = RCENTITY_ZONE;
3990 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3991 	mutex_exit(&pp->p_lock);
3992 	rctl_prealloc_destroy(gp);
3993 
3994 	/*
3995 	 * Apply the rctls passed in to zone_create().  This is basically a list
3996 	 * assignment: all of the old values are removed and the new ones
3997 	 * inserted.  That is, if an empty list is passed in, all values are
3998 	 * removed.
3999 	 */
4000 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4001 		rctl_dict_entry_t *rde;
4002 		rctl_hndl_t hndl;
4003 		char *name;
4004 		nvlist_t **nvlarray;
4005 		uint_t i, nelem;
4006 		int error;	/* For ASSERT()s */
4007 
4008 		name = nvpair_name(nvp);
4009 		hndl = rctl_hndl_lookup(name);
4010 		ASSERT(hndl != -1);
4011 		rde = rctl_dict_lookup_hndl(hndl);
4012 		ASSERT(rde != NULL);
4013 
4014 		for (; /* ever */; ) {
4015 			rctl_val_t oval;
4016 
4017 			mutex_enter(&pp->p_lock);
4018 			error = rctl_local_get(hndl, NULL, &oval, pp);
4019 			mutex_exit(&pp->p_lock);
4020 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
4021 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
4022 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
4023 				break;
4024 			mutex_enter(&pp->p_lock);
4025 			error = rctl_local_delete(hndl, &oval, pp);
4026 			mutex_exit(&pp->p_lock);
4027 			ASSERT(error == 0);
4028 		}
4029 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4030 		ASSERT(error == 0);
4031 		for (i = 0; i < nelem; i++) {
4032 			rctl_val_t *nvalp;
4033 
4034 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
4035 			error = nvlist2rctlval(nvlarray[i], nvalp);
4036 			ASSERT(error == 0);
4037 			/*
4038 			 * rctl_local_insert can fail if the value being
4039 			 * inserted is a duplicate; this is OK.
4040 			 */
4041 			mutex_enter(&pp->p_lock);
4042 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
4043 				kmem_cache_free(rctl_val_cache, nvalp);
4044 			mutex_exit(&pp->p_lock);
4045 		}
4046 	}
4047 
4048 	/*
4049 	 * Tell the world that we're done setting up.
4050 	 *
4051 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
4052 	 * and atomically set the zone's processor set visibility.  Once
4053 	 * we drop pool_lock() this zone will automatically get updated
4054 	 * to reflect any future changes to the pools configuration.
4055 	 *
4056 	 * Note that after we drop the locks below (zonehash_lock in
4057 	 * particular) other operations such as a zone_getattr call can
4058 	 * now proceed and observe the zone. That is the reason for doing a
4059 	 * state transition to the INITIALIZED state.
4060 	 */
4061 	pool_lock();
4062 	mutex_enter(&cpu_lock);
4063 	mutex_enter(&zonehash_lock);
4064 	zone_uniqid(zone);
4065 	zone_zsd_configure(zone);
4066 	if (pool_state == POOL_ENABLED)
4067 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
4068 	mutex_enter(&zone_status_lock);
4069 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
4070 	zone_status_set(zone, ZONE_IS_INITIALIZED);
4071 	mutex_exit(&zone_status_lock);
4072 	mutex_exit(&zonehash_lock);
4073 	mutex_exit(&cpu_lock);
4074 	pool_unlock();
4075 
4076 	/* Now call the create callback for this key */
4077 	zsd_apply_all_keys(zsd_apply_create, zone);
4078 
4079 	/* The callbacks are complete. Mark ZONE_IS_READY */
4080 	mutex_enter(&zone_status_lock);
4081 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
4082 	zone_status_set(zone, ZONE_IS_READY);
4083 	mutex_exit(&zone_status_lock);
4084 
4085 	/*
4086 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
4087 	 * we launch init, and set the state to running.
4088 	 */
4089 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4090 
4091 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4092 		id_t cid;
4093 
4094 		/*
4095 		 * Ok, this is a little complicated.  We need to grab the
4096 		 * zone's pool's scheduling class ID; note that by now, we
4097 		 * are already bound to a pool if we need to be (zoneadmd
4098 		 * will have done that to us while we're in the READY
4099 		 * state).  *But* the scheduling class for the zone's 'init'
4100 		 * must be explicitly passed to newproc, which doesn't
4101 		 * respect pool bindings.
4102 		 *
4103 		 * We hold the pool_lock across the call to newproc() to
4104 		 * close the obvious race: the pool's scheduling class
4105 		 * could change before we manage to create the LWP with
4106 		 * classid 'cid'.
4107 		 */
4108 		pool_lock();
4109 		if (zone->zone_defaultcid > 0)
4110 			cid = zone->zone_defaultcid;
4111 		else
4112 			cid = pool_get_class(zone->zone_pool);
4113 		if (cid == -1)
4114 			cid = defaultcid;
4115 
4116 		/*
4117 		 * If this fails, zone_boot will ultimately fail.  The
4118 		 * state of the zone will be set to SHUTTING_DOWN-- userland
4119 		 * will have to tear down the zone, and fail, or try again.
4120 		 */
4121 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4122 		    minclsyspri - 1, &ct, 0)) != 0) {
4123 			mutex_enter(&zone_status_lock);
4124 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4125 			mutex_exit(&zone_status_lock);
4126 		} else {
4127 			zone->zone_boot_time = gethrestime_sec();
4128 		}
4129 
4130 		pool_unlock();
4131 	}
4132 
4133 	/*
4134 	 * Wait for zone_destroy() to be called.  This is what we spend
4135 	 * most of our life doing.
4136 	 */
4137 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4138 
4139 	if (ct)
4140 		/*
4141 		 * At this point the process contract should be empty.
4142 		 * (Though if it isn't, it's not the end of the world.)
4143 		 */
4144 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4145 
4146 	/*
4147 	 * Allow kcred to be freed when all referring processes
4148 	 * (including this one) go away.  We can't just do this in
4149 	 * zone_free because we need to wait for the zone_cred_ref to
4150 	 * drop to 0 before calling zone_free, and the existence of
4151 	 * zone_kcred will prevent that.  Thus, we call crfree here to
4152 	 * balance the crdup in zone_create.  The crhold calls earlier
4153 	 * in zsched will be dropped when the thread and process exit.
4154 	 */
4155 	crfree(zone->zone_kcred);
4156 	zone->zone_kcred = NULL;
4157 
4158 	exit(CLD_EXITED, 0);
4159 }
4160 
4161 /*
4162  * Helper function to determine if there are any submounts of the
4163  * provided path.  Used to make sure the zone doesn't "inherit" any
4164  * mounts from before it is created.
4165  */
4166 static uint_t
4167 zone_mount_count(const char *rootpath)
4168 {
4169 	vfs_t *vfsp;
4170 	uint_t count = 0;
4171 	size_t rootpathlen = strlen(rootpath);
4172 
4173 	/*
4174 	 * Holding zonehash_lock prevents race conditions with
4175 	 * vfs_list_add()/vfs_list_remove() since we serialize with
4176 	 * zone_find_by_path().
4177 	 */
4178 	ASSERT(MUTEX_HELD(&zonehash_lock));
4179 	/*
4180 	 * The rootpath must end with a '/'
4181 	 */
4182 	ASSERT(rootpath[rootpathlen - 1] == '/');
4183 
4184 	/*
4185 	 * This intentionally does not count the rootpath itself if that
4186 	 * happens to be a mount point.
4187 	 */
4188 	vfs_list_read_lock();
4189 	vfsp = rootvfs;
4190 	do {
4191 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4192 		    rootpathlen) == 0)
4193 			count++;
4194 		vfsp = vfsp->vfs_next;
4195 	} while (vfsp != rootvfs);
4196 	vfs_list_unlock();
4197 	return (count);
4198 }
4199 
4200 /*
4201  * Helper function to make sure that a zone created on 'rootpath'
4202  * wouldn't end up containing other zones' rootpaths.
4203  */
4204 static boolean_t
4205 zone_is_nested(const char *rootpath)
4206 {
4207 	zone_t *zone;
4208 	size_t rootpathlen = strlen(rootpath);
4209 	size_t len;
4210 
4211 	ASSERT(MUTEX_HELD(&zonehash_lock));
4212 
4213 	/*
4214 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
4215 	 */
4216 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4217 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
4218 		return (B_TRUE);
4219 
4220 	for (zone = list_head(&zone_active); zone != NULL;
4221 	    zone = list_next(&zone_active, zone)) {
4222 		if (zone == global_zone)
4223 			continue;
4224 		len = strlen(zone->zone_rootpath);
4225 		if (strncmp(rootpath, zone->zone_rootpath,
4226 		    MIN(rootpathlen, len)) == 0)
4227 			return (B_TRUE);
4228 	}
4229 	return (B_FALSE);
4230 }
4231 
4232 static int
4233 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4234     size_t zone_privssz)
4235 {
4236 	priv_set_t *privs;
4237 
4238 	if (zone_privssz < sizeof (priv_set_t))
4239 		return (ENOMEM);
4240 
4241 	privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4242 
4243 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4244 		kmem_free(privs, sizeof (priv_set_t));
4245 		return (EFAULT);
4246 	}
4247 
4248 	zone->zone_privset = privs;
4249 	return (0);
4250 }
4251 
4252 /*
4253  * We make creative use of nvlists to pass in rctls from userland.  The list is
4254  * a list of the following structures:
4255  *
4256  * (name = rctl_name, value = nvpair_list_array)
4257  *
4258  * Where each element of the nvpair_list_array is of the form:
4259  *
4260  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4261  *	(name = "limit", value = uint64_t),
4262  *	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4263  */
4264 static int
4265 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4266 {
4267 	nvpair_t *nvp = NULL;
4268 	nvlist_t *nvl = NULL;
4269 	char *kbuf;
4270 	int error;
4271 	rctl_val_t rv;
4272 
4273 	*nvlp = NULL;
4274 
4275 	if (buflen == 0)
4276 		return (0);
4277 
4278 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4279 		return (ENOMEM);
4280 	if (copyin(ubuf, kbuf, buflen)) {
4281 		error = EFAULT;
4282 		goto out;
4283 	}
4284 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4285 		/*
4286 		 * nvl may have been allocated/free'd, but the value set to
4287 		 * non-NULL, so we reset it here.
4288 		 */
4289 		nvl = NULL;
4290 		error = EINVAL;
4291 		goto out;
4292 	}
4293 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4294 		rctl_dict_entry_t *rde;
4295 		rctl_hndl_t hndl;
4296 		nvlist_t **nvlarray;
4297 		uint_t i, nelem;
4298 		char *name;
4299 
4300 		error = EINVAL;
4301 		name = nvpair_name(nvp);
4302 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4303 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4304 			goto out;
4305 		}
4306 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
4307 			goto out;
4308 		}
4309 		rde = rctl_dict_lookup_hndl(hndl);
4310 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4311 		ASSERT(error == 0);
4312 		for (i = 0; i < nelem; i++) {
4313 			if (error = nvlist2rctlval(nvlarray[i], &rv))
4314 				goto out;
4315 		}
4316 		if (rctl_invalid_value(rde, &rv)) {
4317 			error = EINVAL;
4318 			goto out;
4319 		}
4320 	}
4321 	error = 0;
4322 	*nvlp = nvl;
4323 out:
4324 	kmem_free(kbuf, buflen);
4325 	if (error && nvl != NULL)
4326 		nvlist_free(nvl);
4327 	return (error);
4328 }
4329 
4330 int
4331 zone_create_error(int er_error, int er_ext, int *er_out)
4332 {
4333 	if (er_out != NULL) {
4334 		if (copyout(&er_ext, er_out, sizeof (int))) {
4335 			return (set_errno(EFAULT));
4336 		}
4337 	}
4338 	return (set_errno(er_error));
4339 }
4340 
4341 static int
4342 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4343 {
4344 	ts_label_t *tsl;
4345 	bslabel_t blab;
4346 
4347 	/* Get label from user */
4348 	if (copyin(lab, &blab, sizeof (blab)) != 0)
4349 		return (EFAULT);
4350 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4351 	if (tsl == NULL)
4352 		return (ENOMEM);
4353 
4354 	zone->zone_slabel = tsl;
4355 	return (0);
4356 }
4357 
4358 /*
4359  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4360  */
4361 static int
4362 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4363 {
4364 	char *kbuf;
4365 	char *dataset, *next;
4366 	zone_dataset_t *zd;
4367 	size_t len;
4368 
4369 	if (ubuf == NULL || buflen == 0)
4370 		return (0);
4371 
4372 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4373 		return (ENOMEM);
4374 
4375 	if (copyin(ubuf, kbuf, buflen) != 0) {
4376 		kmem_free(kbuf, buflen);
4377 		return (EFAULT);
4378 	}
4379 
4380 	dataset = next = kbuf;
4381 	for (;;) {
4382 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4383 
4384 		next = strchr(dataset, ',');
4385 
4386 		if (next == NULL)
4387 			len = strlen(dataset);
4388 		else
4389 			len = next - dataset;
4390 
4391 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4392 		bcopy(dataset, zd->zd_dataset, len);
4393 		zd->zd_dataset[len] = '\0';
4394 
4395 		list_insert_head(&zone->zone_datasets, zd);
4396 
4397 		if (next == NULL)
4398 			break;
4399 
4400 		dataset = next + 1;
4401 	}
4402 
4403 	kmem_free(kbuf, buflen);
4404 	return (0);
4405 }
4406 
4407 /*
4408  * System call to create/initialize a new zone named 'zone_name', rooted
4409  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4410  * and initialized with the zone-wide rctls described in 'rctlbuf', and
4411  * with labeling set by 'match', 'doi', and 'label'.
4412  *
4413  * If extended error is non-null, we may use it to return more detailed
4414  * error information.
4415  */
4416 static zoneid_t
4417 zone_create(const char *zone_name, const char *zone_root,
4418     const priv_set_t *zone_privs, size_t zone_privssz,
4419     caddr_t rctlbuf, size_t rctlbufsz,
4420     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4421     int match, uint32_t doi, const bslabel_t *label,
4422     int flags)
4423 {
4424 	struct zsched_arg zarg;
4425 	nvlist_t *rctls = NULL;
4426 	proc_t *pp = curproc;
4427 	zone_t *zone, *ztmp;
4428 	zoneid_t zoneid, start = GLOBAL_ZONEID;
4429 	int error;
4430 	int error2 = 0;
4431 	char *str;
4432 	cred_t *zkcr;
4433 	boolean_t insert_label_hash;
4434 
4435 	if (secpolicy_zone_config(CRED()) != 0)
4436 		return (set_errno(EPERM));
4437 
4438 	/* can't boot zone from within chroot environment */
4439 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4440 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4441 		    extended_error));
4442 	/*
4443 	 * As the first step of zone creation, we want to allocate a zoneid.
4444 	 * This allocation is complicated by the fact that netstacks use the
4445 	 * zoneid to determine their stackid, but netstacks themselves are
4446 	 * freed asynchronously with respect to zone destruction.  This means
4447 	 * that a netstack reference leak (or in principle, an extraordinarily
4448 	 * long netstack reference hold) could result in a zoneid being
4449 	 * allocated that in fact corresponds to a stackid from an active
4450 	 * (referenced) netstack -- unleashing all sorts of havoc when that
4451 	 * netstack is actually (re)used.  (In the abstract, we might wish a
4452 	 * zoneid to not be deallocated until its last referencing netstack
4453 	 * has been released, but netstacks lack a backpointer into their
4454 	 * referencing zone -- and changing them to have such a pointer would
4455 	 * be substantial, to put it euphemistically.)  To avoid this, we
4456 	 * detect this condition on allocation: if we have allocated a zoneid
4457 	 * that corresponds to a netstack that's still in use, we warn about
4458 	 * it (as it is much more likely to be a reference leak than an actual
4459 	 * netstack reference), free it, and allocate another.  That these
4460 	 * identifers are allocated out of an ID space assures that we won't
4461 	 * see the identifier we just allocated.
4462 	 */
4463 	for (;;) {
4464 		zoneid = id_alloc(zoneid_space);
4465 
4466 		if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid)))
4467 			break;
4468 
4469 		id_free(zoneid_space, zoneid);
4470 
4471 		if (start == GLOBAL_ZONEID) {
4472 			start = zoneid;
4473 		} else if (zoneid == start) {
4474 			/*
4475 			 * We have managed to iterate over the entire available
4476 			 * zoneid space -- there are no identifiers available,
4477 			 * presumably due to some number of leaked netstack
4478 			 * references.  While it's in principle possible for us
4479 			 * to continue to try, it seems wiser to give up at
4480 			 * this point to warn and fail explicitly with a
4481 			 * distinctive error.
4482 			 */
4483 			cmn_err(CE_WARN, "zone_create() failed: all available "
4484 			    "zone IDs have netstacks still in use");
4485 			return (set_errno(ENFILE));
4486 		}
4487 
4488 		cmn_err(CE_WARN, "unable to reuse zone ID %d; "
4489 		    "netstack still in use", zoneid);
4490 	}
4491 
4492 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4493 	zone->zone_id = zoneid;
4494 	zone->zone_status = ZONE_IS_UNINITIALIZED;
4495 	zone->zone_pool = pool_default;
4496 	zone->zone_pool_mod = gethrtime();
4497 	zone->zone_psetid = ZONE_PS_INVAL;
4498 	zone->zone_ncpus = 0;
4499 	zone->zone_ncpus_online = 0;
4500 	zone->zone_restart_init = B_TRUE;
4501 	zone->zone_reboot_on_init_exit = B_FALSE;
4502 	zone->zone_restart_init_0 = B_FALSE;
4503 	zone->zone_brand = &native_brand;
4504 	zone->zone_initname = NULL;
4505 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4506 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4507 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4508 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4509 	list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4510 	    offsetof(zone_ref_t, zref_linkage));
4511 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4512 	    offsetof(struct zsd_entry, zsd_linkage));
4513 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4514 	    offsetof(zone_dataset_t, zd_linkage));
4515 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4516 	    offsetof(zone_dl_t, zdl_linkage));
4517 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4518 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4519 
4520 	if (flags & ZCF_NET_EXCL) {
4521 		zone->zone_flags |= ZF_NET_EXCL;
4522 	}
4523 
4524 	if ((error = zone_set_name(zone, zone_name)) != 0) {
4525 		zone_free(zone);
4526 		return (zone_create_error(error, 0, extended_error));
4527 	}
4528 
4529 	if ((error = zone_set_root(zone, zone_root)) != 0) {
4530 		zone_free(zone);
4531 		return (zone_create_error(error, 0, extended_error));
4532 	}
4533 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4534 		zone_free(zone);
4535 		return (zone_create_error(error, 0, extended_error));
4536 	}
4537 
4538 	/* initialize node name to be the same as zone name */
4539 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4540 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4541 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4542 
4543 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4544 	zone->zone_domain[0] = '\0';
4545 	zone->zone_hostid = HW_INVALID_HOSTID;
4546 	zone->zone_shares = 1;
4547 	zone->zone_shmmax = 0;
4548 	zone->zone_ipc.ipcq_shmmni = 0;
4549 	zone->zone_ipc.ipcq_semmni = 0;
4550 	zone->zone_ipc.ipcq_msgmni = 0;
4551 	zone->zone_bootargs = NULL;
4552 	zone->zone_fs_allowed = NULL;
4553 
4554 	psecflags_default(&zone->zone_secflags);
4555 
4556 	zone->zone_initname =
4557 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4558 	(void) strcpy(zone->zone_initname, zone_default_initname);
4559 	zone->zone_nlwps = 0;
4560 	zone->zone_nlwps_ctl = INT_MAX;
4561 	zone->zone_nprocs = 0;
4562 	zone->zone_nprocs_ctl = INT_MAX;
4563 	zone->zone_locked_mem = 0;
4564 	zone->zone_locked_mem_ctl = UINT64_MAX;
4565 	zone->zone_max_swap = 0;
4566 	zone->zone_max_swap_ctl = UINT64_MAX;
4567 	zone->zone_max_lofi = 0;
4568 	zone->zone_max_lofi_ctl = UINT64_MAX;
4569 	zone0.zone_lockedmem_kstat = NULL;
4570 	zone0.zone_swapresv_kstat = NULL;
4571 
4572 	zone->zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
4573 
4574 	/*
4575 	 * Zsched initializes the rctls.
4576 	 */
4577 	zone->zone_rctls = NULL;
4578 
4579 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4580 		zone_free(zone);
4581 		return (zone_create_error(error, 0, extended_error));
4582 	}
4583 
4584 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4585 		zone_free(zone);
4586 		return (set_errno(error));
4587 	}
4588 
4589 	/*
4590 	 * Read in the trusted system parameters:
4591 	 * match flag and sensitivity label.
4592 	 */
4593 	zone->zone_match = match;
4594 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4595 		/* Fail if requested to set doi to anything but system's doi */
4596 		if (doi != 0 && doi != default_doi) {
4597 			zone_free(zone);
4598 			return (set_errno(EINVAL));
4599 		}
4600 		/* Always apply system's doi to the zone */
4601 		error = zone_set_label(zone, label, default_doi);
4602 		if (error != 0) {
4603 			zone_free(zone);
4604 			return (set_errno(error));
4605 		}
4606 		insert_label_hash = B_TRUE;
4607 	} else {
4608 		/* all zones get an admin_low label if system is not labeled */
4609 		zone->zone_slabel = l_admin_low;
4610 		label_hold(l_admin_low);
4611 		insert_label_hash = B_FALSE;
4612 	}
4613 
4614 	/*
4615 	 * Stop all lwps since that's what normally happens as part of fork().
4616 	 * This needs to happen before we grab any locks to avoid deadlock
4617 	 * (another lwp in the process could be waiting for the held lock).
4618 	 */
4619 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4620 		zone_free(zone);
4621 		nvlist_free(rctls);
4622 		return (zone_create_error(error, 0, extended_error));
4623 	}
4624 
4625 	if (block_mounts(zone) == 0) {
4626 		mutex_enter(&pp->p_lock);
4627 		if (curthread != pp->p_agenttp)
4628 			continuelwps(pp);
4629 		mutex_exit(&pp->p_lock);
4630 		zone_free(zone);
4631 		nvlist_free(rctls);
4632 		return (zone_create_error(error, 0, extended_error));
4633 	}
4634 
4635 	/*
4636 	 * Set up credential for kernel access.  After this, any errors
4637 	 * should go through the dance in errout rather than calling
4638 	 * zone_free directly.
4639 	 */
4640 	zone->zone_kcred = crdup(kcred);
4641 	crsetzone(zone->zone_kcred, zone);
4642 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4643 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4644 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4645 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4646 
4647 	mutex_enter(&zonehash_lock);
4648 	/*
4649 	 * Make sure zone doesn't already exist.
4650 	 *
4651 	 * If the system and zone are labeled,
4652 	 * make sure no other zone exists that has the same label.
4653 	 */
4654 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4655 	    (insert_label_hash &&
4656 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4657 		zone_status_t status;
4658 
4659 		status = zone_status_get(ztmp);
4660 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4661 			error = EEXIST;
4662 		else
4663 			error = EBUSY;
4664 
4665 		if (insert_label_hash)
4666 			error2 = ZE_LABELINUSE;
4667 
4668 		goto errout;
4669 	}
4670 
4671 	/*
4672 	 * Don't allow zone creations which would cause one zone's rootpath to
4673 	 * be accessible from that of another (non-global) zone.
4674 	 */
4675 	if (zone_is_nested(zone->zone_rootpath)) {
4676 		error = EBUSY;
4677 		goto errout;
4678 	}
4679 
4680 	ASSERT(zonecount != 0);		/* check for leaks */
4681 	if (zonecount + 1 > maxzones) {
4682 		error = ENOMEM;
4683 		goto errout;
4684 	}
4685 
4686 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4687 		error = EBUSY;
4688 		error2 = ZE_AREMOUNTS;
4689 		goto errout;
4690 	}
4691 
4692 	/*
4693 	 * Zone is still incomplete, but we need to drop all locks while
4694 	 * zsched() initializes this zone's kernel process.  We
4695 	 * optimistically add the zone to the hashtable and associated
4696 	 * lists so a parallel zone_create() doesn't try to create the
4697 	 * same zone.
4698 	 */
4699 	zonecount++;
4700 	(void) mod_hash_insert(zonehashbyid,
4701 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4702 	    (mod_hash_val_t)(uintptr_t)zone);
4703 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4704 	(void) strcpy(str, zone->zone_name);
4705 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4706 	    (mod_hash_val_t)(uintptr_t)zone);
4707 	if (insert_label_hash) {
4708 		(void) mod_hash_insert(zonehashbylabel,
4709 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4710 		zone->zone_flags |= ZF_HASHED_LABEL;
4711 	}
4712 
4713 	/*
4714 	 * Insert into active list.  At this point there are no 'hold's
4715 	 * on the zone, but everyone else knows not to use it, so we can
4716 	 * continue to use it.  zsched() will do a zone_hold() if the
4717 	 * newproc() is successful.
4718 	 */
4719 	list_insert_tail(&zone_active, zone);
4720 	mutex_exit(&zonehash_lock);
4721 
4722 	zarg.zone = zone;
4723 	zarg.nvlist = rctls;
4724 	/*
4725 	 * The process, task, and project rctls are probably wrong;
4726 	 * we need an interface to get the default values of all rctls,
4727 	 * and initialize zsched appropriately.  I'm not sure that that
4728 	 * makes much of a difference, though.
4729 	 */
4730 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4731 	if (error != 0) {
4732 		/*
4733 		 * We need to undo all globally visible state.
4734 		 */
4735 		mutex_enter(&zonehash_lock);
4736 		list_remove(&zone_active, zone);
4737 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4738 			ASSERT(zone->zone_slabel != NULL);
4739 			(void) mod_hash_destroy(zonehashbylabel,
4740 			    (mod_hash_key_t)zone->zone_slabel);
4741 		}
4742 		(void) mod_hash_destroy(zonehashbyname,
4743 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4744 		(void) mod_hash_destroy(zonehashbyid,
4745 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4746 		ASSERT(zonecount > 1);
4747 		zonecount--;
4748 		goto errout;
4749 	}
4750 
4751 	/*
4752 	 * Zone creation can't fail from now on.
4753 	 */
4754 
4755 	/*
4756 	 * Create zone kstats
4757 	 */
4758 	zone_kstat_create(zone);
4759 
4760 	/*
4761 	 * Let the other lwps continue.
4762 	 */
4763 	mutex_enter(&pp->p_lock);
4764 	if (curthread != pp->p_agenttp)
4765 		continuelwps(pp);
4766 	mutex_exit(&pp->p_lock);
4767 
4768 	/*
4769 	 * Wait for zsched to finish initializing the zone.
4770 	 */
4771 	zone_status_wait(zone, ZONE_IS_READY);
4772 	/*
4773 	 * The zone is fully visible, so we can let mounts progress.
4774 	 */
4775 	resume_mounts(zone);
4776 	nvlist_free(rctls);
4777 
4778 	return (zoneid);
4779 
4780 errout:
4781 	mutex_exit(&zonehash_lock);
4782 	/*
4783 	 * Let the other lwps continue.
4784 	 */
4785 	mutex_enter(&pp->p_lock);
4786 	if (curthread != pp->p_agenttp)
4787 		continuelwps(pp);
4788 	mutex_exit(&pp->p_lock);
4789 
4790 	resume_mounts(zone);
4791 	nvlist_free(rctls);
4792 	/*
4793 	 * There is currently one reference to the zone, a cred_ref from
4794 	 * zone_kcred.  To free the zone, we call crfree, which will call
4795 	 * zone_cred_rele, which will call zone_free.
4796 	 */
4797 	ASSERT(zone->zone_cred_ref == 1);
4798 	ASSERT(zone->zone_kcred->cr_ref == 1);
4799 	ASSERT(zone->zone_ref == 0);
4800 	zkcr = zone->zone_kcred;
4801 	zone->zone_kcred = NULL;
4802 	crfree(zkcr);				/* triggers call to zone_free */
4803 	return (zone_create_error(error, error2, extended_error));
4804 }
4805 
4806 /*
4807  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4808  * the heavy lifting.  initname is the path to the program to launch
4809  * at the "top" of the zone; if this is NULL, we use the system default,
4810  * which is stored at zone_default_initname.
4811  */
4812 static int
4813 zone_boot(zoneid_t zoneid)
4814 {
4815 	int err;
4816 	zone_t *zone;
4817 
4818 	if (secpolicy_zone_config(CRED()) != 0)
4819 		return (set_errno(EPERM));
4820 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4821 		return (set_errno(EINVAL));
4822 
4823 	mutex_enter(&zonehash_lock);
4824 	/*
4825 	 * Look for zone under hash lock to prevent races with calls to
4826 	 * zone_shutdown, zone_destroy, etc.
4827 	 */
4828 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4829 		mutex_exit(&zonehash_lock);
4830 		return (set_errno(EINVAL));
4831 	}
4832 
4833 	mutex_enter(&zone_status_lock);
4834 	if (zone_status_get(zone) != ZONE_IS_READY) {
4835 		mutex_exit(&zone_status_lock);
4836 		mutex_exit(&zonehash_lock);
4837 		return (set_errno(EINVAL));
4838 	}
4839 	zone_status_set(zone, ZONE_IS_BOOTING);
4840 	mutex_exit(&zone_status_lock);
4841 
4842 	zone_hold(zone);	/* so we can use the zone_t later */
4843 	mutex_exit(&zonehash_lock);
4844 
4845 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4846 		zone_rele(zone);
4847 		return (set_errno(EINTR));
4848 	}
4849 
4850 	/*
4851 	 * Boot (starting init) might have failed, in which case the zone
4852 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4853 	 * be placed in zone->zone_boot_err, and so we return that.
4854 	 */
4855 	err = zone->zone_boot_err;
4856 	zone_rele(zone);
4857 	return (err ? set_errno(err) : 0);
4858 }
4859 
4860 /*
4861  * Kills all user processes in the zone, waiting for them all to exit
4862  * before returning.
4863  */
4864 static int
4865 zone_empty(zone_t *zone)
4866 {
4867 	int waitstatus;
4868 
4869 	/*
4870 	 * We need to drop zonehash_lock before killing all
4871 	 * processes, otherwise we'll deadlock with zone_find_*
4872 	 * which can be called from the exit path.
4873 	 */
4874 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4875 	while ((waitstatus = zone_status_timedwait_sig(zone,
4876 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4877 		killall(zone->zone_id);
4878 	}
4879 	/*
4880 	 * return EINTR if we were signaled
4881 	 */
4882 	if (waitstatus == 0)
4883 		return (EINTR);
4884 	return (0);
4885 }
4886 
4887 /*
4888  * This function implements the policy for zone visibility.
4889  *
4890  * In standard Solaris, a non-global zone can only see itself.
4891  *
4892  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4893  * it dominates. For this test, the label of the global zone is treated as
4894  * admin_high so it is special-cased instead of being checked for dominance.
4895  *
4896  * Returns true if zone attributes are viewable, false otherwise.
4897  */
4898 static boolean_t
4899 zone_list_access(zone_t *zone)
4900 {
4901 
4902 	if (curproc->p_zone == global_zone ||
4903 	    curproc->p_zone == zone) {
4904 		return (B_TRUE);
4905 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4906 		bslabel_t *curproc_label;
4907 		bslabel_t *zone_label;
4908 
4909 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4910 		zone_label = label2bslabel(zone->zone_slabel);
4911 
4912 		if (zone->zone_id != GLOBAL_ZONEID &&
4913 		    bldominates(curproc_label, zone_label)) {
4914 			return (B_TRUE);
4915 		} else {
4916 			return (B_FALSE);
4917 		}
4918 	} else {
4919 		return (B_FALSE);
4920 	}
4921 }
4922 
4923 /*
4924  * Systemcall to start the zone's halt sequence.  By the time this
4925  * function successfully returns, all user processes and kernel threads
4926  * executing in it will have exited, ZSD shutdown callbacks executed,
4927  * and the zone status set to ZONE_IS_DOWN.
4928  *
4929  * It is possible that the call will interrupt itself if the caller is the
4930  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4931  */
4932 static int
4933 zone_shutdown(zoneid_t zoneid)
4934 {
4935 	int error;
4936 	zone_t *zone;
4937 	zone_status_t status;
4938 
4939 	if (secpolicy_zone_config(CRED()) != 0)
4940 		return (set_errno(EPERM));
4941 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4942 		return (set_errno(EINVAL));
4943 
4944 	mutex_enter(&zonehash_lock);
4945 	/*
4946 	 * Look for zone under hash lock to prevent races with other
4947 	 * calls to zone_shutdown and zone_destroy.
4948 	 */
4949 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4950 		mutex_exit(&zonehash_lock);
4951 		return (set_errno(EINVAL));
4952 	}
4953 
4954 	/*
4955 	 * We have to drop zonehash_lock before calling block_mounts.
4956 	 * Hold the zone so we can continue to use the zone_t.
4957 	 */
4958 	zone_hold(zone);
4959 	mutex_exit(&zonehash_lock);
4960 
4961 	/*
4962 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4963 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4964 	 *
4965 	 * e.g. NFS can fail the mount if it determines that the zone
4966 	 * has already begun the shutdown sequence.
4967 	 *
4968 	 */
4969 	if (block_mounts(zone) == 0) {
4970 		zone_rele(zone);
4971 		return (set_errno(EINTR));
4972 	}
4973 
4974 	mutex_enter(&zonehash_lock);
4975 	mutex_enter(&zone_status_lock);
4976 	status = zone_status_get(zone);
4977 	/*
4978 	 * Fail if the zone isn't fully initialized yet.
4979 	 */
4980 	if (status < ZONE_IS_READY) {
4981 		mutex_exit(&zone_status_lock);
4982 		mutex_exit(&zonehash_lock);
4983 		resume_mounts(zone);
4984 		zone_rele(zone);
4985 		return (set_errno(EINVAL));
4986 	}
4987 	/*
4988 	 * If conditions required for zone_shutdown() to return have been met,
4989 	 * return success.
4990 	 */
4991 	if (status >= ZONE_IS_DOWN) {
4992 		mutex_exit(&zone_status_lock);
4993 		mutex_exit(&zonehash_lock);
4994 		resume_mounts(zone);
4995 		zone_rele(zone);
4996 		return (0);
4997 	}
4998 	/*
4999 	 * If zone_shutdown() hasn't been called before, go through the motions.
5000 	 * If it has, there's nothing to do but wait for the kernel threads to
5001 	 * drain.
5002 	 */
5003 	if (status < ZONE_IS_EMPTY) {
5004 		uint_t ntasks;
5005 
5006 		mutex_enter(&zone->zone_lock);
5007 		if ((ntasks = zone->zone_ntasks) != 1) {
5008 			/*
5009 			 * There's still stuff running.
5010 			 */
5011 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
5012 		}
5013 		mutex_exit(&zone->zone_lock);
5014 		if (ntasks == 1) {
5015 			/*
5016 			 * The only way to create another task is through
5017 			 * zone_enter(), which will block until we drop
5018 			 * zonehash_lock.  The zone is empty.
5019 			 */
5020 			if (zone->zone_kthreads == NULL) {
5021 				/*
5022 				 * Skip ahead to ZONE_IS_DOWN
5023 				 */
5024 				zone_status_set(zone, ZONE_IS_DOWN);
5025 			} else {
5026 				zone_status_set(zone, ZONE_IS_EMPTY);
5027 			}
5028 		}
5029 	}
5030 	mutex_exit(&zone_status_lock);
5031 	mutex_exit(&zonehash_lock);
5032 	resume_mounts(zone);
5033 
5034 	if (error = zone_empty(zone)) {
5035 		zone_rele(zone);
5036 		return (set_errno(error));
5037 	}
5038 	/*
5039 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
5040 	 * longer be notified of changes to the pools configuration, so
5041 	 * in order to not end up with a stale pool pointer, we point
5042 	 * ourselves at the default pool and remove all resource
5043 	 * visibility.  This is especially important as the zone_t may
5044 	 * languish on the deathrow for a very long time waiting for
5045 	 * cred's to drain out.
5046 	 *
5047 	 * This rebinding of the zone can happen multiple times
5048 	 * (presumably due to interrupted or parallel systemcalls)
5049 	 * without any adverse effects.
5050 	 */
5051 	if (pool_lock_intr() != 0) {
5052 		zone_rele(zone);
5053 		return (set_errno(EINTR));
5054 	}
5055 	if (pool_state == POOL_ENABLED) {
5056 		mutex_enter(&cpu_lock);
5057 		zone_pool_set(zone, pool_default);
5058 		/*
5059 		 * The zone no longer needs to be able to see any cpus.
5060 		 */
5061 		zone_pset_set(zone, ZONE_PS_INVAL);
5062 		mutex_exit(&cpu_lock);
5063 	}
5064 	pool_unlock();
5065 
5066 	/*
5067 	 * ZSD shutdown callbacks can be executed multiple times, hence
5068 	 * it is safe to not be holding any locks across this call.
5069 	 */
5070 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
5071 
5072 	mutex_enter(&zone_status_lock);
5073 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
5074 		zone_status_set(zone, ZONE_IS_DOWN);
5075 	mutex_exit(&zone_status_lock);
5076 
5077 	/*
5078 	 * Wait for kernel threads to drain.
5079 	 */
5080 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
5081 		zone_rele(zone);
5082 		return (set_errno(EINTR));
5083 	}
5084 
5085 	/*
5086 	 * Zone can be become down/destroyable even if the above wait
5087 	 * returns EINTR, so any code added here may never execute.
5088 	 * (i.e. don't add code here)
5089 	 */
5090 
5091 	zone_rele(zone);
5092 	return (0);
5093 }
5094 
5095 /*
5096  * Log the specified zone's reference counts.  The caller should not be
5097  * holding the zone's zone_lock.
5098  */
5099 static void
5100 zone_log_refcounts(zone_t *zone)
5101 {
5102 	char *buffer;
5103 	char *buffer_position;
5104 	uint32_t buffer_size;
5105 	uint32_t index;
5106 	uint_t ref;
5107 	uint_t cred_ref;
5108 
5109 	/*
5110 	 * Construct a string representing the subsystem-specific reference
5111 	 * counts.  The counts are printed in ascending order by index into the
5112 	 * zone_t::zone_subsys_ref array.  The list will be surrounded by
5113 	 * square brackets [] and will only contain nonzero reference counts.
5114 	 *
5115 	 * The buffer will hold two square bracket characters plus ten digits,
5116 	 * one colon, one space, one comma, and some characters for a
5117 	 * subsystem name per subsystem-specific reference count.  (Unsigned 32-
5118 	 * bit integers have at most ten decimal digits.)  The last
5119 	 * reference count's comma is replaced by the closing square
5120 	 * bracket and a NULL character to terminate the string.
5121 	 *
5122 	 * NOTE: We have to grab the zone's zone_lock to create a consistent
5123 	 * snapshot of the zone's reference counters.
5124 	 *
5125 	 * First, figure out how much space the string buffer will need.
5126 	 * The buffer's size is stored in buffer_size.
5127 	 */
5128 	buffer_size = 2;			/* for the square brackets */
5129 	mutex_enter(&zone->zone_lock);
5130 	zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
5131 	ref = zone->zone_ref;
5132 	cred_ref = zone->zone_cred_ref;
5133 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
5134 		if (zone->zone_subsys_ref[index] != 0)
5135 			buffer_size += strlen(zone_ref_subsys_names[index]) +
5136 			    13;
5137 	if (buffer_size == 2) {
5138 		/*
5139 		 * No subsystems had nonzero reference counts.  Don't bother
5140 		 * with allocating a buffer; just log the general-purpose and
5141 		 * credential reference counts.
5142 		 */
5143 		mutex_exit(&zone->zone_lock);
5144 		(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5145 		    "Zone '%s' (ID: %d) is shutting down, but %u zone "
5146 		    "references and %u credential references are still extant",
5147 		    zone->zone_name, zone->zone_id, ref, cred_ref);
5148 		return;
5149 	}
5150 
5151 	/*
5152 	 * buffer_size contains the exact number of characters that the
5153 	 * buffer will need.  Allocate the buffer and fill it with nonzero
5154 	 * subsystem-specific reference counts.  Surround the results with
5155 	 * square brackets afterwards.
5156 	 */
5157 	buffer = kmem_alloc(buffer_size, KM_SLEEP);
5158 	buffer_position = &buffer[1];
5159 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5160 		/*
5161 		 * NOTE: The DDI's version of sprintf() returns a pointer to
5162 		 * the modified buffer rather than the number of bytes written
5163 		 * (as in snprintf(3C)).  This is unfortunate and annoying.
5164 		 * Therefore, we'll use snprintf() with INT_MAX to get the
5165 		 * number of bytes written.  Using INT_MAX is safe because
5166 		 * the buffer is perfectly sized for the data: we'll never
5167 		 * overrun the buffer.
5168 		 */
5169 		if (zone->zone_subsys_ref[index] != 0)
5170 			buffer_position += snprintf(buffer_position, INT_MAX,
5171 			    "%s: %u,", zone_ref_subsys_names[index],
5172 			    zone->zone_subsys_ref[index]);
5173 	}
5174 	mutex_exit(&zone->zone_lock);
5175 	buffer[0] = '[';
5176 	ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5177 	ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5178 	buffer_position[-1] = ']';
5179 
5180 	/*
5181 	 * Log the reference counts and free the message buffer.
5182 	 */
5183 	(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5184 	    "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5185 	    "%u credential references are still extant %s", zone->zone_name,
5186 	    zone->zone_id, ref, cred_ref, buffer);
5187 	kmem_free(buffer, buffer_size);
5188 }
5189 
5190 /*
5191  * Systemcall entry point to finalize the zone halt process.  The caller
5192  * must have already successfully called zone_shutdown().
5193  *
5194  * Upon successful completion, the zone will have been fully destroyed:
5195  * zsched will have exited, destructor callbacks executed, and the zone
5196  * removed from the list of active zones.
5197  */
5198 static int
5199 zone_destroy(zoneid_t zoneid)
5200 {
5201 	uint64_t uniqid;
5202 	zone_t *zone;
5203 	zone_status_t status;
5204 	clock_t wait_time;
5205 	boolean_t log_refcounts;
5206 
5207 	if (secpolicy_zone_config(CRED()) != 0)
5208 		return (set_errno(EPERM));
5209 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5210 		return (set_errno(EINVAL));
5211 
5212 	mutex_enter(&zonehash_lock);
5213 	/*
5214 	 * Look for zone under hash lock to prevent races with other
5215 	 * calls to zone_destroy.
5216 	 */
5217 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5218 		mutex_exit(&zonehash_lock);
5219 		return (set_errno(EINVAL));
5220 	}
5221 
5222 	if (zone_mount_count(zone->zone_rootpath) != 0) {
5223 		mutex_exit(&zonehash_lock);
5224 		return (set_errno(EBUSY));
5225 	}
5226 	mutex_enter(&zone_status_lock);
5227 	status = zone_status_get(zone);
5228 	if (status < ZONE_IS_DOWN) {
5229 		mutex_exit(&zone_status_lock);
5230 		mutex_exit(&zonehash_lock);
5231 		return (set_errno(EBUSY));
5232 	} else if (status == ZONE_IS_DOWN) {
5233 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5234 	}
5235 	mutex_exit(&zone_status_lock);
5236 	zone_hold(zone);
5237 	mutex_exit(&zonehash_lock);
5238 
5239 	/*
5240 	 * wait for zsched to exit
5241 	 */
5242 	zone_status_wait(zone, ZONE_IS_DEAD);
5243 	zone_zsd_callbacks(zone, ZSD_DESTROY);
5244 	zone->zone_netstack = NULL;
5245 	uniqid = zone->zone_uniqid;
5246 	zone_rele(zone);
5247 	zone = NULL;	/* potentially free'd */
5248 
5249 	log_refcounts = B_FALSE;
5250 	wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5251 	mutex_enter(&zonehash_lock);
5252 	for (; /* ever */; ) {
5253 		boolean_t unref;
5254 		boolean_t refs_have_been_logged;
5255 
5256 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5257 		    zone->zone_uniqid != uniqid) {
5258 			/*
5259 			 * The zone has gone away.  Necessary conditions
5260 			 * are met, so we return success.
5261 			 */
5262 			mutex_exit(&zonehash_lock);
5263 			return (0);
5264 		}
5265 		mutex_enter(&zone->zone_lock);
5266 		unref = ZONE_IS_UNREF(zone);
5267 		refs_have_been_logged = (zone->zone_flags &
5268 		    ZF_REFCOUNTS_LOGGED);
5269 		mutex_exit(&zone->zone_lock);
5270 		if (unref) {
5271 			/*
5272 			 * There is only one reference to the zone -- that
5273 			 * added when the zone was added to the hashtables --
5274 			 * and things will remain this way until we drop
5275 			 * zonehash_lock... we can go ahead and cleanup the
5276 			 * zone.
5277 			 */
5278 			break;
5279 		}
5280 
5281 		/*
5282 		 * Wait for zone_rele_common() or zone_cred_rele() to signal
5283 		 * zone_destroy_cv.  zone_destroy_cv is signaled only when
5284 		 * some zone's general-purpose reference count reaches one.
5285 		 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5286 		 * on zone_destroy_cv, then log the zone's reference counts and
5287 		 * continue to wait for zone_rele() and zone_cred_rele().
5288 		 */
5289 		if (!refs_have_been_logged) {
5290 			if (!log_refcounts) {
5291 				/*
5292 				 * This thread hasn't timed out waiting on
5293 				 * zone_destroy_cv yet.  Wait wait_time clock
5294 				 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5295 				 * seconds) for the zone's references to clear.
5296 				 */
5297 				ASSERT(wait_time > 0);
5298 				wait_time = cv_reltimedwait_sig(
5299 				    &zone_destroy_cv, &zonehash_lock, wait_time,
5300 				    TR_SEC);
5301 				if (wait_time > 0) {
5302 					/*
5303 					 * A thread in zone_rele() or
5304 					 * zone_cred_rele() signaled
5305 					 * zone_destroy_cv before this thread's
5306 					 * wait timed out.  The zone might have
5307 					 * only one reference left; find out!
5308 					 */
5309 					continue;
5310 				} else if (wait_time == 0) {
5311 					/* The thread's process was signaled. */
5312 					mutex_exit(&zonehash_lock);
5313 					return (set_errno(EINTR));
5314 				}
5315 
5316 				/*
5317 				 * The thread timed out while waiting on
5318 				 * zone_destroy_cv.  Even though the thread
5319 				 * timed out, it has to check whether another
5320 				 * thread woke up from zone_destroy_cv and
5321 				 * destroyed the zone.
5322 				 *
5323 				 * If the zone still exists and has more than
5324 				 * one unreleased general-purpose reference,
5325 				 * then log the zone's reference counts.
5326 				 */
5327 				log_refcounts = B_TRUE;
5328 				continue;
5329 			}
5330 
5331 			/*
5332 			 * The thread already timed out on zone_destroy_cv while
5333 			 * waiting for subsystems to release the zone's last
5334 			 * general-purpose references.  Log the zone's reference
5335 			 * counts and wait indefinitely on zone_destroy_cv.
5336 			 */
5337 			zone_log_refcounts(zone);
5338 		}
5339 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5340 			/* The thread's process was signaled. */
5341 			mutex_exit(&zonehash_lock);
5342 			return (set_errno(EINTR));
5343 		}
5344 	}
5345 
5346 	/*
5347 	 * Remove CPU cap for this zone now since we're not going to
5348 	 * fail below this point.
5349 	 */
5350 	cpucaps_zone_remove(zone);
5351 
5352 	/* Get rid of the zone's kstats */
5353 	zone_kstat_delete(zone);
5354 
5355 	/* remove the pfexecd doors */
5356 	if (zone->zone_pfexecd != NULL) {
5357 		klpd_freelist(&zone->zone_pfexecd);
5358 		zone->zone_pfexecd = NULL;
5359 	}
5360 
5361 	/* free brand specific data */
5362 	if (ZONE_IS_BRANDED(zone))
5363 		ZBROP(zone)->b_free_brand_data(zone);
5364 
5365 	/* Say goodbye to brand framework. */
5366 	brand_unregister_zone(zone->zone_brand);
5367 
5368 	/*
5369 	 * It is now safe to let the zone be recreated; remove it from the
5370 	 * lists.  The memory will not be freed until the last cred
5371 	 * reference goes away.
5372 	 */
5373 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
5374 	zonecount--;
5375 	/* remove from active list and hash tables */
5376 	list_remove(&zone_active, zone);
5377 	(void) mod_hash_destroy(zonehashbyname,
5378 	    (mod_hash_key_t)zone->zone_name);
5379 	(void) mod_hash_destroy(zonehashbyid,
5380 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
5381 	if (zone->zone_flags & ZF_HASHED_LABEL)
5382 		(void) mod_hash_destroy(zonehashbylabel,
5383 		    (mod_hash_key_t)zone->zone_slabel);
5384 	mutex_exit(&zonehash_lock);
5385 
5386 	/*
5387 	 * Release the root vnode; we're not using it anymore.  Nor should any
5388 	 * other thread that might access it exist.
5389 	 */
5390 	if (zone->zone_rootvp != NULL) {
5391 		VN_RELE(zone->zone_rootvp);
5392 		zone->zone_rootvp = NULL;
5393 	}
5394 
5395 	/* add to deathrow list */
5396 	mutex_enter(&zone_deathrow_lock);
5397 	list_insert_tail(&zone_deathrow, zone);
5398 	mutex_exit(&zone_deathrow_lock);
5399 
5400 	/*
5401 	 * Drop last reference (which was added by zsched()), this will
5402 	 * free the zone unless there are outstanding cred references.
5403 	 */
5404 	zone_rele(zone);
5405 	return (0);
5406 }
5407 
5408 /*
5409  * Systemcall entry point for zone_getattr(2).
5410  */
5411 static ssize_t
5412 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5413 {
5414 	size_t size;
5415 	int error = 0, err;
5416 	zone_t *zone;
5417 	char *zonepath;
5418 	char *outstr;
5419 	zone_status_t zone_status;
5420 	pid_t initpid;
5421 	boolean_t global = (curzone == global_zone);
5422 	boolean_t inzone = (curzone->zone_id == zoneid);
5423 	ushort_t flags;
5424 	zone_net_data_t *zbuf;
5425 
5426 	mutex_enter(&zonehash_lock);
5427 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5428 		mutex_exit(&zonehash_lock);
5429 		return (set_errno(EINVAL));
5430 	}
5431 	zone_status = zone_status_get(zone);
5432 	if (zone_status < ZONE_IS_INITIALIZED) {
5433 		mutex_exit(&zonehash_lock);
5434 		return (set_errno(EINVAL));
5435 	}
5436 	zone_hold(zone);
5437 	mutex_exit(&zonehash_lock);
5438 
5439 	/*
5440 	 * If not in the global zone, don't show information about other zones,
5441 	 * unless the system is labeled and the local zone's label dominates
5442 	 * the other zone.
5443 	 */
5444 	if (!zone_list_access(zone)) {
5445 		zone_rele(zone);
5446 		return (set_errno(EINVAL));
5447 	}
5448 
5449 	switch (attr) {
5450 	case ZONE_ATTR_ROOT:
5451 		if (global) {
5452 			/*
5453 			 * Copy the path to trim the trailing "/" (except for
5454 			 * the global zone).
5455 			 */
5456 			if (zone != global_zone)
5457 				size = zone->zone_rootpathlen - 1;
5458 			else
5459 				size = zone->zone_rootpathlen;
5460 			zonepath = kmem_alloc(size, KM_SLEEP);
5461 			bcopy(zone->zone_rootpath, zonepath, size);
5462 			zonepath[size - 1] = '\0';
5463 		} else {
5464 			if (inzone || !is_system_labeled()) {
5465 				/*
5466 				 * Caller is not in the global zone.
5467 				 * if the query is on the current zone
5468 				 * or the system is not labeled,
5469 				 * just return faked-up path for current zone.
5470 				 */
5471 				zonepath = "/";
5472 				size = 2;
5473 			} else {
5474 				/*
5475 				 * Return related path for current zone.
5476 				 */
5477 				int prefix_len = strlen(zone_prefix);
5478 				int zname_len = strlen(zone->zone_name);
5479 
5480 				size = prefix_len + zname_len + 1;
5481 				zonepath = kmem_alloc(size, KM_SLEEP);
5482 				bcopy(zone_prefix, zonepath, prefix_len);
5483 				bcopy(zone->zone_name, zonepath +
5484 				    prefix_len, zname_len);
5485 				zonepath[size - 1] = '\0';
5486 			}
5487 		}
5488 		if (bufsize > size)
5489 			bufsize = size;
5490 		if (buf != NULL) {
5491 			err = copyoutstr(zonepath, buf, bufsize, NULL);
5492 			if (err != 0 && err != ENAMETOOLONG)
5493 				error = EFAULT;
5494 		}
5495 		if (global || (is_system_labeled() && !inzone))
5496 			kmem_free(zonepath, size);
5497 		break;
5498 
5499 	case ZONE_ATTR_NAME:
5500 		size = strlen(zone->zone_name) + 1;
5501 		if (bufsize > size)
5502 			bufsize = size;
5503 		if (buf != NULL) {
5504 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5505 			if (err != 0 && err != ENAMETOOLONG)
5506 				error = EFAULT;
5507 		}
5508 		break;
5509 
5510 	case ZONE_ATTR_STATUS:
5511 		/*
5512 		 * Since we're not holding zonehash_lock, the zone status
5513 		 * may be anything; leave it up to userland to sort it out.
5514 		 */
5515 		size = sizeof (zone_status);
5516 		if (bufsize > size)
5517 			bufsize = size;
5518 		zone_status = zone_status_get(zone);
5519 		if (buf != NULL &&
5520 		    copyout(&zone_status, buf, bufsize) != 0)
5521 			error = EFAULT;
5522 		break;
5523 	case ZONE_ATTR_FLAGS:
5524 		size = sizeof (zone->zone_flags);
5525 		if (bufsize > size)
5526 			bufsize = size;
5527 		flags = zone->zone_flags;
5528 		if (buf != NULL &&
5529 		    copyout(&flags, buf, bufsize) != 0)
5530 			error = EFAULT;
5531 		break;
5532 	case ZONE_ATTR_PRIVSET:
5533 		size = sizeof (priv_set_t);
5534 		if (bufsize > size)
5535 			bufsize = size;
5536 		if (buf != NULL &&
5537 		    copyout(zone->zone_privset, buf, bufsize) != 0)
5538 			error = EFAULT;
5539 		break;
5540 	case ZONE_ATTR_UNIQID:
5541 		size = sizeof (zone->zone_uniqid);
5542 		if (bufsize > size)
5543 			bufsize = size;
5544 		if (buf != NULL &&
5545 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5546 			error = EFAULT;
5547 		break;
5548 	case ZONE_ATTR_POOLID:
5549 		{
5550 			pool_t *pool;
5551 			poolid_t poolid;
5552 
5553 			if (pool_lock_intr() != 0) {
5554 				error = EINTR;
5555 				break;
5556 			}
5557 			pool = zone_pool_get(zone);
5558 			poolid = pool->pool_id;
5559 			pool_unlock();
5560 			size = sizeof (poolid);
5561 			if (bufsize > size)
5562 				bufsize = size;
5563 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
5564 				error = EFAULT;
5565 		}
5566 		break;
5567 	case ZONE_ATTR_SLBL:
5568 		size = sizeof (bslabel_t);
5569 		if (bufsize > size)
5570 			bufsize = size;
5571 		if (zone->zone_slabel == NULL)
5572 			error = EINVAL;
5573 		else if (buf != NULL &&
5574 		    copyout(label2bslabel(zone->zone_slabel), buf,
5575 		    bufsize) != 0)
5576 			error = EFAULT;
5577 		break;
5578 	case ZONE_ATTR_INITPID:
5579 		size = sizeof (initpid);
5580 		if (bufsize > size)
5581 			bufsize = size;
5582 		initpid = zone->zone_proc_initpid;
5583 		if (initpid == -1) {
5584 			error = ESRCH;
5585 			break;
5586 		}
5587 		if (buf != NULL &&
5588 		    copyout(&initpid, buf, bufsize) != 0)
5589 			error = EFAULT;
5590 		break;
5591 	case ZONE_ATTR_BRAND:
5592 		size = strlen(zone->zone_brand->b_name) + 1;
5593 
5594 		if (bufsize > size)
5595 			bufsize = size;
5596 		if (buf != NULL) {
5597 			err = copyoutstr(zone->zone_brand->b_name, buf,
5598 			    bufsize, NULL);
5599 			if (err != 0 && err != ENAMETOOLONG)
5600 				error = EFAULT;
5601 		}
5602 		break;
5603 	case ZONE_ATTR_INITNAME:
5604 		size = strlen(zone->zone_initname) + 1;
5605 		if (bufsize > size)
5606 			bufsize = size;
5607 		if (buf != NULL) {
5608 			err = copyoutstr(zone->zone_initname, buf, bufsize,
5609 			    NULL);
5610 			if (err != 0 && err != ENAMETOOLONG)
5611 				error = EFAULT;
5612 		}
5613 		break;
5614 	case ZONE_ATTR_BOOTARGS:
5615 		if (zone->zone_bootargs == NULL)
5616 			outstr = "";
5617 		else
5618 			outstr = zone->zone_bootargs;
5619 		size = strlen(outstr) + 1;
5620 		if (bufsize > size)
5621 			bufsize = size;
5622 		if (buf != NULL) {
5623 			err = copyoutstr(outstr, buf, bufsize, NULL);
5624 			if (err != 0 && err != ENAMETOOLONG)
5625 				error = EFAULT;
5626 		}
5627 		break;
5628 	case ZONE_ATTR_PHYS_MCAP:
5629 		size = sizeof (zone->zone_phys_mcap);
5630 		if (bufsize > size)
5631 			bufsize = size;
5632 		if (buf != NULL &&
5633 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5634 			error = EFAULT;
5635 		break;
5636 	case ZONE_ATTR_SCHED_CLASS:
5637 		mutex_enter(&class_lock);
5638 
5639 		if (zone->zone_defaultcid >= loaded_classes)
5640 			outstr = "";
5641 		else
5642 			outstr = sclass[zone->zone_defaultcid].cl_name;
5643 		size = strlen(outstr) + 1;
5644 		if (bufsize > size)
5645 			bufsize = size;
5646 		if (buf != NULL) {
5647 			err = copyoutstr(outstr, buf, bufsize, NULL);
5648 			if (err != 0 && err != ENAMETOOLONG)
5649 				error = EFAULT;
5650 		}
5651 
5652 		mutex_exit(&class_lock);
5653 		break;
5654 	case ZONE_ATTR_HOSTID:
5655 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
5656 		    bufsize == sizeof (zone->zone_hostid)) {
5657 			size = sizeof (zone->zone_hostid);
5658 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
5659 			    bufsize) != 0)
5660 				error = EFAULT;
5661 		} else {
5662 			error = EINVAL;
5663 		}
5664 		break;
5665 	case ZONE_ATTR_FS_ALLOWED:
5666 		if (zone->zone_fs_allowed == NULL)
5667 			outstr = "";
5668 		else
5669 			outstr = zone->zone_fs_allowed;
5670 		size = strlen(outstr) + 1;
5671 		if (bufsize > size)
5672 			bufsize = size;
5673 		if (buf != NULL) {
5674 			err = copyoutstr(outstr, buf, bufsize, NULL);
5675 			if (err != 0 && err != ENAMETOOLONG)
5676 				error = EFAULT;
5677 		}
5678 		break;
5679 	case ZONE_ATTR_SECFLAGS:
5680 		size = sizeof (zone->zone_secflags);
5681 		if (bufsize > size)
5682 			bufsize = size;
5683 		if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0)
5684 			error = EFAULT;
5685 		break;
5686 	case ZONE_ATTR_NETWORK:
5687 		bufsize = MIN(bufsize, PIPE_BUF + sizeof (zone_net_data_t));
5688 		size = bufsize;
5689 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5690 		if (copyin(buf, zbuf, bufsize) != 0) {
5691 			error = EFAULT;
5692 		} else {
5693 			error = zone_get_network(zoneid, zbuf);
5694 			if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5695 				error = EFAULT;
5696 		}
5697 		kmem_free(zbuf, bufsize);
5698 		break;
5699 	default:
5700 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5701 			size = bufsize;
5702 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5703 		} else {
5704 			error = EINVAL;
5705 		}
5706 	}
5707 	zone_rele(zone);
5708 
5709 	if (error)
5710 		return (set_errno(error));
5711 	return ((ssize_t)size);
5712 }
5713 
5714 /*
5715  * Systemcall entry point for zone_setattr(2).
5716  */
5717 /*ARGSUSED*/
5718 static int
5719 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5720 {
5721 	zone_t *zone;
5722 	zone_status_t zone_status;
5723 	int err = -1;
5724 	zone_net_data_t *zbuf;
5725 
5726 	if (secpolicy_zone_config(CRED()) != 0)
5727 		return (set_errno(EPERM));
5728 
5729 	/*
5730 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5731 	 * global zone.
5732 	 */
5733 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5734 		return (set_errno(EINVAL));
5735 	}
5736 
5737 	mutex_enter(&zonehash_lock);
5738 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5739 		mutex_exit(&zonehash_lock);
5740 		return (set_errno(EINVAL));
5741 	}
5742 	zone_hold(zone);
5743 	mutex_exit(&zonehash_lock);
5744 
5745 	/*
5746 	 * At present most attributes can only be set on non-running,
5747 	 * non-global zones.
5748 	 */
5749 	zone_status = zone_status_get(zone);
5750 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5751 		err = EINVAL;
5752 		goto done;
5753 	}
5754 
5755 	switch (attr) {
5756 	case ZONE_ATTR_INITNAME:
5757 		err = zone_set_initname(zone, (const char *)buf);
5758 		break;
5759 	case ZONE_ATTR_INITNORESTART:
5760 		zone->zone_restart_init = B_FALSE;
5761 		err = 0;
5762 		break;
5763 	case ZONE_ATTR_INITRESTART0:
5764 		zone->zone_restart_init_0 = B_TRUE;
5765 		err = 0;
5766 		break;
5767 	case ZONE_ATTR_INITREBOOT:
5768 		zone->zone_reboot_on_init_exit = B_TRUE;
5769 		err = 0;
5770 		break;
5771 	case ZONE_ATTR_BOOTARGS:
5772 		err = zone_set_bootargs(zone, (const char *)buf);
5773 		break;
5774 	case ZONE_ATTR_BRAND:
5775 		err = zone_set_brand(zone, (const char *)buf);
5776 		break;
5777 	case ZONE_ATTR_FS_ALLOWED:
5778 		err = zone_set_fs_allowed(zone, (const char *)buf);
5779 		break;
5780 	case ZONE_ATTR_SECFLAGS:
5781 		err = zone_set_secflags(zone, (psecflags_t *)buf);
5782 		break;
5783 	case ZONE_ATTR_PHYS_MCAP:
5784 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5785 		break;
5786 	case ZONE_ATTR_SCHED_CLASS:
5787 		err = zone_set_sched_class(zone, (const char *)buf);
5788 		break;
5789 	case ZONE_ATTR_HOSTID:
5790 		if (bufsize == sizeof (zone->zone_hostid)) {
5791 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5792 				err = 0;
5793 			else
5794 				err = EFAULT;
5795 		} else {
5796 			err = EINVAL;
5797 		}
5798 		break;
5799 	case ZONE_ATTR_NETWORK:
5800 		if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5801 			err = EINVAL;
5802 			break;
5803 		}
5804 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5805 		if (copyin(buf, zbuf, bufsize) != 0) {
5806 			kmem_free(zbuf, bufsize);
5807 			err = EFAULT;
5808 			break;
5809 		}
5810 		err = zone_set_network(zoneid, zbuf);
5811 		kmem_free(zbuf, bufsize);
5812 		break;
5813 	default:
5814 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5815 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5816 		else
5817 			err = EINVAL;
5818 	}
5819 
5820 done:
5821 	zone_rele(zone);
5822 	ASSERT(err != -1);
5823 	return (err != 0 ? set_errno(err) : 0);
5824 }
5825 
5826 /*
5827  * Return zero if the process has at least one vnode mapped in to its
5828  * address space which shouldn't be allowed to change zones.
5829  *
5830  * Also return zero if the process has any shared mappings which reserve
5831  * swap.  This is because the counting for zone.max-swap does not allow swap
5832  * reservation to be shared between zones.  zone swap reservation is counted
5833  * on zone->zone_max_swap.
5834  */
5835 static int
5836 as_can_change_zones(void)
5837 {
5838 	proc_t *pp = curproc;
5839 	struct seg *seg;
5840 	struct as *as = pp->p_as;
5841 	vnode_t *vp;
5842 	int allow = 1;
5843 
5844 	ASSERT(pp->p_as != &kas);
5845 	AS_LOCK_ENTER(as, RW_READER);
5846 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5847 
5848 		/*
5849 		 * Cannot enter zone with shared anon memory which
5850 		 * reserves swap.  See comment above.
5851 		 */
5852 		if (seg_can_change_zones(seg) == B_FALSE) {
5853 			allow = 0;
5854 			break;
5855 		}
5856 		/*
5857 		 * if we can't get a backing vnode for this segment then skip
5858 		 * it.
5859 		 */
5860 		vp = NULL;
5861 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5862 			continue;
5863 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5864 			allow = 0;
5865 			break;
5866 		}
5867 	}
5868 	AS_LOCK_EXIT(as);
5869 	return (allow);
5870 }
5871 
5872 /*
5873  * Count swap reserved by curproc's address space
5874  */
5875 static size_t
5876 as_swresv(void)
5877 {
5878 	proc_t *pp = curproc;
5879 	struct seg *seg;
5880 	struct as *as = pp->p_as;
5881 	size_t swap = 0;
5882 
5883 	ASSERT(pp->p_as != &kas);
5884 	ASSERT(AS_WRITE_HELD(as));
5885 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5886 		swap += seg_swresv(seg);
5887 
5888 	return (swap);
5889 }
5890 
5891 /*
5892  * Systemcall entry point for zone_enter().
5893  *
5894  * The current process is injected into said zone.  In the process
5895  * it will change its project membership, privileges, rootdir/cwd,
5896  * zone-wide rctls, and pool association to match those of the zone.
5897  *
5898  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5899  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5900  * enter a zone that is "ready" or "running".
5901  */
5902 static int
5903 zone_enter(zoneid_t zoneid)
5904 {
5905 	zone_t *zone;
5906 	vnode_t *vp;
5907 	proc_t *pp = curproc;
5908 	contract_t *ct;
5909 	cont_process_t *ctp;
5910 	task_t *tk, *oldtk;
5911 	kproject_t *zone_proj0;
5912 	cred_t *cr, *newcr;
5913 	pool_t *oldpool, *newpool;
5914 	sess_t *sp;
5915 	uid_t uid;
5916 	zone_status_t status;
5917 	int err = 0;
5918 	rctl_entity_p_t e;
5919 	size_t swap;
5920 	kthread_id_t t;
5921 
5922 	if (secpolicy_zone_config(CRED()) != 0)
5923 		return (set_errno(EPERM));
5924 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5925 		return (set_errno(EINVAL));
5926 
5927 	/*
5928 	 * Stop all lwps so we don't need to hold a lock to look at
5929 	 * curproc->p_zone.  This needs to happen before we grab any
5930 	 * locks to avoid deadlock (another lwp in the process could
5931 	 * be waiting for the held lock).
5932 	 */
5933 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5934 		return (set_errno(EINTR));
5935 
5936 	/*
5937 	 * Make sure we're not changing zones with files open or mapped in
5938 	 * to our address space which shouldn't be changing zones.
5939 	 */
5940 	if (!files_can_change_zones()) {
5941 		err = EBADF;
5942 		goto out;
5943 	}
5944 	if (!as_can_change_zones()) {
5945 		err = EFAULT;
5946 		goto out;
5947 	}
5948 
5949 	mutex_enter(&zonehash_lock);
5950 	if (pp->p_zone != global_zone) {
5951 		mutex_exit(&zonehash_lock);
5952 		err = EINVAL;
5953 		goto out;
5954 	}
5955 
5956 	zone = zone_find_all_by_id(zoneid);
5957 	if (zone == NULL) {
5958 		mutex_exit(&zonehash_lock);
5959 		err = EINVAL;
5960 		goto out;
5961 	}
5962 
5963 	/*
5964 	 * To prevent processes in a zone from holding contracts on
5965 	 * extrazonal resources, and to avoid process contract
5966 	 * memberships which span zones, contract holders and processes
5967 	 * which aren't the sole members of their encapsulating process
5968 	 * contracts are not allowed to zone_enter.
5969 	 */
5970 	ctp = pp->p_ct_process;
5971 	ct = &ctp->conp_contract;
5972 	mutex_enter(&ct->ct_lock);
5973 	mutex_enter(&pp->p_lock);
5974 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5975 		mutex_exit(&pp->p_lock);
5976 		mutex_exit(&ct->ct_lock);
5977 		mutex_exit(&zonehash_lock);
5978 		err = EINVAL;
5979 		goto out;
5980 	}
5981 
5982 	/*
5983 	 * Moreover, we don't allow processes whose encapsulating
5984 	 * process contracts have inherited extrazonal contracts.
5985 	 * While it would be easier to eliminate all process contracts
5986 	 * with inherited contracts, we need to be able to give a
5987 	 * restarted init (or other zone-penetrating process) its
5988 	 * predecessor's contracts.
5989 	 */
5990 	if (ctp->conp_ninherited != 0) {
5991 		contract_t *next;
5992 		for (next = list_head(&ctp->conp_inherited); next;
5993 		    next = list_next(&ctp->conp_inherited, next)) {
5994 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5995 				mutex_exit(&pp->p_lock);
5996 				mutex_exit(&ct->ct_lock);
5997 				mutex_exit(&zonehash_lock);
5998 				err = EINVAL;
5999 				goto out;
6000 			}
6001 		}
6002 	}
6003 
6004 	mutex_exit(&pp->p_lock);
6005 	mutex_exit(&ct->ct_lock);
6006 
6007 	status = zone_status_get(zone);
6008 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
6009 		/*
6010 		 * Can't join
6011 		 */
6012 		mutex_exit(&zonehash_lock);
6013 		err = EINVAL;
6014 		goto out;
6015 	}
6016 
6017 	/*
6018 	 * Make sure new priv set is within the permitted set for caller
6019 	 */
6020 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
6021 		mutex_exit(&zonehash_lock);
6022 		err = EPERM;
6023 		goto out;
6024 	}
6025 	/*
6026 	 * We want to momentarily drop zonehash_lock while we optimistically
6027 	 * bind curproc to the pool it should be running in.  This is safe
6028 	 * since the zone can't disappear (we have a hold on it).
6029 	 */
6030 	zone_hold(zone);
6031 	mutex_exit(&zonehash_lock);
6032 
6033 	/*
6034 	 * Grab pool_lock to keep the pools configuration from changing
6035 	 * and to stop ourselves from getting rebound to another pool
6036 	 * until we join the zone.
6037 	 */
6038 	if (pool_lock_intr() != 0) {
6039 		zone_rele(zone);
6040 		err = EINTR;
6041 		goto out;
6042 	}
6043 	ASSERT(secpolicy_pool(CRED()) == 0);
6044 	/*
6045 	 * Bind ourselves to the pool currently associated with the zone.
6046 	 */
6047 	oldpool = curproc->p_pool;
6048 	newpool = zone_pool_get(zone);
6049 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
6050 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
6051 	    POOL_BIND_ALL)) != 0) {
6052 		pool_unlock();
6053 		zone_rele(zone);
6054 		goto out;
6055 	}
6056 
6057 	/*
6058 	 * Grab cpu_lock now; we'll need it later when we call
6059 	 * task_join().
6060 	 */
6061 	mutex_enter(&cpu_lock);
6062 	mutex_enter(&zonehash_lock);
6063 	/*
6064 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
6065 	 */
6066 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
6067 		/*
6068 		 * Can't join anymore.
6069 		 */
6070 		mutex_exit(&zonehash_lock);
6071 		mutex_exit(&cpu_lock);
6072 		if (pool_state == POOL_ENABLED &&
6073 		    newpool != oldpool)
6074 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
6075 			    POOL_BIND_ALL);
6076 		pool_unlock();
6077 		zone_rele(zone);
6078 		err = EINVAL;
6079 		goto out;
6080 	}
6081 
6082 	/*
6083 	 * a_lock must be held while transfering locked memory and swap
6084 	 * reservation from the global zone to the non global zone because
6085 	 * asynchronous faults on the processes' address space can lock
6086 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
6087 	 * segments respectively.
6088 	 */
6089 	AS_LOCK_ENTER(pp->p_as, RW_WRITER);
6090 	swap = as_swresv();
6091 	mutex_enter(&pp->p_lock);
6092 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
6093 	/* verify that we do not exceed and task or lwp limits */
6094 	mutex_enter(&zone->zone_nlwps_lock);
6095 	/* add new lwps to zone and zone's proj0 */
6096 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
6097 	zone->zone_nlwps += pp->p_lwpcnt;
6098 	/* add 1 task to zone's proj0 */
6099 	zone_proj0->kpj_ntasks += 1;
6100 
6101 	zone_proj0->kpj_nprocs++;
6102 	zone->zone_nprocs++;
6103 	mutex_exit(&zone->zone_nlwps_lock);
6104 
6105 	mutex_enter(&zone->zone_mem_lock);
6106 	zone->zone_locked_mem += pp->p_locked_mem;
6107 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
6108 	zone->zone_max_swap += swap;
6109 	mutex_exit(&zone->zone_mem_lock);
6110 
6111 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
6112 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
6113 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
6114 
6115 	/* remove lwps and process from proc's old zone and old project */
6116 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
6117 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
6118 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
6119 	pp->p_task->tk_proj->kpj_nprocs--;
6120 	pp->p_zone->zone_nprocs--;
6121 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
6122 
6123 	mutex_enter(&pp->p_zone->zone_mem_lock);
6124 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
6125 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
6126 	pp->p_zone->zone_max_swap -= swap;
6127 	mutex_exit(&pp->p_zone->zone_mem_lock);
6128 
6129 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6130 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
6131 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6132 
6133 	pp->p_flag |= SZONETOP;
6134 	pp->p_zone = zone;
6135 	mutex_exit(&pp->p_lock);
6136 	AS_LOCK_EXIT(pp->p_as);
6137 
6138 	/*
6139 	 * Joining the zone cannot fail from now on.
6140 	 *
6141 	 * This means that a lot of the following code can be commonized and
6142 	 * shared with zsched().
6143 	 */
6144 
6145 	/*
6146 	 * If the process contract fmri was inherited, we need to
6147 	 * flag this so that any contract status will not leak
6148 	 * extra zone information, svc_fmri in this case
6149 	 */
6150 	if (ctp->conp_svc_ctid != ct->ct_id) {
6151 		mutex_enter(&ct->ct_lock);
6152 		ctp->conp_svc_zone_enter = ct->ct_id;
6153 		mutex_exit(&ct->ct_lock);
6154 	}
6155 
6156 	/*
6157 	 * Reset the encapsulating process contract's zone.
6158 	 */
6159 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
6160 	contract_setzuniqid(ct, zone->zone_uniqid);
6161 
6162 	/*
6163 	 * Create a new task and associate the process with the project keyed
6164 	 * by (projid,zoneid).
6165 	 *
6166 	 * We might as well be in project 0; the global zone's projid doesn't
6167 	 * make much sense in a zone anyhow.
6168 	 *
6169 	 * This also increments zone_ntasks, and returns with p_lock held.
6170 	 */
6171 	tk = task_create(0, zone);
6172 	oldtk = task_join(tk, 0);
6173 	mutex_exit(&cpu_lock);
6174 
6175 	/*
6176 	 * call RCTLOP_SET functions on this proc
6177 	 */
6178 	e.rcep_p.zone = zone;
6179 	e.rcep_t = RCENTITY_ZONE;
6180 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6181 	    RCD_CALLBACK);
6182 	mutex_exit(&pp->p_lock);
6183 
6184 	/*
6185 	 * We don't need to hold any of zsched's locks here; not only do we know
6186 	 * the process and zone aren't going away, we know its session isn't
6187 	 * changing either.
6188 	 *
6189 	 * By joining zsched's session here, we mimic the behavior in the
6190 	 * global zone of init's sid being the pid of sched.  We extend this
6191 	 * to all zlogin-like zone_enter()'ing processes as well.
6192 	 */
6193 	mutex_enter(&pidlock);
6194 	sp = zone->zone_zsched->p_sessp;
6195 	sess_hold(zone->zone_zsched);
6196 	mutex_enter(&pp->p_lock);
6197 	pgexit(pp);
6198 	sess_rele(pp->p_sessp, B_TRUE);
6199 	pp->p_sessp = sp;
6200 	pgjoin(pp, zone->zone_zsched->p_pidp);
6201 
6202 	/*
6203 	 * If any threads are scheduled to be placed on zone wait queue they
6204 	 * should abandon the idea since the wait queue is changing.
6205 	 * We need to be holding pidlock & p_lock to do this.
6206 	 */
6207 	if ((t = pp->p_tlist) != NULL) {
6208 		do {
6209 			thread_lock(t);
6210 			/*
6211 			 * Kick this thread so that it doesn't sit
6212 			 * on a wrong wait queue.
6213 			 */
6214 			if (ISWAITING(t))
6215 				setrun_locked(t);
6216 
6217 			if (t->t_schedflag & TS_ANYWAITQ)
6218 				t->t_schedflag &= ~ TS_ANYWAITQ;
6219 
6220 			thread_unlock(t);
6221 		} while ((t = t->t_forw) != pp->p_tlist);
6222 	}
6223 
6224 	/*
6225 	 * If there is a default scheduling class for the zone and it is not
6226 	 * the class we are currently in, change all of the threads in the
6227 	 * process to the new class.  We need to be holding pidlock & p_lock
6228 	 * when we call parmsset so this is a good place to do it.
6229 	 */
6230 	if (zone->zone_defaultcid > 0 &&
6231 	    zone->zone_defaultcid != curthread->t_cid) {
6232 		pcparms_t pcparms;
6233 
6234 		pcparms.pc_cid = zone->zone_defaultcid;
6235 		pcparms.pc_clparms[0] = 0;
6236 
6237 		/*
6238 		 * If setting the class fails, we still want to enter the zone.
6239 		 */
6240 		if ((t = pp->p_tlist) != NULL) {
6241 			do {
6242 				(void) parmsset(&pcparms, t);
6243 			} while ((t = t->t_forw) != pp->p_tlist);
6244 		}
6245 	}
6246 
6247 	mutex_exit(&pp->p_lock);
6248 	mutex_exit(&pidlock);
6249 
6250 	mutex_exit(&zonehash_lock);
6251 	/*
6252 	 * We're firmly in the zone; let pools progress.
6253 	 */
6254 	pool_unlock();
6255 	task_rele(oldtk);
6256 	/*
6257 	 * We don't need to retain a hold on the zone since we already
6258 	 * incremented zone_ntasks, so the zone isn't going anywhere.
6259 	 */
6260 	zone_rele(zone);
6261 
6262 	/*
6263 	 * Chroot
6264 	 */
6265 	vp = zone->zone_rootvp;
6266 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6267 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6268 
6269 	/*
6270 	 * Change process security flags.  Note that the _effective_ flags
6271 	 * cannot change
6272 	 */
6273 	secflags_copy(&pp->p_secflags.psf_lower,
6274 	    &zone->zone_secflags.psf_lower);
6275 	secflags_copy(&pp->p_secflags.psf_upper,
6276 	    &zone->zone_secflags.psf_upper);
6277 	secflags_copy(&pp->p_secflags.psf_inherit,
6278 	    &zone->zone_secflags.psf_inherit);
6279 
6280 	/*
6281 	 * Change process credentials
6282 	 */
6283 	newcr = cralloc();
6284 	mutex_enter(&pp->p_crlock);
6285 	cr = pp->p_cred;
6286 	crcopy_to(cr, newcr);
6287 	crsetzone(newcr, zone);
6288 	pp->p_cred = newcr;
6289 
6290 	/*
6291 	 * Restrict all process privilege sets to zone limit
6292 	 */
6293 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6294 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6295 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6296 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6297 	mutex_exit(&pp->p_crlock);
6298 	crset(pp, newcr);
6299 
6300 	/*
6301 	 * Adjust upcount to reflect zone entry.
6302 	 */
6303 	uid = crgetruid(newcr);
6304 	mutex_enter(&pidlock);
6305 	upcount_dec(uid, GLOBAL_ZONEID);
6306 	upcount_inc(uid, zoneid);
6307 	mutex_exit(&pidlock);
6308 
6309 	/*
6310 	 * Set up core file path and content.
6311 	 */
6312 	set_core_defaults();
6313 
6314 out:
6315 	/*
6316 	 * Let the other lwps continue.
6317 	 */
6318 	mutex_enter(&pp->p_lock);
6319 	if (curthread != pp->p_agenttp)
6320 		continuelwps(pp);
6321 	mutex_exit(&pp->p_lock);
6322 
6323 	return (err != 0 ? set_errno(err) : 0);
6324 }
6325 
6326 /*
6327  * Systemcall entry point for zone_list(2).
6328  *
6329  * Processes running in a (non-global) zone only see themselves.
6330  * On labeled systems, they see all zones whose label they dominate.
6331  */
6332 static int
6333 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6334 {
6335 	zoneid_t *zoneids;
6336 	zone_t *zone, *myzone;
6337 	uint_t user_nzones, real_nzones;
6338 	uint_t domi_nzones;
6339 	int error;
6340 
6341 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6342 		return (set_errno(EFAULT));
6343 
6344 	myzone = curproc->p_zone;
6345 	ASSERT(zonecount > 0);
6346 	if (myzone != global_zone) {
6347 		bslabel_t *mybslab;
6348 
6349 		if (!is_system_labeled()) {
6350 			/* just return current zone */
6351 			real_nzones = domi_nzones = 1;
6352 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6353 			zoneids[0] = myzone->zone_id;
6354 		} else {
6355 			/* return all zones that are dominated */
6356 			mutex_enter(&zonehash_lock);
6357 			real_nzones = zonecount;
6358 			domi_nzones = 0;
6359 			zoneids = kmem_alloc(real_nzones *
6360 			    sizeof (zoneid_t), KM_SLEEP);
6361 			mybslab = label2bslabel(myzone->zone_slabel);
6362 			for (zone = list_head(&zone_active);
6363 			    zone != NULL;
6364 			    zone = list_next(&zone_active, zone)) {
6365 				if (zone->zone_id == GLOBAL_ZONEID)
6366 					continue;
6367 				if (zone != myzone &&
6368 				    (zone->zone_flags & ZF_IS_SCRATCH))
6369 					continue;
6370 				/*
6371 				 * Note that a label always dominates
6372 				 * itself, so myzone is always included
6373 				 * in the list.
6374 				 */
6375 				if (bldominates(mybslab,
6376 				    label2bslabel(zone->zone_slabel))) {
6377 					zoneids[domi_nzones++] = zone->zone_id;
6378 				}
6379 			}
6380 			mutex_exit(&zonehash_lock);
6381 		}
6382 	} else {
6383 		mutex_enter(&zonehash_lock);
6384 		real_nzones = zonecount;
6385 		domi_nzones = 0;
6386 		zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), KM_SLEEP);
6387 		for (zone = list_head(&zone_active); zone != NULL;
6388 		    zone = list_next(&zone_active, zone))
6389 			zoneids[domi_nzones++] = zone->zone_id;
6390 
6391 		ASSERT(domi_nzones == real_nzones);
6392 		mutex_exit(&zonehash_lock);
6393 	}
6394 
6395 	/*
6396 	 * If user has allocated space for fewer entries than we found, then
6397 	 * return only up to their limit.  Either way, tell them exactly how
6398 	 * many we found.
6399 	 */
6400 	if (domi_nzones < user_nzones)
6401 		user_nzones = domi_nzones;
6402 	error = 0;
6403 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6404 		error = EFAULT;
6405 	} else if (zoneidlist != NULL && user_nzones != 0) {
6406 		if (copyout(zoneids, zoneidlist,
6407 		    user_nzones * sizeof (zoneid_t)) != 0)
6408 			error = EFAULT;
6409 	}
6410 
6411 	kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6412 
6413 	if (error != 0)
6414 		return (set_errno(error));
6415 	else
6416 		return (0);
6417 }
6418 
6419 /*
6420  * Systemcall entry point for zone_lookup(2).
6421  *
6422  * Non-global zones are only able to see themselves and (on labeled systems)
6423  * the zones they dominate.
6424  */
6425 static zoneid_t
6426 zone_lookup(const char *zone_name)
6427 {
6428 	char *kname;
6429 	zone_t *zone;
6430 	zoneid_t zoneid;
6431 	int err;
6432 
6433 	if (zone_name == NULL) {
6434 		/* return caller's zone id */
6435 		return (getzoneid());
6436 	}
6437 
6438 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6439 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6440 		kmem_free(kname, ZONENAME_MAX);
6441 		return (set_errno(err));
6442 	}
6443 
6444 	mutex_enter(&zonehash_lock);
6445 	zone = zone_find_all_by_name(kname);
6446 	kmem_free(kname, ZONENAME_MAX);
6447 	/*
6448 	 * In a non-global zone, can only lookup global and own name.
6449 	 * In Trusted Extensions zone label dominance rules apply.
6450 	 */
6451 	if (zone == NULL ||
6452 	    zone_status_get(zone) < ZONE_IS_READY ||
6453 	    !zone_list_access(zone)) {
6454 		mutex_exit(&zonehash_lock);
6455 		return (set_errno(EINVAL));
6456 	} else {
6457 		zoneid = zone->zone_id;
6458 		mutex_exit(&zonehash_lock);
6459 		return (zoneid);
6460 	}
6461 }
6462 
6463 static int
6464 zone_version(int *version_arg)
6465 {
6466 	int version = ZONE_SYSCALL_API_VERSION;
6467 
6468 	if (copyout(&version, version_arg, sizeof (int)) != 0)
6469 		return (set_errno(EFAULT));
6470 	return (0);
6471 }
6472 
6473 /* ARGSUSED */
6474 long
6475 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6476 {
6477 	zone_def zs;
6478 	int err;
6479 
6480 	switch (cmd) {
6481 	case ZONE_CREATE:
6482 		if (get_udatamodel() == DATAMODEL_NATIVE) {
6483 			if (copyin(arg1, &zs, sizeof (zone_def))) {
6484 				return (set_errno(EFAULT));
6485 			}
6486 		} else {
6487 #ifdef _SYSCALL32_IMPL
6488 			zone_def32 zs32;
6489 
6490 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6491 				return (set_errno(EFAULT));
6492 			}
6493 			zs.zone_name =
6494 			    (const char *)(unsigned long)zs32.zone_name;
6495 			zs.zone_root =
6496 			    (const char *)(unsigned long)zs32.zone_root;
6497 			zs.zone_privs =
6498 			    (const struct priv_set *)
6499 			    (unsigned long)zs32.zone_privs;
6500 			zs.zone_privssz = zs32.zone_privssz;
6501 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6502 			zs.rctlbufsz = zs32.rctlbufsz;
6503 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6504 			zs.zfsbufsz = zs32.zfsbufsz;
6505 			zs.extended_error =
6506 			    (int *)(unsigned long)zs32.extended_error;
6507 			zs.match = zs32.match;
6508 			zs.doi = zs32.doi;
6509 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6510 			zs.flags = zs32.flags;
6511 #else
6512 			panic("get_udatamodel() returned bogus result\n");
6513 #endif
6514 		}
6515 
6516 		return (zone_create(zs.zone_name, zs.zone_root,
6517 		    zs.zone_privs, zs.zone_privssz,
6518 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6519 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6520 		    zs.extended_error, zs.match, zs.doi,
6521 		    zs.label, zs.flags));
6522 	case ZONE_BOOT:
6523 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
6524 	case ZONE_DESTROY:
6525 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6526 	case ZONE_GETATTR:
6527 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6528 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6529 	case ZONE_SETATTR:
6530 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6531 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6532 	case ZONE_ENTER:
6533 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
6534 	case ZONE_LIST:
6535 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6536 	case ZONE_SHUTDOWN:
6537 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6538 	case ZONE_LOOKUP:
6539 		return (zone_lookup((const char *)arg1));
6540 	case ZONE_VERSION:
6541 		return (zone_version((int *)arg1));
6542 	case ZONE_ADD_DATALINK:
6543 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6544 		    (datalink_id_t)(uintptr_t)arg2));
6545 	case ZONE_DEL_DATALINK:
6546 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6547 		    (datalink_id_t)(uintptr_t)arg2));
6548 	case ZONE_CHECK_DATALINK: {
6549 		zoneid_t	zoneid;
6550 		boolean_t	need_copyout;
6551 
6552 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6553 			return (EFAULT);
6554 		need_copyout = (zoneid == ALL_ZONES);
6555 		err = zone_check_datalink(&zoneid,
6556 		    (datalink_id_t)(uintptr_t)arg2);
6557 		if (err == 0 && need_copyout) {
6558 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6559 				err = EFAULT;
6560 		}
6561 		return (err == 0 ? 0 : set_errno(err));
6562 	}
6563 	case ZONE_LIST_DATALINK:
6564 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6565 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6566 	default:
6567 		return (set_errno(EINVAL));
6568 	}
6569 }
6570 
6571 struct zarg {
6572 	zone_t *zone;
6573 	zone_cmd_arg_t arg;
6574 };
6575 
6576 static int
6577 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6578 {
6579 	char *buf;
6580 	size_t buflen;
6581 	int error;
6582 
6583 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6584 	buf = kmem_alloc(buflen, KM_SLEEP);
6585 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6586 	error = door_ki_open(buf, doorp);
6587 	kmem_free(buf, buflen);
6588 	return (error);
6589 }
6590 
6591 static void
6592 zone_release_door(door_handle_t *doorp)
6593 {
6594 	door_ki_rele(*doorp);
6595 	*doorp = NULL;
6596 }
6597 
6598 static void
6599 zone_ki_call_zoneadmd(struct zarg *zargp)
6600 {
6601 	door_handle_t door = NULL;
6602 	door_arg_t darg, save_arg;
6603 	char *zone_name;
6604 	size_t zone_namelen;
6605 	zoneid_t zoneid;
6606 	zone_t *zone;
6607 	zone_cmd_arg_t arg;
6608 	uint64_t uniqid;
6609 	size_t size;
6610 	int error;
6611 	int retry;
6612 
6613 	zone = zargp->zone;
6614 	arg = zargp->arg;
6615 	kmem_free(zargp, sizeof (*zargp));
6616 
6617 	zone_namelen = strlen(zone->zone_name) + 1;
6618 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6619 	bcopy(zone->zone_name, zone_name, zone_namelen);
6620 	zoneid = zone->zone_id;
6621 	uniqid = zone->zone_uniqid;
6622 	/*
6623 	 * zoneadmd may be down, but at least we can empty out the zone.
6624 	 * We can ignore the return value of zone_empty() since we're called
6625 	 * from a kernel thread and know we won't be delivered any signals.
6626 	 */
6627 	ASSERT(curproc == &p0);
6628 	(void) zone_empty(zone);
6629 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6630 	zone_rele(zone);
6631 
6632 	size = sizeof (arg);
6633 	darg.rbuf = (char *)&arg;
6634 	darg.data_ptr = (char *)&arg;
6635 	darg.rsize = size;
6636 	darg.data_size = size;
6637 	darg.desc_ptr = NULL;
6638 	darg.desc_num = 0;
6639 
6640 	save_arg = darg;
6641 	/*
6642 	 * Since we're not holding a reference to the zone, any number of
6643 	 * things can go wrong, including the zone disappearing before we get a
6644 	 * chance to talk to zoneadmd.
6645 	 */
6646 	for (retry = 0; /* forever */; retry++) {
6647 		if (door == NULL &&
6648 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
6649 			goto next;
6650 		}
6651 		ASSERT(door != NULL);
6652 
6653 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
6654 		    SIZE_MAX, 0)) == 0) {
6655 			break;
6656 		}
6657 		switch (error) {
6658 		case EINTR:
6659 			/* FALLTHROUGH */
6660 		case EAGAIN:	/* process may be forking */
6661 			/*
6662 			 * Back off for a bit
6663 			 */
6664 			break;
6665 		case EBADF:
6666 			zone_release_door(&door);
6667 			if (zone_lookup_door(zone_name, &door) != 0) {
6668 				/*
6669 				 * zoneadmd may be dead, but it may come back to
6670 				 * life later.
6671 				 */
6672 				break;
6673 			}
6674 			break;
6675 		default:
6676 			cmn_err(CE_WARN,
6677 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6678 			    error);
6679 			goto out;
6680 		}
6681 next:
6682 		/*
6683 		 * If this isn't the same zone_t that we originally had in mind,
6684 		 * then this is the same as if two kadmin requests come in at
6685 		 * the same time: the first one wins.  This means we lose, so we
6686 		 * bail.
6687 		 */
6688 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
6689 			/*
6690 			 * Problem is solved.
6691 			 */
6692 			break;
6693 		}
6694 		if (zone->zone_uniqid != uniqid) {
6695 			/*
6696 			 * zoneid recycled
6697 			 */
6698 			zone_rele(zone);
6699 			break;
6700 		}
6701 		/*
6702 		 * We could zone_status_timedwait(), but there doesn't seem to
6703 		 * be much point in doing that (plus, it would mean that
6704 		 * zone_free() isn't called until this thread exits).
6705 		 */
6706 		zone_rele(zone);
6707 		delay(hz);
6708 		darg = save_arg;
6709 	}
6710 out:
6711 	if (door != NULL) {
6712 		zone_release_door(&door);
6713 	}
6714 	kmem_free(zone_name, zone_namelen);
6715 	thread_exit();
6716 }
6717 
6718 /*
6719  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
6720  * kadmin().  The caller is a process in the zone.
6721  *
6722  * In order to shutdown the zone, we will hand off control to zoneadmd
6723  * (running in the global zone) via a door.  We do a half-hearted job at
6724  * killing all processes in the zone, create a kernel thread to contact
6725  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
6726  * a form of generation number used to let zoneadmd (as well as
6727  * zone_destroy()) know exactly which zone they're re talking about.
6728  */
6729 int
6730 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6731 {
6732 	struct zarg *zargp;
6733 	zone_cmd_t zcmd;
6734 	zone_t *zone;
6735 
6736 	zone = curproc->p_zone;
6737 	ASSERT(getzoneid() != GLOBAL_ZONEID);
6738 
6739 	switch (cmd) {
6740 	case A_SHUTDOWN:
6741 		switch (fcn) {
6742 		case AD_HALT:
6743 		case AD_POWEROFF:
6744 			zcmd = Z_HALT;
6745 			break;
6746 		case AD_BOOT:
6747 			zcmd = Z_REBOOT;
6748 			break;
6749 		case AD_IBOOT:
6750 		case AD_SBOOT:
6751 		case AD_SIBOOT:
6752 		case AD_NOSYNC:
6753 			return (ENOTSUP);
6754 		default:
6755 			return (EINVAL);
6756 		}
6757 		break;
6758 	case A_REBOOT:
6759 		zcmd = Z_REBOOT;
6760 		break;
6761 	case A_FTRACE:
6762 	case A_REMOUNT:
6763 	case A_FREEZE:
6764 	case A_DUMP:
6765 	case A_CONFIG:
6766 		return (ENOTSUP);
6767 	default:
6768 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
6769 		return (EINVAL);
6770 	}
6771 
6772 	if (secpolicy_zone_admin(credp, B_FALSE))
6773 		return (EPERM);
6774 	mutex_enter(&zone_status_lock);
6775 
6776 	/*
6777 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6778 	 * is in the zone.
6779 	 */
6780 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6781 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6782 		/*
6783 		 * This zone is already on its way down.
6784 		 */
6785 		mutex_exit(&zone_status_lock);
6786 		return (0);
6787 	}
6788 	/*
6789 	 * Prevent future zone_enter()s
6790 	 */
6791 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6792 	mutex_exit(&zone_status_lock);
6793 
6794 	/*
6795 	 * Kill everyone now and call zoneadmd later.
6796 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
6797 	 * later.
6798 	 */
6799 	killall(zone->zone_id);
6800 	/*
6801 	 * Now, create the thread to contact zoneadmd and do the rest of the
6802 	 * work.  This thread can't be created in our zone otherwise
6803 	 * zone_destroy() would deadlock.
6804 	 */
6805 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6806 	zargp->arg.cmd = zcmd;
6807 	zargp->arg.uniqid = zone->zone_uniqid;
6808 	zargp->zone = zone;
6809 	(void) strcpy(zargp->arg.locale, "C");
6810 	/* mdep was already copied in for us by uadmin */
6811 	if (mdep != NULL)
6812 		(void) strlcpy(zargp->arg.bootbuf, mdep,
6813 		    sizeof (zargp->arg.bootbuf));
6814 	zone_hold(zone);
6815 
6816 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6817 	    TS_RUN, minclsyspri);
6818 	exit(CLD_EXITED, 0);
6819 
6820 	return (EINVAL);
6821 }
6822 
6823 /*
6824  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6825  * status to ZONE_IS_SHUTTING_DOWN.
6826  *
6827  * This function also shuts down all running zones to ensure that they won't
6828  * fork new processes.
6829  */
6830 void
6831 zone_shutdown_global(void)
6832 {
6833 	zone_t *current_zonep;
6834 
6835 	ASSERT(INGLOBALZONE(curproc));
6836 	mutex_enter(&zonehash_lock);
6837 	mutex_enter(&zone_status_lock);
6838 
6839 	/* Modify the global zone's status first. */
6840 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6841 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6842 
6843 	/*
6844 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6845 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6846 	 * could cause assertions to fail (e.g., assertions about a zone's
6847 	 * state during initialization, readying, or booting) or produce races.
6848 	 * We'll let threads continue to initialize and ready new zones: they'll
6849 	 * fail to boot the new zones when they see that the global zone is
6850 	 * shutting down.
6851 	 */
6852 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6853 	    current_zonep = list_next(&zone_active, current_zonep)) {
6854 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6855 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6856 	}
6857 	mutex_exit(&zone_status_lock);
6858 	mutex_exit(&zonehash_lock);
6859 }
6860 
6861 /*
6862  * Returns true if the named dataset is visible in the current zone.
6863  * The 'write' parameter is set to 1 if the dataset is also writable.
6864  */
6865 int
6866 zone_dataset_visible(const char *dataset, int *write)
6867 {
6868 	static int zfstype = -1;
6869 	zone_dataset_t *zd;
6870 	size_t len;
6871 	zone_t *zone = curproc->p_zone;
6872 	const char *name = NULL;
6873 	vfs_t *vfsp = NULL;
6874 
6875 	if (dataset[0] == '\0')
6876 		return (0);
6877 
6878 	/*
6879 	 * Walk the list once, looking for datasets which match exactly, or
6880 	 * specify a dataset underneath an exported dataset.  If found, return
6881 	 * true and note that it is writable.
6882 	 */
6883 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6884 	    zd = list_next(&zone->zone_datasets, zd)) {
6885 
6886 		len = strlen(zd->zd_dataset);
6887 		if (strlen(dataset) >= len &&
6888 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6889 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6890 		    dataset[len] == '@')) {
6891 			if (write)
6892 				*write = 1;
6893 			return (1);
6894 		}
6895 	}
6896 
6897 	/*
6898 	 * Walk the list a second time, searching for datasets which are parents
6899 	 * of exported datasets.  These should be visible, but read-only.
6900 	 *
6901 	 * Note that we also have to support forms such as 'pool/dataset/', with
6902 	 * a trailing slash.
6903 	 */
6904 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6905 	    zd = list_next(&zone->zone_datasets, zd)) {
6906 
6907 		len = strlen(dataset);
6908 		if (dataset[len - 1] == '/')
6909 			len--;	/* Ignore trailing slash */
6910 		if (len < strlen(zd->zd_dataset) &&
6911 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6912 		    zd->zd_dataset[len] == '/') {
6913 			if (write)
6914 				*write = 0;
6915 			return (1);
6916 		}
6917 	}
6918 
6919 	/*
6920 	 * We reach here if the given dataset is not found in the zone_dataset
6921 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6922 	 * instead of delegation. For this we search for the dataset in the
6923 	 * zone_vfslist of this zone. If found, return true and note that it is
6924 	 * not writable.
6925 	 */
6926 
6927 	/*
6928 	 * Initialize zfstype if it is not initialized yet.
6929 	 */
6930 	if (zfstype == -1) {
6931 		struct vfssw *vswp = vfs_getvfssw("zfs");
6932 		zfstype = vswp - vfssw;
6933 		vfs_unrefvfssw(vswp);
6934 	}
6935 
6936 	vfs_list_read_lock();
6937 	vfsp = zone->zone_vfslist;
6938 	do {
6939 		ASSERT(vfsp);
6940 		if (vfsp->vfs_fstype == zfstype) {
6941 			name = refstr_value(vfsp->vfs_resource);
6942 
6943 			/*
6944 			 * Check if we have an exact match.
6945 			 */
6946 			if (strcmp(dataset, name) == 0) {
6947 				vfs_list_unlock();
6948 				if (write)
6949 					*write = 0;
6950 				return (1);
6951 			}
6952 			/*
6953 			 * We need to check if we are looking for parents of
6954 			 * a dataset. These should be visible, but read-only.
6955 			 */
6956 			len = strlen(dataset);
6957 			if (dataset[len - 1] == '/')
6958 				len--;
6959 
6960 			if (len < strlen(name) &&
6961 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6962 				vfs_list_unlock();
6963 				if (write)
6964 					*write = 0;
6965 				return (1);
6966 			}
6967 		}
6968 		vfsp = vfsp->vfs_zone_next;
6969 	} while (vfsp != zone->zone_vfslist);
6970 
6971 	vfs_list_unlock();
6972 	return (0);
6973 }
6974 
6975 /*
6976  * zone_find_by_any_path() -
6977  *
6978  * kernel-private routine similar to zone_find_by_path(), but which
6979  * effectively compares against zone paths rather than zonerootpath
6980  * (i.e., the last component of zonerootpaths, which should be "root/",
6981  * are not compared.)  This is done in order to accurately identify all
6982  * paths, whether zone-visible or not, including those which are parallel
6983  * to /root/, such as /dev/, /home/, etc...
6984  *
6985  * If the specified path does not fall under any zone path then global
6986  * zone is returned.
6987  *
6988  * The treat_abs parameter indicates whether the path should be treated as
6989  * an absolute path although it does not begin with "/".  (This supports
6990  * nfs mount syntax such as host:any/path.)
6991  *
6992  * The caller is responsible for zone_rele of the returned zone.
6993  */
6994 zone_t *
6995 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6996 {
6997 	zone_t *zone;
6998 	int path_offset = 0;
6999 
7000 	if (path == NULL) {
7001 		zone_hold(global_zone);
7002 		return (global_zone);
7003 	}
7004 
7005 	if (*path != '/') {
7006 		ASSERT(treat_abs);
7007 		path_offset = 1;
7008 	}
7009 
7010 	mutex_enter(&zonehash_lock);
7011 	for (zone = list_head(&zone_active); zone != NULL;
7012 	    zone = list_next(&zone_active, zone)) {
7013 		char	*c;
7014 		size_t	pathlen;
7015 		char *rootpath_start;
7016 
7017 		if (zone == global_zone)	/* skip global zone */
7018 			continue;
7019 
7020 		/* scan backwards to find start of last component */
7021 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
7022 		do {
7023 			c--;
7024 		} while (*c != '/');
7025 
7026 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
7027 		rootpath_start = (zone->zone_rootpath + path_offset);
7028 		if (strncmp(path, rootpath_start, pathlen) == 0)
7029 			break;
7030 	}
7031 	if (zone == NULL)
7032 		zone = global_zone;
7033 	zone_hold(zone);
7034 	mutex_exit(&zonehash_lock);
7035 	return (zone);
7036 }
7037 
7038 /*
7039  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
7040  * zone_dl_t pointer if found, and NULL otherwise.
7041  */
7042 static zone_dl_t *
7043 zone_find_dl(zone_t *zone, datalink_id_t linkid)
7044 {
7045 	zone_dl_t *zdl;
7046 
7047 	ASSERT(mutex_owned(&zone->zone_lock));
7048 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7049 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7050 		if (zdl->zdl_id == linkid)
7051 			break;
7052 	}
7053 	return (zdl);
7054 }
7055 
7056 static boolean_t
7057 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
7058 {
7059 	boolean_t exists;
7060 
7061 	mutex_enter(&zone->zone_lock);
7062 	exists = (zone_find_dl(zone, linkid) != NULL);
7063 	mutex_exit(&zone->zone_lock);
7064 	return (exists);
7065 }
7066 
7067 /*
7068  * Add an data link name for the zone.
7069  */
7070 static int
7071 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
7072 {
7073 	zone_dl_t *zdl;
7074 	zone_t *zone;
7075 	zone_t *thiszone;
7076 
7077 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
7078 		return (set_errno(ENXIO));
7079 
7080 	/* Verify that the datalink ID doesn't already belong to a zone. */
7081 	mutex_enter(&zonehash_lock);
7082 	for (zone = list_head(&zone_active); zone != NULL;
7083 	    zone = list_next(&zone_active, zone)) {
7084 		if (zone_dl_exists(zone, linkid)) {
7085 			mutex_exit(&zonehash_lock);
7086 			zone_rele(thiszone);
7087 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
7088 		}
7089 	}
7090 
7091 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
7092 	zdl->zdl_id = linkid;
7093 	zdl->zdl_net = NULL;
7094 	mutex_enter(&thiszone->zone_lock);
7095 	list_insert_head(&thiszone->zone_dl_list, zdl);
7096 	mutex_exit(&thiszone->zone_lock);
7097 	mutex_exit(&zonehash_lock);
7098 	zone_rele(thiszone);
7099 	return (0);
7100 }
7101 
7102 static int
7103 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
7104 {
7105 	zone_dl_t *zdl;
7106 	zone_t *zone;
7107 	int err = 0;
7108 
7109 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7110 		return (set_errno(EINVAL));
7111 
7112 	mutex_enter(&zone->zone_lock);
7113 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7114 		err = ENXIO;
7115 	} else {
7116 		list_remove(&zone->zone_dl_list, zdl);
7117 		nvlist_free(zdl->zdl_net);
7118 		kmem_free(zdl, sizeof (zone_dl_t));
7119 	}
7120 	mutex_exit(&zone->zone_lock);
7121 	zone_rele(zone);
7122 	return (err == 0 ? 0 : set_errno(err));
7123 }
7124 
7125 /*
7126  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
7127  * the linkid.  Otherwise we just check if the specified zoneidp has been
7128  * assigned the supplied linkid.
7129  */
7130 int
7131 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
7132 {
7133 	zone_t *zone;
7134 	int err = ENXIO;
7135 
7136 	if (*zoneidp != ALL_ZONES) {
7137 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
7138 			if (zone_dl_exists(zone, linkid))
7139 				err = 0;
7140 			zone_rele(zone);
7141 		}
7142 		return (err);
7143 	}
7144 
7145 	mutex_enter(&zonehash_lock);
7146 	for (zone = list_head(&zone_active); zone != NULL;
7147 	    zone = list_next(&zone_active, zone)) {
7148 		if (zone_dl_exists(zone, linkid)) {
7149 			*zoneidp = zone->zone_id;
7150 			err = 0;
7151 			break;
7152 		}
7153 	}
7154 	mutex_exit(&zonehash_lock);
7155 	return (err);
7156 }
7157 
7158 /*
7159  * Get the list of datalink IDs assigned to a zone.
7160  *
7161  * On input, *nump is the number of datalink IDs that can fit in the supplied
7162  * idarray.  Upon return, *nump is either set to the number of datalink IDs
7163  * that were placed in the array if the array was large enough, or to the
7164  * number of datalink IDs that the function needs to place in the array if the
7165  * array is too small.
7166  */
7167 static int
7168 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
7169 {
7170 	uint_t num, dlcount;
7171 	zone_t *zone;
7172 	zone_dl_t *zdl;
7173 	datalink_id_t *idptr = idarray;
7174 
7175 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7176 		return (set_errno(EFAULT));
7177 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7178 		return (set_errno(ENXIO));
7179 
7180 	num = 0;
7181 	mutex_enter(&zone->zone_lock);
7182 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7183 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7184 		/*
7185 		 * If the list is bigger than what the caller supplied, just
7186 		 * count, don't do copyout.
7187 		 */
7188 		if (++num > dlcount)
7189 			continue;
7190 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7191 			mutex_exit(&zone->zone_lock);
7192 			zone_rele(zone);
7193 			return (set_errno(EFAULT));
7194 		}
7195 		idptr++;
7196 	}
7197 	mutex_exit(&zone->zone_lock);
7198 	zone_rele(zone);
7199 
7200 	/*
7201 	 * Prevent returning negative nump values -- we should never
7202 	 * have this many links anyways.
7203 	 */
7204 	if (num > INT_MAX)
7205 		return (set_errno(EOVERFLOW));
7206 
7207 	/* Increased or decreased, caller should be notified. */
7208 	if (num != dlcount) {
7209 		if (copyout(&num, nump, sizeof (num)) != 0)
7210 			return (set_errno(EFAULT));
7211 	}
7212 	return (0);
7213 }
7214 
7215 /*
7216  * Public interface for looking up a zone by zoneid. It's a customized version
7217  * for netstack_zone_create(). It can only be called from the zsd create
7218  * callbacks, since it doesn't have reference on the zone structure hence if
7219  * it is called elsewhere the zone could disappear after the zonehash_lock
7220  * is dropped.
7221  *
7222  * Furthermore it
7223  * 1. Doesn't check the status of the zone.
7224  * 2. It will be called even before zone_init is called, in that case the
7225  *    address of zone0 is returned directly, and netstack_zone_create()
7226  *    will only assign a value to zone0.zone_netstack, won't break anything.
7227  * 3. Returns without the zone being held.
7228  */
7229 zone_t *
7230 zone_find_by_id_nolock(zoneid_t zoneid)
7231 {
7232 	zone_t *zone;
7233 
7234 	mutex_enter(&zonehash_lock);
7235 	if (zonehashbyid == NULL)
7236 		zone = &zone0;
7237 	else
7238 		zone = zone_find_all_by_id(zoneid);
7239 	mutex_exit(&zonehash_lock);
7240 	return (zone);
7241 }
7242 
7243 /*
7244  * Walk the datalinks for a given zone
7245  */
7246 int
7247 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7248     void *data)
7249 {
7250 	zone_t		*zone;
7251 	zone_dl_t	*zdl;
7252 	datalink_id_t	*idarray;
7253 	uint_t		idcount = 0;
7254 	int		i, ret = 0;
7255 
7256 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7257 		return (ENOENT);
7258 
7259 	/*
7260 	 * We first build an array of linkid's so that we can walk these and
7261 	 * execute the callback with the zone_lock dropped.
7262 	 */
7263 	mutex_enter(&zone->zone_lock);
7264 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7265 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7266 		idcount++;
7267 	}
7268 
7269 	if (idcount == 0) {
7270 		mutex_exit(&zone->zone_lock);
7271 		zone_rele(zone);
7272 		return (0);
7273 	}
7274 
7275 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7276 	if (idarray == NULL) {
7277 		mutex_exit(&zone->zone_lock);
7278 		zone_rele(zone);
7279 		return (ENOMEM);
7280 	}
7281 
7282 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7283 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7284 		idarray[i] = zdl->zdl_id;
7285 	}
7286 
7287 	mutex_exit(&zone->zone_lock);
7288 
7289 	for (i = 0; i < idcount && ret == 0; i++) {
7290 		if ((ret = (*cb)(idarray[i], data)) != 0)
7291 			break;
7292 	}
7293 
7294 	zone_rele(zone);
7295 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7296 	return (ret);
7297 }
7298 
7299 static char *
7300 zone_net_type2name(int type)
7301 {
7302 	switch (type) {
7303 	case ZONE_NETWORK_ADDRESS:
7304 		return (ZONE_NET_ADDRNAME);
7305 	case ZONE_NETWORK_DEFROUTER:
7306 		return (ZONE_NET_RTRNAME);
7307 	default:
7308 		return (NULL);
7309 	}
7310 }
7311 
7312 static int
7313 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7314 {
7315 	zone_t *zone;
7316 	zone_dl_t *zdl;
7317 	nvlist_t *nvl;
7318 	int err = 0;
7319 	uint8_t *new = NULL;
7320 	char *nvname;
7321 	int bufsize;
7322 	datalink_id_t linkid = znbuf->zn_linkid;
7323 
7324 	if (secpolicy_zone_config(CRED()) != 0)
7325 		return (set_errno(EPERM));
7326 
7327 	if (zoneid == GLOBAL_ZONEID)
7328 		return (set_errno(EINVAL));
7329 
7330 	nvname = zone_net_type2name(znbuf->zn_type);
7331 	bufsize = znbuf->zn_len;
7332 	new = znbuf->zn_val;
7333 	if (nvname == NULL)
7334 		return (set_errno(EINVAL));
7335 
7336 	if ((zone = zone_find_by_id(zoneid)) == NULL) {
7337 		return (set_errno(EINVAL));
7338 	}
7339 
7340 	mutex_enter(&zone->zone_lock);
7341 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7342 		err = ENXIO;
7343 		goto done;
7344 	}
7345 	if ((nvl = zdl->zdl_net) == NULL) {
7346 		if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7347 			err = ENOMEM;
7348 			goto done;
7349 		} else {
7350 			zdl->zdl_net = nvl;
7351 		}
7352 	}
7353 	if (nvlist_exists(nvl, nvname)) {
7354 		err = EINVAL;
7355 		goto done;
7356 	}
7357 	err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7358 	ASSERT(err == 0);
7359 done:
7360 	mutex_exit(&zone->zone_lock);
7361 	zone_rele(zone);
7362 	if (err != 0)
7363 		return (set_errno(err));
7364 	else
7365 		return (0);
7366 }
7367 
7368 static int
7369 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7370 {
7371 	zone_t *zone;
7372 	zone_dl_t *zdl;
7373 	nvlist_t *nvl;
7374 	uint8_t *ptr;
7375 	uint_t psize;
7376 	int err = 0;
7377 	char *nvname;
7378 	int bufsize;
7379 	void *buf;
7380 	datalink_id_t linkid = znbuf->zn_linkid;
7381 
7382 	if (zoneid == GLOBAL_ZONEID)
7383 		return (set_errno(EINVAL));
7384 
7385 	nvname = zone_net_type2name(znbuf->zn_type);
7386 	bufsize = znbuf->zn_len;
7387 	buf = znbuf->zn_val;
7388 
7389 	if (nvname == NULL)
7390 		return (set_errno(EINVAL));
7391 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7392 		return (set_errno(EINVAL));
7393 
7394 	mutex_enter(&zone->zone_lock);
7395 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7396 		err = ENXIO;
7397 		goto done;
7398 	}
7399 	if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7400 		err = ENOENT;
7401 		goto done;
7402 	}
7403 	err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7404 	ASSERT(err == 0);
7405 
7406 	if (psize > bufsize) {
7407 		err = ENOBUFS;
7408 		goto done;
7409 	}
7410 	znbuf->zn_len = psize;
7411 	bcopy(ptr, buf, psize);
7412 done:
7413 	mutex_exit(&zone->zone_lock);
7414 	zone_rele(zone);
7415 	if (err != 0)
7416 		return (set_errno(err));
7417 	else
7418 		return (0);
7419 }
7420