xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision 1ec00b5abd071c76e2dc0cfa7905965b6b7a89a9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015, Joyent Inc. All rights reserved.
25  * Copyright (c) 2016 by Delphix. All rights reserved.
26  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27  */
28 
29 /*
30  * Zones
31  *
32  *   A zone is a named collection of processes, namespace constraints,
33  *   and other system resources which comprise a secure and manageable
34  *   application containment facility.
35  *
36  *   Zones (represented by the reference counted zone_t) are tracked in
37  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
38  *   (zoneid_t) are used to track zone association.  Zone IDs are
39  *   dynamically generated when the zone is created; if a persistent
40  *   identifier is needed (core files, accounting logs, audit trail,
41  *   etc.), the zone name should be used.
42  *
43  *
44  *   Global Zone:
45  *
46  *   The global zone (zoneid 0) is automatically associated with all
47  *   system resources that have not been bound to a user-created zone.
48  *   This means that even systems where zones are not in active use
49  *   have a global zone, and all processes, mounts, etc. are
50  *   associated with that zone.  The global zone is generally
51  *   unconstrained in terms of privileges and access, though the usual
52  *   credential and privilege based restrictions apply.
53  *
54  *
55  *   Zone States:
56  *
57  *   The states in which a zone may be in and the transitions are as
58  *   follows:
59  *
60  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
61  *   initialized zone is added to the list of active zones on the system but
62  *   isn't accessible.
63  *
64  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
65  *   not yet completed. Not possible to enter the zone, but attributes can
66  *   be retrieved.
67  *
68  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
69  *   ready.  The zone is made visible after the ZSD constructor callbacks are
70  *   executed.  A zone remains in this state until it transitions into
71  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
72  *
73  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
74  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
75  *   state.
76  *
77  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
78  *   successfully started init.   A zone remains in this state until
79  *   zone_shutdown() is called.
80  *
81  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
82  *   killing all processes running in the zone. The zone remains
83  *   in this state until there are no more user processes running in the zone.
84  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
85  *   Since zone_shutdown() is restartable, it may be called successfully
86  *   multiple times for the same zone_t.  Setting of the zone's state to
87  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
88  *   the zone's status without worrying about it being a moving target.
89  *
90  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
91  *   are no more user processes in the zone.  The zone remains in this
92  *   state until there are no more kernel threads associated with the
93  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
94  *   fail.
95  *
96  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
97  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
98  *   join the zone or create kernel threads therein.
99  *
100  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
101  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
102  *   return NULL from now on.
103  *
104  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
105  *   processes or threads doing work on behalf of the zone.  The zone is
106  *   removed from the list of active zones.  zone_destroy() returns, and
107  *   the zone can be recreated.
108  *
109  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
110  *   callbacks are executed, and all memory associated with the zone is
111  *   freed.
112  *
113  *   Threads can wait for the zone to enter a requested state by using
114  *   zone_status_wait() or zone_status_timedwait() with the desired
115  *   state passed in as an argument.  Zone state transitions are
116  *   uni-directional; it is not possible to move back to an earlier state.
117  *
118  *
119  *   Zone-Specific Data:
120  *
121  *   Subsystems needing to maintain zone-specific data can store that
122  *   data using the ZSD mechanism.  This provides a zone-specific data
123  *   store, similar to thread-specific data (see pthread_getspecific(3C)
124  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
125  *   to register callbacks to be invoked when a zone is created, shut
126  *   down, or destroyed.  This can be used to initialize zone-specific
127  *   data for new zones and to clean up when zones go away.
128  *
129  *
130  *   Data Structures:
131  *
132  *   The per-zone structure (zone_t) is reference counted, and freed
133  *   when all references are released.  zone_hold and zone_rele can be
134  *   used to adjust the reference count.  In addition, reference counts
135  *   associated with the cred_t structure are tracked separately using
136  *   zone_cred_hold and zone_cred_rele.
137  *
138  *   Pointers to active zone_t's are stored in two hash tables; one
139  *   for searching by id, the other for searching by name.  Lookups
140  *   can be performed on either basis, using zone_find_by_id and
141  *   zone_find_by_name.  Both return zone_t pointers with the zone
142  *   held, so zone_rele should be called when the pointer is no longer
143  *   needed.  Zones can also be searched by path; zone_find_by_path
144  *   returns the zone with which a path name is associated (global
145  *   zone if the path is not within some other zone's file system
146  *   hierarchy).  This currently requires iterating through each zone,
147  *   so it is slower than an id or name search via a hash table.
148  *
149  *
150  *   Locking:
151  *
152  *   zonehash_lock: This is a top-level global lock used to protect the
153  *       zone hash tables and lists.  Zones cannot be created or destroyed
154  *       while this lock is held.
155  *   zone_status_lock: This is a global lock protecting zone state.
156  *       Zones cannot change state while this lock is held.  It also
157  *       protects the list of kernel threads associated with a zone.
158  *   zone_lock: This is a per-zone lock used to protect several fields of
159  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
160  *       this lock means that the zone cannot go away.
161  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-lwps rctl.
163  *   zone_mem_lock: This is a per-zone lock used to protect the fields
164  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
165  *   zone_rctl_lock: This is a per-zone lock used to protect other rctls,
166  *       currently just max_lofi
167  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
168  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
169  *       list (a list of zones in the ZONE_IS_DEAD state).
170  *
171  *   Ordering requirements:
172  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
173  *       zone_lock --> zsd_key_lock --> pidlock --> p_lock
174  *
175  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
176  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
177  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
178  *
179  *   Blocking memory allocations are permitted while holding any of the
180  *   zone locks.
181  *
182  *
183  *   System Call Interface:
184  *
185  *   The zone subsystem can be managed and queried from user level with
186  *   the following system calls (all subcodes of the primary "zone"
187  *   system call):
188  *   - zone_create: creates a zone with selected attributes (name,
189  *     root path, privileges, resource controls, ZFS datasets)
190  *   - zone_enter: allows the current process to enter a zone
191  *   - zone_getattr: reports attributes of a zone
192  *   - zone_setattr: set attributes of a zone
193  *   - zone_boot: set 'init' running for the zone
194  *   - zone_list: lists all zones active in the system
195  *   - zone_lookup: looks up zone id based on name
196  *   - zone_shutdown: initiates shutdown process (see states above)
197  *   - zone_destroy: completes shutdown process (see states above)
198  *
199  */
200 
201 #include <sys/priv_impl.h>
202 #include <sys/cred.h>
203 #include <c2/audit.h>
204 #include <sys/debug.h>
205 #include <sys/file.h>
206 #include <sys/kmem.h>
207 #include <sys/kstat.h>
208 #include <sys/mutex.h>
209 #include <sys/note.h>
210 #include <sys/pathname.h>
211 #include <sys/proc.h>
212 #include <sys/project.h>
213 #include <sys/sysevent.h>
214 #include <sys/task.h>
215 #include <sys/systm.h>
216 #include <sys/types.h>
217 #include <sys/utsname.h>
218 #include <sys/vnode.h>
219 #include <sys/vfs.h>
220 #include <sys/systeminfo.h>
221 #include <sys/policy.h>
222 #include <sys/cred_impl.h>
223 #include <sys/contract_impl.h>
224 #include <sys/contract/process_impl.h>
225 #include <sys/class.h>
226 #include <sys/pool.h>
227 #include <sys/pool_pset.h>
228 #include <sys/pset.h>
229 #include <sys/strlog.h>
230 #include <sys/sysmacros.h>
231 #include <sys/callb.h>
232 #include <sys/vmparam.h>
233 #include <sys/corectl.h>
234 #include <sys/ipc_impl.h>
235 #include <sys/klpd.h>
236 
237 #include <sys/door.h>
238 #include <sys/cpuvar.h>
239 #include <sys/sdt.h>
240 
241 #include <sys/uadmin.h>
242 #include <sys/session.h>
243 #include <sys/cmn_err.h>
244 #include <sys/modhash.h>
245 #include <sys/sunddi.h>
246 #include <sys/nvpair.h>
247 #include <sys/rctl.h>
248 #include <sys/fss.h>
249 #include <sys/brand.h>
250 #include <sys/zone.h>
251 #include <net/if.h>
252 #include <sys/cpucaps.h>
253 #include <vm/seg.h>
254 #include <sys/mac.h>
255 
256 /*
257  * This constant specifies the number of seconds that threads waiting for
258  * subsystems to release a zone's general-purpose references will wait before
259  * they log the zone's reference counts.  The constant's value shouldn't
260  * be so small that reference counts are unnecessarily reported for zones
261  * whose references are slowly released.  On the other hand, it shouldn't be so
262  * large that users reboot their systems out of frustration over hung zones
263  * before the system logs the zones' reference counts.
264  */
265 #define	ZONE_DESTROY_TIMEOUT_SECS	60
266 
267 /* List of data link IDs which are accessible from the zone */
268 typedef struct zone_dl {
269 	datalink_id_t	zdl_id;
270 	nvlist_t	*zdl_net;
271 	list_node_t	zdl_linkage;
272 } zone_dl_t;
273 
274 /*
275  * cv used to signal that all references to the zone have been released.  This
276  * needs to be global since there may be multiple waiters, and the first to
277  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
278  */
279 static kcondvar_t zone_destroy_cv;
280 /*
281  * Lock used to serialize access to zone_cv.  This could have been per-zone,
282  * but then we'd need another lock for zone_destroy_cv, and why bother?
283  */
284 static kmutex_t zone_status_lock;
285 
286 /*
287  * ZSD-related global variables.
288  */
289 static kmutex_t zsd_key_lock;	/* protects the following two */
290 /*
291  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
292  */
293 static zone_key_t zsd_keyval = 0;
294 /*
295  * Global list of registered keys.  We use this when a new zone is created.
296  */
297 static list_t zsd_registered_keys;
298 
299 int zone_hash_size = 256;
300 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
301 static kmutex_t zonehash_lock;
302 static uint_t zonecount;
303 static id_space_t *zoneid_space;
304 
305 /*
306  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
307  * kernel proper runs, and which manages all other zones.
308  *
309  * Although not declared as static, the variable "zone0" should not be used
310  * except for by code that needs to reference the global zone early on in boot,
311  * before it is fully initialized.  All other consumers should use
312  * 'global_zone'.
313  */
314 zone_t zone0;
315 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
316 
317 /*
318  * List of active zones, protected by zonehash_lock.
319  */
320 static list_t zone_active;
321 
322 /*
323  * List of destroyed zones that still have outstanding cred references.
324  * Used for debugging.  Uses a separate lock to avoid lock ordering
325  * problems in zone_free.
326  */
327 static list_t zone_deathrow;
328 static kmutex_t zone_deathrow_lock;
329 
330 /* number of zones is limited by virtual interface limit in IP */
331 uint_t maxzones = 8192;
332 
333 /* Event channel to sent zone state change notifications */
334 evchan_t *zone_event_chan;
335 
336 /*
337  * This table holds the mapping from kernel zone states to
338  * states visible in the state notification API.
339  * The idea is that we only expose "obvious" states and
340  * do not expose states which are just implementation details.
341  */
342 const char  *zone_status_table[] = {
343 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
344 	ZONE_EVENT_INITIALIZED,		/* initialized */
345 	ZONE_EVENT_READY,		/* ready */
346 	ZONE_EVENT_READY,		/* booting */
347 	ZONE_EVENT_RUNNING,		/* running */
348 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
349 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
350 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
351 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
352 	ZONE_EVENT_UNINITIALIZED,	/* dead */
353 };
354 
355 /*
356  * This array contains the names of the subsystems listed in zone_ref_subsys_t
357  * (see sys/zone.h).
358  */
359 static char *zone_ref_subsys_names[] = {
360 	"NFS",		/* ZONE_REF_NFS */
361 	"NFSv4",	/* ZONE_REF_NFSV4 */
362 	"SMBFS",	/* ZONE_REF_SMBFS */
363 	"MNTFS",	/* ZONE_REF_MNTFS */
364 	"LOFI",		/* ZONE_REF_LOFI */
365 	"VFS",		/* ZONE_REF_VFS */
366 	"IPC"		/* ZONE_REF_IPC */
367 };
368 
369 /*
370  * This isn't static so lint doesn't complain.
371  */
372 rctl_hndl_t rc_zone_cpu_shares;
373 rctl_hndl_t rc_zone_locked_mem;
374 rctl_hndl_t rc_zone_max_swap;
375 rctl_hndl_t rc_zone_max_lofi;
376 rctl_hndl_t rc_zone_cpu_cap;
377 rctl_hndl_t rc_zone_nlwps;
378 rctl_hndl_t rc_zone_nprocs;
379 rctl_hndl_t rc_zone_shmmax;
380 rctl_hndl_t rc_zone_shmmni;
381 rctl_hndl_t rc_zone_semmni;
382 rctl_hndl_t rc_zone_msgmni;
383 
384 const char * const zone_default_initname = "/sbin/init";
385 static char * const zone_prefix = "/zone/";
386 static int zone_shutdown(zoneid_t zoneid);
387 static int zone_add_datalink(zoneid_t, datalink_id_t);
388 static int zone_remove_datalink(zoneid_t, datalink_id_t);
389 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
390 static int zone_set_network(zoneid_t, zone_net_data_t *);
391 static int zone_get_network(zoneid_t, zone_net_data_t *);
392 
393 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
394 
395 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
396 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
397 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
398 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
399     zone_key_t);
400 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
401 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
402     kmutex_t *);
403 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
404     kmutex_t *);
405 
406 /*
407  * Bump this number when you alter the zone syscall interfaces; this is
408  * because we need to have support for previous API versions in libc
409  * to support patching; libc calls into the kernel to determine this number.
410  *
411  * Version 1 of the API is the version originally shipped with Solaris 10
412  * Version 2 alters the zone_create system call in order to support more
413  *     arguments by moving the args into a structure; and to do better
414  *     error reporting when zone_create() fails.
415  * Version 3 alters the zone_create system call in order to support the
416  *     import of ZFS datasets to zones.
417  * Version 4 alters the zone_create system call in order to support
418  *     Trusted Extensions.
419  * Version 5 alters the zone_boot system call, and converts its old
420  *     bootargs parameter to be set by the zone_setattr API instead.
421  * Version 6 adds the flag argument to zone_create.
422  */
423 static const int ZONE_SYSCALL_API_VERSION = 6;
424 
425 /*
426  * Certain filesystems (such as NFS and autofs) need to know which zone
427  * the mount is being placed in.  Because of this, we need to be able to
428  * ensure that a zone isn't in the process of being created/destroyed such
429  * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
430  * it gets added the list of mounted zones, it ends up on the wrong zone's
431  * mount list. Since a zone can't reside on an NFS file system, we don't
432  * have to worry about the zonepath itself.
433  *
434  * The following functions: block_mounts()/resume_mounts() and
435  * mount_in_progress()/mount_completed() are used by zones and the VFS
436  * layer (respectively) to synchronize zone state transitions and new
437  * mounts within a zone. This syncronization is on a per-zone basis, so
438  * activity for one zone will not interfere with activity for another zone.
439  *
440  * The semantics are like a reader-reader lock such that there may
441  * either be multiple mounts (or zone state transitions, if that weren't
442  * serialized by zonehash_lock) in progress at the same time, but not
443  * both.
444  *
445  * We use cv's so the user can ctrl-C out of the operation if it's
446  * taking too long.
447  *
448  * The semantics are such that there is unfair bias towards the
449  * "current" operation.  This means that zone halt may starve if
450  * there is a rapid succession of new mounts coming in to the zone.
451  */
452 /*
453  * Prevent new mounts from progressing to the point of calling
454  * VFS_MOUNT().  If there are already mounts in this "region", wait for
455  * them to complete.
456  */
457 static int
458 block_mounts(zone_t *zp)
459 {
460 	int retval = 0;
461 
462 	/*
463 	 * Since it may block for a long time, block_mounts() shouldn't be
464 	 * called with zonehash_lock held.
465 	 */
466 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
467 	mutex_enter(&zp->zone_mount_lock);
468 	while (zp->zone_mounts_in_progress > 0) {
469 		if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
470 			goto signaled;
471 	}
472 	/*
473 	 * A negative value of mounts_in_progress indicates that mounts
474 	 * have been blocked by (-mounts_in_progress) different callers
475 	 * (remotely possible if two threads enter zone_shutdown at the same
476 	 * time).
477 	 */
478 	zp->zone_mounts_in_progress--;
479 	retval = 1;
480 signaled:
481 	mutex_exit(&zp->zone_mount_lock);
482 	return (retval);
483 }
484 
485 /*
486  * The VFS layer may progress with new mounts as far as we're concerned.
487  * Allow them to progress if we were the last obstacle.
488  */
489 static void
490 resume_mounts(zone_t *zp)
491 {
492 	mutex_enter(&zp->zone_mount_lock);
493 	if (++zp->zone_mounts_in_progress == 0)
494 		cv_broadcast(&zp->zone_mount_cv);
495 	mutex_exit(&zp->zone_mount_lock);
496 }
497 
498 /*
499  * The VFS layer is busy with a mount; this zone should wait until all
500  * of its mounts are completed to progress.
501  */
502 void
503 mount_in_progress(zone_t *zp)
504 {
505 	mutex_enter(&zp->zone_mount_lock);
506 	while (zp->zone_mounts_in_progress < 0)
507 		cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
508 	zp->zone_mounts_in_progress++;
509 	mutex_exit(&zp->zone_mount_lock);
510 }
511 
512 /*
513  * VFS is done with one mount; wake up any waiting block_mounts()
514  * callers if this is the last mount.
515  */
516 void
517 mount_completed(zone_t *zp)
518 {
519 	mutex_enter(&zp->zone_mount_lock);
520 	if (--zp->zone_mounts_in_progress == 0)
521 		cv_broadcast(&zp->zone_mount_cv);
522 	mutex_exit(&zp->zone_mount_lock);
523 }
524 
525 /*
526  * ZSD routines.
527  *
528  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
529  * defined by the pthread_key_create() and related interfaces.
530  *
531  * Kernel subsystems may register one or more data items and/or
532  * callbacks to be executed when a zone is created, shutdown, or
533  * destroyed.
534  *
535  * Unlike the thread counterpart, destructor callbacks will be executed
536  * even if the data pointer is NULL and/or there are no constructor
537  * callbacks, so it is the responsibility of such callbacks to check for
538  * NULL data values if necessary.
539  *
540  * The locking strategy and overall picture is as follows:
541  *
542  * When someone calls zone_key_create(), a template ZSD entry is added to the
543  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
544  * holding that lock all the existing zones are marked as
545  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
546  * zone_zsd list (protected by zone_lock). The global list is updated first
547  * (under zone_key_lock) to make sure that newly created zones use the
548  * most recent list of keys. Then under zonehash_lock we walk the zones
549  * and mark them.  Similar locking is used in zone_key_delete().
550  *
551  * The actual create, shutdown, and destroy callbacks are done without
552  * holding any lock. And zsd_flags are used to ensure that the operations
553  * completed so that when zone_key_create (and zone_create) is done, as well as
554  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
555  * are completed.
556  *
557  * When new zones are created constructor callbacks for all registered ZSD
558  * entries will be called. That also uses the above two phases of marking
559  * what needs to be done, and then running the callbacks without holding
560  * any locks.
561  *
562  * The framework does not provide any locking around zone_getspecific() and
563  * zone_setspecific() apart from that needed for internal consistency, so
564  * callers interested in atomic "test-and-set" semantics will need to provide
565  * their own locking.
566  */
567 
568 /*
569  * Helper function to find the zsd_entry associated with the key in the
570  * given list.
571  */
572 static struct zsd_entry *
573 zsd_find(list_t *l, zone_key_t key)
574 {
575 	struct zsd_entry *zsd;
576 
577 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
578 		if (zsd->zsd_key == key) {
579 			return (zsd);
580 		}
581 	}
582 	return (NULL);
583 }
584 
585 /*
586  * Helper function to find the zsd_entry associated with the key in the
587  * given list. Move it to the front of the list.
588  */
589 static struct zsd_entry *
590 zsd_find_mru(list_t *l, zone_key_t key)
591 {
592 	struct zsd_entry *zsd;
593 
594 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
595 		if (zsd->zsd_key == key) {
596 			/*
597 			 * Move to head of list to keep list in MRU order.
598 			 */
599 			if (zsd != list_head(l)) {
600 				list_remove(l, zsd);
601 				list_insert_head(l, zsd);
602 			}
603 			return (zsd);
604 		}
605 	}
606 	return (NULL);
607 }
608 
609 void
610 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
611     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
612 {
613 	struct zsd_entry *zsdp;
614 	struct zsd_entry *t;
615 	struct zone *zone;
616 	zone_key_t  key;
617 
618 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
619 	zsdp->zsd_data = NULL;
620 	zsdp->zsd_create = create;
621 	zsdp->zsd_shutdown = shutdown;
622 	zsdp->zsd_destroy = destroy;
623 
624 	/*
625 	 * Insert in global list of callbacks. Makes future zone creations
626 	 * see it.
627 	 */
628 	mutex_enter(&zsd_key_lock);
629 	key = zsdp->zsd_key = ++zsd_keyval;
630 	ASSERT(zsd_keyval != 0);
631 	list_insert_tail(&zsd_registered_keys, zsdp);
632 	mutex_exit(&zsd_key_lock);
633 
634 	/*
635 	 * Insert for all existing zones and mark them as needing
636 	 * a create callback.
637 	 */
638 	mutex_enter(&zonehash_lock);	/* stop the world */
639 	for (zone = list_head(&zone_active); zone != NULL;
640 	    zone = list_next(&zone_active, zone)) {
641 		zone_status_t status;
642 
643 		mutex_enter(&zone->zone_lock);
644 
645 		/* Skip zones that are on the way down or not yet up */
646 		status = zone_status_get(zone);
647 		if (status >= ZONE_IS_DOWN ||
648 		    status == ZONE_IS_UNINITIALIZED) {
649 			mutex_exit(&zone->zone_lock);
650 			continue;
651 		}
652 
653 		t = zsd_find_mru(&zone->zone_zsd, key);
654 		if (t != NULL) {
655 			/*
656 			 * A zsd_configure already inserted it after
657 			 * we dropped zsd_key_lock above.
658 			 */
659 			mutex_exit(&zone->zone_lock);
660 			continue;
661 		}
662 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
663 		t->zsd_key = key;
664 		t->zsd_create = create;
665 		t->zsd_shutdown = shutdown;
666 		t->zsd_destroy = destroy;
667 		if (create != NULL) {
668 			t->zsd_flags = ZSD_CREATE_NEEDED;
669 			DTRACE_PROBE2(zsd__create__needed,
670 			    zone_t *, zone, zone_key_t, key);
671 		}
672 		list_insert_tail(&zone->zone_zsd, t);
673 		mutex_exit(&zone->zone_lock);
674 	}
675 	mutex_exit(&zonehash_lock);
676 
677 	if (create != NULL) {
678 		/* Now call the create callback for this key */
679 		zsd_apply_all_zones(zsd_apply_create, key);
680 	}
681 	/*
682 	 * It is safe for consumers to use the key now, make it
683 	 * globally visible. Specifically zone_getspecific() will
684 	 * always successfully return the zone specific data associated
685 	 * with the key.
686 	 */
687 	*keyp = key;
688 
689 }
690 
691 /*
692  * Function called when a module is being unloaded, or otherwise wishes
693  * to unregister its ZSD key and callbacks.
694  *
695  * Remove from the global list and determine the functions that need to
696  * be called under a global lock. Then call the functions without
697  * holding any locks. Finally free up the zone_zsd entries. (The apply
698  * functions need to access the zone_zsd entries to find zsd_data etc.)
699  */
700 int
701 zone_key_delete(zone_key_t key)
702 {
703 	struct zsd_entry *zsdp = NULL;
704 	zone_t *zone;
705 
706 	mutex_enter(&zsd_key_lock);
707 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
708 	if (zsdp == NULL) {
709 		mutex_exit(&zsd_key_lock);
710 		return (-1);
711 	}
712 	list_remove(&zsd_registered_keys, zsdp);
713 	mutex_exit(&zsd_key_lock);
714 
715 	mutex_enter(&zonehash_lock);
716 	for (zone = list_head(&zone_active); zone != NULL;
717 	    zone = list_next(&zone_active, zone)) {
718 		struct zsd_entry *del;
719 
720 		mutex_enter(&zone->zone_lock);
721 		del = zsd_find_mru(&zone->zone_zsd, key);
722 		if (del == NULL) {
723 			/*
724 			 * Somebody else got here first e.g the zone going
725 			 * away.
726 			 */
727 			mutex_exit(&zone->zone_lock);
728 			continue;
729 		}
730 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
731 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
732 		if (del->zsd_shutdown != NULL &&
733 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
734 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
735 			DTRACE_PROBE2(zsd__shutdown__needed,
736 			    zone_t *, zone, zone_key_t, key);
737 		}
738 		if (del->zsd_destroy != NULL &&
739 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
740 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
741 			DTRACE_PROBE2(zsd__destroy__needed,
742 			    zone_t *, zone, zone_key_t, key);
743 		}
744 		mutex_exit(&zone->zone_lock);
745 	}
746 	mutex_exit(&zonehash_lock);
747 	kmem_free(zsdp, sizeof (*zsdp));
748 
749 	/* Now call the shutdown and destroy callback for this key */
750 	zsd_apply_all_zones(zsd_apply_shutdown, key);
751 	zsd_apply_all_zones(zsd_apply_destroy, key);
752 
753 	/* Now we can free up the zsdp structures in each zone */
754 	mutex_enter(&zonehash_lock);
755 	for (zone = list_head(&zone_active); zone != NULL;
756 	    zone = list_next(&zone_active, zone)) {
757 		struct zsd_entry *del;
758 
759 		mutex_enter(&zone->zone_lock);
760 		del = zsd_find(&zone->zone_zsd, key);
761 		if (del != NULL) {
762 			list_remove(&zone->zone_zsd, del);
763 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
764 			kmem_free(del, sizeof (*del));
765 		}
766 		mutex_exit(&zone->zone_lock);
767 	}
768 	mutex_exit(&zonehash_lock);
769 
770 	return (0);
771 }
772 
773 /*
774  * ZSD counterpart of pthread_setspecific().
775  *
776  * Since all zsd callbacks, including those with no create function,
777  * have an entry in zone_zsd, if the key is registered it is part of
778  * the zone_zsd list.
779  * Return an error if the key wasn't registerd.
780  */
781 int
782 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
783 {
784 	struct zsd_entry *t;
785 
786 	mutex_enter(&zone->zone_lock);
787 	t = zsd_find_mru(&zone->zone_zsd, key);
788 	if (t != NULL) {
789 		/*
790 		 * Replace old value with new
791 		 */
792 		t->zsd_data = (void *)data;
793 		mutex_exit(&zone->zone_lock);
794 		return (0);
795 	}
796 	mutex_exit(&zone->zone_lock);
797 	return (-1);
798 }
799 
800 /*
801  * ZSD counterpart of pthread_getspecific().
802  */
803 void *
804 zone_getspecific(zone_key_t key, zone_t *zone)
805 {
806 	struct zsd_entry *t;
807 	void *data;
808 
809 	mutex_enter(&zone->zone_lock);
810 	t = zsd_find_mru(&zone->zone_zsd, key);
811 	data = (t == NULL ? NULL : t->zsd_data);
812 	mutex_exit(&zone->zone_lock);
813 	return (data);
814 }
815 
816 /*
817  * Function used to initialize a zone's list of ZSD callbacks and data
818  * when the zone is being created.  The callbacks are initialized from
819  * the template list (zsd_registered_keys). The constructor callback is
820  * executed later (once the zone exists and with locks dropped).
821  */
822 static void
823 zone_zsd_configure(zone_t *zone)
824 {
825 	struct zsd_entry *zsdp;
826 	struct zsd_entry *t;
827 
828 	ASSERT(MUTEX_HELD(&zonehash_lock));
829 	ASSERT(list_head(&zone->zone_zsd) == NULL);
830 	mutex_enter(&zone->zone_lock);
831 	mutex_enter(&zsd_key_lock);
832 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
833 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
834 		/*
835 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
836 		 * should not have added anything to it.
837 		 */
838 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
839 
840 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
841 		t->zsd_key = zsdp->zsd_key;
842 		t->zsd_create = zsdp->zsd_create;
843 		t->zsd_shutdown = zsdp->zsd_shutdown;
844 		t->zsd_destroy = zsdp->zsd_destroy;
845 		if (zsdp->zsd_create != NULL) {
846 			t->zsd_flags = ZSD_CREATE_NEEDED;
847 			DTRACE_PROBE2(zsd__create__needed,
848 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
849 		}
850 		list_insert_tail(&zone->zone_zsd, t);
851 	}
852 	mutex_exit(&zsd_key_lock);
853 	mutex_exit(&zone->zone_lock);
854 }
855 
856 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
857 
858 /*
859  * Helper function to execute shutdown or destructor callbacks.
860  */
861 static void
862 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
863 {
864 	struct zsd_entry *t;
865 
866 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
867 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
868 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
869 
870 	/*
871 	 * Run the callback solely based on what is registered for the zone
872 	 * in zone_zsd. The global list can change independently of this
873 	 * as keys are registered and unregistered and we don't register new
874 	 * callbacks for a zone that is in the process of going away.
875 	 */
876 	mutex_enter(&zone->zone_lock);
877 	for (t = list_head(&zone->zone_zsd); t != NULL;
878 	    t = list_next(&zone->zone_zsd, t)) {
879 		zone_key_t key = t->zsd_key;
880 
881 		/* Skip if no callbacks registered */
882 
883 		if (ct == ZSD_SHUTDOWN) {
884 			if (t->zsd_shutdown != NULL &&
885 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
886 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
887 				DTRACE_PROBE2(zsd__shutdown__needed,
888 				    zone_t *, zone, zone_key_t, key);
889 			}
890 		} else {
891 			if (t->zsd_destroy != NULL &&
892 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
893 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
894 				DTRACE_PROBE2(zsd__destroy__needed,
895 				    zone_t *, zone, zone_key_t, key);
896 			}
897 		}
898 	}
899 	mutex_exit(&zone->zone_lock);
900 
901 	/* Now call the shutdown and destroy callback for this key */
902 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
903 	zsd_apply_all_keys(zsd_apply_destroy, zone);
904 
905 }
906 
907 /*
908  * Called when the zone is going away; free ZSD-related memory, and
909  * destroy the zone_zsd list.
910  */
911 static void
912 zone_free_zsd(zone_t *zone)
913 {
914 	struct zsd_entry *t, *next;
915 
916 	/*
917 	 * Free all the zsd_entry's we had on this zone.
918 	 */
919 	mutex_enter(&zone->zone_lock);
920 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
921 		next = list_next(&zone->zone_zsd, t);
922 		list_remove(&zone->zone_zsd, t);
923 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
924 		kmem_free(t, sizeof (*t));
925 	}
926 	list_destroy(&zone->zone_zsd);
927 	mutex_exit(&zone->zone_lock);
928 
929 }
930 
931 /*
932  * Apply a function to all zones for particular key value.
933  *
934  * The applyfn has to drop zonehash_lock if it does some work, and
935  * then reacquire it before it returns.
936  * When the lock is dropped we don't follow list_next even
937  * if it is possible to do so without any hazards. This is
938  * because we want the design to allow for the list of zones
939  * to change in any arbitrary way during the time the
940  * lock was dropped.
941  *
942  * It is safe to restart the loop at list_head since the applyfn
943  * changes the zsd_flags as it does work, so a subsequent
944  * pass through will have no effect in applyfn, hence the loop will terminate
945  * in at worst O(N^2).
946  */
947 static void
948 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
949 {
950 	zone_t *zone;
951 
952 	mutex_enter(&zonehash_lock);
953 	zone = list_head(&zone_active);
954 	while (zone != NULL) {
955 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
956 			/* Lock dropped - restart at head */
957 			zone = list_head(&zone_active);
958 		} else {
959 			zone = list_next(&zone_active, zone);
960 		}
961 	}
962 	mutex_exit(&zonehash_lock);
963 }
964 
965 /*
966  * Apply a function to all keys for a particular zone.
967  *
968  * The applyfn has to drop zonehash_lock if it does some work, and
969  * then reacquire it before it returns.
970  * When the lock is dropped we don't follow list_next even
971  * if it is possible to do so without any hazards. This is
972  * because we want the design to allow for the list of zsd callbacks
973  * to change in any arbitrary way during the time the
974  * lock was dropped.
975  *
976  * It is safe to restart the loop at list_head since the applyfn
977  * changes the zsd_flags as it does work, so a subsequent
978  * pass through will have no effect in applyfn, hence the loop will terminate
979  * in at worst O(N^2).
980  */
981 static void
982 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
983 {
984 	struct zsd_entry *t;
985 
986 	mutex_enter(&zone->zone_lock);
987 	t = list_head(&zone->zone_zsd);
988 	while (t != NULL) {
989 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
990 			/* Lock dropped - restart at head */
991 			t = list_head(&zone->zone_zsd);
992 		} else {
993 			t = list_next(&zone->zone_zsd, t);
994 		}
995 	}
996 	mutex_exit(&zone->zone_lock);
997 }
998 
999 /*
1000  * Call the create function for the zone and key if CREATE_NEEDED
1001  * is set.
1002  * If some other thread gets here first and sets CREATE_INPROGRESS, then
1003  * we wait for that thread to complete so that we can ensure that
1004  * all the callbacks are done when we've looped over all zones/keys.
1005  *
1006  * When we call the create function, we drop the global held by the
1007  * caller, and return true to tell the caller it needs to re-evalute the
1008  * state.
1009  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1010  * remains held on exit.
1011  */
1012 static boolean_t
1013 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1014     zone_t *zone, zone_key_t key)
1015 {
1016 	void *result;
1017 	struct zsd_entry *t;
1018 	boolean_t dropped;
1019 
1020 	if (lockp != NULL) {
1021 		ASSERT(MUTEX_HELD(lockp));
1022 	}
1023 	if (zone_lock_held) {
1024 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1025 	} else {
1026 		mutex_enter(&zone->zone_lock);
1027 	}
1028 
1029 	t = zsd_find(&zone->zone_zsd, key);
1030 	if (t == NULL) {
1031 		/*
1032 		 * Somebody else got here first e.g the zone going
1033 		 * away.
1034 		 */
1035 		if (!zone_lock_held)
1036 			mutex_exit(&zone->zone_lock);
1037 		return (B_FALSE);
1038 	}
1039 	dropped = B_FALSE;
1040 	if (zsd_wait_for_inprogress(zone, t, lockp))
1041 		dropped = B_TRUE;
1042 
1043 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1044 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1045 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1046 		DTRACE_PROBE2(zsd__create__inprogress,
1047 		    zone_t *, zone, zone_key_t, key);
1048 		mutex_exit(&zone->zone_lock);
1049 		if (lockp != NULL)
1050 			mutex_exit(lockp);
1051 
1052 		dropped = B_TRUE;
1053 		ASSERT(t->zsd_create != NULL);
1054 		DTRACE_PROBE2(zsd__create__start,
1055 		    zone_t *, zone, zone_key_t, key);
1056 
1057 		result = (*t->zsd_create)(zone->zone_id);
1058 
1059 		DTRACE_PROBE2(zsd__create__end,
1060 		    zone_t *, zone, voidn *, result);
1061 
1062 		ASSERT(result != NULL);
1063 		if (lockp != NULL)
1064 			mutex_enter(lockp);
1065 		mutex_enter(&zone->zone_lock);
1066 		t->zsd_data = result;
1067 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1068 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1069 		cv_broadcast(&t->zsd_cv);
1070 		DTRACE_PROBE2(zsd__create__completed,
1071 		    zone_t *, zone, zone_key_t, key);
1072 	}
1073 	if (!zone_lock_held)
1074 		mutex_exit(&zone->zone_lock);
1075 	return (dropped);
1076 }
1077 
1078 /*
1079  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1080  * is set.
1081  * If some other thread gets here first and sets *_INPROGRESS, then
1082  * we wait for that thread to complete so that we can ensure that
1083  * all the callbacks are done when we've looped over all zones/keys.
1084  *
1085  * When we call the shutdown function, we drop the global held by the
1086  * caller, and return true to tell the caller it needs to re-evalute the
1087  * state.
1088  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1089  * remains held on exit.
1090  */
1091 static boolean_t
1092 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1093     zone_t *zone, zone_key_t key)
1094 {
1095 	struct zsd_entry *t;
1096 	void *data;
1097 	boolean_t dropped;
1098 
1099 	if (lockp != NULL) {
1100 		ASSERT(MUTEX_HELD(lockp));
1101 	}
1102 	if (zone_lock_held) {
1103 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1104 	} else {
1105 		mutex_enter(&zone->zone_lock);
1106 	}
1107 
1108 	t = zsd_find(&zone->zone_zsd, key);
1109 	if (t == NULL) {
1110 		/*
1111 		 * Somebody else got here first e.g the zone going
1112 		 * away.
1113 		 */
1114 		if (!zone_lock_held)
1115 			mutex_exit(&zone->zone_lock);
1116 		return (B_FALSE);
1117 	}
1118 	dropped = B_FALSE;
1119 	if (zsd_wait_for_creator(zone, t, lockp))
1120 		dropped = B_TRUE;
1121 
1122 	if (zsd_wait_for_inprogress(zone, t, lockp))
1123 		dropped = B_TRUE;
1124 
1125 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1126 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1127 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1128 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1129 		    zone_t *, zone, zone_key_t, key);
1130 		mutex_exit(&zone->zone_lock);
1131 		if (lockp != NULL)
1132 			mutex_exit(lockp);
1133 		dropped = B_TRUE;
1134 
1135 		ASSERT(t->zsd_shutdown != NULL);
1136 		data = t->zsd_data;
1137 
1138 		DTRACE_PROBE2(zsd__shutdown__start,
1139 		    zone_t *, zone, zone_key_t, key);
1140 
1141 		(t->zsd_shutdown)(zone->zone_id, data);
1142 		DTRACE_PROBE2(zsd__shutdown__end,
1143 		    zone_t *, zone, zone_key_t, key);
1144 
1145 		if (lockp != NULL)
1146 			mutex_enter(lockp);
1147 		mutex_enter(&zone->zone_lock);
1148 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1149 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1150 		cv_broadcast(&t->zsd_cv);
1151 		DTRACE_PROBE2(zsd__shutdown__completed,
1152 		    zone_t *, zone, zone_key_t, key);
1153 	}
1154 	if (!zone_lock_held)
1155 		mutex_exit(&zone->zone_lock);
1156 	return (dropped);
1157 }
1158 
1159 /*
1160  * Call the destroy function for the zone and key if DESTROY_NEEDED
1161  * is set.
1162  * If some other thread gets here first and sets *_INPROGRESS, then
1163  * we wait for that thread to complete so that we can ensure that
1164  * all the callbacks are done when we've looped over all zones/keys.
1165  *
1166  * When we call the destroy function, we drop the global held by the
1167  * caller, and return true to tell the caller it needs to re-evalute the
1168  * state.
1169  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1170  * remains held on exit.
1171  */
1172 static boolean_t
1173 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1174     zone_t *zone, zone_key_t key)
1175 {
1176 	struct zsd_entry *t;
1177 	void *data;
1178 	boolean_t dropped;
1179 
1180 	if (lockp != NULL) {
1181 		ASSERT(MUTEX_HELD(lockp));
1182 	}
1183 	if (zone_lock_held) {
1184 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1185 	} else {
1186 		mutex_enter(&zone->zone_lock);
1187 	}
1188 
1189 	t = zsd_find(&zone->zone_zsd, key);
1190 	if (t == NULL) {
1191 		/*
1192 		 * Somebody else got here first e.g the zone going
1193 		 * away.
1194 		 */
1195 		if (!zone_lock_held)
1196 			mutex_exit(&zone->zone_lock);
1197 		return (B_FALSE);
1198 	}
1199 	dropped = B_FALSE;
1200 	if (zsd_wait_for_creator(zone, t, lockp))
1201 		dropped = B_TRUE;
1202 
1203 	if (zsd_wait_for_inprogress(zone, t, lockp))
1204 		dropped = B_TRUE;
1205 
1206 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1207 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1208 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1209 		DTRACE_PROBE2(zsd__destroy__inprogress,
1210 		    zone_t *, zone, zone_key_t, key);
1211 		mutex_exit(&zone->zone_lock);
1212 		if (lockp != NULL)
1213 			mutex_exit(lockp);
1214 		dropped = B_TRUE;
1215 
1216 		ASSERT(t->zsd_destroy != NULL);
1217 		data = t->zsd_data;
1218 		DTRACE_PROBE2(zsd__destroy__start,
1219 		    zone_t *, zone, zone_key_t, key);
1220 
1221 		(t->zsd_destroy)(zone->zone_id, data);
1222 		DTRACE_PROBE2(zsd__destroy__end,
1223 		    zone_t *, zone, zone_key_t, key);
1224 
1225 		if (lockp != NULL)
1226 			mutex_enter(lockp);
1227 		mutex_enter(&zone->zone_lock);
1228 		t->zsd_data = NULL;
1229 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1230 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1231 		cv_broadcast(&t->zsd_cv);
1232 		DTRACE_PROBE2(zsd__destroy__completed,
1233 		    zone_t *, zone, zone_key_t, key);
1234 	}
1235 	if (!zone_lock_held)
1236 		mutex_exit(&zone->zone_lock);
1237 	return (dropped);
1238 }
1239 
1240 /*
1241  * Wait for any CREATE_NEEDED flag to be cleared.
1242  * Returns true if lockp was temporarily dropped while waiting.
1243  */
1244 static boolean_t
1245 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1246 {
1247 	boolean_t dropped = B_FALSE;
1248 
1249 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1250 		DTRACE_PROBE2(zsd__wait__for__creator,
1251 		    zone_t *, zone, struct zsd_entry *, t);
1252 		if (lockp != NULL) {
1253 			dropped = B_TRUE;
1254 			mutex_exit(lockp);
1255 		}
1256 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1257 		if (lockp != NULL) {
1258 			/* First drop zone_lock to preserve order */
1259 			mutex_exit(&zone->zone_lock);
1260 			mutex_enter(lockp);
1261 			mutex_enter(&zone->zone_lock);
1262 		}
1263 	}
1264 	return (dropped);
1265 }
1266 
1267 /*
1268  * Wait for any INPROGRESS flag to be cleared.
1269  * Returns true if lockp was temporarily dropped while waiting.
1270  */
1271 static boolean_t
1272 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1273 {
1274 	boolean_t dropped = B_FALSE;
1275 
1276 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1277 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1278 		    zone_t *, zone, struct zsd_entry *, t);
1279 		if (lockp != NULL) {
1280 			dropped = B_TRUE;
1281 			mutex_exit(lockp);
1282 		}
1283 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1284 		if (lockp != NULL) {
1285 			/* First drop zone_lock to preserve order */
1286 			mutex_exit(&zone->zone_lock);
1287 			mutex_enter(lockp);
1288 			mutex_enter(&zone->zone_lock);
1289 		}
1290 	}
1291 	return (dropped);
1292 }
1293 
1294 /*
1295  * Frees memory associated with the zone dataset list.
1296  */
1297 static void
1298 zone_free_datasets(zone_t *zone)
1299 {
1300 	zone_dataset_t *t, *next;
1301 
1302 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1303 		next = list_next(&zone->zone_datasets, t);
1304 		list_remove(&zone->zone_datasets, t);
1305 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1306 		kmem_free(t, sizeof (*t));
1307 	}
1308 	list_destroy(&zone->zone_datasets);
1309 }
1310 
1311 /*
1312  * zone.cpu-shares resource control support.
1313  */
1314 /*ARGSUSED*/
1315 static rctl_qty_t
1316 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1317 {
1318 	ASSERT(MUTEX_HELD(&p->p_lock));
1319 	return (p->p_zone->zone_shares);
1320 }
1321 
1322 /*ARGSUSED*/
1323 static int
1324 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1325     rctl_qty_t nv)
1326 {
1327 	ASSERT(MUTEX_HELD(&p->p_lock));
1328 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1329 	if (e->rcep_p.zone == NULL)
1330 		return (0);
1331 
1332 	e->rcep_p.zone->zone_shares = nv;
1333 	return (0);
1334 }
1335 
1336 static rctl_ops_t zone_cpu_shares_ops = {
1337 	rcop_no_action,
1338 	zone_cpu_shares_usage,
1339 	zone_cpu_shares_set,
1340 	rcop_no_test
1341 };
1342 
1343 /*
1344  * zone.cpu-cap resource control support.
1345  */
1346 /*ARGSUSED*/
1347 static rctl_qty_t
1348 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1349 {
1350 	ASSERT(MUTEX_HELD(&p->p_lock));
1351 	return (cpucaps_zone_get(p->p_zone));
1352 }
1353 
1354 /*ARGSUSED*/
1355 static int
1356 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1357     rctl_qty_t nv)
1358 {
1359 	zone_t *zone = e->rcep_p.zone;
1360 
1361 	ASSERT(MUTEX_HELD(&p->p_lock));
1362 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1363 
1364 	if (zone == NULL)
1365 		return (0);
1366 
1367 	/*
1368 	 * set cap to the new value.
1369 	 */
1370 	return (cpucaps_zone_set(zone, nv));
1371 }
1372 
1373 static rctl_ops_t zone_cpu_cap_ops = {
1374 	rcop_no_action,
1375 	zone_cpu_cap_get,
1376 	zone_cpu_cap_set,
1377 	rcop_no_test
1378 };
1379 
1380 /*ARGSUSED*/
1381 static rctl_qty_t
1382 zone_lwps_usage(rctl_t *r, proc_t *p)
1383 {
1384 	rctl_qty_t nlwps;
1385 	zone_t *zone = p->p_zone;
1386 
1387 	ASSERT(MUTEX_HELD(&p->p_lock));
1388 
1389 	mutex_enter(&zone->zone_nlwps_lock);
1390 	nlwps = zone->zone_nlwps;
1391 	mutex_exit(&zone->zone_nlwps_lock);
1392 
1393 	return (nlwps);
1394 }
1395 
1396 /*ARGSUSED*/
1397 static int
1398 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1399     rctl_qty_t incr, uint_t flags)
1400 {
1401 	rctl_qty_t nlwps;
1402 
1403 	ASSERT(MUTEX_HELD(&p->p_lock));
1404 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1405 	if (e->rcep_p.zone == NULL)
1406 		return (0);
1407 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1408 	nlwps = e->rcep_p.zone->zone_nlwps;
1409 
1410 	if (nlwps + incr > rcntl->rcv_value)
1411 		return (1);
1412 
1413 	return (0);
1414 }
1415 
1416 /*ARGSUSED*/
1417 static int
1418 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1419 {
1420 	ASSERT(MUTEX_HELD(&p->p_lock));
1421 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1422 	if (e->rcep_p.zone == NULL)
1423 		return (0);
1424 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1425 	return (0);
1426 }
1427 
1428 static rctl_ops_t zone_lwps_ops = {
1429 	rcop_no_action,
1430 	zone_lwps_usage,
1431 	zone_lwps_set,
1432 	zone_lwps_test,
1433 };
1434 
1435 /*ARGSUSED*/
1436 static rctl_qty_t
1437 zone_procs_usage(rctl_t *r, proc_t *p)
1438 {
1439 	rctl_qty_t nprocs;
1440 	zone_t *zone = p->p_zone;
1441 
1442 	ASSERT(MUTEX_HELD(&p->p_lock));
1443 
1444 	mutex_enter(&zone->zone_nlwps_lock);
1445 	nprocs = zone->zone_nprocs;
1446 	mutex_exit(&zone->zone_nlwps_lock);
1447 
1448 	return (nprocs);
1449 }
1450 
1451 /*ARGSUSED*/
1452 static int
1453 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1454     rctl_qty_t incr, uint_t flags)
1455 {
1456 	rctl_qty_t nprocs;
1457 
1458 	ASSERT(MUTEX_HELD(&p->p_lock));
1459 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1460 	if (e->rcep_p.zone == NULL)
1461 		return (0);
1462 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1463 	nprocs = e->rcep_p.zone->zone_nprocs;
1464 
1465 	if (nprocs + incr > rcntl->rcv_value)
1466 		return (1);
1467 
1468 	return (0);
1469 }
1470 
1471 /*ARGSUSED*/
1472 static int
1473 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1474 {
1475 	ASSERT(MUTEX_HELD(&p->p_lock));
1476 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1477 	if (e->rcep_p.zone == NULL)
1478 		return (0);
1479 	e->rcep_p.zone->zone_nprocs_ctl = nv;
1480 	return (0);
1481 }
1482 
1483 static rctl_ops_t zone_procs_ops = {
1484 	rcop_no_action,
1485 	zone_procs_usage,
1486 	zone_procs_set,
1487 	zone_procs_test,
1488 };
1489 
1490 /*ARGSUSED*/
1491 static rctl_qty_t
1492 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1493 {
1494 	ASSERT(MUTEX_HELD(&p->p_lock));
1495 	return (p->p_zone->zone_shmmax);
1496 }
1497 
1498 /*ARGSUSED*/
1499 static int
1500 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1501     rctl_qty_t incr, uint_t flags)
1502 {
1503 	rctl_qty_t v;
1504 	ASSERT(MUTEX_HELD(&p->p_lock));
1505 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1506 	v = e->rcep_p.zone->zone_shmmax + incr;
1507 	if (v > rval->rcv_value)
1508 		return (1);
1509 	return (0);
1510 }
1511 
1512 static rctl_ops_t zone_shmmax_ops = {
1513 	rcop_no_action,
1514 	zone_shmmax_usage,
1515 	rcop_no_set,
1516 	zone_shmmax_test
1517 };
1518 
1519 /*ARGSUSED*/
1520 static rctl_qty_t
1521 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1522 {
1523 	ASSERT(MUTEX_HELD(&p->p_lock));
1524 	return (p->p_zone->zone_ipc.ipcq_shmmni);
1525 }
1526 
1527 /*ARGSUSED*/
1528 static int
1529 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1530     rctl_qty_t incr, uint_t flags)
1531 {
1532 	rctl_qty_t v;
1533 	ASSERT(MUTEX_HELD(&p->p_lock));
1534 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1535 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1536 	if (v > rval->rcv_value)
1537 		return (1);
1538 	return (0);
1539 }
1540 
1541 static rctl_ops_t zone_shmmni_ops = {
1542 	rcop_no_action,
1543 	zone_shmmni_usage,
1544 	rcop_no_set,
1545 	zone_shmmni_test
1546 };
1547 
1548 /*ARGSUSED*/
1549 static rctl_qty_t
1550 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1551 {
1552 	ASSERT(MUTEX_HELD(&p->p_lock));
1553 	return (p->p_zone->zone_ipc.ipcq_semmni);
1554 }
1555 
1556 /*ARGSUSED*/
1557 static int
1558 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1559     rctl_qty_t incr, uint_t flags)
1560 {
1561 	rctl_qty_t v;
1562 	ASSERT(MUTEX_HELD(&p->p_lock));
1563 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1564 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1565 	if (v > rval->rcv_value)
1566 		return (1);
1567 	return (0);
1568 }
1569 
1570 static rctl_ops_t zone_semmni_ops = {
1571 	rcop_no_action,
1572 	zone_semmni_usage,
1573 	rcop_no_set,
1574 	zone_semmni_test
1575 };
1576 
1577 /*ARGSUSED*/
1578 static rctl_qty_t
1579 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1580 {
1581 	ASSERT(MUTEX_HELD(&p->p_lock));
1582 	return (p->p_zone->zone_ipc.ipcq_msgmni);
1583 }
1584 
1585 /*ARGSUSED*/
1586 static int
1587 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1588     rctl_qty_t incr, uint_t flags)
1589 {
1590 	rctl_qty_t v;
1591 	ASSERT(MUTEX_HELD(&p->p_lock));
1592 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1593 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1594 	if (v > rval->rcv_value)
1595 		return (1);
1596 	return (0);
1597 }
1598 
1599 static rctl_ops_t zone_msgmni_ops = {
1600 	rcop_no_action,
1601 	zone_msgmni_usage,
1602 	rcop_no_set,
1603 	zone_msgmni_test
1604 };
1605 
1606 /*ARGSUSED*/
1607 static rctl_qty_t
1608 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1609 {
1610 	rctl_qty_t q;
1611 	ASSERT(MUTEX_HELD(&p->p_lock));
1612 	mutex_enter(&p->p_zone->zone_mem_lock);
1613 	q = p->p_zone->zone_locked_mem;
1614 	mutex_exit(&p->p_zone->zone_mem_lock);
1615 	return (q);
1616 }
1617 
1618 /*ARGSUSED*/
1619 static int
1620 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1621     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1622 {
1623 	rctl_qty_t q;
1624 	zone_t *z;
1625 
1626 	z = e->rcep_p.zone;
1627 	ASSERT(MUTEX_HELD(&p->p_lock));
1628 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1629 	q = z->zone_locked_mem;
1630 	if (q + incr > rcntl->rcv_value)
1631 		return (1);
1632 	return (0);
1633 }
1634 
1635 /*ARGSUSED*/
1636 static int
1637 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1638     rctl_qty_t nv)
1639 {
1640 	ASSERT(MUTEX_HELD(&p->p_lock));
1641 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1642 	if (e->rcep_p.zone == NULL)
1643 		return (0);
1644 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1645 	return (0);
1646 }
1647 
1648 static rctl_ops_t zone_locked_mem_ops = {
1649 	rcop_no_action,
1650 	zone_locked_mem_usage,
1651 	zone_locked_mem_set,
1652 	zone_locked_mem_test
1653 };
1654 
1655 /*ARGSUSED*/
1656 static rctl_qty_t
1657 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1658 {
1659 	rctl_qty_t q;
1660 	zone_t *z = p->p_zone;
1661 
1662 	ASSERT(MUTEX_HELD(&p->p_lock));
1663 	mutex_enter(&z->zone_mem_lock);
1664 	q = z->zone_max_swap;
1665 	mutex_exit(&z->zone_mem_lock);
1666 	return (q);
1667 }
1668 
1669 /*ARGSUSED*/
1670 static int
1671 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1672     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1673 {
1674 	rctl_qty_t q;
1675 	zone_t *z;
1676 
1677 	z = e->rcep_p.zone;
1678 	ASSERT(MUTEX_HELD(&p->p_lock));
1679 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1680 	q = z->zone_max_swap;
1681 	if (q + incr > rcntl->rcv_value)
1682 		return (1);
1683 	return (0);
1684 }
1685 
1686 /*ARGSUSED*/
1687 static int
1688 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1689     rctl_qty_t nv)
1690 {
1691 	ASSERT(MUTEX_HELD(&p->p_lock));
1692 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1693 	if (e->rcep_p.zone == NULL)
1694 		return (0);
1695 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1696 	return (0);
1697 }
1698 
1699 static rctl_ops_t zone_max_swap_ops = {
1700 	rcop_no_action,
1701 	zone_max_swap_usage,
1702 	zone_max_swap_set,
1703 	zone_max_swap_test
1704 };
1705 
1706 /*ARGSUSED*/
1707 static rctl_qty_t
1708 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1709 {
1710 	rctl_qty_t q;
1711 	zone_t *z = p->p_zone;
1712 
1713 	ASSERT(MUTEX_HELD(&p->p_lock));
1714 	mutex_enter(&z->zone_rctl_lock);
1715 	q = z->zone_max_lofi;
1716 	mutex_exit(&z->zone_rctl_lock);
1717 	return (q);
1718 }
1719 
1720 /*ARGSUSED*/
1721 static int
1722 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1723     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1724 {
1725 	rctl_qty_t q;
1726 	zone_t *z;
1727 
1728 	z = e->rcep_p.zone;
1729 	ASSERT(MUTEX_HELD(&p->p_lock));
1730 	ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1731 	q = z->zone_max_lofi;
1732 	if (q + incr > rcntl->rcv_value)
1733 		return (1);
1734 	return (0);
1735 }
1736 
1737 /*ARGSUSED*/
1738 static int
1739 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1740     rctl_qty_t nv)
1741 {
1742 	ASSERT(MUTEX_HELD(&p->p_lock));
1743 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1744 	if (e->rcep_p.zone == NULL)
1745 		return (0);
1746 	e->rcep_p.zone->zone_max_lofi_ctl = nv;
1747 	return (0);
1748 }
1749 
1750 static rctl_ops_t zone_max_lofi_ops = {
1751 	rcop_no_action,
1752 	zone_max_lofi_usage,
1753 	zone_max_lofi_set,
1754 	zone_max_lofi_test
1755 };
1756 
1757 /*
1758  * Helper function to brand the zone with a unique ID.
1759  */
1760 static void
1761 zone_uniqid(zone_t *zone)
1762 {
1763 	static uint64_t uniqid = 0;
1764 
1765 	ASSERT(MUTEX_HELD(&zonehash_lock));
1766 	zone->zone_uniqid = uniqid++;
1767 }
1768 
1769 /*
1770  * Returns a held pointer to the "kcred" for the specified zone.
1771  */
1772 struct cred *
1773 zone_get_kcred(zoneid_t zoneid)
1774 {
1775 	zone_t *zone;
1776 	cred_t *cr;
1777 
1778 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1779 		return (NULL);
1780 	cr = zone->zone_kcred;
1781 	crhold(cr);
1782 	zone_rele(zone);
1783 	return (cr);
1784 }
1785 
1786 static int
1787 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1788 {
1789 	zone_t *zone = ksp->ks_private;
1790 	zone_kstat_t *zk = ksp->ks_data;
1791 
1792 	if (rw == KSTAT_WRITE)
1793 		return (EACCES);
1794 
1795 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1796 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1797 	return (0);
1798 }
1799 
1800 static int
1801 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1802 {
1803 	zone_t *zone = ksp->ks_private;
1804 	zone_kstat_t *zk = ksp->ks_data;
1805 
1806 	if (rw == KSTAT_WRITE)
1807 		return (EACCES);
1808 
1809 	zk->zk_usage.value.ui64 = zone->zone_nprocs;
1810 	zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1811 	return (0);
1812 }
1813 
1814 static int
1815 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1816 {
1817 	zone_t *zone = ksp->ks_private;
1818 	zone_kstat_t *zk = ksp->ks_data;
1819 
1820 	if (rw == KSTAT_WRITE)
1821 		return (EACCES);
1822 
1823 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1824 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1825 	return (0);
1826 }
1827 
1828 static kstat_t *
1829 zone_kstat_create_common(zone_t *zone, char *name,
1830     int (*updatefunc) (kstat_t *, int))
1831 {
1832 	kstat_t *ksp;
1833 	zone_kstat_t *zk;
1834 
1835 	ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1836 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1837 	    KSTAT_FLAG_VIRTUAL);
1838 
1839 	if (ksp == NULL)
1840 		return (NULL);
1841 
1842 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1843 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1844 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1845 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1846 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1847 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1848 	ksp->ks_update = updatefunc;
1849 	ksp->ks_private = zone;
1850 	kstat_install(ksp);
1851 	return (ksp);
1852 }
1853 
1854 
1855 static int
1856 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1857 {
1858 	zone_t *zone = ksp->ks_private;
1859 	zone_mcap_kstat_t *zmp = ksp->ks_data;
1860 
1861 	if (rw == KSTAT_WRITE)
1862 		return (EACCES);
1863 
1864 	zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1865 	zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1866 	zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1867 	zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1868 	zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1869 
1870 	return (0);
1871 }
1872 
1873 static kstat_t *
1874 zone_mcap_kstat_create(zone_t *zone)
1875 {
1876 	kstat_t *ksp;
1877 	zone_mcap_kstat_t *zmp;
1878 
1879 	if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1880 	    zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1881 	    sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1882 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1883 		return (NULL);
1884 
1885 	if (zone->zone_id != GLOBAL_ZONEID)
1886 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1887 
1888 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1889 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1890 	ksp->ks_lock = &zone->zone_mcap_lock;
1891 	zone->zone_mcap_stats = zmp;
1892 
1893 	/* The kstat "name" field is not large enough for a full zonename */
1894 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1895 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1896 	kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1897 	kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1898 	kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1899 	kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1900 	kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1901 	    KSTAT_DATA_UINT64);
1902 
1903 	ksp->ks_update = zone_mcap_kstat_update;
1904 	ksp->ks_private = zone;
1905 
1906 	kstat_install(ksp);
1907 	return (ksp);
1908 }
1909 
1910 static int
1911 zone_misc_kstat_update(kstat_t *ksp, int rw)
1912 {
1913 	zone_t *zone = ksp->ks_private;
1914 	zone_misc_kstat_t *zmp = ksp->ks_data;
1915 	hrtime_t hrtime;
1916 	uint64_t tmp;
1917 
1918 	if (rw == KSTAT_WRITE)
1919 		return (EACCES);
1920 
1921 	tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_STIME);
1922 	hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1923 	scalehrtime(&hrtime);
1924 	zmp->zm_stime.value.ui64 = hrtime;
1925 
1926 	tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_UTIME);
1927 	hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1928 	scalehrtime(&hrtime);
1929 	zmp->zm_utime.value.ui64 = hrtime;
1930 
1931 	tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_WTIME);
1932 	hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1933 	scalehrtime(&hrtime);
1934 	zmp->zm_wtime.value.ui64 = hrtime;
1935 
1936 	zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1937 	zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1938 	zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1939 
1940 	zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1941 	zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1942 	zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1943 	zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1944 
1945 	zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1946 
1947 	zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1948 	zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1949 
1950 	return (0);
1951 }
1952 
1953 static kstat_t *
1954 zone_misc_kstat_create(zone_t *zone)
1955 {
1956 	kstat_t *ksp;
1957 	zone_misc_kstat_t *zmp;
1958 
1959 	if ((ksp = kstat_create_zone("zones", zone->zone_id,
1960 	    zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1961 	    sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1962 	    KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1963 		return (NULL);
1964 
1965 	if (zone->zone_id != GLOBAL_ZONEID)
1966 		kstat_zone_add(ksp, GLOBAL_ZONEID);
1967 
1968 	zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1969 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1970 	ksp->ks_lock = &zone->zone_misc_lock;
1971 	zone->zone_misc_stats = zmp;
1972 
1973 	/* The kstat "name" field is not large enough for a full zonename */
1974 	kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1975 	kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1976 	kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1977 	kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1978 	kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1979 	kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1980 	kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1981 	kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1982 	    KSTAT_DATA_UINT32);
1983 	kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1984 	kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1985 	    KSTAT_DATA_UINT32);
1986 	kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1987 	kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1988 	kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1989 	    KSTAT_DATA_UINT32);
1990 	kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1991 	kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1992 
1993 	ksp->ks_update = zone_misc_kstat_update;
1994 	ksp->ks_private = zone;
1995 
1996 	kstat_install(ksp);
1997 	return (ksp);
1998 }
1999 
2000 static void
2001 zone_kstat_create(zone_t *zone)
2002 {
2003 	zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
2004 	    "lockedmem", zone_lockedmem_kstat_update);
2005 	zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
2006 	    "swapresv", zone_swapresv_kstat_update);
2007 	zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
2008 	    "nprocs", zone_nprocs_kstat_update);
2009 
2010 	if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2011 		zone->zone_mcap_stats = kmem_zalloc(
2012 		    sizeof (zone_mcap_kstat_t), KM_SLEEP);
2013 	}
2014 
2015 	if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2016 		zone->zone_misc_stats = kmem_zalloc(
2017 		    sizeof (zone_misc_kstat_t), KM_SLEEP);
2018 	}
2019 }
2020 
2021 static void
2022 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2023 {
2024 	void *data;
2025 
2026 	if (*pkstat != NULL) {
2027 		data = (*pkstat)->ks_data;
2028 		kstat_delete(*pkstat);
2029 		kmem_free(data, datasz);
2030 		*pkstat = NULL;
2031 	}
2032 }
2033 
2034 static void
2035 zone_kstat_delete(zone_t *zone)
2036 {
2037 	zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2038 	    sizeof (zone_kstat_t));
2039 	zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2040 	    sizeof (zone_kstat_t));
2041 	zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2042 	    sizeof (zone_kstat_t));
2043 	zone_kstat_delete_common(&zone->zone_mcap_ksp,
2044 	    sizeof (zone_mcap_kstat_t));
2045 	zone_kstat_delete_common(&zone->zone_misc_ksp,
2046 	    sizeof (zone_misc_kstat_t));
2047 }
2048 
2049 /*
2050  * Called very early on in boot to initialize the ZSD list so that
2051  * zone_key_create() can be called before zone_init().  It also initializes
2052  * portions of zone0 which may be used before zone_init() is called.  The
2053  * variable "global_zone" will be set when zone0 is fully initialized by
2054  * zone_init().
2055  */
2056 void
2057 zone_zsd_init(void)
2058 {
2059 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2060 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2061 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2062 	    offsetof(struct zsd_entry, zsd_linkage));
2063 	list_create(&zone_active, sizeof (zone_t),
2064 	    offsetof(zone_t, zone_linkage));
2065 	list_create(&zone_deathrow, sizeof (zone_t),
2066 	    offsetof(zone_t, zone_linkage));
2067 
2068 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2069 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2070 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2071 	zone0.zone_shares = 1;
2072 	zone0.zone_nlwps = 0;
2073 	zone0.zone_nlwps_ctl = INT_MAX;
2074 	zone0.zone_nprocs = 0;
2075 	zone0.zone_nprocs_ctl = INT_MAX;
2076 	zone0.zone_locked_mem = 0;
2077 	zone0.zone_locked_mem_ctl = UINT64_MAX;
2078 	ASSERT(zone0.zone_max_swap == 0);
2079 	zone0.zone_max_swap_ctl = UINT64_MAX;
2080 	zone0.zone_max_lofi = 0;
2081 	zone0.zone_max_lofi_ctl = UINT64_MAX;
2082 	zone0.zone_shmmax = 0;
2083 	zone0.zone_ipc.ipcq_shmmni = 0;
2084 	zone0.zone_ipc.ipcq_semmni = 0;
2085 	zone0.zone_ipc.ipcq_msgmni = 0;
2086 	zone0.zone_name = GLOBAL_ZONENAME;
2087 	zone0.zone_nodename = utsname.nodename;
2088 	zone0.zone_domain = srpc_domain;
2089 	zone0.zone_hostid = HW_INVALID_HOSTID;
2090 	zone0.zone_fs_allowed = NULL;
2091 	psecflags_default(&zone0.zone_secflags);
2092 	zone0.zone_ref = 1;
2093 	zone0.zone_id = GLOBAL_ZONEID;
2094 	zone0.zone_status = ZONE_IS_RUNNING;
2095 	zone0.zone_rootpath = "/";
2096 	zone0.zone_rootpathlen = 2;
2097 	zone0.zone_psetid = ZONE_PS_INVAL;
2098 	zone0.zone_ncpus = 0;
2099 	zone0.zone_ncpus_online = 0;
2100 	zone0.zone_proc_initpid = 1;
2101 	zone0.zone_initname = initname;
2102 	zone0.zone_lockedmem_kstat = NULL;
2103 	zone0.zone_swapresv_kstat = NULL;
2104 	zone0.zone_nprocs_kstat = NULL;
2105 
2106 	list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2107 	    offsetof(zone_ref_t, zref_linkage));
2108 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2109 	    offsetof(struct zsd_entry, zsd_linkage));
2110 	list_insert_head(&zone_active, &zone0);
2111 
2112 	/*
2113 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2114 	 * to anything meaningful.  It is assigned to be 'rootdir' in
2115 	 * vfs_mountroot().
2116 	 */
2117 	zone0.zone_rootvp = NULL;
2118 	zone0.zone_vfslist = NULL;
2119 	zone0.zone_bootargs = initargs;
2120 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2121 	/*
2122 	 * The global zone has all privileges
2123 	 */
2124 	priv_fillset(zone0.zone_privset);
2125 	/*
2126 	 * Add p0 to the global zone
2127 	 */
2128 	zone0.zone_zsched = &p0;
2129 	p0.p_zone = &zone0;
2130 }
2131 
2132 /*
2133  * Compute a hash value based on the contents of the label and the DOI.  The
2134  * hash algorithm is somewhat arbitrary, but is based on the observation that
2135  * humans will likely pick labels that differ by amounts that work out to be
2136  * multiples of the number of hash chains, and thus stirring in some primes
2137  * should help.
2138  */
2139 static uint_t
2140 hash_bylabel(void *hdata, mod_hash_key_t key)
2141 {
2142 	const ts_label_t *lab = (ts_label_t *)key;
2143 	const uint32_t *up, *ue;
2144 	uint_t hash;
2145 	int i;
2146 
2147 	_NOTE(ARGUNUSED(hdata));
2148 
2149 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
2150 	/* we depend on alignment of label, but not representation */
2151 	up = (const uint32_t *)&lab->tsl_label;
2152 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2153 	i = 1;
2154 	while (up < ue) {
2155 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2156 		hash += *up + (*up << ((i % 16) + 1));
2157 		up++;
2158 		i++;
2159 	}
2160 	return (hash);
2161 }
2162 
2163 /*
2164  * All that mod_hash cares about here is zero (equal) versus non-zero (not
2165  * equal).  This may need to be changed if less than / greater than is ever
2166  * needed.
2167  */
2168 static int
2169 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2170 {
2171 	ts_label_t *lab1 = (ts_label_t *)key1;
2172 	ts_label_t *lab2 = (ts_label_t *)key2;
2173 
2174 	return (label_equal(lab1, lab2) ? 0 : 1);
2175 }
2176 
2177 /*
2178  * Called by main() to initialize the zones framework.
2179  */
2180 void
2181 zone_init(void)
2182 {
2183 	rctl_dict_entry_t *rde;
2184 	rctl_val_t *dval;
2185 	rctl_set_t *set;
2186 	rctl_alloc_gp_t *gp;
2187 	rctl_entity_p_t e;
2188 	int res;
2189 
2190 	ASSERT(curproc == &p0);
2191 
2192 	/*
2193 	 * Create ID space for zone IDs.  ID 0 is reserved for the
2194 	 * global zone.
2195 	 */
2196 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2197 
2198 	/*
2199 	 * Initialize generic zone resource controls, if any.
2200 	 */
2201 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2202 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2203 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2204 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2205 
2206 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2207 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2208 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2209 	    RCTL_GLOBAL_INFINITE,
2210 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2211 
2212 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2213 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2214 	    INT_MAX, INT_MAX, &zone_lwps_ops);
2215 
2216 	rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2217 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2218 	    INT_MAX, INT_MAX, &zone_procs_ops);
2219 
2220 	/*
2221 	 * System V IPC resource controls
2222 	 */
2223 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2224 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2225 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2226 
2227 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
2228 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2229 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2230 
2231 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2232 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2233 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2234 
2235 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2236 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2237 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2238 
2239 	/*
2240 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
2241 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2242 	 */
2243 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2244 	bzero(dval, sizeof (rctl_val_t));
2245 	dval->rcv_value = 1;
2246 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
2247 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2248 	dval->rcv_action_recip_pid = -1;
2249 
2250 	rde = rctl_dict_lookup("zone.cpu-shares");
2251 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2252 
2253 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2254 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2255 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2256 	    &zone_locked_mem_ops);
2257 
2258 	rc_zone_max_swap = rctl_register("zone.max-swap",
2259 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2260 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2261 	    &zone_max_swap_ops);
2262 
2263 	rc_zone_max_lofi = rctl_register("zone.max-lofi",
2264 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2265 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2266 	    &zone_max_lofi_ops);
2267 
2268 	/*
2269 	 * Initialize the ``global zone''.
2270 	 */
2271 	set = rctl_set_create();
2272 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2273 	mutex_enter(&p0.p_lock);
2274 	e.rcep_p.zone = &zone0;
2275 	e.rcep_t = RCENTITY_ZONE;
2276 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2277 	    gp);
2278 
2279 	zone0.zone_nlwps = p0.p_lwpcnt;
2280 	zone0.zone_nprocs = 1;
2281 	zone0.zone_ntasks = 1;
2282 	mutex_exit(&p0.p_lock);
2283 	zone0.zone_restart_init = B_TRUE;
2284 	zone0.zone_brand = &native_brand;
2285 	rctl_prealloc_destroy(gp);
2286 	/*
2287 	 * pool_default hasn't been initialized yet, so we let pool_init()
2288 	 * take care of making sure the global zone is in the default pool.
2289 	 */
2290 
2291 	/*
2292 	 * Initialize global zone kstats
2293 	 */
2294 	zone_kstat_create(&zone0);
2295 
2296 	/*
2297 	 * Initialize zone label.
2298 	 * mlp are initialized when tnzonecfg is loaded.
2299 	 */
2300 	zone0.zone_slabel = l_admin_low;
2301 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2302 	label_hold(l_admin_low);
2303 
2304 	/*
2305 	 * Initialise the lock for the database structure used by mntfs.
2306 	 */
2307 	rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2308 
2309 	zone0.zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
2310 
2311 	mutex_enter(&zonehash_lock);
2312 	zone_uniqid(&zone0);
2313 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2314 
2315 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2316 	    mod_hash_null_valdtor);
2317 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
2318 	    zone_hash_size, mod_hash_null_valdtor);
2319 	/*
2320 	 * maintain zonehashbylabel only for labeled systems
2321 	 */
2322 	if (is_system_labeled())
2323 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
2324 		    zone_hash_size, mod_hash_null_keydtor,
2325 		    mod_hash_null_valdtor, hash_bylabel, NULL,
2326 		    hash_labelkey_cmp, KM_SLEEP);
2327 	zonecount = 1;
2328 
2329 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2330 	    (mod_hash_val_t)&zone0);
2331 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2332 	    (mod_hash_val_t)&zone0);
2333 	if (is_system_labeled()) {
2334 		zone0.zone_flags |= ZF_HASHED_LABEL;
2335 		(void) mod_hash_insert(zonehashbylabel,
2336 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2337 	}
2338 	mutex_exit(&zonehash_lock);
2339 
2340 	/*
2341 	 * We avoid setting zone_kcred until now, since kcred is initialized
2342 	 * sometime after zone_zsd_init() and before zone_init().
2343 	 */
2344 	zone0.zone_kcred = kcred;
2345 	/*
2346 	 * The global zone is fully initialized (except for zone_rootvp which
2347 	 * will be set when the root filesystem is mounted).
2348 	 */
2349 	global_zone = &zone0;
2350 
2351 	/*
2352 	 * Setup an event channel to send zone status change notifications on
2353 	 */
2354 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2355 	    EVCH_CREAT);
2356 
2357 	if (res)
2358 		panic("Sysevent_evc_bind failed during zone setup.\n");
2359 
2360 }
2361 
2362 static void
2363 zone_free(zone_t *zone)
2364 {
2365 	ASSERT(zone != global_zone);
2366 	ASSERT(zone->zone_ntasks == 0);
2367 	ASSERT(zone->zone_nlwps == 0);
2368 	ASSERT(zone->zone_nprocs == 0);
2369 	ASSERT(zone->zone_cred_ref == 0);
2370 	ASSERT(zone->zone_kcred == NULL);
2371 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2372 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2373 	ASSERT(list_is_empty(&zone->zone_ref_list));
2374 
2375 	/*
2376 	 * Remove any zone caps.
2377 	 */
2378 	cpucaps_zone_remove(zone);
2379 
2380 	ASSERT(zone->zone_cpucap == NULL);
2381 
2382 	/* remove from deathrow list */
2383 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2384 		ASSERT(zone->zone_ref == 0);
2385 		mutex_enter(&zone_deathrow_lock);
2386 		list_remove(&zone_deathrow, zone);
2387 		mutex_exit(&zone_deathrow_lock);
2388 	}
2389 
2390 	list_destroy(&zone->zone_ref_list);
2391 	zone_free_zsd(zone);
2392 	zone_free_datasets(zone);
2393 	list_destroy(&zone->zone_dl_list);
2394 
2395 	cpu_uarray_free(zone->zone_ustate);
2396 
2397 	if (zone->zone_rootvp != NULL)
2398 		VN_RELE(zone->zone_rootvp);
2399 	if (zone->zone_rootpath)
2400 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2401 	if (zone->zone_name != NULL)
2402 		kmem_free(zone->zone_name, ZONENAME_MAX);
2403 	if (zone->zone_slabel != NULL)
2404 		label_rele(zone->zone_slabel);
2405 	if (zone->zone_nodename != NULL)
2406 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2407 	if (zone->zone_domain != NULL)
2408 		kmem_free(zone->zone_domain, _SYS_NMLN);
2409 	if (zone->zone_privset != NULL)
2410 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2411 	if (zone->zone_rctls != NULL)
2412 		rctl_set_free(zone->zone_rctls);
2413 	if (zone->zone_bootargs != NULL)
2414 		strfree(zone->zone_bootargs);
2415 	if (zone->zone_initname != NULL)
2416 		strfree(zone->zone_initname);
2417 	if (zone->zone_fs_allowed != NULL)
2418 		strfree(zone->zone_fs_allowed);
2419 	if (zone->zone_pfexecd != NULL)
2420 		klpd_freelist(&zone->zone_pfexecd);
2421 	id_free(zoneid_space, zone->zone_id);
2422 	mutex_destroy(&zone->zone_lock);
2423 	cv_destroy(&zone->zone_cv);
2424 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2425 	rw_destroy(&zone->zone_mntfs_db_lock);
2426 	kmem_free(zone, sizeof (zone_t));
2427 }
2428 
2429 /*
2430  * See block comment at the top of this file for information about zone
2431  * status values.
2432  */
2433 /*
2434  * Convenience function for setting zone status.
2435  */
2436 static void
2437 zone_status_set(zone_t *zone, zone_status_t status)
2438 {
2439 
2440 	nvlist_t *nvl = NULL;
2441 	ASSERT(MUTEX_HELD(&zone_status_lock));
2442 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2443 	    status >= zone_status_get(zone));
2444 
2445 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2446 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2447 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2448 	    zone_status_table[status]) ||
2449 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2450 	    zone_status_table[zone->zone_status]) ||
2451 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2452 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2453 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2454 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2455 #ifdef DEBUG
2456 		(void) printf(
2457 		    "Failed to allocate and send zone state change event.\n");
2458 #endif
2459 	}
2460 	nvlist_free(nvl);
2461 
2462 	zone->zone_status = status;
2463 
2464 	cv_broadcast(&zone->zone_cv);
2465 }
2466 
2467 /*
2468  * Public function to retrieve the zone status.  The zone status may
2469  * change after it is retrieved.
2470  */
2471 zone_status_t
2472 zone_status_get(zone_t *zone)
2473 {
2474 	return (zone->zone_status);
2475 }
2476 
2477 static int
2478 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2479 {
2480 	char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2481 	int err = 0;
2482 
2483 	ASSERT(zone != global_zone);
2484 	if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2485 		goto done;	/* EFAULT or ENAMETOOLONG */
2486 
2487 	if (zone->zone_bootargs != NULL)
2488 		strfree(zone->zone_bootargs);
2489 
2490 	zone->zone_bootargs = strdup(buf);
2491 
2492 done:
2493 	kmem_free(buf, BOOTARGS_MAX);
2494 	return (err);
2495 }
2496 
2497 static int
2498 zone_set_brand(zone_t *zone, const char *brand)
2499 {
2500 	struct brand_attr *attrp;
2501 	brand_t *bp;
2502 
2503 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2504 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2505 		kmem_free(attrp, sizeof (struct brand_attr));
2506 		return (EFAULT);
2507 	}
2508 
2509 	bp = brand_register_zone(attrp);
2510 	kmem_free(attrp, sizeof (struct brand_attr));
2511 	if (bp == NULL)
2512 		return (EINVAL);
2513 
2514 	/*
2515 	 * This is the only place where a zone can change it's brand.
2516 	 * We already need to hold zone_status_lock to check the zone
2517 	 * status, so we'll just use that lock to serialize zone
2518 	 * branding requests as well.
2519 	 */
2520 	mutex_enter(&zone_status_lock);
2521 
2522 	/* Re-Branding is not allowed and the zone can't be booted yet */
2523 	if ((ZONE_IS_BRANDED(zone)) ||
2524 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2525 		mutex_exit(&zone_status_lock);
2526 		brand_unregister_zone(bp);
2527 		return (EINVAL);
2528 	}
2529 
2530 	/* set up the brand specific data */
2531 	zone->zone_brand = bp;
2532 	ZBROP(zone)->b_init_brand_data(zone);
2533 
2534 	mutex_exit(&zone_status_lock);
2535 	return (0);
2536 }
2537 
2538 static int
2539 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags)
2540 {
2541 	int err = 0;
2542 	psecflags_t psf;
2543 
2544 	ASSERT(zone != global_zone);
2545 
2546 	if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0)
2547 		return (err);
2548 
2549 	if (zone_status_get(zone) > ZONE_IS_READY)
2550 		return (EINVAL);
2551 
2552 	if (!psecflags_validate(&psf))
2553 		return (EINVAL);
2554 
2555 	(void) memcpy(&zone->zone_secflags, &psf, sizeof (psf));
2556 
2557 	/* Set security flags on the zone's zsched */
2558 	(void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags,
2559 	    sizeof (zone->zone_zsched->p_secflags));
2560 
2561 	return (0);
2562 }
2563 
2564 static int
2565 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2566 {
2567 	char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2568 	int err = 0;
2569 
2570 	ASSERT(zone != global_zone);
2571 	if ((err = copyinstr(zone_fs_allowed, buf,
2572 	    ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2573 		goto done;
2574 
2575 	if (zone->zone_fs_allowed != NULL)
2576 		strfree(zone->zone_fs_allowed);
2577 
2578 	zone->zone_fs_allowed = strdup(buf);
2579 
2580 done:
2581 	kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2582 	return (err);
2583 }
2584 
2585 static int
2586 zone_set_initname(zone_t *zone, const char *zone_initname)
2587 {
2588 	char initname[INITNAME_SZ];
2589 	size_t len;
2590 	int err = 0;
2591 
2592 	ASSERT(zone != global_zone);
2593 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2594 		return (err);	/* EFAULT or ENAMETOOLONG */
2595 
2596 	if (zone->zone_initname != NULL)
2597 		strfree(zone->zone_initname);
2598 
2599 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2600 	(void) strcpy(zone->zone_initname, initname);
2601 	return (0);
2602 }
2603 
2604 static int
2605 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2606 {
2607 	uint64_t mcap;
2608 	int err = 0;
2609 
2610 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2611 		zone->zone_phys_mcap = mcap;
2612 
2613 	return (err);
2614 }
2615 
2616 static int
2617 zone_set_sched_class(zone_t *zone, const char *new_class)
2618 {
2619 	char sched_class[PC_CLNMSZ];
2620 	id_t classid;
2621 	int err;
2622 
2623 	ASSERT(zone != global_zone);
2624 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2625 		return (err);	/* EFAULT or ENAMETOOLONG */
2626 
2627 	if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2628 		return (set_errno(EINVAL));
2629 	zone->zone_defaultcid = classid;
2630 	ASSERT(zone->zone_defaultcid > 0 &&
2631 	    zone->zone_defaultcid < loaded_classes);
2632 
2633 	return (0);
2634 }
2635 
2636 /*
2637  * Block indefinitely waiting for (zone_status >= status)
2638  */
2639 void
2640 zone_status_wait(zone_t *zone, zone_status_t status)
2641 {
2642 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2643 
2644 	mutex_enter(&zone_status_lock);
2645 	while (zone->zone_status < status) {
2646 		cv_wait(&zone->zone_cv, &zone_status_lock);
2647 	}
2648 	mutex_exit(&zone_status_lock);
2649 }
2650 
2651 /*
2652  * Private CPR-safe version of zone_status_wait().
2653  */
2654 static void
2655 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2656 {
2657 	callb_cpr_t cprinfo;
2658 
2659 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2660 
2661 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2662 	    str);
2663 	mutex_enter(&zone_status_lock);
2664 	while (zone->zone_status < status) {
2665 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2666 		cv_wait(&zone->zone_cv, &zone_status_lock);
2667 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2668 	}
2669 	/*
2670 	 * zone_status_lock is implicitly released by the following.
2671 	 */
2672 	CALLB_CPR_EXIT(&cprinfo);
2673 }
2674 
2675 /*
2676  * Block until zone enters requested state or signal is received.  Return (0)
2677  * if signaled, non-zero otherwise.
2678  */
2679 int
2680 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2681 {
2682 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2683 
2684 	mutex_enter(&zone_status_lock);
2685 	while (zone->zone_status < status) {
2686 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2687 			mutex_exit(&zone_status_lock);
2688 			return (0);
2689 		}
2690 	}
2691 	mutex_exit(&zone_status_lock);
2692 	return (1);
2693 }
2694 
2695 /*
2696  * Block until the zone enters the requested state or the timeout expires,
2697  * whichever happens first.  Return (-1) if operation timed out, time remaining
2698  * otherwise.
2699  */
2700 clock_t
2701 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2702 {
2703 	clock_t timeleft = 0;
2704 
2705 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2706 
2707 	mutex_enter(&zone_status_lock);
2708 	while (zone->zone_status < status && timeleft != -1) {
2709 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2710 	}
2711 	mutex_exit(&zone_status_lock);
2712 	return (timeleft);
2713 }
2714 
2715 /*
2716  * Block until the zone enters the requested state, the current process is
2717  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2718  * operation timed out, 0 if signaled, time remaining otherwise.
2719  */
2720 clock_t
2721 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2722 {
2723 	clock_t timeleft = tim - ddi_get_lbolt();
2724 
2725 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2726 
2727 	mutex_enter(&zone_status_lock);
2728 	while (zone->zone_status < status) {
2729 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2730 		    tim);
2731 		if (timeleft <= 0)
2732 			break;
2733 	}
2734 	mutex_exit(&zone_status_lock);
2735 	return (timeleft);
2736 }
2737 
2738 /*
2739  * Zones have two reference counts: one for references from credential
2740  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2741  * This is so we can allow a zone to be rebooted while there are still
2742  * outstanding cred references, since certain drivers cache dblks (which
2743  * implicitly results in cached creds).  We wait for zone_ref to drop to
2744  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2745  * later freed when the zone_cred_ref drops to 0, though nothing other
2746  * than the zone id and privilege set should be accessed once the zone
2747  * is "dead".
2748  *
2749  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2750  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2751  * to 0.  This can be useful to flush out other sources of cached creds
2752  * that may be less innocuous than the driver case.
2753  *
2754  * Zones also provide a tracked reference counting mechanism in which zone
2755  * references are represented by "crumbs" (zone_ref structures).  Crumbs help
2756  * debuggers determine the sources of leaked zone references.  See
2757  * zone_hold_ref() and zone_rele_ref() below for more information.
2758  */
2759 
2760 int zone_wait_for_cred = 0;
2761 
2762 static void
2763 zone_hold_locked(zone_t *z)
2764 {
2765 	ASSERT(MUTEX_HELD(&z->zone_lock));
2766 	z->zone_ref++;
2767 	ASSERT(z->zone_ref != 0);
2768 }
2769 
2770 /*
2771  * Increment the specified zone's reference count.  The zone's zone_t structure
2772  * will not be freed as long as the zone's reference count is nonzero.
2773  * Decrement the zone's reference count via zone_rele().
2774  *
2775  * NOTE: This function should only be used to hold zones for short periods of
2776  * time.  Use zone_hold_ref() if the zone must be held for a long time.
2777  */
2778 void
2779 zone_hold(zone_t *z)
2780 {
2781 	mutex_enter(&z->zone_lock);
2782 	zone_hold_locked(z);
2783 	mutex_exit(&z->zone_lock);
2784 }
2785 
2786 /*
2787  * If the non-cred ref count drops to 1 and either the cred ref count
2788  * is 0 or we aren't waiting for cred references, the zone is ready to
2789  * be destroyed.
2790  */
2791 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2792 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2793 
2794 /*
2795  * Common zone reference release function invoked by zone_rele() and
2796  * zone_rele_ref().  If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2797  * zone's subsystem-specific reference counters are not affected by the
2798  * release.  If ref is not NULL, then the zone_ref_t to which it refers is
2799  * removed from the specified zone's reference list.  ref must be non-NULL iff
2800  * subsys is not ZONE_REF_NUM_SUBSYS.
2801  */
2802 static void
2803 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2804 {
2805 	boolean_t wakeup;
2806 
2807 	mutex_enter(&z->zone_lock);
2808 	ASSERT(z->zone_ref != 0);
2809 	z->zone_ref--;
2810 	if (subsys != ZONE_REF_NUM_SUBSYS) {
2811 		ASSERT(z->zone_subsys_ref[subsys] != 0);
2812 		z->zone_subsys_ref[subsys]--;
2813 		list_remove(&z->zone_ref_list, ref);
2814 	}
2815 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2816 		/* no more refs, free the structure */
2817 		mutex_exit(&z->zone_lock);
2818 		zone_free(z);
2819 		return;
2820 	}
2821 	/* signal zone_destroy so the zone can finish halting */
2822 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2823 	mutex_exit(&z->zone_lock);
2824 
2825 	if (wakeup) {
2826 		/*
2827 		 * Grabbing zonehash_lock here effectively synchronizes with
2828 		 * zone_destroy() to avoid missed signals.
2829 		 */
2830 		mutex_enter(&zonehash_lock);
2831 		cv_broadcast(&zone_destroy_cv);
2832 		mutex_exit(&zonehash_lock);
2833 	}
2834 }
2835 
2836 /*
2837  * Decrement the specified zone's reference count.  The specified zone will
2838  * cease to exist after this function returns if the reference count drops to
2839  * zero.  This function should be paired with zone_hold().
2840  */
2841 void
2842 zone_rele(zone_t *z)
2843 {
2844 	zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2845 }
2846 
2847 /*
2848  * Initialize a zone reference structure.  This function must be invoked for
2849  * a reference structure before the structure is passed to zone_hold_ref().
2850  */
2851 void
2852 zone_init_ref(zone_ref_t *ref)
2853 {
2854 	ref->zref_zone = NULL;
2855 	list_link_init(&ref->zref_linkage);
2856 }
2857 
2858 /*
2859  * Acquire a reference to zone z.  The caller must specify the
2860  * zone_ref_subsys_t constant associated with its subsystem.  The specified
2861  * zone_ref_t structure will represent a reference to the specified zone.  Use
2862  * zone_rele_ref() to release the reference.
2863  *
2864  * The referenced zone_t structure will not be freed as long as the zone_t's
2865  * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2866  * references.
2867  *
2868  * NOTE: The zone_ref_t structure must be initialized before it is used.
2869  * See zone_init_ref() above.
2870  */
2871 void
2872 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2873 {
2874 	ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2875 
2876 	/*
2877 	 * Prevent consumers from reusing a reference structure before
2878 	 * releasing it.
2879 	 */
2880 	VERIFY(ref->zref_zone == NULL);
2881 
2882 	ref->zref_zone = z;
2883 	mutex_enter(&z->zone_lock);
2884 	zone_hold_locked(z);
2885 	z->zone_subsys_ref[subsys]++;
2886 	ASSERT(z->zone_subsys_ref[subsys] != 0);
2887 	list_insert_head(&z->zone_ref_list, ref);
2888 	mutex_exit(&z->zone_lock);
2889 }
2890 
2891 /*
2892  * Release the zone reference represented by the specified zone_ref_t.
2893  * The reference is invalid after it's released; however, the zone_ref_t
2894  * structure can be reused without having to invoke zone_init_ref().
2895  * subsys should be the same value that was passed to zone_hold_ref()
2896  * when the reference was acquired.
2897  */
2898 void
2899 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2900 {
2901 	zone_rele_common(ref->zref_zone, ref, subsys);
2902 
2903 	/*
2904 	 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2905 	 * when consumers dereference the reference.  This helps us catch
2906 	 * consumers who use released references.  Furthermore, this lets
2907 	 * consumers reuse the zone_ref_t structure without having to
2908 	 * invoke zone_init_ref().
2909 	 */
2910 	ref->zref_zone = NULL;
2911 }
2912 
2913 void
2914 zone_cred_hold(zone_t *z)
2915 {
2916 	mutex_enter(&z->zone_lock);
2917 	z->zone_cred_ref++;
2918 	ASSERT(z->zone_cred_ref != 0);
2919 	mutex_exit(&z->zone_lock);
2920 }
2921 
2922 void
2923 zone_cred_rele(zone_t *z)
2924 {
2925 	boolean_t wakeup;
2926 
2927 	mutex_enter(&z->zone_lock);
2928 	ASSERT(z->zone_cred_ref != 0);
2929 	z->zone_cred_ref--;
2930 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2931 		/* no more refs, free the structure */
2932 		mutex_exit(&z->zone_lock);
2933 		zone_free(z);
2934 		return;
2935 	}
2936 	/*
2937 	 * If zone_destroy is waiting for the cred references to drain
2938 	 * out, and they have, signal it.
2939 	 */
2940 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2941 	    zone_status_get(z) >= ZONE_IS_DEAD);
2942 	mutex_exit(&z->zone_lock);
2943 
2944 	if (wakeup) {
2945 		/*
2946 		 * Grabbing zonehash_lock here effectively synchronizes with
2947 		 * zone_destroy() to avoid missed signals.
2948 		 */
2949 		mutex_enter(&zonehash_lock);
2950 		cv_broadcast(&zone_destroy_cv);
2951 		mutex_exit(&zonehash_lock);
2952 	}
2953 }
2954 
2955 void
2956 zone_task_hold(zone_t *z)
2957 {
2958 	mutex_enter(&z->zone_lock);
2959 	z->zone_ntasks++;
2960 	ASSERT(z->zone_ntasks != 0);
2961 	mutex_exit(&z->zone_lock);
2962 }
2963 
2964 void
2965 zone_task_rele(zone_t *zone)
2966 {
2967 	uint_t refcnt;
2968 
2969 	mutex_enter(&zone->zone_lock);
2970 	ASSERT(zone->zone_ntasks != 0);
2971 	refcnt = --zone->zone_ntasks;
2972 	if (refcnt > 1)	{	/* Common case */
2973 		mutex_exit(&zone->zone_lock);
2974 		return;
2975 	}
2976 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2977 	mutex_exit(&zone->zone_lock);
2978 	if (refcnt == 1) {
2979 		/*
2980 		 * See if the zone is shutting down.
2981 		 */
2982 		mutex_enter(&zone_status_lock);
2983 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2984 			goto out;
2985 		}
2986 
2987 		/*
2988 		 * Make sure the ntasks didn't change since we
2989 		 * dropped zone_lock.
2990 		 */
2991 		mutex_enter(&zone->zone_lock);
2992 		if (refcnt != zone->zone_ntasks) {
2993 			mutex_exit(&zone->zone_lock);
2994 			goto out;
2995 		}
2996 		mutex_exit(&zone->zone_lock);
2997 
2998 		/*
2999 		 * No more user processes in the zone.  The zone is empty.
3000 		 */
3001 		zone_status_set(zone, ZONE_IS_EMPTY);
3002 		goto out;
3003 	}
3004 
3005 	ASSERT(refcnt == 0);
3006 	/*
3007 	 * zsched has exited; the zone is dead.
3008 	 */
3009 	zone->zone_zsched = NULL;		/* paranoia */
3010 	mutex_enter(&zone_status_lock);
3011 	zone_status_set(zone, ZONE_IS_DEAD);
3012 out:
3013 	mutex_exit(&zone_status_lock);
3014 	zone_rele(zone);
3015 }
3016 
3017 zoneid_t
3018 getzoneid(void)
3019 {
3020 	return (curproc->p_zone->zone_id);
3021 }
3022 
3023 /*
3024  * Internal versions of zone_find_by_*().  These don't zone_hold() or
3025  * check the validity of a zone's state.
3026  */
3027 static zone_t *
3028 zone_find_all_by_id(zoneid_t zoneid)
3029 {
3030 	mod_hash_val_t hv;
3031 	zone_t *zone = NULL;
3032 
3033 	ASSERT(MUTEX_HELD(&zonehash_lock));
3034 
3035 	if (mod_hash_find(zonehashbyid,
3036 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
3037 		zone = (zone_t *)hv;
3038 	return (zone);
3039 }
3040 
3041 static zone_t *
3042 zone_find_all_by_label(const ts_label_t *label)
3043 {
3044 	mod_hash_val_t hv;
3045 	zone_t *zone = NULL;
3046 
3047 	ASSERT(MUTEX_HELD(&zonehash_lock));
3048 
3049 	/*
3050 	 * zonehashbylabel is not maintained for unlabeled systems
3051 	 */
3052 	if (!is_system_labeled())
3053 		return (NULL);
3054 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
3055 		zone = (zone_t *)hv;
3056 	return (zone);
3057 }
3058 
3059 static zone_t *
3060 zone_find_all_by_name(char *name)
3061 {
3062 	mod_hash_val_t hv;
3063 	zone_t *zone = NULL;
3064 
3065 	ASSERT(MUTEX_HELD(&zonehash_lock));
3066 
3067 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3068 		zone = (zone_t *)hv;
3069 	return (zone);
3070 }
3071 
3072 /*
3073  * Public interface for looking up a zone by zoneid.  Only returns the zone if
3074  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3075  * Caller must call zone_rele() once it is done with the zone.
3076  *
3077  * The zone may begin the zone_destroy() sequence immediately after this
3078  * function returns, but may be safely used until zone_rele() is called.
3079  */
3080 zone_t *
3081 zone_find_by_id(zoneid_t zoneid)
3082 {
3083 	zone_t *zone;
3084 	zone_status_t status;
3085 
3086 	mutex_enter(&zonehash_lock);
3087 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3088 		mutex_exit(&zonehash_lock);
3089 		return (NULL);
3090 	}
3091 	status = zone_status_get(zone);
3092 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3093 		/*
3094 		 * For all practical purposes the zone doesn't exist.
3095 		 */
3096 		mutex_exit(&zonehash_lock);
3097 		return (NULL);
3098 	}
3099 	zone_hold(zone);
3100 	mutex_exit(&zonehash_lock);
3101 	return (zone);
3102 }
3103 
3104 /*
3105  * Similar to zone_find_by_id, but using zone label as the key.
3106  */
3107 zone_t *
3108 zone_find_by_label(const ts_label_t *label)
3109 {
3110 	zone_t *zone;
3111 	zone_status_t status;
3112 
3113 	mutex_enter(&zonehash_lock);
3114 	if ((zone = zone_find_all_by_label(label)) == NULL) {
3115 		mutex_exit(&zonehash_lock);
3116 		return (NULL);
3117 	}
3118 
3119 	status = zone_status_get(zone);
3120 	if (status > ZONE_IS_DOWN) {
3121 		/*
3122 		 * For all practical purposes the zone doesn't exist.
3123 		 */
3124 		mutex_exit(&zonehash_lock);
3125 		return (NULL);
3126 	}
3127 	zone_hold(zone);
3128 	mutex_exit(&zonehash_lock);
3129 	return (zone);
3130 }
3131 
3132 /*
3133  * Similar to zone_find_by_id, but using zone name as the key.
3134  */
3135 zone_t *
3136 zone_find_by_name(char *name)
3137 {
3138 	zone_t *zone;
3139 	zone_status_t status;
3140 
3141 	mutex_enter(&zonehash_lock);
3142 	if ((zone = zone_find_all_by_name(name)) == NULL) {
3143 		mutex_exit(&zonehash_lock);
3144 		return (NULL);
3145 	}
3146 	status = zone_status_get(zone);
3147 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3148 		/*
3149 		 * For all practical purposes the zone doesn't exist.
3150 		 */
3151 		mutex_exit(&zonehash_lock);
3152 		return (NULL);
3153 	}
3154 	zone_hold(zone);
3155 	mutex_exit(&zonehash_lock);
3156 	return (zone);
3157 }
3158 
3159 /*
3160  * Similar to zone_find_by_id(), using the path as a key.  For instance,
3161  * if there is a zone "foo" rooted at /foo/root, and the path argument
3162  * is "/foo/root/proc", it will return the held zone_t corresponding to
3163  * zone "foo".
3164  *
3165  * zone_find_by_path() always returns a non-NULL value, since at the
3166  * very least every path will be contained in the global zone.
3167  *
3168  * As with the other zone_find_by_*() functions, the caller is
3169  * responsible for zone_rele()ing the return value of this function.
3170  */
3171 zone_t *
3172 zone_find_by_path(const char *path)
3173 {
3174 	zone_t *zone;
3175 	zone_t *zret = NULL;
3176 	zone_status_t status;
3177 
3178 	if (path == NULL) {
3179 		/*
3180 		 * Call from rootconf().
3181 		 */
3182 		zone_hold(global_zone);
3183 		return (global_zone);
3184 	}
3185 	ASSERT(*path == '/');
3186 	mutex_enter(&zonehash_lock);
3187 	for (zone = list_head(&zone_active); zone != NULL;
3188 	    zone = list_next(&zone_active, zone)) {
3189 		if (ZONE_PATH_VISIBLE(path, zone))
3190 			zret = zone;
3191 	}
3192 	ASSERT(zret != NULL);
3193 	status = zone_status_get(zret);
3194 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3195 		/*
3196 		 * Zone practically doesn't exist.
3197 		 */
3198 		zret = global_zone;
3199 	}
3200 	zone_hold(zret);
3201 	mutex_exit(&zonehash_lock);
3202 	return (zret);
3203 }
3204 
3205 /*
3206  * Public interface for updating per-zone load averages.  Called once per
3207  * second.
3208  *
3209  * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3210  */
3211 void
3212 zone_loadavg_update(void)
3213 {
3214 	zone_t *zp;
3215 	zone_status_t status;
3216 	struct loadavg_s *lavg;
3217 	hrtime_t zone_total;
3218 	uint64_t tmp;
3219 	int i;
3220 	hrtime_t hr_avg;
3221 	int nrun;
3222 	static int64_t f[3] = { 135, 27, 9 };
3223 	int64_t q, r;
3224 
3225 	mutex_enter(&zonehash_lock);
3226 	for (zp = list_head(&zone_active); zp != NULL;
3227 	    zp = list_next(&zone_active, zp)) {
3228 		mutex_enter(&zp->zone_lock);
3229 
3230 		/* Skip zones that are on the way down or not yet up */
3231 		status = zone_status_get(zp);
3232 		if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3233 			/* For all practical purposes the zone doesn't exist. */
3234 			mutex_exit(&zp->zone_lock);
3235 			continue;
3236 		}
3237 
3238 		/*
3239 		 * Update the 10 second moving average data in zone_loadavg.
3240 		 */
3241 		lavg = &zp->zone_loadavg;
3242 
3243 		tmp = cpu_uarray_sum_all(zp->zone_ustate);
3244 		zone_total = UINT64_OVERFLOW_TO_INT64(tmp);
3245 
3246 		scalehrtime(&zone_total);
3247 
3248 		/* The zone_total should always be increasing. */
3249 		lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3250 		    zone_total - lavg->lg_total : 0;
3251 		lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3252 		/* lg_total holds the prev. 1 sec. total */
3253 		lavg->lg_total = zone_total;
3254 
3255 		/*
3256 		 * To simplify the calculation, we don't calculate the load avg.
3257 		 * until the zone has been up for at least 10 seconds and our
3258 		 * moving average is thus full.
3259 		 */
3260 		if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3261 			lavg->lg_len++;
3262 			mutex_exit(&zp->zone_lock);
3263 			continue;
3264 		}
3265 
3266 		/* Now calculate the 1min, 5min, 15 min load avg. */
3267 		hr_avg = 0;
3268 		for (i = 0; i < S_LOADAVG_SZ; i++)
3269 			hr_avg += lavg->lg_loads[i];
3270 		hr_avg = hr_avg / S_LOADAVG_SZ;
3271 		nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3272 
3273 		/* Compute load avg. See comment in calcloadavg() */
3274 		for (i = 0; i < 3; i++) {
3275 			q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3276 			r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3277 			zp->zone_hp_avenrun[i] +=
3278 			    ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3279 
3280 			/* avenrun[] can only hold 31 bits of load avg. */
3281 			if (zp->zone_hp_avenrun[i] <
3282 			    ((uint64_t)1<<(31+16-FSHIFT)))
3283 				zp->zone_avenrun[i] = (int32_t)
3284 				    (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3285 			else
3286 				zp->zone_avenrun[i] = 0x7fffffff;
3287 		}
3288 
3289 		mutex_exit(&zp->zone_lock);
3290 	}
3291 	mutex_exit(&zonehash_lock);
3292 }
3293 
3294 /*
3295  * Get the number of cpus visible to this zone.  The system-wide global
3296  * 'ncpus' is returned if pools are disabled, the caller is in the
3297  * global zone, or a NULL zone argument is passed in.
3298  */
3299 int
3300 zone_ncpus_get(zone_t *zone)
3301 {
3302 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3303 
3304 	return (myncpus != 0 ? myncpus : ncpus);
3305 }
3306 
3307 /*
3308  * Get the number of online cpus visible to this zone.  The system-wide
3309  * global 'ncpus_online' is returned if pools are disabled, the caller
3310  * is in the global zone, or a NULL zone argument is passed in.
3311  */
3312 int
3313 zone_ncpus_online_get(zone_t *zone)
3314 {
3315 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3316 
3317 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3318 }
3319 
3320 /*
3321  * Return the pool to which the zone is currently bound.
3322  */
3323 pool_t *
3324 zone_pool_get(zone_t *zone)
3325 {
3326 	ASSERT(pool_lock_held());
3327 
3328 	return (zone->zone_pool);
3329 }
3330 
3331 /*
3332  * Set the zone's pool pointer and update the zone's visibility to match
3333  * the resources in the new pool.
3334  */
3335 void
3336 zone_pool_set(zone_t *zone, pool_t *pool)
3337 {
3338 	ASSERT(pool_lock_held());
3339 	ASSERT(MUTEX_HELD(&cpu_lock));
3340 
3341 	zone->zone_pool = pool;
3342 	zone_pset_set(zone, pool->pool_pset->pset_id);
3343 }
3344 
3345 /*
3346  * Return the cached value of the id of the processor set to which the
3347  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
3348  * facility is disabled.
3349  */
3350 psetid_t
3351 zone_pset_get(zone_t *zone)
3352 {
3353 	ASSERT(MUTEX_HELD(&cpu_lock));
3354 
3355 	return (zone->zone_psetid);
3356 }
3357 
3358 /*
3359  * Set the cached value of the id of the processor set to which the zone
3360  * is currently bound.  Also update the zone's visibility to match the
3361  * resources in the new processor set.
3362  */
3363 void
3364 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3365 {
3366 	psetid_t oldpsetid;
3367 
3368 	ASSERT(MUTEX_HELD(&cpu_lock));
3369 	oldpsetid = zone_pset_get(zone);
3370 
3371 	if (oldpsetid == newpsetid)
3372 		return;
3373 	/*
3374 	 * Global zone sees all.
3375 	 */
3376 	if (zone != global_zone) {
3377 		zone->zone_psetid = newpsetid;
3378 		if (newpsetid != ZONE_PS_INVAL)
3379 			pool_pset_visibility_add(newpsetid, zone);
3380 		if (oldpsetid != ZONE_PS_INVAL)
3381 			pool_pset_visibility_remove(oldpsetid, zone);
3382 	}
3383 	/*
3384 	 * Disabling pools, so we should start using the global values
3385 	 * for ncpus and ncpus_online.
3386 	 */
3387 	if (newpsetid == ZONE_PS_INVAL) {
3388 		zone->zone_ncpus = 0;
3389 		zone->zone_ncpus_online = 0;
3390 	}
3391 }
3392 
3393 /*
3394  * Walk the list of active zones and issue the provided callback for
3395  * each of them.
3396  *
3397  * Caller must not be holding any locks that may be acquired under
3398  * zonehash_lock.  See comment at the beginning of the file for a list of
3399  * common locks and their interactions with zones.
3400  */
3401 int
3402 zone_walk(int (*cb)(zone_t *, void *), void *data)
3403 {
3404 	zone_t *zone;
3405 	int ret = 0;
3406 	zone_status_t status;
3407 
3408 	mutex_enter(&zonehash_lock);
3409 	for (zone = list_head(&zone_active); zone != NULL;
3410 	    zone = list_next(&zone_active, zone)) {
3411 		/*
3412 		 * Skip zones that shouldn't be externally visible.
3413 		 */
3414 		status = zone_status_get(zone);
3415 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3416 			continue;
3417 		/*
3418 		 * Bail immediately if any callback invocation returns a
3419 		 * non-zero value.
3420 		 */
3421 		ret = (*cb)(zone, data);
3422 		if (ret != 0)
3423 			break;
3424 	}
3425 	mutex_exit(&zonehash_lock);
3426 	return (ret);
3427 }
3428 
3429 static int
3430 zone_set_root(zone_t *zone, const char *upath)
3431 {
3432 	vnode_t *vp;
3433 	int trycount;
3434 	int error = 0;
3435 	char *path;
3436 	struct pathname upn, pn;
3437 	size_t pathlen;
3438 
3439 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3440 		return (error);
3441 
3442 	pn_alloc(&pn);
3443 
3444 	/* prevent infinite loop */
3445 	trycount = 10;
3446 	for (;;) {
3447 		if (--trycount <= 0) {
3448 			error = ESTALE;
3449 			goto out;
3450 		}
3451 
3452 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3453 			/*
3454 			 * VOP_ACCESS() may cover 'vp' with a new
3455 			 * filesystem, if 'vp' is an autoFS vnode.
3456 			 * Get the new 'vp' if so.
3457 			 */
3458 			if ((error =
3459 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3460 			    (!vn_ismntpt(vp) ||
3461 			    (error = traverse(&vp)) == 0)) {
3462 				pathlen = pn.pn_pathlen + 2;
3463 				path = kmem_alloc(pathlen, KM_SLEEP);
3464 				(void) strncpy(path, pn.pn_path,
3465 				    pn.pn_pathlen + 1);
3466 				path[pathlen - 2] = '/';
3467 				path[pathlen - 1] = '\0';
3468 				pn_free(&pn);
3469 				pn_free(&upn);
3470 
3471 				/* Success! */
3472 				break;
3473 			}
3474 			VN_RELE(vp);
3475 		}
3476 		if (error != ESTALE)
3477 			goto out;
3478 	}
3479 
3480 	ASSERT(error == 0);
3481 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
3482 	zone->zone_rootpath = path;
3483 	zone->zone_rootpathlen = pathlen;
3484 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3485 		zone->zone_flags |= ZF_IS_SCRATCH;
3486 	return (0);
3487 
3488 out:
3489 	pn_free(&pn);
3490 	pn_free(&upn);
3491 	return (error);
3492 }
3493 
3494 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
3495 			((c) >= 'a' && (c) <= 'z') || \
3496 			((c) >= 'A' && (c) <= 'Z'))
3497 
3498 static int
3499 zone_set_name(zone_t *zone, const char *uname)
3500 {
3501 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3502 	size_t len;
3503 	int i, err;
3504 
3505 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3506 		kmem_free(kname, ZONENAME_MAX);
3507 		return (err);	/* EFAULT or ENAMETOOLONG */
3508 	}
3509 
3510 	/* must be less than ZONENAME_MAX */
3511 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3512 		kmem_free(kname, ZONENAME_MAX);
3513 		return (EINVAL);
3514 	}
3515 
3516 	/*
3517 	 * Name must start with an alphanumeric and must contain only
3518 	 * alphanumerics, '-', '_' and '.'.
3519 	 */
3520 	if (!isalnum(kname[0])) {
3521 		kmem_free(kname, ZONENAME_MAX);
3522 		return (EINVAL);
3523 	}
3524 	for (i = 1; i < len - 1; i++) {
3525 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3526 		    kname[i] != '.') {
3527 			kmem_free(kname, ZONENAME_MAX);
3528 			return (EINVAL);
3529 		}
3530 	}
3531 
3532 	zone->zone_name = kname;
3533 	return (0);
3534 }
3535 
3536 /*
3537  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
3538  * is NULL or it points to a zone with no hostid emulation, then the machine's
3539  * hostid (i.e., the global zone's hostid) is returned.  This function returns
3540  * zero if neither the zone nor the host machine (global zone) have hostids.  It
3541  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3542  * hostid and the machine's hostid is invalid.
3543  */
3544 uint32_t
3545 zone_get_hostid(zone_t *zonep)
3546 {
3547 	unsigned long machine_hostid;
3548 
3549 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3550 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3551 			return (HW_INVALID_HOSTID);
3552 		return ((uint32_t)machine_hostid);
3553 	}
3554 	return (zonep->zone_hostid);
3555 }
3556 
3557 /*
3558  * Similar to thread_create(), but makes sure the thread is in the appropriate
3559  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3560  */
3561 /*ARGSUSED*/
3562 kthread_t *
3563 zthread_create(
3564     caddr_t stk,
3565     size_t stksize,
3566     void (*proc)(),
3567     void *arg,
3568     size_t len,
3569     pri_t pri)
3570 {
3571 	kthread_t *t;
3572 	zone_t *zone = curproc->p_zone;
3573 	proc_t *pp = zone->zone_zsched;
3574 
3575 	zone_hold(zone);	/* Reference to be dropped when thread exits */
3576 
3577 	/*
3578 	 * No-one should be trying to create threads if the zone is shutting
3579 	 * down and there aren't any kernel threads around.  See comment
3580 	 * in zthread_exit().
3581 	 */
3582 	ASSERT(!(zone->zone_kthreads == NULL &&
3583 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
3584 	/*
3585 	 * Create a thread, but don't let it run until we've finished setting
3586 	 * things up.
3587 	 */
3588 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3589 	ASSERT(t->t_forw == NULL);
3590 	mutex_enter(&zone_status_lock);
3591 	if (zone->zone_kthreads == NULL) {
3592 		t->t_forw = t->t_back = t;
3593 	} else {
3594 		kthread_t *tx = zone->zone_kthreads;
3595 
3596 		t->t_forw = tx;
3597 		t->t_back = tx->t_back;
3598 		tx->t_back->t_forw = t;
3599 		tx->t_back = t;
3600 	}
3601 	zone->zone_kthreads = t;
3602 	mutex_exit(&zone_status_lock);
3603 
3604 	mutex_enter(&pp->p_lock);
3605 	t->t_proc_flag |= TP_ZTHREAD;
3606 	project_rele(t->t_proj);
3607 	t->t_proj = project_hold(pp->p_task->tk_proj);
3608 
3609 	/*
3610 	 * Setup complete, let it run.
3611 	 */
3612 	thread_lock(t);
3613 	t->t_schedflag |= TS_ALLSTART;
3614 	setrun_locked(t);
3615 	thread_unlock(t);
3616 
3617 	mutex_exit(&pp->p_lock);
3618 
3619 	return (t);
3620 }
3621 
3622 /*
3623  * Similar to thread_exit().  Must be called by threads created via
3624  * zthread_exit().
3625  */
3626 void
3627 zthread_exit(void)
3628 {
3629 	kthread_t *t = curthread;
3630 	proc_t *pp = curproc;
3631 	zone_t *zone = pp->p_zone;
3632 
3633 	mutex_enter(&zone_status_lock);
3634 
3635 	/*
3636 	 * Reparent to p0
3637 	 */
3638 	kpreempt_disable();
3639 	mutex_enter(&pp->p_lock);
3640 	t->t_proc_flag &= ~TP_ZTHREAD;
3641 	t->t_procp = &p0;
3642 	hat_thread_exit(t);
3643 	mutex_exit(&pp->p_lock);
3644 	kpreempt_enable();
3645 
3646 	if (t->t_back == t) {
3647 		ASSERT(t->t_forw == t);
3648 		/*
3649 		 * If the zone is empty, once the thread count
3650 		 * goes to zero no further kernel threads can be
3651 		 * created.  This is because if the creator is a process
3652 		 * in the zone, then it must have exited before the zone
3653 		 * state could be set to ZONE_IS_EMPTY.
3654 		 * Otherwise, if the creator is a kernel thread in the
3655 		 * zone, the thread count is non-zero.
3656 		 *
3657 		 * This really means that non-zone kernel threads should
3658 		 * not create zone kernel threads.
3659 		 */
3660 		zone->zone_kthreads = NULL;
3661 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3662 			zone_status_set(zone, ZONE_IS_DOWN);
3663 			/*
3664 			 * Remove any CPU caps on this zone.
3665 			 */
3666 			cpucaps_zone_remove(zone);
3667 		}
3668 	} else {
3669 		t->t_forw->t_back = t->t_back;
3670 		t->t_back->t_forw = t->t_forw;
3671 		if (zone->zone_kthreads == t)
3672 			zone->zone_kthreads = t->t_forw;
3673 	}
3674 	mutex_exit(&zone_status_lock);
3675 	zone_rele(zone);
3676 	thread_exit();
3677 	/* NOTREACHED */
3678 }
3679 
3680 static void
3681 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3682 {
3683 	vnode_t *oldvp;
3684 
3685 	/* we're going to hold a reference here to the directory */
3686 	VN_HOLD(vp);
3687 
3688 	/* update abs cwd/root path see c2/audit.c */
3689 	if (AU_AUDITING())
3690 		audit_chdirec(vp, vpp);
3691 
3692 	mutex_enter(&pp->p_lock);
3693 	oldvp = *vpp;
3694 	*vpp = vp;
3695 	mutex_exit(&pp->p_lock);
3696 	if (oldvp != NULL)
3697 		VN_RELE(oldvp);
3698 }
3699 
3700 /*
3701  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3702  */
3703 static int
3704 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3705 {
3706 	nvpair_t *nvp = NULL;
3707 	boolean_t priv_set = B_FALSE;
3708 	boolean_t limit_set = B_FALSE;
3709 	boolean_t action_set = B_FALSE;
3710 
3711 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3712 		const char *name;
3713 		uint64_t ui64;
3714 
3715 		name = nvpair_name(nvp);
3716 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3717 			return (EINVAL);
3718 		(void) nvpair_value_uint64(nvp, &ui64);
3719 		if (strcmp(name, "privilege") == 0) {
3720 			/*
3721 			 * Currently only privileged values are allowed, but
3722 			 * this may change in the future.
3723 			 */
3724 			if (ui64 != RCPRIV_PRIVILEGED)
3725 				return (EINVAL);
3726 			rv->rcv_privilege = ui64;
3727 			priv_set = B_TRUE;
3728 		} else if (strcmp(name, "limit") == 0) {
3729 			rv->rcv_value = ui64;
3730 			limit_set = B_TRUE;
3731 		} else if (strcmp(name, "action") == 0) {
3732 			if (ui64 != RCTL_LOCAL_NOACTION &&
3733 			    ui64 != RCTL_LOCAL_DENY)
3734 				return (EINVAL);
3735 			rv->rcv_flagaction = ui64;
3736 			action_set = B_TRUE;
3737 		} else {
3738 			return (EINVAL);
3739 		}
3740 	}
3741 
3742 	if (!(priv_set && limit_set && action_set))
3743 		return (EINVAL);
3744 	rv->rcv_action_signal = 0;
3745 	rv->rcv_action_recipient = NULL;
3746 	rv->rcv_action_recip_pid = -1;
3747 	rv->rcv_firing_time = 0;
3748 
3749 	return (0);
3750 }
3751 
3752 /*
3753  * Non-global zone version of start_init.
3754  */
3755 void
3756 zone_start_init(void)
3757 {
3758 	proc_t *p = ttoproc(curthread);
3759 	zone_t *z = p->p_zone;
3760 
3761 	ASSERT(!INGLOBALZONE(curproc));
3762 
3763 	/*
3764 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3765 	 * storing just the pid of init is sufficient.
3766 	 */
3767 	z->zone_proc_initpid = p->p_pid;
3768 
3769 	/*
3770 	 * We maintain zone_boot_err so that we can return the cause of the
3771 	 * failure back to the caller of the zone_boot syscall.
3772 	 */
3773 	p->p_zone->zone_boot_err = start_init_common();
3774 
3775 	/*
3776 	 * We will prevent booting zones from becoming running zones if the
3777 	 * global zone is shutting down.
3778 	 */
3779 	mutex_enter(&zone_status_lock);
3780 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3781 	    ZONE_IS_SHUTTING_DOWN) {
3782 		/*
3783 		 * Make sure we are still in the booting state-- we could have
3784 		 * raced and already be shutting down, or even further along.
3785 		 */
3786 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3787 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3788 		}
3789 		mutex_exit(&zone_status_lock);
3790 		/* It's gone bad, dispose of the process */
3791 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3792 			mutex_enter(&p->p_lock);
3793 			ASSERT(p->p_flag & SEXITLWPS);
3794 			lwp_exit();
3795 		}
3796 	} else {
3797 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3798 			zone_status_set(z, ZONE_IS_RUNNING);
3799 		mutex_exit(&zone_status_lock);
3800 		/* cause the process to return to userland. */
3801 		lwp_rtt();
3802 	}
3803 }
3804 
3805 struct zsched_arg {
3806 	zone_t *zone;
3807 	nvlist_t *nvlist;
3808 };
3809 
3810 /*
3811  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3812  * anything to do with scheduling, but rather with the fact that
3813  * per-zone kernel threads are parented to zsched, just like regular
3814  * kernel threads are parented to sched (p0).
3815  *
3816  * zsched is also responsible for launching init for the zone.
3817  */
3818 static void
3819 zsched(void *arg)
3820 {
3821 	struct zsched_arg *za = arg;
3822 	proc_t *pp = curproc;
3823 	proc_t *initp = proc_init;
3824 	zone_t *zone = za->zone;
3825 	cred_t *cr, *oldcred;
3826 	rctl_set_t *set;
3827 	rctl_alloc_gp_t *gp;
3828 	contract_t *ct = NULL;
3829 	task_t *tk, *oldtk;
3830 	rctl_entity_p_t e;
3831 	kproject_t *pj;
3832 
3833 	nvlist_t *nvl = za->nvlist;
3834 	nvpair_t *nvp = NULL;
3835 
3836 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3837 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3838 	PTOU(pp)->u_argc = 0;
3839 	PTOU(pp)->u_argv = NULL;
3840 	PTOU(pp)->u_envp = NULL;
3841 	PTOU(pp)->u_commpagep = NULL;
3842 	closeall(P_FINFO(pp));
3843 
3844 	/*
3845 	 * We are this zone's "zsched" process.  As the zone isn't generally
3846 	 * visible yet we don't need to grab any locks before initializing its
3847 	 * zone_proc pointer.
3848 	 */
3849 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3850 	zone->zone_zsched = pp;
3851 	mutex_enter(&pp->p_lock);
3852 	pp->p_zone = zone;
3853 	mutex_exit(&pp->p_lock);
3854 
3855 	/*
3856 	 * Disassociate process from its 'parent'; parent ourselves to init
3857 	 * (pid 1) and change other values as needed.
3858 	 */
3859 	sess_create();
3860 
3861 	mutex_enter(&pidlock);
3862 	proc_detach(pp);
3863 	pp->p_ppid = 1;
3864 	pp->p_flag |= SZONETOP;
3865 	pp->p_ancpid = 1;
3866 	pp->p_parent = initp;
3867 	pp->p_psibling = NULL;
3868 	if (initp->p_child)
3869 		initp->p_child->p_psibling = pp;
3870 	pp->p_sibling = initp->p_child;
3871 	initp->p_child = pp;
3872 
3873 	/* Decrement what newproc() incremented. */
3874 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3875 	/*
3876 	 * Our credentials are about to become kcred-like, so we don't care
3877 	 * about the caller's ruid.
3878 	 */
3879 	upcount_inc(crgetruid(kcred), zone->zone_id);
3880 	mutex_exit(&pidlock);
3881 
3882 	/*
3883 	 * getting out of global zone, so decrement lwp and process counts
3884 	 */
3885 	pj = pp->p_task->tk_proj;
3886 	mutex_enter(&global_zone->zone_nlwps_lock);
3887 	pj->kpj_nlwps -= pp->p_lwpcnt;
3888 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3889 	pj->kpj_nprocs--;
3890 	global_zone->zone_nprocs--;
3891 	mutex_exit(&global_zone->zone_nlwps_lock);
3892 
3893 	/*
3894 	 * Decrement locked memory counts on old zone and project.
3895 	 */
3896 	mutex_enter(&global_zone->zone_mem_lock);
3897 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3898 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3899 	mutex_exit(&global_zone->zone_mem_lock);
3900 
3901 	/*
3902 	 * Create and join a new task in project '0' of this zone.
3903 	 *
3904 	 * We don't need to call holdlwps() since we know we're the only lwp in
3905 	 * this process.
3906 	 *
3907 	 * task_join() returns with p_lock held.
3908 	 */
3909 	tk = task_create(0, zone);
3910 	mutex_enter(&cpu_lock);
3911 	oldtk = task_join(tk, 0);
3912 
3913 	pj = pp->p_task->tk_proj;
3914 
3915 	mutex_enter(&zone->zone_mem_lock);
3916 	zone->zone_locked_mem += pp->p_locked_mem;
3917 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3918 	mutex_exit(&zone->zone_mem_lock);
3919 
3920 	/*
3921 	 * add lwp and process counts to zsched's zone, and increment
3922 	 * project's task and process count due to the task created in
3923 	 * the above task_create.
3924 	 */
3925 	mutex_enter(&zone->zone_nlwps_lock);
3926 	pj->kpj_nlwps += pp->p_lwpcnt;
3927 	pj->kpj_ntasks += 1;
3928 	zone->zone_nlwps += pp->p_lwpcnt;
3929 	pj->kpj_nprocs++;
3930 	zone->zone_nprocs++;
3931 	mutex_exit(&zone->zone_nlwps_lock);
3932 
3933 	mutex_exit(&curproc->p_lock);
3934 	mutex_exit(&cpu_lock);
3935 	task_rele(oldtk);
3936 
3937 	/*
3938 	 * The process was created by a process in the global zone, hence the
3939 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3940 	 */
3941 	cr = zone->zone_kcred;
3942 	crhold(cr);
3943 	mutex_enter(&pp->p_crlock);
3944 	oldcred = pp->p_cred;
3945 	pp->p_cred = cr;
3946 	mutex_exit(&pp->p_crlock);
3947 	crfree(oldcred);
3948 
3949 	/*
3950 	 * Hold credentials again (for thread)
3951 	 */
3952 	crhold(cr);
3953 
3954 	/*
3955 	 * p_lwpcnt can't change since this is a kernel process.
3956 	 */
3957 	crset(pp, cr);
3958 
3959 	/*
3960 	 * Chroot
3961 	 */
3962 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3963 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3964 
3965 	/*
3966 	 * Initialize zone's rctl set.
3967 	 */
3968 	set = rctl_set_create();
3969 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3970 	mutex_enter(&pp->p_lock);
3971 	e.rcep_p.zone = zone;
3972 	e.rcep_t = RCENTITY_ZONE;
3973 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3974 	mutex_exit(&pp->p_lock);
3975 	rctl_prealloc_destroy(gp);
3976 
3977 	/*
3978 	 * Apply the rctls passed in to zone_create().  This is basically a list
3979 	 * assignment: all of the old values are removed and the new ones
3980 	 * inserted.  That is, if an empty list is passed in, all values are
3981 	 * removed.
3982 	 */
3983 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3984 		rctl_dict_entry_t *rde;
3985 		rctl_hndl_t hndl;
3986 		char *name;
3987 		nvlist_t **nvlarray;
3988 		uint_t i, nelem;
3989 		int error;	/* For ASSERT()s */
3990 
3991 		name = nvpair_name(nvp);
3992 		hndl = rctl_hndl_lookup(name);
3993 		ASSERT(hndl != -1);
3994 		rde = rctl_dict_lookup_hndl(hndl);
3995 		ASSERT(rde != NULL);
3996 
3997 		for (; /* ever */; ) {
3998 			rctl_val_t oval;
3999 
4000 			mutex_enter(&pp->p_lock);
4001 			error = rctl_local_get(hndl, NULL, &oval, pp);
4002 			mutex_exit(&pp->p_lock);
4003 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
4004 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
4005 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
4006 				break;
4007 			mutex_enter(&pp->p_lock);
4008 			error = rctl_local_delete(hndl, &oval, pp);
4009 			mutex_exit(&pp->p_lock);
4010 			ASSERT(error == 0);
4011 		}
4012 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4013 		ASSERT(error == 0);
4014 		for (i = 0; i < nelem; i++) {
4015 			rctl_val_t *nvalp;
4016 
4017 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
4018 			error = nvlist2rctlval(nvlarray[i], nvalp);
4019 			ASSERT(error == 0);
4020 			/*
4021 			 * rctl_local_insert can fail if the value being
4022 			 * inserted is a duplicate; this is OK.
4023 			 */
4024 			mutex_enter(&pp->p_lock);
4025 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
4026 				kmem_cache_free(rctl_val_cache, nvalp);
4027 			mutex_exit(&pp->p_lock);
4028 		}
4029 	}
4030 
4031 	/*
4032 	 * Tell the world that we're done setting up.
4033 	 *
4034 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
4035 	 * and atomically set the zone's processor set visibility.  Once
4036 	 * we drop pool_lock() this zone will automatically get updated
4037 	 * to reflect any future changes to the pools configuration.
4038 	 *
4039 	 * Note that after we drop the locks below (zonehash_lock in
4040 	 * particular) other operations such as a zone_getattr call can
4041 	 * now proceed and observe the zone. That is the reason for doing a
4042 	 * state transition to the INITIALIZED state.
4043 	 */
4044 	pool_lock();
4045 	mutex_enter(&cpu_lock);
4046 	mutex_enter(&zonehash_lock);
4047 	zone_uniqid(zone);
4048 	zone_zsd_configure(zone);
4049 	if (pool_state == POOL_ENABLED)
4050 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
4051 	mutex_enter(&zone_status_lock);
4052 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
4053 	zone_status_set(zone, ZONE_IS_INITIALIZED);
4054 	mutex_exit(&zone_status_lock);
4055 	mutex_exit(&zonehash_lock);
4056 	mutex_exit(&cpu_lock);
4057 	pool_unlock();
4058 
4059 	/* Now call the create callback for this key */
4060 	zsd_apply_all_keys(zsd_apply_create, zone);
4061 
4062 	/* The callbacks are complete. Mark ZONE_IS_READY */
4063 	mutex_enter(&zone_status_lock);
4064 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
4065 	zone_status_set(zone, ZONE_IS_READY);
4066 	mutex_exit(&zone_status_lock);
4067 
4068 	/*
4069 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
4070 	 * we launch init, and set the state to running.
4071 	 */
4072 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4073 
4074 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4075 		id_t cid;
4076 
4077 		/*
4078 		 * Ok, this is a little complicated.  We need to grab the
4079 		 * zone's pool's scheduling class ID; note that by now, we
4080 		 * are already bound to a pool if we need to be (zoneadmd
4081 		 * will have done that to us while we're in the READY
4082 		 * state).  *But* the scheduling class for the zone's 'init'
4083 		 * must be explicitly passed to newproc, which doesn't
4084 		 * respect pool bindings.
4085 		 *
4086 		 * We hold the pool_lock across the call to newproc() to
4087 		 * close the obvious race: the pool's scheduling class
4088 		 * could change before we manage to create the LWP with
4089 		 * classid 'cid'.
4090 		 */
4091 		pool_lock();
4092 		if (zone->zone_defaultcid > 0)
4093 			cid = zone->zone_defaultcid;
4094 		else
4095 			cid = pool_get_class(zone->zone_pool);
4096 		if (cid == -1)
4097 			cid = defaultcid;
4098 
4099 		/*
4100 		 * If this fails, zone_boot will ultimately fail.  The
4101 		 * state of the zone will be set to SHUTTING_DOWN-- userland
4102 		 * will have to tear down the zone, and fail, or try again.
4103 		 */
4104 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4105 		    minclsyspri - 1, &ct, 0)) != 0) {
4106 			mutex_enter(&zone_status_lock);
4107 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4108 			mutex_exit(&zone_status_lock);
4109 		} else {
4110 			zone->zone_boot_time = gethrestime_sec();
4111 		}
4112 
4113 		pool_unlock();
4114 	}
4115 
4116 	/*
4117 	 * Wait for zone_destroy() to be called.  This is what we spend
4118 	 * most of our life doing.
4119 	 */
4120 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4121 
4122 	if (ct)
4123 		/*
4124 		 * At this point the process contract should be empty.
4125 		 * (Though if it isn't, it's not the end of the world.)
4126 		 */
4127 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4128 
4129 	/*
4130 	 * Allow kcred to be freed when all referring processes
4131 	 * (including this one) go away.  We can't just do this in
4132 	 * zone_free because we need to wait for the zone_cred_ref to
4133 	 * drop to 0 before calling zone_free, and the existence of
4134 	 * zone_kcred will prevent that.  Thus, we call crfree here to
4135 	 * balance the crdup in zone_create.  The crhold calls earlier
4136 	 * in zsched will be dropped when the thread and process exit.
4137 	 */
4138 	crfree(zone->zone_kcred);
4139 	zone->zone_kcred = NULL;
4140 
4141 	exit(CLD_EXITED, 0);
4142 }
4143 
4144 /*
4145  * Helper function to determine if there are any submounts of the
4146  * provided path.  Used to make sure the zone doesn't "inherit" any
4147  * mounts from before it is created.
4148  */
4149 static uint_t
4150 zone_mount_count(const char *rootpath)
4151 {
4152 	vfs_t *vfsp;
4153 	uint_t count = 0;
4154 	size_t rootpathlen = strlen(rootpath);
4155 
4156 	/*
4157 	 * Holding zonehash_lock prevents race conditions with
4158 	 * vfs_list_add()/vfs_list_remove() since we serialize with
4159 	 * zone_find_by_path().
4160 	 */
4161 	ASSERT(MUTEX_HELD(&zonehash_lock));
4162 	/*
4163 	 * The rootpath must end with a '/'
4164 	 */
4165 	ASSERT(rootpath[rootpathlen - 1] == '/');
4166 
4167 	/*
4168 	 * This intentionally does not count the rootpath itself if that
4169 	 * happens to be a mount point.
4170 	 */
4171 	vfs_list_read_lock();
4172 	vfsp = rootvfs;
4173 	do {
4174 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4175 		    rootpathlen) == 0)
4176 			count++;
4177 		vfsp = vfsp->vfs_next;
4178 	} while (vfsp != rootvfs);
4179 	vfs_list_unlock();
4180 	return (count);
4181 }
4182 
4183 /*
4184  * Helper function to make sure that a zone created on 'rootpath'
4185  * wouldn't end up containing other zones' rootpaths.
4186  */
4187 static boolean_t
4188 zone_is_nested(const char *rootpath)
4189 {
4190 	zone_t *zone;
4191 	size_t rootpathlen = strlen(rootpath);
4192 	size_t len;
4193 
4194 	ASSERT(MUTEX_HELD(&zonehash_lock));
4195 
4196 	/*
4197 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
4198 	 */
4199 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4200 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
4201 		return (B_TRUE);
4202 
4203 	for (zone = list_head(&zone_active); zone != NULL;
4204 	    zone = list_next(&zone_active, zone)) {
4205 		if (zone == global_zone)
4206 			continue;
4207 		len = strlen(zone->zone_rootpath);
4208 		if (strncmp(rootpath, zone->zone_rootpath,
4209 		    MIN(rootpathlen, len)) == 0)
4210 			return (B_TRUE);
4211 	}
4212 	return (B_FALSE);
4213 }
4214 
4215 static int
4216 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4217     size_t zone_privssz)
4218 {
4219 	priv_set_t *privs;
4220 
4221 	if (zone_privssz < sizeof (priv_set_t))
4222 		return (ENOMEM);
4223 
4224 	privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4225 
4226 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4227 		kmem_free(privs, sizeof (priv_set_t));
4228 		return (EFAULT);
4229 	}
4230 
4231 	zone->zone_privset = privs;
4232 	return (0);
4233 }
4234 
4235 /*
4236  * We make creative use of nvlists to pass in rctls from userland.  The list is
4237  * a list of the following structures:
4238  *
4239  * (name = rctl_name, value = nvpair_list_array)
4240  *
4241  * Where each element of the nvpair_list_array is of the form:
4242  *
4243  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4244  *	(name = "limit", value = uint64_t),
4245  *	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4246  */
4247 static int
4248 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4249 {
4250 	nvpair_t *nvp = NULL;
4251 	nvlist_t *nvl = NULL;
4252 	char *kbuf;
4253 	int error;
4254 	rctl_val_t rv;
4255 
4256 	*nvlp = NULL;
4257 
4258 	if (buflen == 0)
4259 		return (0);
4260 
4261 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4262 		return (ENOMEM);
4263 	if (copyin(ubuf, kbuf, buflen)) {
4264 		error = EFAULT;
4265 		goto out;
4266 	}
4267 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4268 		/*
4269 		 * nvl may have been allocated/free'd, but the value set to
4270 		 * non-NULL, so we reset it here.
4271 		 */
4272 		nvl = NULL;
4273 		error = EINVAL;
4274 		goto out;
4275 	}
4276 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4277 		rctl_dict_entry_t *rde;
4278 		rctl_hndl_t hndl;
4279 		nvlist_t **nvlarray;
4280 		uint_t i, nelem;
4281 		char *name;
4282 
4283 		error = EINVAL;
4284 		name = nvpair_name(nvp);
4285 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4286 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4287 			goto out;
4288 		}
4289 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
4290 			goto out;
4291 		}
4292 		rde = rctl_dict_lookup_hndl(hndl);
4293 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4294 		ASSERT(error == 0);
4295 		for (i = 0; i < nelem; i++) {
4296 			if (error = nvlist2rctlval(nvlarray[i], &rv))
4297 				goto out;
4298 		}
4299 		if (rctl_invalid_value(rde, &rv)) {
4300 			error = EINVAL;
4301 			goto out;
4302 		}
4303 	}
4304 	error = 0;
4305 	*nvlp = nvl;
4306 out:
4307 	kmem_free(kbuf, buflen);
4308 	if (error && nvl != NULL)
4309 		nvlist_free(nvl);
4310 	return (error);
4311 }
4312 
4313 int
4314 zone_create_error(int er_error, int er_ext, int *er_out)
4315 {
4316 	if (er_out != NULL) {
4317 		if (copyout(&er_ext, er_out, sizeof (int))) {
4318 			return (set_errno(EFAULT));
4319 		}
4320 	}
4321 	return (set_errno(er_error));
4322 }
4323 
4324 static int
4325 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4326 {
4327 	ts_label_t *tsl;
4328 	bslabel_t blab;
4329 
4330 	/* Get label from user */
4331 	if (copyin(lab, &blab, sizeof (blab)) != 0)
4332 		return (EFAULT);
4333 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4334 	if (tsl == NULL)
4335 		return (ENOMEM);
4336 
4337 	zone->zone_slabel = tsl;
4338 	return (0);
4339 }
4340 
4341 /*
4342  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4343  */
4344 static int
4345 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4346 {
4347 	char *kbuf;
4348 	char *dataset, *next;
4349 	zone_dataset_t *zd;
4350 	size_t len;
4351 
4352 	if (ubuf == NULL || buflen == 0)
4353 		return (0);
4354 
4355 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4356 		return (ENOMEM);
4357 
4358 	if (copyin(ubuf, kbuf, buflen) != 0) {
4359 		kmem_free(kbuf, buflen);
4360 		return (EFAULT);
4361 	}
4362 
4363 	dataset = next = kbuf;
4364 	for (;;) {
4365 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4366 
4367 		next = strchr(dataset, ',');
4368 
4369 		if (next == NULL)
4370 			len = strlen(dataset);
4371 		else
4372 			len = next - dataset;
4373 
4374 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4375 		bcopy(dataset, zd->zd_dataset, len);
4376 		zd->zd_dataset[len] = '\0';
4377 
4378 		list_insert_head(&zone->zone_datasets, zd);
4379 
4380 		if (next == NULL)
4381 			break;
4382 
4383 		dataset = next + 1;
4384 	}
4385 
4386 	kmem_free(kbuf, buflen);
4387 	return (0);
4388 }
4389 
4390 /*
4391  * System call to create/initialize a new zone named 'zone_name', rooted
4392  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4393  * and initialized with the zone-wide rctls described in 'rctlbuf', and
4394  * with labeling set by 'match', 'doi', and 'label'.
4395  *
4396  * If extended error is non-null, we may use it to return more detailed
4397  * error information.
4398  */
4399 static zoneid_t
4400 zone_create(const char *zone_name, const char *zone_root,
4401     const priv_set_t *zone_privs, size_t zone_privssz,
4402     caddr_t rctlbuf, size_t rctlbufsz,
4403     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4404     int match, uint32_t doi, const bslabel_t *label,
4405     int flags)
4406 {
4407 	struct zsched_arg zarg;
4408 	nvlist_t *rctls = NULL;
4409 	proc_t *pp = curproc;
4410 	zone_t *zone, *ztmp;
4411 	zoneid_t zoneid, start = GLOBAL_ZONEID;
4412 	int error;
4413 	int error2 = 0;
4414 	char *str;
4415 	cred_t *zkcr;
4416 	boolean_t insert_label_hash;
4417 
4418 	if (secpolicy_zone_config(CRED()) != 0)
4419 		return (set_errno(EPERM));
4420 
4421 	/* can't boot zone from within chroot environment */
4422 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4423 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4424 		    extended_error));
4425 	/*
4426 	 * As the first step of zone creation, we want to allocate a zoneid.
4427 	 * This allocation is complicated by the fact that netstacks use the
4428 	 * zoneid to determine their stackid, but netstacks themselves are
4429 	 * freed asynchronously with respect to zone destruction.  This means
4430 	 * that a netstack reference leak (or in principle, an extraordinarily
4431 	 * long netstack reference hold) could result in a zoneid being
4432 	 * allocated that in fact corresponds to a stackid from an active
4433 	 * (referenced) netstack -- unleashing all sorts of havoc when that
4434 	 * netstack is actually (re)used.  (In the abstract, we might wish a
4435 	 * zoneid to not be deallocated until its last referencing netstack
4436 	 * has been released, but netstacks lack a backpointer into their
4437 	 * referencing zone -- and changing them to have such a pointer would
4438 	 * be substantial, to put it euphemistically.)  To avoid this, we
4439 	 * detect this condition on allocation: if we have allocated a zoneid
4440 	 * that corresponds to a netstack that's still in use, we warn about
4441 	 * it (as it is much more likely to be a reference leak than an actual
4442 	 * netstack reference), free it, and allocate another.  That these
4443 	 * identifers are allocated out of an ID space assures that we won't
4444 	 * see the identifier we just allocated.
4445 	 */
4446 	for (;;) {
4447 		zoneid = id_alloc(zoneid_space);
4448 
4449 		if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid)))
4450 			break;
4451 
4452 		id_free(zoneid_space, zoneid);
4453 
4454 		if (start == GLOBAL_ZONEID) {
4455 			start = zoneid;
4456 		} else if (zoneid == start) {
4457 			/*
4458 			 * We have managed to iterate over the entire available
4459 			 * zoneid space -- there are no identifiers available,
4460 			 * presumably due to some number of leaked netstack
4461 			 * references.  While it's in principle possible for us
4462 			 * to continue to try, it seems wiser to give up at
4463 			 * this point to warn and fail explicitly with a
4464 			 * distinctive error.
4465 			 */
4466 			cmn_err(CE_WARN, "zone_create() failed: all available "
4467 			    "zone IDs have netstacks still in use");
4468 			return (set_errno(ENFILE));
4469 		}
4470 
4471 		cmn_err(CE_WARN, "unable to reuse zone ID %d; "
4472 		    "netstack still in use", zoneid);
4473 	}
4474 
4475 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4476 	zone->zone_id = zoneid;
4477 	zone->zone_status = ZONE_IS_UNINITIALIZED;
4478 	zone->zone_pool = pool_default;
4479 	zone->zone_pool_mod = gethrtime();
4480 	zone->zone_psetid = ZONE_PS_INVAL;
4481 	zone->zone_ncpus = 0;
4482 	zone->zone_ncpus_online = 0;
4483 	zone->zone_restart_init = B_TRUE;
4484 	zone->zone_brand = &native_brand;
4485 	zone->zone_initname = NULL;
4486 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4487 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4488 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4489 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4490 	list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4491 	    offsetof(zone_ref_t, zref_linkage));
4492 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4493 	    offsetof(struct zsd_entry, zsd_linkage));
4494 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4495 	    offsetof(zone_dataset_t, zd_linkage));
4496 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4497 	    offsetof(zone_dl_t, zdl_linkage));
4498 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4499 	rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4500 
4501 	if (flags & ZCF_NET_EXCL) {
4502 		zone->zone_flags |= ZF_NET_EXCL;
4503 	}
4504 
4505 	if ((error = zone_set_name(zone, zone_name)) != 0) {
4506 		zone_free(zone);
4507 		return (zone_create_error(error, 0, extended_error));
4508 	}
4509 
4510 	if ((error = zone_set_root(zone, zone_root)) != 0) {
4511 		zone_free(zone);
4512 		return (zone_create_error(error, 0, extended_error));
4513 	}
4514 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4515 		zone_free(zone);
4516 		return (zone_create_error(error, 0, extended_error));
4517 	}
4518 
4519 	/* initialize node name to be the same as zone name */
4520 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4521 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4522 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4523 
4524 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4525 	zone->zone_domain[0] = '\0';
4526 	zone->zone_hostid = HW_INVALID_HOSTID;
4527 	zone->zone_shares = 1;
4528 	zone->zone_shmmax = 0;
4529 	zone->zone_ipc.ipcq_shmmni = 0;
4530 	zone->zone_ipc.ipcq_semmni = 0;
4531 	zone->zone_ipc.ipcq_msgmni = 0;
4532 	zone->zone_bootargs = NULL;
4533 	zone->zone_fs_allowed = NULL;
4534 
4535 	psecflags_default(&zone->zone_secflags);
4536 
4537 	zone->zone_initname =
4538 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4539 	(void) strcpy(zone->zone_initname, zone_default_initname);
4540 	zone->zone_nlwps = 0;
4541 	zone->zone_nlwps_ctl = INT_MAX;
4542 	zone->zone_nprocs = 0;
4543 	zone->zone_nprocs_ctl = INT_MAX;
4544 	zone->zone_locked_mem = 0;
4545 	zone->zone_locked_mem_ctl = UINT64_MAX;
4546 	zone->zone_max_swap = 0;
4547 	zone->zone_max_swap_ctl = UINT64_MAX;
4548 	zone->zone_max_lofi = 0;
4549 	zone->zone_max_lofi_ctl = UINT64_MAX;
4550 	zone0.zone_lockedmem_kstat = NULL;
4551 	zone0.zone_swapresv_kstat = NULL;
4552 
4553 	zone->zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
4554 
4555 	/*
4556 	 * Zsched initializes the rctls.
4557 	 */
4558 	zone->zone_rctls = NULL;
4559 
4560 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4561 		zone_free(zone);
4562 		return (zone_create_error(error, 0, extended_error));
4563 	}
4564 
4565 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4566 		zone_free(zone);
4567 		return (set_errno(error));
4568 	}
4569 
4570 	/*
4571 	 * Read in the trusted system parameters:
4572 	 * match flag and sensitivity label.
4573 	 */
4574 	zone->zone_match = match;
4575 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4576 		/* Fail if requested to set doi to anything but system's doi */
4577 		if (doi != 0 && doi != default_doi) {
4578 			zone_free(zone);
4579 			return (set_errno(EINVAL));
4580 		}
4581 		/* Always apply system's doi to the zone */
4582 		error = zone_set_label(zone, label, default_doi);
4583 		if (error != 0) {
4584 			zone_free(zone);
4585 			return (set_errno(error));
4586 		}
4587 		insert_label_hash = B_TRUE;
4588 	} else {
4589 		/* all zones get an admin_low label if system is not labeled */
4590 		zone->zone_slabel = l_admin_low;
4591 		label_hold(l_admin_low);
4592 		insert_label_hash = B_FALSE;
4593 	}
4594 
4595 	/*
4596 	 * Stop all lwps since that's what normally happens as part of fork().
4597 	 * This needs to happen before we grab any locks to avoid deadlock
4598 	 * (another lwp in the process could be waiting for the held lock).
4599 	 */
4600 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4601 		zone_free(zone);
4602 		nvlist_free(rctls);
4603 		return (zone_create_error(error, 0, extended_error));
4604 	}
4605 
4606 	if (block_mounts(zone) == 0) {
4607 		mutex_enter(&pp->p_lock);
4608 		if (curthread != pp->p_agenttp)
4609 			continuelwps(pp);
4610 		mutex_exit(&pp->p_lock);
4611 		zone_free(zone);
4612 		nvlist_free(rctls);
4613 		return (zone_create_error(error, 0, extended_error));
4614 	}
4615 
4616 	/*
4617 	 * Set up credential for kernel access.  After this, any errors
4618 	 * should go through the dance in errout rather than calling
4619 	 * zone_free directly.
4620 	 */
4621 	zone->zone_kcred = crdup(kcred);
4622 	crsetzone(zone->zone_kcred, zone);
4623 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4624 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4625 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4626 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4627 
4628 	mutex_enter(&zonehash_lock);
4629 	/*
4630 	 * Make sure zone doesn't already exist.
4631 	 *
4632 	 * If the system and zone are labeled,
4633 	 * make sure no other zone exists that has the same label.
4634 	 */
4635 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4636 	    (insert_label_hash &&
4637 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4638 		zone_status_t status;
4639 
4640 		status = zone_status_get(ztmp);
4641 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4642 			error = EEXIST;
4643 		else
4644 			error = EBUSY;
4645 
4646 		if (insert_label_hash)
4647 			error2 = ZE_LABELINUSE;
4648 
4649 		goto errout;
4650 	}
4651 
4652 	/*
4653 	 * Don't allow zone creations which would cause one zone's rootpath to
4654 	 * be accessible from that of another (non-global) zone.
4655 	 */
4656 	if (zone_is_nested(zone->zone_rootpath)) {
4657 		error = EBUSY;
4658 		goto errout;
4659 	}
4660 
4661 	ASSERT(zonecount != 0);		/* check for leaks */
4662 	if (zonecount + 1 > maxzones) {
4663 		error = ENOMEM;
4664 		goto errout;
4665 	}
4666 
4667 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4668 		error = EBUSY;
4669 		error2 = ZE_AREMOUNTS;
4670 		goto errout;
4671 	}
4672 
4673 	/*
4674 	 * Zone is still incomplete, but we need to drop all locks while
4675 	 * zsched() initializes this zone's kernel process.  We
4676 	 * optimistically add the zone to the hashtable and associated
4677 	 * lists so a parallel zone_create() doesn't try to create the
4678 	 * same zone.
4679 	 */
4680 	zonecount++;
4681 	(void) mod_hash_insert(zonehashbyid,
4682 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
4683 	    (mod_hash_val_t)(uintptr_t)zone);
4684 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4685 	(void) strcpy(str, zone->zone_name);
4686 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4687 	    (mod_hash_val_t)(uintptr_t)zone);
4688 	if (insert_label_hash) {
4689 		(void) mod_hash_insert(zonehashbylabel,
4690 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4691 		zone->zone_flags |= ZF_HASHED_LABEL;
4692 	}
4693 
4694 	/*
4695 	 * Insert into active list.  At this point there are no 'hold's
4696 	 * on the zone, but everyone else knows not to use it, so we can
4697 	 * continue to use it.  zsched() will do a zone_hold() if the
4698 	 * newproc() is successful.
4699 	 */
4700 	list_insert_tail(&zone_active, zone);
4701 	mutex_exit(&zonehash_lock);
4702 
4703 	zarg.zone = zone;
4704 	zarg.nvlist = rctls;
4705 	/*
4706 	 * The process, task, and project rctls are probably wrong;
4707 	 * we need an interface to get the default values of all rctls,
4708 	 * and initialize zsched appropriately.  I'm not sure that that
4709 	 * makes much of a difference, though.
4710 	 */
4711 	error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4712 	if (error != 0) {
4713 		/*
4714 		 * We need to undo all globally visible state.
4715 		 */
4716 		mutex_enter(&zonehash_lock);
4717 		list_remove(&zone_active, zone);
4718 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4719 			ASSERT(zone->zone_slabel != NULL);
4720 			(void) mod_hash_destroy(zonehashbylabel,
4721 			    (mod_hash_key_t)zone->zone_slabel);
4722 		}
4723 		(void) mod_hash_destroy(zonehashbyname,
4724 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4725 		(void) mod_hash_destroy(zonehashbyid,
4726 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4727 		ASSERT(zonecount > 1);
4728 		zonecount--;
4729 		goto errout;
4730 	}
4731 
4732 	/*
4733 	 * Zone creation can't fail from now on.
4734 	 */
4735 
4736 	/*
4737 	 * Create zone kstats
4738 	 */
4739 	zone_kstat_create(zone);
4740 
4741 	/*
4742 	 * Let the other lwps continue.
4743 	 */
4744 	mutex_enter(&pp->p_lock);
4745 	if (curthread != pp->p_agenttp)
4746 		continuelwps(pp);
4747 	mutex_exit(&pp->p_lock);
4748 
4749 	/*
4750 	 * Wait for zsched to finish initializing the zone.
4751 	 */
4752 	zone_status_wait(zone, ZONE_IS_READY);
4753 	/*
4754 	 * The zone is fully visible, so we can let mounts progress.
4755 	 */
4756 	resume_mounts(zone);
4757 	nvlist_free(rctls);
4758 
4759 	return (zoneid);
4760 
4761 errout:
4762 	mutex_exit(&zonehash_lock);
4763 	/*
4764 	 * Let the other lwps continue.
4765 	 */
4766 	mutex_enter(&pp->p_lock);
4767 	if (curthread != pp->p_agenttp)
4768 		continuelwps(pp);
4769 	mutex_exit(&pp->p_lock);
4770 
4771 	resume_mounts(zone);
4772 	nvlist_free(rctls);
4773 	/*
4774 	 * There is currently one reference to the zone, a cred_ref from
4775 	 * zone_kcred.  To free the zone, we call crfree, which will call
4776 	 * zone_cred_rele, which will call zone_free.
4777 	 */
4778 	ASSERT(zone->zone_cred_ref == 1);
4779 	ASSERT(zone->zone_kcred->cr_ref == 1);
4780 	ASSERT(zone->zone_ref == 0);
4781 	zkcr = zone->zone_kcred;
4782 	zone->zone_kcred = NULL;
4783 	crfree(zkcr);				/* triggers call to zone_free */
4784 	return (zone_create_error(error, error2, extended_error));
4785 }
4786 
4787 /*
4788  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4789  * the heavy lifting.  initname is the path to the program to launch
4790  * at the "top" of the zone; if this is NULL, we use the system default,
4791  * which is stored at zone_default_initname.
4792  */
4793 static int
4794 zone_boot(zoneid_t zoneid)
4795 {
4796 	int err;
4797 	zone_t *zone;
4798 
4799 	if (secpolicy_zone_config(CRED()) != 0)
4800 		return (set_errno(EPERM));
4801 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4802 		return (set_errno(EINVAL));
4803 
4804 	mutex_enter(&zonehash_lock);
4805 	/*
4806 	 * Look for zone under hash lock to prevent races with calls to
4807 	 * zone_shutdown, zone_destroy, etc.
4808 	 */
4809 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4810 		mutex_exit(&zonehash_lock);
4811 		return (set_errno(EINVAL));
4812 	}
4813 
4814 	mutex_enter(&zone_status_lock);
4815 	if (zone_status_get(zone) != ZONE_IS_READY) {
4816 		mutex_exit(&zone_status_lock);
4817 		mutex_exit(&zonehash_lock);
4818 		return (set_errno(EINVAL));
4819 	}
4820 	zone_status_set(zone, ZONE_IS_BOOTING);
4821 	mutex_exit(&zone_status_lock);
4822 
4823 	zone_hold(zone);	/* so we can use the zone_t later */
4824 	mutex_exit(&zonehash_lock);
4825 
4826 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4827 		zone_rele(zone);
4828 		return (set_errno(EINTR));
4829 	}
4830 
4831 	/*
4832 	 * Boot (starting init) might have failed, in which case the zone
4833 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4834 	 * be placed in zone->zone_boot_err, and so we return that.
4835 	 */
4836 	err = zone->zone_boot_err;
4837 	zone_rele(zone);
4838 	return (err ? set_errno(err) : 0);
4839 }
4840 
4841 /*
4842  * Kills all user processes in the zone, waiting for them all to exit
4843  * before returning.
4844  */
4845 static int
4846 zone_empty(zone_t *zone)
4847 {
4848 	int waitstatus;
4849 
4850 	/*
4851 	 * We need to drop zonehash_lock before killing all
4852 	 * processes, otherwise we'll deadlock with zone_find_*
4853 	 * which can be called from the exit path.
4854 	 */
4855 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4856 	while ((waitstatus = zone_status_timedwait_sig(zone,
4857 	    ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4858 		killall(zone->zone_id);
4859 	}
4860 	/*
4861 	 * return EINTR if we were signaled
4862 	 */
4863 	if (waitstatus == 0)
4864 		return (EINTR);
4865 	return (0);
4866 }
4867 
4868 /*
4869  * This function implements the policy for zone visibility.
4870  *
4871  * In standard Solaris, a non-global zone can only see itself.
4872  *
4873  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4874  * it dominates. For this test, the label of the global zone is treated as
4875  * admin_high so it is special-cased instead of being checked for dominance.
4876  *
4877  * Returns true if zone attributes are viewable, false otherwise.
4878  */
4879 static boolean_t
4880 zone_list_access(zone_t *zone)
4881 {
4882 
4883 	if (curproc->p_zone == global_zone ||
4884 	    curproc->p_zone == zone) {
4885 		return (B_TRUE);
4886 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4887 		bslabel_t *curproc_label;
4888 		bslabel_t *zone_label;
4889 
4890 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4891 		zone_label = label2bslabel(zone->zone_slabel);
4892 
4893 		if (zone->zone_id != GLOBAL_ZONEID &&
4894 		    bldominates(curproc_label, zone_label)) {
4895 			return (B_TRUE);
4896 		} else {
4897 			return (B_FALSE);
4898 		}
4899 	} else {
4900 		return (B_FALSE);
4901 	}
4902 }
4903 
4904 /*
4905  * Systemcall to start the zone's halt sequence.  By the time this
4906  * function successfully returns, all user processes and kernel threads
4907  * executing in it will have exited, ZSD shutdown callbacks executed,
4908  * and the zone status set to ZONE_IS_DOWN.
4909  *
4910  * It is possible that the call will interrupt itself if the caller is the
4911  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4912  */
4913 static int
4914 zone_shutdown(zoneid_t zoneid)
4915 {
4916 	int error;
4917 	zone_t *zone;
4918 	zone_status_t status;
4919 
4920 	if (secpolicy_zone_config(CRED()) != 0)
4921 		return (set_errno(EPERM));
4922 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4923 		return (set_errno(EINVAL));
4924 
4925 	mutex_enter(&zonehash_lock);
4926 	/*
4927 	 * Look for zone under hash lock to prevent races with other
4928 	 * calls to zone_shutdown and zone_destroy.
4929 	 */
4930 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4931 		mutex_exit(&zonehash_lock);
4932 		return (set_errno(EINVAL));
4933 	}
4934 
4935 	/*
4936 	 * We have to drop zonehash_lock before calling block_mounts.
4937 	 * Hold the zone so we can continue to use the zone_t.
4938 	 */
4939 	zone_hold(zone);
4940 	mutex_exit(&zonehash_lock);
4941 
4942 	/*
4943 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4944 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4945 	 *
4946 	 * e.g. NFS can fail the mount if it determines that the zone
4947 	 * has already begun the shutdown sequence.
4948 	 *
4949 	 */
4950 	if (block_mounts(zone) == 0) {
4951 		zone_rele(zone);
4952 		return (set_errno(EINTR));
4953 	}
4954 
4955 	mutex_enter(&zonehash_lock);
4956 	mutex_enter(&zone_status_lock);
4957 	status = zone_status_get(zone);
4958 	/*
4959 	 * Fail if the zone isn't fully initialized yet.
4960 	 */
4961 	if (status < ZONE_IS_READY) {
4962 		mutex_exit(&zone_status_lock);
4963 		mutex_exit(&zonehash_lock);
4964 		resume_mounts(zone);
4965 		zone_rele(zone);
4966 		return (set_errno(EINVAL));
4967 	}
4968 	/*
4969 	 * If conditions required for zone_shutdown() to return have been met,
4970 	 * return success.
4971 	 */
4972 	if (status >= ZONE_IS_DOWN) {
4973 		mutex_exit(&zone_status_lock);
4974 		mutex_exit(&zonehash_lock);
4975 		resume_mounts(zone);
4976 		zone_rele(zone);
4977 		return (0);
4978 	}
4979 	/*
4980 	 * If zone_shutdown() hasn't been called before, go through the motions.
4981 	 * If it has, there's nothing to do but wait for the kernel threads to
4982 	 * drain.
4983 	 */
4984 	if (status < ZONE_IS_EMPTY) {
4985 		uint_t ntasks;
4986 
4987 		mutex_enter(&zone->zone_lock);
4988 		if ((ntasks = zone->zone_ntasks) != 1) {
4989 			/*
4990 			 * There's still stuff running.
4991 			 */
4992 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4993 		}
4994 		mutex_exit(&zone->zone_lock);
4995 		if (ntasks == 1) {
4996 			/*
4997 			 * The only way to create another task is through
4998 			 * zone_enter(), which will block until we drop
4999 			 * zonehash_lock.  The zone is empty.
5000 			 */
5001 			if (zone->zone_kthreads == NULL) {
5002 				/*
5003 				 * Skip ahead to ZONE_IS_DOWN
5004 				 */
5005 				zone_status_set(zone, ZONE_IS_DOWN);
5006 			} else {
5007 				zone_status_set(zone, ZONE_IS_EMPTY);
5008 			}
5009 		}
5010 	}
5011 	mutex_exit(&zone_status_lock);
5012 	mutex_exit(&zonehash_lock);
5013 	resume_mounts(zone);
5014 
5015 	if (error = zone_empty(zone)) {
5016 		zone_rele(zone);
5017 		return (set_errno(error));
5018 	}
5019 	/*
5020 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
5021 	 * longer be notified of changes to the pools configuration, so
5022 	 * in order to not end up with a stale pool pointer, we point
5023 	 * ourselves at the default pool and remove all resource
5024 	 * visibility.  This is especially important as the zone_t may
5025 	 * languish on the deathrow for a very long time waiting for
5026 	 * cred's to drain out.
5027 	 *
5028 	 * This rebinding of the zone can happen multiple times
5029 	 * (presumably due to interrupted or parallel systemcalls)
5030 	 * without any adverse effects.
5031 	 */
5032 	if (pool_lock_intr() != 0) {
5033 		zone_rele(zone);
5034 		return (set_errno(EINTR));
5035 	}
5036 	if (pool_state == POOL_ENABLED) {
5037 		mutex_enter(&cpu_lock);
5038 		zone_pool_set(zone, pool_default);
5039 		/*
5040 		 * The zone no longer needs to be able to see any cpus.
5041 		 */
5042 		zone_pset_set(zone, ZONE_PS_INVAL);
5043 		mutex_exit(&cpu_lock);
5044 	}
5045 	pool_unlock();
5046 
5047 	/*
5048 	 * ZSD shutdown callbacks can be executed multiple times, hence
5049 	 * it is safe to not be holding any locks across this call.
5050 	 */
5051 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
5052 
5053 	mutex_enter(&zone_status_lock);
5054 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
5055 		zone_status_set(zone, ZONE_IS_DOWN);
5056 	mutex_exit(&zone_status_lock);
5057 
5058 	/*
5059 	 * Wait for kernel threads to drain.
5060 	 */
5061 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
5062 		zone_rele(zone);
5063 		return (set_errno(EINTR));
5064 	}
5065 
5066 	/*
5067 	 * Zone can be become down/destroyable even if the above wait
5068 	 * returns EINTR, so any code added here may never execute.
5069 	 * (i.e. don't add code here)
5070 	 */
5071 
5072 	zone_rele(zone);
5073 	return (0);
5074 }
5075 
5076 /*
5077  * Log the specified zone's reference counts.  The caller should not be
5078  * holding the zone's zone_lock.
5079  */
5080 static void
5081 zone_log_refcounts(zone_t *zone)
5082 {
5083 	char *buffer;
5084 	char *buffer_position;
5085 	uint32_t buffer_size;
5086 	uint32_t index;
5087 	uint_t ref;
5088 	uint_t cred_ref;
5089 
5090 	/*
5091 	 * Construct a string representing the subsystem-specific reference
5092 	 * counts.  The counts are printed in ascending order by index into the
5093 	 * zone_t::zone_subsys_ref array.  The list will be surrounded by
5094 	 * square brackets [] and will only contain nonzero reference counts.
5095 	 *
5096 	 * The buffer will hold two square bracket characters plus ten digits,
5097 	 * one colon, one space, one comma, and some characters for a
5098 	 * subsystem name per subsystem-specific reference count.  (Unsigned 32-
5099 	 * bit integers have at most ten decimal digits.)  The last
5100 	 * reference count's comma is replaced by the closing square
5101 	 * bracket and a NULL character to terminate the string.
5102 	 *
5103 	 * NOTE: We have to grab the zone's zone_lock to create a consistent
5104 	 * snapshot of the zone's reference counters.
5105 	 *
5106 	 * First, figure out how much space the string buffer will need.
5107 	 * The buffer's size is stored in buffer_size.
5108 	 */
5109 	buffer_size = 2;			/* for the square brackets */
5110 	mutex_enter(&zone->zone_lock);
5111 	zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
5112 	ref = zone->zone_ref;
5113 	cred_ref = zone->zone_cred_ref;
5114 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
5115 		if (zone->zone_subsys_ref[index] != 0)
5116 			buffer_size += strlen(zone_ref_subsys_names[index]) +
5117 			    13;
5118 	if (buffer_size == 2) {
5119 		/*
5120 		 * No subsystems had nonzero reference counts.  Don't bother
5121 		 * with allocating a buffer; just log the general-purpose and
5122 		 * credential reference counts.
5123 		 */
5124 		mutex_exit(&zone->zone_lock);
5125 		(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5126 		    "Zone '%s' (ID: %d) is shutting down, but %u zone "
5127 		    "references and %u credential references are still extant",
5128 		    zone->zone_name, zone->zone_id, ref, cred_ref);
5129 		return;
5130 	}
5131 
5132 	/*
5133 	 * buffer_size contains the exact number of characters that the
5134 	 * buffer will need.  Allocate the buffer and fill it with nonzero
5135 	 * subsystem-specific reference counts.  Surround the results with
5136 	 * square brackets afterwards.
5137 	 */
5138 	buffer = kmem_alloc(buffer_size, KM_SLEEP);
5139 	buffer_position = &buffer[1];
5140 	for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5141 		/*
5142 		 * NOTE: The DDI's version of sprintf() returns a pointer to
5143 		 * the modified buffer rather than the number of bytes written
5144 		 * (as in snprintf(3C)).  This is unfortunate and annoying.
5145 		 * Therefore, we'll use snprintf() with INT_MAX to get the
5146 		 * number of bytes written.  Using INT_MAX is safe because
5147 		 * the buffer is perfectly sized for the data: we'll never
5148 		 * overrun the buffer.
5149 		 */
5150 		if (zone->zone_subsys_ref[index] != 0)
5151 			buffer_position += snprintf(buffer_position, INT_MAX,
5152 			    "%s: %u,", zone_ref_subsys_names[index],
5153 			    zone->zone_subsys_ref[index]);
5154 	}
5155 	mutex_exit(&zone->zone_lock);
5156 	buffer[0] = '[';
5157 	ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5158 	ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5159 	buffer_position[-1] = ']';
5160 
5161 	/*
5162 	 * Log the reference counts and free the message buffer.
5163 	 */
5164 	(void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5165 	    "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5166 	    "%u credential references are still extant %s", zone->zone_name,
5167 	    zone->zone_id, ref, cred_ref, buffer);
5168 	kmem_free(buffer, buffer_size);
5169 }
5170 
5171 /*
5172  * Systemcall entry point to finalize the zone halt process.  The caller
5173  * must have already successfully called zone_shutdown().
5174  *
5175  * Upon successful completion, the zone will have been fully destroyed:
5176  * zsched will have exited, destructor callbacks executed, and the zone
5177  * removed from the list of active zones.
5178  */
5179 static int
5180 zone_destroy(zoneid_t zoneid)
5181 {
5182 	uint64_t uniqid;
5183 	zone_t *zone;
5184 	zone_status_t status;
5185 	clock_t wait_time;
5186 	boolean_t log_refcounts;
5187 
5188 	if (secpolicy_zone_config(CRED()) != 0)
5189 		return (set_errno(EPERM));
5190 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5191 		return (set_errno(EINVAL));
5192 
5193 	mutex_enter(&zonehash_lock);
5194 	/*
5195 	 * Look for zone under hash lock to prevent races with other
5196 	 * calls to zone_destroy.
5197 	 */
5198 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5199 		mutex_exit(&zonehash_lock);
5200 		return (set_errno(EINVAL));
5201 	}
5202 
5203 	if (zone_mount_count(zone->zone_rootpath) != 0) {
5204 		mutex_exit(&zonehash_lock);
5205 		return (set_errno(EBUSY));
5206 	}
5207 	mutex_enter(&zone_status_lock);
5208 	status = zone_status_get(zone);
5209 	if (status < ZONE_IS_DOWN) {
5210 		mutex_exit(&zone_status_lock);
5211 		mutex_exit(&zonehash_lock);
5212 		return (set_errno(EBUSY));
5213 	} else if (status == ZONE_IS_DOWN) {
5214 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5215 	}
5216 	mutex_exit(&zone_status_lock);
5217 	zone_hold(zone);
5218 	mutex_exit(&zonehash_lock);
5219 
5220 	/*
5221 	 * wait for zsched to exit
5222 	 */
5223 	zone_status_wait(zone, ZONE_IS_DEAD);
5224 	zone_zsd_callbacks(zone, ZSD_DESTROY);
5225 	zone->zone_netstack = NULL;
5226 	uniqid = zone->zone_uniqid;
5227 	zone_rele(zone);
5228 	zone = NULL;	/* potentially free'd */
5229 
5230 	log_refcounts = B_FALSE;
5231 	wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5232 	mutex_enter(&zonehash_lock);
5233 	for (; /* ever */; ) {
5234 		boolean_t unref;
5235 		boolean_t refs_have_been_logged;
5236 
5237 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5238 		    zone->zone_uniqid != uniqid) {
5239 			/*
5240 			 * The zone has gone away.  Necessary conditions
5241 			 * are met, so we return success.
5242 			 */
5243 			mutex_exit(&zonehash_lock);
5244 			return (0);
5245 		}
5246 		mutex_enter(&zone->zone_lock);
5247 		unref = ZONE_IS_UNREF(zone);
5248 		refs_have_been_logged = (zone->zone_flags &
5249 		    ZF_REFCOUNTS_LOGGED);
5250 		mutex_exit(&zone->zone_lock);
5251 		if (unref) {
5252 			/*
5253 			 * There is only one reference to the zone -- that
5254 			 * added when the zone was added to the hashtables --
5255 			 * and things will remain this way until we drop
5256 			 * zonehash_lock... we can go ahead and cleanup the
5257 			 * zone.
5258 			 */
5259 			break;
5260 		}
5261 
5262 		/*
5263 		 * Wait for zone_rele_common() or zone_cred_rele() to signal
5264 		 * zone_destroy_cv.  zone_destroy_cv is signaled only when
5265 		 * some zone's general-purpose reference count reaches one.
5266 		 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5267 		 * on zone_destroy_cv, then log the zone's reference counts and
5268 		 * continue to wait for zone_rele() and zone_cred_rele().
5269 		 */
5270 		if (!refs_have_been_logged) {
5271 			if (!log_refcounts) {
5272 				/*
5273 				 * This thread hasn't timed out waiting on
5274 				 * zone_destroy_cv yet.  Wait wait_time clock
5275 				 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5276 				 * seconds) for the zone's references to clear.
5277 				 */
5278 				ASSERT(wait_time > 0);
5279 				wait_time = cv_reltimedwait_sig(
5280 				    &zone_destroy_cv, &zonehash_lock, wait_time,
5281 				    TR_SEC);
5282 				if (wait_time > 0) {
5283 					/*
5284 					 * A thread in zone_rele() or
5285 					 * zone_cred_rele() signaled
5286 					 * zone_destroy_cv before this thread's
5287 					 * wait timed out.  The zone might have
5288 					 * only one reference left; find out!
5289 					 */
5290 					continue;
5291 				} else if (wait_time == 0) {
5292 					/* The thread's process was signaled. */
5293 					mutex_exit(&zonehash_lock);
5294 					return (set_errno(EINTR));
5295 				}
5296 
5297 				/*
5298 				 * The thread timed out while waiting on
5299 				 * zone_destroy_cv.  Even though the thread
5300 				 * timed out, it has to check whether another
5301 				 * thread woke up from zone_destroy_cv and
5302 				 * destroyed the zone.
5303 				 *
5304 				 * If the zone still exists and has more than
5305 				 * one unreleased general-purpose reference,
5306 				 * then log the zone's reference counts.
5307 				 */
5308 				log_refcounts = B_TRUE;
5309 				continue;
5310 			}
5311 
5312 			/*
5313 			 * The thread already timed out on zone_destroy_cv while
5314 			 * waiting for subsystems to release the zone's last
5315 			 * general-purpose references.  Log the zone's reference
5316 			 * counts and wait indefinitely on zone_destroy_cv.
5317 			 */
5318 			zone_log_refcounts(zone);
5319 		}
5320 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5321 			/* The thread's process was signaled. */
5322 			mutex_exit(&zonehash_lock);
5323 			return (set_errno(EINTR));
5324 		}
5325 	}
5326 
5327 	/*
5328 	 * Remove CPU cap for this zone now since we're not going to
5329 	 * fail below this point.
5330 	 */
5331 	cpucaps_zone_remove(zone);
5332 
5333 	/* Get rid of the zone's kstats */
5334 	zone_kstat_delete(zone);
5335 
5336 	/* remove the pfexecd doors */
5337 	if (zone->zone_pfexecd != NULL) {
5338 		klpd_freelist(&zone->zone_pfexecd);
5339 		zone->zone_pfexecd = NULL;
5340 	}
5341 
5342 	/* free brand specific data */
5343 	if (ZONE_IS_BRANDED(zone))
5344 		ZBROP(zone)->b_free_brand_data(zone);
5345 
5346 	/* Say goodbye to brand framework. */
5347 	brand_unregister_zone(zone->zone_brand);
5348 
5349 	/*
5350 	 * It is now safe to let the zone be recreated; remove it from the
5351 	 * lists.  The memory will not be freed until the last cred
5352 	 * reference goes away.
5353 	 */
5354 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
5355 	zonecount--;
5356 	/* remove from active list and hash tables */
5357 	list_remove(&zone_active, zone);
5358 	(void) mod_hash_destroy(zonehashbyname,
5359 	    (mod_hash_key_t)zone->zone_name);
5360 	(void) mod_hash_destroy(zonehashbyid,
5361 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
5362 	if (zone->zone_flags & ZF_HASHED_LABEL)
5363 		(void) mod_hash_destroy(zonehashbylabel,
5364 		    (mod_hash_key_t)zone->zone_slabel);
5365 	mutex_exit(&zonehash_lock);
5366 
5367 	/*
5368 	 * Release the root vnode; we're not using it anymore.  Nor should any
5369 	 * other thread that might access it exist.
5370 	 */
5371 	if (zone->zone_rootvp != NULL) {
5372 		VN_RELE(zone->zone_rootvp);
5373 		zone->zone_rootvp = NULL;
5374 	}
5375 
5376 	/* add to deathrow list */
5377 	mutex_enter(&zone_deathrow_lock);
5378 	list_insert_tail(&zone_deathrow, zone);
5379 	mutex_exit(&zone_deathrow_lock);
5380 
5381 	/*
5382 	 * Drop last reference (which was added by zsched()), this will
5383 	 * free the zone unless there are outstanding cred references.
5384 	 */
5385 	zone_rele(zone);
5386 	return (0);
5387 }
5388 
5389 /*
5390  * Systemcall entry point for zone_getattr(2).
5391  */
5392 static ssize_t
5393 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5394 {
5395 	size_t size;
5396 	int error = 0, err;
5397 	zone_t *zone;
5398 	char *zonepath;
5399 	char *outstr;
5400 	zone_status_t zone_status;
5401 	pid_t initpid;
5402 	boolean_t global = (curzone == global_zone);
5403 	boolean_t inzone = (curzone->zone_id == zoneid);
5404 	ushort_t flags;
5405 	zone_net_data_t *zbuf;
5406 
5407 	mutex_enter(&zonehash_lock);
5408 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5409 		mutex_exit(&zonehash_lock);
5410 		return (set_errno(EINVAL));
5411 	}
5412 	zone_status = zone_status_get(zone);
5413 	if (zone_status < ZONE_IS_INITIALIZED) {
5414 		mutex_exit(&zonehash_lock);
5415 		return (set_errno(EINVAL));
5416 	}
5417 	zone_hold(zone);
5418 	mutex_exit(&zonehash_lock);
5419 
5420 	/*
5421 	 * If not in the global zone, don't show information about other zones,
5422 	 * unless the system is labeled and the local zone's label dominates
5423 	 * the other zone.
5424 	 */
5425 	if (!zone_list_access(zone)) {
5426 		zone_rele(zone);
5427 		return (set_errno(EINVAL));
5428 	}
5429 
5430 	switch (attr) {
5431 	case ZONE_ATTR_ROOT:
5432 		if (global) {
5433 			/*
5434 			 * Copy the path to trim the trailing "/" (except for
5435 			 * the global zone).
5436 			 */
5437 			if (zone != global_zone)
5438 				size = zone->zone_rootpathlen - 1;
5439 			else
5440 				size = zone->zone_rootpathlen;
5441 			zonepath = kmem_alloc(size, KM_SLEEP);
5442 			bcopy(zone->zone_rootpath, zonepath, size);
5443 			zonepath[size - 1] = '\0';
5444 		} else {
5445 			if (inzone || !is_system_labeled()) {
5446 				/*
5447 				 * Caller is not in the global zone.
5448 				 * if the query is on the current zone
5449 				 * or the system is not labeled,
5450 				 * just return faked-up path for current zone.
5451 				 */
5452 				zonepath = "/";
5453 				size = 2;
5454 			} else {
5455 				/*
5456 				 * Return related path for current zone.
5457 				 */
5458 				int prefix_len = strlen(zone_prefix);
5459 				int zname_len = strlen(zone->zone_name);
5460 
5461 				size = prefix_len + zname_len + 1;
5462 				zonepath = kmem_alloc(size, KM_SLEEP);
5463 				bcopy(zone_prefix, zonepath, prefix_len);
5464 				bcopy(zone->zone_name, zonepath +
5465 				    prefix_len, zname_len);
5466 				zonepath[size - 1] = '\0';
5467 			}
5468 		}
5469 		if (bufsize > size)
5470 			bufsize = size;
5471 		if (buf != NULL) {
5472 			err = copyoutstr(zonepath, buf, bufsize, NULL);
5473 			if (err != 0 && err != ENAMETOOLONG)
5474 				error = EFAULT;
5475 		}
5476 		if (global || (is_system_labeled() && !inzone))
5477 			kmem_free(zonepath, size);
5478 		break;
5479 
5480 	case ZONE_ATTR_NAME:
5481 		size = strlen(zone->zone_name) + 1;
5482 		if (bufsize > size)
5483 			bufsize = size;
5484 		if (buf != NULL) {
5485 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5486 			if (err != 0 && err != ENAMETOOLONG)
5487 				error = EFAULT;
5488 		}
5489 		break;
5490 
5491 	case ZONE_ATTR_STATUS:
5492 		/*
5493 		 * Since we're not holding zonehash_lock, the zone status
5494 		 * may be anything; leave it up to userland to sort it out.
5495 		 */
5496 		size = sizeof (zone_status);
5497 		if (bufsize > size)
5498 			bufsize = size;
5499 		zone_status = zone_status_get(zone);
5500 		if (buf != NULL &&
5501 		    copyout(&zone_status, buf, bufsize) != 0)
5502 			error = EFAULT;
5503 		break;
5504 	case ZONE_ATTR_FLAGS:
5505 		size = sizeof (zone->zone_flags);
5506 		if (bufsize > size)
5507 			bufsize = size;
5508 		flags = zone->zone_flags;
5509 		if (buf != NULL &&
5510 		    copyout(&flags, buf, bufsize) != 0)
5511 			error = EFAULT;
5512 		break;
5513 	case ZONE_ATTR_PRIVSET:
5514 		size = sizeof (priv_set_t);
5515 		if (bufsize > size)
5516 			bufsize = size;
5517 		if (buf != NULL &&
5518 		    copyout(zone->zone_privset, buf, bufsize) != 0)
5519 			error = EFAULT;
5520 		break;
5521 	case ZONE_ATTR_UNIQID:
5522 		size = sizeof (zone->zone_uniqid);
5523 		if (bufsize > size)
5524 			bufsize = size;
5525 		if (buf != NULL &&
5526 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5527 			error = EFAULT;
5528 		break;
5529 	case ZONE_ATTR_POOLID:
5530 		{
5531 			pool_t *pool;
5532 			poolid_t poolid;
5533 
5534 			if (pool_lock_intr() != 0) {
5535 				error = EINTR;
5536 				break;
5537 			}
5538 			pool = zone_pool_get(zone);
5539 			poolid = pool->pool_id;
5540 			pool_unlock();
5541 			size = sizeof (poolid);
5542 			if (bufsize > size)
5543 				bufsize = size;
5544 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
5545 				error = EFAULT;
5546 		}
5547 		break;
5548 	case ZONE_ATTR_SLBL:
5549 		size = sizeof (bslabel_t);
5550 		if (bufsize > size)
5551 			bufsize = size;
5552 		if (zone->zone_slabel == NULL)
5553 			error = EINVAL;
5554 		else if (buf != NULL &&
5555 		    copyout(label2bslabel(zone->zone_slabel), buf,
5556 		    bufsize) != 0)
5557 			error = EFAULT;
5558 		break;
5559 	case ZONE_ATTR_INITPID:
5560 		size = sizeof (initpid);
5561 		if (bufsize > size)
5562 			bufsize = size;
5563 		initpid = zone->zone_proc_initpid;
5564 		if (initpid == -1) {
5565 			error = ESRCH;
5566 			break;
5567 		}
5568 		if (buf != NULL &&
5569 		    copyout(&initpid, buf, bufsize) != 0)
5570 			error = EFAULT;
5571 		break;
5572 	case ZONE_ATTR_BRAND:
5573 		size = strlen(zone->zone_brand->b_name) + 1;
5574 
5575 		if (bufsize > size)
5576 			bufsize = size;
5577 		if (buf != NULL) {
5578 			err = copyoutstr(zone->zone_brand->b_name, buf,
5579 			    bufsize, NULL);
5580 			if (err != 0 && err != ENAMETOOLONG)
5581 				error = EFAULT;
5582 		}
5583 		break;
5584 	case ZONE_ATTR_INITNAME:
5585 		size = strlen(zone->zone_initname) + 1;
5586 		if (bufsize > size)
5587 			bufsize = size;
5588 		if (buf != NULL) {
5589 			err = copyoutstr(zone->zone_initname, buf, bufsize,
5590 			    NULL);
5591 			if (err != 0 && err != ENAMETOOLONG)
5592 				error = EFAULT;
5593 		}
5594 		break;
5595 	case ZONE_ATTR_BOOTARGS:
5596 		if (zone->zone_bootargs == NULL)
5597 			outstr = "";
5598 		else
5599 			outstr = zone->zone_bootargs;
5600 		size = strlen(outstr) + 1;
5601 		if (bufsize > size)
5602 			bufsize = size;
5603 		if (buf != NULL) {
5604 			err = copyoutstr(outstr, buf, bufsize, NULL);
5605 			if (err != 0 && err != ENAMETOOLONG)
5606 				error = EFAULT;
5607 		}
5608 		break;
5609 	case ZONE_ATTR_PHYS_MCAP:
5610 		size = sizeof (zone->zone_phys_mcap);
5611 		if (bufsize > size)
5612 			bufsize = size;
5613 		if (buf != NULL &&
5614 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5615 			error = EFAULT;
5616 		break;
5617 	case ZONE_ATTR_SCHED_CLASS:
5618 		mutex_enter(&class_lock);
5619 
5620 		if (zone->zone_defaultcid >= loaded_classes)
5621 			outstr = "";
5622 		else
5623 			outstr = sclass[zone->zone_defaultcid].cl_name;
5624 		size = strlen(outstr) + 1;
5625 		if (bufsize > size)
5626 			bufsize = size;
5627 		if (buf != NULL) {
5628 			err = copyoutstr(outstr, buf, bufsize, NULL);
5629 			if (err != 0 && err != ENAMETOOLONG)
5630 				error = EFAULT;
5631 		}
5632 
5633 		mutex_exit(&class_lock);
5634 		break;
5635 	case ZONE_ATTR_HOSTID:
5636 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
5637 		    bufsize == sizeof (zone->zone_hostid)) {
5638 			size = sizeof (zone->zone_hostid);
5639 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
5640 			    bufsize) != 0)
5641 				error = EFAULT;
5642 		} else {
5643 			error = EINVAL;
5644 		}
5645 		break;
5646 	case ZONE_ATTR_FS_ALLOWED:
5647 		if (zone->zone_fs_allowed == NULL)
5648 			outstr = "";
5649 		else
5650 			outstr = zone->zone_fs_allowed;
5651 		size = strlen(outstr) + 1;
5652 		if (bufsize > size)
5653 			bufsize = size;
5654 		if (buf != NULL) {
5655 			err = copyoutstr(outstr, buf, bufsize, NULL);
5656 			if (err != 0 && err != ENAMETOOLONG)
5657 				error = EFAULT;
5658 		}
5659 		break;
5660 	case ZONE_ATTR_SECFLAGS:
5661 		size = sizeof (zone->zone_secflags);
5662 		if (bufsize > size)
5663 			bufsize = size;
5664 		if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0)
5665 			error = EFAULT;
5666 		break;
5667 	case ZONE_ATTR_NETWORK:
5668 		bufsize = MIN(bufsize, PIPE_BUF + sizeof (zone_net_data_t));
5669 		size = bufsize;
5670 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5671 		if (copyin(buf, zbuf, bufsize) != 0) {
5672 			error = EFAULT;
5673 		} else {
5674 			error = zone_get_network(zoneid, zbuf);
5675 			if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5676 				error = EFAULT;
5677 		}
5678 		kmem_free(zbuf, bufsize);
5679 		break;
5680 	default:
5681 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5682 			size = bufsize;
5683 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5684 		} else {
5685 			error = EINVAL;
5686 		}
5687 	}
5688 	zone_rele(zone);
5689 
5690 	if (error)
5691 		return (set_errno(error));
5692 	return ((ssize_t)size);
5693 }
5694 
5695 /*
5696  * Systemcall entry point for zone_setattr(2).
5697  */
5698 /*ARGSUSED*/
5699 static int
5700 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5701 {
5702 	zone_t *zone;
5703 	zone_status_t zone_status;
5704 	int err = -1;
5705 	zone_net_data_t *zbuf;
5706 
5707 	if (secpolicy_zone_config(CRED()) != 0)
5708 		return (set_errno(EPERM));
5709 
5710 	/*
5711 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5712 	 * global zone.
5713 	 */
5714 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5715 		return (set_errno(EINVAL));
5716 	}
5717 
5718 	mutex_enter(&zonehash_lock);
5719 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5720 		mutex_exit(&zonehash_lock);
5721 		return (set_errno(EINVAL));
5722 	}
5723 	zone_hold(zone);
5724 	mutex_exit(&zonehash_lock);
5725 
5726 	/*
5727 	 * At present most attributes can only be set on non-running,
5728 	 * non-global zones.
5729 	 */
5730 	zone_status = zone_status_get(zone);
5731 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5732 		err = EINVAL;
5733 		goto done;
5734 	}
5735 
5736 	switch (attr) {
5737 	case ZONE_ATTR_INITNAME:
5738 		err = zone_set_initname(zone, (const char *)buf);
5739 		break;
5740 	case ZONE_ATTR_INITNORESTART:
5741 		zone->zone_restart_init = B_FALSE;
5742 		err = 0;
5743 		break;
5744 	case ZONE_ATTR_BOOTARGS:
5745 		err = zone_set_bootargs(zone, (const char *)buf);
5746 		break;
5747 	case ZONE_ATTR_BRAND:
5748 		err = zone_set_brand(zone, (const char *)buf);
5749 		break;
5750 	case ZONE_ATTR_FS_ALLOWED:
5751 		err = zone_set_fs_allowed(zone, (const char *)buf);
5752 		break;
5753 	case ZONE_ATTR_SECFLAGS:
5754 		err = zone_set_secflags(zone, (psecflags_t *)buf);
5755 		break;
5756 	case ZONE_ATTR_PHYS_MCAP:
5757 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5758 		break;
5759 	case ZONE_ATTR_SCHED_CLASS:
5760 		err = zone_set_sched_class(zone, (const char *)buf);
5761 		break;
5762 	case ZONE_ATTR_HOSTID:
5763 		if (bufsize == sizeof (zone->zone_hostid)) {
5764 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5765 				err = 0;
5766 			else
5767 				err = EFAULT;
5768 		} else {
5769 			err = EINVAL;
5770 		}
5771 		break;
5772 	case ZONE_ATTR_NETWORK:
5773 		if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5774 			err = EINVAL;
5775 			break;
5776 		}
5777 		zbuf = kmem_alloc(bufsize, KM_SLEEP);
5778 		if (copyin(buf, zbuf, bufsize) != 0) {
5779 			kmem_free(zbuf, bufsize);
5780 			err = EFAULT;
5781 			break;
5782 		}
5783 		err = zone_set_network(zoneid, zbuf);
5784 		kmem_free(zbuf, bufsize);
5785 		break;
5786 	default:
5787 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5788 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5789 		else
5790 			err = EINVAL;
5791 	}
5792 
5793 done:
5794 	zone_rele(zone);
5795 	ASSERT(err != -1);
5796 	return (err != 0 ? set_errno(err) : 0);
5797 }
5798 
5799 /*
5800  * Return zero if the process has at least one vnode mapped in to its
5801  * address space which shouldn't be allowed to change zones.
5802  *
5803  * Also return zero if the process has any shared mappings which reserve
5804  * swap.  This is because the counting for zone.max-swap does not allow swap
5805  * reservation to be shared between zones.  zone swap reservation is counted
5806  * on zone->zone_max_swap.
5807  */
5808 static int
5809 as_can_change_zones(void)
5810 {
5811 	proc_t *pp = curproc;
5812 	struct seg *seg;
5813 	struct as *as = pp->p_as;
5814 	vnode_t *vp;
5815 	int allow = 1;
5816 
5817 	ASSERT(pp->p_as != &kas);
5818 	AS_LOCK_ENTER(as, RW_READER);
5819 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5820 
5821 		/*
5822 		 * Cannot enter zone with shared anon memory which
5823 		 * reserves swap.  See comment above.
5824 		 */
5825 		if (seg_can_change_zones(seg) == B_FALSE) {
5826 			allow = 0;
5827 			break;
5828 		}
5829 		/*
5830 		 * if we can't get a backing vnode for this segment then skip
5831 		 * it.
5832 		 */
5833 		vp = NULL;
5834 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5835 			continue;
5836 		if (!vn_can_change_zones(vp)) { /* bail on first match */
5837 			allow = 0;
5838 			break;
5839 		}
5840 	}
5841 	AS_LOCK_EXIT(as);
5842 	return (allow);
5843 }
5844 
5845 /*
5846  * Count swap reserved by curproc's address space
5847  */
5848 static size_t
5849 as_swresv(void)
5850 {
5851 	proc_t *pp = curproc;
5852 	struct seg *seg;
5853 	struct as *as = pp->p_as;
5854 	size_t swap = 0;
5855 
5856 	ASSERT(pp->p_as != &kas);
5857 	ASSERT(AS_WRITE_HELD(as));
5858 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5859 		swap += seg_swresv(seg);
5860 
5861 	return (swap);
5862 }
5863 
5864 /*
5865  * Systemcall entry point for zone_enter().
5866  *
5867  * The current process is injected into said zone.  In the process
5868  * it will change its project membership, privileges, rootdir/cwd,
5869  * zone-wide rctls, and pool association to match those of the zone.
5870  *
5871  * The first zone_enter() called while the zone is in the ZONE_IS_READY
5872  * state will transition it to ZONE_IS_RUNNING.  Processes may only
5873  * enter a zone that is "ready" or "running".
5874  */
5875 static int
5876 zone_enter(zoneid_t zoneid)
5877 {
5878 	zone_t *zone;
5879 	vnode_t *vp;
5880 	proc_t *pp = curproc;
5881 	contract_t *ct;
5882 	cont_process_t *ctp;
5883 	task_t *tk, *oldtk;
5884 	kproject_t *zone_proj0;
5885 	cred_t *cr, *newcr;
5886 	pool_t *oldpool, *newpool;
5887 	sess_t *sp;
5888 	uid_t uid;
5889 	zone_status_t status;
5890 	int err = 0;
5891 	rctl_entity_p_t e;
5892 	size_t swap;
5893 	kthread_id_t t;
5894 
5895 	if (secpolicy_zone_config(CRED()) != 0)
5896 		return (set_errno(EPERM));
5897 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5898 		return (set_errno(EINVAL));
5899 
5900 	/*
5901 	 * Stop all lwps so we don't need to hold a lock to look at
5902 	 * curproc->p_zone.  This needs to happen before we grab any
5903 	 * locks to avoid deadlock (another lwp in the process could
5904 	 * be waiting for the held lock).
5905 	 */
5906 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5907 		return (set_errno(EINTR));
5908 
5909 	/*
5910 	 * Make sure we're not changing zones with files open or mapped in
5911 	 * to our address space which shouldn't be changing zones.
5912 	 */
5913 	if (!files_can_change_zones()) {
5914 		err = EBADF;
5915 		goto out;
5916 	}
5917 	if (!as_can_change_zones()) {
5918 		err = EFAULT;
5919 		goto out;
5920 	}
5921 
5922 	mutex_enter(&zonehash_lock);
5923 	if (pp->p_zone != global_zone) {
5924 		mutex_exit(&zonehash_lock);
5925 		err = EINVAL;
5926 		goto out;
5927 	}
5928 
5929 	zone = zone_find_all_by_id(zoneid);
5930 	if (zone == NULL) {
5931 		mutex_exit(&zonehash_lock);
5932 		err = EINVAL;
5933 		goto out;
5934 	}
5935 
5936 	/*
5937 	 * To prevent processes in a zone from holding contracts on
5938 	 * extrazonal resources, and to avoid process contract
5939 	 * memberships which span zones, contract holders and processes
5940 	 * which aren't the sole members of their encapsulating process
5941 	 * contracts are not allowed to zone_enter.
5942 	 */
5943 	ctp = pp->p_ct_process;
5944 	ct = &ctp->conp_contract;
5945 	mutex_enter(&ct->ct_lock);
5946 	mutex_enter(&pp->p_lock);
5947 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5948 		mutex_exit(&pp->p_lock);
5949 		mutex_exit(&ct->ct_lock);
5950 		mutex_exit(&zonehash_lock);
5951 		err = EINVAL;
5952 		goto out;
5953 	}
5954 
5955 	/*
5956 	 * Moreover, we don't allow processes whose encapsulating
5957 	 * process contracts have inherited extrazonal contracts.
5958 	 * While it would be easier to eliminate all process contracts
5959 	 * with inherited contracts, we need to be able to give a
5960 	 * restarted init (or other zone-penetrating process) its
5961 	 * predecessor's contracts.
5962 	 */
5963 	if (ctp->conp_ninherited != 0) {
5964 		contract_t *next;
5965 		for (next = list_head(&ctp->conp_inherited); next;
5966 		    next = list_next(&ctp->conp_inherited, next)) {
5967 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5968 				mutex_exit(&pp->p_lock);
5969 				mutex_exit(&ct->ct_lock);
5970 				mutex_exit(&zonehash_lock);
5971 				err = EINVAL;
5972 				goto out;
5973 			}
5974 		}
5975 	}
5976 
5977 	mutex_exit(&pp->p_lock);
5978 	mutex_exit(&ct->ct_lock);
5979 
5980 	status = zone_status_get(zone);
5981 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5982 		/*
5983 		 * Can't join
5984 		 */
5985 		mutex_exit(&zonehash_lock);
5986 		err = EINVAL;
5987 		goto out;
5988 	}
5989 
5990 	/*
5991 	 * Make sure new priv set is within the permitted set for caller
5992 	 */
5993 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5994 		mutex_exit(&zonehash_lock);
5995 		err = EPERM;
5996 		goto out;
5997 	}
5998 	/*
5999 	 * We want to momentarily drop zonehash_lock while we optimistically
6000 	 * bind curproc to the pool it should be running in.  This is safe
6001 	 * since the zone can't disappear (we have a hold on it).
6002 	 */
6003 	zone_hold(zone);
6004 	mutex_exit(&zonehash_lock);
6005 
6006 	/*
6007 	 * Grab pool_lock to keep the pools configuration from changing
6008 	 * and to stop ourselves from getting rebound to another pool
6009 	 * until we join the zone.
6010 	 */
6011 	if (pool_lock_intr() != 0) {
6012 		zone_rele(zone);
6013 		err = EINTR;
6014 		goto out;
6015 	}
6016 	ASSERT(secpolicy_pool(CRED()) == 0);
6017 	/*
6018 	 * Bind ourselves to the pool currently associated with the zone.
6019 	 */
6020 	oldpool = curproc->p_pool;
6021 	newpool = zone_pool_get(zone);
6022 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
6023 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
6024 	    POOL_BIND_ALL)) != 0) {
6025 		pool_unlock();
6026 		zone_rele(zone);
6027 		goto out;
6028 	}
6029 
6030 	/*
6031 	 * Grab cpu_lock now; we'll need it later when we call
6032 	 * task_join().
6033 	 */
6034 	mutex_enter(&cpu_lock);
6035 	mutex_enter(&zonehash_lock);
6036 	/*
6037 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
6038 	 */
6039 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
6040 		/*
6041 		 * Can't join anymore.
6042 		 */
6043 		mutex_exit(&zonehash_lock);
6044 		mutex_exit(&cpu_lock);
6045 		if (pool_state == POOL_ENABLED &&
6046 		    newpool != oldpool)
6047 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
6048 			    POOL_BIND_ALL);
6049 		pool_unlock();
6050 		zone_rele(zone);
6051 		err = EINVAL;
6052 		goto out;
6053 	}
6054 
6055 	/*
6056 	 * a_lock must be held while transfering locked memory and swap
6057 	 * reservation from the global zone to the non global zone because
6058 	 * asynchronous faults on the processes' address space can lock
6059 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
6060 	 * segments respectively.
6061 	 */
6062 	AS_LOCK_ENTER(pp->p_as, RW_WRITER);
6063 	swap = as_swresv();
6064 	mutex_enter(&pp->p_lock);
6065 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
6066 	/* verify that we do not exceed and task or lwp limits */
6067 	mutex_enter(&zone->zone_nlwps_lock);
6068 	/* add new lwps to zone and zone's proj0 */
6069 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
6070 	zone->zone_nlwps += pp->p_lwpcnt;
6071 	/* add 1 task to zone's proj0 */
6072 	zone_proj0->kpj_ntasks += 1;
6073 
6074 	zone_proj0->kpj_nprocs++;
6075 	zone->zone_nprocs++;
6076 	mutex_exit(&zone->zone_nlwps_lock);
6077 
6078 	mutex_enter(&zone->zone_mem_lock);
6079 	zone->zone_locked_mem += pp->p_locked_mem;
6080 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
6081 	zone->zone_max_swap += swap;
6082 	mutex_exit(&zone->zone_mem_lock);
6083 
6084 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
6085 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
6086 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
6087 
6088 	/* remove lwps and process from proc's old zone and old project */
6089 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
6090 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
6091 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
6092 	pp->p_task->tk_proj->kpj_nprocs--;
6093 	pp->p_zone->zone_nprocs--;
6094 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
6095 
6096 	mutex_enter(&pp->p_zone->zone_mem_lock);
6097 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
6098 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
6099 	pp->p_zone->zone_max_swap -= swap;
6100 	mutex_exit(&pp->p_zone->zone_mem_lock);
6101 
6102 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6103 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
6104 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6105 
6106 	pp->p_flag |= SZONETOP;
6107 	pp->p_zone = zone;
6108 	mutex_exit(&pp->p_lock);
6109 	AS_LOCK_EXIT(pp->p_as);
6110 
6111 	/*
6112 	 * Joining the zone cannot fail from now on.
6113 	 *
6114 	 * This means that a lot of the following code can be commonized and
6115 	 * shared with zsched().
6116 	 */
6117 
6118 	/*
6119 	 * If the process contract fmri was inherited, we need to
6120 	 * flag this so that any contract status will not leak
6121 	 * extra zone information, svc_fmri in this case
6122 	 */
6123 	if (ctp->conp_svc_ctid != ct->ct_id) {
6124 		mutex_enter(&ct->ct_lock);
6125 		ctp->conp_svc_zone_enter = ct->ct_id;
6126 		mutex_exit(&ct->ct_lock);
6127 	}
6128 
6129 	/*
6130 	 * Reset the encapsulating process contract's zone.
6131 	 */
6132 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
6133 	contract_setzuniqid(ct, zone->zone_uniqid);
6134 
6135 	/*
6136 	 * Create a new task and associate the process with the project keyed
6137 	 * by (projid,zoneid).
6138 	 *
6139 	 * We might as well be in project 0; the global zone's projid doesn't
6140 	 * make much sense in a zone anyhow.
6141 	 *
6142 	 * This also increments zone_ntasks, and returns with p_lock held.
6143 	 */
6144 	tk = task_create(0, zone);
6145 	oldtk = task_join(tk, 0);
6146 	mutex_exit(&cpu_lock);
6147 
6148 	/*
6149 	 * call RCTLOP_SET functions on this proc
6150 	 */
6151 	e.rcep_p.zone = zone;
6152 	e.rcep_t = RCENTITY_ZONE;
6153 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6154 	    RCD_CALLBACK);
6155 	mutex_exit(&pp->p_lock);
6156 
6157 	/*
6158 	 * We don't need to hold any of zsched's locks here; not only do we know
6159 	 * the process and zone aren't going away, we know its session isn't
6160 	 * changing either.
6161 	 *
6162 	 * By joining zsched's session here, we mimic the behavior in the
6163 	 * global zone of init's sid being the pid of sched.  We extend this
6164 	 * to all zlogin-like zone_enter()'ing processes as well.
6165 	 */
6166 	mutex_enter(&pidlock);
6167 	sp = zone->zone_zsched->p_sessp;
6168 	sess_hold(zone->zone_zsched);
6169 	mutex_enter(&pp->p_lock);
6170 	pgexit(pp);
6171 	sess_rele(pp->p_sessp, B_TRUE);
6172 	pp->p_sessp = sp;
6173 	pgjoin(pp, zone->zone_zsched->p_pidp);
6174 
6175 	/*
6176 	 * If any threads are scheduled to be placed on zone wait queue they
6177 	 * should abandon the idea since the wait queue is changing.
6178 	 * We need to be holding pidlock & p_lock to do this.
6179 	 */
6180 	if ((t = pp->p_tlist) != NULL) {
6181 		do {
6182 			thread_lock(t);
6183 			/*
6184 			 * Kick this thread so that it doesn't sit
6185 			 * on a wrong wait queue.
6186 			 */
6187 			if (ISWAITING(t))
6188 				setrun_locked(t);
6189 
6190 			if (t->t_schedflag & TS_ANYWAITQ)
6191 				t->t_schedflag &= ~ TS_ANYWAITQ;
6192 
6193 			thread_unlock(t);
6194 		} while ((t = t->t_forw) != pp->p_tlist);
6195 	}
6196 
6197 	/*
6198 	 * If there is a default scheduling class for the zone and it is not
6199 	 * the class we are currently in, change all of the threads in the
6200 	 * process to the new class.  We need to be holding pidlock & p_lock
6201 	 * when we call parmsset so this is a good place to do it.
6202 	 */
6203 	if (zone->zone_defaultcid > 0 &&
6204 	    zone->zone_defaultcid != curthread->t_cid) {
6205 		pcparms_t pcparms;
6206 
6207 		pcparms.pc_cid = zone->zone_defaultcid;
6208 		pcparms.pc_clparms[0] = 0;
6209 
6210 		/*
6211 		 * If setting the class fails, we still want to enter the zone.
6212 		 */
6213 		if ((t = pp->p_tlist) != NULL) {
6214 			do {
6215 				(void) parmsset(&pcparms, t);
6216 			} while ((t = t->t_forw) != pp->p_tlist);
6217 		}
6218 	}
6219 
6220 	mutex_exit(&pp->p_lock);
6221 	mutex_exit(&pidlock);
6222 
6223 	mutex_exit(&zonehash_lock);
6224 	/*
6225 	 * We're firmly in the zone; let pools progress.
6226 	 */
6227 	pool_unlock();
6228 	task_rele(oldtk);
6229 	/*
6230 	 * We don't need to retain a hold on the zone since we already
6231 	 * incremented zone_ntasks, so the zone isn't going anywhere.
6232 	 */
6233 	zone_rele(zone);
6234 
6235 	/*
6236 	 * Chroot
6237 	 */
6238 	vp = zone->zone_rootvp;
6239 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6240 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6241 
6242 	/*
6243 	 * Change process security flags.  Note that the _effective_ flags
6244 	 * cannot change
6245 	 */
6246 	secflags_copy(&pp->p_secflags.psf_lower,
6247 	    &zone->zone_secflags.psf_lower);
6248 	secflags_copy(&pp->p_secflags.psf_upper,
6249 	    &zone->zone_secflags.psf_upper);
6250 	secflags_copy(&pp->p_secflags.psf_inherit,
6251 	    &zone->zone_secflags.psf_inherit);
6252 
6253 	/*
6254 	 * Change process credentials
6255 	 */
6256 	newcr = cralloc();
6257 	mutex_enter(&pp->p_crlock);
6258 	cr = pp->p_cred;
6259 	crcopy_to(cr, newcr);
6260 	crsetzone(newcr, zone);
6261 	pp->p_cred = newcr;
6262 
6263 	/*
6264 	 * Restrict all process privilege sets to zone limit
6265 	 */
6266 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6267 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6268 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6269 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6270 	mutex_exit(&pp->p_crlock);
6271 	crset(pp, newcr);
6272 
6273 	/*
6274 	 * Adjust upcount to reflect zone entry.
6275 	 */
6276 	uid = crgetruid(newcr);
6277 	mutex_enter(&pidlock);
6278 	upcount_dec(uid, GLOBAL_ZONEID);
6279 	upcount_inc(uid, zoneid);
6280 	mutex_exit(&pidlock);
6281 
6282 	/*
6283 	 * Set up core file path and content.
6284 	 */
6285 	set_core_defaults();
6286 
6287 out:
6288 	/*
6289 	 * Let the other lwps continue.
6290 	 */
6291 	mutex_enter(&pp->p_lock);
6292 	if (curthread != pp->p_agenttp)
6293 		continuelwps(pp);
6294 	mutex_exit(&pp->p_lock);
6295 
6296 	return (err != 0 ? set_errno(err) : 0);
6297 }
6298 
6299 /*
6300  * Systemcall entry point for zone_list(2).
6301  *
6302  * Processes running in a (non-global) zone only see themselves.
6303  * On labeled systems, they see all zones whose label they dominate.
6304  */
6305 static int
6306 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6307 {
6308 	zoneid_t *zoneids;
6309 	zone_t *zone, *myzone;
6310 	uint_t user_nzones, real_nzones;
6311 	uint_t domi_nzones;
6312 	int error;
6313 
6314 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6315 		return (set_errno(EFAULT));
6316 
6317 	myzone = curproc->p_zone;
6318 	if (myzone != global_zone) {
6319 		bslabel_t *mybslab;
6320 
6321 		if (!is_system_labeled()) {
6322 			/* just return current zone */
6323 			real_nzones = domi_nzones = 1;
6324 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6325 			zoneids[0] = myzone->zone_id;
6326 		} else {
6327 			/* return all zones that are dominated */
6328 			mutex_enter(&zonehash_lock);
6329 			real_nzones = zonecount;
6330 			domi_nzones = 0;
6331 			if (real_nzones > 0) {
6332 				zoneids = kmem_alloc(real_nzones *
6333 				    sizeof (zoneid_t), KM_SLEEP);
6334 				mybslab = label2bslabel(myzone->zone_slabel);
6335 				for (zone = list_head(&zone_active);
6336 				    zone != NULL;
6337 				    zone = list_next(&zone_active, zone)) {
6338 					if (zone->zone_id == GLOBAL_ZONEID)
6339 						continue;
6340 					if (zone != myzone &&
6341 					    (zone->zone_flags & ZF_IS_SCRATCH))
6342 						continue;
6343 					/*
6344 					 * Note that a label always dominates
6345 					 * itself, so myzone is always included
6346 					 * in the list.
6347 					 */
6348 					if (bldominates(mybslab,
6349 					    label2bslabel(zone->zone_slabel))) {
6350 						zoneids[domi_nzones++] =
6351 						    zone->zone_id;
6352 					}
6353 				}
6354 			}
6355 			mutex_exit(&zonehash_lock);
6356 		}
6357 	} else {
6358 		mutex_enter(&zonehash_lock);
6359 		real_nzones = zonecount;
6360 		domi_nzones = 0;
6361 		if (real_nzones > 0) {
6362 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
6363 			    KM_SLEEP);
6364 			for (zone = list_head(&zone_active); zone != NULL;
6365 			    zone = list_next(&zone_active, zone))
6366 				zoneids[domi_nzones++] = zone->zone_id;
6367 			ASSERT(domi_nzones == real_nzones);
6368 		}
6369 		mutex_exit(&zonehash_lock);
6370 	}
6371 
6372 	/*
6373 	 * If user has allocated space for fewer entries than we found, then
6374 	 * return only up to their limit.  Either way, tell them exactly how
6375 	 * many we found.
6376 	 */
6377 	if (domi_nzones < user_nzones)
6378 		user_nzones = domi_nzones;
6379 	error = 0;
6380 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6381 		error = EFAULT;
6382 	} else if (zoneidlist != NULL && user_nzones != 0) {
6383 		if (copyout(zoneids, zoneidlist,
6384 		    user_nzones * sizeof (zoneid_t)) != 0)
6385 			error = EFAULT;
6386 	}
6387 
6388 	if (real_nzones > 0)
6389 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6390 
6391 	if (error != 0)
6392 		return (set_errno(error));
6393 	else
6394 		return (0);
6395 }
6396 
6397 /*
6398  * Systemcall entry point for zone_lookup(2).
6399  *
6400  * Non-global zones are only able to see themselves and (on labeled systems)
6401  * the zones they dominate.
6402  */
6403 static zoneid_t
6404 zone_lookup(const char *zone_name)
6405 {
6406 	char *kname;
6407 	zone_t *zone;
6408 	zoneid_t zoneid;
6409 	int err;
6410 
6411 	if (zone_name == NULL) {
6412 		/* return caller's zone id */
6413 		return (getzoneid());
6414 	}
6415 
6416 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6417 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6418 		kmem_free(kname, ZONENAME_MAX);
6419 		return (set_errno(err));
6420 	}
6421 
6422 	mutex_enter(&zonehash_lock);
6423 	zone = zone_find_all_by_name(kname);
6424 	kmem_free(kname, ZONENAME_MAX);
6425 	/*
6426 	 * In a non-global zone, can only lookup global and own name.
6427 	 * In Trusted Extensions zone label dominance rules apply.
6428 	 */
6429 	if (zone == NULL ||
6430 	    zone_status_get(zone) < ZONE_IS_READY ||
6431 	    !zone_list_access(zone)) {
6432 		mutex_exit(&zonehash_lock);
6433 		return (set_errno(EINVAL));
6434 	} else {
6435 		zoneid = zone->zone_id;
6436 		mutex_exit(&zonehash_lock);
6437 		return (zoneid);
6438 	}
6439 }
6440 
6441 static int
6442 zone_version(int *version_arg)
6443 {
6444 	int version = ZONE_SYSCALL_API_VERSION;
6445 
6446 	if (copyout(&version, version_arg, sizeof (int)) != 0)
6447 		return (set_errno(EFAULT));
6448 	return (0);
6449 }
6450 
6451 /* ARGSUSED */
6452 long
6453 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6454 {
6455 	zone_def zs;
6456 	int err;
6457 
6458 	switch (cmd) {
6459 	case ZONE_CREATE:
6460 		if (get_udatamodel() == DATAMODEL_NATIVE) {
6461 			if (copyin(arg1, &zs, sizeof (zone_def))) {
6462 				return (set_errno(EFAULT));
6463 			}
6464 		} else {
6465 #ifdef _SYSCALL32_IMPL
6466 			zone_def32 zs32;
6467 
6468 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6469 				return (set_errno(EFAULT));
6470 			}
6471 			zs.zone_name =
6472 			    (const char *)(unsigned long)zs32.zone_name;
6473 			zs.zone_root =
6474 			    (const char *)(unsigned long)zs32.zone_root;
6475 			zs.zone_privs =
6476 			    (const struct priv_set *)
6477 			    (unsigned long)zs32.zone_privs;
6478 			zs.zone_privssz = zs32.zone_privssz;
6479 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6480 			zs.rctlbufsz = zs32.rctlbufsz;
6481 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6482 			zs.zfsbufsz = zs32.zfsbufsz;
6483 			zs.extended_error =
6484 			    (int *)(unsigned long)zs32.extended_error;
6485 			zs.match = zs32.match;
6486 			zs.doi = zs32.doi;
6487 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6488 			zs.flags = zs32.flags;
6489 #else
6490 			panic("get_udatamodel() returned bogus result\n");
6491 #endif
6492 		}
6493 
6494 		return (zone_create(zs.zone_name, zs.zone_root,
6495 		    zs.zone_privs, zs.zone_privssz,
6496 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6497 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6498 		    zs.extended_error, zs.match, zs.doi,
6499 		    zs.label, zs.flags));
6500 	case ZONE_BOOT:
6501 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
6502 	case ZONE_DESTROY:
6503 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6504 	case ZONE_GETATTR:
6505 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6506 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6507 	case ZONE_SETATTR:
6508 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6509 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6510 	case ZONE_ENTER:
6511 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
6512 	case ZONE_LIST:
6513 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6514 	case ZONE_SHUTDOWN:
6515 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6516 	case ZONE_LOOKUP:
6517 		return (zone_lookup((const char *)arg1));
6518 	case ZONE_VERSION:
6519 		return (zone_version((int *)arg1));
6520 	case ZONE_ADD_DATALINK:
6521 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6522 		    (datalink_id_t)(uintptr_t)arg2));
6523 	case ZONE_DEL_DATALINK:
6524 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6525 		    (datalink_id_t)(uintptr_t)arg2));
6526 	case ZONE_CHECK_DATALINK: {
6527 		zoneid_t	zoneid;
6528 		boolean_t	need_copyout;
6529 
6530 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6531 			return (EFAULT);
6532 		need_copyout = (zoneid == ALL_ZONES);
6533 		err = zone_check_datalink(&zoneid,
6534 		    (datalink_id_t)(uintptr_t)arg2);
6535 		if (err == 0 && need_copyout) {
6536 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6537 				err = EFAULT;
6538 		}
6539 		return (err == 0 ? 0 : set_errno(err));
6540 	}
6541 	case ZONE_LIST_DATALINK:
6542 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6543 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6544 	default:
6545 		return (set_errno(EINVAL));
6546 	}
6547 }
6548 
6549 struct zarg {
6550 	zone_t *zone;
6551 	zone_cmd_arg_t arg;
6552 };
6553 
6554 static int
6555 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6556 {
6557 	char *buf;
6558 	size_t buflen;
6559 	int error;
6560 
6561 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6562 	buf = kmem_alloc(buflen, KM_SLEEP);
6563 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6564 	error = door_ki_open(buf, doorp);
6565 	kmem_free(buf, buflen);
6566 	return (error);
6567 }
6568 
6569 static void
6570 zone_release_door(door_handle_t *doorp)
6571 {
6572 	door_ki_rele(*doorp);
6573 	*doorp = NULL;
6574 }
6575 
6576 static void
6577 zone_ki_call_zoneadmd(struct zarg *zargp)
6578 {
6579 	door_handle_t door = NULL;
6580 	door_arg_t darg, save_arg;
6581 	char *zone_name;
6582 	size_t zone_namelen;
6583 	zoneid_t zoneid;
6584 	zone_t *zone;
6585 	zone_cmd_arg_t arg;
6586 	uint64_t uniqid;
6587 	size_t size;
6588 	int error;
6589 	int retry;
6590 
6591 	zone = zargp->zone;
6592 	arg = zargp->arg;
6593 	kmem_free(zargp, sizeof (*zargp));
6594 
6595 	zone_namelen = strlen(zone->zone_name) + 1;
6596 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6597 	bcopy(zone->zone_name, zone_name, zone_namelen);
6598 	zoneid = zone->zone_id;
6599 	uniqid = zone->zone_uniqid;
6600 	/*
6601 	 * zoneadmd may be down, but at least we can empty out the zone.
6602 	 * We can ignore the return value of zone_empty() since we're called
6603 	 * from a kernel thread and know we won't be delivered any signals.
6604 	 */
6605 	ASSERT(curproc == &p0);
6606 	(void) zone_empty(zone);
6607 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6608 	zone_rele(zone);
6609 
6610 	size = sizeof (arg);
6611 	darg.rbuf = (char *)&arg;
6612 	darg.data_ptr = (char *)&arg;
6613 	darg.rsize = size;
6614 	darg.data_size = size;
6615 	darg.desc_ptr = NULL;
6616 	darg.desc_num = 0;
6617 
6618 	save_arg = darg;
6619 	/*
6620 	 * Since we're not holding a reference to the zone, any number of
6621 	 * things can go wrong, including the zone disappearing before we get a
6622 	 * chance to talk to zoneadmd.
6623 	 */
6624 	for (retry = 0; /* forever */; retry++) {
6625 		if (door == NULL &&
6626 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
6627 			goto next;
6628 		}
6629 		ASSERT(door != NULL);
6630 
6631 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
6632 		    SIZE_MAX, 0)) == 0) {
6633 			break;
6634 		}
6635 		switch (error) {
6636 		case EINTR:
6637 			/* FALLTHROUGH */
6638 		case EAGAIN:	/* process may be forking */
6639 			/*
6640 			 * Back off for a bit
6641 			 */
6642 			break;
6643 		case EBADF:
6644 			zone_release_door(&door);
6645 			if (zone_lookup_door(zone_name, &door) != 0) {
6646 				/*
6647 				 * zoneadmd may be dead, but it may come back to
6648 				 * life later.
6649 				 */
6650 				break;
6651 			}
6652 			break;
6653 		default:
6654 			cmn_err(CE_WARN,
6655 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6656 			    error);
6657 			goto out;
6658 		}
6659 next:
6660 		/*
6661 		 * If this isn't the same zone_t that we originally had in mind,
6662 		 * then this is the same as if two kadmin requests come in at
6663 		 * the same time: the first one wins.  This means we lose, so we
6664 		 * bail.
6665 		 */
6666 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
6667 			/*
6668 			 * Problem is solved.
6669 			 */
6670 			break;
6671 		}
6672 		if (zone->zone_uniqid != uniqid) {
6673 			/*
6674 			 * zoneid recycled
6675 			 */
6676 			zone_rele(zone);
6677 			break;
6678 		}
6679 		/*
6680 		 * We could zone_status_timedwait(), but there doesn't seem to
6681 		 * be much point in doing that (plus, it would mean that
6682 		 * zone_free() isn't called until this thread exits).
6683 		 */
6684 		zone_rele(zone);
6685 		delay(hz);
6686 		darg = save_arg;
6687 	}
6688 out:
6689 	if (door != NULL) {
6690 		zone_release_door(&door);
6691 	}
6692 	kmem_free(zone_name, zone_namelen);
6693 	thread_exit();
6694 }
6695 
6696 /*
6697  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
6698  * kadmin().  The caller is a process in the zone.
6699  *
6700  * In order to shutdown the zone, we will hand off control to zoneadmd
6701  * (running in the global zone) via a door.  We do a half-hearted job at
6702  * killing all processes in the zone, create a kernel thread to contact
6703  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
6704  * a form of generation number used to let zoneadmd (as well as
6705  * zone_destroy()) know exactly which zone they're re talking about.
6706  */
6707 int
6708 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6709 {
6710 	struct zarg *zargp;
6711 	zone_cmd_t zcmd;
6712 	zone_t *zone;
6713 
6714 	zone = curproc->p_zone;
6715 	ASSERT(getzoneid() != GLOBAL_ZONEID);
6716 
6717 	switch (cmd) {
6718 	case A_SHUTDOWN:
6719 		switch (fcn) {
6720 		case AD_HALT:
6721 		case AD_POWEROFF:
6722 			zcmd = Z_HALT;
6723 			break;
6724 		case AD_BOOT:
6725 			zcmd = Z_REBOOT;
6726 			break;
6727 		case AD_IBOOT:
6728 		case AD_SBOOT:
6729 		case AD_SIBOOT:
6730 		case AD_NOSYNC:
6731 			return (ENOTSUP);
6732 		default:
6733 			return (EINVAL);
6734 		}
6735 		break;
6736 	case A_REBOOT:
6737 		zcmd = Z_REBOOT;
6738 		break;
6739 	case A_FTRACE:
6740 	case A_REMOUNT:
6741 	case A_FREEZE:
6742 	case A_DUMP:
6743 	case A_CONFIG:
6744 		return (ENOTSUP);
6745 	default:
6746 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
6747 		return (EINVAL);
6748 	}
6749 
6750 	if (secpolicy_zone_admin(credp, B_FALSE))
6751 		return (EPERM);
6752 	mutex_enter(&zone_status_lock);
6753 
6754 	/*
6755 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6756 	 * is in the zone.
6757 	 */
6758 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6759 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6760 		/*
6761 		 * This zone is already on its way down.
6762 		 */
6763 		mutex_exit(&zone_status_lock);
6764 		return (0);
6765 	}
6766 	/*
6767 	 * Prevent future zone_enter()s
6768 	 */
6769 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6770 	mutex_exit(&zone_status_lock);
6771 
6772 	/*
6773 	 * Kill everyone now and call zoneadmd later.
6774 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
6775 	 * later.
6776 	 */
6777 	killall(zone->zone_id);
6778 	/*
6779 	 * Now, create the thread to contact zoneadmd and do the rest of the
6780 	 * work.  This thread can't be created in our zone otherwise
6781 	 * zone_destroy() would deadlock.
6782 	 */
6783 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6784 	zargp->arg.cmd = zcmd;
6785 	zargp->arg.uniqid = zone->zone_uniqid;
6786 	zargp->zone = zone;
6787 	(void) strcpy(zargp->arg.locale, "C");
6788 	/* mdep was already copied in for us by uadmin */
6789 	if (mdep != NULL)
6790 		(void) strlcpy(zargp->arg.bootbuf, mdep,
6791 		    sizeof (zargp->arg.bootbuf));
6792 	zone_hold(zone);
6793 
6794 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6795 	    TS_RUN, minclsyspri);
6796 	exit(CLD_EXITED, 0);
6797 
6798 	return (EINVAL);
6799 }
6800 
6801 /*
6802  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6803  * status to ZONE_IS_SHUTTING_DOWN.
6804  *
6805  * This function also shuts down all running zones to ensure that they won't
6806  * fork new processes.
6807  */
6808 void
6809 zone_shutdown_global(void)
6810 {
6811 	zone_t *current_zonep;
6812 
6813 	ASSERT(INGLOBALZONE(curproc));
6814 	mutex_enter(&zonehash_lock);
6815 	mutex_enter(&zone_status_lock);
6816 
6817 	/* Modify the global zone's status first. */
6818 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6819 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6820 
6821 	/*
6822 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6823 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6824 	 * could cause assertions to fail (e.g., assertions about a zone's
6825 	 * state during initialization, readying, or booting) or produce races.
6826 	 * We'll let threads continue to initialize and ready new zones: they'll
6827 	 * fail to boot the new zones when they see that the global zone is
6828 	 * shutting down.
6829 	 */
6830 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6831 	    current_zonep = list_next(&zone_active, current_zonep)) {
6832 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6833 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6834 	}
6835 	mutex_exit(&zone_status_lock);
6836 	mutex_exit(&zonehash_lock);
6837 }
6838 
6839 /*
6840  * Returns true if the named dataset is visible in the current zone.
6841  * The 'write' parameter is set to 1 if the dataset is also writable.
6842  */
6843 int
6844 zone_dataset_visible(const char *dataset, int *write)
6845 {
6846 	static int zfstype = -1;
6847 	zone_dataset_t *zd;
6848 	size_t len;
6849 	zone_t *zone = curproc->p_zone;
6850 	const char *name = NULL;
6851 	vfs_t *vfsp = NULL;
6852 
6853 	if (dataset[0] == '\0')
6854 		return (0);
6855 
6856 	/*
6857 	 * Walk the list once, looking for datasets which match exactly, or
6858 	 * specify a dataset underneath an exported dataset.  If found, return
6859 	 * true and note that it is writable.
6860 	 */
6861 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6862 	    zd = list_next(&zone->zone_datasets, zd)) {
6863 
6864 		len = strlen(zd->zd_dataset);
6865 		if (strlen(dataset) >= len &&
6866 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6867 		    (dataset[len] == '\0' || dataset[len] == '/' ||
6868 		    dataset[len] == '@')) {
6869 			if (write)
6870 				*write = 1;
6871 			return (1);
6872 		}
6873 	}
6874 
6875 	/*
6876 	 * Walk the list a second time, searching for datasets which are parents
6877 	 * of exported datasets.  These should be visible, but read-only.
6878 	 *
6879 	 * Note that we also have to support forms such as 'pool/dataset/', with
6880 	 * a trailing slash.
6881 	 */
6882 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
6883 	    zd = list_next(&zone->zone_datasets, zd)) {
6884 
6885 		len = strlen(dataset);
6886 		if (dataset[len - 1] == '/')
6887 			len--;	/* Ignore trailing slash */
6888 		if (len < strlen(zd->zd_dataset) &&
6889 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
6890 		    zd->zd_dataset[len] == '/') {
6891 			if (write)
6892 				*write = 0;
6893 			return (1);
6894 		}
6895 	}
6896 
6897 	/*
6898 	 * We reach here if the given dataset is not found in the zone_dataset
6899 	 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6900 	 * instead of delegation. For this we search for the dataset in the
6901 	 * zone_vfslist of this zone. If found, return true and note that it is
6902 	 * not writable.
6903 	 */
6904 
6905 	/*
6906 	 * Initialize zfstype if it is not initialized yet.
6907 	 */
6908 	if (zfstype == -1) {
6909 		struct vfssw *vswp = vfs_getvfssw("zfs");
6910 		zfstype = vswp - vfssw;
6911 		vfs_unrefvfssw(vswp);
6912 	}
6913 
6914 	vfs_list_read_lock();
6915 	vfsp = zone->zone_vfslist;
6916 	do {
6917 		ASSERT(vfsp);
6918 		if (vfsp->vfs_fstype == zfstype) {
6919 			name = refstr_value(vfsp->vfs_resource);
6920 
6921 			/*
6922 			 * Check if we have an exact match.
6923 			 */
6924 			if (strcmp(dataset, name) == 0) {
6925 				vfs_list_unlock();
6926 				if (write)
6927 					*write = 0;
6928 				return (1);
6929 			}
6930 			/*
6931 			 * We need to check if we are looking for parents of
6932 			 * a dataset. These should be visible, but read-only.
6933 			 */
6934 			len = strlen(dataset);
6935 			if (dataset[len - 1] == '/')
6936 				len--;
6937 
6938 			if (len < strlen(name) &&
6939 			    bcmp(dataset, name, len) == 0 && name[len] == '/') {
6940 				vfs_list_unlock();
6941 				if (write)
6942 					*write = 0;
6943 				return (1);
6944 			}
6945 		}
6946 		vfsp = vfsp->vfs_zone_next;
6947 	} while (vfsp != zone->zone_vfslist);
6948 
6949 	vfs_list_unlock();
6950 	return (0);
6951 }
6952 
6953 /*
6954  * zone_find_by_any_path() -
6955  *
6956  * kernel-private routine similar to zone_find_by_path(), but which
6957  * effectively compares against zone paths rather than zonerootpath
6958  * (i.e., the last component of zonerootpaths, which should be "root/",
6959  * are not compared.)  This is done in order to accurately identify all
6960  * paths, whether zone-visible or not, including those which are parallel
6961  * to /root/, such as /dev/, /home/, etc...
6962  *
6963  * If the specified path does not fall under any zone path then global
6964  * zone is returned.
6965  *
6966  * The treat_abs parameter indicates whether the path should be treated as
6967  * an absolute path although it does not begin with "/".  (This supports
6968  * nfs mount syntax such as host:any/path.)
6969  *
6970  * The caller is responsible for zone_rele of the returned zone.
6971  */
6972 zone_t *
6973 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6974 {
6975 	zone_t *zone;
6976 	int path_offset = 0;
6977 
6978 	if (path == NULL) {
6979 		zone_hold(global_zone);
6980 		return (global_zone);
6981 	}
6982 
6983 	if (*path != '/') {
6984 		ASSERT(treat_abs);
6985 		path_offset = 1;
6986 	}
6987 
6988 	mutex_enter(&zonehash_lock);
6989 	for (zone = list_head(&zone_active); zone != NULL;
6990 	    zone = list_next(&zone_active, zone)) {
6991 		char	*c;
6992 		size_t	pathlen;
6993 		char *rootpath_start;
6994 
6995 		if (zone == global_zone)	/* skip global zone */
6996 			continue;
6997 
6998 		/* scan backwards to find start of last component */
6999 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
7000 		do {
7001 			c--;
7002 		} while (*c != '/');
7003 
7004 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
7005 		rootpath_start = (zone->zone_rootpath + path_offset);
7006 		if (strncmp(path, rootpath_start, pathlen) == 0)
7007 			break;
7008 	}
7009 	if (zone == NULL)
7010 		zone = global_zone;
7011 	zone_hold(zone);
7012 	mutex_exit(&zonehash_lock);
7013 	return (zone);
7014 }
7015 
7016 /*
7017  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
7018  * zone_dl_t pointer if found, and NULL otherwise.
7019  */
7020 static zone_dl_t *
7021 zone_find_dl(zone_t *zone, datalink_id_t linkid)
7022 {
7023 	zone_dl_t *zdl;
7024 
7025 	ASSERT(mutex_owned(&zone->zone_lock));
7026 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7027 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7028 		if (zdl->zdl_id == linkid)
7029 			break;
7030 	}
7031 	return (zdl);
7032 }
7033 
7034 static boolean_t
7035 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
7036 {
7037 	boolean_t exists;
7038 
7039 	mutex_enter(&zone->zone_lock);
7040 	exists = (zone_find_dl(zone, linkid) != NULL);
7041 	mutex_exit(&zone->zone_lock);
7042 	return (exists);
7043 }
7044 
7045 /*
7046  * Add an data link name for the zone.
7047  */
7048 static int
7049 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
7050 {
7051 	zone_dl_t *zdl;
7052 	zone_t *zone;
7053 	zone_t *thiszone;
7054 
7055 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
7056 		return (set_errno(ENXIO));
7057 
7058 	/* Verify that the datalink ID doesn't already belong to a zone. */
7059 	mutex_enter(&zonehash_lock);
7060 	for (zone = list_head(&zone_active); zone != NULL;
7061 	    zone = list_next(&zone_active, zone)) {
7062 		if (zone_dl_exists(zone, linkid)) {
7063 			mutex_exit(&zonehash_lock);
7064 			zone_rele(thiszone);
7065 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
7066 		}
7067 	}
7068 
7069 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
7070 	zdl->zdl_id = linkid;
7071 	zdl->zdl_net = NULL;
7072 	mutex_enter(&thiszone->zone_lock);
7073 	list_insert_head(&thiszone->zone_dl_list, zdl);
7074 	mutex_exit(&thiszone->zone_lock);
7075 	mutex_exit(&zonehash_lock);
7076 	zone_rele(thiszone);
7077 	return (0);
7078 }
7079 
7080 static int
7081 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
7082 {
7083 	zone_dl_t *zdl;
7084 	zone_t *zone;
7085 	int err = 0;
7086 
7087 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7088 		return (set_errno(EINVAL));
7089 
7090 	mutex_enter(&zone->zone_lock);
7091 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7092 		err = ENXIO;
7093 	} else {
7094 		list_remove(&zone->zone_dl_list, zdl);
7095 		nvlist_free(zdl->zdl_net);
7096 		kmem_free(zdl, sizeof (zone_dl_t));
7097 	}
7098 	mutex_exit(&zone->zone_lock);
7099 	zone_rele(zone);
7100 	return (err == 0 ? 0 : set_errno(err));
7101 }
7102 
7103 /*
7104  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
7105  * the linkid.  Otherwise we just check if the specified zoneidp has been
7106  * assigned the supplied linkid.
7107  */
7108 int
7109 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
7110 {
7111 	zone_t *zone;
7112 	int err = ENXIO;
7113 
7114 	if (*zoneidp != ALL_ZONES) {
7115 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
7116 			if (zone_dl_exists(zone, linkid))
7117 				err = 0;
7118 			zone_rele(zone);
7119 		}
7120 		return (err);
7121 	}
7122 
7123 	mutex_enter(&zonehash_lock);
7124 	for (zone = list_head(&zone_active); zone != NULL;
7125 	    zone = list_next(&zone_active, zone)) {
7126 		if (zone_dl_exists(zone, linkid)) {
7127 			*zoneidp = zone->zone_id;
7128 			err = 0;
7129 			break;
7130 		}
7131 	}
7132 	mutex_exit(&zonehash_lock);
7133 	return (err);
7134 }
7135 
7136 /*
7137  * Get the list of datalink IDs assigned to a zone.
7138  *
7139  * On input, *nump is the number of datalink IDs that can fit in the supplied
7140  * idarray.  Upon return, *nump is either set to the number of datalink IDs
7141  * that were placed in the array if the array was large enough, or to the
7142  * number of datalink IDs that the function needs to place in the array if the
7143  * array is too small.
7144  */
7145 static int
7146 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
7147 {
7148 	uint_t num, dlcount;
7149 	zone_t *zone;
7150 	zone_dl_t *zdl;
7151 	datalink_id_t *idptr = idarray;
7152 
7153 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7154 		return (set_errno(EFAULT));
7155 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7156 		return (set_errno(ENXIO));
7157 
7158 	num = 0;
7159 	mutex_enter(&zone->zone_lock);
7160 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7161 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7162 		/*
7163 		 * If the list is bigger than what the caller supplied, just
7164 		 * count, don't do copyout.
7165 		 */
7166 		if (++num > dlcount)
7167 			continue;
7168 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7169 			mutex_exit(&zone->zone_lock);
7170 			zone_rele(zone);
7171 			return (set_errno(EFAULT));
7172 		}
7173 		idptr++;
7174 	}
7175 	mutex_exit(&zone->zone_lock);
7176 	zone_rele(zone);
7177 
7178 	/* Increased or decreased, caller should be notified. */
7179 	if (num != dlcount) {
7180 		if (copyout(&num, nump, sizeof (num)) != 0)
7181 			return (set_errno(EFAULT));
7182 	}
7183 	return (0);
7184 }
7185 
7186 /*
7187  * Public interface for looking up a zone by zoneid. It's a customized version
7188  * for netstack_zone_create(). It can only be called from the zsd create
7189  * callbacks, since it doesn't have reference on the zone structure hence if
7190  * it is called elsewhere the zone could disappear after the zonehash_lock
7191  * is dropped.
7192  *
7193  * Furthermore it
7194  * 1. Doesn't check the status of the zone.
7195  * 2. It will be called even before zone_init is called, in that case the
7196  *    address of zone0 is returned directly, and netstack_zone_create()
7197  *    will only assign a value to zone0.zone_netstack, won't break anything.
7198  * 3. Returns without the zone being held.
7199  */
7200 zone_t *
7201 zone_find_by_id_nolock(zoneid_t zoneid)
7202 {
7203 	zone_t *zone;
7204 
7205 	mutex_enter(&zonehash_lock);
7206 	if (zonehashbyid == NULL)
7207 		zone = &zone0;
7208 	else
7209 		zone = zone_find_all_by_id(zoneid);
7210 	mutex_exit(&zonehash_lock);
7211 	return (zone);
7212 }
7213 
7214 /*
7215  * Walk the datalinks for a given zone
7216  */
7217 int
7218 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7219     void *data)
7220 {
7221 	zone_t		*zone;
7222 	zone_dl_t	*zdl;
7223 	datalink_id_t	*idarray;
7224 	uint_t		idcount = 0;
7225 	int		i, ret = 0;
7226 
7227 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7228 		return (ENOENT);
7229 
7230 	/*
7231 	 * We first build an array of linkid's so that we can walk these and
7232 	 * execute the callback with the zone_lock dropped.
7233 	 */
7234 	mutex_enter(&zone->zone_lock);
7235 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7236 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
7237 		idcount++;
7238 	}
7239 
7240 	if (idcount == 0) {
7241 		mutex_exit(&zone->zone_lock);
7242 		zone_rele(zone);
7243 		return (0);
7244 	}
7245 
7246 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7247 	if (idarray == NULL) {
7248 		mutex_exit(&zone->zone_lock);
7249 		zone_rele(zone);
7250 		return (ENOMEM);
7251 	}
7252 
7253 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7254 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7255 		idarray[i] = zdl->zdl_id;
7256 	}
7257 
7258 	mutex_exit(&zone->zone_lock);
7259 
7260 	for (i = 0; i < idcount && ret == 0; i++) {
7261 		if ((ret = (*cb)(idarray[i], data)) != 0)
7262 			break;
7263 	}
7264 
7265 	zone_rele(zone);
7266 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7267 	return (ret);
7268 }
7269 
7270 static char *
7271 zone_net_type2name(int type)
7272 {
7273 	switch (type) {
7274 	case ZONE_NETWORK_ADDRESS:
7275 		return (ZONE_NET_ADDRNAME);
7276 	case ZONE_NETWORK_DEFROUTER:
7277 		return (ZONE_NET_RTRNAME);
7278 	default:
7279 		return (NULL);
7280 	}
7281 }
7282 
7283 static int
7284 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7285 {
7286 	zone_t *zone;
7287 	zone_dl_t *zdl;
7288 	nvlist_t *nvl;
7289 	int err = 0;
7290 	uint8_t *new = NULL;
7291 	char *nvname;
7292 	int bufsize;
7293 	datalink_id_t linkid = znbuf->zn_linkid;
7294 
7295 	if (secpolicy_zone_config(CRED()) != 0)
7296 		return (set_errno(EPERM));
7297 
7298 	if (zoneid == GLOBAL_ZONEID)
7299 		return (set_errno(EINVAL));
7300 
7301 	nvname = zone_net_type2name(znbuf->zn_type);
7302 	bufsize = znbuf->zn_len;
7303 	new = znbuf->zn_val;
7304 	if (nvname == NULL)
7305 		return (set_errno(EINVAL));
7306 
7307 	if ((zone = zone_find_by_id(zoneid)) == NULL) {
7308 		return (set_errno(EINVAL));
7309 	}
7310 
7311 	mutex_enter(&zone->zone_lock);
7312 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7313 		err = ENXIO;
7314 		goto done;
7315 	}
7316 	if ((nvl = zdl->zdl_net) == NULL) {
7317 		if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7318 			err = ENOMEM;
7319 			goto done;
7320 		} else {
7321 			zdl->zdl_net = nvl;
7322 		}
7323 	}
7324 	if (nvlist_exists(nvl, nvname)) {
7325 		err = EINVAL;
7326 		goto done;
7327 	}
7328 	err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7329 	ASSERT(err == 0);
7330 done:
7331 	mutex_exit(&zone->zone_lock);
7332 	zone_rele(zone);
7333 	if (err != 0)
7334 		return (set_errno(err));
7335 	else
7336 		return (0);
7337 }
7338 
7339 static int
7340 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7341 {
7342 	zone_t *zone;
7343 	zone_dl_t *zdl;
7344 	nvlist_t *nvl;
7345 	uint8_t *ptr;
7346 	uint_t psize;
7347 	int err = 0;
7348 	char *nvname;
7349 	int bufsize;
7350 	void *buf;
7351 	datalink_id_t linkid = znbuf->zn_linkid;
7352 
7353 	if (zoneid == GLOBAL_ZONEID)
7354 		return (set_errno(EINVAL));
7355 
7356 	nvname = zone_net_type2name(znbuf->zn_type);
7357 	bufsize = znbuf->zn_len;
7358 	buf = znbuf->zn_val;
7359 
7360 	if (nvname == NULL)
7361 		return (set_errno(EINVAL));
7362 	if ((zone = zone_find_by_id(zoneid)) == NULL)
7363 		return (set_errno(EINVAL));
7364 
7365 	mutex_enter(&zone->zone_lock);
7366 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7367 		err = ENXIO;
7368 		goto done;
7369 	}
7370 	if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7371 		err = ENOENT;
7372 		goto done;
7373 	}
7374 	err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7375 	ASSERT(err == 0);
7376 
7377 	if (psize > bufsize) {
7378 		err = ENOBUFS;
7379 		goto done;
7380 	}
7381 	znbuf->zn_len = psize;
7382 	bcopy(ptr, buf, psize);
7383 done:
7384 	mutex_exit(&zone->zone_lock);
7385 	zone_rele(zone);
7386 	if (err != 0)
7387 		return (set_errno(err));
7388 	else
7389 		return (0);
7390 }
7391