1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. All rights reserved. 25 * Copyright (c) 2016 by Delphix. All rights reserved. 26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 27 */ 28 29 /* 30 * Zones 31 * 32 * A zone is a named collection of processes, namespace constraints, 33 * and other system resources which comprise a secure and manageable 34 * application containment facility. 35 * 36 * Zones (represented by the reference counted zone_t) are tracked in 37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 38 * (zoneid_t) are used to track zone association. Zone IDs are 39 * dynamically generated when the zone is created; if a persistent 40 * identifier is needed (core files, accounting logs, audit trail, 41 * etc.), the zone name should be used. 42 * 43 * 44 * Global Zone: 45 * 46 * The global zone (zoneid 0) is automatically associated with all 47 * system resources that have not been bound to a user-created zone. 48 * This means that even systems where zones are not in active use 49 * have a global zone, and all processes, mounts, etc. are 50 * associated with that zone. The global zone is generally 51 * unconstrained in terms of privileges and access, though the usual 52 * credential and privilege based restrictions apply. 53 * 54 * 55 * Zone States: 56 * 57 * The states in which a zone may be in and the transitions are as 58 * follows: 59 * 60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 61 * initialized zone is added to the list of active zones on the system but 62 * isn't accessible. 63 * 64 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 65 * not yet completed. Not possible to enter the zone, but attributes can 66 * be retrieved. 67 * 68 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 69 * ready. The zone is made visible after the ZSD constructor callbacks are 70 * executed. A zone remains in this state until it transitions into 71 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 72 * 73 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 74 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 75 * state. 76 * 77 * ZONE_IS_RUNNING: The zone is open for business: zsched has 78 * successfully started init. A zone remains in this state until 79 * zone_shutdown() is called. 80 * 81 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 82 * killing all processes running in the zone. The zone remains 83 * in this state until there are no more user processes running in the zone. 84 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 85 * Since zone_shutdown() is restartable, it may be called successfully 86 * multiple times for the same zone_t. Setting of the zone's state to 87 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 88 * the zone's status without worrying about it being a moving target. 89 * 90 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 91 * are no more user processes in the zone. The zone remains in this 92 * state until there are no more kernel threads associated with the 93 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 94 * fail. 95 * 96 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 97 * have exited. zone_shutdown() returns. Henceforth it is not possible to 98 * join the zone or create kernel threads therein. 99 * 100 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 101 * remains in this state until zsched exits. Calls to zone_find_by_*() 102 * return NULL from now on. 103 * 104 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 105 * processes or threads doing work on behalf of the zone. The zone is 106 * removed from the list of active zones. zone_destroy() returns, and 107 * the zone can be recreated. 108 * 109 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 110 * callbacks are executed, and all memory associated with the zone is 111 * freed. 112 * 113 * Threads can wait for the zone to enter a requested state by using 114 * zone_status_wait() or zone_status_timedwait() with the desired 115 * state passed in as an argument. Zone state transitions are 116 * uni-directional; it is not possible to move back to an earlier state. 117 * 118 * 119 * Zone-Specific Data: 120 * 121 * Subsystems needing to maintain zone-specific data can store that 122 * data using the ZSD mechanism. This provides a zone-specific data 123 * store, similar to thread-specific data (see pthread_getspecific(3C) 124 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 125 * to register callbacks to be invoked when a zone is created, shut 126 * down, or destroyed. This can be used to initialize zone-specific 127 * data for new zones and to clean up when zones go away. 128 * 129 * 130 * Data Structures: 131 * 132 * The per-zone structure (zone_t) is reference counted, and freed 133 * when all references are released. zone_hold and zone_rele can be 134 * used to adjust the reference count. In addition, reference counts 135 * associated with the cred_t structure are tracked separately using 136 * zone_cred_hold and zone_cred_rele. 137 * 138 * Pointers to active zone_t's are stored in two hash tables; one 139 * for searching by id, the other for searching by name. Lookups 140 * can be performed on either basis, using zone_find_by_id and 141 * zone_find_by_name. Both return zone_t pointers with the zone 142 * held, so zone_rele should be called when the pointer is no longer 143 * needed. Zones can also be searched by path; zone_find_by_path 144 * returns the zone with which a path name is associated (global 145 * zone if the path is not within some other zone's file system 146 * hierarchy). This currently requires iterating through each zone, 147 * so it is slower than an id or name search via a hash table. 148 * 149 * 150 * Locking: 151 * 152 * zonehash_lock: This is a top-level global lock used to protect the 153 * zone hash tables and lists. Zones cannot be created or destroyed 154 * while this lock is held. 155 * zone_status_lock: This is a global lock protecting zone state. 156 * Zones cannot change state while this lock is held. It also 157 * protects the list of kernel threads associated with a zone. 158 * zone_lock: This is a per-zone lock used to protect several fields of 159 * the zone_t (see <sys/zone.h> for details). In addition, holding 160 * this lock means that the zone cannot go away. 161 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-lwps rctl. 163 * zone_mem_lock: This is a per-zone lock used to protect the fields 164 * related to the zone.max-locked-memory and zone.max-swap rctls. 165 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 166 * currently just max_lofi 167 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 168 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 169 * list (a list of zones in the ZONE_IS_DEAD state). 170 * 171 * Ordering requirements: 172 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 173 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 174 * 175 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 176 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 177 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 178 * 179 * Blocking memory allocations are permitted while holding any of the 180 * zone locks. 181 * 182 * 183 * System Call Interface: 184 * 185 * The zone subsystem can be managed and queried from user level with 186 * the following system calls (all subcodes of the primary "zone" 187 * system call): 188 * - zone_create: creates a zone with selected attributes (name, 189 * root path, privileges, resource controls, ZFS datasets) 190 * - zone_enter: allows the current process to enter a zone 191 * - zone_getattr: reports attributes of a zone 192 * - zone_setattr: set attributes of a zone 193 * - zone_boot: set 'init' running for the zone 194 * - zone_list: lists all zones active in the system 195 * - zone_lookup: looks up zone id based on name 196 * - zone_shutdown: initiates shutdown process (see states above) 197 * - zone_destroy: completes shutdown process (see states above) 198 * 199 */ 200 201 #include <sys/priv_impl.h> 202 #include <sys/cred.h> 203 #include <c2/audit.h> 204 #include <sys/debug.h> 205 #include <sys/file.h> 206 #include <sys/kmem.h> 207 #include <sys/kstat.h> 208 #include <sys/mutex.h> 209 #include <sys/note.h> 210 #include <sys/pathname.h> 211 #include <sys/proc.h> 212 #include <sys/project.h> 213 #include <sys/sysevent.h> 214 #include <sys/task.h> 215 #include <sys/systm.h> 216 #include <sys/types.h> 217 #include <sys/utsname.h> 218 #include <sys/vnode.h> 219 #include <sys/vfs.h> 220 #include <sys/systeminfo.h> 221 #include <sys/policy.h> 222 #include <sys/cred_impl.h> 223 #include <sys/contract_impl.h> 224 #include <sys/contract/process_impl.h> 225 #include <sys/class.h> 226 #include <sys/pool.h> 227 #include <sys/pool_pset.h> 228 #include <sys/pset.h> 229 #include <sys/strlog.h> 230 #include <sys/sysmacros.h> 231 #include <sys/callb.h> 232 #include <sys/vmparam.h> 233 #include <sys/corectl.h> 234 #include <sys/ipc_impl.h> 235 #include <sys/klpd.h> 236 237 #include <sys/door.h> 238 #include <sys/cpuvar.h> 239 #include <sys/sdt.h> 240 241 #include <sys/uadmin.h> 242 #include <sys/session.h> 243 #include <sys/cmn_err.h> 244 #include <sys/modhash.h> 245 #include <sys/sunddi.h> 246 #include <sys/nvpair.h> 247 #include <sys/rctl.h> 248 #include <sys/fss.h> 249 #include <sys/brand.h> 250 #include <sys/zone.h> 251 #include <net/if.h> 252 #include <sys/cpucaps.h> 253 #include <vm/seg.h> 254 #include <sys/mac.h> 255 256 /* 257 * This constant specifies the number of seconds that threads waiting for 258 * subsystems to release a zone's general-purpose references will wait before 259 * they log the zone's reference counts. The constant's value shouldn't 260 * be so small that reference counts are unnecessarily reported for zones 261 * whose references are slowly released. On the other hand, it shouldn't be so 262 * large that users reboot their systems out of frustration over hung zones 263 * before the system logs the zones' reference counts. 264 */ 265 #define ZONE_DESTROY_TIMEOUT_SECS 60 266 267 /* List of data link IDs which are accessible from the zone */ 268 typedef struct zone_dl { 269 datalink_id_t zdl_id; 270 nvlist_t *zdl_net; 271 list_node_t zdl_linkage; 272 } zone_dl_t; 273 274 /* 275 * cv used to signal that all references to the zone have been released. This 276 * needs to be global since there may be multiple waiters, and the first to 277 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 278 */ 279 static kcondvar_t zone_destroy_cv; 280 /* 281 * Lock used to serialize access to zone_cv. This could have been per-zone, 282 * but then we'd need another lock for zone_destroy_cv, and why bother? 283 */ 284 static kmutex_t zone_status_lock; 285 286 /* 287 * ZSD-related global variables. 288 */ 289 static kmutex_t zsd_key_lock; /* protects the following two */ 290 /* 291 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 292 */ 293 static zone_key_t zsd_keyval = 0; 294 /* 295 * Global list of registered keys. We use this when a new zone is created. 296 */ 297 static list_t zsd_registered_keys; 298 299 int zone_hash_size = 256; 300 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 301 static kmutex_t zonehash_lock; 302 static uint_t zonecount; 303 static id_space_t *zoneid_space; 304 305 /* 306 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 307 * kernel proper runs, and which manages all other zones. 308 * 309 * Although not declared as static, the variable "zone0" should not be used 310 * except for by code that needs to reference the global zone early on in boot, 311 * before it is fully initialized. All other consumers should use 312 * 'global_zone'. 313 */ 314 zone_t zone0; 315 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 316 317 /* 318 * List of active zones, protected by zonehash_lock. 319 */ 320 static list_t zone_active; 321 322 /* 323 * List of destroyed zones that still have outstanding cred references. 324 * Used for debugging. Uses a separate lock to avoid lock ordering 325 * problems in zone_free. 326 */ 327 static list_t zone_deathrow; 328 static kmutex_t zone_deathrow_lock; 329 330 /* number of zones is limited by virtual interface limit in IP */ 331 uint_t maxzones = 8192; 332 333 /* Event channel to sent zone state change notifications */ 334 evchan_t *zone_event_chan; 335 336 /* 337 * This table holds the mapping from kernel zone states to 338 * states visible in the state notification API. 339 * The idea is that we only expose "obvious" states and 340 * do not expose states which are just implementation details. 341 */ 342 const char *zone_status_table[] = { 343 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 344 ZONE_EVENT_INITIALIZED, /* initialized */ 345 ZONE_EVENT_READY, /* ready */ 346 ZONE_EVENT_READY, /* booting */ 347 ZONE_EVENT_RUNNING, /* running */ 348 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 350 ZONE_EVENT_SHUTTING_DOWN, /* down */ 351 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 352 ZONE_EVENT_UNINITIALIZED, /* dead */ 353 }; 354 355 /* 356 * This array contains the names of the subsystems listed in zone_ref_subsys_t 357 * (see sys/zone.h). 358 */ 359 static char *zone_ref_subsys_names[] = { 360 "NFS", /* ZONE_REF_NFS */ 361 "NFSv4", /* ZONE_REF_NFSV4 */ 362 "SMBFS", /* ZONE_REF_SMBFS */ 363 "MNTFS", /* ZONE_REF_MNTFS */ 364 "LOFI", /* ZONE_REF_LOFI */ 365 "VFS", /* ZONE_REF_VFS */ 366 "IPC" /* ZONE_REF_IPC */ 367 }; 368 369 /* 370 * This isn't static so lint doesn't complain. 371 */ 372 rctl_hndl_t rc_zone_cpu_shares; 373 rctl_hndl_t rc_zone_locked_mem; 374 rctl_hndl_t rc_zone_max_swap; 375 rctl_hndl_t rc_zone_max_lofi; 376 rctl_hndl_t rc_zone_cpu_cap; 377 rctl_hndl_t rc_zone_nlwps; 378 rctl_hndl_t rc_zone_nprocs; 379 rctl_hndl_t rc_zone_shmmax; 380 rctl_hndl_t rc_zone_shmmni; 381 rctl_hndl_t rc_zone_semmni; 382 rctl_hndl_t rc_zone_msgmni; 383 384 const char * const zone_default_initname = "/sbin/init"; 385 static char * const zone_prefix = "/zone/"; 386 static int zone_shutdown(zoneid_t zoneid); 387 static int zone_add_datalink(zoneid_t, datalink_id_t); 388 static int zone_remove_datalink(zoneid_t, datalink_id_t); 389 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 390 static int zone_set_network(zoneid_t, zone_net_data_t *); 391 static int zone_get_network(zoneid_t, zone_net_data_t *); 392 393 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 394 395 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 396 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 397 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 398 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 399 zone_key_t); 400 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 401 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 402 kmutex_t *); 403 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 404 kmutex_t *); 405 406 /* 407 * Bump this number when you alter the zone syscall interfaces; this is 408 * because we need to have support for previous API versions in libc 409 * to support patching; libc calls into the kernel to determine this number. 410 * 411 * Version 1 of the API is the version originally shipped with Solaris 10 412 * Version 2 alters the zone_create system call in order to support more 413 * arguments by moving the args into a structure; and to do better 414 * error reporting when zone_create() fails. 415 * Version 3 alters the zone_create system call in order to support the 416 * import of ZFS datasets to zones. 417 * Version 4 alters the zone_create system call in order to support 418 * Trusted Extensions. 419 * Version 5 alters the zone_boot system call, and converts its old 420 * bootargs parameter to be set by the zone_setattr API instead. 421 * Version 6 adds the flag argument to zone_create. 422 */ 423 static const int ZONE_SYSCALL_API_VERSION = 6; 424 425 /* 426 * Certain filesystems (such as NFS and autofs) need to know which zone 427 * the mount is being placed in. Because of this, we need to be able to 428 * ensure that a zone isn't in the process of being created/destroyed such 429 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time 430 * it gets added the list of mounted zones, it ends up on the wrong zone's 431 * mount list. Since a zone can't reside on an NFS file system, we don't 432 * have to worry about the zonepath itself. 433 * 434 * The following functions: block_mounts()/resume_mounts() and 435 * mount_in_progress()/mount_completed() are used by zones and the VFS 436 * layer (respectively) to synchronize zone state transitions and new 437 * mounts within a zone. This syncronization is on a per-zone basis, so 438 * activity for one zone will not interfere with activity for another zone. 439 * 440 * The semantics are like a reader-reader lock such that there may 441 * either be multiple mounts (or zone state transitions, if that weren't 442 * serialized by zonehash_lock) in progress at the same time, but not 443 * both. 444 * 445 * We use cv's so the user can ctrl-C out of the operation if it's 446 * taking too long. 447 * 448 * The semantics are such that there is unfair bias towards the 449 * "current" operation. This means that zone halt may starve if 450 * there is a rapid succession of new mounts coming in to the zone. 451 */ 452 /* 453 * Prevent new mounts from progressing to the point of calling 454 * VFS_MOUNT(). If there are already mounts in this "region", wait for 455 * them to complete. 456 */ 457 static int 458 block_mounts(zone_t *zp) 459 { 460 int retval = 0; 461 462 /* 463 * Since it may block for a long time, block_mounts() shouldn't be 464 * called with zonehash_lock held. 465 */ 466 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 467 mutex_enter(&zp->zone_mount_lock); 468 while (zp->zone_mounts_in_progress > 0) { 469 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0) 470 goto signaled; 471 } 472 /* 473 * A negative value of mounts_in_progress indicates that mounts 474 * have been blocked by (-mounts_in_progress) different callers 475 * (remotely possible if two threads enter zone_shutdown at the same 476 * time). 477 */ 478 zp->zone_mounts_in_progress--; 479 retval = 1; 480 signaled: 481 mutex_exit(&zp->zone_mount_lock); 482 return (retval); 483 } 484 485 /* 486 * The VFS layer may progress with new mounts as far as we're concerned. 487 * Allow them to progress if we were the last obstacle. 488 */ 489 static void 490 resume_mounts(zone_t *zp) 491 { 492 mutex_enter(&zp->zone_mount_lock); 493 if (++zp->zone_mounts_in_progress == 0) 494 cv_broadcast(&zp->zone_mount_cv); 495 mutex_exit(&zp->zone_mount_lock); 496 } 497 498 /* 499 * The VFS layer is busy with a mount; this zone should wait until all 500 * of its mounts are completed to progress. 501 */ 502 void 503 mount_in_progress(zone_t *zp) 504 { 505 mutex_enter(&zp->zone_mount_lock); 506 while (zp->zone_mounts_in_progress < 0) 507 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock); 508 zp->zone_mounts_in_progress++; 509 mutex_exit(&zp->zone_mount_lock); 510 } 511 512 /* 513 * VFS is done with one mount; wake up any waiting block_mounts() 514 * callers if this is the last mount. 515 */ 516 void 517 mount_completed(zone_t *zp) 518 { 519 mutex_enter(&zp->zone_mount_lock); 520 if (--zp->zone_mounts_in_progress == 0) 521 cv_broadcast(&zp->zone_mount_cv); 522 mutex_exit(&zp->zone_mount_lock); 523 } 524 525 /* 526 * ZSD routines. 527 * 528 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 529 * defined by the pthread_key_create() and related interfaces. 530 * 531 * Kernel subsystems may register one or more data items and/or 532 * callbacks to be executed when a zone is created, shutdown, or 533 * destroyed. 534 * 535 * Unlike the thread counterpart, destructor callbacks will be executed 536 * even if the data pointer is NULL and/or there are no constructor 537 * callbacks, so it is the responsibility of such callbacks to check for 538 * NULL data values if necessary. 539 * 540 * The locking strategy and overall picture is as follows: 541 * 542 * When someone calls zone_key_create(), a template ZSD entry is added to the 543 * global list "zsd_registered_keys", protected by zsd_key_lock. While 544 * holding that lock all the existing zones are marked as 545 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 546 * zone_zsd list (protected by zone_lock). The global list is updated first 547 * (under zone_key_lock) to make sure that newly created zones use the 548 * most recent list of keys. Then under zonehash_lock we walk the zones 549 * and mark them. Similar locking is used in zone_key_delete(). 550 * 551 * The actual create, shutdown, and destroy callbacks are done without 552 * holding any lock. And zsd_flags are used to ensure that the operations 553 * completed so that when zone_key_create (and zone_create) is done, as well as 554 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 555 * are completed. 556 * 557 * When new zones are created constructor callbacks for all registered ZSD 558 * entries will be called. That also uses the above two phases of marking 559 * what needs to be done, and then running the callbacks without holding 560 * any locks. 561 * 562 * The framework does not provide any locking around zone_getspecific() and 563 * zone_setspecific() apart from that needed for internal consistency, so 564 * callers interested in atomic "test-and-set" semantics will need to provide 565 * their own locking. 566 */ 567 568 /* 569 * Helper function to find the zsd_entry associated with the key in the 570 * given list. 571 */ 572 static struct zsd_entry * 573 zsd_find(list_t *l, zone_key_t key) 574 { 575 struct zsd_entry *zsd; 576 577 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 578 if (zsd->zsd_key == key) { 579 return (zsd); 580 } 581 } 582 return (NULL); 583 } 584 585 /* 586 * Helper function to find the zsd_entry associated with the key in the 587 * given list. Move it to the front of the list. 588 */ 589 static struct zsd_entry * 590 zsd_find_mru(list_t *l, zone_key_t key) 591 { 592 struct zsd_entry *zsd; 593 594 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 595 if (zsd->zsd_key == key) { 596 /* 597 * Move to head of list to keep list in MRU order. 598 */ 599 if (zsd != list_head(l)) { 600 list_remove(l, zsd); 601 list_insert_head(l, zsd); 602 } 603 return (zsd); 604 } 605 } 606 return (NULL); 607 } 608 609 void 610 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 611 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 612 { 613 struct zsd_entry *zsdp; 614 struct zsd_entry *t; 615 struct zone *zone; 616 zone_key_t key; 617 618 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 619 zsdp->zsd_data = NULL; 620 zsdp->zsd_create = create; 621 zsdp->zsd_shutdown = shutdown; 622 zsdp->zsd_destroy = destroy; 623 624 /* 625 * Insert in global list of callbacks. Makes future zone creations 626 * see it. 627 */ 628 mutex_enter(&zsd_key_lock); 629 key = zsdp->zsd_key = ++zsd_keyval; 630 ASSERT(zsd_keyval != 0); 631 list_insert_tail(&zsd_registered_keys, zsdp); 632 mutex_exit(&zsd_key_lock); 633 634 /* 635 * Insert for all existing zones and mark them as needing 636 * a create callback. 637 */ 638 mutex_enter(&zonehash_lock); /* stop the world */ 639 for (zone = list_head(&zone_active); zone != NULL; 640 zone = list_next(&zone_active, zone)) { 641 zone_status_t status; 642 643 mutex_enter(&zone->zone_lock); 644 645 /* Skip zones that are on the way down or not yet up */ 646 status = zone_status_get(zone); 647 if (status >= ZONE_IS_DOWN || 648 status == ZONE_IS_UNINITIALIZED) { 649 mutex_exit(&zone->zone_lock); 650 continue; 651 } 652 653 t = zsd_find_mru(&zone->zone_zsd, key); 654 if (t != NULL) { 655 /* 656 * A zsd_configure already inserted it after 657 * we dropped zsd_key_lock above. 658 */ 659 mutex_exit(&zone->zone_lock); 660 continue; 661 } 662 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 663 t->zsd_key = key; 664 t->zsd_create = create; 665 t->zsd_shutdown = shutdown; 666 t->zsd_destroy = destroy; 667 if (create != NULL) { 668 t->zsd_flags = ZSD_CREATE_NEEDED; 669 DTRACE_PROBE2(zsd__create__needed, 670 zone_t *, zone, zone_key_t, key); 671 } 672 list_insert_tail(&zone->zone_zsd, t); 673 mutex_exit(&zone->zone_lock); 674 } 675 mutex_exit(&zonehash_lock); 676 677 if (create != NULL) { 678 /* Now call the create callback for this key */ 679 zsd_apply_all_zones(zsd_apply_create, key); 680 } 681 /* 682 * It is safe for consumers to use the key now, make it 683 * globally visible. Specifically zone_getspecific() will 684 * always successfully return the zone specific data associated 685 * with the key. 686 */ 687 *keyp = key; 688 689 } 690 691 /* 692 * Function called when a module is being unloaded, or otherwise wishes 693 * to unregister its ZSD key and callbacks. 694 * 695 * Remove from the global list and determine the functions that need to 696 * be called under a global lock. Then call the functions without 697 * holding any locks. Finally free up the zone_zsd entries. (The apply 698 * functions need to access the zone_zsd entries to find zsd_data etc.) 699 */ 700 int 701 zone_key_delete(zone_key_t key) 702 { 703 struct zsd_entry *zsdp = NULL; 704 zone_t *zone; 705 706 mutex_enter(&zsd_key_lock); 707 zsdp = zsd_find_mru(&zsd_registered_keys, key); 708 if (zsdp == NULL) { 709 mutex_exit(&zsd_key_lock); 710 return (-1); 711 } 712 list_remove(&zsd_registered_keys, zsdp); 713 mutex_exit(&zsd_key_lock); 714 715 mutex_enter(&zonehash_lock); 716 for (zone = list_head(&zone_active); zone != NULL; 717 zone = list_next(&zone_active, zone)) { 718 struct zsd_entry *del; 719 720 mutex_enter(&zone->zone_lock); 721 del = zsd_find_mru(&zone->zone_zsd, key); 722 if (del == NULL) { 723 /* 724 * Somebody else got here first e.g the zone going 725 * away. 726 */ 727 mutex_exit(&zone->zone_lock); 728 continue; 729 } 730 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 731 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 732 if (del->zsd_shutdown != NULL && 733 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 734 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 735 DTRACE_PROBE2(zsd__shutdown__needed, 736 zone_t *, zone, zone_key_t, key); 737 } 738 if (del->zsd_destroy != NULL && 739 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 740 del->zsd_flags |= ZSD_DESTROY_NEEDED; 741 DTRACE_PROBE2(zsd__destroy__needed, 742 zone_t *, zone, zone_key_t, key); 743 } 744 mutex_exit(&zone->zone_lock); 745 } 746 mutex_exit(&zonehash_lock); 747 kmem_free(zsdp, sizeof (*zsdp)); 748 749 /* Now call the shutdown and destroy callback for this key */ 750 zsd_apply_all_zones(zsd_apply_shutdown, key); 751 zsd_apply_all_zones(zsd_apply_destroy, key); 752 753 /* Now we can free up the zsdp structures in each zone */ 754 mutex_enter(&zonehash_lock); 755 for (zone = list_head(&zone_active); zone != NULL; 756 zone = list_next(&zone_active, zone)) { 757 struct zsd_entry *del; 758 759 mutex_enter(&zone->zone_lock); 760 del = zsd_find(&zone->zone_zsd, key); 761 if (del != NULL) { 762 list_remove(&zone->zone_zsd, del); 763 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 764 kmem_free(del, sizeof (*del)); 765 } 766 mutex_exit(&zone->zone_lock); 767 } 768 mutex_exit(&zonehash_lock); 769 770 return (0); 771 } 772 773 /* 774 * ZSD counterpart of pthread_setspecific(). 775 * 776 * Since all zsd callbacks, including those with no create function, 777 * have an entry in zone_zsd, if the key is registered it is part of 778 * the zone_zsd list. 779 * Return an error if the key wasn't registerd. 780 */ 781 int 782 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 783 { 784 struct zsd_entry *t; 785 786 mutex_enter(&zone->zone_lock); 787 t = zsd_find_mru(&zone->zone_zsd, key); 788 if (t != NULL) { 789 /* 790 * Replace old value with new 791 */ 792 t->zsd_data = (void *)data; 793 mutex_exit(&zone->zone_lock); 794 return (0); 795 } 796 mutex_exit(&zone->zone_lock); 797 return (-1); 798 } 799 800 /* 801 * ZSD counterpart of pthread_getspecific(). 802 */ 803 void * 804 zone_getspecific(zone_key_t key, zone_t *zone) 805 { 806 struct zsd_entry *t; 807 void *data; 808 809 mutex_enter(&zone->zone_lock); 810 t = zsd_find_mru(&zone->zone_zsd, key); 811 data = (t == NULL ? NULL : t->zsd_data); 812 mutex_exit(&zone->zone_lock); 813 return (data); 814 } 815 816 /* 817 * Function used to initialize a zone's list of ZSD callbacks and data 818 * when the zone is being created. The callbacks are initialized from 819 * the template list (zsd_registered_keys). The constructor callback is 820 * executed later (once the zone exists and with locks dropped). 821 */ 822 static void 823 zone_zsd_configure(zone_t *zone) 824 { 825 struct zsd_entry *zsdp; 826 struct zsd_entry *t; 827 828 ASSERT(MUTEX_HELD(&zonehash_lock)); 829 ASSERT(list_head(&zone->zone_zsd) == NULL); 830 mutex_enter(&zone->zone_lock); 831 mutex_enter(&zsd_key_lock); 832 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 833 zsdp = list_next(&zsd_registered_keys, zsdp)) { 834 /* 835 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 836 * should not have added anything to it. 837 */ 838 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 839 840 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 841 t->zsd_key = zsdp->zsd_key; 842 t->zsd_create = zsdp->zsd_create; 843 t->zsd_shutdown = zsdp->zsd_shutdown; 844 t->zsd_destroy = zsdp->zsd_destroy; 845 if (zsdp->zsd_create != NULL) { 846 t->zsd_flags = ZSD_CREATE_NEEDED; 847 DTRACE_PROBE2(zsd__create__needed, 848 zone_t *, zone, zone_key_t, zsdp->zsd_key); 849 } 850 list_insert_tail(&zone->zone_zsd, t); 851 } 852 mutex_exit(&zsd_key_lock); 853 mutex_exit(&zone->zone_lock); 854 } 855 856 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 857 858 /* 859 * Helper function to execute shutdown or destructor callbacks. 860 */ 861 static void 862 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 863 { 864 struct zsd_entry *t; 865 866 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 867 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 868 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 869 870 /* 871 * Run the callback solely based on what is registered for the zone 872 * in zone_zsd. The global list can change independently of this 873 * as keys are registered and unregistered and we don't register new 874 * callbacks for a zone that is in the process of going away. 875 */ 876 mutex_enter(&zone->zone_lock); 877 for (t = list_head(&zone->zone_zsd); t != NULL; 878 t = list_next(&zone->zone_zsd, t)) { 879 zone_key_t key = t->zsd_key; 880 881 /* Skip if no callbacks registered */ 882 883 if (ct == ZSD_SHUTDOWN) { 884 if (t->zsd_shutdown != NULL && 885 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 886 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 887 DTRACE_PROBE2(zsd__shutdown__needed, 888 zone_t *, zone, zone_key_t, key); 889 } 890 } else { 891 if (t->zsd_destroy != NULL && 892 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 893 t->zsd_flags |= ZSD_DESTROY_NEEDED; 894 DTRACE_PROBE2(zsd__destroy__needed, 895 zone_t *, zone, zone_key_t, key); 896 } 897 } 898 } 899 mutex_exit(&zone->zone_lock); 900 901 /* Now call the shutdown and destroy callback for this key */ 902 zsd_apply_all_keys(zsd_apply_shutdown, zone); 903 zsd_apply_all_keys(zsd_apply_destroy, zone); 904 905 } 906 907 /* 908 * Called when the zone is going away; free ZSD-related memory, and 909 * destroy the zone_zsd list. 910 */ 911 static void 912 zone_free_zsd(zone_t *zone) 913 { 914 struct zsd_entry *t, *next; 915 916 /* 917 * Free all the zsd_entry's we had on this zone. 918 */ 919 mutex_enter(&zone->zone_lock); 920 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 921 next = list_next(&zone->zone_zsd, t); 922 list_remove(&zone->zone_zsd, t); 923 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 924 kmem_free(t, sizeof (*t)); 925 } 926 list_destroy(&zone->zone_zsd); 927 mutex_exit(&zone->zone_lock); 928 929 } 930 931 /* 932 * Apply a function to all zones for particular key value. 933 * 934 * The applyfn has to drop zonehash_lock if it does some work, and 935 * then reacquire it before it returns. 936 * When the lock is dropped we don't follow list_next even 937 * if it is possible to do so without any hazards. This is 938 * because we want the design to allow for the list of zones 939 * to change in any arbitrary way during the time the 940 * lock was dropped. 941 * 942 * It is safe to restart the loop at list_head since the applyfn 943 * changes the zsd_flags as it does work, so a subsequent 944 * pass through will have no effect in applyfn, hence the loop will terminate 945 * in at worst O(N^2). 946 */ 947 static void 948 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 949 { 950 zone_t *zone; 951 952 mutex_enter(&zonehash_lock); 953 zone = list_head(&zone_active); 954 while (zone != NULL) { 955 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 956 /* Lock dropped - restart at head */ 957 zone = list_head(&zone_active); 958 } else { 959 zone = list_next(&zone_active, zone); 960 } 961 } 962 mutex_exit(&zonehash_lock); 963 } 964 965 /* 966 * Apply a function to all keys for a particular zone. 967 * 968 * The applyfn has to drop zonehash_lock if it does some work, and 969 * then reacquire it before it returns. 970 * When the lock is dropped we don't follow list_next even 971 * if it is possible to do so without any hazards. This is 972 * because we want the design to allow for the list of zsd callbacks 973 * to change in any arbitrary way during the time the 974 * lock was dropped. 975 * 976 * It is safe to restart the loop at list_head since the applyfn 977 * changes the zsd_flags as it does work, so a subsequent 978 * pass through will have no effect in applyfn, hence the loop will terminate 979 * in at worst O(N^2). 980 */ 981 static void 982 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 983 { 984 struct zsd_entry *t; 985 986 mutex_enter(&zone->zone_lock); 987 t = list_head(&zone->zone_zsd); 988 while (t != NULL) { 989 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 990 /* Lock dropped - restart at head */ 991 t = list_head(&zone->zone_zsd); 992 } else { 993 t = list_next(&zone->zone_zsd, t); 994 } 995 } 996 mutex_exit(&zone->zone_lock); 997 } 998 999 /* 1000 * Call the create function for the zone and key if CREATE_NEEDED 1001 * is set. 1002 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1003 * we wait for that thread to complete so that we can ensure that 1004 * all the callbacks are done when we've looped over all zones/keys. 1005 * 1006 * When we call the create function, we drop the global held by the 1007 * caller, and return true to tell the caller it needs to re-evalute the 1008 * state. 1009 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1010 * remains held on exit. 1011 */ 1012 static boolean_t 1013 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1014 zone_t *zone, zone_key_t key) 1015 { 1016 void *result; 1017 struct zsd_entry *t; 1018 boolean_t dropped; 1019 1020 if (lockp != NULL) { 1021 ASSERT(MUTEX_HELD(lockp)); 1022 } 1023 if (zone_lock_held) { 1024 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1025 } else { 1026 mutex_enter(&zone->zone_lock); 1027 } 1028 1029 t = zsd_find(&zone->zone_zsd, key); 1030 if (t == NULL) { 1031 /* 1032 * Somebody else got here first e.g the zone going 1033 * away. 1034 */ 1035 if (!zone_lock_held) 1036 mutex_exit(&zone->zone_lock); 1037 return (B_FALSE); 1038 } 1039 dropped = B_FALSE; 1040 if (zsd_wait_for_inprogress(zone, t, lockp)) 1041 dropped = B_TRUE; 1042 1043 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1044 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1045 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1046 DTRACE_PROBE2(zsd__create__inprogress, 1047 zone_t *, zone, zone_key_t, key); 1048 mutex_exit(&zone->zone_lock); 1049 if (lockp != NULL) 1050 mutex_exit(lockp); 1051 1052 dropped = B_TRUE; 1053 ASSERT(t->zsd_create != NULL); 1054 DTRACE_PROBE2(zsd__create__start, 1055 zone_t *, zone, zone_key_t, key); 1056 1057 result = (*t->zsd_create)(zone->zone_id); 1058 1059 DTRACE_PROBE2(zsd__create__end, 1060 zone_t *, zone, voidn *, result); 1061 1062 ASSERT(result != NULL); 1063 if (lockp != NULL) 1064 mutex_enter(lockp); 1065 mutex_enter(&zone->zone_lock); 1066 t->zsd_data = result; 1067 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1068 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1069 cv_broadcast(&t->zsd_cv); 1070 DTRACE_PROBE2(zsd__create__completed, 1071 zone_t *, zone, zone_key_t, key); 1072 } 1073 if (!zone_lock_held) 1074 mutex_exit(&zone->zone_lock); 1075 return (dropped); 1076 } 1077 1078 /* 1079 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1080 * is set. 1081 * If some other thread gets here first and sets *_INPROGRESS, then 1082 * we wait for that thread to complete so that we can ensure that 1083 * all the callbacks are done when we've looped over all zones/keys. 1084 * 1085 * When we call the shutdown function, we drop the global held by the 1086 * caller, and return true to tell the caller it needs to re-evalute the 1087 * state. 1088 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1089 * remains held on exit. 1090 */ 1091 static boolean_t 1092 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1093 zone_t *zone, zone_key_t key) 1094 { 1095 struct zsd_entry *t; 1096 void *data; 1097 boolean_t dropped; 1098 1099 if (lockp != NULL) { 1100 ASSERT(MUTEX_HELD(lockp)); 1101 } 1102 if (zone_lock_held) { 1103 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1104 } else { 1105 mutex_enter(&zone->zone_lock); 1106 } 1107 1108 t = zsd_find(&zone->zone_zsd, key); 1109 if (t == NULL) { 1110 /* 1111 * Somebody else got here first e.g the zone going 1112 * away. 1113 */ 1114 if (!zone_lock_held) 1115 mutex_exit(&zone->zone_lock); 1116 return (B_FALSE); 1117 } 1118 dropped = B_FALSE; 1119 if (zsd_wait_for_creator(zone, t, lockp)) 1120 dropped = B_TRUE; 1121 1122 if (zsd_wait_for_inprogress(zone, t, lockp)) 1123 dropped = B_TRUE; 1124 1125 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1126 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1127 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1128 DTRACE_PROBE2(zsd__shutdown__inprogress, 1129 zone_t *, zone, zone_key_t, key); 1130 mutex_exit(&zone->zone_lock); 1131 if (lockp != NULL) 1132 mutex_exit(lockp); 1133 dropped = B_TRUE; 1134 1135 ASSERT(t->zsd_shutdown != NULL); 1136 data = t->zsd_data; 1137 1138 DTRACE_PROBE2(zsd__shutdown__start, 1139 zone_t *, zone, zone_key_t, key); 1140 1141 (t->zsd_shutdown)(zone->zone_id, data); 1142 DTRACE_PROBE2(zsd__shutdown__end, 1143 zone_t *, zone, zone_key_t, key); 1144 1145 if (lockp != NULL) 1146 mutex_enter(lockp); 1147 mutex_enter(&zone->zone_lock); 1148 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1149 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1150 cv_broadcast(&t->zsd_cv); 1151 DTRACE_PROBE2(zsd__shutdown__completed, 1152 zone_t *, zone, zone_key_t, key); 1153 } 1154 if (!zone_lock_held) 1155 mutex_exit(&zone->zone_lock); 1156 return (dropped); 1157 } 1158 1159 /* 1160 * Call the destroy function for the zone and key if DESTROY_NEEDED 1161 * is set. 1162 * If some other thread gets here first and sets *_INPROGRESS, then 1163 * we wait for that thread to complete so that we can ensure that 1164 * all the callbacks are done when we've looped over all zones/keys. 1165 * 1166 * When we call the destroy function, we drop the global held by the 1167 * caller, and return true to tell the caller it needs to re-evalute the 1168 * state. 1169 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1170 * remains held on exit. 1171 */ 1172 static boolean_t 1173 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1174 zone_t *zone, zone_key_t key) 1175 { 1176 struct zsd_entry *t; 1177 void *data; 1178 boolean_t dropped; 1179 1180 if (lockp != NULL) { 1181 ASSERT(MUTEX_HELD(lockp)); 1182 } 1183 if (zone_lock_held) { 1184 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1185 } else { 1186 mutex_enter(&zone->zone_lock); 1187 } 1188 1189 t = zsd_find(&zone->zone_zsd, key); 1190 if (t == NULL) { 1191 /* 1192 * Somebody else got here first e.g the zone going 1193 * away. 1194 */ 1195 if (!zone_lock_held) 1196 mutex_exit(&zone->zone_lock); 1197 return (B_FALSE); 1198 } 1199 dropped = B_FALSE; 1200 if (zsd_wait_for_creator(zone, t, lockp)) 1201 dropped = B_TRUE; 1202 1203 if (zsd_wait_for_inprogress(zone, t, lockp)) 1204 dropped = B_TRUE; 1205 1206 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1207 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1208 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1209 DTRACE_PROBE2(zsd__destroy__inprogress, 1210 zone_t *, zone, zone_key_t, key); 1211 mutex_exit(&zone->zone_lock); 1212 if (lockp != NULL) 1213 mutex_exit(lockp); 1214 dropped = B_TRUE; 1215 1216 ASSERT(t->zsd_destroy != NULL); 1217 data = t->zsd_data; 1218 DTRACE_PROBE2(zsd__destroy__start, 1219 zone_t *, zone, zone_key_t, key); 1220 1221 (t->zsd_destroy)(zone->zone_id, data); 1222 DTRACE_PROBE2(zsd__destroy__end, 1223 zone_t *, zone, zone_key_t, key); 1224 1225 if (lockp != NULL) 1226 mutex_enter(lockp); 1227 mutex_enter(&zone->zone_lock); 1228 t->zsd_data = NULL; 1229 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1230 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1231 cv_broadcast(&t->zsd_cv); 1232 DTRACE_PROBE2(zsd__destroy__completed, 1233 zone_t *, zone, zone_key_t, key); 1234 } 1235 if (!zone_lock_held) 1236 mutex_exit(&zone->zone_lock); 1237 return (dropped); 1238 } 1239 1240 /* 1241 * Wait for any CREATE_NEEDED flag to be cleared. 1242 * Returns true if lockp was temporarily dropped while waiting. 1243 */ 1244 static boolean_t 1245 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1246 { 1247 boolean_t dropped = B_FALSE; 1248 1249 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1250 DTRACE_PROBE2(zsd__wait__for__creator, 1251 zone_t *, zone, struct zsd_entry *, t); 1252 if (lockp != NULL) { 1253 dropped = B_TRUE; 1254 mutex_exit(lockp); 1255 } 1256 cv_wait(&t->zsd_cv, &zone->zone_lock); 1257 if (lockp != NULL) { 1258 /* First drop zone_lock to preserve order */ 1259 mutex_exit(&zone->zone_lock); 1260 mutex_enter(lockp); 1261 mutex_enter(&zone->zone_lock); 1262 } 1263 } 1264 return (dropped); 1265 } 1266 1267 /* 1268 * Wait for any INPROGRESS flag to be cleared. 1269 * Returns true if lockp was temporarily dropped while waiting. 1270 */ 1271 static boolean_t 1272 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1273 { 1274 boolean_t dropped = B_FALSE; 1275 1276 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1277 DTRACE_PROBE2(zsd__wait__for__inprogress, 1278 zone_t *, zone, struct zsd_entry *, t); 1279 if (lockp != NULL) { 1280 dropped = B_TRUE; 1281 mutex_exit(lockp); 1282 } 1283 cv_wait(&t->zsd_cv, &zone->zone_lock); 1284 if (lockp != NULL) { 1285 /* First drop zone_lock to preserve order */ 1286 mutex_exit(&zone->zone_lock); 1287 mutex_enter(lockp); 1288 mutex_enter(&zone->zone_lock); 1289 } 1290 } 1291 return (dropped); 1292 } 1293 1294 /* 1295 * Frees memory associated with the zone dataset list. 1296 */ 1297 static void 1298 zone_free_datasets(zone_t *zone) 1299 { 1300 zone_dataset_t *t, *next; 1301 1302 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1303 next = list_next(&zone->zone_datasets, t); 1304 list_remove(&zone->zone_datasets, t); 1305 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1306 kmem_free(t, sizeof (*t)); 1307 } 1308 list_destroy(&zone->zone_datasets); 1309 } 1310 1311 /* 1312 * zone.cpu-shares resource control support. 1313 */ 1314 /*ARGSUSED*/ 1315 static rctl_qty_t 1316 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1317 { 1318 ASSERT(MUTEX_HELD(&p->p_lock)); 1319 return (p->p_zone->zone_shares); 1320 } 1321 1322 /*ARGSUSED*/ 1323 static int 1324 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1325 rctl_qty_t nv) 1326 { 1327 ASSERT(MUTEX_HELD(&p->p_lock)); 1328 ASSERT(e->rcep_t == RCENTITY_ZONE); 1329 if (e->rcep_p.zone == NULL) 1330 return (0); 1331 1332 e->rcep_p.zone->zone_shares = nv; 1333 return (0); 1334 } 1335 1336 static rctl_ops_t zone_cpu_shares_ops = { 1337 rcop_no_action, 1338 zone_cpu_shares_usage, 1339 zone_cpu_shares_set, 1340 rcop_no_test 1341 }; 1342 1343 /* 1344 * zone.cpu-cap resource control support. 1345 */ 1346 /*ARGSUSED*/ 1347 static rctl_qty_t 1348 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1349 { 1350 ASSERT(MUTEX_HELD(&p->p_lock)); 1351 return (cpucaps_zone_get(p->p_zone)); 1352 } 1353 1354 /*ARGSUSED*/ 1355 static int 1356 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1357 rctl_qty_t nv) 1358 { 1359 zone_t *zone = e->rcep_p.zone; 1360 1361 ASSERT(MUTEX_HELD(&p->p_lock)); 1362 ASSERT(e->rcep_t == RCENTITY_ZONE); 1363 1364 if (zone == NULL) 1365 return (0); 1366 1367 /* 1368 * set cap to the new value. 1369 */ 1370 return (cpucaps_zone_set(zone, nv)); 1371 } 1372 1373 static rctl_ops_t zone_cpu_cap_ops = { 1374 rcop_no_action, 1375 zone_cpu_cap_get, 1376 zone_cpu_cap_set, 1377 rcop_no_test 1378 }; 1379 1380 /*ARGSUSED*/ 1381 static rctl_qty_t 1382 zone_lwps_usage(rctl_t *r, proc_t *p) 1383 { 1384 rctl_qty_t nlwps; 1385 zone_t *zone = p->p_zone; 1386 1387 ASSERT(MUTEX_HELD(&p->p_lock)); 1388 1389 mutex_enter(&zone->zone_nlwps_lock); 1390 nlwps = zone->zone_nlwps; 1391 mutex_exit(&zone->zone_nlwps_lock); 1392 1393 return (nlwps); 1394 } 1395 1396 /*ARGSUSED*/ 1397 static int 1398 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1399 rctl_qty_t incr, uint_t flags) 1400 { 1401 rctl_qty_t nlwps; 1402 1403 ASSERT(MUTEX_HELD(&p->p_lock)); 1404 ASSERT(e->rcep_t == RCENTITY_ZONE); 1405 if (e->rcep_p.zone == NULL) 1406 return (0); 1407 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1408 nlwps = e->rcep_p.zone->zone_nlwps; 1409 1410 if (nlwps + incr > rcntl->rcv_value) 1411 return (1); 1412 1413 return (0); 1414 } 1415 1416 /*ARGSUSED*/ 1417 static int 1418 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1419 { 1420 ASSERT(MUTEX_HELD(&p->p_lock)); 1421 ASSERT(e->rcep_t == RCENTITY_ZONE); 1422 if (e->rcep_p.zone == NULL) 1423 return (0); 1424 e->rcep_p.zone->zone_nlwps_ctl = nv; 1425 return (0); 1426 } 1427 1428 static rctl_ops_t zone_lwps_ops = { 1429 rcop_no_action, 1430 zone_lwps_usage, 1431 zone_lwps_set, 1432 zone_lwps_test, 1433 }; 1434 1435 /*ARGSUSED*/ 1436 static rctl_qty_t 1437 zone_procs_usage(rctl_t *r, proc_t *p) 1438 { 1439 rctl_qty_t nprocs; 1440 zone_t *zone = p->p_zone; 1441 1442 ASSERT(MUTEX_HELD(&p->p_lock)); 1443 1444 mutex_enter(&zone->zone_nlwps_lock); 1445 nprocs = zone->zone_nprocs; 1446 mutex_exit(&zone->zone_nlwps_lock); 1447 1448 return (nprocs); 1449 } 1450 1451 /*ARGSUSED*/ 1452 static int 1453 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1454 rctl_qty_t incr, uint_t flags) 1455 { 1456 rctl_qty_t nprocs; 1457 1458 ASSERT(MUTEX_HELD(&p->p_lock)); 1459 ASSERT(e->rcep_t == RCENTITY_ZONE); 1460 if (e->rcep_p.zone == NULL) 1461 return (0); 1462 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1463 nprocs = e->rcep_p.zone->zone_nprocs; 1464 1465 if (nprocs + incr > rcntl->rcv_value) 1466 return (1); 1467 1468 return (0); 1469 } 1470 1471 /*ARGSUSED*/ 1472 static int 1473 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1474 { 1475 ASSERT(MUTEX_HELD(&p->p_lock)); 1476 ASSERT(e->rcep_t == RCENTITY_ZONE); 1477 if (e->rcep_p.zone == NULL) 1478 return (0); 1479 e->rcep_p.zone->zone_nprocs_ctl = nv; 1480 return (0); 1481 } 1482 1483 static rctl_ops_t zone_procs_ops = { 1484 rcop_no_action, 1485 zone_procs_usage, 1486 zone_procs_set, 1487 zone_procs_test, 1488 }; 1489 1490 /*ARGSUSED*/ 1491 static rctl_qty_t 1492 zone_shmmax_usage(rctl_t *rctl, struct proc *p) 1493 { 1494 ASSERT(MUTEX_HELD(&p->p_lock)); 1495 return (p->p_zone->zone_shmmax); 1496 } 1497 1498 /*ARGSUSED*/ 1499 static int 1500 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1501 rctl_qty_t incr, uint_t flags) 1502 { 1503 rctl_qty_t v; 1504 ASSERT(MUTEX_HELD(&p->p_lock)); 1505 ASSERT(e->rcep_t == RCENTITY_ZONE); 1506 v = e->rcep_p.zone->zone_shmmax + incr; 1507 if (v > rval->rcv_value) 1508 return (1); 1509 return (0); 1510 } 1511 1512 static rctl_ops_t zone_shmmax_ops = { 1513 rcop_no_action, 1514 zone_shmmax_usage, 1515 rcop_no_set, 1516 zone_shmmax_test 1517 }; 1518 1519 /*ARGSUSED*/ 1520 static rctl_qty_t 1521 zone_shmmni_usage(rctl_t *rctl, struct proc *p) 1522 { 1523 ASSERT(MUTEX_HELD(&p->p_lock)); 1524 return (p->p_zone->zone_ipc.ipcq_shmmni); 1525 } 1526 1527 /*ARGSUSED*/ 1528 static int 1529 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1530 rctl_qty_t incr, uint_t flags) 1531 { 1532 rctl_qty_t v; 1533 ASSERT(MUTEX_HELD(&p->p_lock)); 1534 ASSERT(e->rcep_t == RCENTITY_ZONE); 1535 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1536 if (v > rval->rcv_value) 1537 return (1); 1538 return (0); 1539 } 1540 1541 static rctl_ops_t zone_shmmni_ops = { 1542 rcop_no_action, 1543 zone_shmmni_usage, 1544 rcop_no_set, 1545 zone_shmmni_test 1546 }; 1547 1548 /*ARGSUSED*/ 1549 static rctl_qty_t 1550 zone_semmni_usage(rctl_t *rctl, struct proc *p) 1551 { 1552 ASSERT(MUTEX_HELD(&p->p_lock)); 1553 return (p->p_zone->zone_ipc.ipcq_semmni); 1554 } 1555 1556 /*ARGSUSED*/ 1557 static int 1558 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1559 rctl_qty_t incr, uint_t flags) 1560 { 1561 rctl_qty_t v; 1562 ASSERT(MUTEX_HELD(&p->p_lock)); 1563 ASSERT(e->rcep_t == RCENTITY_ZONE); 1564 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1565 if (v > rval->rcv_value) 1566 return (1); 1567 return (0); 1568 } 1569 1570 static rctl_ops_t zone_semmni_ops = { 1571 rcop_no_action, 1572 zone_semmni_usage, 1573 rcop_no_set, 1574 zone_semmni_test 1575 }; 1576 1577 /*ARGSUSED*/ 1578 static rctl_qty_t 1579 zone_msgmni_usage(rctl_t *rctl, struct proc *p) 1580 { 1581 ASSERT(MUTEX_HELD(&p->p_lock)); 1582 return (p->p_zone->zone_ipc.ipcq_msgmni); 1583 } 1584 1585 /*ARGSUSED*/ 1586 static int 1587 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1588 rctl_qty_t incr, uint_t flags) 1589 { 1590 rctl_qty_t v; 1591 ASSERT(MUTEX_HELD(&p->p_lock)); 1592 ASSERT(e->rcep_t == RCENTITY_ZONE); 1593 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1594 if (v > rval->rcv_value) 1595 return (1); 1596 return (0); 1597 } 1598 1599 static rctl_ops_t zone_msgmni_ops = { 1600 rcop_no_action, 1601 zone_msgmni_usage, 1602 rcop_no_set, 1603 zone_msgmni_test 1604 }; 1605 1606 /*ARGSUSED*/ 1607 static rctl_qty_t 1608 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1609 { 1610 rctl_qty_t q; 1611 ASSERT(MUTEX_HELD(&p->p_lock)); 1612 mutex_enter(&p->p_zone->zone_mem_lock); 1613 q = p->p_zone->zone_locked_mem; 1614 mutex_exit(&p->p_zone->zone_mem_lock); 1615 return (q); 1616 } 1617 1618 /*ARGSUSED*/ 1619 static int 1620 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1621 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1622 { 1623 rctl_qty_t q; 1624 zone_t *z; 1625 1626 z = e->rcep_p.zone; 1627 ASSERT(MUTEX_HELD(&p->p_lock)); 1628 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1629 q = z->zone_locked_mem; 1630 if (q + incr > rcntl->rcv_value) 1631 return (1); 1632 return (0); 1633 } 1634 1635 /*ARGSUSED*/ 1636 static int 1637 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1638 rctl_qty_t nv) 1639 { 1640 ASSERT(MUTEX_HELD(&p->p_lock)); 1641 ASSERT(e->rcep_t == RCENTITY_ZONE); 1642 if (e->rcep_p.zone == NULL) 1643 return (0); 1644 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1645 return (0); 1646 } 1647 1648 static rctl_ops_t zone_locked_mem_ops = { 1649 rcop_no_action, 1650 zone_locked_mem_usage, 1651 zone_locked_mem_set, 1652 zone_locked_mem_test 1653 }; 1654 1655 /*ARGSUSED*/ 1656 static rctl_qty_t 1657 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1658 { 1659 rctl_qty_t q; 1660 zone_t *z = p->p_zone; 1661 1662 ASSERT(MUTEX_HELD(&p->p_lock)); 1663 mutex_enter(&z->zone_mem_lock); 1664 q = z->zone_max_swap; 1665 mutex_exit(&z->zone_mem_lock); 1666 return (q); 1667 } 1668 1669 /*ARGSUSED*/ 1670 static int 1671 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1672 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1673 { 1674 rctl_qty_t q; 1675 zone_t *z; 1676 1677 z = e->rcep_p.zone; 1678 ASSERT(MUTEX_HELD(&p->p_lock)); 1679 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1680 q = z->zone_max_swap; 1681 if (q + incr > rcntl->rcv_value) 1682 return (1); 1683 return (0); 1684 } 1685 1686 /*ARGSUSED*/ 1687 static int 1688 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1689 rctl_qty_t nv) 1690 { 1691 ASSERT(MUTEX_HELD(&p->p_lock)); 1692 ASSERT(e->rcep_t == RCENTITY_ZONE); 1693 if (e->rcep_p.zone == NULL) 1694 return (0); 1695 e->rcep_p.zone->zone_max_swap_ctl = nv; 1696 return (0); 1697 } 1698 1699 static rctl_ops_t zone_max_swap_ops = { 1700 rcop_no_action, 1701 zone_max_swap_usage, 1702 zone_max_swap_set, 1703 zone_max_swap_test 1704 }; 1705 1706 /*ARGSUSED*/ 1707 static rctl_qty_t 1708 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1709 { 1710 rctl_qty_t q; 1711 zone_t *z = p->p_zone; 1712 1713 ASSERT(MUTEX_HELD(&p->p_lock)); 1714 mutex_enter(&z->zone_rctl_lock); 1715 q = z->zone_max_lofi; 1716 mutex_exit(&z->zone_rctl_lock); 1717 return (q); 1718 } 1719 1720 /*ARGSUSED*/ 1721 static int 1722 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1723 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1724 { 1725 rctl_qty_t q; 1726 zone_t *z; 1727 1728 z = e->rcep_p.zone; 1729 ASSERT(MUTEX_HELD(&p->p_lock)); 1730 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1731 q = z->zone_max_lofi; 1732 if (q + incr > rcntl->rcv_value) 1733 return (1); 1734 return (0); 1735 } 1736 1737 /*ARGSUSED*/ 1738 static int 1739 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1740 rctl_qty_t nv) 1741 { 1742 ASSERT(MUTEX_HELD(&p->p_lock)); 1743 ASSERT(e->rcep_t == RCENTITY_ZONE); 1744 if (e->rcep_p.zone == NULL) 1745 return (0); 1746 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1747 return (0); 1748 } 1749 1750 static rctl_ops_t zone_max_lofi_ops = { 1751 rcop_no_action, 1752 zone_max_lofi_usage, 1753 zone_max_lofi_set, 1754 zone_max_lofi_test 1755 }; 1756 1757 /* 1758 * Helper function to brand the zone with a unique ID. 1759 */ 1760 static void 1761 zone_uniqid(zone_t *zone) 1762 { 1763 static uint64_t uniqid = 0; 1764 1765 ASSERT(MUTEX_HELD(&zonehash_lock)); 1766 zone->zone_uniqid = uniqid++; 1767 } 1768 1769 /* 1770 * Returns a held pointer to the "kcred" for the specified zone. 1771 */ 1772 struct cred * 1773 zone_get_kcred(zoneid_t zoneid) 1774 { 1775 zone_t *zone; 1776 cred_t *cr; 1777 1778 if ((zone = zone_find_by_id(zoneid)) == NULL) 1779 return (NULL); 1780 cr = zone->zone_kcred; 1781 crhold(cr); 1782 zone_rele(zone); 1783 return (cr); 1784 } 1785 1786 static int 1787 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1788 { 1789 zone_t *zone = ksp->ks_private; 1790 zone_kstat_t *zk = ksp->ks_data; 1791 1792 if (rw == KSTAT_WRITE) 1793 return (EACCES); 1794 1795 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1796 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1797 return (0); 1798 } 1799 1800 static int 1801 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1802 { 1803 zone_t *zone = ksp->ks_private; 1804 zone_kstat_t *zk = ksp->ks_data; 1805 1806 if (rw == KSTAT_WRITE) 1807 return (EACCES); 1808 1809 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1810 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1811 return (0); 1812 } 1813 1814 static int 1815 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1816 { 1817 zone_t *zone = ksp->ks_private; 1818 zone_kstat_t *zk = ksp->ks_data; 1819 1820 if (rw == KSTAT_WRITE) 1821 return (EACCES); 1822 1823 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1824 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1825 return (0); 1826 } 1827 1828 static kstat_t * 1829 zone_kstat_create_common(zone_t *zone, char *name, 1830 int (*updatefunc) (kstat_t *, int)) 1831 { 1832 kstat_t *ksp; 1833 zone_kstat_t *zk; 1834 1835 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1836 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1837 KSTAT_FLAG_VIRTUAL); 1838 1839 if (ksp == NULL) 1840 return (NULL); 1841 1842 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1843 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1844 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1845 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1846 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1847 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1848 ksp->ks_update = updatefunc; 1849 ksp->ks_private = zone; 1850 kstat_install(ksp); 1851 return (ksp); 1852 } 1853 1854 1855 static int 1856 zone_mcap_kstat_update(kstat_t *ksp, int rw) 1857 { 1858 zone_t *zone = ksp->ks_private; 1859 zone_mcap_kstat_t *zmp = ksp->ks_data; 1860 1861 if (rw == KSTAT_WRITE) 1862 return (EACCES); 1863 1864 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin; 1865 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin; 1866 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin; 1867 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin; 1868 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail; 1869 1870 return (0); 1871 } 1872 1873 static kstat_t * 1874 zone_mcap_kstat_create(zone_t *zone) 1875 { 1876 kstat_t *ksp; 1877 zone_mcap_kstat_t *zmp; 1878 1879 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id, 1880 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED, 1881 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t), 1882 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1883 return (NULL); 1884 1885 if (zone->zone_id != GLOBAL_ZONEID) 1886 kstat_zone_add(ksp, GLOBAL_ZONEID); 1887 1888 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP); 1889 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1890 ksp->ks_lock = &zone->zone_mcap_lock; 1891 zone->zone_mcap_stats = zmp; 1892 1893 /* The kstat "name" field is not large enough for a full zonename */ 1894 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1895 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1896 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64); 1897 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64); 1898 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64); 1899 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64); 1900 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail", 1901 KSTAT_DATA_UINT64); 1902 1903 ksp->ks_update = zone_mcap_kstat_update; 1904 ksp->ks_private = zone; 1905 1906 kstat_install(ksp); 1907 return (ksp); 1908 } 1909 1910 static int 1911 zone_misc_kstat_update(kstat_t *ksp, int rw) 1912 { 1913 zone_t *zone = ksp->ks_private; 1914 zone_misc_kstat_t *zmp = ksp->ks_data; 1915 hrtime_t hrtime; 1916 uint64_t tmp; 1917 1918 if (rw == KSTAT_WRITE) 1919 return (EACCES); 1920 1921 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_STIME); 1922 hrtime = UINT64_OVERFLOW_TO_INT64(tmp); 1923 scalehrtime(&hrtime); 1924 zmp->zm_stime.value.ui64 = hrtime; 1925 1926 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_UTIME); 1927 hrtime = UINT64_OVERFLOW_TO_INT64(tmp); 1928 scalehrtime(&hrtime); 1929 zmp->zm_utime.value.ui64 = hrtime; 1930 1931 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_WTIME); 1932 hrtime = UINT64_OVERFLOW_TO_INT64(tmp); 1933 scalehrtime(&hrtime); 1934 zmp->zm_wtime.value.ui64 = hrtime; 1935 1936 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1937 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1938 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1939 1940 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1941 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1942 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1943 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1944 1945 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp; 1946 1947 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid; 1948 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time; 1949 1950 return (0); 1951 } 1952 1953 static kstat_t * 1954 zone_misc_kstat_create(zone_t *zone) 1955 { 1956 kstat_t *ksp; 1957 zone_misc_kstat_t *zmp; 1958 1959 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1960 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1961 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1962 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1963 return (NULL); 1964 1965 if (zone->zone_id != GLOBAL_ZONEID) 1966 kstat_zone_add(ksp, GLOBAL_ZONEID); 1967 1968 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1969 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1970 ksp->ks_lock = &zone->zone_misc_lock; 1971 zone->zone_misc_stats = zmp; 1972 1973 /* The kstat "name" field is not large enough for a full zonename */ 1974 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1975 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1976 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1977 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1978 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1979 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1980 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1981 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1982 KSTAT_DATA_UINT32); 1983 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1984 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1985 KSTAT_DATA_UINT32); 1986 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1987 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1988 kstat_named_init(&zmp->zm_nested_intp, "nested_interp", 1989 KSTAT_DATA_UINT32); 1990 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32); 1991 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64); 1992 1993 ksp->ks_update = zone_misc_kstat_update; 1994 ksp->ks_private = zone; 1995 1996 kstat_install(ksp); 1997 return (ksp); 1998 } 1999 2000 static void 2001 zone_kstat_create(zone_t *zone) 2002 { 2003 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 2004 "lockedmem", zone_lockedmem_kstat_update); 2005 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 2006 "swapresv", zone_swapresv_kstat_update); 2007 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 2008 "nprocs", zone_nprocs_kstat_update); 2009 2010 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) { 2011 zone->zone_mcap_stats = kmem_zalloc( 2012 sizeof (zone_mcap_kstat_t), KM_SLEEP); 2013 } 2014 2015 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 2016 zone->zone_misc_stats = kmem_zalloc( 2017 sizeof (zone_misc_kstat_t), KM_SLEEP); 2018 } 2019 } 2020 2021 static void 2022 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 2023 { 2024 void *data; 2025 2026 if (*pkstat != NULL) { 2027 data = (*pkstat)->ks_data; 2028 kstat_delete(*pkstat); 2029 kmem_free(data, datasz); 2030 *pkstat = NULL; 2031 } 2032 } 2033 2034 static void 2035 zone_kstat_delete(zone_t *zone) 2036 { 2037 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 2038 sizeof (zone_kstat_t)); 2039 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 2040 sizeof (zone_kstat_t)); 2041 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 2042 sizeof (zone_kstat_t)); 2043 zone_kstat_delete_common(&zone->zone_mcap_ksp, 2044 sizeof (zone_mcap_kstat_t)); 2045 zone_kstat_delete_common(&zone->zone_misc_ksp, 2046 sizeof (zone_misc_kstat_t)); 2047 } 2048 2049 /* 2050 * Called very early on in boot to initialize the ZSD list so that 2051 * zone_key_create() can be called before zone_init(). It also initializes 2052 * portions of zone0 which may be used before zone_init() is called. The 2053 * variable "global_zone" will be set when zone0 is fully initialized by 2054 * zone_init(). 2055 */ 2056 void 2057 zone_zsd_init(void) 2058 { 2059 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 2060 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 2061 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 2062 offsetof(struct zsd_entry, zsd_linkage)); 2063 list_create(&zone_active, sizeof (zone_t), 2064 offsetof(zone_t, zone_linkage)); 2065 list_create(&zone_deathrow, sizeof (zone_t), 2066 offsetof(zone_t, zone_linkage)); 2067 2068 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 2069 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2070 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 2071 zone0.zone_shares = 1; 2072 zone0.zone_nlwps = 0; 2073 zone0.zone_nlwps_ctl = INT_MAX; 2074 zone0.zone_nprocs = 0; 2075 zone0.zone_nprocs_ctl = INT_MAX; 2076 zone0.zone_locked_mem = 0; 2077 zone0.zone_locked_mem_ctl = UINT64_MAX; 2078 ASSERT(zone0.zone_max_swap == 0); 2079 zone0.zone_max_swap_ctl = UINT64_MAX; 2080 zone0.zone_max_lofi = 0; 2081 zone0.zone_max_lofi_ctl = UINT64_MAX; 2082 zone0.zone_shmmax = 0; 2083 zone0.zone_ipc.ipcq_shmmni = 0; 2084 zone0.zone_ipc.ipcq_semmni = 0; 2085 zone0.zone_ipc.ipcq_msgmni = 0; 2086 zone0.zone_name = GLOBAL_ZONENAME; 2087 zone0.zone_nodename = utsname.nodename; 2088 zone0.zone_domain = srpc_domain; 2089 zone0.zone_hostid = HW_INVALID_HOSTID; 2090 zone0.zone_fs_allowed = NULL; 2091 psecflags_default(&zone0.zone_secflags); 2092 zone0.zone_ref = 1; 2093 zone0.zone_id = GLOBAL_ZONEID; 2094 zone0.zone_status = ZONE_IS_RUNNING; 2095 zone0.zone_rootpath = "/"; 2096 zone0.zone_rootpathlen = 2; 2097 zone0.zone_psetid = ZONE_PS_INVAL; 2098 zone0.zone_ncpus = 0; 2099 zone0.zone_ncpus_online = 0; 2100 zone0.zone_proc_initpid = 1; 2101 zone0.zone_initname = initname; 2102 zone0.zone_lockedmem_kstat = NULL; 2103 zone0.zone_swapresv_kstat = NULL; 2104 zone0.zone_nprocs_kstat = NULL; 2105 2106 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 2107 offsetof(zone_ref_t, zref_linkage)); 2108 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2109 offsetof(struct zsd_entry, zsd_linkage)); 2110 list_insert_head(&zone_active, &zone0); 2111 2112 /* 2113 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2114 * to anything meaningful. It is assigned to be 'rootdir' in 2115 * vfs_mountroot(). 2116 */ 2117 zone0.zone_rootvp = NULL; 2118 zone0.zone_vfslist = NULL; 2119 zone0.zone_bootargs = initargs; 2120 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2121 /* 2122 * The global zone has all privileges 2123 */ 2124 priv_fillset(zone0.zone_privset); 2125 /* 2126 * Add p0 to the global zone 2127 */ 2128 zone0.zone_zsched = &p0; 2129 p0.p_zone = &zone0; 2130 } 2131 2132 /* 2133 * Compute a hash value based on the contents of the label and the DOI. The 2134 * hash algorithm is somewhat arbitrary, but is based on the observation that 2135 * humans will likely pick labels that differ by amounts that work out to be 2136 * multiples of the number of hash chains, and thus stirring in some primes 2137 * should help. 2138 */ 2139 static uint_t 2140 hash_bylabel(void *hdata, mod_hash_key_t key) 2141 { 2142 const ts_label_t *lab = (ts_label_t *)key; 2143 const uint32_t *up, *ue; 2144 uint_t hash; 2145 int i; 2146 2147 _NOTE(ARGUNUSED(hdata)); 2148 2149 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2150 /* we depend on alignment of label, but not representation */ 2151 up = (const uint32_t *)&lab->tsl_label; 2152 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2153 i = 1; 2154 while (up < ue) { 2155 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2156 hash += *up + (*up << ((i % 16) + 1)); 2157 up++; 2158 i++; 2159 } 2160 return (hash); 2161 } 2162 2163 /* 2164 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2165 * equal). This may need to be changed if less than / greater than is ever 2166 * needed. 2167 */ 2168 static int 2169 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2170 { 2171 ts_label_t *lab1 = (ts_label_t *)key1; 2172 ts_label_t *lab2 = (ts_label_t *)key2; 2173 2174 return (label_equal(lab1, lab2) ? 0 : 1); 2175 } 2176 2177 /* 2178 * Called by main() to initialize the zones framework. 2179 */ 2180 void 2181 zone_init(void) 2182 { 2183 rctl_dict_entry_t *rde; 2184 rctl_val_t *dval; 2185 rctl_set_t *set; 2186 rctl_alloc_gp_t *gp; 2187 rctl_entity_p_t e; 2188 int res; 2189 2190 ASSERT(curproc == &p0); 2191 2192 /* 2193 * Create ID space for zone IDs. ID 0 is reserved for the 2194 * global zone. 2195 */ 2196 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2197 2198 /* 2199 * Initialize generic zone resource controls, if any. 2200 */ 2201 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2202 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2203 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2204 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2205 2206 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2207 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2208 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2209 RCTL_GLOBAL_INFINITE, 2210 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2211 2212 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2213 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2214 INT_MAX, INT_MAX, &zone_lwps_ops); 2215 2216 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2217 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2218 INT_MAX, INT_MAX, &zone_procs_ops); 2219 2220 /* 2221 * System V IPC resource controls 2222 */ 2223 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2224 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2225 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2226 2227 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2228 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2229 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2230 2231 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2232 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2233 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2234 2235 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2236 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2237 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2238 2239 /* 2240 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2241 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2242 */ 2243 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2244 bzero(dval, sizeof (rctl_val_t)); 2245 dval->rcv_value = 1; 2246 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2247 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2248 dval->rcv_action_recip_pid = -1; 2249 2250 rde = rctl_dict_lookup("zone.cpu-shares"); 2251 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2252 2253 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2254 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2255 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2256 &zone_locked_mem_ops); 2257 2258 rc_zone_max_swap = rctl_register("zone.max-swap", 2259 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2260 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2261 &zone_max_swap_ops); 2262 2263 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2264 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2265 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2266 &zone_max_lofi_ops); 2267 2268 /* 2269 * Initialize the ``global zone''. 2270 */ 2271 set = rctl_set_create(); 2272 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2273 mutex_enter(&p0.p_lock); 2274 e.rcep_p.zone = &zone0; 2275 e.rcep_t = RCENTITY_ZONE; 2276 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2277 gp); 2278 2279 zone0.zone_nlwps = p0.p_lwpcnt; 2280 zone0.zone_nprocs = 1; 2281 zone0.zone_ntasks = 1; 2282 mutex_exit(&p0.p_lock); 2283 zone0.zone_restart_init = B_TRUE; 2284 zone0.zone_brand = &native_brand; 2285 rctl_prealloc_destroy(gp); 2286 /* 2287 * pool_default hasn't been initialized yet, so we let pool_init() 2288 * take care of making sure the global zone is in the default pool. 2289 */ 2290 2291 /* 2292 * Initialize global zone kstats 2293 */ 2294 zone_kstat_create(&zone0); 2295 2296 /* 2297 * Initialize zone label. 2298 * mlp are initialized when tnzonecfg is loaded. 2299 */ 2300 zone0.zone_slabel = l_admin_low; 2301 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2302 label_hold(l_admin_low); 2303 2304 /* 2305 * Initialise the lock for the database structure used by mntfs. 2306 */ 2307 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2308 2309 zone0.zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP); 2310 2311 mutex_enter(&zonehash_lock); 2312 zone_uniqid(&zone0); 2313 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2314 2315 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2316 mod_hash_null_valdtor); 2317 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2318 zone_hash_size, mod_hash_null_valdtor); 2319 /* 2320 * maintain zonehashbylabel only for labeled systems 2321 */ 2322 if (is_system_labeled()) 2323 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2324 zone_hash_size, mod_hash_null_keydtor, 2325 mod_hash_null_valdtor, hash_bylabel, NULL, 2326 hash_labelkey_cmp, KM_SLEEP); 2327 zonecount = 1; 2328 2329 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2330 (mod_hash_val_t)&zone0); 2331 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2332 (mod_hash_val_t)&zone0); 2333 if (is_system_labeled()) { 2334 zone0.zone_flags |= ZF_HASHED_LABEL; 2335 (void) mod_hash_insert(zonehashbylabel, 2336 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2337 } 2338 mutex_exit(&zonehash_lock); 2339 2340 /* 2341 * We avoid setting zone_kcred until now, since kcred is initialized 2342 * sometime after zone_zsd_init() and before zone_init(). 2343 */ 2344 zone0.zone_kcred = kcred; 2345 /* 2346 * The global zone is fully initialized (except for zone_rootvp which 2347 * will be set when the root filesystem is mounted). 2348 */ 2349 global_zone = &zone0; 2350 2351 /* 2352 * Setup an event channel to send zone status change notifications on 2353 */ 2354 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2355 EVCH_CREAT); 2356 2357 if (res) 2358 panic("Sysevent_evc_bind failed during zone setup.\n"); 2359 2360 } 2361 2362 static void 2363 zone_free(zone_t *zone) 2364 { 2365 ASSERT(zone != global_zone); 2366 ASSERT(zone->zone_ntasks == 0); 2367 ASSERT(zone->zone_nlwps == 0); 2368 ASSERT(zone->zone_nprocs == 0); 2369 ASSERT(zone->zone_cred_ref == 0); 2370 ASSERT(zone->zone_kcred == NULL); 2371 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2372 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2373 ASSERT(list_is_empty(&zone->zone_ref_list)); 2374 2375 /* 2376 * Remove any zone caps. 2377 */ 2378 cpucaps_zone_remove(zone); 2379 2380 ASSERT(zone->zone_cpucap == NULL); 2381 2382 /* remove from deathrow list */ 2383 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2384 ASSERT(zone->zone_ref == 0); 2385 mutex_enter(&zone_deathrow_lock); 2386 list_remove(&zone_deathrow, zone); 2387 mutex_exit(&zone_deathrow_lock); 2388 } 2389 2390 list_destroy(&zone->zone_ref_list); 2391 zone_free_zsd(zone); 2392 zone_free_datasets(zone); 2393 list_destroy(&zone->zone_dl_list); 2394 2395 cpu_uarray_free(zone->zone_ustate); 2396 2397 if (zone->zone_rootvp != NULL) 2398 VN_RELE(zone->zone_rootvp); 2399 if (zone->zone_rootpath) 2400 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2401 if (zone->zone_name != NULL) 2402 kmem_free(zone->zone_name, ZONENAME_MAX); 2403 if (zone->zone_slabel != NULL) 2404 label_rele(zone->zone_slabel); 2405 if (zone->zone_nodename != NULL) 2406 kmem_free(zone->zone_nodename, _SYS_NMLN); 2407 if (zone->zone_domain != NULL) 2408 kmem_free(zone->zone_domain, _SYS_NMLN); 2409 if (zone->zone_privset != NULL) 2410 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2411 if (zone->zone_rctls != NULL) 2412 rctl_set_free(zone->zone_rctls); 2413 if (zone->zone_bootargs != NULL) 2414 strfree(zone->zone_bootargs); 2415 if (zone->zone_initname != NULL) 2416 strfree(zone->zone_initname); 2417 if (zone->zone_fs_allowed != NULL) 2418 strfree(zone->zone_fs_allowed); 2419 if (zone->zone_pfexecd != NULL) 2420 klpd_freelist(&zone->zone_pfexecd); 2421 id_free(zoneid_space, zone->zone_id); 2422 mutex_destroy(&zone->zone_lock); 2423 cv_destroy(&zone->zone_cv); 2424 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2425 rw_destroy(&zone->zone_mntfs_db_lock); 2426 kmem_free(zone, sizeof (zone_t)); 2427 } 2428 2429 /* 2430 * See block comment at the top of this file for information about zone 2431 * status values. 2432 */ 2433 /* 2434 * Convenience function for setting zone status. 2435 */ 2436 static void 2437 zone_status_set(zone_t *zone, zone_status_t status) 2438 { 2439 2440 nvlist_t *nvl = NULL; 2441 ASSERT(MUTEX_HELD(&zone_status_lock)); 2442 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2443 status >= zone_status_get(zone)); 2444 2445 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2446 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2447 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2448 zone_status_table[status]) || 2449 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2450 zone_status_table[zone->zone_status]) || 2451 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2452 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2453 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2454 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2455 #ifdef DEBUG 2456 (void) printf( 2457 "Failed to allocate and send zone state change event.\n"); 2458 #endif 2459 } 2460 nvlist_free(nvl); 2461 2462 zone->zone_status = status; 2463 2464 cv_broadcast(&zone->zone_cv); 2465 } 2466 2467 /* 2468 * Public function to retrieve the zone status. The zone status may 2469 * change after it is retrieved. 2470 */ 2471 zone_status_t 2472 zone_status_get(zone_t *zone) 2473 { 2474 return (zone->zone_status); 2475 } 2476 2477 static int 2478 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2479 { 2480 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2481 int err = 0; 2482 2483 ASSERT(zone != global_zone); 2484 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2485 goto done; /* EFAULT or ENAMETOOLONG */ 2486 2487 if (zone->zone_bootargs != NULL) 2488 strfree(zone->zone_bootargs); 2489 2490 zone->zone_bootargs = strdup(buf); 2491 2492 done: 2493 kmem_free(buf, BOOTARGS_MAX); 2494 return (err); 2495 } 2496 2497 static int 2498 zone_set_brand(zone_t *zone, const char *brand) 2499 { 2500 struct brand_attr *attrp; 2501 brand_t *bp; 2502 2503 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2504 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2505 kmem_free(attrp, sizeof (struct brand_attr)); 2506 return (EFAULT); 2507 } 2508 2509 bp = brand_register_zone(attrp); 2510 kmem_free(attrp, sizeof (struct brand_attr)); 2511 if (bp == NULL) 2512 return (EINVAL); 2513 2514 /* 2515 * This is the only place where a zone can change it's brand. 2516 * We already need to hold zone_status_lock to check the zone 2517 * status, so we'll just use that lock to serialize zone 2518 * branding requests as well. 2519 */ 2520 mutex_enter(&zone_status_lock); 2521 2522 /* Re-Branding is not allowed and the zone can't be booted yet */ 2523 if ((ZONE_IS_BRANDED(zone)) || 2524 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2525 mutex_exit(&zone_status_lock); 2526 brand_unregister_zone(bp); 2527 return (EINVAL); 2528 } 2529 2530 /* set up the brand specific data */ 2531 zone->zone_brand = bp; 2532 ZBROP(zone)->b_init_brand_data(zone); 2533 2534 mutex_exit(&zone_status_lock); 2535 return (0); 2536 } 2537 2538 static int 2539 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags) 2540 { 2541 int err = 0; 2542 psecflags_t psf; 2543 2544 ASSERT(zone != global_zone); 2545 2546 if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0) 2547 return (err); 2548 2549 if (zone_status_get(zone) > ZONE_IS_READY) 2550 return (EINVAL); 2551 2552 if (!psecflags_validate(&psf)) 2553 return (EINVAL); 2554 2555 (void) memcpy(&zone->zone_secflags, &psf, sizeof (psf)); 2556 2557 /* Set security flags on the zone's zsched */ 2558 (void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags, 2559 sizeof (zone->zone_zsched->p_secflags)); 2560 2561 return (0); 2562 } 2563 2564 static int 2565 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2566 { 2567 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2568 int err = 0; 2569 2570 ASSERT(zone != global_zone); 2571 if ((err = copyinstr(zone_fs_allowed, buf, 2572 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2573 goto done; 2574 2575 if (zone->zone_fs_allowed != NULL) 2576 strfree(zone->zone_fs_allowed); 2577 2578 zone->zone_fs_allowed = strdup(buf); 2579 2580 done: 2581 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2582 return (err); 2583 } 2584 2585 static int 2586 zone_set_initname(zone_t *zone, const char *zone_initname) 2587 { 2588 char initname[INITNAME_SZ]; 2589 size_t len; 2590 int err = 0; 2591 2592 ASSERT(zone != global_zone); 2593 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2594 return (err); /* EFAULT or ENAMETOOLONG */ 2595 2596 if (zone->zone_initname != NULL) 2597 strfree(zone->zone_initname); 2598 2599 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2600 (void) strcpy(zone->zone_initname, initname); 2601 return (0); 2602 } 2603 2604 static int 2605 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2606 { 2607 uint64_t mcap; 2608 int err = 0; 2609 2610 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2611 zone->zone_phys_mcap = mcap; 2612 2613 return (err); 2614 } 2615 2616 static int 2617 zone_set_sched_class(zone_t *zone, const char *new_class) 2618 { 2619 char sched_class[PC_CLNMSZ]; 2620 id_t classid; 2621 int err; 2622 2623 ASSERT(zone != global_zone); 2624 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2625 return (err); /* EFAULT or ENAMETOOLONG */ 2626 2627 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2628 return (set_errno(EINVAL)); 2629 zone->zone_defaultcid = classid; 2630 ASSERT(zone->zone_defaultcid > 0 && 2631 zone->zone_defaultcid < loaded_classes); 2632 2633 return (0); 2634 } 2635 2636 /* 2637 * Block indefinitely waiting for (zone_status >= status) 2638 */ 2639 void 2640 zone_status_wait(zone_t *zone, zone_status_t status) 2641 { 2642 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2643 2644 mutex_enter(&zone_status_lock); 2645 while (zone->zone_status < status) { 2646 cv_wait(&zone->zone_cv, &zone_status_lock); 2647 } 2648 mutex_exit(&zone_status_lock); 2649 } 2650 2651 /* 2652 * Private CPR-safe version of zone_status_wait(). 2653 */ 2654 static void 2655 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2656 { 2657 callb_cpr_t cprinfo; 2658 2659 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2660 2661 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2662 str); 2663 mutex_enter(&zone_status_lock); 2664 while (zone->zone_status < status) { 2665 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2666 cv_wait(&zone->zone_cv, &zone_status_lock); 2667 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2668 } 2669 /* 2670 * zone_status_lock is implicitly released by the following. 2671 */ 2672 CALLB_CPR_EXIT(&cprinfo); 2673 } 2674 2675 /* 2676 * Block until zone enters requested state or signal is received. Return (0) 2677 * if signaled, non-zero otherwise. 2678 */ 2679 int 2680 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2681 { 2682 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2683 2684 mutex_enter(&zone_status_lock); 2685 while (zone->zone_status < status) { 2686 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2687 mutex_exit(&zone_status_lock); 2688 return (0); 2689 } 2690 } 2691 mutex_exit(&zone_status_lock); 2692 return (1); 2693 } 2694 2695 /* 2696 * Block until the zone enters the requested state or the timeout expires, 2697 * whichever happens first. Return (-1) if operation timed out, time remaining 2698 * otherwise. 2699 */ 2700 clock_t 2701 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2702 { 2703 clock_t timeleft = 0; 2704 2705 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2706 2707 mutex_enter(&zone_status_lock); 2708 while (zone->zone_status < status && timeleft != -1) { 2709 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2710 } 2711 mutex_exit(&zone_status_lock); 2712 return (timeleft); 2713 } 2714 2715 /* 2716 * Block until the zone enters the requested state, the current process is 2717 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2718 * operation timed out, 0 if signaled, time remaining otherwise. 2719 */ 2720 clock_t 2721 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2722 { 2723 clock_t timeleft = tim - ddi_get_lbolt(); 2724 2725 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2726 2727 mutex_enter(&zone_status_lock); 2728 while (zone->zone_status < status) { 2729 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2730 tim); 2731 if (timeleft <= 0) 2732 break; 2733 } 2734 mutex_exit(&zone_status_lock); 2735 return (timeleft); 2736 } 2737 2738 /* 2739 * Zones have two reference counts: one for references from credential 2740 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2741 * This is so we can allow a zone to be rebooted while there are still 2742 * outstanding cred references, since certain drivers cache dblks (which 2743 * implicitly results in cached creds). We wait for zone_ref to drop to 2744 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2745 * later freed when the zone_cred_ref drops to 0, though nothing other 2746 * than the zone id and privilege set should be accessed once the zone 2747 * is "dead". 2748 * 2749 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2750 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2751 * to 0. This can be useful to flush out other sources of cached creds 2752 * that may be less innocuous than the driver case. 2753 * 2754 * Zones also provide a tracked reference counting mechanism in which zone 2755 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2756 * debuggers determine the sources of leaked zone references. See 2757 * zone_hold_ref() and zone_rele_ref() below for more information. 2758 */ 2759 2760 int zone_wait_for_cred = 0; 2761 2762 static void 2763 zone_hold_locked(zone_t *z) 2764 { 2765 ASSERT(MUTEX_HELD(&z->zone_lock)); 2766 z->zone_ref++; 2767 ASSERT(z->zone_ref != 0); 2768 } 2769 2770 /* 2771 * Increment the specified zone's reference count. The zone's zone_t structure 2772 * will not be freed as long as the zone's reference count is nonzero. 2773 * Decrement the zone's reference count via zone_rele(). 2774 * 2775 * NOTE: This function should only be used to hold zones for short periods of 2776 * time. Use zone_hold_ref() if the zone must be held for a long time. 2777 */ 2778 void 2779 zone_hold(zone_t *z) 2780 { 2781 mutex_enter(&z->zone_lock); 2782 zone_hold_locked(z); 2783 mutex_exit(&z->zone_lock); 2784 } 2785 2786 /* 2787 * If the non-cred ref count drops to 1 and either the cred ref count 2788 * is 0 or we aren't waiting for cred references, the zone is ready to 2789 * be destroyed. 2790 */ 2791 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2792 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2793 2794 /* 2795 * Common zone reference release function invoked by zone_rele() and 2796 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2797 * zone's subsystem-specific reference counters are not affected by the 2798 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2799 * removed from the specified zone's reference list. ref must be non-NULL iff 2800 * subsys is not ZONE_REF_NUM_SUBSYS. 2801 */ 2802 static void 2803 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2804 { 2805 boolean_t wakeup; 2806 2807 mutex_enter(&z->zone_lock); 2808 ASSERT(z->zone_ref != 0); 2809 z->zone_ref--; 2810 if (subsys != ZONE_REF_NUM_SUBSYS) { 2811 ASSERT(z->zone_subsys_ref[subsys] != 0); 2812 z->zone_subsys_ref[subsys]--; 2813 list_remove(&z->zone_ref_list, ref); 2814 } 2815 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2816 /* no more refs, free the structure */ 2817 mutex_exit(&z->zone_lock); 2818 zone_free(z); 2819 return; 2820 } 2821 /* signal zone_destroy so the zone can finish halting */ 2822 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2823 mutex_exit(&z->zone_lock); 2824 2825 if (wakeup) { 2826 /* 2827 * Grabbing zonehash_lock here effectively synchronizes with 2828 * zone_destroy() to avoid missed signals. 2829 */ 2830 mutex_enter(&zonehash_lock); 2831 cv_broadcast(&zone_destroy_cv); 2832 mutex_exit(&zonehash_lock); 2833 } 2834 } 2835 2836 /* 2837 * Decrement the specified zone's reference count. The specified zone will 2838 * cease to exist after this function returns if the reference count drops to 2839 * zero. This function should be paired with zone_hold(). 2840 */ 2841 void 2842 zone_rele(zone_t *z) 2843 { 2844 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2845 } 2846 2847 /* 2848 * Initialize a zone reference structure. This function must be invoked for 2849 * a reference structure before the structure is passed to zone_hold_ref(). 2850 */ 2851 void 2852 zone_init_ref(zone_ref_t *ref) 2853 { 2854 ref->zref_zone = NULL; 2855 list_link_init(&ref->zref_linkage); 2856 } 2857 2858 /* 2859 * Acquire a reference to zone z. The caller must specify the 2860 * zone_ref_subsys_t constant associated with its subsystem. The specified 2861 * zone_ref_t structure will represent a reference to the specified zone. Use 2862 * zone_rele_ref() to release the reference. 2863 * 2864 * The referenced zone_t structure will not be freed as long as the zone_t's 2865 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2866 * references. 2867 * 2868 * NOTE: The zone_ref_t structure must be initialized before it is used. 2869 * See zone_init_ref() above. 2870 */ 2871 void 2872 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2873 { 2874 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2875 2876 /* 2877 * Prevent consumers from reusing a reference structure before 2878 * releasing it. 2879 */ 2880 VERIFY(ref->zref_zone == NULL); 2881 2882 ref->zref_zone = z; 2883 mutex_enter(&z->zone_lock); 2884 zone_hold_locked(z); 2885 z->zone_subsys_ref[subsys]++; 2886 ASSERT(z->zone_subsys_ref[subsys] != 0); 2887 list_insert_head(&z->zone_ref_list, ref); 2888 mutex_exit(&z->zone_lock); 2889 } 2890 2891 /* 2892 * Release the zone reference represented by the specified zone_ref_t. 2893 * The reference is invalid after it's released; however, the zone_ref_t 2894 * structure can be reused without having to invoke zone_init_ref(). 2895 * subsys should be the same value that was passed to zone_hold_ref() 2896 * when the reference was acquired. 2897 */ 2898 void 2899 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2900 { 2901 zone_rele_common(ref->zref_zone, ref, subsys); 2902 2903 /* 2904 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2905 * when consumers dereference the reference. This helps us catch 2906 * consumers who use released references. Furthermore, this lets 2907 * consumers reuse the zone_ref_t structure without having to 2908 * invoke zone_init_ref(). 2909 */ 2910 ref->zref_zone = NULL; 2911 } 2912 2913 void 2914 zone_cred_hold(zone_t *z) 2915 { 2916 mutex_enter(&z->zone_lock); 2917 z->zone_cred_ref++; 2918 ASSERT(z->zone_cred_ref != 0); 2919 mutex_exit(&z->zone_lock); 2920 } 2921 2922 void 2923 zone_cred_rele(zone_t *z) 2924 { 2925 boolean_t wakeup; 2926 2927 mutex_enter(&z->zone_lock); 2928 ASSERT(z->zone_cred_ref != 0); 2929 z->zone_cred_ref--; 2930 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2931 /* no more refs, free the structure */ 2932 mutex_exit(&z->zone_lock); 2933 zone_free(z); 2934 return; 2935 } 2936 /* 2937 * If zone_destroy is waiting for the cred references to drain 2938 * out, and they have, signal it. 2939 */ 2940 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2941 zone_status_get(z) >= ZONE_IS_DEAD); 2942 mutex_exit(&z->zone_lock); 2943 2944 if (wakeup) { 2945 /* 2946 * Grabbing zonehash_lock here effectively synchronizes with 2947 * zone_destroy() to avoid missed signals. 2948 */ 2949 mutex_enter(&zonehash_lock); 2950 cv_broadcast(&zone_destroy_cv); 2951 mutex_exit(&zonehash_lock); 2952 } 2953 } 2954 2955 void 2956 zone_task_hold(zone_t *z) 2957 { 2958 mutex_enter(&z->zone_lock); 2959 z->zone_ntasks++; 2960 ASSERT(z->zone_ntasks != 0); 2961 mutex_exit(&z->zone_lock); 2962 } 2963 2964 void 2965 zone_task_rele(zone_t *zone) 2966 { 2967 uint_t refcnt; 2968 2969 mutex_enter(&zone->zone_lock); 2970 ASSERT(zone->zone_ntasks != 0); 2971 refcnt = --zone->zone_ntasks; 2972 if (refcnt > 1) { /* Common case */ 2973 mutex_exit(&zone->zone_lock); 2974 return; 2975 } 2976 zone_hold_locked(zone); /* so we can use the zone_t later */ 2977 mutex_exit(&zone->zone_lock); 2978 if (refcnt == 1) { 2979 /* 2980 * See if the zone is shutting down. 2981 */ 2982 mutex_enter(&zone_status_lock); 2983 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2984 goto out; 2985 } 2986 2987 /* 2988 * Make sure the ntasks didn't change since we 2989 * dropped zone_lock. 2990 */ 2991 mutex_enter(&zone->zone_lock); 2992 if (refcnt != zone->zone_ntasks) { 2993 mutex_exit(&zone->zone_lock); 2994 goto out; 2995 } 2996 mutex_exit(&zone->zone_lock); 2997 2998 /* 2999 * No more user processes in the zone. The zone is empty. 3000 */ 3001 zone_status_set(zone, ZONE_IS_EMPTY); 3002 goto out; 3003 } 3004 3005 ASSERT(refcnt == 0); 3006 /* 3007 * zsched has exited; the zone is dead. 3008 */ 3009 zone->zone_zsched = NULL; /* paranoia */ 3010 mutex_enter(&zone_status_lock); 3011 zone_status_set(zone, ZONE_IS_DEAD); 3012 out: 3013 mutex_exit(&zone_status_lock); 3014 zone_rele(zone); 3015 } 3016 3017 zoneid_t 3018 getzoneid(void) 3019 { 3020 return (curproc->p_zone->zone_id); 3021 } 3022 3023 /* 3024 * Internal versions of zone_find_by_*(). These don't zone_hold() or 3025 * check the validity of a zone's state. 3026 */ 3027 static zone_t * 3028 zone_find_all_by_id(zoneid_t zoneid) 3029 { 3030 mod_hash_val_t hv; 3031 zone_t *zone = NULL; 3032 3033 ASSERT(MUTEX_HELD(&zonehash_lock)); 3034 3035 if (mod_hash_find(zonehashbyid, 3036 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 3037 zone = (zone_t *)hv; 3038 return (zone); 3039 } 3040 3041 static zone_t * 3042 zone_find_all_by_label(const ts_label_t *label) 3043 { 3044 mod_hash_val_t hv; 3045 zone_t *zone = NULL; 3046 3047 ASSERT(MUTEX_HELD(&zonehash_lock)); 3048 3049 /* 3050 * zonehashbylabel is not maintained for unlabeled systems 3051 */ 3052 if (!is_system_labeled()) 3053 return (NULL); 3054 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 3055 zone = (zone_t *)hv; 3056 return (zone); 3057 } 3058 3059 static zone_t * 3060 zone_find_all_by_name(char *name) 3061 { 3062 mod_hash_val_t hv; 3063 zone_t *zone = NULL; 3064 3065 ASSERT(MUTEX_HELD(&zonehash_lock)); 3066 3067 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 3068 zone = (zone_t *)hv; 3069 return (zone); 3070 } 3071 3072 /* 3073 * Public interface for looking up a zone by zoneid. Only returns the zone if 3074 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 3075 * Caller must call zone_rele() once it is done with the zone. 3076 * 3077 * The zone may begin the zone_destroy() sequence immediately after this 3078 * function returns, but may be safely used until zone_rele() is called. 3079 */ 3080 zone_t * 3081 zone_find_by_id(zoneid_t zoneid) 3082 { 3083 zone_t *zone; 3084 zone_status_t status; 3085 3086 mutex_enter(&zonehash_lock); 3087 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3088 mutex_exit(&zonehash_lock); 3089 return (NULL); 3090 } 3091 status = zone_status_get(zone); 3092 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3093 /* 3094 * For all practical purposes the zone doesn't exist. 3095 */ 3096 mutex_exit(&zonehash_lock); 3097 return (NULL); 3098 } 3099 zone_hold(zone); 3100 mutex_exit(&zonehash_lock); 3101 return (zone); 3102 } 3103 3104 /* 3105 * Similar to zone_find_by_id, but using zone label as the key. 3106 */ 3107 zone_t * 3108 zone_find_by_label(const ts_label_t *label) 3109 { 3110 zone_t *zone; 3111 zone_status_t status; 3112 3113 mutex_enter(&zonehash_lock); 3114 if ((zone = zone_find_all_by_label(label)) == NULL) { 3115 mutex_exit(&zonehash_lock); 3116 return (NULL); 3117 } 3118 3119 status = zone_status_get(zone); 3120 if (status > ZONE_IS_DOWN) { 3121 /* 3122 * For all practical purposes the zone doesn't exist. 3123 */ 3124 mutex_exit(&zonehash_lock); 3125 return (NULL); 3126 } 3127 zone_hold(zone); 3128 mutex_exit(&zonehash_lock); 3129 return (zone); 3130 } 3131 3132 /* 3133 * Similar to zone_find_by_id, but using zone name as the key. 3134 */ 3135 zone_t * 3136 zone_find_by_name(char *name) 3137 { 3138 zone_t *zone; 3139 zone_status_t status; 3140 3141 mutex_enter(&zonehash_lock); 3142 if ((zone = zone_find_all_by_name(name)) == NULL) { 3143 mutex_exit(&zonehash_lock); 3144 return (NULL); 3145 } 3146 status = zone_status_get(zone); 3147 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3148 /* 3149 * For all practical purposes the zone doesn't exist. 3150 */ 3151 mutex_exit(&zonehash_lock); 3152 return (NULL); 3153 } 3154 zone_hold(zone); 3155 mutex_exit(&zonehash_lock); 3156 return (zone); 3157 } 3158 3159 /* 3160 * Similar to zone_find_by_id(), using the path as a key. For instance, 3161 * if there is a zone "foo" rooted at /foo/root, and the path argument 3162 * is "/foo/root/proc", it will return the held zone_t corresponding to 3163 * zone "foo". 3164 * 3165 * zone_find_by_path() always returns a non-NULL value, since at the 3166 * very least every path will be contained in the global zone. 3167 * 3168 * As with the other zone_find_by_*() functions, the caller is 3169 * responsible for zone_rele()ing the return value of this function. 3170 */ 3171 zone_t * 3172 zone_find_by_path(const char *path) 3173 { 3174 zone_t *zone; 3175 zone_t *zret = NULL; 3176 zone_status_t status; 3177 3178 if (path == NULL) { 3179 /* 3180 * Call from rootconf(). 3181 */ 3182 zone_hold(global_zone); 3183 return (global_zone); 3184 } 3185 ASSERT(*path == '/'); 3186 mutex_enter(&zonehash_lock); 3187 for (zone = list_head(&zone_active); zone != NULL; 3188 zone = list_next(&zone_active, zone)) { 3189 if (ZONE_PATH_VISIBLE(path, zone)) 3190 zret = zone; 3191 } 3192 ASSERT(zret != NULL); 3193 status = zone_status_get(zret); 3194 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3195 /* 3196 * Zone practically doesn't exist. 3197 */ 3198 zret = global_zone; 3199 } 3200 zone_hold(zret); 3201 mutex_exit(&zonehash_lock); 3202 return (zret); 3203 } 3204 3205 /* 3206 * Public interface for updating per-zone load averages. Called once per 3207 * second. 3208 * 3209 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3210 */ 3211 void 3212 zone_loadavg_update(void) 3213 { 3214 zone_t *zp; 3215 zone_status_t status; 3216 struct loadavg_s *lavg; 3217 hrtime_t zone_total; 3218 uint64_t tmp; 3219 int i; 3220 hrtime_t hr_avg; 3221 int nrun; 3222 static int64_t f[3] = { 135, 27, 9 }; 3223 int64_t q, r; 3224 3225 mutex_enter(&zonehash_lock); 3226 for (zp = list_head(&zone_active); zp != NULL; 3227 zp = list_next(&zone_active, zp)) { 3228 mutex_enter(&zp->zone_lock); 3229 3230 /* Skip zones that are on the way down or not yet up */ 3231 status = zone_status_get(zp); 3232 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3233 /* For all practical purposes the zone doesn't exist. */ 3234 mutex_exit(&zp->zone_lock); 3235 continue; 3236 } 3237 3238 /* 3239 * Update the 10 second moving average data in zone_loadavg. 3240 */ 3241 lavg = &zp->zone_loadavg; 3242 3243 tmp = cpu_uarray_sum_all(zp->zone_ustate); 3244 zone_total = UINT64_OVERFLOW_TO_INT64(tmp); 3245 3246 scalehrtime(&zone_total); 3247 3248 /* The zone_total should always be increasing. */ 3249 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3250 zone_total - lavg->lg_total : 0; 3251 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3252 /* lg_total holds the prev. 1 sec. total */ 3253 lavg->lg_total = zone_total; 3254 3255 /* 3256 * To simplify the calculation, we don't calculate the load avg. 3257 * until the zone has been up for at least 10 seconds and our 3258 * moving average is thus full. 3259 */ 3260 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3261 lavg->lg_len++; 3262 mutex_exit(&zp->zone_lock); 3263 continue; 3264 } 3265 3266 /* Now calculate the 1min, 5min, 15 min load avg. */ 3267 hr_avg = 0; 3268 for (i = 0; i < S_LOADAVG_SZ; i++) 3269 hr_avg += lavg->lg_loads[i]; 3270 hr_avg = hr_avg / S_LOADAVG_SZ; 3271 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3272 3273 /* Compute load avg. See comment in calcloadavg() */ 3274 for (i = 0; i < 3; i++) { 3275 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3276 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3277 zp->zone_hp_avenrun[i] += 3278 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3279 3280 /* avenrun[] can only hold 31 bits of load avg. */ 3281 if (zp->zone_hp_avenrun[i] < 3282 ((uint64_t)1<<(31+16-FSHIFT))) 3283 zp->zone_avenrun[i] = (int32_t) 3284 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3285 else 3286 zp->zone_avenrun[i] = 0x7fffffff; 3287 } 3288 3289 mutex_exit(&zp->zone_lock); 3290 } 3291 mutex_exit(&zonehash_lock); 3292 } 3293 3294 /* 3295 * Get the number of cpus visible to this zone. The system-wide global 3296 * 'ncpus' is returned if pools are disabled, the caller is in the 3297 * global zone, or a NULL zone argument is passed in. 3298 */ 3299 int 3300 zone_ncpus_get(zone_t *zone) 3301 { 3302 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3303 3304 return (myncpus != 0 ? myncpus : ncpus); 3305 } 3306 3307 /* 3308 * Get the number of online cpus visible to this zone. The system-wide 3309 * global 'ncpus_online' is returned if pools are disabled, the caller 3310 * is in the global zone, or a NULL zone argument is passed in. 3311 */ 3312 int 3313 zone_ncpus_online_get(zone_t *zone) 3314 { 3315 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3316 3317 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3318 } 3319 3320 /* 3321 * Return the pool to which the zone is currently bound. 3322 */ 3323 pool_t * 3324 zone_pool_get(zone_t *zone) 3325 { 3326 ASSERT(pool_lock_held()); 3327 3328 return (zone->zone_pool); 3329 } 3330 3331 /* 3332 * Set the zone's pool pointer and update the zone's visibility to match 3333 * the resources in the new pool. 3334 */ 3335 void 3336 zone_pool_set(zone_t *zone, pool_t *pool) 3337 { 3338 ASSERT(pool_lock_held()); 3339 ASSERT(MUTEX_HELD(&cpu_lock)); 3340 3341 zone->zone_pool = pool; 3342 zone_pset_set(zone, pool->pool_pset->pset_id); 3343 } 3344 3345 /* 3346 * Return the cached value of the id of the processor set to which the 3347 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3348 * facility is disabled. 3349 */ 3350 psetid_t 3351 zone_pset_get(zone_t *zone) 3352 { 3353 ASSERT(MUTEX_HELD(&cpu_lock)); 3354 3355 return (zone->zone_psetid); 3356 } 3357 3358 /* 3359 * Set the cached value of the id of the processor set to which the zone 3360 * is currently bound. Also update the zone's visibility to match the 3361 * resources in the new processor set. 3362 */ 3363 void 3364 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3365 { 3366 psetid_t oldpsetid; 3367 3368 ASSERT(MUTEX_HELD(&cpu_lock)); 3369 oldpsetid = zone_pset_get(zone); 3370 3371 if (oldpsetid == newpsetid) 3372 return; 3373 /* 3374 * Global zone sees all. 3375 */ 3376 if (zone != global_zone) { 3377 zone->zone_psetid = newpsetid; 3378 if (newpsetid != ZONE_PS_INVAL) 3379 pool_pset_visibility_add(newpsetid, zone); 3380 if (oldpsetid != ZONE_PS_INVAL) 3381 pool_pset_visibility_remove(oldpsetid, zone); 3382 } 3383 /* 3384 * Disabling pools, so we should start using the global values 3385 * for ncpus and ncpus_online. 3386 */ 3387 if (newpsetid == ZONE_PS_INVAL) { 3388 zone->zone_ncpus = 0; 3389 zone->zone_ncpus_online = 0; 3390 } 3391 } 3392 3393 /* 3394 * Walk the list of active zones and issue the provided callback for 3395 * each of them. 3396 * 3397 * Caller must not be holding any locks that may be acquired under 3398 * zonehash_lock. See comment at the beginning of the file for a list of 3399 * common locks and their interactions with zones. 3400 */ 3401 int 3402 zone_walk(int (*cb)(zone_t *, void *), void *data) 3403 { 3404 zone_t *zone; 3405 int ret = 0; 3406 zone_status_t status; 3407 3408 mutex_enter(&zonehash_lock); 3409 for (zone = list_head(&zone_active); zone != NULL; 3410 zone = list_next(&zone_active, zone)) { 3411 /* 3412 * Skip zones that shouldn't be externally visible. 3413 */ 3414 status = zone_status_get(zone); 3415 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3416 continue; 3417 /* 3418 * Bail immediately if any callback invocation returns a 3419 * non-zero value. 3420 */ 3421 ret = (*cb)(zone, data); 3422 if (ret != 0) 3423 break; 3424 } 3425 mutex_exit(&zonehash_lock); 3426 return (ret); 3427 } 3428 3429 static int 3430 zone_set_root(zone_t *zone, const char *upath) 3431 { 3432 vnode_t *vp; 3433 int trycount; 3434 int error = 0; 3435 char *path; 3436 struct pathname upn, pn; 3437 size_t pathlen; 3438 3439 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3440 return (error); 3441 3442 pn_alloc(&pn); 3443 3444 /* prevent infinite loop */ 3445 trycount = 10; 3446 for (;;) { 3447 if (--trycount <= 0) { 3448 error = ESTALE; 3449 goto out; 3450 } 3451 3452 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3453 /* 3454 * VOP_ACCESS() may cover 'vp' with a new 3455 * filesystem, if 'vp' is an autoFS vnode. 3456 * Get the new 'vp' if so. 3457 */ 3458 if ((error = 3459 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3460 (!vn_ismntpt(vp) || 3461 (error = traverse(&vp)) == 0)) { 3462 pathlen = pn.pn_pathlen + 2; 3463 path = kmem_alloc(pathlen, KM_SLEEP); 3464 (void) strncpy(path, pn.pn_path, 3465 pn.pn_pathlen + 1); 3466 path[pathlen - 2] = '/'; 3467 path[pathlen - 1] = '\0'; 3468 pn_free(&pn); 3469 pn_free(&upn); 3470 3471 /* Success! */ 3472 break; 3473 } 3474 VN_RELE(vp); 3475 } 3476 if (error != ESTALE) 3477 goto out; 3478 } 3479 3480 ASSERT(error == 0); 3481 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3482 zone->zone_rootpath = path; 3483 zone->zone_rootpathlen = pathlen; 3484 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3485 zone->zone_flags |= ZF_IS_SCRATCH; 3486 return (0); 3487 3488 out: 3489 pn_free(&pn); 3490 pn_free(&upn); 3491 return (error); 3492 } 3493 3494 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3495 ((c) >= 'a' && (c) <= 'z') || \ 3496 ((c) >= 'A' && (c) <= 'Z')) 3497 3498 static int 3499 zone_set_name(zone_t *zone, const char *uname) 3500 { 3501 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3502 size_t len; 3503 int i, err; 3504 3505 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3506 kmem_free(kname, ZONENAME_MAX); 3507 return (err); /* EFAULT or ENAMETOOLONG */ 3508 } 3509 3510 /* must be less than ZONENAME_MAX */ 3511 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3512 kmem_free(kname, ZONENAME_MAX); 3513 return (EINVAL); 3514 } 3515 3516 /* 3517 * Name must start with an alphanumeric and must contain only 3518 * alphanumerics, '-', '_' and '.'. 3519 */ 3520 if (!isalnum(kname[0])) { 3521 kmem_free(kname, ZONENAME_MAX); 3522 return (EINVAL); 3523 } 3524 for (i = 1; i < len - 1; i++) { 3525 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3526 kname[i] != '.') { 3527 kmem_free(kname, ZONENAME_MAX); 3528 return (EINVAL); 3529 } 3530 } 3531 3532 zone->zone_name = kname; 3533 return (0); 3534 } 3535 3536 /* 3537 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3538 * is NULL or it points to a zone with no hostid emulation, then the machine's 3539 * hostid (i.e., the global zone's hostid) is returned. This function returns 3540 * zero if neither the zone nor the host machine (global zone) have hostids. It 3541 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3542 * hostid and the machine's hostid is invalid. 3543 */ 3544 uint32_t 3545 zone_get_hostid(zone_t *zonep) 3546 { 3547 unsigned long machine_hostid; 3548 3549 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3550 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3551 return (HW_INVALID_HOSTID); 3552 return ((uint32_t)machine_hostid); 3553 } 3554 return (zonep->zone_hostid); 3555 } 3556 3557 /* 3558 * Similar to thread_create(), but makes sure the thread is in the appropriate 3559 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3560 */ 3561 /*ARGSUSED*/ 3562 kthread_t * 3563 zthread_create( 3564 caddr_t stk, 3565 size_t stksize, 3566 void (*proc)(), 3567 void *arg, 3568 size_t len, 3569 pri_t pri) 3570 { 3571 kthread_t *t; 3572 zone_t *zone = curproc->p_zone; 3573 proc_t *pp = zone->zone_zsched; 3574 3575 zone_hold(zone); /* Reference to be dropped when thread exits */ 3576 3577 /* 3578 * No-one should be trying to create threads if the zone is shutting 3579 * down and there aren't any kernel threads around. See comment 3580 * in zthread_exit(). 3581 */ 3582 ASSERT(!(zone->zone_kthreads == NULL && 3583 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3584 /* 3585 * Create a thread, but don't let it run until we've finished setting 3586 * things up. 3587 */ 3588 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3589 ASSERT(t->t_forw == NULL); 3590 mutex_enter(&zone_status_lock); 3591 if (zone->zone_kthreads == NULL) { 3592 t->t_forw = t->t_back = t; 3593 } else { 3594 kthread_t *tx = zone->zone_kthreads; 3595 3596 t->t_forw = tx; 3597 t->t_back = tx->t_back; 3598 tx->t_back->t_forw = t; 3599 tx->t_back = t; 3600 } 3601 zone->zone_kthreads = t; 3602 mutex_exit(&zone_status_lock); 3603 3604 mutex_enter(&pp->p_lock); 3605 t->t_proc_flag |= TP_ZTHREAD; 3606 project_rele(t->t_proj); 3607 t->t_proj = project_hold(pp->p_task->tk_proj); 3608 3609 /* 3610 * Setup complete, let it run. 3611 */ 3612 thread_lock(t); 3613 t->t_schedflag |= TS_ALLSTART; 3614 setrun_locked(t); 3615 thread_unlock(t); 3616 3617 mutex_exit(&pp->p_lock); 3618 3619 return (t); 3620 } 3621 3622 /* 3623 * Similar to thread_exit(). Must be called by threads created via 3624 * zthread_exit(). 3625 */ 3626 void 3627 zthread_exit(void) 3628 { 3629 kthread_t *t = curthread; 3630 proc_t *pp = curproc; 3631 zone_t *zone = pp->p_zone; 3632 3633 mutex_enter(&zone_status_lock); 3634 3635 /* 3636 * Reparent to p0 3637 */ 3638 kpreempt_disable(); 3639 mutex_enter(&pp->p_lock); 3640 t->t_proc_flag &= ~TP_ZTHREAD; 3641 t->t_procp = &p0; 3642 hat_thread_exit(t); 3643 mutex_exit(&pp->p_lock); 3644 kpreempt_enable(); 3645 3646 if (t->t_back == t) { 3647 ASSERT(t->t_forw == t); 3648 /* 3649 * If the zone is empty, once the thread count 3650 * goes to zero no further kernel threads can be 3651 * created. This is because if the creator is a process 3652 * in the zone, then it must have exited before the zone 3653 * state could be set to ZONE_IS_EMPTY. 3654 * Otherwise, if the creator is a kernel thread in the 3655 * zone, the thread count is non-zero. 3656 * 3657 * This really means that non-zone kernel threads should 3658 * not create zone kernel threads. 3659 */ 3660 zone->zone_kthreads = NULL; 3661 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3662 zone_status_set(zone, ZONE_IS_DOWN); 3663 /* 3664 * Remove any CPU caps on this zone. 3665 */ 3666 cpucaps_zone_remove(zone); 3667 } 3668 } else { 3669 t->t_forw->t_back = t->t_back; 3670 t->t_back->t_forw = t->t_forw; 3671 if (zone->zone_kthreads == t) 3672 zone->zone_kthreads = t->t_forw; 3673 } 3674 mutex_exit(&zone_status_lock); 3675 zone_rele(zone); 3676 thread_exit(); 3677 /* NOTREACHED */ 3678 } 3679 3680 static void 3681 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3682 { 3683 vnode_t *oldvp; 3684 3685 /* we're going to hold a reference here to the directory */ 3686 VN_HOLD(vp); 3687 3688 /* update abs cwd/root path see c2/audit.c */ 3689 if (AU_AUDITING()) 3690 audit_chdirec(vp, vpp); 3691 3692 mutex_enter(&pp->p_lock); 3693 oldvp = *vpp; 3694 *vpp = vp; 3695 mutex_exit(&pp->p_lock); 3696 if (oldvp != NULL) 3697 VN_RELE(oldvp); 3698 } 3699 3700 /* 3701 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3702 */ 3703 static int 3704 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3705 { 3706 nvpair_t *nvp = NULL; 3707 boolean_t priv_set = B_FALSE; 3708 boolean_t limit_set = B_FALSE; 3709 boolean_t action_set = B_FALSE; 3710 3711 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3712 const char *name; 3713 uint64_t ui64; 3714 3715 name = nvpair_name(nvp); 3716 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3717 return (EINVAL); 3718 (void) nvpair_value_uint64(nvp, &ui64); 3719 if (strcmp(name, "privilege") == 0) { 3720 /* 3721 * Currently only privileged values are allowed, but 3722 * this may change in the future. 3723 */ 3724 if (ui64 != RCPRIV_PRIVILEGED) 3725 return (EINVAL); 3726 rv->rcv_privilege = ui64; 3727 priv_set = B_TRUE; 3728 } else if (strcmp(name, "limit") == 0) { 3729 rv->rcv_value = ui64; 3730 limit_set = B_TRUE; 3731 } else if (strcmp(name, "action") == 0) { 3732 if (ui64 != RCTL_LOCAL_NOACTION && 3733 ui64 != RCTL_LOCAL_DENY) 3734 return (EINVAL); 3735 rv->rcv_flagaction = ui64; 3736 action_set = B_TRUE; 3737 } else { 3738 return (EINVAL); 3739 } 3740 } 3741 3742 if (!(priv_set && limit_set && action_set)) 3743 return (EINVAL); 3744 rv->rcv_action_signal = 0; 3745 rv->rcv_action_recipient = NULL; 3746 rv->rcv_action_recip_pid = -1; 3747 rv->rcv_firing_time = 0; 3748 3749 return (0); 3750 } 3751 3752 /* 3753 * Non-global zone version of start_init. 3754 */ 3755 void 3756 zone_start_init(void) 3757 { 3758 proc_t *p = ttoproc(curthread); 3759 zone_t *z = p->p_zone; 3760 3761 ASSERT(!INGLOBALZONE(curproc)); 3762 3763 /* 3764 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3765 * storing just the pid of init is sufficient. 3766 */ 3767 z->zone_proc_initpid = p->p_pid; 3768 3769 /* 3770 * We maintain zone_boot_err so that we can return the cause of the 3771 * failure back to the caller of the zone_boot syscall. 3772 */ 3773 p->p_zone->zone_boot_err = start_init_common(); 3774 3775 /* 3776 * We will prevent booting zones from becoming running zones if the 3777 * global zone is shutting down. 3778 */ 3779 mutex_enter(&zone_status_lock); 3780 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3781 ZONE_IS_SHUTTING_DOWN) { 3782 /* 3783 * Make sure we are still in the booting state-- we could have 3784 * raced and already be shutting down, or even further along. 3785 */ 3786 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3787 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3788 } 3789 mutex_exit(&zone_status_lock); 3790 /* It's gone bad, dispose of the process */ 3791 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3792 mutex_enter(&p->p_lock); 3793 ASSERT(p->p_flag & SEXITLWPS); 3794 lwp_exit(); 3795 } 3796 } else { 3797 if (zone_status_get(z) == ZONE_IS_BOOTING) 3798 zone_status_set(z, ZONE_IS_RUNNING); 3799 mutex_exit(&zone_status_lock); 3800 /* cause the process to return to userland. */ 3801 lwp_rtt(); 3802 } 3803 } 3804 3805 struct zsched_arg { 3806 zone_t *zone; 3807 nvlist_t *nvlist; 3808 }; 3809 3810 /* 3811 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3812 * anything to do with scheduling, but rather with the fact that 3813 * per-zone kernel threads are parented to zsched, just like regular 3814 * kernel threads are parented to sched (p0). 3815 * 3816 * zsched is also responsible for launching init for the zone. 3817 */ 3818 static void 3819 zsched(void *arg) 3820 { 3821 struct zsched_arg *za = arg; 3822 proc_t *pp = curproc; 3823 proc_t *initp = proc_init; 3824 zone_t *zone = za->zone; 3825 cred_t *cr, *oldcred; 3826 rctl_set_t *set; 3827 rctl_alloc_gp_t *gp; 3828 contract_t *ct = NULL; 3829 task_t *tk, *oldtk; 3830 rctl_entity_p_t e; 3831 kproject_t *pj; 3832 3833 nvlist_t *nvl = za->nvlist; 3834 nvpair_t *nvp = NULL; 3835 3836 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3837 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3838 PTOU(pp)->u_argc = 0; 3839 PTOU(pp)->u_argv = NULL; 3840 PTOU(pp)->u_envp = NULL; 3841 PTOU(pp)->u_commpagep = NULL; 3842 closeall(P_FINFO(pp)); 3843 3844 /* 3845 * We are this zone's "zsched" process. As the zone isn't generally 3846 * visible yet we don't need to grab any locks before initializing its 3847 * zone_proc pointer. 3848 */ 3849 zone_hold(zone); /* this hold is released by zone_destroy() */ 3850 zone->zone_zsched = pp; 3851 mutex_enter(&pp->p_lock); 3852 pp->p_zone = zone; 3853 mutex_exit(&pp->p_lock); 3854 3855 /* 3856 * Disassociate process from its 'parent'; parent ourselves to init 3857 * (pid 1) and change other values as needed. 3858 */ 3859 sess_create(); 3860 3861 mutex_enter(&pidlock); 3862 proc_detach(pp); 3863 pp->p_ppid = 1; 3864 pp->p_flag |= SZONETOP; 3865 pp->p_ancpid = 1; 3866 pp->p_parent = initp; 3867 pp->p_psibling = NULL; 3868 if (initp->p_child) 3869 initp->p_child->p_psibling = pp; 3870 pp->p_sibling = initp->p_child; 3871 initp->p_child = pp; 3872 3873 /* Decrement what newproc() incremented. */ 3874 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3875 /* 3876 * Our credentials are about to become kcred-like, so we don't care 3877 * about the caller's ruid. 3878 */ 3879 upcount_inc(crgetruid(kcred), zone->zone_id); 3880 mutex_exit(&pidlock); 3881 3882 /* 3883 * getting out of global zone, so decrement lwp and process counts 3884 */ 3885 pj = pp->p_task->tk_proj; 3886 mutex_enter(&global_zone->zone_nlwps_lock); 3887 pj->kpj_nlwps -= pp->p_lwpcnt; 3888 global_zone->zone_nlwps -= pp->p_lwpcnt; 3889 pj->kpj_nprocs--; 3890 global_zone->zone_nprocs--; 3891 mutex_exit(&global_zone->zone_nlwps_lock); 3892 3893 /* 3894 * Decrement locked memory counts on old zone and project. 3895 */ 3896 mutex_enter(&global_zone->zone_mem_lock); 3897 global_zone->zone_locked_mem -= pp->p_locked_mem; 3898 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3899 mutex_exit(&global_zone->zone_mem_lock); 3900 3901 /* 3902 * Create and join a new task in project '0' of this zone. 3903 * 3904 * We don't need to call holdlwps() since we know we're the only lwp in 3905 * this process. 3906 * 3907 * task_join() returns with p_lock held. 3908 */ 3909 tk = task_create(0, zone); 3910 mutex_enter(&cpu_lock); 3911 oldtk = task_join(tk, 0); 3912 3913 pj = pp->p_task->tk_proj; 3914 3915 mutex_enter(&zone->zone_mem_lock); 3916 zone->zone_locked_mem += pp->p_locked_mem; 3917 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3918 mutex_exit(&zone->zone_mem_lock); 3919 3920 /* 3921 * add lwp and process counts to zsched's zone, and increment 3922 * project's task and process count due to the task created in 3923 * the above task_create. 3924 */ 3925 mutex_enter(&zone->zone_nlwps_lock); 3926 pj->kpj_nlwps += pp->p_lwpcnt; 3927 pj->kpj_ntasks += 1; 3928 zone->zone_nlwps += pp->p_lwpcnt; 3929 pj->kpj_nprocs++; 3930 zone->zone_nprocs++; 3931 mutex_exit(&zone->zone_nlwps_lock); 3932 3933 mutex_exit(&curproc->p_lock); 3934 mutex_exit(&cpu_lock); 3935 task_rele(oldtk); 3936 3937 /* 3938 * The process was created by a process in the global zone, hence the 3939 * credentials are wrong. We might as well have kcred-ish credentials. 3940 */ 3941 cr = zone->zone_kcred; 3942 crhold(cr); 3943 mutex_enter(&pp->p_crlock); 3944 oldcred = pp->p_cred; 3945 pp->p_cred = cr; 3946 mutex_exit(&pp->p_crlock); 3947 crfree(oldcred); 3948 3949 /* 3950 * Hold credentials again (for thread) 3951 */ 3952 crhold(cr); 3953 3954 /* 3955 * p_lwpcnt can't change since this is a kernel process. 3956 */ 3957 crset(pp, cr); 3958 3959 /* 3960 * Chroot 3961 */ 3962 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3963 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3964 3965 /* 3966 * Initialize zone's rctl set. 3967 */ 3968 set = rctl_set_create(); 3969 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3970 mutex_enter(&pp->p_lock); 3971 e.rcep_p.zone = zone; 3972 e.rcep_t = RCENTITY_ZONE; 3973 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3974 mutex_exit(&pp->p_lock); 3975 rctl_prealloc_destroy(gp); 3976 3977 /* 3978 * Apply the rctls passed in to zone_create(). This is basically a list 3979 * assignment: all of the old values are removed and the new ones 3980 * inserted. That is, if an empty list is passed in, all values are 3981 * removed. 3982 */ 3983 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3984 rctl_dict_entry_t *rde; 3985 rctl_hndl_t hndl; 3986 char *name; 3987 nvlist_t **nvlarray; 3988 uint_t i, nelem; 3989 int error; /* For ASSERT()s */ 3990 3991 name = nvpair_name(nvp); 3992 hndl = rctl_hndl_lookup(name); 3993 ASSERT(hndl != -1); 3994 rde = rctl_dict_lookup_hndl(hndl); 3995 ASSERT(rde != NULL); 3996 3997 for (; /* ever */; ) { 3998 rctl_val_t oval; 3999 4000 mutex_enter(&pp->p_lock); 4001 error = rctl_local_get(hndl, NULL, &oval, pp); 4002 mutex_exit(&pp->p_lock); 4003 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 4004 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 4005 if (oval.rcv_privilege == RCPRIV_SYSTEM) 4006 break; 4007 mutex_enter(&pp->p_lock); 4008 error = rctl_local_delete(hndl, &oval, pp); 4009 mutex_exit(&pp->p_lock); 4010 ASSERT(error == 0); 4011 } 4012 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4013 ASSERT(error == 0); 4014 for (i = 0; i < nelem; i++) { 4015 rctl_val_t *nvalp; 4016 4017 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 4018 error = nvlist2rctlval(nvlarray[i], nvalp); 4019 ASSERT(error == 0); 4020 /* 4021 * rctl_local_insert can fail if the value being 4022 * inserted is a duplicate; this is OK. 4023 */ 4024 mutex_enter(&pp->p_lock); 4025 if (rctl_local_insert(hndl, nvalp, pp) != 0) 4026 kmem_cache_free(rctl_val_cache, nvalp); 4027 mutex_exit(&pp->p_lock); 4028 } 4029 } 4030 4031 /* 4032 * Tell the world that we're done setting up. 4033 * 4034 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 4035 * and atomically set the zone's processor set visibility. Once 4036 * we drop pool_lock() this zone will automatically get updated 4037 * to reflect any future changes to the pools configuration. 4038 * 4039 * Note that after we drop the locks below (zonehash_lock in 4040 * particular) other operations such as a zone_getattr call can 4041 * now proceed and observe the zone. That is the reason for doing a 4042 * state transition to the INITIALIZED state. 4043 */ 4044 pool_lock(); 4045 mutex_enter(&cpu_lock); 4046 mutex_enter(&zonehash_lock); 4047 zone_uniqid(zone); 4048 zone_zsd_configure(zone); 4049 if (pool_state == POOL_ENABLED) 4050 zone_pset_set(zone, pool_default->pool_pset->pset_id); 4051 mutex_enter(&zone_status_lock); 4052 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 4053 zone_status_set(zone, ZONE_IS_INITIALIZED); 4054 mutex_exit(&zone_status_lock); 4055 mutex_exit(&zonehash_lock); 4056 mutex_exit(&cpu_lock); 4057 pool_unlock(); 4058 4059 /* Now call the create callback for this key */ 4060 zsd_apply_all_keys(zsd_apply_create, zone); 4061 4062 /* The callbacks are complete. Mark ZONE_IS_READY */ 4063 mutex_enter(&zone_status_lock); 4064 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 4065 zone_status_set(zone, ZONE_IS_READY); 4066 mutex_exit(&zone_status_lock); 4067 4068 /* 4069 * Once we see the zone transition to the ZONE_IS_BOOTING state, 4070 * we launch init, and set the state to running. 4071 */ 4072 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 4073 4074 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 4075 id_t cid; 4076 4077 /* 4078 * Ok, this is a little complicated. We need to grab the 4079 * zone's pool's scheduling class ID; note that by now, we 4080 * are already bound to a pool if we need to be (zoneadmd 4081 * will have done that to us while we're in the READY 4082 * state). *But* the scheduling class for the zone's 'init' 4083 * must be explicitly passed to newproc, which doesn't 4084 * respect pool bindings. 4085 * 4086 * We hold the pool_lock across the call to newproc() to 4087 * close the obvious race: the pool's scheduling class 4088 * could change before we manage to create the LWP with 4089 * classid 'cid'. 4090 */ 4091 pool_lock(); 4092 if (zone->zone_defaultcid > 0) 4093 cid = zone->zone_defaultcid; 4094 else 4095 cid = pool_get_class(zone->zone_pool); 4096 if (cid == -1) 4097 cid = defaultcid; 4098 4099 /* 4100 * If this fails, zone_boot will ultimately fail. The 4101 * state of the zone will be set to SHUTTING_DOWN-- userland 4102 * will have to tear down the zone, and fail, or try again. 4103 */ 4104 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 4105 minclsyspri - 1, &ct, 0)) != 0) { 4106 mutex_enter(&zone_status_lock); 4107 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4108 mutex_exit(&zone_status_lock); 4109 } else { 4110 zone->zone_boot_time = gethrestime_sec(); 4111 } 4112 4113 pool_unlock(); 4114 } 4115 4116 /* 4117 * Wait for zone_destroy() to be called. This is what we spend 4118 * most of our life doing. 4119 */ 4120 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 4121 4122 if (ct) 4123 /* 4124 * At this point the process contract should be empty. 4125 * (Though if it isn't, it's not the end of the world.) 4126 */ 4127 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 4128 4129 /* 4130 * Allow kcred to be freed when all referring processes 4131 * (including this one) go away. We can't just do this in 4132 * zone_free because we need to wait for the zone_cred_ref to 4133 * drop to 0 before calling zone_free, and the existence of 4134 * zone_kcred will prevent that. Thus, we call crfree here to 4135 * balance the crdup in zone_create. The crhold calls earlier 4136 * in zsched will be dropped when the thread and process exit. 4137 */ 4138 crfree(zone->zone_kcred); 4139 zone->zone_kcred = NULL; 4140 4141 exit(CLD_EXITED, 0); 4142 } 4143 4144 /* 4145 * Helper function to determine if there are any submounts of the 4146 * provided path. Used to make sure the zone doesn't "inherit" any 4147 * mounts from before it is created. 4148 */ 4149 static uint_t 4150 zone_mount_count(const char *rootpath) 4151 { 4152 vfs_t *vfsp; 4153 uint_t count = 0; 4154 size_t rootpathlen = strlen(rootpath); 4155 4156 /* 4157 * Holding zonehash_lock prevents race conditions with 4158 * vfs_list_add()/vfs_list_remove() since we serialize with 4159 * zone_find_by_path(). 4160 */ 4161 ASSERT(MUTEX_HELD(&zonehash_lock)); 4162 /* 4163 * The rootpath must end with a '/' 4164 */ 4165 ASSERT(rootpath[rootpathlen - 1] == '/'); 4166 4167 /* 4168 * This intentionally does not count the rootpath itself if that 4169 * happens to be a mount point. 4170 */ 4171 vfs_list_read_lock(); 4172 vfsp = rootvfs; 4173 do { 4174 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4175 rootpathlen) == 0) 4176 count++; 4177 vfsp = vfsp->vfs_next; 4178 } while (vfsp != rootvfs); 4179 vfs_list_unlock(); 4180 return (count); 4181 } 4182 4183 /* 4184 * Helper function to make sure that a zone created on 'rootpath' 4185 * wouldn't end up containing other zones' rootpaths. 4186 */ 4187 static boolean_t 4188 zone_is_nested(const char *rootpath) 4189 { 4190 zone_t *zone; 4191 size_t rootpathlen = strlen(rootpath); 4192 size_t len; 4193 4194 ASSERT(MUTEX_HELD(&zonehash_lock)); 4195 4196 /* 4197 * zone_set_root() appended '/' and '\0' at the end of rootpath 4198 */ 4199 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4200 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4201 return (B_TRUE); 4202 4203 for (zone = list_head(&zone_active); zone != NULL; 4204 zone = list_next(&zone_active, zone)) { 4205 if (zone == global_zone) 4206 continue; 4207 len = strlen(zone->zone_rootpath); 4208 if (strncmp(rootpath, zone->zone_rootpath, 4209 MIN(rootpathlen, len)) == 0) 4210 return (B_TRUE); 4211 } 4212 return (B_FALSE); 4213 } 4214 4215 static int 4216 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4217 size_t zone_privssz) 4218 { 4219 priv_set_t *privs; 4220 4221 if (zone_privssz < sizeof (priv_set_t)) 4222 return (ENOMEM); 4223 4224 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4225 4226 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4227 kmem_free(privs, sizeof (priv_set_t)); 4228 return (EFAULT); 4229 } 4230 4231 zone->zone_privset = privs; 4232 return (0); 4233 } 4234 4235 /* 4236 * We make creative use of nvlists to pass in rctls from userland. The list is 4237 * a list of the following structures: 4238 * 4239 * (name = rctl_name, value = nvpair_list_array) 4240 * 4241 * Where each element of the nvpair_list_array is of the form: 4242 * 4243 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4244 * (name = "limit", value = uint64_t), 4245 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4246 */ 4247 static int 4248 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4249 { 4250 nvpair_t *nvp = NULL; 4251 nvlist_t *nvl = NULL; 4252 char *kbuf; 4253 int error; 4254 rctl_val_t rv; 4255 4256 *nvlp = NULL; 4257 4258 if (buflen == 0) 4259 return (0); 4260 4261 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4262 return (ENOMEM); 4263 if (copyin(ubuf, kbuf, buflen)) { 4264 error = EFAULT; 4265 goto out; 4266 } 4267 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4268 /* 4269 * nvl may have been allocated/free'd, but the value set to 4270 * non-NULL, so we reset it here. 4271 */ 4272 nvl = NULL; 4273 error = EINVAL; 4274 goto out; 4275 } 4276 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4277 rctl_dict_entry_t *rde; 4278 rctl_hndl_t hndl; 4279 nvlist_t **nvlarray; 4280 uint_t i, nelem; 4281 char *name; 4282 4283 error = EINVAL; 4284 name = nvpair_name(nvp); 4285 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4286 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4287 goto out; 4288 } 4289 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4290 goto out; 4291 } 4292 rde = rctl_dict_lookup_hndl(hndl); 4293 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4294 ASSERT(error == 0); 4295 for (i = 0; i < nelem; i++) { 4296 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4297 goto out; 4298 } 4299 if (rctl_invalid_value(rde, &rv)) { 4300 error = EINVAL; 4301 goto out; 4302 } 4303 } 4304 error = 0; 4305 *nvlp = nvl; 4306 out: 4307 kmem_free(kbuf, buflen); 4308 if (error && nvl != NULL) 4309 nvlist_free(nvl); 4310 return (error); 4311 } 4312 4313 int 4314 zone_create_error(int er_error, int er_ext, int *er_out) 4315 { 4316 if (er_out != NULL) { 4317 if (copyout(&er_ext, er_out, sizeof (int))) { 4318 return (set_errno(EFAULT)); 4319 } 4320 } 4321 return (set_errno(er_error)); 4322 } 4323 4324 static int 4325 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4326 { 4327 ts_label_t *tsl; 4328 bslabel_t blab; 4329 4330 /* Get label from user */ 4331 if (copyin(lab, &blab, sizeof (blab)) != 0) 4332 return (EFAULT); 4333 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4334 if (tsl == NULL) 4335 return (ENOMEM); 4336 4337 zone->zone_slabel = tsl; 4338 return (0); 4339 } 4340 4341 /* 4342 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4343 */ 4344 static int 4345 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4346 { 4347 char *kbuf; 4348 char *dataset, *next; 4349 zone_dataset_t *zd; 4350 size_t len; 4351 4352 if (ubuf == NULL || buflen == 0) 4353 return (0); 4354 4355 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4356 return (ENOMEM); 4357 4358 if (copyin(ubuf, kbuf, buflen) != 0) { 4359 kmem_free(kbuf, buflen); 4360 return (EFAULT); 4361 } 4362 4363 dataset = next = kbuf; 4364 for (;;) { 4365 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4366 4367 next = strchr(dataset, ','); 4368 4369 if (next == NULL) 4370 len = strlen(dataset); 4371 else 4372 len = next - dataset; 4373 4374 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4375 bcopy(dataset, zd->zd_dataset, len); 4376 zd->zd_dataset[len] = '\0'; 4377 4378 list_insert_head(&zone->zone_datasets, zd); 4379 4380 if (next == NULL) 4381 break; 4382 4383 dataset = next + 1; 4384 } 4385 4386 kmem_free(kbuf, buflen); 4387 return (0); 4388 } 4389 4390 /* 4391 * System call to create/initialize a new zone named 'zone_name', rooted 4392 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4393 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4394 * with labeling set by 'match', 'doi', and 'label'. 4395 * 4396 * If extended error is non-null, we may use it to return more detailed 4397 * error information. 4398 */ 4399 static zoneid_t 4400 zone_create(const char *zone_name, const char *zone_root, 4401 const priv_set_t *zone_privs, size_t zone_privssz, 4402 caddr_t rctlbuf, size_t rctlbufsz, 4403 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4404 int match, uint32_t doi, const bslabel_t *label, 4405 int flags) 4406 { 4407 struct zsched_arg zarg; 4408 nvlist_t *rctls = NULL; 4409 proc_t *pp = curproc; 4410 zone_t *zone, *ztmp; 4411 zoneid_t zoneid, start = GLOBAL_ZONEID; 4412 int error; 4413 int error2 = 0; 4414 char *str; 4415 cred_t *zkcr; 4416 boolean_t insert_label_hash; 4417 4418 if (secpolicy_zone_config(CRED()) != 0) 4419 return (set_errno(EPERM)); 4420 4421 /* can't boot zone from within chroot environment */ 4422 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4423 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4424 extended_error)); 4425 /* 4426 * As the first step of zone creation, we want to allocate a zoneid. 4427 * This allocation is complicated by the fact that netstacks use the 4428 * zoneid to determine their stackid, but netstacks themselves are 4429 * freed asynchronously with respect to zone destruction. This means 4430 * that a netstack reference leak (or in principle, an extraordinarily 4431 * long netstack reference hold) could result in a zoneid being 4432 * allocated that in fact corresponds to a stackid from an active 4433 * (referenced) netstack -- unleashing all sorts of havoc when that 4434 * netstack is actually (re)used. (In the abstract, we might wish a 4435 * zoneid to not be deallocated until its last referencing netstack 4436 * has been released, but netstacks lack a backpointer into their 4437 * referencing zone -- and changing them to have such a pointer would 4438 * be substantial, to put it euphemistically.) To avoid this, we 4439 * detect this condition on allocation: if we have allocated a zoneid 4440 * that corresponds to a netstack that's still in use, we warn about 4441 * it (as it is much more likely to be a reference leak than an actual 4442 * netstack reference), free it, and allocate another. That these 4443 * identifers are allocated out of an ID space assures that we won't 4444 * see the identifier we just allocated. 4445 */ 4446 for (;;) { 4447 zoneid = id_alloc(zoneid_space); 4448 4449 if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid))) 4450 break; 4451 4452 id_free(zoneid_space, zoneid); 4453 4454 if (start == GLOBAL_ZONEID) { 4455 start = zoneid; 4456 } else if (zoneid == start) { 4457 /* 4458 * We have managed to iterate over the entire available 4459 * zoneid space -- there are no identifiers available, 4460 * presumably due to some number of leaked netstack 4461 * references. While it's in principle possible for us 4462 * to continue to try, it seems wiser to give up at 4463 * this point to warn and fail explicitly with a 4464 * distinctive error. 4465 */ 4466 cmn_err(CE_WARN, "zone_create() failed: all available " 4467 "zone IDs have netstacks still in use"); 4468 return (set_errno(ENFILE)); 4469 } 4470 4471 cmn_err(CE_WARN, "unable to reuse zone ID %d; " 4472 "netstack still in use", zoneid); 4473 } 4474 4475 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4476 zone->zone_id = zoneid; 4477 zone->zone_status = ZONE_IS_UNINITIALIZED; 4478 zone->zone_pool = pool_default; 4479 zone->zone_pool_mod = gethrtime(); 4480 zone->zone_psetid = ZONE_PS_INVAL; 4481 zone->zone_ncpus = 0; 4482 zone->zone_ncpus_online = 0; 4483 zone->zone_restart_init = B_TRUE; 4484 zone->zone_brand = &native_brand; 4485 zone->zone_initname = NULL; 4486 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4487 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4488 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4489 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4490 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4491 offsetof(zone_ref_t, zref_linkage)); 4492 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4493 offsetof(struct zsd_entry, zsd_linkage)); 4494 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4495 offsetof(zone_dataset_t, zd_linkage)); 4496 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4497 offsetof(zone_dl_t, zdl_linkage)); 4498 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4499 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4500 4501 if (flags & ZCF_NET_EXCL) { 4502 zone->zone_flags |= ZF_NET_EXCL; 4503 } 4504 4505 if ((error = zone_set_name(zone, zone_name)) != 0) { 4506 zone_free(zone); 4507 return (zone_create_error(error, 0, extended_error)); 4508 } 4509 4510 if ((error = zone_set_root(zone, zone_root)) != 0) { 4511 zone_free(zone); 4512 return (zone_create_error(error, 0, extended_error)); 4513 } 4514 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4515 zone_free(zone); 4516 return (zone_create_error(error, 0, extended_error)); 4517 } 4518 4519 /* initialize node name to be the same as zone name */ 4520 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4521 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4522 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4523 4524 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4525 zone->zone_domain[0] = '\0'; 4526 zone->zone_hostid = HW_INVALID_HOSTID; 4527 zone->zone_shares = 1; 4528 zone->zone_shmmax = 0; 4529 zone->zone_ipc.ipcq_shmmni = 0; 4530 zone->zone_ipc.ipcq_semmni = 0; 4531 zone->zone_ipc.ipcq_msgmni = 0; 4532 zone->zone_bootargs = NULL; 4533 zone->zone_fs_allowed = NULL; 4534 4535 psecflags_default(&zone->zone_secflags); 4536 4537 zone->zone_initname = 4538 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4539 (void) strcpy(zone->zone_initname, zone_default_initname); 4540 zone->zone_nlwps = 0; 4541 zone->zone_nlwps_ctl = INT_MAX; 4542 zone->zone_nprocs = 0; 4543 zone->zone_nprocs_ctl = INT_MAX; 4544 zone->zone_locked_mem = 0; 4545 zone->zone_locked_mem_ctl = UINT64_MAX; 4546 zone->zone_max_swap = 0; 4547 zone->zone_max_swap_ctl = UINT64_MAX; 4548 zone->zone_max_lofi = 0; 4549 zone->zone_max_lofi_ctl = UINT64_MAX; 4550 zone0.zone_lockedmem_kstat = NULL; 4551 zone0.zone_swapresv_kstat = NULL; 4552 4553 zone->zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP); 4554 4555 /* 4556 * Zsched initializes the rctls. 4557 */ 4558 zone->zone_rctls = NULL; 4559 4560 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4561 zone_free(zone); 4562 return (zone_create_error(error, 0, extended_error)); 4563 } 4564 4565 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4566 zone_free(zone); 4567 return (set_errno(error)); 4568 } 4569 4570 /* 4571 * Read in the trusted system parameters: 4572 * match flag and sensitivity label. 4573 */ 4574 zone->zone_match = match; 4575 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4576 /* Fail if requested to set doi to anything but system's doi */ 4577 if (doi != 0 && doi != default_doi) { 4578 zone_free(zone); 4579 return (set_errno(EINVAL)); 4580 } 4581 /* Always apply system's doi to the zone */ 4582 error = zone_set_label(zone, label, default_doi); 4583 if (error != 0) { 4584 zone_free(zone); 4585 return (set_errno(error)); 4586 } 4587 insert_label_hash = B_TRUE; 4588 } else { 4589 /* all zones get an admin_low label if system is not labeled */ 4590 zone->zone_slabel = l_admin_low; 4591 label_hold(l_admin_low); 4592 insert_label_hash = B_FALSE; 4593 } 4594 4595 /* 4596 * Stop all lwps since that's what normally happens as part of fork(). 4597 * This needs to happen before we grab any locks to avoid deadlock 4598 * (another lwp in the process could be waiting for the held lock). 4599 */ 4600 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4601 zone_free(zone); 4602 nvlist_free(rctls); 4603 return (zone_create_error(error, 0, extended_error)); 4604 } 4605 4606 if (block_mounts(zone) == 0) { 4607 mutex_enter(&pp->p_lock); 4608 if (curthread != pp->p_agenttp) 4609 continuelwps(pp); 4610 mutex_exit(&pp->p_lock); 4611 zone_free(zone); 4612 nvlist_free(rctls); 4613 return (zone_create_error(error, 0, extended_error)); 4614 } 4615 4616 /* 4617 * Set up credential for kernel access. After this, any errors 4618 * should go through the dance in errout rather than calling 4619 * zone_free directly. 4620 */ 4621 zone->zone_kcred = crdup(kcred); 4622 crsetzone(zone->zone_kcred, zone); 4623 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4624 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4625 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4626 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4627 4628 mutex_enter(&zonehash_lock); 4629 /* 4630 * Make sure zone doesn't already exist. 4631 * 4632 * If the system and zone are labeled, 4633 * make sure no other zone exists that has the same label. 4634 */ 4635 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4636 (insert_label_hash && 4637 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4638 zone_status_t status; 4639 4640 status = zone_status_get(ztmp); 4641 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4642 error = EEXIST; 4643 else 4644 error = EBUSY; 4645 4646 if (insert_label_hash) 4647 error2 = ZE_LABELINUSE; 4648 4649 goto errout; 4650 } 4651 4652 /* 4653 * Don't allow zone creations which would cause one zone's rootpath to 4654 * be accessible from that of another (non-global) zone. 4655 */ 4656 if (zone_is_nested(zone->zone_rootpath)) { 4657 error = EBUSY; 4658 goto errout; 4659 } 4660 4661 ASSERT(zonecount != 0); /* check for leaks */ 4662 if (zonecount + 1 > maxzones) { 4663 error = ENOMEM; 4664 goto errout; 4665 } 4666 4667 if (zone_mount_count(zone->zone_rootpath) != 0) { 4668 error = EBUSY; 4669 error2 = ZE_AREMOUNTS; 4670 goto errout; 4671 } 4672 4673 /* 4674 * Zone is still incomplete, but we need to drop all locks while 4675 * zsched() initializes this zone's kernel process. We 4676 * optimistically add the zone to the hashtable and associated 4677 * lists so a parallel zone_create() doesn't try to create the 4678 * same zone. 4679 */ 4680 zonecount++; 4681 (void) mod_hash_insert(zonehashbyid, 4682 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4683 (mod_hash_val_t)(uintptr_t)zone); 4684 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4685 (void) strcpy(str, zone->zone_name); 4686 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4687 (mod_hash_val_t)(uintptr_t)zone); 4688 if (insert_label_hash) { 4689 (void) mod_hash_insert(zonehashbylabel, 4690 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4691 zone->zone_flags |= ZF_HASHED_LABEL; 4692 } 4693 4694 /* 4695 * Insert into active list. At this point there are no 'hold's 4696 * on the zone, but everyone else knows not to use it, so we can 4697 * continue to use it. zsched() will do a zone_hold() if the 4698 * newproc() is successful. 4699 */ 4700 list_insert_tail(&zone_active, zone); 4701 mutex_exit(&zonehash_lock); 4702 4703 zarg.zone = zone; 4704 zarg.nvlist = rctls; 4705 /* 4706 * The process, task, and project rctls are probably wrong; 4707 * we need an interface to get the default values of all rctls, 4708 * and initialize zsched appropriately. I'm not sure that that 4709 * makes much of a difference, though. 4710 */ 4711 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4712 if (error != 0) { 4713 /* 4714 * We need to undo all globally visible state. 4715 */ 4716 mutex_enter(&zonehash_lock); 4717 list_remove(&zone_active, zone); 4718 if (zone->zone_flags & ZF_HASHED_LABEL) { 4719 ASSERT(zone->zone_slabel != NULL); 4720 (void) mod_hash_destroy(zonehashbylabel, 4721 (mod_hash_key_t)zone->zone_slabel); 4722 } 4723 (void) mod_hash_destroy(zonehashbyname, 4724 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4725 (void) mod_hash_destroy(zonehashbyid, 4726 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4727 ASSERT(zonecount > 1); 4728 zonecount--; 4729 goto errout; 4730 } 4731 4732 /* 4733 * Zone creation can't fail from now on. 4734 */ 4735 4736 /* 4737 * Create zone kstats 4738 */ 4739 zone_kstat_create(zone); 4740 4741 /* 4742 * Let the other lwps continue. 4743 */ 4744 mutex_enter(&pp->p_lock); 4745 if (curthread != pp->p_agenttp) 4746 continuelwps(pp); 4747 mutex_exit(&pp->p_lock); 4748 4749 /* 4750 * Wait for zsched to finish initializing the zone. 4751 */ 4752 zone_status_wait(zone, ZONE_IS_READY); 4753 /* 4754 * The zone is fully visible, so we can let mounts progress. 4755 */ 4756 resume_mounts(zone); 4757 nvlist_free(rctls); 4758 4759 return (zoneid); 4760 4761 errout: 4762 mutex_exit(&zonehash_lock); 4763 /* 4764 * Let the other lwps continue. 4765 */ 4766 mutex_enter(&pp->p_lock); 4767 if (curthread != pp->p_agenttp) 4768 continuelwps(pp); 4769 mutex_exit(&pp->p_lock); 4770 4771 resume_mounts(zone); 4772 nvlist_free(rctls); 4773 /* 4774 * There is currently one reference to the zone, a cred_ref from 4775 * zone_kcred. To free the zone, we call crfree, which will call 4776 * zone_cred_rele, which will call zone_free. 4777 */ 4778 ASSERT(zone->zone_cred_ref == 1); 4779 ASSERT(zone->zone_kcred->cr_ref == 1); 4780 ASSERT(zone->zone_ref == 0); 4781 zkcr = zone->zone_kcred; 4782 zone->zone_kcred = NULL; 4783 crfree(zkcr); /* triggers call to zone_free */ 4784 return (zone_create_error(error, error2, extended_error)); 4785 } 4786 4787 /* 4788 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4789 * the heavy lifting. initname is the path to the program to launch 4790 * at the "top" of the zone; if this is NULL, we use the system default, 4791 * which is stored at zone_default_initname. 4792 */ 4793 static int 4794 zone_boot(zoneid_t zoneid) 4795 { 4796 int err; 4797 zone_t *zone; 4798 4799 if (secpolicy_zone_config(CRED()) != 0) 4800 return (set_errno(EPERM)); 4801 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4802 return (set_errno(EINVAL)); 4803 4804 mutex_enter(&zonehash_lock); 4805 /* 4806 * Look for zone under hash lock to prevent races with calls to 4807 * zone_shutdown, zone_destroy, etc. 4808 */ 4809 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4810 mutex_exit(&zonehash_lock); 4811 return (set_errno(EINVAL)); 4812 } 4813 4814 mutex_enter(&zone_status_lock); 4815 if (zone_status_get(zone) != ZONE_IS_READY) { 4816 mutex_exit(&zone_status_lock); 4817 mutex_exit(&zonehash_lock); 4818 return (set_errno(EINVAL)); 4819 } 4820 zone_status_set(zone, ZONE_IS_BOOTING); 4821 mutex_exit(&zone_status_lock); 4822 4823 zone_hold(zone); /* so we can use the zone_t later */ 4824 mutex_exit(&zonehash_lock); 4825 4826 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4827 zone_rele(zone); 4828 return (set_errno(EINTR)); 4829 } 4830 4831 /* 4832 * Boot (starting init) might have failed, in which case the zone 4833 * will go to the SHUTTING_DOWN state; an appropriate errno will 4834 * be placed in zone->zone_boot_err, and so we return that. 4835 */ 4836 err = zone->zone_boot_err; 4837 zone_rele(zone); 4838 return (err ? set_errno(err) : 0); 4839 } 4840 4841 /* 4842 * Kills all user processes in the zone, waiting for them all to exit 4843 * before returning. 4844 */ 4845 static int 4846 zone_empty(zone_t *zone) 4847 { 4848 int waitstatus; 4849 4850 /* 4851 * We need to drop zonehash_lock before killing all 4852 * processes, otherwise we'll deadlock with zone_find_* 4853 * which can be called from the exit path. 4854 */ 4855 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4856 while ((waitstatus = zone_status_timedwait_sig(zone, 4857 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4858 killall(zone->zone_id); 4859 } 4860 /* 4861 * return EINTR if we were signaled 4862 */ 4863 if (waitstatus == 0) 4864 return (EINTR); 4865 return (0); 4866 } 4867 4868 /* 4869 * This function implements the policy for zone visibility. 4870 * 4871 * In standard Solaris, a non-global zone can only see itself. 4872 * 4873 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4874 * it dominates. For this test, the label of the global zone is treated as 4875 * admin_high so it is special-cased instead of being checked for dominance. 4876 * 4877 * Returns true if zone attributes are viewable, false otherwise. 4878 */ 4879 static boolean_t 4880 zone_list_access(zone_t *zone) 4881 { 4882 4883 if (curproc->p_zone == global_zone || 4884 curproc->p_zone == zone) { 4885 return (B_TRUE); 4886 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4887 bslabel_t *curproc_label; 4888 bslabel_t *zone_label; 4889 4890 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4891 zone_label = label2bslabel(zone->zone_slabel); 4892 4893 if (zone->zone_id != GLOBAL_ZONEID && 4894 bldominates(curproc_label, zone_label)) { 4895 return (B_TRUE); 4896 } else { 4897 return (B_FALSE); 4898 } 4899 } else { 4900 return (B_FALSE); 4901 } 4902 } 4903 4904 /* 4905 * Systemcall to start the zone's halt sequence. By the time this 4906 * function successfully returns, all user processes and kernel threads 4907 * executing in it will have exited, ZSD shutdown callbacks executed, 4908 * and the zone status set to ZONE_IS_DOWN. 4909 * 4910 * It is possible that the call will interrupt itself if the caller is the 4911 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4912 */ 4913 static int 4914 zone_shutdown(zoneid_t zoneid) 4915 { 4916 int error; 4917 zone_t *zone; 4918 zone_status_t status; 4919 4920 if (secpolicy_zone_config(CRED()) != 0) 4921 return (set_errno(EPERM)); 4922 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4923 return (set_errno(EINVAL)); 4924 4925 mutex_enter(&zonehash_lock); 4926 /* 4927 * Look for zone under hash lock to prevent races with other 4928 * calls to zone_shutdown and zone_destroy. 4929 */ 4930 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4931 mutex_exit(&zonehash_lock); 4932 return (set_errno(EINVAL)); 4933 } 4934 4935 /* 4936 * We have to drop zonehash_lock before calling block_mounts. 4937 * Hold the zone so we can continue to use the zone_t. 4938 */ 4939 zone_hold(zone); 4940 mutex_exit(&zonehash_lock); 4941 4942 /* 4943 * Block mounts so that VFS_MOUNT() can get an accurate view of 4944 * the zone's status with regards to ZONE_IS_SHUTTING down. 4945 * 4946 * e.g. NFS can fail the mount if it determines that the zone 4947 * has already begun the shutdown sequence. 4948 * 4949 */ 4950 if (block_mounts(zone) == 0) { 4951 zone_rele(zone); 4952 return (set_errno(EINTR)); 4953 } 4954 4955 mutex_enter(&zonehash_lock); 4956 mutex_enter(&zone_status_lock); 4957 status = zone_status_get(zone); 4958 /* 4959 * Fail if the zone isn't fully initialized yet. 4960 */ 4961 if (status < ZONE_IS_READY) { 4962 mutex_exit(&zone_status_lock); 4963 mutex_exit(&zonehash_lock); 4964 resume_mounts(zone); 4965 zone_rele(zone); 4966 return (set_errno(EINVAL)); 4967 } 4968 /* 4969 * If conditions required for zone_shutdown() to return have been met, 4970 * return success. 4971 */ 4972 if (status >= ZONE_IS_DOWN) { 4973 mutex_exit(&zone_status_lock); 4974 mutex_exit(&zonehash_lock); 4975 resume_mounts(zone); 4976 zone_rele(zone); 4977 return (0); 4978 } 4979 /* 4980 * If zone_shutdown() hasn't been called before, go through the motions. 4981 * If it has, there's nothing to do but wait for the kernel threads to 4982 * drain. 4983 */ 4984 if (status < ZONE_IS_EMPTY) { 4985 uint_t ntasks; 4986 4987 mutex_enter(&zone->zone_lock); 4988 if ((ntasks = zone->zone_ntasks) != 1) { 4989 /* 4990 * There's still stuff running. 4991 */ 4992 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4993 } 4994 mutex_exit(&zone->zone_lock); 4995 if (ntasks == 1) { 4996 /* 4997 * The only way to create another task is through 4998 * zone_enter(), which will block until we drop 4999 * zonehash_lock. The zone is empty. 5000 */ 5001 if (zone->zone_kthreads == NULL) { 5002 /* 5003 * Skip ahead to ZONE_IS_DOWN 5004 */ 5005 zone_status_set(zone, ZONE_IS_DOWN); 5006 } else { 5007 zone_status_set(zone, ZONE_IS_EMPTY); 5008 } 5009 } 5010 } 5011 mutex_exit(&zone_status_lock); 5012 mutex_exit(&zonehash_lock); 5013 resume_mounts(zone); 5014 5015 if (error = zone_empty(zone)) { 5016 zone_rele(zone); 5017 return (set_errno(error)); 5018 } 5019 /* 5020 * After the zone status goes to ZONE_IS_DOWN this zone will no 5021 * longer be notified of changes to the pools configuration, so 5022 * in order to not end up with a stale pool pointer, we point 5023 * ourselves at the default pool and remove all resource 5024 * visibility. This is especially important as the zone_t may 5025 * languish on the deathrow for a very long time waiting for 5026 * cred's to drain out. 5027 * 5028 * This rebinding of the zone can happen multiple times 5029 * (presumably due to interrupted or parallel systemcalls) 5030 * without any adverse effects. 5031 */ 5032 if (pool_lock_intr() != 0) { 5033 zone_rele(zone); 5034 return (set_errno(EINTR)); 5035 } 5036 if (pool_state == POOL_ENABLED) { 5037 mutex_enter(&cpu_lock); 5038 zone_pool_set(zone, pool_default); 5039 /* 5040 * The zone no longer needs to be able to see any cpus. 5041 */ 5042 zone_pset_set(zone, ZONE_PS_INVAL); 5043 mutex_exit(&cpu_lock); 5044 } 5045 pool_unlock(); 5046 5047 /* 5048 * ZSD shutdown callbacks can be executed multiple times, hence 5049 * it is safe to not be holding any locks across this call. 5050 */ 5051 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 5052 5053 mutex_enter(&zone_status_lock); 5054 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 5055 zone_status_set(zone, ZONE_IS_DOWN); 5056 mutex_exit(&zone_status_lock); 5057 5058 /* 5059 * Wait for kernel threads to drain. 5060 */ 5061 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 5062 zone_rele(zone); 5063 return (set_errno(EINTR)); 5064 } 5065 5066 /* 5067 * Zone can be become down/destroyable even if the above wait 5068 * returns EINTR, so any code added here may never execute. 5069 * (i.e. don't add code here) 5070 */ 5071 5072 zone_rele(zone); 5073 return (0); 5074 } 5075 5076 /* 5077 * Log the specified zone's reference counts. The caller should not be 5078 * holding the zone's zone_lock. 5079 */ 5080 static void 5081 zone_log_refcounts(zone_t *zone) 5082 { 5083 char *buffer; 5084 char *buffer_position; 5085 uint32_t buffer_size; 5086 uint32_t index; 5087 uint_t ref; 5088 uint_t cred_ref; 5089 5090 /* 5091 * Construct a string representing the subsystem-specific reference 5092 * counts. The counts are printed in ascending order by index into the 5093 * zone_t::zone_subsys_ref array. The list will be surrounded by 5094 * square brackets [] and will only contain nonzero reference counts. 5095 * 5096 * The buffer will hold two square bracket characters plus ten digits, 5097 * one colon, one space, one comma, and some characters for a 5098 * subsystem name per subsystem-specific reference count. (Unsigned 32- 5099 * bit integers have at most ten decimal digits.) The last 5100 * reference count's comma is replaced by the closing square 5101 * bracket and a NULL character to terminate the string. 5102 * 5103 * NOTE: We have to grab the zone's zone_lock to create a consistent 5104 * snapshot of the zone's reference counters. 5105 * 5106 * First, figure out how much space the string buffer will need. 5107 * The buffer's size is stored in buffer_size. 5108 */ 5109 buffer_size = 2; /* for the square brackets */ 5110 mutex_enter(&zone->zone_lock); 5111 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 5112 ref = zone->zone_ref; 5113 cred_ref = zone->zone_cred_ref; 5114 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 5115 if (zone->zone_subsys_ref[index] != 0) 5116 buffer_size += strlen(zone_ref_subsys_names[index]) + 5117 13; 5118 if (buffer_size == 2) { 5119 /* 5120 * No subsystems had nonzero reference counts. Don't bother 5121 * with allocating a buffer; just log the general-purpose and 5122 * credential reference counts. 5123 */ 5124 mutex_exit(&zone->zone_lock); 5125 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5126 "Zone '%s' (ID: %d) is shutting down, but %u zone " 5127 "references and %u credential references are still extant", 5128 zone->zone_name, zone->zone_id, ref, cred_ref); 5129 return; 5130 } 5131 5132 /* 5133 * buffer_size contains the exact number of characters that the 5134 * buffer will need. Allocate the buffer and fill it with nonzero 5135 * subsystem-specific reference counts. Surround the results with 5136 * square brackets afterwards. 5137 */ 5138 buffer = kmem_alloc(buffer_size, KM_SLEEP); 5139 buffer_position = &buffer[1]; 5140 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 5141 /* 5142 * NOTE: The DDI's version of sprintf() returns a pointer to 5143 * the modified buffer rather than the number of bytes written 5144 * (as in snprintf(3C)). This is unfortunate and annoying. 5145 * Therefore, we'll use snprintf() with INT_MAX to get the 5146 * number of bytes written. Using INT_MAX is safe because 5147 * the buffer is perfectly sized for the data: we'll never 5148 * overrun the buffer. 5149 */ 5150 if (zone->zone_subsys_ref[index] != 0) 5151 buffer_position += snprintf(buffer_position, INT_MAX, 5152 "%s: %u,", zone_ref_subsys_names[index], 5153 zone->zone_subsys_ref[index]); 5154 } 5155 mutex_exit(&zone->zone_lock); 5156 buffer[0] = '['; 5157 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 5158 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 5159 buffer_position[-1] = ']'; 5160 5161 /* 5162 * Log the reference counts and free the message buffer. 5163 */ 5164 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5165 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 5166 "%u credential references are still extant %s", zone->zone_name, 5167 zone->zone_id, ref, cred_ref, buffer); 5168 kmem_free(buffer, buffer_size); 5169 } 5170 5171 /* 5172 * Systemcall entry point to finalize the zone halt process. The caller 5173 * must have already successfully called zone_shutdown(). 5174 * 5175 * Upon successful completion, the zone will have been fully destroyed: 5176 * zsched will have exited, destructor callbacks executed, and the zone 5177 * removed from the list of active zones. 5178 */ 5179 static int 5180 zone_destroy(zoneid_t zoneid) 5181 { 5182 uint64_t uniqid; 5183 zone_t *zone; 5184 zone_status_t status; 5185 clock_t wait_time; 5186 boolean_t log_refcounts; 5187 5188 if (secpolicy_zone_config(CRED()) != 0) 5189 return (set_errno(EPERM)); 5190 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5191 return (set_errno(EINVAL)); 5192 5193 mutex_enter(&zonehash_lock); 5194 /* 5195 * Look for zone under hash lock to prevent races with other 5196 * calls to zone_destroy. 5197 */ 5198 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5199 mutex_exit(&zonehash_lock); 5200 return (set_errno(EINVAL)); 5201 } 5202 5203 if (zone_mount_count(zone->zone_rootpath) != 0) { 5204 mutex_exit(&zonehash_lock); 5205 return (set_errno(EBUSY)); 5206 } 5207 mutex_enter(&zone_status_lock); 5208 status = zone_status_get(zone); 5209 if (status < ZONE_IS_DOWN) { 5210 mutex_exit(&zone_status_lock); 5211 mutex_exit(&zonehash_lock); 5212 return (set_errno(EBUSY)); 5213 } else if (status == ZONE_IS_DOWN) { 5214 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5215 } 5216 mutex_exit(&zone_status_lock); 5217 zone_hold(zone); 5218 mutex_exit(&zonehash_lock); 5219 5220 /* 5221 * wait for zsched to exit 5222 */ 5223 zone_status_wait(zone, ZONE_IS_DEAD); 5224 zone_zsd_callbacks(zone, ZSD_DESTROY); 5225 zone->zone_netstack = NULL; 5226 uniqid = zone->zone_uniqid; 5227 zone_rele(zone); 5228 zone = NULL; /* potentially free'd */ 5229 5230 log_refcounts = B_FALSE; 5231 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5232 mutex_enter(&zonehash_lock); 5233 for (; /* ever */; ) { 5234 boolean_t unref; 5235 boolean_t refs_have_been_logged; 5236 5237 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5238 zone->zone_uniqid != uniqid) { 5239 /* 5240 * The zone has gone away. Necessary conditions 5241 * are met, so we return success. 5242 */ 5243 mutex_exit(&zonehash_lock); 5244 return (0); 5245 } 5246 mutex_enter(&zone->zone_lock); 5247 unref = ZONE_IS_UNREF(zone); 5248 refs_have_been_logged = (zone->zone_flags & 5249 ZF_REFCOUNTS_LOGGED); 5250 mutex_exit(&zone->zone_lock); 5251 if (unref) { 5252 /* 5253 * There is only one reference to the zone -- that 5254 * added when the zone was added to the hashtables -- 5255 * and things will remain this way until we drop 5256 * zonehash_lock... we can go ahead and cleanup the 5257 * zone. 5258 */ 5259 break; 5260 } 5261 5262 /* 5263 * Wait for zone_rele_common() or zone_cred_rele() to signal 5264 * zone_destroy_cv. zone_destroy_cv is signaled only when 5265 * some zone's general-purpose reference count reaches one. 5266 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5267 * on zone_destroy_cv, then log the zone's reference counts and 5268 * continue to wait for zone_rele() and zone_cred_rele(). 5269 */ 5270 if (!refs_have_been_logged) { 5271 if (!log_refcounts) { 5272 /* 5273 * This thread hasn't timed out waiting on 5274 * zone_destroy_cv yet. Wait wait_time clock 5275 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5276 * seconds) for the zone's references to clear. 5277 */ 5278 ASSERT(wait_time > 0); 5279 wait_time = cv_reltimedwait_sig( 5280 &zone_destroy_cv, &zonehash_lock, wait_time, 5281 TR_SEC); 5282 if (wait_time > 0) { 5283 /* 5284 * A thread in zone_rele() or 5285 * zone_cred_rele() signaled 5286 * zone_destroy_cv before this thread's 5287 * wait timed out. The zone might have 5288 * only one reference left; find out! 5289 */ 5290 continue; 5291 } else if (wait_time == 0) { 5292 /* The thread's process was signaled. */ 5293 mutex_exit(&zonehash_lock); 5294 return (set_errno(EINTR)); 5295 } 5296 5297 /* 5298 * The thread timed out while waiting on 5299 * zone_destroy_cv. Even though the thread 5300 * timed out, it has to check whether another 5301 * thread woke up from zone_destroy_cv and 5302 * destroyed the zone. 5303 * 5304 * If the zone still exists and has more than 5305 * one unreleased general-purpose reference, 5306 * then log the zone's reference counts. 5307 */ 5308 log_refcounts = B_TRUE; 5309 continue; 5310 } 5311 5312 /* 5313 * The thread already timed out on zone_destroy_cv while 5314 * waiting for subsystems to release the zone's last 5315 * general-purpose references. Log the zone's reference 5316 * counts and wait indefinitely on zone_destroy_cv. 5317 */ 5318 zone_log_refcounts(zone); 5319 } 5320 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5321 /* The thread's process was signaled. */ 5322 mutex_exit(&zonehash_lock); 5323 return (set_errno(EINTR)); 5324 } 5325 } 5326 5327 /* 5328 * Remove CPU cap for this zone now since we're not going to 5329 * fail below this point. 5330 */ 5331 cpucaps_zone_remove(zone); 5332 5333 /* Get rid of the zone's kstats */ 5334 zone_kstat_delete(zone); 5335 5336 /* remove the pfexecd doors */ 5337 if (zone->zone_pfexecd != NULL) { 5338 klpd_freelist(&zone->zone_pfexecd); 5339 zone->zone_pfexecd = NULL; 5340 } 5341 5342 /* free brand specific data */ 5343 if (ZONE_IS_BRANDED(zone)) 5344 ZBROP(zone)->b_free_brand_data(zone); 5345 5346 /* Say goodbye to brand framework. */ 5347 brand_unregister_zone(zone->zone_brand); 5348 5349 /* 5350 * It is now safe to let the zone be recreated; remove it from the 5351 * lists. The memory will not be freed until the last cred 5352 * reference goes away. 5353 */ 5354 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5355 zonecount--; 5356 /* remove from active list and hash tables */ 5357 list_remove(&zone_active, zone); 5358 (void) mod_hash_destroy(zonehashbyname, 5359 (mod_hash_key_t)zone->zone_name); 5360 (void) mod_hash_destroy(zonehashbyid, 5361 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5362 if (zone->zone_flags & ZF_HASHED_LABEL) 5363 (void) mod_hash_destroy(zonehashbylabel, 5364 (mod_hash_key_t)zone->zone_slabel); 5365 mutex_exit(&zonehash_lock); 5366 5367 /* 5368 * Release the root vnode; we're not using it anymore. Nor should any 5369 * other thread that might access it exist. 5370 */ 5371 if (zone->zone_rootvp != NULL) { 5372 VN_RELE(zone->zone_rootvp); 5373 zone->zone_rootvp = NULL; 5374 } 5375 5376 /* add to deathrow list */ 5377 mutex_enter(&zone_deathrow_lock); 5378 list_insert_tail(&zone_deathrow, zone); 5379 mutex_exit(&zone_deathrow_lock); 5380 5381 /* 5382 * Drop last reference (which was added by zsched()), this will 5383 * free the zone unless there are outstanding cred references. 5384 */ 5385 zone_rele(zone); 5386 return (0); 5387 } 5388 5389 /* 5390 * Systemcall entry point for zone_getattr(2). 5391 */ 5392 static ssize_t 5393 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5394 { 5395 size_t size; 5396 int error = 0, err; 5397 zone_t *zone; 5398 char *zonepath; 5399 char *outstr; 5400 zone_status_t zone_status; 5401 pid_t initpid; 5402 boolean_t global = (curzone == global_zone); 5403 boolean_t inzone = (curzone->zone_id == zoneid); 5404 ushort_t flags; 5405 zone_net_data_t *zbuf; 5406 5407 mutex_enter(&zonehash_lock); 5408 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5409 mutex_exit(&zonehash_lock); 5410 return (set_errno(EINVAL)); 5411 } 5412 zone_status = zone_status_get(zone); 5413 if (zone_status < ZONE_IS_INITIALIZED) { 5414 mutex_exit(&zonehash_lock); 5415 return (set_errno(EINVAL)); 5416 } 5417 zone_hold(zone); 5418 mutex_exit(&zonehash_lock); 5419 5420 /* 5421 * If not in the global zone, don't show information about other zones, 5422 * unless the system is labeled and the local zone's label dominates 5423 * the other zone. 5424 */ 5425 if (!zone_list_access(zone)) { 5426 zone_rele(zone); 5427 return (set_errno(EINVAL)); 5428 } 5429 5430 switch (attr) { 5431 case ZONE_ATTR_ROOT: 5432 if (global) { 5433 /* 5434 * Copy the path to trim the trailing "/" (except for 5435 * the global zone). 5436 */ 5437 if (zone != global_zone) 5438 size = zone->zone_rootpathlen - 1; 5439 else 5440 size = zone->zone_rootpathlen; 5441 zonepath = kmem_alloc(size, KM_SLEEP); 5442 bcopy(zone->zone_rootpath, zonepath, size); 5443 zonepath[size - 1] = '\0'; 5444 } else { 5445 if (inzone || !is_system_labeled()) { 5446 /* 5447 * Caller is not in the global zone. 5448 * if the query is on the current zone 5449 * or the system is not labeled, 5450 * just return faked-up path for current zone. 5451 */ 5452 zonepath = "/"; 5453 size = 2; 5454 } else { 5455 /* 5456 * Return related path for current zone. 5457 */ 5458 int prefix_len = strlen(zone_prefix); 5459 int zname_len = strlen(zone->zone_name); 5460 5461 size = prefix_len + zname_len + 1; 5462 zonepath = kmem_alloc(size, KM_SLEEP); 5463 bcopy(zone_prefix, zonepath, prefix_len); 5464 bcopy(zone->zone_name, zonepath + 5465 prefix_len, zname_len); 5466 zonepath[size - 1] = '\0'; 5467 } 5468 } 5469 if (bufsize > size) 5470 bufsize = size; 5471 if (buf != NULL) { 5472 err = copyoutstr(zonepath, buf, bufsize, NULL); 5473 if (err != 0 && err != ENAMETOOLONG) 5474 error = EFAULT; 5475 } 5476 if (global || (is_system_labeled() && !inzone)) 5477 kmem_free(zonepath, size); 5478 break; 5479 5480 case ZONE_ATTR_NAME: 5481 size = strlen(zone->zone_name) + 1; 5482 if (bufsize > size) 5483 bufsize = size; 5484 if (buf != NULL) { 5485 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5486 if (err != 0 && err != ENAMETOOLONG) 5487 error = EFAULT; 5488 } 5489 break; 5490 5491 case ZONE_ATTR_STATUS: 5492 /* 5493 * Since we're not holding zonehash_lock, the zone status 5494 * may be anything; leave it up to userland to sort it out. 5495 */ 5496 size = sizeof (zone_status); 5497 if (bufsize > size) 5498 bufsize = size; 5499 zone_status = zone_status_get(zone); 5500 if (buf != NULL && 5501 copyout(&zone_status, buf, bufsize) != 0) 5502 error = EFAULT; 5503 break; 5504 case ZONE_ATTR_FLAGS: 5505 size = sizeof (zone->zone_flags); 5506 if (bufsize > size) 5507 bufsize = size; 5508 flags = zone->zone_flags; 5509 if (buf != NULL && 5510 copyout(&flags, buf, bufsize) != 0) 5511 error = EFAULT; 5512 break; 5513 case ZONE_ATTR_PRIVSET: 5514 size = sizeof (priv_set_t); 5515 if (bufsize > size) 5516 bufsize = size; 5517 if (buf != NULL && 5518 copyout(zone->zone_privset, buf, bufsize) != 0) 5519 error = EFAULT; 5520 break; 5521 case ZONE_ATTR_UNIQID: 5522 size = sizeof (zone->zone_uniqid); 5523 if (bufsize > size) 5524 bufsize = size; 5525 if (buf != NULL && 5526 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5527 error = EFAULT; 5528 break; 5529 case ZONE_ATTR_POOLID: 5530 { 5531 pool_t *pool; 5532 poolid_t poolid; 5533 5534 if (pool_lock_intr() != 0) { 5535 error = EINTR; 5536 break; 5537 } 5538 pool = zone_pool_get(zone); 5539 poolid = pool->pool_id; 5540 pool_unlock(); 5541 size = sizeof (poolid); 5542 if (bufsize > size) 5543 bufsize = size; 5544 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5545 error = EFAULT; 5546 } 5547 break; 5548 case ZONE_ATTR_SLBL: 5549 size = sizeof (bslabel_t); 5550 if (bufsize > size) 5551 bufsize = size; 5552 if (zone->zone_slabel == NULL) 5553 error = EINVAL; 5554 else if (buf != NULL && 5555 copyout(label2bslabel(zone->zone_slabel), buf, 5556 bufsize) != 0) 5557 error = EFAULT; 5558 break; 5559 case ZONE_ATTR_INITPID: 5560 size = sizeof (initpid); 5561 if (bufsize > size) 5562 bufsize = size; 5563 initpid = zone->zone_proc_initpid; 5564 if (initpid == -1) { 5565 error = ESRCH; 5566 break; 5567 } 5568 if (buf != NULL && 5569 copyout(&initpid, buf, bufsize) != 0) 5570 error = EFAULT; 5571 break; 5572 case ZONE_ATTR_BRAND: 5573 size = strlen(zone->zone_brand->b_name) + 1; 5574 5575 if (bufsize > size) 5576 bufsize = size; 5577 if (buf != NULL) { 5578 err = copyoutstr(zone->zone_brand->b_name, buf, 5579 bufsize, NULL); 5580 if (err != 0 && err != ENAMETOOLONG) 5581 error = EFAULT; 5582 } 5583 break; 5584 case ZONE_ATTR_INITNAME: 5585 size = strlen(zone->zone_initname) + 1; 5586 if (bufsize > size) 5587 bufsize = size; 5588 if (buf != NULL) { 5589 err = copyoutstr(zone->zone_initname, buf, bufsize, 5590 NULL); 5591 if (err != 0 && err != ENAMETOOLONG) 5592 error = EFAULT; 5593 } 5594 break; 5595 case ZONE_ATTR_BOOTARGS: 5596 if (zone->zone_bootargs == NULL) 5597 outstr = ""; 5598 else 5599 outstr = zone->zone_bootargs; 5600 size = strlen(outstr) + 1; 5601 if (bufsize > size) 5602 bufsize = size; 5603 if (buf != NULL) { 5604 err = copyoutstr(outstr, buf, bufsize, NULL); 5605 if (err != 0 && err != ENAMETOOLONG) 5606 error = EFAULT; 5607 } 5608 break; 5609 case ZONE_ATTR_PHYS_MCAP: 5610 size = sizeof (zone->zone_phys_mcap); 5611 if (bufsize > size) 5612 bufsize = size; 5613 if (buf != NULL && 5614 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5615 error = EFAULT; 5616 break; 5617 case ZONE_ATTR_SCHED_CLASS: 5618 mutex_enter(&class_lock); 5619 5620 if (zone->zone_defaultcid >= loaded_classes) 5621 outstr = ""; 5622 else 5623 outstr = sclass[zone->zone_defaultcid].cl_name; 5624 size = strlen(outstr) + 1; 5625 if (bufsize > size) 5626 bufsize = size; 5627 if (buf != NULL) { 5628 err = copyoutstr(outstr, buf, bufsize, NULL); 5629 if (err != 0 && err != ENAMETOOLONG) 5630 error = EFAULT; 5631 } 5632 5633 mutex_exit(&class_lock); 5634 break; 5635 case ZONE_ATTR_HOSTID: 5636 if (zone->zone_hostid != HW_INVALID_HOSTID && 5637 bufsize == sizeof (zone->zone_hostid)) { 5638 size = sizeof (zone->zone_hostid); 5639 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5640 bufsize) != 0) 5641 error = EFAULT; 5642 } else { 5643 error = EINVAL; 5644 } 5645 break; 5646 case ZONE_ATTR_FS_ALLOWED: 5647 if (zone->zone_fs_allowed == NULL) 5648 outstr = ""; 5649 else 5650 outstr = zone->zone_fs_allowed; 5651 size = strlen(outstr) + 1; 5652 if (bufsize > size) 5653 bufsize = size; 5654 if (buf != NULL) { 5655 err = copyoutstr(outstr, buf, bufsize, NULL); 5656 if (err != 0 && err != ENAMETOOLONG) 5657 error = EFAULT; 5658 } 5659 break; 5660 case ZONE_ATTR_SECFLAGS: 5661 size = sizeof (zone->zone_secflags); 5662 if (bufsize > size) 5663 bufsize = size; 5664 if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0) 5665 error = EFAULT; 5666 break; 5667 case ZONE_ATTR_NETWORK: 5668 bufsize = MIN(bufsize, PIPE_BUF + sizeof (zone_net_data_t)); 5669 size = bufsize; 5670 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5671 if (copyin(buf, zbuf, bufsize) != 0) { 5672 error = EFAULT; 5673 } else { 5674 error = zone_get_network(zoneid, zbuf); 5675 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5676 error = EFAULT; 5677 } 5678 kmem_free(zbuf, bufsize); 5679 break; 5680 default: 5681 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5682 size = bufsize; 5683 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5684 } else { 5685 error = EINVAL; 5686 } 5687 } 5688 zone_rele(zone); 5689 5690 if (error) 5691 return (set_errno(error)); 5692 return ((ssize_t)size); 5693 } 5694 5695 /* 5696 * Systemcall entry point for zone_setattr(2). 5697 */ 5698 /*ARGSUSED*/ 5699 static int 5700 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5701 { 5702 zone_t *zone; 5703 zone_status_t zone_status; 5704 int err = -1; 5705 zone_net_data_t *zbuf; 5706 5707 if (secpolicy_zone_config(CRED()) != 0) 5708 return (set_errno(EPERM)); 5709 5710 /* 5711 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5712 * global zone. 5713 */ 5714 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5715 return (set_errno(EINVAL)); 5716 } 5717 5718 mutex_enter(&zonehash_lock); 5719 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5720 mutex_exit(&zonehash_lock); 5721 return (set_errno(EINVAL)); 5722 } 5723 zone_hold(zone); 5724 mutex_exit(&zonehash_lock); 5725 5726 /* 5727 * At present most attributes can only be set on non-running, 5728 * non-global zones. 5729 */ 5730 zone_status = zone_status_get(zone); 5731 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5732 err = EINVAL; 5733 goto done; 5734 } 5735 5736 switch (attr) { 5737 case ZONE_ATTR_INITNAME: 5738 err = zone_set_initname(zone, (const char *)buf); 5739 break; 5740 case ZONE_ATTR_INITNORESTART: 5741 zone->zone_restart_init = B_FALSE; 5742 err = 0; 5743 break; 5744 case ZONE_ATTR_BOOTARGS: 5745 err = zone_set_bootargs(zone, (const char *)buf); 5746 break; 5747 case ZONE_ATTR_BRAND: 5748 err = zone_set_brand(zone, (const char *)buf); 5749 break; 5750 case ZONE_ATTR_FS_ALLOWED: 5751 err = zone_set_fs_allowed(zone, (const char *)buf); 5752 break; 5753 case ZONE_ATTR_SECFLAGS: 5754 err = zone_set_secflags(zone, (psecflags_t *)buf); 5755 break; 5756 case ZONE_ATTR_PHYS_MCAP: 5757 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5758 break; 5759 case ZONE_ATTR_SCHED_CLASS: 5760 err = zone_set_sched_class(zone, (const char *)buf); 5761 break; 5762 case ZONE_ATTR_HOSTID: 5763 if (bufsize == sizeof (zone->zone_hostid)) { 5764 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5765 err = 0; 5766 else 5767 err = EFAULT; 5768 } else { 5769 err = EINVAL; 5770 } 5771 break; 5772 case ZONE_ATTR_NETWORK: 5773 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5774 err = EINVAL; 5775 break; 5776 } 5777 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5778 if (copyin(buf, zbuf, bufsize) != 0) { 5779 kmem_free(zbuf, bufsize); 5780 err = EFAULT; 5781 break; 5782 } 5783 err = zone_set_network(zoneid, zbuf); 5784 kmem_free(zbuf, bufsize); 5785 break; 5786 default: 5787 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5788 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5789 else 5790 err = EINVAL; 5791 } 5792 5793 done: 5794 zone_rele(zone); 5795 ASSERT(err != -1); 5796 return (err != 0 ? set_errno(err) : 0); 5797 } 5798 5799 /* 5800 * Return zero if the process has at least one vnode mapped in to its 5801 * address space which shouldn't be allowed to change zones. 5802 * 5803 * Also return zero if the process has any shared mappings which reserve 5804 * swap. This is because the counting for zone.max-swap does not allow swap 5805 * reservation to be shared between zones. zone swap reservation is counted 5806 * on zone->zone_max_swap. 5807 */ 5808 static int 5809 as_can_change_zones(void) 5810 { 5811 proc_t *pp = curproc; 5812 struct seg *seg; 5813 struct as *as = pp->p_as; 5814 vnode_t *vp; 5815 int allow = 1; 5816 5817 ASSERT(pp->p_as != &kas); 5818 AS_LOCK_ENTER(as, RW_READER); 5819 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5820 5821 /* 5822 * Cannot enter zone with shared anon memory which 5823 * reserves swap. See comment above. 5824 */ 5825 if (seg_can_change_zones(seg) == B_FALSE) { 5826 allow = 0; 5827 break; 5828 } 5829 /* 5830 * if we can't get a backing vnode for this segment then skip 5831 * it. 5832 */ 5833 vp = NULL; 5834 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5835 continue; 5836 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5837 allow = 0; 5838 break; 5839 } 5840 } 5841 AS_LOCK_EXIT(as); 5842 return (allow); 5843 } 5844 5845 /* 5846 * Count swap reserved by curproc's address space 5847 */ 5848 static size_t 5849 as_swresv(void) 5850 { 5851 proc_t *pp = curproc; 5852 struct seg *seg; 5853 struct as *as = pp->p_as; 5854 size_t swap = 0; 5855 5856 ASSERT(pp->p_as != &kas); 5857 ASSERT(AS_WRITE_HELD(as)); 5858 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5859 swap += seg_swresv(seg); 5860 5861 return (swap); 5862 } 5863 5864 /* 5865 * Systemcall entry point for zone_enter(). 5866 * 5867 * The current process is injected into said zone. In the process 5868 * it will change its project membership, privileges, rootdir/cwd, 5869 * zone-wide rctls, and pool association to match those of the zone. 5870 * 5871 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5872 * state will transition it to ZONE_IS_RUNNING. Processes may only 5873 * enter a zone that is "ready" or "running". 5874 */ 5875 static int 5876 zone_enter(zoneid_t zoneid) 5877 { 5878 zone_t *zone; 5879 vnode_t *vp; 5880 proc_t *pp = curproc; 5881 contract_t *ct; 5882 cont_process_t *ctp; 5883 task_t *tk, *oldtk; 5884 kproject_t *zone_proj0; 5885 cred_t *cr, *newcr; 5886 pool_t *oldpool, *newpool; 5887 sess_t *sp; 5888 uid_t uid; 5889 zone_status_t status; 5890 int err = 0; 5891 rctl_entity_p_t e; 5892 size_t swap; 5893 kthread_id_t t; 5894 5895 if (secpolicy_zone_config(CRED()) != 0) 5896 return (set_errno(EPERM)); 5897 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5898 return (set_errno(EINVAL)); 5899 5900 /* 5901 * Stop all lwps so we don't need to hold a lock to look at 5902 * curproc->p_zone. This needs to happen before we grab any 5903 * locks to avoid deadlock (another lwp in the process could 5904 * be waiting for the held lock). 5905 */ 5906 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5907 return (set_errno(EINTR)); 5908 5909 /* 5910 * Make sure we're not changing zones with files open or mapped in 5911 * to our address space which shouldn't be changing zones. 5912 */ 5913 if (!files_can_change_zones()) { 5914 err = EBADF; 5915 goto out; 5916 } 5917 if (!as_can_change_zones()) { 5918 err = EFAULT; 5919 goto out; 5920 } 5921 5922 mutex_enter(&zonehash_lock); 5923 if (pp->p_zone != global_zone) { 5924 mutex_exit(&zonehash_lock); 5925 err = EINVAL; 5926 goto out; 5927 } 5928 5929 zone = zone_find_all_by_id(zoneid); 5930 if (zone == NULL) { 5931 mutex_exit(&zonehash_lock); 5932 err = EINVAL; 5933 goto out; 5934 } 5935 5936 /* 5937 * To prevent processes in a zone from holding contracts on 5938 * extrazonal resources, and to avoid process contract 5939 * memberships which span zones, contract holders and processes 5940 * which aren't the sole members of their encapsulating process 5941 * contracts are not allowed to zone_enter. 5942 */ 5943 ctp = pp->p_ct_process; 5944 ct = &ctp->conp_contract; 5945 mutex_enter(&ct->ct_lock); 5946 mutex_enter(&pp->p_lock); 5947 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5948 mutex_exit(&pp->p_lock); 5949 mutex_exit(&ct->ct_lock); 5950 mutex_exit(&zonehash_lock); 5951 err = EINVAL; 5952 goto out; 5953 } 5954 5955 /* 5956 * Moreover, we don't allow processes whose encapsulating 5957 * process contracts have inherited extrazonal contracts. 5958 * While it would be easier to eliminate all process contracts 5959 * with inherited contracts, we need to be able to give a 5960 * restarted init (or other zone-penetrating process) its 5961 * predecessor's contracts. 5962 */ 5963 if (ctp->conp_ninherited != 0) { 5964 contract_t *next; 5965 for (next = list_head(&ctp->conp_inherited); next; 5966 next = list_next(&ctp->conp_inherited, next)) { 5967 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5968 mutex_exit(&pp->p_lock); 5969 mutex_exit(&ct->ct_lock); 5970 mutex_exit(&zonehash_lock); 5971 err = EINVAL; 5972 goto out; 5973 } 5974 } 5975 } 5976 5977 mutex_exit(&pp->p_lock); 5978 mutex_exit(&ct->ct_lock); 5979 5980 status = zone_status_get(zone); 5981 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 5982 /* 5983 * Can't join 5984 */ 5985 mutex_exit(&zonehash_lock); 5986 err = EINVAL; 5987 goto out; 5988 } 5989 5990 /* 5991 * Make sure new priv set is within the permitted set for caller 5992 */ 5993 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 5994 mutex_exit(&zonehash_lock); 5995 err = EPERM; 5996 goto out; 5997 } 5998 /* 5999 * We want to momentarily drop zonehash_lock while we optimistically 6000 * bind curproc to the pool it should be running in. This is safe 6001 * since the zone can't disappear (we have a hold on it). 6002 */ 6003 zone_hold(zone); 6004 mutex_exit(&zonehash_lock); 6005 6006 /* 6007 * Grab pool_lock to keep the pools configuration from changing 6008 * and to stop ourselves from getting rebound to another pool 6009 * until we join the zone. 6010 */ 6011 if (pool_lock_intr() != 0) { 6012 zone_rele(zone); 6013 err = EINTR; 6014 goto out; 6015 } 6016 ASSERT(secpolicy_pool(CRED()) == 0); 6017 /* 6018 * Bind ourselves to the pool currently associated with the zone. 6019 */ 6020 oldpool = curproc->p_pool; 6021 newpool = zone_pool_get(zone); 6022 if (pool_state == POOL_ENABLED && newpool != oldpool && 6023 (err = pool_do_bind(newpool, P_PID, P_MYID, 6024 POOL_BIND_ALL)) != 0) { 6025 pool_unlock(); 6026 zone_rele(zone); 6027 goto out; 6028 } 6029 6030 /* 6031 * Grab cpu_lock now; we'll need it later when we call 6032 * task_join(). 6033 */ 6034 mutex_enter(&cpu_lock); 6035 mutex_enter(&zonehash_lock); 6036 /* 6037 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 6038 */ 6039 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 6040 /* 6041 * Can't join anymore. 6042 */ 6043 mutex_exit(&zonehash_lock); 6044 mutex_exit(&cpu_lock); 6045 if (pool_state == POOL_ENABLED && 6046 newpool != oldpool) 6047 (void) pool_do_bind(oldpool, P_PID, P_MYID, 6048 POOL_BIND_ALL); 6049 pool_unlock(); 6050 zone_rele(zone); 6051 err = EINVAL; 6052 goto out; 6053 } 6054 6055 /* 6056 * a_lock must be held while transfering locked memory and swap 6057 * reservation from the global zone to the non global zone because 6058 * asynchronous faults on the processes' address space can lock 6059 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 6060 * segments respectively. 6061 */ 6062 AS_LOCK_ENTER(pp->p_as, RW_WRITER); 6063 swap = as_swresv(); 6064 mutex_enter(&pp->p_lock); 6065 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 6066 /* verify that we do not exceed and task or lwp limits */ 6067 mutex_enter(&zone->zone_nlwps_lock); 6068 /* add new lwps to zone and zone's proj0 */ 6069 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 6070 zone->zone_nlwps += pp->p_lwpcnt; 6071 /* add 1 task to zone's proj0 */ 6072 zone_proj0->kpj_ntasks += 1; 6073 6074 zone_proj0->kpj_nprocs++; 6075 zone->zone_nprocs++; 6076 mutex_exit(&zone->zone_nlwps_lock); 6077 6078 mutex_enter(&zone->zone_mem_lock); 6079 zone->zone_locked_mem += pp->p_locked_mem; 6080 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 6081 zone->zone_max_swap += swap; 6082 mutex_exit(&zone->zone_mem_lock); 6083 6084 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 6085 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 6086 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 6087 6088 /* remove lwps and process from proc's old zone and old project */ 6089 mutex_enter(&pp->p_zone->zone_nlwps_lock); 6090 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 6091 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 6092 pp->p_task->tk_proj->kpj_nprocs--; 6093 pp->p_zone->zone_nprocs--; 6094 mutex_exit(&pp->p_zone->zone_nlwps_lock); 6095 6096 mutex_enter(&pp->p_zone->zone_mem_lock); 6097 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 6098 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 6099 pp->p_zone->zone_max_swap -= swap; 6100 mutex_exit(&pp->p_zone->zone_mem_lock); 6101 6102 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6103 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 6104 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6105 6106 pp->p_flag |= SZONETOP; 6107 pp->p_zone = zone; 6108 mutex_exit(&pp->p_lock); 6109 AS_LOCK_EXIT(pp->p_as); 6110 6111 /* 6112 * Joining the zone cannot fail from now on. 6113 * 6114 * This means that a lot of the following code can be commonized and 6115 * shared with zsched(). 6116 */ 6117 6118 /* 6119 * If the process contract fmri was inherited, we need to 6120 * flag this so that any contract status will not leak 6121 * extra zone information, svc_fmri in this case 6122 */ 6123 if (ctp->conp_svc_ctid != ct->ct_id) { 6124 mutex_enter(&ct->ct_lock); 6125 ctp->conp_svc_zone_enter = ct->ct_id; 6126 mutex_exit(&ct->ct_lock); 6127 } 6128 6129 /* 6130 * Reset the encapsulating process contract's zone. 6131 */ 6132 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 6133 contract_setzuniqid(ct, zone->zone_uniqid); 6134 6135 /* 6136 * Create a new task and associate the process with the project keyed 6137 * by (projid,zoneid). 6138 * 6139 * We might as well be in project 0; the global zone's projid doesn't 6140 * make much sense in a zone anyhow. 6141 * 6142 * This also increments zone_ntasks, and returns with p_lock held. 6143 */ 6144 tk = task_create(0, zone); 6145 oldtk = task_join(tk, 0); 6146 mutex_exit(&cpu_lock); 6147 6148 /* 6149 * call RCTLOP_SET functions on this proc 6150 */ 6151 e.rcep_p.zone = zone; 6152 e.rcep_t = RCENTITY_ZONE; 6153 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 6154 RCD_CALLBACK); 6155 mutex_exit(&pp->p_lock); 6156 6157 /* 6158 * We don't need to hold any of zsched's locks here; not only do we know 6159 * the process and zone aren't going away, we know its session isn't 6160 * changing either. 6161 * 6162 * By joining zsched's session here, we mimic the behavior in the 6163 * global zone of init's sid being the pid of sched. We extend this 6164 * to all zlogin-like zone_enter()'ing processes as well. 6165 */ 6166 mutex_enter(&pidlock); 6167 sp = zone->zone_zsched->p_sessp; 6168 sess_hold(zone->zone_zsched); 6169 mutex_enter(&pp->p_lock); 6170 pgexit(pp); 6171 sess_rele(pp->p_sessp, B_TRUE); 6172 pp->p_sessp = sp; 6173 pgjoin(pp, zone->zone_zsched->p_pidp); 6174 6175 /* 6176 * If any threads are scheduled to be placed on zone wait queue they 6177 * should abandon the idea since the wait queue is changing. 6178 * We need to be holding pidlock & p_lock to do this. 6179 */ 6180 if ((t = pp->p_tlist) != NULL) { 6181 do { 6182 thread_lock(t); 6183 /* 6184 * Kick this thread so that it doesn't sit 6185 * on a wrong wait queue. 6186 */ 6187 if (ISWAITING(t)) 6188 setrun_locked(t); 6189 6190 if (t->t_schedflag & TS_ANYWAITQ) 6191 t->t_schedflag &= ~ TS_ANYWAITQ; 6192 6193 thread_unlock(t); 6194 } while ((t = t->t_forw) != pp->p_tlist); 6195 } 6196 6197 /* 6198 * If there is a default scheduling class for the zone and it is not 6199 * the class we are currently in, change all of the threads in the 6200 * process to the new class. We need to be holding pidlock & p_lock 6201 * when we call parmsset so this is a good place to do it. 6202 */ 6203 if (zone->zone_defaultcid > 0 && 6204 zone->zone_defaultcid != curthread->t_cid) { 6205 pcparms_t pcparms; 6206 6207 pcparms.pc_cid = zone->zone_defaultcid; 6208 pcparms.pc_clparms[0] = 0; 6209 6210 /* 6211 * If setting the class fails, we still want to enter the zone. 6212 */ 6213 if ((t = pp->p_tlist) != NULL) { 6214 do { 6215 (void) parmsset(&pcparms, t); 6216 } while ((t = t->t_forw) != pp->p_tlist); 6217 } 6218 } 6219 6220 mutex_exit(&pp->p_lock); 6221 mutex_exit(&pidlock); 6222 6223 mutex_exit(&zonehash_lock); 6224 /* 6225 * We're firmly in the zone; let pools progress. 6226 */ 6227 pool_unlock(); 6228 task_rele(oldtk); 6229 /* 6230 * We don't need to retain a hold on the zone since we already 6231 * incremented zone_ntasks, so the zone isn't going anywhere. 6232 */ 6233 zone_rele(zone); 6234 6235 /* 6236 * Chroot 6237 */ 6238 vp = zone->zone_rootvp; 6239 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6240 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6241 6242 /* 6243 * Change process security flags. Note that the _effective_ flags 6244 * cannot change 6245 */ 6246 secflags_copy(&pp->p_secflags.psf_lower, 6247 &zone->zone_secflags.psf_lower); 6248 secflags_copy(&pp->p_secflags.psf_upper, 6249 &zone->zone_secflags.psf_upper); 6250 secflags_copy(&pp->p_secflags.psf_inherit, 6251 &zone->zone_secflags.psf_inherit); 6252 6253 /* 6254 * Change process credentials 6255 */ 6256 newcr = cralloc(); 6257 mutex_enter(&pp->p_crlock); 6258 cr = pp->p_cred; 6259 crcopy_to(cr, newcr); 6260 crsetzone(newcr, zone); 6261 pp->p_cred = newcr; 6262 6263 /* 6264 * Restrict all process privilege sets to zone limit 6265 */ 6266 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6267 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6268 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6269 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6270 mutex_exit(&pp->p_crlock); 6271 crset(pp, newcr); 6272 6273 /* 6274 * Adjust upcount to reflect zone entry. 6275 */ 6276 uid = crgetruid(newcr); 6277 mutex_enter(&pidlock); 6278 upcount_dec(uid, GLOBAL_ZONEID); 6279 upcount_inc(uid, zoneid); 6280 mutex_exit(&pidlock); 6281 6282 /* 6283 * Set up core file path and content. 6284 */ 6285 set_core_defaults(); 6286 6287 out: 6288 /* 6289 * Let the other lwps continue. 6290 */ 6291 mutex_enter(&pp->p_lock); 6292 if (curthread != pp->p_agenttp) 6293 continuelwps(pp); 6294 mutex_exit(&pp->p_lock); 6295 6296 return (err != 0 ? set_errno(err) : 0); 6297 } 6298 6299 /* 6300 * Systemcall entry point for zone_list(2). 6301 * 6302 * Processes running in a (non-global) zone only see themselves. 6303 * On labeled systems, they see all zones whose label they dominate. 6304 */ 6305 static int 6306 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6307 { 6308 zoneid_t *zoneids; 6309 zone_t *zone, *myzone; 6310 uint_t user_nzones, real_nzones; 6311 uint_t domi_nzones; 6312 int error; 6313 6314 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6315 return (set_errno(EFAULT)); 6316 6317 myzone = curproc->p_zone; 6318 if (myzone != global_zone) { 6319 bslabel_t *mybslab; 6320 6321 if (!is_system_labeled()) { 6322 /* just return current zone */ 6323 real_nzones = domi_nzones = 1; 6324 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6325 zoneids[0] = myzone->zone_id; 6326 } else { 6327 /* return all zones that are dominated */ 6328 mutex_enter(&zonehash_lock); 6329 real_nzones = zonecount; 6330 domi_nzones = 0; 6331 if (real_nzones > 0) { 6332 zoneids = kmem_alloc(real_nzones * 6333 sizeof (zoneid_t), KM_SLEEP); 6334 mybslab = label2bslabel(myzone->zone_slabel); 6335 for (zone = list_head(&zone_active); 6336 zone != NULL; 6337 zone = list_next(&zone_active, zone)) { 6338 if (zone->zone_id == GLOBAL_ZONEID) 6339 continue; 6340 if (zone != myzone && 6341 (zone->zone_flags & ZF_IS_SCRATCH)) 6342 continue; 6343 /* 6344 * Note that a label always dominates 6345 * itself, so myzone is always included 6346 * in the list. 6347 */ 6348 if (bldominates(mybslab, 6349 label2bslabel(zone->zone_slabel))) { 6350 zoneids[domi_nzones++] = 6351 zone->zone_id; 6352 } 6353 } 6354 } 6355 mutex_exit(&zonehash_lock); 6356 } 6357 } else { 6358 mutex_enter(&zonehash_lock); 6359 real_nzones = zonecount; 6360 domi_nzones = 0; 6361 if (real_nzones > 0) { 6362 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), 6363 KM_SLEEP); 6364 for (zone = list_head(&zone_active); zone != NULL; 6365 zone = list_next(&zone_active, zone)) 6366 zoneids[domi_nzones++] = zone->zone_id; 6367 ASSERT(domi_nzones == real_nzones); 6368 } 6369 mutex_exit(&zonehash_lock); 6370 } 6371 6372 /* 6373 * If user has allocated space for fewer entries than we found, then 6374 * return only up to their limit. Either way, tell them exactly how 6375 * many we found. 6376 */ 6377 if (domi_nzones < user_nzones) 6378 user_nzones = domi_nzones; 6379 error = 0; 6380 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6381 error = EFAULT; 6382 } else if (zoneidlist != NULL && user_nzones != 0) { 6383 if (copyout(zoneids, zoneidlist, 6384 user_nzones * sizeof (zoneid_t)) != 0) 6385 error = EFAULT; 6386 } 6387 6388 if (real_nzones > 0) 6389 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6390 6391 if (error != 0) 6392 return (set_errno(error)); 6393 else 6394 return (0); 6395 } 6396 6397 /* 6398 * Systemcall entry point for zone_lookup(2). 6399 * 6400 * Non-global zones are only able to see themselves and (on labeled systems) 6401 * the zones they dominate. 6402 */ 6403 static zoneid_t 6404 zone_lookup(const char *zone_name) 6405 { 6406 char *kname; 6407 zone_t *zone; 6408 zoneid_t zoneid; 6409 int err; 6410 6411 if (zone_name == NULL) { 6412 /* return caller's zone id */ 6413 return (getzoneid()); 6414 } 6415 6416 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6417 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6418 kmem_free(kname, ZONENAME_MAX); 6419 return (set_errno(err)); 6420 } 6421 6422 mutex_enter(&zonehash_lock); 6423 zone = zone_find_all_by_name(kname); 6424 kmem_free(kname, ZONENAME_MAX); 6425 /* 6426 * In a non-global zone, can only lookup global and own name. 6427 * In Trusted Extensions zone label dominance rules apply. 6428 */ 6429 if (zone == NULL || 6430 zone_status_get(zone) < ZONE_IS_READY || 6431 !zone_list_access(zone)) { 6432 mutex_exit(&zonehash_lock); 6433 return (set_errno(EINVAL)); 6434 } else { 6435 zoneid = zone->zone_id; 6436 mutex_exit(&zonehash_lock); 6437 return (zoneid); 6438 } 6439 } 6440 6441 static int 6442 zone_version(int *version_arg) 6443 { 6444 int version = ZONE_SYSCALL_API_VERSION; 6445 6446 if (copyout(&version, version_arg, sizeof (int)) != 0) 6447 return (set_errno(EFAULT)); 6448 return (0); 6449 } 6450 6451 /* ARGSUSED */ 6452 long 6453 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6454 { 6455 zone_def zs; 6456 int err; 6457 6458 switch (cmd) { 6459 case ZONE_CREATE: 6460 if (get_udatamodel() == DATAMODEL_NATIVE) { 6461 if (copyin(arg1, &zs, sizeof (zone_def))) { 6462 return (set_errno(EFAULT)); 6463 } 6464 } else { 6465 #ifdef _SYSCALL32_IMPL 6466 zone_def32 zs32; 6467 6468 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6469 return (set_errno(EFAULT)); 6470 } 6471 zs.zone_name = 6472 (const char *)(unsigned long)zs32.zone_name; 6473 zs.zone_root = 6474 (const char *)(unsigned long)zs32.zone_root; 6475 zs.zone_privs = 6476 (const struct priv_set *) 6477 (unsigned long)zs32.zone_privs; 6478 zs.zone_privssz = zs32.zone_privssz; 6479 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6480 zs.rctlbufsz = zs32.rctlbufsz; 6481 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6482 zs.zfsbufsz = zs32.zfsbufsz; 6483 zs.extended_error = 6484 (int *)(unsigned long)zs32.extended_error; 6485 zs.match = zs32.match; 6486 zs.doi = zs32.doi; 6487 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6488 zs.flags = zs32.flags; 6489 #else 6490 panic("get_udatamodel() returned bogus result\n"); 6491 #endif 6492 } 6493 6494 return (zone_create(zs.zone_name, zs.zone_root, 6495 zs.zone_privs, zs.zone_privssz, 6496 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6497 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6498 zs.extended_error, zs.match, zs.doi, 6499 zs.label, zs.flags)); 6500 case ZONE_BOOT: 6501 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6502 case ZONE_DESTROY: 6503 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6504 case ZONE_GETATTR: 6505 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6506 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6507 case ZONE_SETATTR: 6508 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6509 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6510 case ZONE_ENTER: 6511 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6512 case ZONE_LIST: 6513 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6514 case ZONE_SHUTDOWN: 6515 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6516 case ZONE_LOOKUP: 6517 return (zone_lookup((const char *)arg1)); 6518 case ZONE_VERSION: 6519 return (zone_version((int *)arg1)); 6520 case ZONE_ADD_DATALINK: 6521 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6522 (datalink_id_t)(uintptr_t)arg2)); 6523 case ZONE_DEL_DATALINK: 6524 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6525 (datalink_id_t)(uintptr_t)arg2)); 6526 case ZONE_CHECK_DATALINK: { 6527 zoneid_t zoneid; 6528 boolean_t need_copyout; 6529 6530 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6531 return (EFAULT); 6532 need_copyout = (zoneid == ALL_ZONES); 6533 err = zone_check_datalink(&zoneid, 6534 (datalink_id_t)(uintptr_t)arg2); 6535 if (err == 0 && need_copyout) { 6536 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6537 err = EFAULT; 6538 } 6539 return (err == 0 ? 0 : set_errno(err)); 6540 } 6541 case ZONE_LIST_DATALINK: 6542 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6543 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6544 default: 6545 return (set_errno(EINVAL)); 6546 } 6547 } 6548 6549 struct zarg { 6550 zone_t *zone; 6551 zone_cmd_arg_t arg; 6552 }; 6553 6554 static int 6555 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6556 { 6557 char *buf; 6558 size_t buflen; 6559 int error; 6560 6561 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6562 buf = kmem_alloc(buflen, KM_SLEEP); 6563 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6564 error = door_ki_open(buf, doorp); 6565 kmem_free(buf, buflen); 6566 return (error); 6567 } 6568 6569 static void 6570 zone_release_door(door_handle_t *doorp) 6571 { 6572 door_ki_rele(*doorp); 6573 *doorp = NULL; 6574 } 6575 6576 static void 6577 zone_ki_call_zoneadmd(struct zarg *zargp) 6578 { 6579 door_handle_t door = NULL; 6580 door_arg_t darg, save_arg; 6581 char *zone_name; 6582 size_t zone_namelen; 6583 zoneid_t zoneid; 6584 zone_t *zone; 6585 zone_cmd_arg_t arg; 6586 uint64_t uniqid; 6587 size_t size; 6588 int error; 6589 int retry; 6590 6591 zone = zargp->zone; 6592 arg = zargp->arg; 6593 kmem_free(zargp, sizeof (*zargp)); 6594 6595 zone_namelen = strlen(zone->zone_name) + 1; 6596 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6597 bcopy(zone->zone_name, zone_name, zone_namelen); 6598 zoneid = zone->zone_id; 6599 uniqid = zone->zone_uniqid; 6600 /* 6601 * zoneadmd may be down, but at least we can empty out the zone. 6602 * We can ignore the return value of zone_empty() since we're called 6603 * from a kernel thread and know we won't be delivered any signals. 6604 */ 6605 ASSERT(curproc == &p0); 6606 (void) zone_empty(zone); 6607 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6608 zone_rele(zone); 6609 6610 size = sizeof (arg); 6611 darg.rbuf = (char *)&arg; 6612 darg.data_ptr = (char *)&arg; 6613 darg.rsize = size; 6614 darg.data_size = size; 6615 darg.desc_ptr = NULL; 6616 darg.desc_num = 0; 6617 6618 save_arg = darg; 6619 /* 6620 * Since we're not holding a reference to the zone, any number of 6621 * things can go wrong, including the zone disappearing before we get a 6622 * chance to talk to zoneadmd. 6623 */ 6624 for (retry = 0; /* forever */; retry++) { 6625 if (door == NULL && 6626 (error = zone_lookup_door(zone_name, &door)) != 0) { 6627 goto next; 6628 } 6629 ASSERT(door != NULL); 6630 6631 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6632 SIZE_MAX, 0)) == 0) { 6633 break; 6634 } 6635 switch (error) { 6636 case EINTR: 6637 /* FALLTHROUGH */ 6638 case EAGAIN: /* process may be forking */ 6639 /* 6640 * Back off for a bit 6641 */ 6642 break; 6643 case EBADF: 6644 zone_release_door(&door); 6645 if (zone_lookup_door(zone_name, &door) != 0) { 6646 /* 6647 * zoneadmd may be dead, but it may come back to 6648 * life later. 6649 */ 6650 break; 6651 } 6652 break; 6653 default: 6654 cmn_err(CE_WARN, 6655 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6656 error); 6657 goto out; 6658 } 6659 next: 6660 /* 6661 * If this isn't the same zone_t that we originally had in mind, 6662 * then this is the same as if two kadmin requests come in at 6663 * the same time: the first one wins. This means we lose, so we 6664 * bail. 6665 */ 6666 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6667 /* 6668 * Problem is solved. 6669 */ 6670 break; 6671 } 6672 if (zone->zone_uniqid != uniqid) { 6673 /* 6674 * zoneid recycled 6675 */ 6676 zone_rele(zone); 6677 break; 6678 } 6679 /* 6680 * We could zone_status_timedwait(), but there doesn't seem to 6681 * be much point in doing that (plus, it would mean that 6682 * zone_free() isn't called until this thread exits). 6683 */ 6684 zone_rele(zone); 6685 delay(hz); 6686 darg = save_arg; 6687 } 6688 out: 6689 if (door != NULL) { 6690 zone_release_door(&door); 6691 } 6692 kmem_free(zone_name, zone_namelen); 6693 thread_exit(); 6694 } 6695 6696 /* 6697 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6698 * kadmin(). The caller is a process in the zone. 6699 * 6700 * In order to shutdown the zone, we will hand off control to zoneadmd 6701 * (running in the global zone) via a door. We do a half-hearted job at 6702 * killing all processes in the zone, create a kernel thread to contact 6703 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6704 * a form of generation number used to let zoneadmd (as well as 6705 * zone_destroy()) know exactly which zone they're re talking about. 6706 */ 6707 int 6708 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6709 { 6710 struct zarg *zargp; 6711 zone_cmd_t zcmd; 6712 zone_t *zone; 6713 6714 zone = curproc->p_zone; 6715 ASSERT(getzoneid() != GLOBAL_ZONEID); 6716 6717 switch (cmd) { 6718 case A_SHUTDOWN: 6719 switch (fcn) { 6720 case AD_HALT: 6721 case AD_POWEROFF: 6722 zcmd = Z_HALT; 6723 break; 6724 case AD_BOOT: 6725 zcmd = Z_REBOOT; 6726 break; 6727 case AD_IBOOT: 6728 case AD_SBOOT: 6729 case AD_SIBOOT: 6730 case AD_NOSYNC: 6731 return (ENOTSUP); 6732 default: 6733 return (EINVAL); 6734 } 6735 break; 6736 case A_REBOOT: 6737 zcmd = Z_REBOOT; 6738 break; 6739 case A_FTRACE: 6740 case A_REMOUNT: 6741 case A_FREEZE: 6742 case A_DUMP: 6743 case A_CONFIG: 6744 return (ENOTSUP); 6745 default: 6746 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6747 return (EINVAL); 6748 } 6749 6750 if (secpolicy_zone_admin(credp, B_FALSE)) 6751 return (EPERM); 6752 mutex_enter(&zone_status_lock); 6753 6754 /* 6755 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6756 * is in the zone. 6757 */ 6758 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6759 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6760 /* 6761 * This zone is already on its way down. 6762 */ 6763 mutex_exit(&zone_status_lock); 6764 return (0); 6765 } 6766 /* 6767 * Prevent future zone_enter()s 6768 */ 6769 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6770 mutex_exit(&zone_status_lock); 6771 6772 /* 6773 * Kill everyone now and call zoneadmd later. 6774 * zone_ki_call_zoneadmd() will do a more thorough job of this 6775 * later. 6776 */ 6777 killall(zone->zone_id); 6778 /* 6779 * Now, create the thread to contact zoneadmd and do the rest of the 6780 * work. This thread can't be created in our zone otherwise 6781 * zone_destroy() would deadlock. 6782 */ 6783 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6784 zargp->arg.cmd = zcmd; 6785 zargp->arg.uniqid = zone->zone_uniqid; 6786 zargp->zone = zone; 6787 (void) strcpy(zargp->arg.locale, "C"); 6788 /* mdep was already copied in for us by uadmin */ 6789 if (mdep != NULL) 6790 (void) strlcpy(zargp->arg.bootbuf, mdep, 6791 sizeof (zargp->arg.bootbuf)); 6792 zone_hold(zone); 6793 6794 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6795 TS_RUN, minclsyspri); 6796 exit(CLD_EXITED, 0); 6797 6798 return (EINVAL); 6799 } 6800 6801 /* 6802 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6803 * status to ZONE_IS_SHUTTING_DOWN. 6804 * 6805 * This function also shuts down all running zones to ensure that they won't 6806 * fork new processes. 6807 */ 6808 void 6809 zone_shutdown_global(void) 6810 { 6811 zone_t *current_zonep; 6812 6813 ASSERT(INGLOBALZONE(curproc)); 6814 mutex_enter(&zonehash_lock); 6815 mutex_enter(&zone_status_lock); 6816 6817 /* Modify the global zone's status first. */ 6818 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6819 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6820 6821 /* 6822 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6823 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6824 * could cause assertions to fail (e.g., assertions about a zone's 6825 * state during initialization, readying, or booting) or produce races. 6826 * We'll let threads continue to initialize and ready new zones: they'll 6827 * fail to boot the new zones when they see that the global zone is 6828 * shutting down. 6829 */ 6830 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6831 current_zonep = list_next(&zone_active, current_zonep)) { 6832 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6833 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6834 } 6835 mutex_exit(&zone_status_lock); 6836 mutex_exit(&zonehash_lock); 6837 } 6838 6839 /* 6840 * Returns true if the named dataset is visible in the current zone. 6841 * The 'write' parameter is set to 1 if the dataset is also writable. 6842 */ 6843 int 6844 zone_dataset_visible(const char *dataset, int *write) 6845 { 6846 static int zfstype = -1; 6847 zone_dataset_t *zd; 6848 size_t len; 6849 zone_t *zone = curproc->p_zone; 6850 const char *name = NULL; 6851 vfs_t *vfsp = NULL; 6852 6853 if (dataset[0] == '\0') 6854 return (0); 6855 6856 /* 6857 * Walk the list once, looking for datasets which match exactly, or 6858 * specify a dataset underneath an exported dataset. If found, return 6859 * true and note that it is writable. 6860 */ 6861 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6862 zd = list_next(&zone->zone_datasets, zd)) { 6863 6864 len = strlen(zd->zd_dataset); 6865 if (strlen(dataset) >= len && 6866 bcmp(dataset, zd->zd_dataset, len) == 0 && 6867 (dataset[len] == '\0' || dataset[len] == '/' || 6868 dataset[len] == '@')) { 6869 if (write) 6870 *write = 1; 6871 return (1); 6872 } 6873 } 6874 6875 /* 6876 * Walk the list a second time, searching for datasets which are parents 6877 * of exported datasets. These should be visible, but read-only. 6878 * 6879 * Note that we also have to support forms such as 'pool/dataset/', with 6880 * a trailing slash. 6881 */ 6882 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6883 zd = list_next(&zone->zone_datasets, zd)) { 6884 6885 len = strlen(dataset); 6886 if (dataset[len - 1] == '/') 6887 len--; /* Ignore trailing slash */ 6888 if (len < strlen(zd->zd_dataset) && 6889 bcmp(dataset, zd->zd_dataset, len) == 0 && 6890 zd->zd_dataset[len] == '/') { 6891 if (write) 6892 *write = 0; 6893 return (1); 6894 } 6895 } 6896 6897 /* 6898 * We reach here if the given dataset is not found in the zone_dataset 6899 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6900 * instead of delegation. For this we search for the dataset in the 6901 * zone_vfslist of this zone. If found, return true and note that it is 6902 * not writable. 6903 */ 6904 6905 /* 6906 * Initialize zfstype if it is not initialized yet. 6907 */ 6908 if (zfstype == -1) { 6909 struct vfssw *vswp = vfs_getvfssw("zfs"); 6910 zfstype = vswp - vfssw; 6911 vfs_unrefvfssw(vswp); 6912 } 6913 6914 vfs_list_read_lock(); 6915 vfsp = zone->zone_vfslist; 6916 do { 6917 ASSERT(vfsp); 6918 if (vfsp->vfs_fstype == zfstype) { 6919 name = refstr_value(vfsp->vfs_resource); 6920 6921 /* 6922 * Check if we have an exact match. 6923 */ 6924 if (strcmp(dataset, name) == 0) { 6925 vfs_list_unlock(); 6926 if (write) 6927 *write = 0; 6928 return (1); 6929 } 6930 /* 6931 * We need to check if we are looking for parents of 6932 * a dataset. These should be visible, but read-only. 6933 */ 6934 len = strlen(dataset); 6935 if (dataset[len - 1] == '/') 6936 len--; 6937 6938 if (len < strlen(name) && 6939 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6940 vfs_list_unlock(); 6941 if (write) 6942 *write = 0; 6943 return (1); 6944 } 6945 } 6946 vfsp = vfsp->vfs_zone_next; 6947 } while (vfsp != zone->zone_vfslist); 6948 6949 vfs_list_unlock(); 6950 return (0); 6951 } 6952 6953 /* 6954 * zone_find_by_any_path() - 6955 * 6956 * kernel-private routine similar to zone_find_by_path(), but which 6957 * effectively compares against zone paths rather than zonerootpath 6958 * (i.e., the last component of zonerootpaths, which should be "root/", 6959 * are not compared.) This is done in order to accurately identify all 6960 * paths, whether zone-visible or not, including those which are parallel 6961 * to /root/, such as /dev/, /home/, etc... 6962 * 6963 * If the specified path does not fall under any zone path then global 6964 * zone is returned. 6965 * 6966 * The treat_abs parameter indicates whether the path should be treated as 6967 * an absolute path although it does not begin with "/". (This supports 6968 * nfs mount syntax such as host:any/path.) 6969 * 6970 * The caller is responsible for zone_rele of the returned zone. 6971 */ 6972 zone_t * 6973 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6974 { 6975 zone_t *zone; 6976 int path_offset = 0; 6977 6978 if (path == NULL) { 6979 zone_hold(global_zone); 6980 return (global_zone); 6981 } 6982 6983 if (*path != '/') { 6984 ASSERT(treat_abs); 6985 path_offset = 1; 6986 } 6987 6988 mutex_enter(&zonehash_lock); 6989 for (zone = list_head(&zone_active); zone != NULL; 6990 zone = list_next(&zone_active, zone)) { 6991 char *c; 6992 size_t pathlen; 6993 char *rootpath_start; 6994 6995 if (zone == global_zone) /* skip global zone */ 6996 continue; 6997 6998 /* scan backwards to find start of last component */ 6999 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 7000 do { 7001 c--; 7002 } while (*c != '/'); 7003 7004 pathlen = c - zone->zone_rootpath + 1 - path_offset; 7005 rootpath_start = (zone->zone_rootpath + path_offset); 7006 if (strncmp(path, rootpath_start, pathlen) == 0) 7007 break; 7008 } 7009 if (zone == NULL) 7010 zone = global_zone; 7011 zone_hold(zone); 7012 mutex_exit(&zonehash_lock); 7013 return (zone); 7014 } 7015 7016 /* 7017 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 7018 * zone_dl_t pointer if found, and NULL otherwise. 7019 */ 7020 static zone_dl_t * 7021 zone_find_dl(zone_t *zone, datalink_id_t linkid) 7022 { 7023 zone_dl_t *zdl; 7024 7025 ASSERT(mutex_owned(&zone->zone_lock)); 7026 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7027 zdl = list_next(&zone->zone_dl_list, zdl)) { 7028 if (zdl->zdl_id == linkid) 7029 break; 7030 } 7031 return (zdl); 7032 } 7033 7034 static boolean_t 7035 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 7036 { 7037 boolean_t exists; 7038 7039 mutex_enter(&zone->zone_lock); 7040 exists = (zone_find_dl(zone, linkid) != NULL); 7041 mutex_exit(&zone->zone_lock); 7042 return (exists); 7043 } 7044 7045 /* 7046 * Add an data link name for the zone. 7047 */ 7048 static int 7049 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 7050 { 7051 zone_dl_t *zdl; 7052 zone_t *zone; 7053 zone_t *thiszone; 7054 7055 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 7056 return (set_errno(ENXIO)); 7057 7058 /* Verify that the datalink ID doesn't already belong to a zone. */ 7059 mutex_enter(&zonehash_lock); 7060 for (zone = list_head(&zone_active); zone != NULL; 7061 zone = list_next(&zone_active, zone)) { 7062 if (zone_dl_exists(zone, linkid)) { 7063 mutex_exit(&zonehash_lock); 7064 zone_rele(thiszone); 7065 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 7066 } 7067 } 7068 7069 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 7070 zdl->zdl_id = linkid; 7071 zdl->zdl_net = NULL; 7072 mutex_enter(&thiszone->zone_lock); 7073 list_insert_head(&thiszone->zone_dl_list, zdl); 7074 mutex_exit(&thiszone->zone_lock); 7075 mutex_exit(&zonehash_lock); 7076 zone_rele(thiszone); 7077 return (0); 7078 } 7079 7080 static int 7081 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 7082 { 7083 zone_dl_t *zdl; 7084 zone_t *zone; 7085 int err = 0; 7086 7087 if ((zone = zone_find_by_id(zoneid)) == NULL) 7088 return (set_errno(EINVAL)); 7089 7090 mutex_enter(&zone->zone_lock); 7091 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7092 err = ENXIO; 7093 } else { 7094 list_remove(&zone->zone_dl_list, zdl); 7095 nvlist_free(zdl->zdl_net); 7096 kmem_free(zdl, sizeof (zone_dl_t)); 7097 } 7098 mutex_exit(&zone->zone_lock); 7099 zone_rele(zone); 7100 return (err == 0 ? 0 : set_errno(err)); 7101 } 7102 7103 /* 7104 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 7105 * the linkid. Otherwise we just check if the specified zoneidp has been 7106 * assigned the supplied linkid. 7107 */ 7108 int 7109 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 7110 { 7111 zone_t *zone; 7112 int err = ENXIO; 7113 7114 if (*zoneidp != ALL_ZONES) { 7115 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 7116 if (zone_dl_exists(zone, linkid)) 7117 err = 0; 7118 zone_rele(zone); 7119 } 7120 return (err); 7121 } 7122 7123 mutex_enter(&zonehash_lock); 7124 for (zone = list_head(&zone_active); zone != NULL; 7125 zone = list_next(&zone_active, zone)) { 7126 if (zone_dl_exists(zone, linkid)) { 7127 *zoneidp = zone->zone_id; 7128 err = 0; 7129 break; 7130 } 7131 } 7132 mutex_exit(&zonehash_lock); 7133 return (err); 7134 } 7135 7136 /* 7137 * Get the list of datalink IDs assigned to a zone. 7138 * 7139 * On input, *nump is the number of datalink IDs that can fit in the supplied 7140 * idarray. Upon return, *nump is either set to the number of datalink IDs 7141 * that were placed in the array if the array was large enough, or to the 7142 * number of datalink IDs that the function needs to place in the array if the 7143 * array is too small. 7144 */ 7145 static int 7146 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 7147 { 7148 uint_t num, dlcount; 7149 zone_t *zone; 7150 zone_dl_t *zdl; 7151 datalink_id_t *idptr = idarray; 7152 7153 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 7154 return (set_errno(EFAULT)); 7155 if ((zone = zone_find_by_id(zoneid)) == NULL) 7156 return (set_errno(ENXIO)); 7157 7158 num = 0; 7159 mutex_enter(&zone->zone_lock); 7160 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7161 zdl = list_next(&zone->zone_dl_list, zdl)) { 7162 /* 7163 * If the list is bigger than what the caller supplied, just 7164 * count, don't do copyout. 7165 */ 7166 if (++num > dlcount) 7167 continue; 7168 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 7169 mutex_exit(&zone->zone_lock); 7170 zone_rele(zone); 7171 return (set_errno(EFAULT)); 7172 } 7173 idptr++; 7174 } 7175 mutex_exit(&zone->zone_lock); 7176 zone_rele(zone); 7177 7178 /* Increased or decreased, caller should be notified. */ 7179 if (num != dlcount) { 7180 if (copyout(&num, nump, sizeof (num)) != 0) 7181 return (set_errno(EFAULT)); 7182 } 7183 return (0); 7184 } 7185 7186 /* 7187 * Public interface for looking up a zone by zoneid. It's a customized version 7188 * for netstack_zone_create(). It can only be called from the zsd create 7189 * callbacks, since it doesn't have reference on the zone structure hence if 7190 * it is called elsewhere the zone could disappear after the zonehash_lock 7191 * is dropped. 7192 * 7193 * Furthermore it 7194 * 1. Doesn't check the status of the zone. 7195 * 2. It will be called even before zone_init is called, in that case the 7196 * address of zone0 is returned directly, and netstack_zone_create() 7197 * will only assign a value to zone0.zone_netstack, won't break anything. 7198 * 3. Returns without the zone being held. 7199 */ 7200 zone_t * 7201 zone_find_by_id_nolock(zoneid_t zoneid) 7202 { 7203 zone_t *zone; 7204 7205 mutex_enter(&zonehash_lock); 7206 if (zonehashbyid == NULL) 7207 zone = &zone0; 7208 else 7209 zone = zone_find_all_by_id(zoneid); 7210 mutex_exit(&zonehash_lock); 7211 return (zone); 7212 } 7213 7214 /* 7215 * Walk the datalinks for a given zone 7216 */ 7217 int 7218 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 7219 void *data) 7220 { 7221 zone_t *zone; 7222 zone_dl_t *zdl; 7223 datalink_id_t *idarray; 7224 uint_t idcount = 0; 7225 int i, ret = 0; 7226 7227 if ((zone = zone_find_by_id(zoneid)) == NULL) 7228 return (ENOENT); 7229 7230 /* 7231 * We first build an array of linkid's so that we can walk these and 7232 * execute the callback with the zone_lock dropped. 7233 */ 7234 mutex_enter(&zone->zone_lock); 7235 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7236 zdl = list_next(&zone->zone_dl_list, zdl)) { 7237 idcount++; 7238 } 7239 7240 if (idcount == 0) { 7241 mutex_exit(&zone->zone_lock); 7242 zone_rele(zone); 7243 return (0); 7244 } 7245 7246 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7247 if (idarray == NULL) { 7248 mutex_exit(&zone->zone_lock); 7249 zone_rele(zone); 7250 return (ENOMEM); 7251 } 7252 7253 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7254 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7255 idarray[i] = zdl->zdl_id; 7256 } 7257 7258 mutex_exit(&zone->zone_lock); 7259 7260 for (i = 0; i < idcount && ret == 0; i++) { 7261 if ((ret = (*cb)(idarray[i], data)) != 0) 7262 break; 7263 } 7264 7265 zone_rele(zone); 7266 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7267 return (ret); 7268 } 7269 7270 static char * 7271 zone_net_type2name(int type) 7272 { 7273 switch (type) { 7274 case ZONE_NETWORK_ADDRESS: 7275 return (ZONE_NET_ADDRNAME); 7276 case ZONE_NETWORK_DEFROUTER: 7277 return (ZONE_NET_RTRNAME); 7278 default: 7279 return (NULL); 7280 } 7281 } 7282 7283 static int 7284 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7285 { 7286 zone_t *zone; 7287 zone_dl_t *zdl; 7288 nvlist_t *nvl; 7289 int err = 0; 7290 uint8_t *new = NULL; 7291 char *nvname; 7292 int bufsize; 7293 datalink_id_t linkid = znbuf->zn_linkid; 7294 7295 if (secpolicy_zone_config(CRED()) != 0) 7296 return (set_errno(EPERM)); 7297 7298 if (zoneid == GLOBAL_ZONEID) 7299 return (set_errno(EINVAL)); 7300 7301 nvname = zone_net_type2name(znbuf->zn_type); 7302 bufsize = znbuf->zn_len; 7303 new = znbuf->zn_val; 7304 if (nvname == NULL) 7305 return (set_errno(EINVAL)); 7306 7307 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7308 return (set_errno(EINVAL)); 7309 } 7310 7311 mutex_enter(&zone->zone_lock); 7312 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7313 err = ENXIO; 7314 goto done; 7315 } 7316 if ((nvl = zdl->zdl_net) == NULL) { 7317 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7318 err = ENOMEM; 7319 goto done; 7320 } else { 7321 zdl->zdl_net = nvl; 7322 } 7323 } 7324 if (nvlist_exists(nvl, nvname)) { 7325 err = EINVAL; 7326 goto done; 7327 } 7328 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7329 ASSERT(err == 0); 7330 done: 7331 mutex_exit(&zone->zone_lock); 7332 zone_rele(zone); 7333 if (err != 0) 7334 return (set_errno(err)); 7335 else 7336 return (0); 7337 } 7338 7339 static int 7340 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7341 { 7342 zone_t *zone; 7343 zone_dl_t *zdl; 7344 nvlist_t *nvl; 7345 uint8_t *ptr; 7346 uint_t psize; 7347 int err = 0; 7348 char *nvname; 7349 int bufsize; 7350 void *buf; 7351 datalink_id_t linkid = znbuf->zn_linkid; 7352 7353 if (zoneid == GLOBAL_ZONEID) 7354 return (set_errno(EINVAL)); 7355 7356 nvname = zone_net_type2name(znbuf->zn_type); 7357 bufsize = znbuf->zn_len; 7358 buf = znbuf->zn_val; 7359 7360 if (nvname == NULL) 7361 return (set_errno(EINVAL)); 7362 if ((zone = zone_find_by_id(zoneid)) == NULL) 7363 return (set_errno(EINVAL)); 7364 7365 mutex_enter(&zone->zone_lock); 7366 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7367 err = ENXIO; 7368 goto done; 7369 } 7370 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7371 err = ENOENT; 7372 goto done; 7373 } 7374 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7375 ASSERT(err == 0); 7376 7377 if (psize > bufsize) { 7378 err = ENOBUFS; 7379 goto done; 7380 } 7381 znbuf->zn_len = psize; 7382 bcopy(ptr, buf, psize); 7383 done: 7384 mutex_exit(&zone->zone_lock); 7385 zone_rele(zone); 7386 if (err != 0) 7387 return (set_errno(err)); 7388 else 7389 return (0); 7390 } 7391