xref: /illumos-gate/usr/src/uts/common/os/zone.c (revision 142762cd061b91f325608e9672ad01087687394d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Zones
29  *
30  *   A zone is a named collection of processes, namespace constraints,
31  *   and other system resources which comprise a secure and manageable
32  *   application containment facility.
33  *
34  *   Zones (represented by the reference counted zone_t) are tracked in
35  *   the kernel in the zonehash.  Elsewhere in the kernel, Zone IDs
36  *   (zoneid_t) are used to track zone association.  Zone IDs are
37  *   dynamically generated when the zone is created; if a persistent
38  *   identifier is needed (core files, accounting logs, audit trail,
39  *   etc.), the zone name should be used.
40  *
41  *
42  *   Global Zone:
43  *
44  *   The global zone (zoneid 0) is automatically associated with all
45  *   system resources that have not been bound to a user-created zone.
46  *   This means that even systems where zones are not in active use
47  *   have a global zone, and all processes, mounts, etc. are
48  *   associated with that zone.  The global zone is generally
49  *   unconstrained in terms of privileges and access, though the usual
50  *   credential and privilege based restrictions apply.
51  *
52  *
53  *   Zone States:
54  *
55  *   The states in which a zone may be in and the transitions are as
56  *   follows:
57  *
58  *   ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
59  *   initialized zone is added to the list of active zones on the system but
60  *   isn't accessible.
61  *
62  *   ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
63  *   not yet completed. Not possible to enter the zone, but attributes can
64  *   be retrieved.
65  *
66  *   ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
67  *   ready.  The zone is made visible after the ZSD constructor callbacks are
68  *   executed.  A zone remains in this state until it transitions into
69  *   the ZONE_IS_BOOTING state as a result of a call to zone_boot().
70  *
71  *   ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
72  *   init.  Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
73  *   state.
74  *
75  *   ZONE_IS_RUNNING: The zone is open for business: zsched has
76  *   successfully started init.   A zone remains in this state until
77  *   zone_shutdown() is called.
78  *
79  *   ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
80  *   killing all processes running in the zone. The zone remains
81  *   in this state until there are no more user processes running in the zone.
82  *   zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
83  *   Since zone_shutdown() is restartable, it may be called successfully
84  *   multiple times for the same zone_t.  Setting of the zone's state to
85  *   ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
86  *   the zone's status without worrying about it being a moving target.
87  *
88  *   ZONE_IS_EMPTY: zone_shutdown() has been called, and there
89  *   are no more user processes in the zone.  The zone remains in this
90  *   state until there are no more kernel threads associated with the
91  *   zone.  zone_create(), zone_enter(), and zone_destroy() on this zone will
92  *   fail.
93  *
94  *   ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
95  *   have exited.  zone_shutdown() returns.  Henceforth it is not possible to
96  *   join the zone or create kernel threads therein.
97  *
98  *   ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
99  *   remains in this state until zsched exits.  Calls to zone_find_by_*()
100  *   return NULL from now on.
101  *
102  *   ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0).  There are no
103  *   processes or threads doing work on behalf of the zone.  The zone is
104  *   removed from the list of active zones.  zone_destroy() returns, and
105  *   the zone can be recreated.
106  *
107  *   ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
108  *   callbacks are executed, and all memory associated with the zone is
109  *   freed.
110  *
111  *   Threads can wait for the zone to enter a requested state by using
112  *   zone_status_wait() or zone_status_timedwait() with the desired
113  *   state passed in as an argument.  Zone state transitions are
114  *   uni-directional; it is not possible to move back to an earlier state.
115  *
116  *
117  *   Zone-Specific Data:
118  *
119  *   Subsystems needing to maintain zone-specific data can store that
120  *   data using the ZSD mechanism.  This provides a zone-specific data
121  *   store, similar to thread-specific data (see pthread_getspecific(3C)
122  *   or the TSD code in uts/common/disp/thread.c.  Also, ZSD can be used
123  *   to register callbacks to be invoked when a zone is created, shut
124  *   down, or destroyed.  This can be used to initialize zone-specific
125  *   data for new zones and to clean up when zones go away.
126  *
127  *
128  *   Data Structures:
129  *
130  *   The per-zone structure (zone_t) is reference counted, and freed
131  *   when all references are released.  zone_hold and zone_rele can be
132  *   used to adjust the reference count.  In addition, reference counts
133  *   associated with the cred_t structure are tracked separately using
134  *   zone_cred_hold and zone_cred_rele.
135  *
136  *   Pointers to active zone_t's are stored in two hash tables; one
137  *   for searching by id, the other for searching by name.  Lookups
138  *   can be performed on either basis, using zone_find_by_id and
139  *   zone_find_by_name.  Both return zone_t pointers with the zone
140  *   held, so zone_rele should be called when the pointer is no longer
141  *   needed.  Zones can also be searched by path; zone_find_by_path
142  *   returns the zone with which a path name is associated (global
143  *   zone if the path is not within some other zone's file system
144  *   hierarchy).  This currently requires iterating through each zone,
145  *   so it is slower than an id or name search via a hash table.
146  *
147  *
148  *   Locking:
149  *
150  *   zonehash_lock: This is a top-level global lock used to protect the
151  *       zone hash tables and lists.  Zones cannot be created or destroyed
152  *       while this lock is held.
153  *   zone_status_lock: This is a global lock protecting zone state.
154  *       Zones cannot change state while this lock is held.  It also
155  *       protects the list of kernel threads associated with a zone.
156  *   zone_lock: This is a per-zone lock used to protect several fields of
157  *       the zone_t (see <sys/zone.h> for details).  In addition, holding
158  *       this lock means that the zone cannot go away.
159  *   zone_nlwps_lock: This is a per-zone lock used to protect the fields
160  *	 related to the zone.max-lwps rctl.
161  *   zone_mem_lock: This is a per-zone lock used to protect the fields
162  *	 related to the zone.max-locked-memory and zone.max-swap rctls.
163  *   zsd_key_lock: This is a global lock protecting the key state for ZSD.
164  *   zone_deathrow_lock: This is a global lock protecting the "deathrow"
165  *       list (a list of zones in the ZONE_IS_DEAD state).
166  *
167  *   Ordering requirements:
168  *       pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
169  *       	zone_lock --> zsd_key_lock --> pidlock --> p_lock
170  *
171  *   When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
172  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
173  *	zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
174  *
175  *   Blocking memory allocations are permitted while holding any of the
176  *   zone locks.
177  *
178  *
179  *   System Call Interface:
180  *
181  *   The zone subsystem can be managed and queried from user level with
182  *   the following system calls (all subcodes of the primary "zone"
183  *   system call):
184  *   - zone_create: creates a zone with selected attributes (name,
185  *     root path, privileges, resource controls, ZFS datasets)
186  *   - zone_enter: allows the current process to enter a zone
187  *   - zone_getattr: reports attributes of a zone
188  *   - zone_setattr: set attributes of a zone
189  *   - zone_boot: set 'init' running for the zone
190  *   - zone_list: lists all zones active in the system
191  *   - zone_lookup: looks up zone id based on name
192  *   - zone_shutdown: initiates shutdown process (see states above)
193  *   - zone_destroy: completes shutdown process (see states above)
194  *
195  */
196 
197 #include <sys/priv_impl.h>
198 #include <sys/cred.h>
199 #include <c2/audit.h>
200 #include <sys/debug.h>
201 #include <sys/file.h>
202 #include <sys/kmem.h>
203 #include <sys/kstat.h>
204 #include <sys/mutex.h>
205 #include <sys/note.h>
206 #include <sys/pathname.h>
207 #include <sys/proc.h>
208 #include <sys/project.h>
209 #include <sys/sysevent.h>
210 #include <sys/task.h>
211 #include <sys/systm.h>
212 #include <sys/types.h>
213 #include <sys/utsname.h>
214 #include <sys/vnode.h>
215 #include <sys/vfs.h>
216 #include <sys/systeminfo.h>
217 #include <sys/policy.h>
218 #include <sys/cred_impl.h>
219 #include <sys/contract_impl.h>
220 #include <sys/contract/process_impl.h>
221 #include <sys/class.h>
222 #include <sys/pool.h>
223 #include <sys/pool_pset.h>
224 #include <sys/pset.h>
225 #include <sys/sysmacros.h>
226 #include <sys/callb.h>
227 #include <sys/vmparam.h>
228 #include <sys/corectl.h>
229 #include <sys/ipc_impl.h>
230 
231 #include <sys/door.h>
232 #include <sys/cpuvar.h>
233 #include <sys/sdt.h>
234 
235 #include <sys/uadmin.h>
236 #include <sys/session.h>
237 #include <sys/cmn_err.h>
238 #include <sys/modhash.h>
239 #include <sys/sunddi.h>
240 #include <sys/nvpair.h>
241 #include <sys/rctl.h>
242 #include <sys/fss.h>
243 #include <sys/brand.h>
244 #include <sys/zone.h>
245 #include <net/if.h>
246 #include <sys/cpucaps.h>
247 #include <vm/seg.h>
248 #include <sys/mac.h>
249 
250 /* List of data link IDs which are accessible from the zone */
251 typedef struct zone_dl {
252 	datalink_id_t	zdl_id;
253 	list_node_t	zdl_linkage;
254 } zone_dl_t;
255 
256 /*
257  * cv used to signal that all references to the zone have been released.  This
258  * needs to be global since there may be multiple waiters, and the first to
259  * wake up will free the zone_t, hence we cannot use zone->zone_cv.
260  */
261 static kcondvar_t zone_destroy_cv;
262 /*
263  * Lock used to serialize access to zone_cv.  This could have been per-zone,
264  * but then we'd need another lock for zone_destroy_cv, and why bother?
265  */
266 static kmutex_t zone_status_lock;
267 
268 /*
269  * ZSD-related global variables.
270  */
271 static kmutex_t zsd_key_lock;	/* protects the following two */
272 /*
273  * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
274  */
275 static zone_key_t zsd_keyval = 0;
276 /*
277  * Global list of registered keys.  We use this when a new zone is created.
278  */
279 static list_t zsd_registered_keys;
280 
281 int zone_hash_size = 256;
282 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
283 static kmutex_t zonehash_lock;
284 static uint_t zonecount;
285 static id_space_t *zoneid_space;
286 
287 /*
288  * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
289  * kernel proper runs, and which manages all other zones.
290  *
291  * Although not declared as static, the variable "zone0" should not be used
292  * except for by code that needs to reference the global zone early on in boot,
293  * before it is fully initialized.  All other consumers should use
294  * 'global_zone'.
295  */
296 zone_t zone0;
297 zone_t *global_zone = NULL;	/* Set when the global zone is initialized */
298 
299 /*
300  * List of active zones, protected by zonehash_lock.
301  */
302 static list_t zone_active;
303 
304 /*
305  * List of destroyed zones that still have outstanding cred references.
306  * Used for debugging.  Uses a separate lock to avoid lock ordering
307  * problems in zone_free.
308  */
309 static list_t zone_deathrow;
310 static kmutex_t zone_deathrow_lock;
311 
312 /* number of zones is limited by virtual interface limit in IP */
313 uint_t maxzones = 8192;
314 
315 /* Event channel to sent zone state change notifications */
316 evchan_t *zone_event_chan;
317 
318 /*
319  * This table holds the mapping from kernel zone states to
320  * states visible in the state notification API.
321  * The idea is that we only expose "obvious" states and
322  * do not expose states which are just implementation details.
323  */
324 const char  *zone_status_table[] = {
325 	ZONE_EVENT_UNINITIALIZED,	/* uninitialized */
326 	ZONE_EVENT_INITIALIZED,		/* initialized */
327 	ZONE_EVENT_READY,		/* ready */
328 	ZONE_EVENT_READY,		/* booting */
329 	ZONE_EVENT_RUNNING,		/* running */
330 	ZONE_EVENT_SHUTTING_DOWN,	/* shutting_down */
331 	ZONE_EVENT_SHUTTING_DOWN,	/* empty */
332 	ZONE_EVENT_SHUTTING_DOWN,	/* down */
333 	ZONE_EVENT_SHUTTING_DOWN,	/* dying */
334 	ZONE_EVENT_UNINITIALIZED,	/* dead */
335 };
336 
337 /*
338  * This isn't static so lint doesn't complain.
339  */
340 rctl_hndl_t rc_zone_cpu_shares;
341 rctl_hndl_t rc_zone_locked_mem;
342 rctl_hndl_t rc_zone_max_swap;
343 rctl_hndl_t rc_zone_cpu_cap;
344 rctl_hndl_t rc_zone_nlwps;
345 rctl_hndl_t rc_zone_shmmax;
346 rctl_hndl_t rc_zone_shmmni;
347 rctl_hndl_t rc_zone_semmni;
348 rctl_hndl_t rc_zone_msgmni;
349 /*
350  * Synchronization primitives used to synchronize between mounts and zone
351  * creation/destruction.
352  */
353 static int mounts_in_progress;
354 static kcondvar_t mount_cv;
355 static kmutex_t mount_lock;
356 
357 const char * const zone_default_initname = "/sbin/init";
358 static char * const zone_prefix = "/zone/";
359 static int zone_shutdown(zoneid_t zoneid);
360 static int zone_add_datalink(zoneid_t, datalink_id_t);
361 static int zone_remove_datalink(zoneid_t, datalink_id_t);
362 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
363 
364 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
365 
366 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
367 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
368 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
369 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
370     zone_key_t);
371 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
372 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
373     kmutex_t *);
374 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
375     kmutex_t *);
376 
377 /*
378  * Bump this number when you alter the zone syscall interfaces; this is
379  * because we need to have support for previous API versions in libc
380  * to support patching; libc calls into the kernel to determine this number.
381  *
382  * Version 1 of the API is the version originally shipped with Solaris 10
383  * Version 2 alters the zone_create system call in order to support more
384  *     arguments by moving the args into a structure; and to do better
385  *     error reporting when zone_create() fails.
386  * Version 3 alters the zone_create system call in order to support the
387  *     import of ZFS datasets to zones.
388  * Version 4 alters the zone_create system call in order to support
389  *     Trusted Extensions.
390  * Version 5 alters the zone_boot system call, and converts its old
391  *     bootargs parameter to be set by the zone_setattr API instead.
392  * Version 6 adds the flag argument to zone_create.
393  */
394 static const int ZONE_SYSCALL_API_VERSION = 6;
395 
396 /*
397  * Certain filesystems (such as NFS and autofs) need to know which zone
398  * the mount is being placed in.  Because of this, we need to be able to
399  * ensure that a zone isn't in the process of being created such that
400  * nfs_mount() thinks it is in the global zone, while by the time it
401  * gets added the list of mounted zones, it ends up on zoneA's mount
402  * list.
403  *
404  * The following functions: block_mounts()/resume_mounts() and
405  * mount_in_progress()/mount_completed() are used by zones and the VFS
406  * layer (respectively) to synchronize zone creation and new mounts.
407  *
408  * The semantics are like a reader-reader lock such that there may
409  * either be multiple mounts (or zone creations, if that weren't
410  * serialized by zonehash_lock) in progress at the same time, but not
411  * both.
412  *
413  * We use cv's so the user can ctrl-C out of the operation if it's
414  * taking too long.
415  *
416  * The semantics are such that there is unfair bias towards the
417  * "current" operation.  This means that zone creations may starve if
418  * there is a rapid succession of new mounts coming in to the system, or
419  * there is a remote possibility that zones will be created at such a
420  * rate that new mounts will not be able to proceed.
421  */
422 /*
423  * Prevent new mounts from progressing to the point of calling
424  * VFS_MOUNT().  If there are already mounts in this "region", wait for
425  * them to complete.
426  */
427 static int
428 block_mounts(void)
429 {
430 	int retval = 0;
431 
432 	/*
433 	 * Since it may block for a long time, block_mounts() shouldn't be
434 	 * called with zonehash_lock held.
435 	 */
436 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
437 	mutex_enter(&mount_lock);
438 	while (mounts_in_progress > 0) {
439 		if (cv_wait_sig(&mount_cv, &mount_lock) == 0)
440 			goto signaled;
441 	}
442 	/*
443 	 * A negative value of mounts_in_progress indicates that mounts
444 	 * have been blocked by (-mounts_in_progress) different callers.
445 	 */
446 	mounts_in_progress--;
447 	retval = 1;
448 signaled:
449 	mutex_exit(&mount_lock);
450 	return (retval);
451 }
452 
453 /*
454  * The VFS layer may progress with new mounts as far as we're concerned.
455  * Allow them to progress if we were the last obstacle.
456  */
457 static void
458 resume_mounts(void)
459 {
460 	mutex_enter(&mount_lock);
461 	if (++mounts_in_progress == 0)
462 		cv_broadcast(&mount_cv);
463 	mutex_exit(&mount_lock);
464 }
465 
466 /*
467  * The VFS layer is busy with a mount; zones should wait until all
468  * mounts are completed to progress.
469  */
470 void
471 mount_in_progress(void)
472 {
473 	mutex_enter(&mount_lock);
474 	while (mounts_in_progress < 0)
475 		cv_wait(&mount_cv, &mount_lock);
476 	mounts_in_progress++;
477 	mutex_exit(&mount_lock);
478 }
479 
480 /*
481  * VFS is done with one mount; wake up any waiting block_mounts()
482  * callers if this is the last mount.
483  */
484 void
485 mount_completed(void)
486 {
487 	mutex_enter(&mount_lock);
488 	if (--mounts_in_progress == 0)
489 		cv_broadcast(&mount_cv);
490 	mutex_exit(&mount_lock);
491 }
492 
493 /*
494  * ZSD routines.
495  *
496  * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
497  * defined by the pthread_key_create() and related interfaces.
498  *
499  * Kernel subsystems may register one or more data items and/or
500  * callbacks to be executed when a zone is created, shutdown, or
501  * destroyed.
502  *
503  * Unlike the thread counterpart, destructor callbacks will be executed
504  * even if the data pointer is NULL and/or there are no constructor
505  * callbacks, so it is the responsibility of such callbacks to check for
506  * NULL data values if necessary.
507  *
508  * The locking strategy and overall picture is as follows:
509  *
510  * When someone calls zone_key_create(), a template ZSD entry is added to the
511  * global list "zsd_registered_keys", protected by zsd_key_lock.  While
512  * holding that lock all the existing zones are marked as
513  * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
514  * zone_zsd list (protected by zone_lock). The global list is updated first
515  * (under zone_key_lock) to make sure that newly created zones use the
516  * most recent list of keys. Then under zonehash_lock we walk the zones
517  * and mark them.  Similar locking is used in zone_key_delete().
518  *
519  * The actual create, shutdown, and destroy callbacks are done without
520  * holding any lock. And zsd_flags are used to ensure that the operations
521  * completed so that when zone_key_create (and zone_create) is done, as well as
522  * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
523  * are completed.
524  *
525  * When new zones are created constructor callbacks for all registered ZSD
526  * entries will be called. That also uses the above two phases of marking
527  * what needs to be done, and then running the callbacks without holding
528  * any locks.
529  *
530  * The framework does not provide any locking around zone_getspecific() and
531  * zone_setspecific() apart from that needed for internal consistency, so
532  * callers interested in atomic "test-and-set" semantics will need to provide
533  * their own locking.
534  */
535 
536 /*
537  * Helper function to find the zsd_entry associated with the key in the
538  * given list.
539  */
540 static struct zsd_entry *
541 zsd_find(list_t *l, zone_key_t key)
542 {
543 	struct zsd_entry *zsd;
544 
545 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
546 		if (zsd->zsd_key == key) {
547 			return (zsd);
548 		}
549 	}
550 	return (NULL);
551 }
552 
553 /*
554  * Helper function to find the zsd_entry associated with the key in the
555  * given list. Move it to the front of the list.
556  */
557 static struct zsd_entry *
558 zsd_find_mru(list_t *l, zone_key_t key)
559 {
560 	struct zsd_entry *zsd;
561 
562 	for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
563 		if (zsd->zsd_key == key) {
564 			/*
565 			 * Move to head of list to keep list in MRU order.
566 			 */
567 			if (zsd != list_head(l)) {
568 				list_remove(l, zsd);
569 				list_insert_head(l, zsd);
570 			}
571 			return (zsd);
572 		}
573 	}
574 	return (NULL);
575 }
576 
577 void
578 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
579     void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
580 {
581 	struct zsd_entry *zsdp;
582 	struct zsd_entry *t;
583 	struct zone *zone;
584 	zone_key_t  key;
585 
586 	zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
587 	zsdp->zsd_data = NULL;
588 	zsdp->zsd_create = create;
589 	zsdp->zsd_shutdown = shutdown;
590 	zsdp->zsd_destroy = destroy;
591 
592 	/*
593 	 * Insert in global list of callbacks. Makes future zone creations
594 	 * see it.
595 	 */
596 	mutex_enter(&zsd_key_lock);
597 	key = zsdp->zsd_key = ++zsd_keyval;
598 	ASSERT(zsd_keyval != 0);
599 	list_insert_tail(&zsd_registered_keys, zsdp);
600 	mutex_exit(&zsd_key_lock);
601 
602 	/*
603 	 * Insert for all existing zones and mark them as needing
604 	 * a create callback.
605 	 */
606 	mutex_enter(&zonehash_lock);	/* stop the world */
607 	for (zone = list_head(&zone_active); zone != NULL;
608 	    zone = list_next(&zone_active, zone)) {
609 		zone_status_t status;
610 
611 		mutex_enter(&zone->zone_lock);
612 
613 		/* Skip zones that are on the way down or not yet up */
614 		status = zone_status_get(zone);
615 		if (status >= ZONE_IS_DOWN ||
616 		    status == ZONE_IS_UNINITIALIZED) {
617 			mutex_exit(&zone->zone_lock);
618 			continue;
619 		}
620 
621 		t = zsd_find_mru(&zone->zone_zsd, key);
622 		if (t != NULL) {
623 			/*
624 			 * A zsd_configure already inserted it after
625 			 * we dropped zsd_key_lock above.
626 			 */
627 			mutex_exit(&zone->zone_lock);
628 			continue;
629 		}
630 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
631 		t->zsd_key = key;
632 		t->zsd_create = create;
633 		t->zsd_shutdown = shutdown;
634 		t->zsd_destroy = destroy;
635 		if (create != NULL) {
636 			t->zsd_flags = ZSD_CREATE_NEEDED;
637 			DTRACE_PROBE2(zsd__create__needed,
638 			    zone_t *, zone, zone_key_t, key);
639 		}
640 		list_insert_tail(&zone->zone_zsd, t);
641 		mutex_exit(&zone->zone_lock);
642 	}
643 	mutex_exit(&zonehash_lock);
644 
645 	if (create != NULL) {
646 		/* Now call the create callback for this key */
647 		zsd_apply_all_zones(zsd_apply_create, key);
648 	}
649 	/*
650 	* It is safe for consumers to use the key now, make it
651 	* globally visible. Specifically zone_getspecific() will
652 	* always successfully return the zone specific data associated
653 	* with the key.
654 	*/
655 	*keyp = key;
656 
657 }
658 
659 /*
660  * Function called when a module is being unloaded, or otherwise wishes
661  * to unregister its ZSD key and callbacks.
662  *
663  * Remove from the global list and determine the functions that need to
664  * be called under a global lock. Then call the functions without
665  * holding any locks. Finally free up the zone_zsd entries. (The apply
666  * functions need to access the zone_zsd entries to find zsd_data etc.)
667  */
668 int
669 zone_key_delete(zone_key_t key)
670 {
671 	struct zsd_entry *zsdp = NULL;
672 	zone_t *zone;
673 
674 	mutex_enter(&zsd_key_lock);
675 	zsdp = zsd_find_mru(&zsd_registered_keys, key);
676 	if (zsdp == NULL) {
677 		mutex_exit(&zsd_key_lock);
678 		return (-1);
679 	}
680 	list_remove(&zsd_registered_keys, zsdp);
681 	mutex_exit(&zsd_key_lock);
682 
683 	mutex_enter(&zonehash_lock);
684 	for (zone = list_head(&zone_active); zone != NULL;
685 	    zone = list_next(&zone_active, zone)) {
686 		struct zsd_entry *del;
687 
688 		mutex_enter(&zone->zone_lock);
689 		del = zsd_find_mru(&zone->zone_zsd, key);
690 		if (del == NULL) {
691 			/*
692 			 * Somebody else got here first e.g the zone going
693 			 * away.
694 			 */
695 			mutex_exit(&zone->zone_lock);
696 			continue;
697 		}
698 		ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
699 		ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
700 		if (del->zsd_shutdown != NULL &&
701 		    (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
702 			del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
703 			DTRACE_PROBE2(zsd__shutdown__needed,
704 			    zone_t *, zone, zone_key_t, key);
705 		}
706 		if (del->zsd_destroy != NULL &&
707 		    (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
708 			del->zsd_flags |= ZSD_DESTROY_NEEDED;
709 			DTRACE_PROBE2(zsd__destroy__needed,
710 			    zone_t *, zone, zone_key_t, key);
711 		}
712 		mutex_exit(&zone->zone_lock);
713 	}
714 	mutex_exit(&zonehash_lock);
715 	kmem_free(zsdp, sizeof (*zsdp));
716 
717 	/* Now call the shutdown and destroy callback for this key */
718 	zsd_apply_all_zones(zsd_apply_shutdown, key);
719 	zsd_apply_all_zones(zsd_apply_destroy, key);
720 
721 	/* Now we can free up the zsdp structures in each zone */
722 	mutex_enter(&zonehash_lock);
723 	for (zone = list_head(&zone_active); zone != NULL;
724 	    zone = list_next(&zone_active, zone)) {
725 		struct zsd_entry *del;
726 
727 		mutex_enter(&zone->zone_lock);
728 		del = zsd_find(&zone->zone_zsd, key);
729 		if (del != NULL) {
730 			list_remove(&zone->zone_zsd, del);
731 			ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
732 			kmem_free(del, sizeof (*del));
733 		}
734 		mutex_exit(&zone->zone_lock);
735 	}
736 	mutex_exit(&zonehash_lock);
737 
738 	return (0);
739 }
740 
741 /*
742  * ZSD counterpart of pthread_setspecific().
743  *
744  * Since all zsd callbacks, including those with no create function,
745  * have an entry in zone_zsd, if the key is registered it is part of
746  * the zone_zsd list.
747  * Return an error if the key wasn't registerd.
748  */
749 int
750 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
751 {
752 	struct zsd_entry *t;
753 
754 	mutex_enter(&zone->zone_lock);
755 	t = zsd_find_mru(&zone->zone_zsd, key);
756 	if (t != NULL) {
757 		/*
758 		 * Replace old value with new
759 		 */
760 		t->zsd_data = (void *)data;
761 		mutex_exit(&zone->zone_lock);
762 		return (0);
763 	}
764 	mutex_exit(&zone->zone_lock);
765 	return (-1);
766 }
767 
768 /*
769  * ZSD counterpart of pthread_getspecific().
770  */
771 void *
772 zone_getspecific(zone_key_t key, zone_t *zone)
773 {
774 	struct zsd_entry *t;
775 	void *data;
776 
777 	mutex_enter(&zone->zone_lock);
778 	t = zsd_find_mru(&zone->zone_zsd, key);
779 	data = (t == NULL ? NULL : t->zsd_data);
780 	mutex_exit(&zone->zone_lock);
781 	return (data);
782 }
783 
784 /*
785  * Function used to initialize a zone's list of ZSD callbacks and data
786  * when the zone is being created.  The callbacks are initialized from
787  * the template list (zsd_registered_keys). The constructor callback is
788  * executed later (once the zone exists and with locks dropped).
789  */
790 static void
791 zone_zsd_configure(zone_t *zone)
792 {
793 	struct zsd_entry *zsdp;
794 	struct zsd_entry *t;
795 
796 	ASSERT(MUTEX_HELD(&zonehash_lock));
797 	ASSERT(list_head(&zone->zone_zsd) == NULL);
798 	mutex_enter(&zone->zone_lock);
799 	mutex_enter(&zsd_key_lock);
800 	for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
801 	    zsdp = list_next(&zsd_registered_keys, zsdp)) {
802 		/*
803 		 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
804 		 * should not have added anything to it.
805 		 */
806 		ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
807 
808 		t = kmem_zalloc(sizeof (*t), KM_SLEEP);
809 		t->zsd_key = zsdp->zsd_key;
810 		t->zsd_create = zsdp->zsd_create;
811 		t->zsd_shutdown = zsdp->zsd_shutdown;
812 		t->zsd_destroy = zsdp->zsd_destroy;
813 		if (zsdp->zsd_create != NULL) {
814 			t->zsd_flags = ZSD_CREATE_NEEDED;
815 			DTRACE_PROBE2(zsd__create__needed,
816 			    zone_t *, zone, zone_key_t, zsdp->zsd_key);
817 		}
818 		list_insert_tail(&zone->zone_zsd, t);
819 	}
820 	mutex_exit(&zsd_key_lock);
821 	mutex_exit(&zone->zone_lock);
822 }
823 
824 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
825 
826 /*
827  * Helper function to execute shutdown or destructor callbacks.
828  */
829 static void
830 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
831 {
832 	struct zsd_entry *t;
833 
834 	ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
835 	ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
836 	ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
837 
838 	/*
839 	 * Run the callback solely based on what is registered for the zone
840 	 * in zone_zsd. The global list can change independently of this
841 	 * as keys are registered and unregistered and we don't register new
842 	 * callbacks for a zone that is in the process of going away.
843 	 */
844 	mutex_enter(&zone->zone_lock);
845 	for (t = list_head(&zone->zone_zsd); t != NULL;
846 	    t = list_next(&zone->zone_zsd, t)) {
847 		zone_key_t key = t->zsd_key;
848 
849 		/* Skip if no callbacks registered */
850 
851 		if (ct == ZSD_SHUTDOWN) {
852 			if (t->zsd_shutdown != NULL &&
853 			    (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
854 				t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
855 				DTRACE_PROBE2(zsd__shutdown__needed,
856 				    zone_t *, zone, zone_key_t, key);
857 			}
858 		} else {
859 			if (t->zsd_destroy != NULL &&
860 			    (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
861 				t->zsd_flags |= ZSD_DESTROY_NEEDED;
862 				DTRACE_PROBE2(zsd__destroy__needed,
863 				    zone_t *, zone, zone_key_t, key);
864 			}
865 		}
866 	}
867 	mutex_exit(&zone->zone_lock);
868 
869 	/* Now call the shutdown and destroy callback for this key */
870 	zsd_apply_all_keys(zsd_apply_shutdown, zone);
871 	zsd_apply_all_keys(zsd_apply_destroy, zone);
872 
873 }
874 
875 /*
876  * Called when the zone is going away; free ZSD-related memory, and
877  * destroy the zone_zsd list.
878  */
879 static void
880 zone_free_zsd(zone_t *zone)
881 {
882 	struct zsd_entry *t, *next;
883 
884 	/*
885 	 * Free all the zsd_entry's we had on this zone.
886 	 */
887 	mutex_enter(&zone->zone_lock);
888 	for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
889 		next = list_next(&zone->zone_zsd, t);
890 		list_remove(&zone->zone_zsd, t);
891 		ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
892 		kmem_free(t, sizeof (*t));
893 	}
894 	list_destroy(&zone->zone_zsd);
895 	mutex_exit(&zone->zone_lock);
896 
897 }
898 
899 /*
900  * Apply a function to all zones for particular key value.
901  *
902  * The applyfn has to drop zonehash_lock if it does some work, and
903  * then reacquire it before it returns.
904  * When the lock is dropped we don't follow list_next even
905  * if it is possible to do so without any hazards. This is
906  * because we want the design to allow for the list of zones
907  * to change in any arbitrary way during the time the
908  * lock was dropped.
909  *
910  * It is safe to restart the loop at list_head since the applyfn
911  * changes the zsd_flags as it does work, so a subsequent
912  * pass through will have no effect in applyfn, hence the loop will terminate
913  * in at worst O(N^2).
914  */
915 static void
916 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
917 {
918 	zone_t *zone;
919 
920 	mutex_enter(&zonehash_lock);
921 	zone = list_head(&zone_active);
922 	while (zone != NULL) {
923 		if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
924 			/* Lock dropped - restart at head */
925 			zone = list_head(&zone_active);
926 		} else {
927 			zone = list_next(&zone_active, zone);
928 		}
929 	}
930 	mutex_exit(&zonehash_lock);
931 }
932 
933 /*
934  * Apply a function to all keys for a particular zone.
935  *
936  * The applyfn has to drop zonehash_lock if it does some work, and
937  * then reacquire it before it returns.
938  * When the lock is dropped we don't follow list_next even
939  * if it is possible to do so without any hazards. This is
940  * because we want the design to allow for the list of zsd callbacks
941  * to change in any arbitrary way during the time the
942  * lock was dropped.
943  *
944  * It is safe to restart the loop at list_head since the applyfn
945  * changes the zsd_flags as it does work, so a subsequent
946  * pass through will have no effect in applyfn, hence the loop will terminate
947  * in at worst O(N^2).
948  */
949 static void
950 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
951 {
952 	struct zsd_entry *t;
953 
954 	mutex_enter(&zone->zone_lock);
955 	t = list_head(&zone->zone_zsd);
956 	while (t != NULL) {
957 		if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
958 			/* Lock dropped - restart at head */
959 			t = list_head(&zone->zone_zsd);
960 		} else {
961 			t = list_next(&zone->zone_zsd, t);
962 		}
963 	}
964 	mutex_exit(&zone->zone_lock);
965 }
966 
967 /*
968  * Call the create function for the zone and key if CREATE_NEEDED
969  * is set.
970  * If some other thread gets here first and sets CREATE_INPROGRESS, then
971  * we wait for that thread to complete so that we can ensure that
972  * all the callbacks are done when we've looped over all zones/keys.
973  *
974  * When we call the create function, we drop the global held by the
975  * caller, and return true to tell the caller it needs to re-evalute the
976  * state.
977  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
978  * remains held on exit.
979  */
980 static boolean_t
981 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
982     zone_t *zone, zone_key_t key)
983 {
984 	void *result;
985 	struct zsd_entry *t;
986 	boolean_t dropped;
987 
988 	if (lockp != NULL) {
989 		ASSERT(MUTEX_HELD(lockp));
990 	}
991 	if (zone_lock_held) {
992 		ASSERT(MUTEX_HELD(&zone->zone_lock));
993 	} else {
994 		mutex_enter(&zone->zone_lock);
995 	}
996 
997 	t = zsd_find(&zone->zone_zsd, key);
998 	if (t == NULL) {
999 		/*
1000 		 * Somebody else got here first e.g the zone going
1001 		 * away.
1002 		 */
1003 		if (!zone_lock_held)
1004 			mutex_exit(&zone->zone_lock);
1005 		return (B_FALSE);
1006 	}
1007 	dropped = B_FALSE;
1008 	if (zsd_wait_for_inprogress(zone, t, lockp))
1009 		dropped = B_TRUE;
1010 
1011 	if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1012 		t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1013 		t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1014 		DTRACE_PROBE2(zsd__create__inprogress,
1015 		    zone_t *, zone, zone_key_t, key);
1016 		mutex_exit(&zone->zone_lock);
1017 		if (lockp != NULL)
1018 			mutex_exit(lockp);
1019 
1020 		dropped = B_TRUE;
1021 		ASSERT(t->zsd_create != NULL);
1022 		DTRACE_PROBE2(zsd__create__start,
1023 		    zone_t *, zone, zone_key_t, key);
1024 
1025 		result = (*t->zsd_create)(zone->zone_id);
1026 
1027 		DTRACE_PROBE2(zsd__create__end,
1028 		    zone_t *, zone, voidn *, result);
1029 
1030 		ASSERT(result != NULL);
1031 		if (lockp != NULL)
1032 			mutex_enter(lockp);
1033 		mutex_enter(&zone->zone_lock);
1034 		t->zsd_data = result;
1035 		t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1036 		t->zsd_flags |= ZSD_CREATE_COMPLETED;
1037 		cv_broadcast(&t->zsd_cv);
1038 		DTRACE_PROBE2(zsd__create__completed,
1039 		    zone_t *, zone, zone_key_t, key);
1040 	}
1041 	if (!zone_lock_held)
1042 		mutex_exit(&zone->zone_lock);
1043 	return (dropped);
1044 }
1045 
1046 /*
1047  * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1048  * is set.
1049  * If some other thread gets here first and sets *_INPROGRESS, then
1050  * we wait for that thread to complete so that we can ensure that
1051  * all the callbacks are done when we've looped over all zones/keys.
1052  *
1053  * When we call the shutdown function, we drop the global held by the
1054  * caller, and return true to tell the caller it needs to re-evalute the
1055  * state.
1056  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1057  * remains held on exit.
1058  */
1059 static boolean_t
1060 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1061     zone_t *zone, zone_key_t key)
1062 {
1063 	struct zsd_entry *t;
1064 	void *data;
1065 	boolean_t dropped;
1066 
1067 	if (lockp != NULL) {
1068 		ASSERT(MUTEX_HELD(lockp));
1069 	}
1070 	if (zone_lock_held) {
1071 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1072 	} else {
1073 		mutex_enter(&zone->zone_lock);
1074 	}
1075 
1076 	t = zsd_find(&zone->zone_zsd, key);
1077 	if (t == NULL) {
1078 		/*
1079 		 * Somebody else got here first e.g the zone going
1080 		 * away.
1081 		 */
1082 		if (!zone_lock_held)
1083 			mutex_exit(&zone->zone_lock);
1084 		return (B_FALSE);
1085 	}
1086 	dropped = B_FALSE;
1087 	if (zsd_wait_for_creator(zone, t, lockp))
1088 		dropped = B_TRUE;
1089 
1090 	if (zsd_wait_for_inprogress(zone, t, lockp))
1091 		dropped = B_TRUE;
1092 
1093 	if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1094 		t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1095 		t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1096 		DTRACE_PROBE2(zsd__shutdown__inprogress,
1097 		    zone_t *, zone, zone_key_t, key);
1098 		mutex_exit(&zone->zone_lock);
1099 		if (lockp != NULL)
1100 			mutex_exit(lockp);
1101 		dropped = B_TRUE;
1102 
1103 		ASSERT(t->zsd_shutdown != NULL);
1104 		data = t->zsd_data;
1105 
1106 		DTRACE_PROBE2(zsd__shutdown__start,
1107 		    zone_t *, zone, zone_key_t, key);
1108 
1109 		(t->zsd_shutdown)(zone->zone_id, data);
1110 		DTRACE_PROBE2(zsd__shutdown__end,
1111 		    zone_t *, zone, zone_key_t, key);
1112 
1113 		if (lockp != NULL)
1114 			mutex_enter(lockp);
1115 		mutex_enter(&zone->zone_lock);
1116 		t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1117 		t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1118 		cv_broadcast(&t->zsd_cv);
1119 		DTRACE_PROBE2(zsd__shutdown__completed,
1120 		    zone_t *, zone, zone_key_t, key);
1121 	}
1122 	if (!zone_lock_held)
1123 		mutex_exit(&zone->zone_lock);
1124 	return (dropped);
1125 }
1126 
1127 /*
1128  * Call the destroy function for the zone and key if DESTROY_NEEDED
1129  * is set.
1130  * If some other thread gets here first and sets *_INPROGRESS, then
1131  * we wait for that thread to complete so that we can ensure that
1132  * all the callbacks are done when we've looped over all zones/keys.
1133  *
1134  * When we call the destroy function, we drop the global held by the
1135  * caller, and return true to tell the caller it needs to re-evalute the
1136  * state.
1137  * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1138  * remains held on exit.
1139  */
1140 static boolean_t
1141 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1142     zone_t *zone, zone_key_t key)
1143 {
1144 	struct zsd_entry *t;
1145 	void *data;
1146 	boolean_t dropped;
1147 
1148 	if (lockp != NULL) {
1149 		ASSERT(MUTEX_HELD(lockp));
1150 	}
1151 	if (zone_lock_held) {
1152 		ASSERT(MUTEX_HELD(&zone->zone_lock));
1153 	} else {
1154 		mutex_enter(&zone->zone_lock);
1155 	}
1156 
1157 	t = zsd_find(&zone->zone_zsd, key);
1158 	if (t == NULL) {
1159 		/*
1160 		 * Somebody else got here first e.g the zone going
1161 		 * away.
1162 		 */
1163 		if (!zone_lock_held)
1164 			mutex_exit(&zone->zone_lock);
1165 		return (B_FALSE);
1166 	}
1167 	dropped = B_FALSE;
1168 	if (zsd_wait_for_creator(zone, t, lockp))
1169 		dropped = B_TRUE;
1170 
1171 	if (zsd_wait_for_inprogress(zone, t, lockp))
1172 		dropped = B_TRUE;
1173 
1174 	if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1175 		t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1176 		t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1177 		DTRACE_PROBE2(zsd__destroy__inprogress,
1178 		    zone_t *, zone, zone_key_t, key);
1179 		mutex_exit(&zone->zone_lock);
1180 		if (lockp != NULL)
1181 			mutex_exit(lockp);
1182 		dropped = B_TRUE;
1183 
1184 		ASSERT(t->zsd_destroy != NULL);
1185 		data = t->zsd_data;
1186 		DTRACE_PROBE2(zsd__destroy__start,
1187 		    zone_t *, zone, zone_key_t, key);
1188 
1189 		(t->zsd_destroy)(zone->zone_id, data);
1190 		DTRACE_PROBE2(zsd__destroy__end,
1191 		    zone_t *, zone, zone_key_t, key);
1192 
1193 		if (lockp != NULL)
1194 			mutex_enter(lockp);
1195 		mutex_enter(&zone->zone_lock);
1196 		t->zsd_data = NULL;
1197 		t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1198 		t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1199 		cv_broadcast(&t->zsd_cv);
1200 		DTRACE_PROBE2(zsd__destroy__completed,
1201 		    zone_t *, zone, zone_key_t, key);
1202 	}
1203 	if (!zone_lock_held)
1204 		mutex_exit(&zone->zone_lock);
1205 	return (dropped);
1206 }
1207 
1208 /*
1209  * Wait for any CREATE_NEEDED flag to be cleared.
1210  * Returns true if lockp was temporarily dropped while waiting.
1211  */
1212 static boolean_t
1213 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1214 {
1215 	boolean_t dropped = B_FALSE;
1216 
1217 	while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1218 		DTRACE_PROBE2(zsd__wait__for__creator,
1219 		    zone_t *, zone, struct zsd_entry *, t);
1220 		if (lockp != NULL) {
1221 			dropped = B_TRUE;
1222 			mutex_exit(lockp);
1223 		}
1224 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1225 		if (lockp != NULL) {
1226 			/* First drop zone_lock to preserve order */
1227 			mutex_exit(&zone->zone_lock);
1228 			mutex_enter(lockp);
1229 			mutex_enter(&zone->zone_lock);
1230 		}
1231 	}
1232 	return (dropped);
1233 }
1234 
1235 /*
1236  * Wait for any INPROGRESS flag to be cleared.
1237  * Returns true if lockp was temporarily dropped while waiting.
1238  */
1239 static boolean_t
1240 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1241 {
1242 	boolean_t dropped = B_FALSE;
1243 
1244 	while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1245 		DTRACE_PROBE2(zsd__wait__for__inprogress,
1246 		    zone_t *, zone, struct zsd_entry *, t);
1247 		if (lockp != NULL) {
1248 			dropped = B_TRUE;
1249 			mutex_exit(lockp);
1250 		}
1251 		cv_wait(&t->zsd_cv, &zone->zone_lock);
1252 		if (lockp != NULL) {
1253 			/* First drop zone_lock to preserve order */
1254 			mutex_exit(&zone->zone_lock);
1255 			mutex_enter(lockp);
1256 			mutex_enter(&zone->zone_lock);
1257 		}
1258 	}
1259 	return (dropped);
1260 }
1261 
1262 /*
1263  * Frees memory associated with the zone dataset list.
1264  */
1265 static void
1266 zone_free_datasets(zone_t *zone)
1267 {
1268 	zone_dataset_t *t, *next;
1269 
1270 	for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1271 		next = list_next(&zone->zone_datasets, t);
1272 		list_remove(&zone->zone_datasets, t);
1273 		kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1274 		kmem_free(t, sizeof (*t));
1275 	}
1276 	list_destroy(&zone->zone_datasets);
1277 }
1278 
1279 /*
1280  * zone.cpu-shares resource control support.
1281  */
1282 /*ARGSUSED*/
1283 static rctl_qty_t
1284 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1285 {
1286 	ASSERT(MUTEX_HELD(&p->p_lock));
1287 	return (p->p_zone->zone_shares);
1288 }
1289 
1290 /*ARGSUSED*/
1291 static int
1292 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1293     rctl_qty_t nv)
1294 {
1295 	ASSERT(MUTEX_HELD(&p->p_lock));
1296 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1297 	if (e->rcep_p.zone == NULL)
1298 		return (0);
1299 
1300 	e->rcep_p.zone->zone_shares = nv;
1301 	return (0);
1302 }
1303 
1304 static rctl_ops_t zone_cpu_shares_ops = {
1305 	rcop_no_action,
1306 	zone_cpu_shares_usage,
1307 	zone_cpu_shares_set,
1308 	rcop_no_test
1309 };
1310 
1311 /*
1312  * zone.cpu-cap resource control support.
1313  */
1314 /*ARGSUSED*/
1315 static rctl_qty_t
1316 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1317 {
1318 	ASSERT(MUTEX_HELD(&p->p_lock));
1319 	return (cpucaps_zone_get(p->p_zone));
1320 }
1321 
1322 /*ARGSUSED*/
1323 static int
1324 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1325     rctl_qty_t nv)
1326 {
1327 	zone_t *zone = e->rcep_p.zone;
1328 
1329 	ASSERT(MUTEX_HELD(&p->p_lock));
1330 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1331 
1332 	if (zone == NULL)
1333 		return (0);
1334 
1335 	/*
1336 	 * set cap to the new value.
1337 	 */
1338 	return (cpucaps_zone_set(zone, nv));
1339 }
1340 
1341 static rctl_ops_t zone_cpu_cap_ops = {
1342 	rcop_no_action,
1343 	zone_cpu_cap_get,
1344 	zone_cpu_cap_set,
1345 	rcop_no_test
1346 };
1347 
1348 /*ARGSUSED*/
1349 static rctl_qty_t
1350 zone_lwps_usage(rctl_t *r, proc_t *p)
1351 {
1352 	rctl_qty_t nlwps;
1353 	zone_t *zone = p->p_zone;
1354 
1355 	ASSERT(MUTEX_HELD(&p->p_lock));
1356 
1357 	mutex_enter(&zone->zone_nlwps_lock);
1358 	nlwps = zone->zone_nlwps;
1359 	mutex_exit(&zone->zone_nlwps_lock);
1360 
1361 	return (nlwps);
1362 }
1363 
1364 /*ARGSUSED*/
1365 static int
1366 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1367     rctl_qty_t incr, uint_t flags)
1368 {
1369 	rctl_qty_t nlwps;
1370 
1371 	ASSERT(MUTEX_HELD(&p->p_lock));
1372 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1373 	if (e->rcep_p.zone == NULL)
1374 		return (0);
1375 	ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1376 	nlwps = e->rcep_p.zone->zone_nlwps;
1377 
1378 	if (nlwps + incr > rcntl->rcv_value)
1379 		return (1);
1380 
1381 	return (0);
1382 }
1383 
1384 /*ARGSUSED*/
1385 static int
1386 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1387 {
1388 	ASSERT(MUTEX_HELD(&p->p_lock));
1389 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1390 	if (e->rcep_p.zone == NULL)
1391 		return (0);
1392 	e->rcep_p.zone->zone_nlwps_ctl = nv;
1393 	return (0);
1394 }
1395 
1396 static rctl_ops_t zone_lwps_ops = {
1397 	rcop_no_action,
1398 	zone_lwps_usage,
1399 	zone_lwps_set,
1400 	zone_lwps_test,
1401 };
1402 
1403 /*ARGSUSED*/
1404 static int
1405 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1406     rctl_qty_t incr, uint_t flags)
1407 {
1408 	rctl_qty_t v;
1409 	ASSERT(MUTEX_HELD(&p->p_lock));
1410 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1411 	v = e->rcep_p.zone->zone_shmmax + incr;
1412 	if (v > rval->rcv_value)
1413 		return (1);
1414 	return (0);
1415 }
1416 
1417 static rctl_ops_t zone_shmmax_ops = {
1418 	rcop_no_action,
1419 	rcop_no_usage,
1420 	rcop_no_set,
1421 	zone_shmmax_test
1422 };
1423 
1424 /*ARGSUSED*/
1425 static int
1426 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1427     rctl_qty_t incr, uint_t flags)
1428 {
1429 	rctl_qty_t v;
1430 	ASSERT(MUTEX_HELD(&p->p_lock));
1431 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1432 	v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1433 	if (v > rval->rcv_value)
1434 		return (1);
1435 	return (0);
1436 }
1437 
1438 static rctl_ops_t zone_shmmni_ops = {
1439 	rcop_no_action,
1440 	rcop_no_usage,
1441 	rcop_no_set,
1442 	zone_shmmni_test
1443 };
1444 
1445 /*ARGSUSED*/
1446 static int
1447 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1448     rctl_qty_t incr, uint_t flags)
1449 {
1450 	rctl_qty_t v;
1451 	ASSERT(MUTEX_HELD(&p->p_lock));
1452 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1453 	v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1454 	if (v > rval->rcv_value)
1455 		return (1);
1456 	return (0);
1457 }
1458 
1459 static rctl_ops_t zone_semmni_ops = {
1460 	rcop_no_action,
1461 	rcop_no_usage,
1462 	rcop_no_set,
1463 	zone_semmni_test
1464 };
1465 
1466 /*ARGSUSED*/
1467 static int
1468 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1469     rctl_qty_t incr, uint_t flags)
1470 {
1471 	rctl_qty_t v;
1472 	ASSERT(MUTEX_HELD(&p->p_lock));
1473 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1474 	v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1475 	if (v > rval->rcv_value)
1476 		return (1);
1477 	return (0);
1478 }
1479 
1480 static rctl_ops_t zone_msgmni_ops = {
1481 	rcop_no_action,
1482 	rcop_no_usage,
1483 	rcop_no_set,
1484 	zone_msgmni_test
1485 };
1486 
1487 /*ARGSUSED*/
1488 static rctl_qty_t
1489 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1490 {
1491 	rctl_qty_t q;
1492 	ASSERT(MUTEX_HELD(&p->p_lock));
1493 	mutex_enter(&p->p_zone->zone_mem_lock);
1494 	q = p->p_zone->zone_locked_mem;
1495 	mutex_exit(&p->p_zone->zone_mem_lock);
1496 	return (q);
1497 }
1498 
1499 /*ARGSUSED*/
1500 static int
1501 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1502     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1503 {
1504 	rctl_qty_t q;
1505 	zone_t *z;
1506 
1507 	z = e->rcep_p.zone;
1508 	ASSERT(MUTEX_HELD(&p->p_lock));
1509 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1510 	q = z->zone_locked_mem;
1511 	if (q + incr > rcntl->rcv_value)
1512 		return (1);
1513 	return (0);
1514 }
1515 
1516 /*ARGSUSED*/
1517 static int
1518 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1519     rctl_qty_t nv)
1520 {
1521 	ASSERT(MUTEX_HELD(&p->p_lock));
1522 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1523 	if (e->rcep_p.zone == NULL)
1524 		return (0);
1525 	e->rcep_p.zone->zone_locked_mem_ctl = nv;
1526 	return (0);
1527 }
1528 
1529 static rctl_ops_t zone_locked_mem_ops = {
1530 	rcop_no_action,
1531 	zone_locked_mem_usage,
1532 	zone_locked_mem_set,
1533 	zone_locked_mem_test
1534 };
1535 
1536 /*ARGSUSED*/
1537 static rctl_qty_t
1538 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1539 {
1540 	rctl_qty_t q;
1541 	zone_t *z = p->p_zone;
1542 
1543 	ASSERT(MUTEX_HELD(&p->p_lock));
1544 	mutex_enter(&z->zone_mem_lock);
1545 	q = z->zone_max_swap;
1546 	mutex_exit(&z->zone_mem_lock);
1547 	return (q);
1548 }
1549 
1550 /*ARGSUSED*/
1551 static int
1552 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1553     rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1554 {
1555 	rctl_qty_t q;
1556 	zone_t *z;
1557 
1558 	z = e->rcep_p.zone;
1559 	ASSERT(MUTEX_HELD(&p->p_lock));
1560 	ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1561 	q = z->zone_max_swap;
1562 	if (q + incr > rcntl->rcv_value)
1563 		return (1);
1564 	return (0);
1565 }
1566 
1567 /*ARGSUSED*/
1568 static int
1569 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1570     rctl_qty_t nv)
1571 {
1572 	ASSERT(MUTEX_HELD(&p->p_lock));
1573 	ASSERT(e->rcep_t == RCENTITY_ZONE);
1574 	if (e->rcep_p.zone == NULL)
1575 		return (0);
1576 	e->rcep_p.zone->zone_max_swap_ctl = nv;
1577 	return (0);
1578 }
1579 
1580 static rctl_ops_t zone_max_swap_ops = {
1581 	rcop_no_action,
1582 	zone_max_swap_usage,
1583 	zone_max_swap_set,
1584 	zone_max_swap_test
1585 };
1586 
1587 /*
1588  * Helper function to brand the zone with a unique ID.
1589  */
1590 static void
1591 zone_uniqid(zone_t *zone)
1592 {
1593 	static uint64_t uniqid = 0;
1594 
1595 	ASSERT(MUTEX_HELD(&zonehash_lock));
1596 	zone->zone_uniqid = uniqid++;
1597 }
1598 
1599 /*
1600  * Returns a held pointer to the "kcred" for the specified zone.
1601  */
1602 struct cred *
1603 zone_get_kcred(zoneid_t zoneid)
1604 {
1605 	zone_t *zone;
1606 	cred_t *cr;
1607 
1608 	if ((zone = zone_find_by_id(zoneid)) == NULL)
1609 		return (NULL);
1610 	cr = zone->zone_kcred;
1611 	crhold(cr);
1612 	zone_rele(zone);
1613 	return (cr);
1614 }
1615 
1616 static int
1617 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1618 {
1619 	zone_t *zone = ksp->ks_private;
1620 	zone_kstat_t *zk = ksp->ks_data;
1621 
1622 	if (rw == KSTAT_WRITE)
1623 		return (EACCES);
1624 
1625 	zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1626 	zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1627 	return (0);
1628 }
1629 
1630 static int
1631 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1632 {
1633 	zone_t *zone = ksp->ks_private;
1634 	zone_kstat_t *zk = ksp->ks_data;
1635 
1636 	if (rw == KSTAT_WRITE)
1637 		return (EACCES);
1638 
1639 	zk->zk_usage.value.ui64 = zone->zone_max_swap;
1640 	zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1641 	return (0);
1642 }
1643 
1644 static void
1645 zone_kstat_create(zone_t *zone)
1646 {
1647 	kstat_t *ksp;
1648 	zone_kstat_t *zk;
1649 
1650 	ksp = rctl_kstat_create_zone(zone, "lockedmem", KSTAT_TYPE_NAMED,
1651 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1652 	    KSTAT_FLAG_VIRTUAL);
1653 
1654 	if (ksp == NULL)
1655 		return;
1656 
1657 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1658 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1659 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1660 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1661 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1662 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1663 	ksp->ks_update = zone_lockedmem_kstat_update;
1664 	ksp->ks_private = zone;
1665 	kstat_install(ksp);
1666 
1667 	zone->zone_lockedmem_kstat = ksp;
1668 
1669 	ksp = rctl_kstat_create_zone(zone, "swapresv", KSTAT_TYPE_NAMED,
1670 	    sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1671 	    KSTAT_FLAG_VIRTUAL);
1672 
1673 	if (ksp == NULL)
1674 		return;
1675 
1676 	zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1677 	ksp->ks_data_size += strlen(zone->zone_name) + 1;
1678 	kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1679 	kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1680 	kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1681 	kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1682 	ksp->ks_update = zone_swapresv_kstat_update;
1683 	ksp->ks_private = zone;
1684 	kstat_install(ksp);
1685 
1686 	zone->zone_swapresv_kstat = ksp;
1687 }
1688 
1689 static void
1690 zone_kstat_delete(zone_t *zone)
1691 {
1692 	void *data;
1693 
1694 	if (zone->zone_lockedmem_kstat != NULL) {
1695 		data = zone->zone_lockedmem_kstat->ks_data;
1696 		kstat_delete(zone->zone_lockedmem_kstat);
1697 		kmem_free(data, sizeof (zone_kstat_t));
1698 	}
1699 	if (zone->zone_swapresv_kstat != NULL) {
1700 		data = zone->zone_swapresv_kstat->ks_data;
1701 		kstat_delete(zone->zone_swapresv_kstat);
1702 		kmem_free(data, sizeof (zone_kstat_t));
1703 	}
1704 }
1705 
1706 /*
1707  * Called very early on in boot to initialize the ZSD list so that
1708  * zone_key_create() can be called before zone_init().  It also initializes
1709  * portions of zone0 which may be used before zone_init() is called.  The
1710  * variable "global_zone" will be set when zone0 is fully initialized by
1711  * zone_init().
1712  */
1713 void
1714 zone_zsd_init(void)
1715 {
1716 	mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
1717 	mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
1718 	list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
1719 	    offsetof(struct zsd_entry, zsd_linkage));
1720 	list_create(&zone_active, sizeof (zone_t),
1721 	    offsetof(zone_t, zone_linkage));
1722 	list_create(&zone_deathrow, sizeof (zone_t),
1723 	    offsetof(zone_t, zone_linkage));
1724 
1725 	mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
1726 	mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
1727 	mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
1728 	zone0.zone_shares = 1;
1729 	zone0.zone_nlwps = 0;
1730 	zone0.zone_nlwps_ctl = INT_MAX;
1731 	zone0.zone_locked_mem = 0;
1732 	zone0.zone_locked_mem_ctl = UINT64_MAX;
1733 	ASSERT(zone0.zone_max_swap == 0);
1734 	zone0.zone_max_swap_ctl = UINT64_MAX;
1735 	zone0.zone_shmmax = 0;
1736 	zone0.zone_ipc.ipcq_shmmni = 0;
1737 	zone0.zone_ipc.ipcq_semmni = 0;
1738 	zone0.zone_ipc.ipcq_msgmni = 0;
1739 	zone0.zone_name = GLOBAL_ZONENAME;
1740 	zone0.zone_nodename = utsname.nodename;
1741 	zone0.zone_domain = srpc_domain;
1742 	zone0.zone_hostid = HW_INVALID_HOSTID;
1743 	zone0.zone_ref = 1;
1744 	zone0.zone_id = GLOBAL_ZONEID;
1745 	zone0.zone_status = ZONE_IS_RUNNING;
1746 	zone0.zone_rootpath = "/";
1747 	zone0.zone_rootpathlen = 2;
1748 	zone0.zone_psetid = ZONE_PS_INVAL;
1749 	zone0.zone_ncpus = 0;
1750 	zone0.zone_ncpus_online = 0;
1751 	zone0.zone_proc_initpid = 1;
1752 	zone0.zone_initname = initname;
1753 	zone0.zone_lockedmem_kstat = NULL;
1754 	zone0.zone_swapresv_kstat = NULL;
1755 	list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
1756 	    offsetof(struct zsd_entry, zsd_linkage));
1757 	list_insert_head(&zone_active, &zone0);
1758 
1759 	/*
1760 	 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
1761 	 * to anything meaningful.  It is assigned to be 'rootdir' in
1762 	 * vfs_mountroot().
1763 	 */
1764 	zone0.zone_rootvp = NULL;
1765 	zone0.zone_vfslist = NULL;
1766 	zone0.zone_bootargs = initargs;
1767 	zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
1768 	/*
1769 	 * The global zone has all privileges
1770 	 */
1771 	priv_fillset(zone0.zone_privset);
1772 	/*
1773 	 * Add p0 to the global zone
1774 	 */
1775 	zone0.zone_zsched = &p0;
1776 	p0.p_zone = &zone0;
1777 }
1778 
1779 /*
1780  * Compute a hash value based on the contents of the label and the DOI.  The
1781  * hash algorithm is somewhat arbitrary, but is based on the observation that
1782  * humans will likely pick labels that differ by amounts that work out to be
1783  * multiples of the number of hash chains, and thus stirring in some primes
1784  * should help.
1785  */
1786 static uint_t
1787 hash_bylabel(void *hdata, mod_hash_key_t key)
1788 {
1789 	const ts_label_t *lab = (ts_label_t *)key;
1790 	const uint32_t *up, *ue;
1791 	uint_t hash;
1792 	int i;
1793 
1794 	_NOTE(ARGUNUSED(hdata));
1795 
1796 	hash = lab->tsl_doi + (lab->tsl_doi << 1);
1797 	/* we depend on alignment of label, but not representation */
1798 	up = (const uint32_t *)&lab->tsl_label;
1799 	ue = up + sizeof (lab->tsl_label) / sizeof (*up);
1800 	i = 1;
1801 	while (up < ue) {
1802 		/* using 2^n + 1, 1 <= n <= 16 as source of many primes */
1803 		hash += *up + (*up << ((i % 16) + 1));
1804 		up++;
1805 		i++;
1806 	}
1807 	return (hash);
1808 }
1809 
1810 /*
1811  * All that mod_hash cares about here is zero (equal) versus non-zero (not
1812  * equal).  This may need to be changed if less than / greater than is ever
1813  * needed.
1814  */
1815 static int
1816 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1817 {
1818 	ts_label_t *lab1 = (ts_label_t *)key1;
1819 	ts_label_t *lab2 = (ts_label_t *)key2;
1820 
1821 	return (label_equal(lab1, lab2) ? 0 : 1);
1822 }
1823 
1824 /*
1825  * Called by main() to initialize the zones framework.
1826  */
1827 void
1828 zone_init(void)
1829 {
1830 	rctl_dict_entry_t *rde;
1831 	rctl_val_t *dval;
1832 	rctl_set_t *set;
1833 	rctl_alloc_gp_t *gp;
1834 	rctl_entity_p_t e;
1835 	int res;
1836 
1837 	ASSERT(curproc == &p0);
1838 
1839 	/*
1840 	 * Create ID space for zone IDs.  ID 0 is reserved for the
1841 	 * global zone.
1842 	 */
1843 	zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
1844 
1845 	/*
1846 	 * Initialize generic zone resource controls, if any.
1847 	 */
1848 	rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
1849 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
1850 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
1851 	    FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
1852 
1853 	rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
1854 	    RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
1855 	    RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
1856 	    RCTL_GLOBAL_INFINITE,
1857 	    MAXCAP, MAXCAP, &zone_cpu_cap_ops);
1858 
1859 	rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
1860 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
1861 	    INT_MAX, INT_MAX, &zone_lwps_ops);
1862 	/*
1863 	 * System V IPC resource controls
1864 	 */
1865 	rc_zone_msgmni = rctl_register("zone.max-msg-ids",
1866 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1867 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
1868 
1869 	rc_zone_semmni = rctl_register("zone.max-sem-ids",
1870 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1871 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
1872 
1873 	rc_zone_shmmni = rctl_register("zone.max-shm-ids",
1874 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1875 	    RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
1876 
1877 	rc_zone_shmmax = rctl_register("zone.max-shm-memory",
1878 	    RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
1879 	    RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
1880 
1881 	/*
1882 	 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1.  Then attach
1883 	 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
1884 	 */
1885 	dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
1886 	bzero(dval, sizeof (rctl_val_t));
1887 	dval->rcv_value = 1;
1888 	dval->rcv_privilege = RCPRIV_PRIVILEGED;
1889 	dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
1890 	dval->rcv_action_recip_pid = -1;
1891 
1892 	rde = rctl_dict_lookup("zone.cpu-shares");
1893 	(void) rctl_val_list_insert(&rde->rcd_default_value, dval);
1894 
1895 	rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
1896 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
1897 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
1898 	    &zone_locked_mem_ops);
1899 
1900 	rc_zone_max_swap = rctl_register("zone.max-swap",
1901 	    RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
1902 	    RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
1903 	    &zone_max_swap_ops);
1904 
1905 	/*
1906 	 * Initialize the ``global zone''.
1907 	 */
1908 	set = rctl_set_create();
1909 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
1910 	mutex_enter(&p0.p_lock);
1911 	e.rcep_p.zone = &zone0;
1912 	e.rcep_t = RCENTITY_ZONE;
1913 	zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
1914 	    gp);
1915 
1916 	zone0.zone_nlwps = p0.p_lwpcnt;
1917 	zone0.zone_ntasks = 1;
1918 	mutex_exit(&p0.p_lock);
1919 	zone0.zone_restart_init = B_TRUE;
1920 	zone0.zone_brand = &native_brand;
1921 	rctl_prealloc_destroy(gp);
1922 	/*
1923 	 * pool_default hasn't been initialized yet, so we let pool_init()
1924 	 * take care of making sure the global zone is in the default pool.
1925 	 */
1926 
1927 	/*
1928 	 * Initialize global zone kstats
1929 	 */
1930 	zone_kstat_create(&zone0);
1931 
1932 	/*
1933 	 * Initialize zone label.
1934 	 * mlp are initialized when tnzonecfg is loaded.
1935 	 */
1936 	zone0.zone_slabel = l_admin_low;
1937 	rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
1938 	label_hold(l_admin_low);
1939 
1940 	mutex_enter(&zonehash_lock);
1941 	zone_uniqid(&zone0);
1942 	ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
1943 
1944 	zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
1945 	    mod_hash_null_valdtor);
1946 	zonehashbyname = mod_hash_create_strhash("zone_by_name",
1947 	    zone_hash_size, mod_hash_null_valdtor);
1948 	/*
1949 	 * maintain zonehashbylabel only for labeled systems
1950 	 */
1951 	if (is_system_labeled())
1952 		zonehashbylabel = mod_hash_create_extended("zone_by_label",
1953 		    zone_hash_size, mod_hash_null_keydtor,
1954 		    mod_hash_null_valdtor, hash_bylabel, NULL,
1955 		    hash_labelkey_cmp, KM_SLEEP);
1956 	zonecount = 1;
1957 
1958 	(void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
1959 	    (mod_hash_val_t)&zone0);
1960 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
1961 	    (mod_hash_val_t)&zone0);
1962 	if (is_system_labeled()) {
1963 		zone0.zone_flags |= ZF_HASHED_LABEL;
1964 		(void) mod_hash_insert(zonehashbylabel,
1965 		    (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
1966 	}
1967 	mutex_exit(&zonehash_lock);
1968 
1969 	/*
1970 	 * We avoid setting zone_kcred until now, since kcred is initialized
1971 	 * sometime after zone_zsd_init() and before zone_init().
1972 	 */
1973 	zone0.zone_kcred = kcred;
1974 	/*
1975 	 * The global zone is fully initialized (except for zone_rootvp which
1976 	 * will be set when the root filesystem is mounted).
1977 	 */
1978 	global_zone = &zone0;
1979 
1980 	/*
1981 	 * Setup an event channel to send zone status change notifications on
1982 	 */
1983 	res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
1984 	    EVCH_CREAT);
1985 
1986 	if (res)
1987 		panic("Sysevent_evc_bind failed during zone setup.\n");
1988 
1989 }
1990 
1991 static void
1992 zone_free(zone_t *zone)
1993 {
1994 	ASSERT(zone != global_zone);
1995 	ASSERT(zone->zone_ntasks == 0);
1996 	ASSERT(zone->zone_nlwps == 0);
1997 	ASSERT(zone->zone_cred_ref == 0);
1998 	ASSERT(zone->zone_kcred == NULL);
1999 	ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2000 	    zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2001 
2002 	/*
2003 	 * Remove any zone caps.
2004 	 */
2005 	cpucaps_zone_remove(zone);
2006 
2007 	ASSERT(zone->zone_cpucap == NULL);
2008 
2009 	/* remove from deathrow list */
2010 	if (zone_status_get(zone) == ZONE_IS_DEAD) {
2011 		ASSERT(zone->zone_ref == 0);
2012 		mutex_enter(&zone_deathrow_lock);
2013 		list_remove(&zone_deathrow, zone);
2014 		mutex_exit(&zone_deathrow_lock);
2015 	}
2016 
2017 	zone_free_zsd(zone);
2018 	zone_free_datasets(zone);
2019 	list_destroy(&zone->zone_dl_list);
2020 
2021 	if (zone->zone_rootvp != NULL)
2022 		VN_RELE(zone->zone_rootvp);
2023 	if (zone->zone_rootpath)
2024 		kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2025 	if (zone->zone_name != NULL)
2026 		kmem_free(zone->zone_name, ZONENAME_MAX);
2027 	if (zone->zone_slabel != NULL)
2028 		label_rele(zone->zone_slabel);
2029 	if (zone->zone_nodename != NULL)
2030 		kmem_free(zone->zone_nodename, _SYS_NMLN);
2031 	if (zone->zone_domain != NULL)
2032 		kmem_free(zone->zone_domain, _SYS_NMLN);
2033 	if (zone->zone_privset != NULL)
2034 		kmem_free(zone->zone_privset, sizeof (priv_set_t));
2035 	if (zone->zone_rctls != NULL)
2036 		rctl_set_free(zone->zone_rctls);
2037 	if (zone->zone_bootargs != NULL)
2038 		kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1);
2039 	if (zone->zone_initname != NULL)
2040 		kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1);
2041 	id_free(zoneid_space, zone->zone_id);
2042 	mutex_destroy(&zone->zone_lock);
2043 	cv_destroy(&zone->zone_cv);
2044 	rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2045 	kmem_free(zone, sizeof (zone_t));
2046 }
2047 
2048 /*
2049  * See block comment at the top of this file for information about zone
2050  * status values.
2051  */
2052 /*
2053  * Convenience function for setting zone status.
2054  */
2055 static void
2056 zone_status_set(zone_t *zone, zone_status_t status)
2057 {
2058 
2059 	nvlist_t *nvl = NULL;
2060 	ASSERT(MUTEX_HELD(&zone_status_lock));
2061 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2062 	    status >= zone_status_get(zone));
2063 
2064 	if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2065 	    nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2066 	    nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2067 	    zone_status_table[status]) ||
2068 	    nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2069 	    zone_status_table[zone->zone_status]) ||
2070 	    nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2071 	    nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2072 	    sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2073 	    ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2074 #ifdef DEBUG
2075 		(void) printf(
2076 		    "Failed to allocate and send zone state change event.\n");
2077 #endif
2078 	}
2079 	nvlist_free(nvl);
2080 
2081 	zone->zone_status = status;
2082 
2083 	cv_broadcast(&zone->zone_cv);
2084 }
2085 
2086 /*
2087  * Public function to retrieve the zone status.  The zone status may
2088  * change after it is retrieved.
2089  */
2090 zone_status_t
2091 zone_status_get(zone_t *zone)
2092 {
2093 	return (zone->zone_status);
2094 }
2095 
2096 static int
2097 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2098 {
2099 	char *bootargs = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2100 	int err = 0;
2101 
2102 	ASSERT(zone != global_zone);
2103 	if ((err = copyinstr(zone_bootargs, bootargs, BOOTARGS_MAX, NULL)) != 0)
2104 		goto done;	/* EFAULT or ENAMETOOLONG */
2105 
2106 	if (zone->zone_bootargs != NULL)
2107 		kmem_free(zone->zone_bootargs, strlen(zone->zone_bootargs) + 1);
2108 
2109 	zone->zone_bootargs = kmem_alloc(strlen(bootargs) + 1, KM_SLEEP);
2110 	(void) strcpy(zone->zone_bootargs, bootargs);
2111 
2112 done:
2113 	kmem_free(bootargs, BOOTARGS_MAX);
2114 	return (err);
2115 }
2116 
2117 static int
2118 zone_set_brand(zone_t *zone, const char *brand)
2119 {
2120 	struct brand_attr *attrp;
2121 	brand_t *bp;
2122 
2123 	attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2124 	if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2125 		kmem_free(attrp, sizeof (struct brand_attr));
2126 		return (EFAULT);
2127 	}
2128 
2129 	bp = brand_register_zone(attrp);
2130 	kmem_free(attrp, sizeof (struct brand_attr));
2131 	if (bp == NULL)
2132 		return (EINVAL);
2133 
2134 	/*
2135 	 * This is the only place where a zone can change it's brand.
2136 	 * We already need to hold zone_status_lock to check the zone
2137 	 * status, so we'll just use that lock to serialize zone
2138 	 * branding requests as well.
2139 	 */
2140 	mutex_enter(&zone_status_lock);
2141 
2142 	/* Re-Branding is not allowed and the zone can't be booted yet */
2143 	if ((ZONE_IS_BRANDED(zone)) ||
2144 	    (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2145 		mutex_exit(&zone_status_lock);
2146 		brand_unregister_zone(bp);
2147 		return (EINVAL);
2148 	}
2149 
2150 	/* set up the brand specific data */
2151 	zone->zone_brand = bp;
2152 	ZBROP(zone)->b_init_brand_data(zone);
2153 
2154 	mutex_exit(&zone_status_lock);
2155 	return (0);
2156 }
2157 
2158 static int
2159 zone_set_initname(zone_t *zone, const char *zone_initname)
2160 {
2161 	char initname[INITNAME_SZ];
2162 	size_t len;
2163 	int err = 0;
2164 
2165 	ASSERT(zone != global_zone);
2166 	if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2167 		return (err);	/* EFAULT or ENAMETOOLONG */
2168 
2169 	if (zone->zone_initname != NULL)
2170 		kmem_free(zone->zone_initname, strlen(zone->zone_initname) + 1);
2171 
2172 	zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2173 	(void) strcpy(zone->zone_initname, initname);
2174 	return (0);
2175 }
2176 
2177 static int
2178 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2179 {
2180 	uint64_t mcap;
2181 	int err = 0;
2182 
2183 	if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2184 		zone->zone_phys_mcap = mcap;
2185 
2186 	return (err);
2187 }
2188 
2189 static int
2190 zone_set_sched_class(zone_t *zone, const char *new_class)
2191 {
2192 	char sched_class[PC_CLNMSZ];
2193 	id_t classid;
2194 	int err;
2195 
2196 	ASSERT(zone != global_zone);
2197 	if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2198 		return (err);	/* EFAULT or ENAMETOOLONG */
2199 
2200 	if (getcid(sched_class, &classid) != 0 || classid == syscid)
2201 		return (set_errno(EINVAL));
2202 	zone->zone_defaultcid = classid;
2203 	ASSERT(zone->zone_defaultcid > 0 &&
2204 	    zone->zone_defaultcid < loaded_classes);
2205 
2206 	return (0);
2207 }
2208 
2209 /*
2210  * Block indefinitely waiting for (zone_status >= status)
2211  */
2212 void
2213 zone_status_wait(zone_t *zone, zone_status_t status)
2214 {
2215 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2216 
2217 	mutex_enter(&zone_status_lock);
2218 	while (zone->zone_status < status) {
2219 		cv_wait(&zone->zone_cv, &zone_status_lock);
2220 	}
2221 	mutex_exit(&zone_status_lock);
2222 }
2223 
2224 /*
2225  * Private CPR-safe version of zone_status_wait().
2226  */
2227 static void
2228 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2229 {
2230 	callb_cpr_t cprinfo;
2231 
2232 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2233 
2234 	CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2235 	    str);
2236 	mutex_enter(&zone_status_lock);
2237 	while (zone->zone_status < status) {
2238 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2239 		cv_wait(&zone->zone_cv, &zone_status_lock);
2240 		CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2241 	}
2242 	/*
2243 	 * zone_status_lock is implicitly released by the following.
2244 	 */
2245 	CALLB_CPR_EXIT(&cprinfo);
2246 }
2247 
2248 /*
2249  * Block until zone enters requested state or signal is received.  Return (0)
2250  * if signaled, non-zero otherwise.
2251  */
2252 int
2253 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2254 {
2255 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2256 
2257 	mutex_enter(&zone_status_lock);
2258 	while (zone->zone_status < status) {
2259 		if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2260 			mutex_exit(&zone_status_lock);
2261 			return (0);
2262 		}
2263 	}
2264 	mutex_exit(&zone_status_lock);
2265 	return (1);
2266 }
2267 
2268 /*
2269  * Block until the zone enters the requested state or the timeout expires,
2270  * whichever happens first.  Return (-1) if operation timed out, time remaining
2271  * otherwise.
2272  */
2273 clock_t
2274 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2275 {
2276 	clock_t timeleft = 0;
2277 
2278 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2279 
2280 	mutex_enter(&zone_status_lock);
2281 	while (zone->zone_status < status && timeleft != -1) {
2282 		timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2283 	}
2284 	mutex_exit(&zone_status_lock);
2285 	return (timeleft);
2286 }
2287 
2288 /*
2289  * Block until the zone enters the requested state, the current process is
2290  * signaled,  or the timeout expires, whichever happens first.  Return (-1) if
2291  * operation timed out, 0 if signaled, time remaining otherwise.
2292  */
2293 clock_t
2294 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2295 {
2296 	clock_t timeleft = tim - lbolt;
2297 
2298 	ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2299 
2300 	mutex_enter(&zone_status_lock);
2301 	while (zone->zone_status < status) {
2302 		timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2303 		    tim);
2304 		if (timeleft <= 0)
2305 			break;
2306 	}
2307 	mutex_exit(&zone_status_lock);
2308 	return (timeleft);
2309 }
2310 
2311 /*
2312  * Zones have two reference counts: one for references from credential
2313  * structures (zone_cred_ref), and one (zone_ref) for everything else.
2314  * This is so we can allow a zone to be rebooted while there are still
2315  * outstanding cred references, since certain drivers cache dblks (which
2316  * implicitly results in cached creds).  We wait for zone_ref to drop to
2317  * 0 (actually 1), but not zone_cred_ref.  The zone structure itself is
2318  * later freed when the zone_cred_ref drops to 0, though nothing other
2319  * than the zone id and privilege set should be accessed once the zone
2320  * is "dead".
2321  *
2322  * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2323  * to force halt/reboot to block waiting for the zone_cred_ref to drop
2324  * to 0.  This can be useful to flush out other sources of cached creds
2325  * that may be less innocuous than the driver case.
2326  */
2327 
2328 int zone_wait_for_cred = 0;
2329 
2330 static void
2331 zone_hold_locked(zone_t *z)
2332 {
2333 	ASSERT(MUTEX_HELD(&z->zone_lock));
2334 	z->zone_ref++;
2335 	ASSERT(z->zone_ref != 0);
2336 }
2337 
2338 void
2339 zone_hold(zone_t *z)
2340 {
2341 	mutex_enter(&z->zone_lock);
2342 	zone_hold_locked(z);
2343 	mutex_exit(&z->zone_lock);
2344 }
2345 
2346 /*
2347  * If the non-cred ref count drops to 1 and either the cred ref count
2348  * is 0 or we aren't waiting for cred references, the zone is ready to
2349  * be destroyed.
2350  */
2351 #define	ZONE_IS_UNREF(zone)	((zone)->zone_ref == 1 && \
2352 	    (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2353 
2354 void
2355 zone_rele(zone_t *z)
2356 {
2357 	boolean_t wakeup;
2358 
2359 	mutex_enter(&z->zone_lock);
2360 	ASSERT(z->zone_ref != 0);
2361 	z->zone_ref--;
2362 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2363 		/* no more refs, free the structure */
2364 		mutex_exit(&z->zone_lock);
2365 		zone_free(z);
2366 		return;
2367 	}
2368 	/* signal zone_destroy so the zone can finish halting */
2369 	wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2370 	mutex_exit(&z->zone_lock);
2371 
2372 	if (wakeup) {
2373 		/*
2374 		 * Grabbing zonehash_lock here effectively synchronizes with
2375 		 * zone_destroy() to avoid missed signals.
2376 		 */
2377 		mutex_enter(&zonehash_lock);
2378 		cv_broadcast(&zone_destroy_cv);
2379 		mutex_exit(&zonehash_lock);
2380 	}
2381 }
2382 
2383 void
2384 zone_cred_hold(zone_t *z)
2385 {
2386 	mutex_enter(&z->zone_lock);
2387 	z->zone_cred_ref++;
2388 	ASSERT(z->zone_cred_ref != 0);
2389 	mutex_exit(&z->zone_lock);
2390 }
2391 
2392 void
2393 zone_cred_rele(zone_t *z)
2394 {
2395 	boolean_t wakeup;
2396 
2397 	mutex_enter(&z->zone_lock);
2398 	ASSERT(z->zone_cred_ref != 0);
2399 	z->zone_cred_ref--;
2400 	if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2401 		/* no more refs, free the structure */
2402 		mutex_exit(&z->zone_lock);
2403 		zone_free(z);
2404 		return;
2405 	}
2406 	/*
2407 	 * If zone_destroy is waiting for the cred references to drain
2408 	 * out, and they have, signal it.
2409 	 */
2410 	wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2411 	    zone_status_get(z) >= ZONE_IS_DEAD);
2412 	mutex_exit(&z->zone_lock);
2413 
2414 	if (wakeup) {
2415 		/*
2416 		 * Grabbing zonehash_lock here effectively synchronizes with
2417 		 * zone_destroy() to avoid missed signals.
2418 		 */
2419 		mutex_enter(&zonehash_lock);
2420 		cv_broadcast(&zone_destroy_cv);
2421 		mutex_exit(&zonehash_lock);
2422 	}
2423 }
2424 
2425 void
2426 zone_task_hold(zone_t *z)
2427 {
2428 	mutex_enter(&z->zone_lock);
2429 	z->zone_ntasks++;
2430 	ASSERT(z->zone_ntasks != 0);
2431 	mutex_exit(&z->zone_lock);
2432 }
2433 
2434 void
2435 zone_task_rele(zone_t *zone)
2436 {
2437 	uint_t refcnt;
2438 
2439 	mutex_enter(&zone->zone_lock);
2440 	ASSERT(zone->zone_ntasks != 0);
2441 	refcnt = --zone->zone_ntasks;
2442 	if (refcnt > 1)	{	/* Common case */
2443 		mutex_exit(&zone->zone_lock);
2444 		return;
2445 	}
2446 	zone_hold_locked(zone);	/* so we can use the zone_t later */
2447 	mutex_exit(&zone->zone_lock);
2448 	if (refcnt == 1) {
2449 		/*
2450 		 * See if the zone is shutting down.
2451 		 */
2452 		mutex_enter(&zone_status_lock);
2453 		if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2454 			goto out;
2455 		}
2456 
2457 		/*
2458 		 * Make sure the ntasks didn't change since we
2459 		 * dropped zone_lock.
2460 		 */
2461 		mutex_enter(&zone->zone_lock);
2462 		if (refcnt != zone->zone_ntasks) {
2463 			mutex_exit(&zone->zone_lock);
2464 			goto out;
2465 		}
2466 		mutex_exit(&zone->zone_lock);
2467 
2468 		/*
2469 		 * No more user processes in the zone.  The zone is empty.
2470 		 */
2471 		zone_status_set(zone, ZONE_IS_EMPTY);
2472 		goto out;
2473 	}
2474 
2475 	ASSERT(refcnt == 0);
2476 	/*
2477 	 * zsched has exited; the zone is dead.
2478 	 */
2479 	zone->zone_zsched = NULL;		/* paranoia */
2480 	mutex_enter(&zone_status_lock);
2481 	zone_status_set(zone, ZONE_IS_DEAD);
2482 out:
2483 	mutex_exit(&zone_status_lock);
2484 	zone_rele(zone);
2485 }
2486 
2487 zoneid_t
2488 getzoneid(void)
2489 {
2490 	return (curproc->p_zone->zone_id);
2491 }
2492 
2493 /*
2494  * Internal versions of zone_find_by_*().  These don't zone_hold() or
2495  * check the validity of a zone's state.
2496  */
2497 static zone_t *
2498 zone_find_all_by_id(zoneid_t zoneid)
2499 {
2500 	mod_hash_val_t hv;
2501 	zone_t *zone = NULL;
2502 
2503 	ASSERT(MUTEX_HELD(&zonehash_lock));
2504 
2505 	if (mod_hash_find(zonehashbyid,
2506 	    (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
2507 		zone = (zone_t *)hv;
2508 	return (zone);
2509 }
2510 
2511 static zone_t *
2512 zone_find_all_by_label(const ts_label_t *label)
2513 {
2514 	mod_hash_val_t hv;
2515 	zone_t *zone = NULL;
2516 
2517 	ASSERT(MUTEX_HELD(&zonehash_lock));
2518 
2519 	/*
2520 	 * zonehashbylabel is not maintained for unlabeled systems
2521 	 */
2522 	if (!is_system_labeled())
2523 		return (NULL);
2524 	if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
2525 		zone = (zone_t *)hv;
2526 	return (zone);
2527 }
2528 
2529 static zone_t *
2530 zone_find_all_by_name(char *name)
2531 {
2532 	mod_hash_val_t hv;
2533 	zone_t *zone = NULL;
2534 
2535 	ASSERT(MUTEX_HELD(&zonehash_lock));
2536 
2537 	if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
2538 		zone = (zone_t *)hv;
2539 	return (zone);
2540 }
2541 
2542 /*
2543  * Public interface for looking up a zone by zoneid.  Only returns the zone if
2544  * it is fully initialized, and has not yet begun the zone_destroy() sequence.
2545  * Caller must call zone_rele() once it is done with the zone.
2546  *
2547  * The zone may begin the zone_destroy() sequence immediately after this
2548  * function returns, but may be safely used until zone_rele() is called.
2549  */
2550 zone_t *
2551 zone_find_by_id(zoneid_t zoneid)
2552 {
2553 	zone_t *zone;
2554 	zone_status_t status;
2555 
2556 	mutex_enter(&zonehash_lock);
2557 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
2558 		mutex_exit(&zonehash_lock);
2559 		return (NULL);
2560 	}
2561 	status = zone_status_get(zone);
2562 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2563 		/*
2564 		 * For all practical purposes the zone doesn't exist.
2565 		 */
2566 		mutex_exit(&zonehash_lock);
2567 		return (NULL);
2568 	}
2569 	zone_hold(zone);
2570 	mutex_exit(&zonehash_lock);
2571 	return (zone);
2572 }
2573 
2574 /*
2575  * Similar to zone_find_by_id, but using zone label as the key.
2576  */
2577 zone_t *
2578 zone_find_by_label(const ts_label_t *label)
2579 {
2580 	zone_t *zone;
2581 	zone_status_t status;
2582 
2583 	mutex_enter(&zonehash_lock);
2584 	if ((zone = zone_find_all_by_label(label)) == NULL) {
2585 		mutex_exit(&zonehash_lock);
2586 		return (NULL);
2587 	}
2588 
2589 	status = zone_status_get(zone);
2590 	if (status > ZONE_IS_DOWN) {
2591 		/*
2592 		 * For all practical purposes the zone doesn't exist.
2593 		 */
2594 		mutex_exit(&zonehash_lock);
2595 		return (NULL);
2596 	}
2597 	zone_hold(zone);
2598 	mutex_exit(&zonehash_lock);
2599 	return (zone);
2600 }
2601 
2602 /*
2603  * Similar to zone_find_by_id, but using zone name as the key.
2604  */
2605 zone_t *
2606 zone_find_by_name(char *name)
2607 {
2608 	zone_t *zone;
2609 	zone_status_t status;
2610 
2611 	mutex_enter(&zonehash_lock);
2612 	if ((zone = zone_find_all_by_name(name)) == NULL) {
2613 		mutex_exit(&zonehash_lock);
2614 		return (NULL);
2615 	}
2616 	status = zone_status_get(zone);
2617 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2618 		/*
2619 		 * For all practical purposes the zone doesn't exist.
2620 		 */
2621 		mutex_exit(&zonehash_lock);
2622 		return (NULL);
2623 	}
2624 	zone_hold(zone);
2625 	mutex_exit(&zonehash_lock);
2626 	return (zone);
2627 }
2628 
2629 /*
2630  * Similar to zone_find_by_id(), using the path as a key.  For instance,
2631  * if there is a zone "foo" rooted at /foo/root, and the path argument
2632  * is "/foo/root/proc", it will return the held zone_t corresponding to
2633  * zone "foo".
2634  *
2635  * zone_find_by_path() always returns a non-NULL value, since at the
2636  * very least every path will be contained in the global zone.
2637  *
2638  * As with the other zone_find_by_*() functions, the caller is
2639  * responsible for zone_rele()ing the return value of this function.
2640  */
2641 zone_t *
2642 zone_find_by_path(const char *path)
2643 {
2644 	zone_t *zone;
2645 	zone_t *zret = NULL;
2646 	zone_status_t status;
2647 
2648 	if (path == NULL) {
2649 		/*
2650 		 * Call from rootconf().
2651 		 */
2652 		zone_hold(global_zone);
2653 		return (global_zone);
2654 	}
2655 	ASSERT(*path == '/');
2656 	mutex_enter(&zonehash_lock);
2657 	for (zone = list_head(&zone_active); zone != NULL;
2658 	    zone = list_next(&zone_active, zone)) {
2659 		if (ZONE_PATH_VISIBLE(path, zone))
2660 			zret = zone;
2661 	}
2662 	ASSERT(zret != NULL);
2663 	status = zone_status_get(zret);
2664 	if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
2665 		/*
2666 		 * Zone practically doesn't exist.
2667 		 */
2668 		zret = global_zone;
2669 	}
2670 	zone_hold(zret);
2671 	mutex_exit(&zonehash_lock);
2672 	return (zret);
2673 }
2674 
2675 /*
2676  * Get the number of cpus visible to this zone.  The system-wide global
2677  * 'ncpus' is returned if pools are disabled, the caller is in the
2678  * global zone, or a NULL zone argument is passed in.
2679  */
2680 int
2681 zone_ncpus_get(zone_t *zone)
2682 {
2683 	int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
2684 
2685 	return (myncpus != 0 ? myncpus : ncpus);
2686 }
2687 
2688 /*
2689  * Get the number of online cpus visible to this zone.  The system-wide
2690  * global 'ncpus_online' is returned if pools are disabled, the caller
2691  * is in the global zone, or a NULL zone argument is passed in.
2692  */
2693 int
2694 zone_ncpus_online_get(zone_t *zone)
2695 {
2696 	int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
2697 
2698 	return (myncpus_online != 0 ? myncpus_online : ncpus_online);
2699 }
2700 
2701 /*
2702  * Return the pool to which the zone is currently bound.
2703  */
2704 pool_t *
2705 zone_pool_get(zone_t *zone)
2706 {
2707 	ASSERT(pool_lock_held());
2708 
2709 	return (zone->zone_pool);
2710 }
2711 
2712 /*
2713  * Set the zone's pool pointer and update the zone's visibility to match
2714  * the resources in the new pool.
2715  */
2716 void
2717 zone_pool_set(zone_t *zone, pool_t *pool)
2718 {
2719 	ASSERT(pool_lock_held());
2720 	ASSERT(MUTEX_HELD(&cpu_lock));
2721 
2722 	zone->zone_pool = pool;
2723 	zone_pset_set(zone, pool->pool_pset->pset_id);
2724 }
2725 
2726 /*
2727  * Return the cached value of the id of the processor set to which the
2728  * zone is currently bound.  The value will be ZONE_PS_INVAL if the pools
2729  * facility is disabled.
2730  */
2731 psetid_t
2732 zone_pset_get(zone_t *zone)
2733 {
2734 	ASSERT(MUTEX_HELD(&cpu_lock));
2735 
2736 	return (zone->zone_psetid);
2737 }
2738 
2739 /*
2740  * Set the cached value of the id of the processor set to which the zone
2741  * is currently bound.  Also update the zone's visibility to match the
2742  * resources in the new processor set.
2743  */
2744 void
2745 zone_pset_set(zone_t *zone, psetid_t newpsetid)
2746 {
2747 	psetid_t oldpsetid;
2748 
2749 	ASSERT(MUTEX_HELD(&cpu_lock));
2750 	oldpsetid = zone_pset_get(zone);
2751 
2752 	if (oldpsetid == newpsetid)
2753 		return;
2754 	/*
2755 	 * Global zone sees all.
2756 	 */
2757 	if (zone != global_zone) {
2758 		zone->zone_psetid = newpsetid;
2759 		if (newpsetid != ZONE_PS_INVAL)
2760 			pool_pset_visibility_add(newpsetid, zone);
2761 		if (oldpsetid != ZONE_PS_INVAL)
2762 			pool_pset_visibility_remove(oldpsetid, zone);
2763 	}
2764 	/*
2765 	 * Disabling pools, so we should start using the global values
2766 	 * for ncpus and ncpus_online.
2767 	 */
2768 	if (newpsetid == ZONE_PS_INVAL) {
2769 		zone->zone_ncpus = 0;
2770 		zone->zone_ncpus_online = 0;
2771 	}
2772 }
2773 
2774 /*
2775  * Walk the list of active zones and issue the provided callback for
2776  * each of them.
2777  *
2778  * Caller must not be holding any locks that may be acquired under
2779  * zonehash_lock.  See comment at the beginning of the file for a list of
2780  * common locks and their interactions with zones.
2781  */
2782 int
2783 zone_walk(int (*cb)(zone_t *, void *), void *data)
2784 {
2785 	zone_t *zone;
2786 	int ret = 0;
2787 	zone_status_t status;
2788 
2789 	mutex_enter(&zonehash_lock);
2790 	for (zone = list_head(&zone_active); zone != NULL;
2791 	    zone = list_next(&zone_active, zone)) {
2792 		/*
2793 		 * Skip zones that shouldn't be externally visible.
2794 		 */
2795 		status = zone_status_get(zone);
2796 		if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
2797 			continue;
2798 		/*
2799 		 * Bail immediately if any callback invocation returns a
2800 		 * non-zero value.
2801 		 */
2802 		ret = (*cb)(zone, data);
2803 		if (ret != 0)
2804 			break;
2805 	}
2806 	mutex_exit(&zonehash_lock);
2807 	return (ret);
2808 }
2809 
2810 static int
2811 zone_set_root(zone_t *zone, const char *upath)
2812 {
2813 	vnode_t *vp;
2814 	int trycount;
2815 	int error = 0;
2816 	char *path;
2817 	struct pathname upn, pn;
2818 	size_t pathlen;
2819 
2820 	if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
2821 		return (error);
2822 
2823 	pn_alloc(&pn);
2824 
2825 	/* prevent infinite loop */
2826 	trycount = 10;
2827 	for (;;) {
2828 		if (--trycount <= 0) {
2829 			error = ESTALE;
2830 			goto out;
2831 		}
2832 
2833 		if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
2834 			/*
2835 			 * VOP_ACCESS() may cover 'vp' with a new
2836 			 * filesystem, if 'vp' is an autoFS vnode.
2837 			 * Get the new 'vp' if so.
2838 			 */
2839 			if ((error =
2840 			    VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
2841 			    (!vn_ismntpt(vp) ||
2842 			    (error = traverse(&vp)) == 0)) {
2843 				pathlen = pn.pn_pathlen + 2;
2844 				path = kmem_alloc(pathlen, KM_SLEEP);
2845 				(void) strncpy(path, pn.pn_path,
2846 				    pn.pn_pathlen + 1);
2847 				path[pathlen - 2] = '/';
2848 				path[pathlen - 1] = '\0';
2849 				pn_free(&pn);
2850 				pn_free(&upn);
2851 
2852 				/* Success! */
2853 				break;
2854 			}
2855 			VN_RELE(vp);
2856 		}
2857 		if (error != ESTALE)
2858 			goto out;
2859 	}
2860 
2861 	ASSERT(error == 0);
2862 	zone->zone_rootvp = vp;		/* we hold a reference to vp */
2863 	zone->zone_rootpath = path;
2864 	zone->zone_rootpathlen = pathlen;
2865 	if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
2866 		zone->zone_flags |= ZF_IS_SCRATCH;
2867 	return (0);
2868 
2869 out:
2870 	pn_free(&pn);
2871 	pn_free(&upn);
2872 	return (error);
2873 }
2874 
2875 #define	isalnum(c)	(((c) >= '0' && (c) <= '9') || \
2876 			((c) >= 'a' && (c) <= 'z') || \
2877 			((c) >= 'A' && (c) <= 'Z'))
2878 
2879 static int
2880 zone_set_name(zone_t *zone, const char *uname)
2881 {
2882 	char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
2883 	size_t len;
2884 	int i, err;
2885 
2886 	if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
2887 		kmem_free(kname, ZONENAME_MAX);
2888 		return (err);	/* EFAULT or ENAMETOOLONG */
2889 	}
2890 
2891 	/* must be less than ZONENAME_MAX */
2892 	if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
2893 		kmem_free(kname, ZONENAME_MAX);
2894 		return (EINVAL);
2895 	}
2896 
2897 	/*
2898 	 * Name must start with an alphanumeric and must contain only
2899 	 * alphanumerics, '-', '_' and '.'.
2900 	 */
2901 	if (!isalnum(kname[0])) {
2902 		kmem_free(kname, ZONENAME_MAX);
2903 		return (EINVAL);
2904 	}
2905 	for (i = 1; i < len - 1; i++) {
2906 		if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
2907 		    kname[i] != '.') {
2908 			kmem_free(kname, ZONENAME_MAX);
2909 			return (EINVAL);
2910 		}
2911 	}
2912 
2913 	zone->zone_name = kname;
2914 	return (0);
2915 }
2916 
2917 /*
2918  * Gets the 32-bit hostid of the specified zone as an unsigned int.  If 'zonep'
2919  * is NULL or it points to a zone with no hostid emulation, then the machine's
2920  * hostid (i.e., the global zone's hostid) is returned.  This function returns
2921  * zero if neither the zone nor the host machine (global zone) have hostids.  It
2922  * returns HW_INVALID_HOSTID if the function attempts to return the machine's
2923  * hostid and the machine's hostid is invalid.
2924  */
2925 uint32_t
2926 zone_get_hostid(zone_t *zonep)
2927 {
2928 	unsigned long machine_hostid;
2929 
2930 	if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
2931 		if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
2932 			return (HW_INVALID_HOSTID);
2933 		return ((uint32_t)machine_hostid);
2934 	}
2935 	return (zonep->zone_hostid);
2936 }
2937 
2938 /*
2939  * Similar to thread_create(), but makes sure the thread is in the appropriate
2940  * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
2941  */
2942 /*ARGSUSED*/
2943 kthread_t *
2944 zthread_create(
2945     caddr_t stk,
2946     size_t stksize,
2947     void (*proc)(),
2948     void *arg,
2949     size_t len,
2950     pri_t pri)
2951 {
2952 	kthread_t *t;
2953 	zone_t *zone = curproc->p_zone;
2954 	proc_t *pp = zone->zone_zsched;
2955 
2956 	zone_hold(zone);	/* Reference to be dropped when thread exits */
2957 
2958 	/*
2959 	 * No-one should be trying to create threads if the zone is shutting
2960 	 * down and there aren't any kernel threads around.  See comment
2961 	 * in zthread_exit().
2962 	 */
2963 	ASSERT(!(zone->zone_kthreads == NULL &&
2964 	    zone_status_get(zone) >= ZONE_IS_EMPTY));
2965 	/*
2966 	 * Create a thread, but don't let it run until we've finished setting
2967 	 * things up.
2968 	 */
2969 	t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
2970 	ASSERT(t->t_forw == NULL);
2971 	mutex_enter(&zone_status_lock);
2972 	if (zone->zone_kthreads == NULL) {
2973 		t->t_forw = t->t_back = t;
2974 	} else {
2975 		kthread_t *tx = zone->zone_kthreads;
2976 
2977 		t->t_forw = tx;
2978 		t->t_back = tx->t_back;
2979 		tx->t_back->t_forw = t;
2980 		tx->t_back = t;
2981 	}
2982 	zone->zone_kthreads = t;
2983 	mutex_exit(&zone_status_lock);
2984 
2985 	mutex_enter(&pp->p_lock);
2986 	t->t_proc_flag |= TP_ZTHREAD;
2987 	project_rele(t->t_proj);
2988 	t->t_proj = project_hold(pp->p_task->tk_proj);
2989 
2990 	/*
2991 	 * Setup complete, let it run.
2992 	 */
2993 	thread_lock(t);
2994 	t->t_schedflag |= TS_ALLSTART;
2995 	setrun_locked(t);
2996 	thread_unlock(t);
2997 
2998 	mutex_exit(&pp->p_lock);
2999 
3000 	return (t);
3001 }
3002 
3003 /*
3004  * Similar to thread_exit().  Must be called by threads created via
3005  * zthread_exit().
3006  */
3007 void
3008 zthread_exit(void)
3009 {
3010 	kthread_t *t = curthread;
3011 	proc_t *pp = curproc;
3012 	zone_t *zone = pp->p_zone;
3013 
3014 	mutex_enter(&zone_status_lock);
3015 
3016 	/*
3017 	 * Reparent to p0
3018 	 */
3019 	kpreempt_disable();
3020 	mutex_enter(&pp->p_lock);
3021 	t->t_proc_flag &= ~TP_ZTHREAD;
3022 	t->t_procp = &p0;
3023 	hat_thread_exit(t);
3024 	mutex_exit(&pp->p_lock);
3025 	kpreempt_enable();
3026 
3027 	if (t->t_back == t) {
3028 		ASSERT(t->t_forw == t);
3029 		/*
3030 		 * If the zone is empty, once the thread count
3031 		 * goes to zero no further kernel threads can be
3032 		 * created.  This is because if the creator is a process
3033 		 * in the zone, then it must have exited before the zone
3034 		 * state could be set to ZONE_IS_EMPTY.
3035 		 * Otherwise, if the creator is a kernel thread in the
3036 		 * zone, the thread count is non-zero.
3037 		 *
3038 		 * This really means that non-zone kernel threads should
3039 		 * not create zone kernel threads.
3040 		 */
3041 		zone->zone_kthreads = NULL;
3042 		if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3043 			zone_status_set(zone, ZONE_IS_DOWN);
3044 			/*
3045 			 * Remove any CPU caps on this zone.
3046 			 */
3047 			cpucaps_zone_remove(zone);
3048 		}
3049 	} else {
3050 		t->t_forw->t_back = t->t_back;
3051 		t->t_back->t_forw = t->t_forw;
3052 		if (zone->zone_kthreads == t)
3053 			zone->zone_kthreads = t->t_forw;
3054 	}
3055 	mutex_exit(&zone_status_lock);
3056 	zone_rele(zone);
3057 	thread_exit();
3058 	/* NOTREACHED */
3059 }
3060 
3061 static void
3062 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3063 {
3064 	vnode_t *oldvp;
3065 
3066 	/* we're going to hold a reference here to the directory */
3067 	VN_HOLD(vp);
3068 
3069 	if (audit_active)	/* update abs cwd/root path see c2audit.c */
3070 		audit_chdirec(vp, vpp);
3071 
3072 	mutex_enter(&pp->p_lock);
3073 	oldvp = *vpp;
3074 	*vpp = vp;
3075 	mutex_exit(&pp->p_lock);
3076 	if (oldvp != NULL)
3077 		VN_RELE(oldvp);
3078 }
3079 
3080 /*
3081  * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3082  */
3083 static int
3084 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3085 {
3086 	nvpair_t *nvp = NULL;
3087 	boolean_t priv_set = B_FALSE;
3088 	boolean_t limit_set = B_FALSE;
3089 	boolean_t action_set = B_FALSE;
3090 
3091 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3092 		const char *name;
3093 		uint64_t ui64;
3094 
3095 		name = nvpair_name(nvp);
3096 		if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3097 			return (EINVAL);
3098 		(void) nvpair_value_uint64(nvp, &ui64);
3099 		if (strcmp(name, "privilege") == 0) {
3100 			/*
3101 			 * Currently only privileged values are allowed, but
3102 			 * this may change in the future.
3103 			 */
3104 			if (ui64 != RCPRIV_PRIVILEGED)
3105 				return (EINVAL);
3106 			rv->rcv_privilege = ui64;
3107 			priv_set = B_TRUE;
3108 		} else if (strcmp(name, "limit") == 0) {
3109 			rv->rcv_value = ui64;
3110 			limit_set = B_TRUE;
3111 		} else if (strcmp(name, "action") == 0) {
3112 			if (ui64 != RCTL_LOCAL_NOACTION &&
3113 			    ui64 != RCTL_LOCAL_DENY)
3114 				return (EINVAL);
3115 			rv->rcv_flagaction = ui64;
3116 			action_set = B_TRUE;
3117 		} else {
3118 			return (EINVAL);
3119 		}
3120 	}
3121 
3122 	if (!(priv_set && limit_set && action_set))
3123 		return (EINVAL);
3124 	rv->rcv_action_signal = 0;
3125 	rv->rcv_action_recipient = NULL;
3126 	rv->rcv_action_recip_pid = -1;
3127 	rv->rcv_firing_time = 0;
3128 
3129 	return (0);
3130 }
3131 
3132 /*
3133  * Non-global zone version of start_init.
3134  */
3135 void
3136 zone_start_init(void)
3137 {
3138 	proc_t *p = ttoproc(curthread);
3139 	zone_t *z = p->p_zone;
3140 
3141 	ASSERT(!INGLOBALZONE(curproc));
3142 
3143 	/*
3144 	 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3145 	 * storing just the pid of init is sufficient.
3146 	 */
3147 	z->zone_proc_initpid = p->p_pid;
3148 
3149 	/*
3150 	 * We maintain zone_boot_err so that we can return the cause of the
3151 	 * failure back to the caller of the zone_boot syscall.
3152 	 */
3153 	p->p_zone->zone_boot_err = start_init_common();
3154 
3155 	/*
3156 	 * We will prevent booting zones from becoming running zones if the
3157 	 * global zone is shutting down.
3158 	 */
3159 	mutex_enter(&zone_status_lock);
3160 	if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3161 	    ZONE_IS_SHUTTING_DOWN) {
3162 		/*
3163 		 * Make sure we are still in the booting state-- we could have
3164 		 * raced and already be shutting down, or even further along.
3165 		 */
3166 		if (zone_status_get(z) == ZONE_IS_BOOTING) {
3167 			zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3168 		}
3169 		mutex_exit(&zone_status_lock);
3170 		/* It's gone bad, dispose of the process */
3171 		if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3172 			mutex_enter(&p->p_lock);
3173 			ASSERT(p->p_flag & SEXITLWPS);
3174 			lwp_exit();
3175 		}
3176 	} else {
3177 		if (zone_status_get(z) == ZONE_IS_BOOTING)
3178 			zone_status_set(z, ZONE_IS_RUNNING);
3179 		mutex_exit(&zone_status_lock);
3180 		/* cause the process to return to userland. */
3181 		lwp_rtt();
3182 	}
3183 }
3184 
3185 struct zsched_arg {
3186 	zone_t *zone;
3187 	nvlist_t *nvlist;
3188 };
3189 
3190 /*
3191  * Per-zone "sched" workalike.  The similarity to "sched" doesn't have
3192  * anything to do with scheduling, but rather with the fact that
3193  * per-zone kernel threads are parented to zsched, just like regular
3194  * kernel threads are parented to sched (p0).
3195  *
3196  * zsched is also responsible for launching init for the zone.
3197  */
3198 static void
3199 zsched(void *arg)
3200 {
3201 	struct zsched_arg *za = arg;
3202 	proc_t *pp = curproc;
3203 	proc_t *initp = proc_init;
3204 	zone_t *zone = za->zone;
3205 	cred_t *cr, *oldcred;
3206 	rctl_set_t *set;
3207 	rctl_alloc_gp_t *gp;
3208 	contract_t *ct = NULL;
3209 	task_t *tk, *oldtk;
3210 	rctl_entity_p_t e;
3211 	kproject_t *pj;
3212 
3213 	nvlist_t *nvl = za->nvlist;
3214 	nvpair_t *nvp = NULL;
3215 
3216 	bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3217 	bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3218 	PTOU(pp)->u_argc = 0;
3219 	PTOU(pp)->u_argv = NULL;
3220 	PTOU(pp)->u_envp = NULL;
3221 	closeall(P_FINFO(pp));
3222 
3223 	/*
3224 	 * We are this zone's "zsched" process.  As the zone isn't generally
3225 	 * visible yet we don't need to grab any locks before initializing its
3226 	 * zone_proc pointer.
3227 	 */
3228 	zone_hold(zone);  /* this hold is released by zone_destroy() */
3229 	zone->zone_zsched = pp;
3230 	mutex_enter(&pp->p_lock);
3231 	pp->p_zone = zone;
3232 	mutex_exit(&pp->p_lock);
3233 
3234 	/*
3235 	 * Disassociate process from its 'parent'; parent ourselves to init
3236 	 * (pid 1) and change other values as needed.
3237 	 */
3238 	sess_create();
3239 
3240 	mutex_enter(&pidlock);
3241 	proc_detach(pp);
3242 	pp->p_ppid = 1;
3243 	pp->p_flag |= SZONETOP;
3244 	pp->p_ancpid = 1;
3245 	pp->p_parent = initp;
3246 	pp->p_psibling = NULL;
3247 	if (initp->p_child)
3248 		initp->p_child->p_psibling = pp;
3249 	pp->p_sibling = initp->p_child;
3250 	initp->p_child = pp;
3251 
3252 	/* Decrement what newproc() incremented. */
3253 	upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3254 	/*
3255 	 * Our credentials are about to become kcred-like, so we don't care
3256 	 * about the caller's ruid.
3257 	 */
3258 	upcount_inc(crgetruid(kcred), zone->zone_id);
3259 	mutex_exit(&pidlock);
3260 
3261 	/*
3262 	 * getting out of global zone, so decrement lwp counts
3263 	 */
3264 	pj = pp->p_task->tk_proj;
3265 	mutex_enter(&global_zone->zone_nlwps_lock);
3266 	pj->kpj_nlwps -= pp->p_lwpcnt;
3267 	global_zone->zone_nlwps -= pp->p_lwpcnt;
3268 	mutex_exit(&global_zone->zone_nlwps_lock);
3269 
3270 	/*
3271 	 * Decrement locked memory counts on old zone and project.
3272 	 */
3273 	mutex_enter(&global_zone->zone_mem_lock);
3274 	global_zone->zone_locked_mem -= pp->p_locked_mem;
3275 	pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3276 	mutex_exit(&global_zone->zone_mem_lock);
3277 
3278 	/*
3279 	 * Create and join a new task in project '0' of this zone.
3280 	 *
3281 	 * We don't need to call holdlwps() since we know we're the only lwp in
3282 	 * this process.
3283 	 *
3284 	 * task_join() returns with p_lock held.
3285 	 */
3286 	tk = task_create(0, zone);
3287 	mutex_enter(&cpu_lock);
3288 	oldtk = task_join(tk, 0);
3289 
3290 	pj = pp->p_task->tk_proj;
3291 
3292 	mutex_enter(&zone->zone_mem_lock);
3293 	zone->zone_locked_mem += pp->p_locked_mem;
3294 	pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3295 	mutex_exit(&zone->zone_mem_lock);
3296 
3297 	/*
3298 	 * add lwp counts to zsched's zone, and increment project's task count
3299 	 * due to the task created in the above tasksys_settaskid
3300 	 */
3301 
3302 	mutex_enter(&zone->zone_nlwps_lock);
3303 	pj->kpj_nlwps += pp->p_lwpcnt;
3304 	pj->kpj_ntasks += 1;
3305 	zone->zone_nlwps += pp->p_lwpcnt;
3306 	mutex_exit(&zone->zone_nlwps_lock);
3307 
3308 	mutex_exit(&curproc->p_lock);
3309 	mutex_exit(&cpu_lock);
3310 	task_rele(oldtk);
3311 
3312 	/*
3313 	 * The process was created by a process in the global zone, hence the
3314 	 * credentials are wrong.  We might as well have kcred-ish credentials.
3315 	 */
3316 	cr = zone->zone_kcred;
3317 	crhold(cr);
3318 	mutex_enter(&pp->p_crlock);
3319 	oldcred = pp->p_cred;
3320 	pp->p_cred = cr;
3321 	mutex_exit(&pp->p_crlock);
3322 	crfree(oldcred);
3323 
3324 	/*
3325 	 * Hold credentials again (for thread)
3326 	 */
3327 	crhold(cr);
3328 
3329 	/*
3330 	 * p_lwpcnt can't change since this is a kernel process.
3331 	 */
3332 	crset(pp, cr);
3333 
3334 	/*
3335 	 * Chroot
3336 	 */
3337 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3338 	zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3339 
3340 	/*
3341 	 * Initialize zone's rctl set.
3342 	 */
3343 	set = rctl_set_create();
3344 	gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3345 	mutex_enter(&pp->p_lock);
3346 	e.rcep_p.zone = zone;
3347 	e.rcep_t = RCENTITY_ZONE;
3348 	zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3349 	mutex_exit(&pp->p_lock);
3350 	rctl_prealloc_destroy(gp);
3351 
3352 	/*
3353 	 * Apply the rctls passed in to zone_create().  This is basically a list
3354 	 * assignment: all of the old values are removed and the new ones
3355 	 * inserted.  That is, if an empty list is passed in, all values are
3356 	 * removed.
3357 	 */
3358 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3359 		rctl_dict_entry_t *rde;
3360 		rctl_hndl_t hndl;
3361 		char *name;
3362 		nvlist_t **nvlarray;
3363 		uint_t i, nelem;
3364 		int error;	/* For ASSERT()s */
3365 
3366 		name = nvpair_name(nvp);
3367 		hndl = rctl_hndl_lookup(name);
3368 		ASSERT(hndl != -1);
3369 		rde = rctl_dict_lookup_hndl(hndl);
3370 		ASSERT(rde != NULL);
3371 
3372 		for (; /* ever */; ) {
3373 			rctl_val_t oval;
3374 
3375 			mutex_enter(&pp->p_lock);
3376 			error = rctl_local_get(hndl, NULL, &oval, pp);
3377 			mutex_exit(&pp->p_lock);
3378 			ASSERT(error == 0);	/* Can't fail for RCTL_FIRST */
3379 			ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
3380 			if (oval.rcv_privilege == RCPRIV_SYSTEM)
3381 				break;
3382 			mutex_enter(&pp->p_lock);
3383 			error = rctl_local_delete(hndl, &oval, pp);
3384 			mutex_exit(&pp->p_lock);
3385 			ASSERT(error == 0);
3386 		}
3387 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3388 		ASSERT(error == 0);
3389 		for (i = 0; i < nelem; i++) {
3390 			rctl_val_t *nvalp;
3391 
3392 			nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
3393 			error = nvlist2rctlval(nvlarray[i], nvalp);
3394 			ASSERT(error == 0);
3395 			/*
3396 			 * rctl_local_insert can fail if the value being
3397 			 * inserted is a duplicate; this is OK.
3398 			 */
3399 			mutex_enter(&pp->p_lock);
3400 			if (rctl_local_insert(hndl, nvalp, pp) != 0)
3401 				kmem_cache_free(rctl_val_cache, nvalp);
3402 			mutex_exit(&pp->p_lock);
3403 		}
3404 	}
3405 	/*
3406 	 * Tell the world that we're done setting up.
3407 	 *
3408 	 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
3409 	 * and atomically set the zone's processor set visibility.  Once
3410 	 * we drop pool_lock() this zone will automatically get updated
3411 	 * to reflect any future changes to the pools configuration.
3412 	 *
3413 	 * Note that after we drop the locks below (zonehash_lock in
3414 	 * particular) other operations such as a zone_getattr call can
3415 	 * now proceed and observe the zone. That is the reason for doing a
3416 	 * state transition to the INITIALIZED state.
3417 	 */
3418 	pool_lock();
3419 	mutex_enter(&cpu_lock);
3420 	mutex_enter(&zonehash_lock);
3421 	zone_uniqid(zone);
3422 	zone_zsd_configure(zone);
3423 	if (pool_state == POOL_ENABLED)
3424 		zone_pset_set(zone, pool_default->pool_pset->pset_id);
3425 	mutex_enter(&zone_status_lock);
3426 	ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
3427 	zone_status_set(zone, ZONE_IS_INITIALIZED);
3428 	mutex_exit(&zone_status_lock);
3429 	mutex_exit(&zonehash_lock);
3430 	mutex_exit(&cpu_lock);
3431 	pool_unlock();
3432 
3433 	/* Now call the create callback for this key */
3434 	zsd_apply_all_keys(zsd_apply_create, zone);
3435 
3436 	/* The callbacks are complete. Mark ZONE_IS_READY */
3437 	mutex_enter(&zone_status_lock);
3438 	ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
3439 	zone_status_set(zone, ZONE_IS_READY);
3440 	mutex_exit(&zone_status_lock);
3441 
3442 	/*
3443 	 * Once we see the zone transition to the ZONE_IS_BOOTING state,
3444 	 * we launch init, and set the state to running.
3445 	 */
3446 	zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
3447 
3448 	if (zone_status_get(zone) == ZONE_IS_BOOTING) {
3449 		id_t cid;
3450 
3451 		/*
3452 		 * Ok, this is a little complicated.  We need to grab the
3453 		 * zone's pool's scheduling class ID; note that by now, we
3454 		 * are already bound to a pool if we need to be (zoneadmd
3455 		 * will have done that to us while we're in the READY
3456 		 * state).  *But* the scheduling class for the zone's 'init'
3457 		 * must be explicitly passed to newproc, which doesn't
3458 		 * respect pool bindings.
3459 		 *
3460 		 * We hold the pool_lock across the call to newproc() to
3461 		 * close the obvious race: the pool's scheduling class
3462 		 * could change before we manage to create the LWP with
3463 		 * classid 'cid'.
3464 		 */
3465 		pool_lock();
3466 		if (zone->zone_defaultcid > 0)
3467 			cid = zone->zone_defaultcid;
3468 		else
3469 			cid = pool_get_class(zone->zone_pool);
3470 		if (cid == -1)
3471 			cid = defaultcid;
3472 
3473 		/*
3474 		 * If this fails, zone_boot will ultimately fail.  The
3475 		 * state of the zone will be set to SHUTTING_DOWN-- userland
3476 		 * will have to tear down the zone, and fail, or try again.
3477 		 */
3478 		if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
3479 		    minclsyspri - 1, &ct)) != 0) {
3480 			mutex_enter(&zone_status_lock);
3481 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
3482 			mutex_exit(&zone_status_lock);
3483 		}
3484 		pool_unlock();
3485 	}
3486 
3487 	/*
3488 	 * Wait for zone_destroy() to be called.  This is what we spend
3489 	 * most of our life doing.
3490 	 */
3491 	zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
3492 
3493 	if (ct)
3494 		/*
3495 		 * At this point the process contract should be empty.
3496 		 * (Though if it isn't, it's not the end of the world.)
3497 		 */
3498 		VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
3499 
3500 	/*
3501 	 * Allow kcred to be freed when all referring processes
3502 	 * (including this one) go away.  We can't just do this in
3503 	 * zone_free because we need to wait for the zone_cred_ref to
3504 	 * drop to 0 before calling zone_free, and the existence of
3505 	 * zone_kcred will prevent that.  Thus, we call crfree here to
3506 	 * balance the crdup in zone_create.  The crhold calls earlier
3507 	 * in zsched will be dropped when the thread and process exit.
3508 	 */
3509 	crfree(zone->zone_kcred);
3510 	zone->zone_kcred = NULL;
3511 
3512 	exit(CLD_EXITED, 0);
3513 }
3514 
3515 /*
3516  * Helper function to determine if there are any submounts of the
3517  * provided path.  Used to make sure the zone doesn't "inherit" any
3518  * mounts from before it is created.
3519  */
3520 static uint_t
3521 zone_mount_count(const char *rootpath)
3522 {
3523 	vfs_t *vfsp;
3524 	uint_t count = 0;
3525 	size_t rootpathlen = strlen(rootpath);
3526 
3527 	/*
3528 	 * Holding zonehash_lock prevents race conditions with
3529 	 * vfs_list_add()/vfs_list_remove() since we serialize with
3530 	 * zone_find_by_path().
3531 	 */
3532 	ASSERT(MUTEX_HELD(&zonehash_lock));
3533 	/*
3534 	 * The rootpath must end with a '/'
3535 	 */
3536 	ASSERT(rootpath[rootpathlen - 1] == '/');
3537 
3538 	/*
3539 	 * This intentionally does not count the rootpath itself if that
3540 	 * happens to be a mount point.
3541 	 */
3542 	vfs_list_read_lock();
3543 	vfsp = rootvfs;
3544 	do {
3545 		if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
3546 		    rootpathlen) == 0)
3547 			count++;
3548 		vfsp = vfsp->vfs_next;
3549 	} while (vfsp != rootvfs);
3550 	vfs_list_unlock();
3551 	return (count);
3552 }
3553 
3554 /*
3555  * Helper function to make sure that a zone created on 'rootpath'
3556  * wouldn't end up containing other zones' rootpaths.
3557  */
3558 static boolean_t
3559 zone_is_nested(const char *rootpath)
3560 {
3561 	zone_t *zone;
3562 	size_t rootpathlen = strlen(rootpath);
3563 	size_t len;
3564 
3565 	ASSERT(MUTEX_HELD(&zonehash_lock));
3566 
3567 	/*
3568 	 * zone_set_root() appended '/' and '\0' at the end of rootpath
3569 	 */
3570 	if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
3571 	    (rootpath[1] == '/') && (rootpath[2] == '\0'))
3572 		return (B_TRUE);
3573 
3574 	for (zone = list_head(&zone_active); zone != NULL;
3575 	    zone = list_next(&zone_active, zone)) {
3576 		if (zone == global_zone)
3577 			continue;
3578 		len = strlen(zone->zone_rootpath);
3579 		if (strncmp(rootpath, zone->zone_rootpath,
3580 		    MIN(rootpathlen, len)) == 0)
3581 			return (B_TRUE);
3582 	}
3583 	return (B_FALSE);
3584 }
3585 
3586 static int
3587 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
3588     size_t zone_privssz)
3589 {
3590 	priv_set_t *privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
3591 
3592 	if (zone_privssz < sizeof (priv_set_t))
3593 		return (set_errno(ENOMEM));
3594 
3595 	if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
3596 		kmem_free(privs, sizeof (priv_set_t));
3597 		return (EFAULT);
3598 	}
3599 
3600 	zone->zone_privset = privs;
3601 	return (0);
3602 }
3603 
3604 /*
3605  * We make creative use of nvlists to pass in rctls from userland.  The list is
3606  * a list of the following structures:
3607  *
3608  * (name = rctl_name, value = nvpair_list_array)
3609  *
3610  * Where each element of the nvpair_list_array is of the form:
3611  *
3612  * [(name = "privilege", value = RCPRIV_PRIVILEGED),
3613  * 	(name = "limit", value = uint64_t),
3614  * 	(name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
3615  */
3616 static int
3617 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
3618 {
3619 	nvpair_t *nvp = NULL;
3620 	nvlist_t *nvl = NULL;
3621 	char *kbuf;
3622 	int error;
3623 	rctl_val_t rv;
3624 
3625 	*nvlp = NULL;
3626 
3627 	if (buflen == 0)
3628 		return (0);
3629 
3630 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
3631 		return (ENOMEM);
3632 	if (copyin(ubuf, kbuf, buflen)) {
3633 		error = EFAULT;
3634 		goto out;
3635 	}
3636 	if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
3637 		/*
3638 		 * nvl may have been allocated/free'd, but the value set to
3639 		 * non-NULL, so we reset it here.
3640 		 */
3641 		nvl = NULL;
3642 		error = EINVAL;
3643 		goto out;
3644 	}
3645 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3646 		rctl_dict_entry_t *rde;
3647 		rctl_hndl_t hndl;
3648 		nvlist_t **nvlarray;
3649 		uint_t i, nelem;
3650 		char *name;
3651 
3652 		error = EINVAL;
3653 		name = nvpair_name(nvp);
3654 		if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
3655 		    != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
3656 			goto out;
3657 		}
3658 		if ((hndl = rctl_hndl_lookup(name)) == -1) {
3659 			goto out;
3660 		}
3661 		rde = rctl_dict_lookup_hndl(hndl);
3662 		error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
3663 		ASSERT(error == 0);
3664 		for (i = 0; i < nelem; i++) {
3665 			if (error = nvlist2rctlval(nvlarray[i], &rv))
3666 				goto out;
3667 		}
3668 		if (rctl_invalid_value(rde, &rv)) {
3669 			error = EINVAL;
3670 			goto out;
3671 		}
3672 	}
3673 	error = 0;
3674 	*nvlp = nvl;
3675 out:
3676 	kmem_free(kbuf, buflen);
3677 	if (error && nvl != NULL)
3678 		nvlist_free(nvl);
3679 	return (error);
3680 }
3681 
3682 int
3683 zone_create_error(int er_error, int er_ext, int *er_out) {
3684 	if (er_out != NULL) {
3685 		if (copyout(&er_ext, er_out, sizeof (int))) {
3686 			return (set_errno(EFAULT));
3687 		}
3688 	}
3689 	return (set_errno(er_error));
3690 }
3691 
3692 static int
3693 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
3694 {
3695 	ts_label_t *tsl;
3696 	bslabel_t blab;
3697 
3698 	/* Get label from user */
3699 	if (copyin(lab, &blab, sizeof (blab)) != 0)
3700 		return (EFAULT);
3701 	tsl = labelalloc(&blab, doi, KM_NOSLEEP);
3702 	if (tsl == NULL)
3703 		return (ENOMEM);
3704 
3705 	zone->zone_slabel = tsl;
3706 	return (0);
3707 }
3708 
3709 /*
3710  * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
3711  */
3712 static int
3713 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
3714 {
3715 	char *kbuf;
3716 	char *dataset, *next;
3717 	zone_dataset_t *zd;
3718 	size_t len;
3719 
3720 	if (ubuf == NULL || buflen == 0)
3721 		return (0);
3722 
3723 	if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
3724 		return (ENOMEM);
3725 
3726 	if (copyin(ubuf, kbuf, buflen) != 0) {
3727 		kmem_free(kbuf, buflen);
3728 		return (EFAULT);
3729 	}
3730 
3731 	dataset = next = kbuf;
3732 	for (;;) {
3733 		zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
3734 
3735 		next = strchr(dataset, ',');
3736 
3737 		if (next == NULL)
3738 			len = strlen(dataset);
3739 		else
3740 			len = next - dataset;
3741 
3742 		zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
3743 		bcopy(dataset, zd->zd_dataset, len);
3744 		zd->zd_dataset[len] = '\0';
3745 
3746 		list_insert_head(&zone->zone_datasets, zd);
3747 
3748 		if (next == NULL)
3749 			break;
3750 
3751 		dataset = next + 1;
3752 	}
3753 
3754 	kmem_free(kbuf, buflen);
3755 	return (0);
3756 }
3757 
3758 /*
3759  * System call to create/initialize a new zone named 'zone_name', rooted
3760  * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
3761  * and initialized with the zone-wide rctls described in 'rctlbuf', and
3762  * with labeling set by 'match', 'doi', and 'label'.
3763  *
3764  * If extended error is non-null, we may use it to return more detailed
3765  * error information.
3766  */
3767 static zoneid_t
3768 zone_create(const char *zone_name, const char *zone_root,
3769     const priv_set_t *zone_privs, size_t zone_privssz,
3770     caddr_t rctlbuf, size_t rctlbufsz,
3771     caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
3772     int match, uint32_t doi, const bslabel_t *label,
3773     int flags)
3774 {
3775 	struct zsched_arg zarg;
3776 	nvlist_t *rctls = NULL;
3777 	proc_t *pp = curproc;
3778 	zone_t *zone, *ztmp;
3779 	zoneid_t zoneid;
3780 	int error;
3781 	int error2 = 0;
3782 	char *str;
3783 	cred_t *zkcr;
3784 	boolean_t insert_label_hash;
3785 
3786 	if (secpolicy_zone_config(CRED()) != 0)
3787 		return (set_errno(EPERM));
3788 
3789 	/* can't boot zone from within chroot environment */
3790 	if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
3791 		return (zone_create_error(ENOTSUP, ZE_CHROOTED,
3792 		    extended_error));
3793 
3794 	zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
3795 	zoneid = zone->zone_id = id_alloc(zoneid_space);
3796 	zone->zone_status = ZONE_IS_UNINITIALIZED;
3797 	zone->zone_pool = pool_default;
3798 	zone->zone_pool_mod = gethrtime();
3799 	zone->zone_psetid = ZONE_PS_INVAL;
3800 	zone->zone_ncpus = 0;
3801 	zone->zone_ncpus_online = 0;
3802 	zone->zone_restart_init = B_TRUE;
3803 	zone->zone_brand = &native_brand;
3804 	zone->zone_initname = NULL;
3805 	mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
3806 	mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
3807 	mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
3808 	cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
3809 	list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
3810 	    offsetof(struct zsd_entry, zsd_linkage));
3811 	list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
3812 	    offsetof(zone_dataset_t, zd_linkage));
3813 	list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
3814 	    offsetof(zone_dl_t, zdl_linkage));
3815 	rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
3816 
3817 	if (flags & ZCF_NET_EXCL) {
3818 		zone->zone_flags |= ZF_NET_EXCL;
3819 	}
3820 
3821 	if ((error = zone_set_name(zone, zone_name)) != 0) {
3822 		zone_free(zone);
3823 		return (zone_create_error(error, 0, extended_error));
3824 	}
3825 
3826 	if ((error = zone_set_root(zone, zone_root)) != 0) {
3827 		zone_free(zone);
3828 		return (zone_create_error(error, 0, extended_error));
3829 	}
3830 	if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
3831 		zone_free(zone);
3832 		return (zone_create_error(error, 0, extended_error));
3833 	}
3834 
3835 	/* initialize node name to be the same as zone name */
3836 	zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
3837 	(void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
3838 	zone->zone_nodename[_SYS_NMLN - 1] = '\0';
3839 
3840 	zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
3841 	zone->zone_domain[0] = '\0';
3842 	zone->zone_hostid = HW_INVALID_HOSTID;
3843 	zone->zone_shares = 1;
3844 	zone->zone_shmmax = 0;
3845 	zone->zone_ipc.ipcq_shmmni = 0;
3846 	zone->zone_ipc.ipcq_semmni = 0;
3847 	zone->zone_ipc.ipcq_msgmni = 0;
3848 	zone->zone_bootargs = NULL;
3849 	zone->zone_initname =
3850 	    kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
3851 	(void) strcpy(zone->zone_initname, zone_default_initname);
3852 	zone->zone_nlwps = 0;
3853 	zone->zone_nlwps_ctl = INT_MAX;
3854 	zone->zone_locked_mem = 0;
3855 	zone->zone_locked_mem_ctl = UINT64_MAX;
3856 	zone->zone_max_swap = 0;
3857 	zone->zone_max_swap_ctl = UINT64_MAX;
3858 	zone0.zone_lockedmem_kstat = NULL;
3859 	zone0.zone_swapresv_kstat = NULL;
3860 
3861 	/*
3862 	 * Zsched initializes the rctls.
3863 	 */
3864 	zone->zone_rctls = NULL;
3865 
3866 	if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
3867 		zone_free(zone);
3868 		return (zone_create_error(error, 0, extended_error));
3869 	}
3870 
3871 	if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
3872 		zone_free(zone);
3873 		return (set_errno(error));
3874 	}
3875 
3876 	/*
3877 	 * Read in the trusted system parameters:
3878 	 * match flag and sensitivity label.
3879 	 */
3880 	zone->zone_match = match;
3881 	if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
3882 		/* Fail if requested to set doi to anything but system's doi */
3883 		if (doi != 0 && doi != default_doi) {
3884 			zone_free(zone);
3885 			return (set_errno(EINVAL));
3886 		}
3887 		/* Always apply system's doi to the zone */
3888 		error = zone_set_label(zone, label, default_doi);
3889 		if (error != 0) {
3890 			zone_free(zone);
3891 			return (set_errno(error));
3892 		}
3893 		insert_label_hash = B_TRUE;
3894 	} else {
3895 		/* all zones get an admin_low label if system is not labeled */
3896 		zone->zone_slabel = l_admin_low;
3897 		label_hold(l_admin_low);
3898 		insert_label_hash = B_FALSE;
3899 	}
3900 
3901 	/*
3902 	 * Stop all lwps since that's what normally happens as part of fork().
3903 	 * This needs to happen before we grab any locks to avoid deadlock
3904 	 * (another lwp in the process could be waiting for the held lock).
3905 	 */
3906 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
3907 		zone_free(zone);
3908 		if (rctls)
3909 			nvlist_free(rctls);
3910 		return (zone_create_error(error, 0, extended_error));
3911 	}
3912 
3913 	if (block_mounts() == 0) {
3914 		mutex_enter(&pp->p_lock);
3915 		if (curthread != pp->p_agenttp)
3916 			continuelwps(pp);
3917 		mutex_exit(&pp->p_lock);
3918 		zone_free(zone);
3919 		if (rctls)
3920 			nvlist_free(rctls);
3921 		return (zone_create_error(error, 0, extended_error));
3922 	}
3923 
3924 	/*
3925 	 * Set up credential for kernel access.  After this, any errors
3926 	 * should go through the dance in errout rather than calling
3927 	 * zone_free directly.
3928 	 */
3929 	zone->zone_kcred = crdup(kcred);
3930 	crsetzone(zone->zone_kcred, zone);
3931 	priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
3932 	priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
3933 	priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
3934 	priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
3935 
3936 	mutex_enter(&zonehash_lock);
3937 	/*
3938 	 * Make sure zone doesn't already exist.
3939 	 *
3940 	 * If the system and zone are labeled,
3941 	 * make sure no other zone exists that has the same label.
3942 	 */
3943 	if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
3944 	    (insert_label_hash &&
3945 	    (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
3946 		zone_status_t status;
3947 
3948 		status = zone_status_get(ztmp);
3949 		if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
3950 			error = EEXIST;
3951 		else
3952 			error = EBUSY;
3953 
3954 		if (insert_label_hash)
3955 			error2 = ZE_LABELINUSE;
3956 
3957 		goto errout;
3958 	}
3959 
3960 	/*
3961 	 * Don't allow zone creations which would cause one zone's rootpath to
3962 	 * be accessible from that of another (non-global) zone.
3963 	 */
3964 	if (zone_is_nested(zone->zone_rootpath)) {
3965 		error = EBUSY;
3966 		goto errout;
3967 	}
3968 
3969 	ASSERT(zonecount != 0);		/* check for leaks */
3970 	if (zonecount + 1 > maxzones) {
3971 		error = ENOMEM;
3972 		goto errout;
3973 	}
3974 
3975 	if (zone_mount_count(zone->zone_rootpath) != 0) {
3976 		error = EBUSY;
3977 		error2 = ZE_AREMOUNTS;
3978 		goto errout;
3979 	}
3980 
3981 	/*
3982 	 * Zone is still incomplete, but we need to drop all locks while
3983 	 * zsched() initializes this zone's kernel process.  We
3984 	 * optimistically add the zone to the hashtable and associated
3985 	 * lists so a parallel zone_create() doesn't try to create the
3986 	 * same zone.
3987 	 */
3988 	zonecount++;
3989 	(void) mod_hash_insert(zonehashbyid,
3990 	    (mod_hash_key_t)(uintptr_t)zone->zone_id,
3991 	    (mod_hash_val_t)(uintptr_t)zone);
3992 	str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
3993 	(void) strcpy(str, zone->zone_name);
3994 	(void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
3995 	    (mod_hash_val_t)(uintptr_t)zone);
3996 	if (insert_label_hash) {
3997 		(void) mod_hash_insert(zonehashbylabel,
3998 		    (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
3999 		zone->zone_flags |= ZF_HASHED_LABEL;
4000 	}
4001 
4002 	/*
4003 	 * Insert into active list.  At this point there are no 'hold's
4004 	 * on the zone, but everyone else knows not to use it, so we can
4005 	 * continue to use it.  zsched() will do a zone_hold() if the
4006 	 * newproc() is successful.
4007 	 */
4008 	list_insert_tail(&zone_active, zone);
4009 	mutex_exit(&zonehash_lock);
4010 
4011 	zarg.zone = zone;
4012 	zarg.nvlist = rctls;
4013 	/*
4014 	 * The process, task, and project rctls are probably wrong;
4015 	 * we need an interface to get the default values of all rctls,
4016 	 * and initialize zsched appropriately.  I'm not sure that that
4017 	 * makes much of a difference, though.
4018 	 */
4019 	if (error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL)) {
4020 		/*
4021 		 * We need to undo all globally visible state.
4022 		 */
4023 		mutex_enter(&zonehash_lock);
4024 		list_remove(&zone_active, zone);
4025 		if (zone->zone_flags & ZF_HASHED_LABEL) {
4026 			ASSERT(zone->zone_slabel != NULL);
4027 			(void) mod_hash_destroy(zonehashbylabel,
4028 			    (mod_hash_key_t)zone->zone_slabel);
4029 		}
4030 		(void) mod_hash_destroy(zonehashbyname,
4031 		    (mod_hash_key_t)(uintptr_t)zone->zone_name);
4032 		(void) mod_hash_destroy(zonehashbyid,
4033 		    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4034 		ASSERT(zonecount > 1);
4035 		zonecount--;
4036 		goto errout;
4037 	}
4038 
4039 	/*
4040 	 * Zone creation can't fail from now on.
4041 	 */
4042 
4043 	/*
4044 	 * Create zone kstats
4045 	 */
4046 	zone_kstat_create(zone);
4047 
4048 	/*
4049 	 * Let the other lwps continue.
4050 	 */
4051 	mutex_enter(&pp->p_lock);
4052 	if (curthread != pp->p_agenttp)
4053 		continuelwps(pp);
4054 	mutex_exit(&pp->p_lock);
4055 
4056 	/*
4057 	 * Wait for zsched to finish initializing the zone.
4058 	 */
4059 	zone_status_wait(zone, ZONE_IS_READY);
4060 	/*
4061 	 * The zone is fully visible, so we can let mounts progress.
4062 	 */
4063 	resume_mounts();
4064 	if (rctls)
4065 		nvlist_free(rctls);
4066 
4067 	return (zoneid);
4068 
4069 errout:
4070 	mutex_exit(&zonehash_lock);
4071 	/*
4072 	 * Let the other lwps continue.
4073 	 */
4074 	mutex_enter(&pp->p_lock);
4075 	if (curthread != pp->p_agenttp)
4076 		continuelwps(pp);
4077 	mutex_exit(&pp->p_lock);
4078 
4079 	resume_mounts();
4080 	if (rctls)
4081 		nvlist_free(rctls);
4082 	/*
4083 	 * There is currently one reference to the zone, a cred_ref from
4084 	 * zone_kcred.  To free the zone, we call crfree, which will call
4085 	 * zone_cred_rele, which will call zone_free.
4086 	 */
4087 	ASSERT(zone->zone_cred_ref == 1);	/* for zone_kcred */
4088 	ASSERT(zone->zone_kcred->cr_ref == 1);
4089 	ASSERT(zone->zone_ref == 0);
4090 	zkcr = zone->zone_kcred;
4091 	zone->zone_kcred = NULL;
4092 	crfree(zkcr);				/* triggers call to zone_free */
4093 	return (zone_create_error(error, error2, extended_error));
4094 }
4095 
4096 /*
4097  * Cause the zone to boot.  This is pretty simple, since we let zoneadmd do
4098  * the heavy lifting.  initname is the path to the program to launch
4099  * at the "top" of the zone; if this is NULL, we use the system default,
4100  * which is stored at zone_default_initname.
4101  */
4102 static int
4103 zone_boot(zoneid_t zoneid)
4104 {
4105 	int err;
4106 	zone_t *zone;
4107 
4108 	if (secpolicy_zone_config(CRED()) != 0)
4109 		return (set_errno(EPERM));
4110 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4111 		return (set_errno(EINVAL));
4112 
4113 	mutex_enter(&zonehash_lock);
4114 	/*
4115 	 * Look for zone under hash lock to prevent races with calls to
4116 	 * zone_shutdown, zone_destroy, etc.
4117 	 */
4118 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4119 		mutex_exit(&zonehash_lock);
4120 		return (set_errno(EINVAL));
4121 	}
4122 
4123 	mutex_enter(&zone_status_lock);
4124 	if (zone_status_get(zone) != ZONE_IS_READY) {
4125 		mutex_exit(&zone_status_lock);
4126 		mutex_exit(&zonehash_lock);
4127 		return (set_errno(EINVAL));
4128 	}
4129 	zone_status_set(zone, ZONE_IS_BOOTING);
4130 	mutex_exit(&zone_status_lock);
4131 
4132 	zone_hold(zone);	/* so we can use the zone_t later */
4133 	mutex_exit(&zonehash_lock);
4134 
4135 	if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4136 		zone_rele(zone);
4137 		return (set_errno(EINTR));
4138 	}
4139 
4140 	/*
4141 	 * Boot (starting init) might have failed, in which case the zone
4142 	 * will go to the SHUTTING_DOWN state; an appropriate errno will
4143 	 * be placed in zone->zone_boot_err, and so we return that.
4144 	 */
4145 	err = zone->zone_boot_err;
4146 	zone_rele(zone);
4147 	return (err ? set_errno(err) : 0);
4148 }
4149 
4150 /*
4151  * Kills all user processes in the zone, waiting for them all to exit
4152  * before returning.
4153  */
4154 static int
4155 zone_empty(zone_t *zone)
4156 {
4157 	int waitstatus;
4158 
4159 	/*
4160 	 * We need to drop zonehash_lock before killing all
4161 	 * processes, otherwise we'll deadlock with zone_find_*
4162 	 * which can be called from the exit path.
4163 	 */
4164 	ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4165 	while ((waitstatus = zone_status_timedwait_sig(zone, lbolt + hz,
4166 	    ZONE_IS_EMPTY)) == -1) {
4167 		killall(zone->zone_id);
4168 	}
4169 	/*
4170 	 * return EINTR if we were signaled
4171 	 */
4172 	if (waitstatus == 0)
4173 		return (EINTR);
4174 	return (0);
4175 }
4176 
4177 /*
4178  * This function implements the policy for zone visibility.
4179  *
4180  * In standard Solaris, a non-global zone can only see itself.
4181  *
4182  * In Trusted Extensions, a labeled zone can lookup any zone whose label
4183  * it dominates. For this test, the label of the global zone is treated as
4184  * admin_high so it is special-cased instead of being checked for dominance.
4185  *
4186  * Returns true if zone attributes are viewable, false otherwise.
4187  */
4188 static boolean_t
4189 zone_list_access(zone_t *zone)
4190 {
4191 
4192 	if (curproc->p_zone == global_zone ||
4193 	    curproc->p_zone == zone) {
4194 		return (B_TRUE);
4195 	} else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4196 		bslabel_t *curproc_label;
4197 		bslabel_t *zone_label;
4198 
4199 		curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4200 		zone_label = label2bslabel(zone->zone_slabel);
4201 
4202 		if (zone->zone_id != GLOBAL_ZONEID &&
4203 		    bldominates(curproc_label, zone_label)) {
4204 			return (B_TRUE);
4205 		} else {
4206 			return (B_FALSE);
4207 		}
4208 	} else {
4209 		return (B_FALSE);
4210 	}
4211 }
4212 
4213 /*
4214  * Systemcall to start the zone's halt sequence.  By the time this
4215  * function successfully returns, all user processes and kernel threads
4216  * executing in it will have exited, ZSD shutdown callbacks executed,
4217  * and the zone status set to ZONE_IS_DOWN.
4218  *
4219  * It is possible that the call will interrupt itself if the caller is the
4220  * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4221  */
4222 static int
4223 zone_shutdown(zoneid_t zoneid)
4224 {
4225 	int error;
4226 	zone_t *zone;
4227 	zone_status_t status;
4228 
4229 	if (secpolicy_zone_config(CRED()) != 0)
4230 		return (set_errno(EPERM));
4231 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4232 		return (set_errno(EINVAL));
4233 
4234 	/*
4235 	 * Block mounts so that VFS_MOUNT() can get an accurate view of
4236 	 * the zone's status with regards to ZONE_IS_SHUTTING down.
4237 	 *
4238 	 * e.g. NFS can fail the mount if it determines that the zone
4239 	 * has already begun the shutdown sequence.
4240 	 */
4241 	if (block_mounts() == 0)
4242 		return (set_errno(EINTR));
4243 	mutex_enter(&zonehash_lock);
4244 	/*
4245 	 * Look for zone under hash lock to prevent races with other
4246 	 * calls to zone_shutdown and zone_destroy.
4247 	 */
4248 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4249 		mutex_exit(&zonehash_lock);
4250 		resume_mounts();
4251 		return (set_errno(EINVAL));
4252 	}
4253 	mutex_enter(&zone_status_lock);
4254 	status = zone_status_get(zone);
4255 	/*
4256 	 * Fail if the zone isn't fully initialized yet.
4257 	 */
4258 	if (status < ZONE_IS_READY) {
4259 		mutex_exit(&zone_status_lock);
4260 		mutex_exit(&zonehash_lock);
4261 		resume_mounts();
4262 		return (set_errno(EINVAL));
4263 	}
4264 	/*
4265 	 * If conditions required for zone_shutdown() to return have been met,
4266 	 * return success.
4267 	 */
4268 	if (status >= ZONE_IS_DOWN) {
4269 		mutex_exit(&zone_status_lock);
4270 		mutex_exit(&zonehash_lock);
4271 		resume_mounts();
4272 		return (0);
4273 	}
4274 	/*
4275 	 * If zone_shutdown() hasn't been called before, go through the motions.
4276 	 * If it has, there's nothing to do but wait for the kernel threads to
4277 	 * drain.
4278 	 */
4279 	if (status < ZONE_IS_EMPTY) {
4280 		uint_t ntasks;
4281 
4282 		mutex_enter(&zone->zone_lock);
4283 		if ((ntasks = zone->zone_ntasks) != 1) {
4284 			/*
4285 			 * There's still stuff running.
4286 			 */
4287 			zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4288 		}
4289 		mutex_exit(&zone->zone_lock);
4290 		if (ntasks == 1) {
4291 			/*
4292 			 * The only way to create another task is through
4293 			 * zone_enter(), which will block until we drop
4294 			 * zonehash_lock.  The zone is empty.
4295 			 */
4296 			if (zone->zone_kthreads == NULL) {
4297 				/*
4298 				 * Skip ahead to ZONE_IS_DOWN
4299 				 */
4300 				zone_status_set(zone, ZONE_IS_DOWN);
4301 			} else {
4302 				zone_status_set(zone, ZONE_IS_EMPTY);
4303 			}
4304 		}
4305 	}
4306 	zone_hold(zone);	/* so we can use the zone_t later */
4307 	mutex_exit(&zone_status_lock);
4308 	mutex_exit(&zonehash_lock);
4309 	resume_mounts();
4310 
4311 	if (error = zone_empty(zone)) {
4312 		zone_rele(zone);
4313 		return (set_errno(error));
4314 	}
4315 	/*
4316 	 * After the zone status goes to ZONE_IS_DOWN this zone will no
4317 	 * longer be notified of changes to the pools configuration, so
4318 	 * in order to not end up with a stale pool pointer, we point
4319 	 * ourselves at the default pool and remove all resource
4320 	 * visibility.  This is especially important as the zone_t may
4321 	 * languish on the deathrow for a very long time waiting for
4322 	 * cred's to drain out.
4323 	 *
4324 	 * This rebinding of the zone can happen multiple times
4325 	 * (presumably due to interrupted or parallel systemcalls)
4326 	 * without any adverse effects.
4327 	 */
4328 	if (pool_lock_intr() != 0) {
4329 		zone_rele(zone);
4330 		return (set_errno(EINTR));
4331 	}
4332 	if (pool_state == POOL_ENABLED) {
4333 		mutex_enter(&cpu_lock);
4334 		zone_pool_set(zone, pool_default);
4335 		/*
4336 		 * The zone no longer needs to be able to see any cpus.
4337 		 */
4338 		zone_pset_set(zone, ZONE_PS_INVAL);
4339 		mutex_exit(&cpu_lock);
4340 	}
4341 	pool_unlock();
4342 
4343 	/*
4344 	 * ZSD shutdown callbacks can be executed multiple times, hence
4345 	 * it is safe to not be holding any locks across this call.
4346 	 */
4347 	zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
4348 
4349 	mutex_enter(&zone_status_lock);
4350 	if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
4351 		zone_status_set(zone, ZONE_IS_DOWN);
4352 	mutex_exit(&zone_status_lock);
4353 
4354 	/*
4355 	 * Wait for kernel threads to drain.
4356 	 */
4357 	if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
4358 		zone_rele(zone);
4359 		return (set_errno(EINTR));
4360 	}
4361 
4362 	/*
4363 	 * Zone can be become down/destroyable even if the above wait
4364 	 * returns EINTR, so any code added here may never execute.
4365 	 * (i.e. don't add code here)
4366 	 */
4367 
4368 	zone_rele(zone);
4369 	return (0);
4370 }
4371 
4372 /*
4373  * Systemcall entry point to finalize the zone halt process.  The caller
4374  * must have already successfully called zone_shutdown().
4375  *
4376  * Upon successful completion, the zone will have been fully destroyed:
4377  * zsched will have exited, destructor callbacks executed, and the zone
4378  * removed from the list of active zones.
4379  */
4380 static int
4381 zone_destroy(zoneid_t zoneid)
4382 {
4383 	uint64_t uniqid;
4384 	zone_t *zone;
4385 	zone_status_t status;
4386 
4387 	if (secpolicy_zone_config(CRED()) != 0)
4388 		return (set_errno(EPERM));
4389 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4390 		return (set_errno(EINVAL));
4391 
4392 	mutex_enter(&zonehash_lock);
4393 	/*
4394 	 * Look for zone under hash lock to prevent races with other
4395 	 * calls to zone_destroy.
4396 	 */
4397 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4398 		mutex_exit(&zonehash_lock);
4399 		return (set_errno(EINVAL));
4400 	}
4401 
4402 	if (zone_mount_count(zone->zone_rootpath) != 0) {
4403 		mutex_exit(&zonehash_lock);
4404 		return (set_errno(EBUSY));
4405 	}
4406 	mutex_enter(&zone_status_lock);
4407 	status = zone_status_get(zone);
4408 	if (status < ZONE_IS_DOWN) {
4409 		mutex_exit(&zone_status_lock);
4410 		mutex_exit(&zonehash_lock);
4411 		return (set_errno(EBUSY));
4412 	} else if (status == ZONE_IS_DOWN) {
4413 		zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
4414 	}
4415 	mutex_exit(&zone_status_lock);
4416 	zone_hold(zone);
4417 	mutex_exit(&zonehash_lock);
4418 
4419 	/*
4420 	 * wait for zsched to exit
4421 	 */
4422 	zone_status_wait(zone, ZONE_IS_DEAD);
4423 	zone_zsd_callbacks(zone, ZSD_DESTROY);
4424 	zone->zone_netstack = NULL;
4425 	uniqid = zone->zone_uniqid;
4426 	zone_rele(zone);
4427 	zone = NULL;	/* potentially free'd */
4428 
4429 	mutex_enter(&zonehash_lock);
4430 	for (; /* ever */; ) {
4431 		boolean_t unref;
4432 
4433 		if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
4434 		    zone->zone_uniqid != uniqid) {
4435 			/*
4436 			 * The zone has gone away.  Necessary conditions
4437 			 * are met, so we return success.
4438 			 */
4439 			mutex_exit(&zonehash_lock);
4440 			return (0);
4441 		}
4442 		mutex_enter(&zone->zone_lock);
4443 		unref = ZONE_IS_UNREF(zone);
4444 		mutex_exit(&zone->zone_lock);
4445 		if (unref) {
4446 			/*
4447 			 * There is only one reference to the zone -- that
4448 			 * added when the zone was added to the hashtables --
4449 			 * and things will remain this way until we drop
4450 			 * zonehash_lock... we can go ahead and cleanup the
4451 			 * zone.
4452 			 */
4453 			break;
4454 		}
4455 
4456 		if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
4457 			/* Signaled */
4458 			mutex_exit(&zonehash_lock);
4459 			return (set_errno(EINTR));
4460 		}
4461 
4462 	}
4463 
4464 	/*
4465 	 * Remove CPU cap for this zone now since we're not going to
4466 	 * fail below this point.
4467 	 */
4468 	cpucaps_zone_remove(zone);
4469 
4470 	/* Get rid of the zone's kstats */
4471 	zone_kstat_delete(zone);
4472 
4473 	/* free brand specific data */
4474 	if (ZONE_IS_BRANDED(zone))
4475 		ZBROP(zone)->b_free_brand_data(zone);
4476 
4477 	/* Say goodbye to brand framework. */
4478 	brand_unregister_zone(zone->zone_brand);
4479 
4480 	/*
4481 	 * It is now safe to let the zone be recreated; remove it from the
4482 	 * lists.  The memory will not be freed until the last cred
4483 	 * reference goes away.
4484 	 */
4485 	ASSERT(zonecount > 1);	/* must be > 1; can't destroy global zone */
4486 	zonecount--;
4487 	/* remove from active list and hash tables */
4488 	list_remove(&zone_active, zone);
4489 	(void) mod_hash_destroy(zonehashbyname,
4490 	    (mod_hash_key_t)zone->zone_name);
4491 	(void) mod_hash_destroy(zonehashbyid,
4492 	    (mod_hash_key_t)(uintptr_t)zone->zone_id);
4493 	if (zone->zone_flags & ZF_HASHED_LABEL)
4494 		(void) mod_hash_destroy(zonehashbylabel,
4495 		    (mod_hash_key_t)zone->zone_slabel);
4496 	mutex_exit(&zonehash_lock);
4497 
4498 	/*
4499 	 * Release the root vnode; we're not using it anymore.  Nor should any
4500 	 * other thread that might access it exist.
4501 	 */
4502 	if (zone->zone_rootvp != NULL) {
4503 		VN_RELE(zone->zone_rootvp);
4504 		zone->zone_rootvp = NULL;
4505 	}
4506 
4507 	/* add to deathrow list */
4508 	mutex_enter(&zone_deathrow_lock);
4509 	list_insert_tail(&zone_deathrow, zone);
4510 	mutex_exit(&zone_deathrow_lock);
4511 
4512 	/*
4513 	 * Drop last reference (which was added by zsched()), this will
4514 	 * free the zone unless there are outstanding cred references.
4515 	 */
4516 	zone_rele(zone);
4517 	return (0);
4518 }
4519 
4520 /*
4521  * Systemcall entry point for zone_getattr(2).
4522  */
4523 static ssize_t
4524 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
4525 {
4526 	size_t size;
4527 	int error = 0, err;
4528 	zone_t *zone;
4529 	char *zonepath;
4530 	char *outstr;
4531 	zone_status_t zone_status;
4532 	pid_t initpid;
4533 	boolean_t global = (curzone == global_zone);
4534 	boolean_t inzone = (curzone->zone_id == zoneid);
4535 	ushort_t flags;
4536 
4537 	mutex_enter(&zonehash_lock);
4538 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4539 		mutex_exit(&zonehash_lock);
4540 		return (set_errno(EINVAL));
4541 	}
4542 	zone_status = zone_status_get(zone);
4543 	if (zone_status < ZONE_IS_INITIALIZED) {
4544 		mutex_exit(&zonehash_lock);
4545 		return (set_errno(EINVAL));
4546 	}
4547 	zone_hold(zone);
4548 	mutex_exit(&zonehash_lock);
4549 
4550 	/*
4551 	 * If not in the global zone, don't show information about other zones,
4552 	 * unless the system is labeled and the local zone's label dominates
4553 	 * the other zone.
4554 	 */
4555 	if (!zone_list_access(zone)) {
4556 		zone_rele(zone);
4557 		return (set_errno(EINVAL));
4558 	}
4559 
4560 	switch (attr) {
4561 	case ZONE_ATTR_ROOT:
4562 		if (global) {
4563 			/*
4564 			 * Copy the path to trim the trailing "/" (except for
4565 			 * the global zone).
4566 			 */
4567 			if (zone != global_zone)
4568 				size = zone->zone_rootpathlen - 1;
4569 			else
4570 				size = zone->zone_rootpathlen;
4571 			zonepath = kmem_alloc(size, KM_SLEEP);
4572 			bcopy(zone->zone_rootpath, zonepath, size);
4573 			zonepath[size - 1] = '\0';
4574 		} else {
4575 			if (inzone || !is_system_labeled()) {
4576 				/*
4577 				 * Caller is not in the global zone.
4578 				 * if the query is on the current zone
4579 				 * or the system is not labeled,
4580 				 * just return faked-up path for current zone.
4581 				 */
4582 				zonepath = "/";
4583 				size = 2;
4584 			} else {
4585 				/*
4586 				 * Return related path for current zone.
4587 				 */
4588 				int prefix_len = strlen(zone_prefix);
4589 				int zname_len = strlen(zone->zone_name);
4590 
4591 				size = prefix_len + zname_len + 1;
4592 				zonepath = kmem_alloc(size, KM_SLEEP);
4593 				bcopy(zone_prefix, zonepath, prefix_len);
4594 				bcopy(zone->zone_name, zonepath +
4595 				    prefix_len, zname_len);
4596 				zonepath[size - 1] = '\0';
4597 			}
4598 		}
4599 		if (bufsize > size)
4600 			bufsize = size;
4601 		if (buf != NULL) {
4602 			err = copyoutstr(zonepath, buf, bufsize, NULL);
4603 			if (err != 0 && err != ENAMETOOLONG)
4604 				error = EFAULT;
4605 		}
4606 		if (global || (is_system_labeled() && !inzone))
4607 			kmem_free(zonepath, size);
4608 		break;
4609 
4610 	case ZONE_ATTR_NAME:
4611 		size = strlen(zone->zone_name) + 1;
4612 		if (bufsize > size)
4613 			bufsize = size;
4614 		if (buf != NULL) {
4615 			err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
4616 			if (err != 0 && err != ENAMETOOLONG)
4617 				error = EFAULT;
4618 		}
4619 		break;
4620 
4621 	case ZONE_ATTR_STATUS:
4622 		/*
4623 		 * Since we're not holding zonehash_lock, the zone status
4624 		 * may be anything; leave it up to userland to sort it out.
4625 		 */
4626 		size = sizeof (zone_status);
4627 		if (bufsize > size)
4628 			bufsize = size;
4629 		zone_status = zone_status_get(zone);
4630 		if (buf != NULL &&
4631 		    copyout(&zone_status, buf, bufsize) != 0)
4632 			error = EFAULT;
4633 		break;
4634 	case ZONE_ATTR_FLAGS:
4635 		size = sizeof (zone->zone_flags);
4636 		if (bufsize > size)
4637 			bufsize = size;
4638 		flags = zone->zone_flags;
4639 		if (buf != NULL &&
4640 		    copyout(&flags, buf, bufsize) != 0)
4641 			error = EFAULT;
4642 		break;
4643 	case ZONE_ATTR_PRIVSET:
4644 		size = sizeof (priv_set_t);
4645 		if (bufsize > size)
4646 			bufsize = size;
4647 		if (buf != NULL &&
4648 		    copyout(zone->zone_privset, buf, bufsize) != 0)
4649 			error = EFAULT;
4650 		break;
4651 	case ZONE_ATTR_UNIQID:
4652 		size = sizeof (zone->zone_uniqid);
4653 		if (bufsize > size)
4654 			bufsize = size;
4655 		if (buf != NULL &&
4656 		    copyout(&zone->zone_uniqid, buf, bufsize) != 0)
4657 			error = EFAULT;
4658 		break;
4659 	case ZONE_ATTR_POOLID:
4660 		{
4661 			pool_t *pool;
4662 			poolid_t poolid;
4663 
4664 			if (pool_lock_intr() != 0) {
4665 				error = EINTR;
4666 				break;
4667 			}
4668 			pool = zone_pool_get(zone);
4669 			poolid = pool->pool_id;
4670 			pool_unlock();
4671 			size = sizeof (poolid);
4672 			if (bufsize > size)
4673 				bufsize = size;
4674 			if (buf != NULL && copyout(&poolid, buf, size) != 0)
4675 				error = EFAULT;
4676 		}
4677 		break;
4678 	case ZONE_ATTR_SLBL:
4679 		size = sizeof (bslabel_t);
4680 		if (bufsize > size)
4681 			bufsize = size;
4682 		if (zone->zone_slabel == NULL)
4683 			error = EINVAL;
4684 		else if (buf != NULL &&
4685 		    copyout(label2bslabel(zone->zone_slabel), buf,
4686 		    bufsize) != 0)
4687 			error = EFAULT;
4688 		break;
4689 	case ZONE_ATTR_INITPID:
4690 		size = sizeof (initpid);
4691 		if (bufsize > size)
4692 			bufsize = size;
4693 		initpid = zone->zone_proc_initpid;
4694 		if (initpid == -1) {
4695 			error = ESRCH;
4696 			break;
4697 		}
4698 		if (buf != NULL &&
4699 		    copyout(&initpid, buf, bufsize) != 0)
4700 			error = EFAULT;
4701 		break;
4702 	case ZONE_ATTR_BRAND:
4703 		size = strlen(zone->zone_brand->b_name) + 1;
4704 
4705 		if (bufsize > size)
4706 			bufsize = size;
4707 		if (buf != NULL) {
4708 			err = copyoutstr(zone->zone_brand->b_name, buf,
4709 			    bufsize, NULL);
4710 			if (err != 0 && err != ENAMETOOLONG)
4711 				error = EFAULT;
4712 		}
4713 		break;
4714 	case ZONE_ATTR_INITNAME:
4715 		size = strlen(zone->zone_initname) + 1;
4716 		if (bufsize > size)
4717 			bufsize = size;
4718 		if (buf != NULL) {
4719 			err = copyoutstr(zone->zone_initname, buf, bufsize,
4720 			    NULL);
4721 			if (err != 0 && err != ENAMETOOLONG)
4722 				error = EFAULT;
4723 		}
4724 		break;
4725 	case ZONE_ATTR_BOOTARGS:
4726 		if (zone->zone_bootargs == NULL)
4727 			outstr = "";
4728 		else
4729 			outstr = zone->zone_bootargs;
4730 		size = strlen(outstr) + 1;
4731 		if (bufsize > size)
4732 			bufsize = size;
4733 		if (buf != NULL) {
4734 			err = copyoutstr(outstr, buf, bufsize, NULL);
4735 			if (err != 0 && err != ENAMETOOLONG)
4736 				error = EFAULT;
4737 		}
4738 		break;
4739 	case ZONE_ATTR_PHYS_MCAP:
4740 		size = sizeof (zone->zone_phys_mcap);
4741 		if (bufsize > size)
4742 			bufsize = size;
4743 		if (buf != NULL &&
4744 		    copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
4745 			error = EFAULT;
4746 		break;
4747 	case ZONE_ATTR_SCHED_CLASS:
4748 		mutex_enter(&class_lock);
4749 
4750 		if (zone->zone_defaultcid >= loaded_classes)
4751 			outstr = "";
4752 		else
4753 			outstr = sclass[zone->zone_defaultcid].cl_name;
4754 		size = strlen(outstr) + 1;
4755 		if (bufsize > size)
4756 			bufsize = size;
4757 		if (buf != NULL) {
4758 			err = copyoutstr(outstr, buf, bufsize, NULL);
4759 			if (err != 0 && err != ENAMETOOLONG)
4760 				error = EFAULT;
4761 		}
4762 
4763 		mutex_exit(&class_lock);
4764 		break;
4765 	case ZONE_ATTR_HOSTID:
4766 		if (zone->zone_hostid != HW_INVALID_HOSTID &&
4767 		    bufsize == sizeof (zone->zone_hostid)) {
4768 			size = sizeof (zone->zone_hostid);
4769 			if (buf != NULL && copyout(&zone->zone_hostid, buf,
4770 			    bufsize) != 0)
4771 				error = EFAULT;
4772 		} else {
4773 			error = EINVAL;
4774 		}
4775 		break;
4776 	default:
4777 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
4778 			size = bufsize;
4779 			error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
4780 		} else {
4781 			error = EINVAL;
4782 		}
4783 	}
4784 	zone_rele(zone);
4785 
4786 	if (error)
4787 		return (set_errno(error));
4788 	return ((ssize_t)size);
4789 }
4790 
4791 /*
4792  * Systemcall entry point for zone_setattr(2).
4793  */
4794 /*ARGSUSED*/
4795 static int
4796 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
4797 {
4798 	zone_t *zone;
4799 	zone_status_t zone_status;
4800 	int err;
4801 
4802 	if (secpolicy_zone_config(CRED()) != 0)
4803 		return (set_errno(EPERM));
4804 
4805 	/*
4806 	 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
4807 	 * global zone.
4808 	 */
4809 	if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
4810 		return (set_errno(EINVAL));
4811 	}
4812 
4813 	mutex_enter(&zonehash_lock);
4814 	if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4815 		mutex_exit(&zonehash_lock);
4816 		return (set_errno(EINVAL));
4817 	}
4818 	zone_hold(zone);
4819 	mutex_exit(&zonehash_lock);
4820 
4821 	/*
4822 	 * At present most attributes can only be set on non-running,
4823 	 * non-global zones.
4824 	 */
4825 	zone_status = zone_status_get(zone);
4826 	if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY)
4827 		goto done;
4828 
4829 	switch (attr) {
4830 	case ZONE_ATTR_INITNAME:
4831 		err = zone_set_initname(zone, (const char *)buf);
4832 		break;
4833 	case ZONE_ATTR_BOOTARGS:
4834 		err = zone_set_bootargs(zone, (const char *)buf);
4835 		break;
4836 	case ZONE_ATTR_BRAND:
4837 		err = zone_set_brand(zone, (const char *)buf);
4838 		break;
4839 	case ZONE_ATTR_PHYS_MCAP:
4840 		err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
4841 		break;
4842 	case ZONE_ATTR_SCHED_CLASS:
4843 		err = zone_set_sched_class(zone, (const char *)buf);
4844 		break;
4845 	case ZONE_ATTR_HOSTID:
4846 		if (bufsize == sizeof (zone->zone_hostid)) {
4847 			if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
4848 				err = 0;
4849 			else
4850 				err = EFAULT;
4851 		} else {
4852 			err = EINVAL;
4853 		}
4854 		break;
4855 	default:
4856 		if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
4857 			err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
4858 		else
4859 			err = EINVAL;
4860 	}
4861 
4862 done:
4863 	zone_rele(zone);
4864 	return (err != 0 ? set_errno(err) : 0);
4865 }
4866 
4867 /*
4868  * Return zero if the process has at least one vnode mapped in to its
4869  * address space which shouldn't be allowed to change zones.
4870  *
4871  * Also return zero if the process has any shared mappings which reserve
4872  * swap.  This is because the counting for zone.max-swap does not allow swap
4873  * reservation to be shared between zones.  zone swap reservation is counted
4874  * on zone->zone_max_swap.
4875  */
4876 static int
4877 as_can_change_zones(void)
4878 {
4879 	proc_t *pp = curproc;
4880 	struct seg *seg;
4881 	struct as *as = pp->p_as;
4882 	vnode_t *vp;
4883 	int allow = 1;
4884 
4885 	ASSERT(pp->p_as != &kas);
4886 	AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
4887 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
4888 
4889 		/*
4890 		 * Cannot enter zone with shared anon memory which
4891 		 * reserves swap.  See comment above.
4892 		 */
4893 		if (seg_can_change_zones(seg) == B_FALSE) {
4894 			allow = 0;
4895 			break;
4896 		}
4897 		/*
4898 		 * if we can't get a backing vnode for this segment then skip
4899 		 * it.
4900 		 */
4901 		vp = NULL;
4902 		if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
4903 			continue;
4904 		if (!vn_can_change_zones(vp)) { /* bail on first match */
4905 			allow = 0;
4906 			break;
4907 		}
4908 	}
4909 	AS_LOCK_EXIT(as, &as->a_lock);
4910 	return (allow);
4911 }
4912 
4913 /*
4914  * Count swap reserved by curproc's address space
4915  */
4916 static size_t
4917 as_swresv(void)
4918 {
4919 	proc_t *pp = curproc;
4920 	struct seg *seg;
4921 	struct as *as = pp->p_as;
4922 	size_t swap = 0;
4923 
4924 	ASSERT(pp->p_as != &kas);
4925 	ASSERT(AS_WRITE_HELD(as, &as->a_lock));
4926 	for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
4927 		swap += seg_swresv(seg);
4928 
4929 	return (swap);
4930 }
4931 
4932 /*
4933  * Systemcall entry point for zone_enter().
4934  *
4935  * The current process is injected into said zone.  In the process
4936  * it will change its project membership, privileges, rootdir/cwd,
4937  * zone-wide rctls, and pool association to match those of the zone.
4938  *
4939  * The first zone_enter() called while the zone is in the ZONE_IS_READY
4940  * state will transition it to ZONE_IS_RUNNING.  Processes may only
4941  * enter a zone that is "ready" or "running".
4942  */
4943 static int
4944 zone_enter(zoneid_t zoneid)
4945 {
4946 	zone_t *zone;
4947 	vnode_t *vp;
4948 	proc_t *pp = curproc;
4949 	contract_t *ct;
4950 	cont_process_t *ctp;
4951 	task_t *tk, *oldtk;
4952 	kproject_t *zone_proj0;
4953 	cred_t *cr, *newcr;
4954 	pool_t *oldpool, *newpool;
4955 	sess_t *sp;
4956 	uid_t uid;
4957 	zone_status_t status;
4958 	int err = 0;
4959 	rctl_entity_p_t e;
4960 	size_t swap;
4961 	kthread_id_t t;
4962 
4963 	if (secpolicy_zone_config(CRED()) != 0)
4964 		return (set_errno(EPERM));
4965 	if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4966 		return (set_errno(EINVAL));
4967 
4968 	/*
4969 	 * Stop all lwps so we don't need to hold a lock to look at
4970 	 * curproc->p_zone.  This needs to happen before we grab any
4971 	 * locks to avoid deadlock (another lwp in the process could
4972 	 * be waiting for the held lock).
4973 	 */
4974 	if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
4975 		return (set_errno(EINTR));
4976 
4977 	/*
4978 	 * Make sure we're not changing zones with files open or mapped in
4979 	 * to our address space which shouldn't be changing zones.
4980 	 */
4981 	if (!files_can_change_zones()) {
4982 		err = EBADF;
4983 		goto out;
4984 	}
4985 	if (!as_can_change_zones()) {
4986 		err = EFAULT;
4987 		goto out;
4988 	}
4989 
4990 	mutex_enter(&zonehash_lock);
4991 	if (pp->p_zone != global_zone) {
4992 		mutex_exit(&zonehash_lock);
4993 		err = EINVAL;
4994 		goto out;
4995 	}
4996 
4997 	zone = zone_find_all_by_id(zoneid);
4998 	if (zone == NULL) {
4999 		mutex_exit(&zonehash_lock);
5000 		err = EINVAL;
5001 		goto out;
5002 	}
5003 
5004 	/*
5005 	 * To prevent processes in a zone from holding contracts on
5006 	 * extrazonal resources, and to avoid process contract
5007 	 * memberships which span zones, contract holders and processes
5008 	 * which aren't the sole members of their encapsulating process
5009 	 * contracts are not allowed to zone_enter.
5010 	 */
5011 	ctp = pp->p_ct_process;
5012 	ct = &ctp->conp_contract;
5013 	mutex_enter(&ct->ct_lock);
5014 	mutex_enter(&pp->p_lock);
5015 	if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5016 		mutex_exit(&pp->p_lock);
5017 		mutex_exit(&ct->ct_lock);
5018 		mutex_exit(&zonehash_lock);
5019 		err = EINVAL;
5020 		goto out;
5021 	}
5022 
5023 	/*
5024 	 * Moreover, we don't allow processes whose encapsulating
5025 	 * process contracts have inherited extrazonal contracts.
5026 	 * While it would be easier to eliminate all process contracts
5027 	 * with inherited contracts, we need to be able to give a
5028 	 * restarted init (or other zone-penetrating process) its
5029 	 * predecessor's contracts.
5030 	 */
5031 	if (ctp->conp_ninherited != 0) {
5032 		contract_t *next;
5033 		for (next = list_head(&ctp->conp_inherited); next;
5034 		    next = list_next(&ctp->conp_inherited, next)) {
5035 			if (contract_getzuniqid(next) != zone->zone_uniqid) {
5036 				mutex_exit(&pp->p_lock);
5037 				mutex_exit(&ct->ct_lock);
5038 				mutex_exit(&zonehash_lock);
5039 				err = EINVAL;
5040 				goto out;
5041 			}
5042 		}
5043 	}
5044 
5045 	mutex_exit(&pp->p_lock);
5046 	mutex_exit(&ct->ct_lock);
5047 
5048 	status = zone_status_get(zone);
5049 	if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5050 		/*
5051 		 * Can't join
5052 		 */
5053 		mutex_exit(&zonehash_lock);
5054 		err = EINVAL;
5055 		goto out;
5056 	}
5057 
5058 	/*
5059 	 * Make sure new priv set is within the permitted set for caller
5060 	 */
5061 	if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5062 		mutex_exit(&zonehash_lock);
5063 		err = EPERM;
5064 		goto out;
5065 	}
5066 	/*
5067 	 * We want to momentarily drop zonehash_lock while we optimistically
5068 	 * bind curproc to the pool it should be running in.  This is safe
5069 	 * since the zone can't disappear (we have a hold on it).
5070 	 */
5071 	zone_hold(zone);
5072 	mutex_exit(&zonehash_lock);
5073 
5074 	/*
5075 	 * Grab pool_lock to keep the pools configuration from changing
5076 	 * and to stop ourselves from getting rebound to another pool
5077 	 * until we join the zone.
5078 	 */
5079 	if (pool_lock_intr() != 0) {
5080 		zone_rele(zone);
5081 		err = EINTR;
5082 		goto out;
5083 	}
5084 	ASSERT(secpolicy_pool(CRED()) == 0);
5085 	/*
5086 	 * Bind ourselves to the pool currently associated with the zone.
5087 	 */
5088 	oldpool = curproc->p_pool;
5089 	newpool = zone_pool_get(zone);
5090 	if (pool_state == POOL_ENABLED && newpool != oldpool &&
5091 	    (err = pool_do_bind(newpool, P_PID, P_MYID,
5092 	    POOL_BIND_ALL)) != 0) {
5093 		pool_unlock();
5094 		zone_rele(zone);
5095 		goto out;
5096 	}
5097 
5098 	/*
5099 	 * Grab cpu_lock now; we'll need it later when we call
5100 	 * task_join().
5101 	 */
5102 	mutex_enter(&cpu_lock);
5103 	mutex_enter(&zonehash_lock);
5104 	/*
5105 	 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
5106 	 */
5107 	if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
5108 		/*
5109 		 * Can't join anymore.
5110 		 */
5111 		mutex_exit(&zonehash_lock);
5112 		mutex_exit(&cpu_lock);
5113 		if (pool_state == POOL_ENABLED &&
5114 		    newpool != oldpool)
5115 			(void) pool_do_bind(oldpool, P_PID, P_MYID,
5116 			    POOL_BIND_ALL);
5117 		pool_unlock();
5118 		zone_rele(zone);
5119 		err = EINVAL;
5120 		goto out;
5121 	}
5122 
5123 	/*
5124 	 * a_lock must be held while transfering locked memory and swap
5125 	 * reservation from the global zone to the non global zone because
5126 	 * asynchronous faults on the processes' address space can lock
5127 	 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
5128 	 * segments respectively.
5129 	 */
5130 	AS_LOCK_ENTER(pp->as, &pp->p_as->a_lock, RW_WRITER);
5131 	swap = as_swresv();
5132 	mutex_enter(&pp->p_lock);
5133 	zone_proj0 = zone->zone_zsched->p_task->tk_proj;
5134 	/* verify that we do not exceed and task or lwp limits */
5135 	mutex_enter(&zone->zone_nlwps_lock);
5136 	/* add new lwps to zone and zone's proj0 */
5137 	zone_proj0->kpj_nlwps += pp->p_lwpcnt;
5138 	zone->zone_nlwps += pp->p_lwpcnt;
5139 	/* add 1 task to zone's proj0 */
5140 	zone_proj0->kpj_ntasks += 1;
5141 	mutex_exit(&zone->zone_nlwps_lock);
5142 
5143 	mutex_enter(&zone->zone_mem_lock);
5144 	zone->zone_locked_mem += pp->p_locked_mem;
5145 	zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
5146 	zone->zone_max_swap += swap;
5147 	mutex_exit(&zone->zone_mem_lock);
5148 
5149 	mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
5150 	zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
5151 	mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
5152 
5153 	/* remove lwps from proc's old zone and old project */
5154 	mutex_enter(&pp->p_zone->zone_nlwps_lock);
5155 	pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
5156 	pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
5157 	mutex_exit(&pp->p_zone->zone_nlwps_lock);
5158 
5159 	mutex_enter(&pp->p_zone->zone_mem_lock);
5160 	pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
5161 	pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
5162 	pp->p_zone->zone_max_swap -= swap;
5163 	mutex_exit(&pp->p_zone->zone_mem_lock);
5164 
5165 	mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5166 	pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
5167 	mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
5168 
5169 	pp->p_flag |= SZONETOP;
5170 	pp->p_zone = zone;
5171 	mutex_exit(&pp->p_lock);
5172 	AS_LOCK_EXIT(pp->p_as, &pp->p_as->a_lock);
5173 
5174 	/*
5175 	 * Joining the zone cannot fail from now on.
5176 	 *
5177 	 * This means that a lot of the following code can be commonized and
5178 	 * shared with zsched().
5179 	 */
5180 
5181 	/*
5182 	 * If the process contract fmri was inherited, we need to
5183 	 * flag this so that any contract status will not leak
5184 	 * extra zone information, svc_fmri in this case
5185 	 */
5186 	if (ctp->conp_svc_ctid != ct->ct_id) {
5187 		mutex_enter(&ct->ct_lock);
5188 		ctp->conp_svc_zone_enter = ct->ct_id;
5189 		mutex_exit(&ct->ct_lock);
5190 	}
5191 
5192 	/*
5193 	 * Reset the encapsulating process contract's zone.
5194 	 */
5195 	ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
5196 	contract_setzuniqid(ct, zone->zone_uniqid);
5197 
5198 	/*
5199 	 * Create a new task and associate the process with the project keyed
5200 	 * by (projid,zoneid).
5201 	 *
5202 	 * We might as well be in project 0; the global zone's projid doesn't
5203 	 * make much sense in a zone anyhow.
5204 	 *
5205 	 * This also increments zone_ntasks, and returns with p_lock held.
5206 	 */
5207 	tk = task_create(0, zone);
5208 	oldtk = task_join(tk, 0);
5209 	mutex_exit(&cpu_lock);
5210 
5211 	/*
5212 	 * call RCTLOP_SET functions on this proc
5213 	 */
5214 	e.rcep_p.zone = zone;
5215 	e.rcep_t = RCENTITY_ZONE;
5216 	(void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
5217 	    RCD_CALLBACK);
5218 	mutex_exit(&pp->p_lock);
5219 
5220 	/*
5221 	 * We don't need to hold any of zsched's locks here; not only do we know
5222 	 * the process and zone aren't going away, we know its session isn't
5223 	 * changing either.
5224 	 *
5225 	 * By joining zsched's session here, we mimic the behavior in the
5226 	 * global zone of init's sid being the pid of sched.  We extend this
5227 	 * to all zlogin-like zone_enter()'ing processes as well.
5228 	 */
5229 	mutex_enter(&pidlock);
5230 	sp = zone->zone_zsched->p_sessp;
5231 	sess_hold(zone->zone_zsched);
5232 	mutex_enter(&pp->p_lock);
5233 	pgexit(pp);
5234 	sess_rele(pp->p_sessp, B_TRUE);
5235 	pp->p_sessp = sp;
5236 	pgjoin(pp, zone->zone_zsched->p_pidp);
5237 
5238 	/*
5239 	 * If any threads are scheduled to be placed on zone wait queue they
5240 	 * should abandon the idea since the wait queue is changing.
5241 	 * We need to be holding pidlock & p_lock to do this.
5242 	 */
5243 	if ((t = pp->p_tlist) != NULL) {
5244 		do {
5245 			thread_lock(t);
5246 			/*
5247 			 * Kick this thread so that he doesn't sit
5248 			 * on a wrong wait queue.
5249 			 */
5250 			if (ISWAITING(t))
5251 				setrun_locked(t);
5252 
5253 			if (t->t_schedflag & TS_ANYWAITQ)
5254 				t->t_schedflag &= ~ TS_ANYWAITQ;
5255 
5256 			thread_unlock(t);
5257 		} while ((t = t->t_forw) != pp->p_tlist);
5258 	}
5259 
5260 	/*
5261 	 * If there is a default scheduling class for the zone and it is not
5262 	 * the class we are currently in, change all of the threads in the
5263 	 * process to the new class.  We need to be holding pidlock & p_lock
5264 	 * when we call parmsset so this is a good place to do it.
5265 	 */
5266 	if (zone->zone_defaultcid > 0 &&
5267 	    zone->zone_defaultcid != curthread->t_cid) {
5268 		pcparms_t pcparms;
5269 
5270 		pcparms.pc_cid = zone->zone_defaultcid;
5271 		pcparms.pc_clparms[0] = 0;
5272 
5273 		/*
5274 		 * If setting the class fails, we still want to enter the zone.
5275 		 */
5276 		if ((t = pp->p_tlist) != NULL) {
5277 			do {
5278 				(void) parmsset(&pcparms, t);
5279 			} while ((t = t->t_forw) != pp->p_tlist);
5280 		}
5281 	}
5282 
5283 	mutex_exit(&pp->p_lock);
5284 	mutex_exit(&pidlock);
5285 
5286 	mutex_exit(&zonehash_lock);
5287 	/*
5288 	 * We're firmly in the zone; let pools progress.
5289 	 */
5290 	pool_unlock();
5291 	task_rele(oldtk);
5292 	/*
5293 	 * We don't need to retain a hold on the zone since we already
5294 	 * incremented zone_ntasks, so the zone isn't going anywhere.
5295 	 */
5296 	zone_rele(zone);
5297 
5298 	/*
5299 	 * Chroot
5300 	 */
5301 	vp = zone->zone_rootvp;
5302 	zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
5303 	zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
5304 
5305 	/*
5306 	 * Change process credentials
5307 	 */
5308 	newcr = cralloc();
5309 	mutex_enter(&pp->p_crlock);
5310 	cr = pp->p_cred;
5311 	crcopy_to(cr, newcr);
5312 	crsetzone(newcr, zone);
5313 	pp->p_cred = newcr;
5314 
5315 	/*
5316 	 * Restrict all process privilege sets to zone limit
5317 	 */
5318 	priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
5319 	priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
5320 	priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
5321 	priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
5322 	mutex_exit(&pp->p_crlock);
5323 	crset(pp, newcr);
5324 
5325 	/*
5326 	 * Adjust upcount to reflect zone entry.
5327 	 */
5328 	uid = crgetruid(newcr);
5329 	mutex_enter(&pidlock);
5330 	upcount_dec(uid, GLOBAL_ZONEID);
5331 	upcount_inc(uid, zoneid);
5332 	mutex_exit(&pidlock);
5333 
5334 	/*
5335 	 * Set up core file path and content.
5336 	 */
5337 	set_core_defaults();
5338 
5339 out:
5340 	/*
5341 	 * Let the other lwps continue.
5342 	 */
5343 	mutex_enter(&pp->p_lock);
5344 	if (curthread != pp->p_agenttp)
5345 		continuelwps(pp);
5346 	mutex_exit(&pp->p_lock);
5347 
5348 	return (err != 0 ? set_errno(err) : 0);
5349 }
5350 
5351 /*
5352  * Systemcall entry point for zone_list(2).
5353  *
5354  * Processes running in a (non-global) zone only see themselves.
5355  * On labeled systems, they see all zones whose label they dominate.
5356  */
5357 static int
5358 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
5359 {
5360 	zoneid_t *zoneids;
5361 	zone_t *zone, *myzone;
5362 	uint_t user_nzones, real_nzones;
5363 	uint_t domi_nzones;
5364 	int error;
5365 
5366 	if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
5367 		return (set_errno(EFAULT));
5368 
5369 	myzone = curproc->p_zone;
5370 	if (myzone != global_zone) {
5371 		bslabel_t *mybslab;
5372 
5373 		if (!is_system_labeled()) {
5374 			/* just return current zone */
5375 			real_nzones = domi_nzones = 1;
5376 			zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
5377 			zoneids[0] = myzone->zone_id;
5378 		} else {
5379 			/* return all zones that are dominated */
5380 			mutex_enter(&zonehash_lock);
5381 			real_nzones = zonecount;
5382 			domi_nzones = 0;
5383 			if (real_nzones > 0) {
5384 				zoneids = kmem_alloc(real_nzones *
5385 				    sizeof (zoneid_t), KM_SLEEP);
5386 				mybslab = label2bslabel(myzone->zone_slabel);
5387 				for (zone = list_head(&zone_active);
5388 				    zone != NULL;
5389 				    zone = list_next(&zone_active, zone)) {
5390 					if (zone->zone_id == GLOBAL_ZONEID)
5391 						continue;
5392 					if (zone != myzone &&
5393 					    (zone->zone_flags & ZF_IS_SCRATCH))
5394 						continue;
5395 					/*
5396 					 * Note that a label always dominates
5397 					 * itself, so myzone is always included
5398 					 * in the list.
5399 					 */
5400 					if (bldominates(mybslab,
5401 					    label2bslabel(zone->zone_slabel))) {
5402 						zoneids[domi_nzones++] =
5403 						    zone->zone_id;
5404 					}
5405 				}
5406 			}
5407 			mutex_exit(&zonehash_lock);
5408 		}
5409 	} else {
5410 		mutex_enter(&zonehash_lock);
5411 		real_nzones = zonecount;
5412 		domi_nzones = 0;
5413 		if (real_nzones > 0) {
5414 			zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t),
5415 			    KM_SLEEP);
5416 			for (zone = list_head(&zone_active); zone != NULL;
5417 			    zone = list_next(&zone_active, zone))
5418 				zoneids[domi_nzones++] = zone->zone_id;
5419 			ASSERT(domi_nzones == real_nzones);
5420 		}
5421 		mutex_exit(&zonehash_lock);
5422 	}
5423 
5424 	/*
5425 	 * If user has allocated space for fewer entries than we found, then
5426 	 * return only up to his limit.  Either way, tell him exactly how many
5427 	 * we found.
5428 	 */
5429 	if (domi_nzones < user_nzones)
5430 		user_nzones = domi_nzones;
5431 	error = 0;
5432 	if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
5433 		error = EFAULT;
5434 	} else if (zoneidlist != NULL && user_nzones != 0) {
5435 		if (copyout(zoneids, zoneidlist,
5436 		    user_nzones * sizeof (zoneid_t)) != 0)
5437 			error = EFAULT;
5438 	}
5439 
5440 	if (real_nzones > 0)
5441 		kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
5442 
5443 	if (error != 0)
5444 		return (set_errno(error));
5445 	else
5446 		return (0);
5447 }
5448 
5449 /*
5450  * Systemcall entry point for zone_lookup(2).
5451  *
5452  * Non-global zones are only able to see themselves and (on labeled systems)
5453  * the zones they dominate.
5454  */
5455 static zoneid_t
5456 zone_lookup(const char *zone_name)
5457 {
5458 	char *kname;
5459 	zone_t *zone;
5460 	zoneid_t zoneid;
5461 	int err;
5462 
5463 	if (zone_name == NULL) {
5464 		/* return caller's zone id */
5465 		return (getzoneid());
5466 	}
5467 
5468 	kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
5469 	if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
5470 		kmem_free(kname, ZONENAME_MAX);
5471 		return (set_errno(err));
5472 	}
5473 
5474 	mutex_enter(&zonehash_lock);
5475 	zone = zone_find_all_by_name(kname);
5476 	kmem_free(kname, ZONENAME_MAX);
5477 	/*
5478 	 * In a non-global zone, can only lookup global and own name.
5479 	 * In Trusted Extensions zone label dominance rules apply.
5480 	 */
5481 	if (zone == NULL ||
5482 	    zone_status_get(zone) < ZONE_IS_READY ||
5483 	    !zone_list_access(zone)) {
5484 		mutex_exit(&zonehash_lock);
5485 		return (set_errno(EINVAL));
5486 	} else {
5487 		zoneid = zone->zone_id;
5488 		mutex_exit(&zonehash_lock);
5489 		return (zoneid);
5490 	}
5491 }
5492 
5493 static int
5494 zone_version(int *version_arg)
5495 {
5496 	int version = ZONE_SYSCALL_API_VERSION;
5497 
5498 	if (copyout(&version, version_arg, sizeof (int)) != 0)
5499 		return (set_errno(EFAULT));
5500 	return (0);
5501 }
5502 
5503 /* ARGSUSED */
5504 long
5505 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
5506 {
5507 	zone_def zs;
5508 	int err;
5509 
5510 	switch (cmd) {
5511 	case ZONE_CREATE:
5512 		if (get_udatamodel() == DATAMODEL_NATIVE) {
5513 			if (copyin(arg1, &zs, sizeof (zone_def))) {
5514 				return (set_errno(EFAULT));
5515 			}
5516 		} else {
5517 #ifdef _SYSCALL32_IMPL
5518 			zone_def32 zs32;
5519 
5520 			if (copyin(arg1, &zs32, sizeof (zone_def32))) {
5521 				return (set_errno(EFAULT));
5522 			}
5523 			zs.zone_name =
5524 			    (const char *)(unsigned long)zs32.zone_name;
5525 			zs.zone_root =
5526 			    (const char *)(unsigned long)zs32.zone_root;
5527 			zs.zone_privs =
5528 			    (const struct priv_set *)
5529 			    (unsigned long)zs32.zone_privs;
5530 			zs.zone_privssz = zs32.zone_privssz;
5531 			zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
5532 			zs.rctlbufsz = zs32.rctlbufsz;
5533 			zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
5534 			zs.zfsbufsz = zs32.zfsbufsz;
5535 			zs.extended_error =
5536 			    (int *)(unsigned long)zs32.extended_error;
5537 			zs.match = zs32.match;
5538 			zs.doi = zs32.doi;
5539 			zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
5540 			zs.flags = zs32.flags;
5541 #else
5542 			panic("get_udatamodel() returned bogus result\n");
5543 #endif
5544 		}
5545 
5546 		return (zone_create(zs.zone_name, zs.zone_root,
5547 		    zs.zone_privs, zs.zone_privssz,
5548 		    (caddr_t)zs.rctlbuf, zs.rctlbufsz,
5549 		    (caddr_t)zs.zfsbuf, zs.zfsbufsz,
5550 		    zs.extended_error, zs.match, zs.doi,
5551 		    zs.label, zs.flags));
5552 	case ZONE_BOOT:
5553 		return (zone_boot((zoneid_t)(uintptr_t)arg1));
5554 	case ZONE_DESTROY:
5555 		return (zone_destroy((zoneid_t)(uintptr_t)arg1));
5556 	case ZONE_GETATTR:
5557 		return (zone_getattr((zoneid_t)(uintptr_t)arg1,
5558 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
5559 	case ZONE_SETATTR:
5560 		return (zone_setattr((zoneid_t)(uintptr_t)arg1,
5561 		    (int)(uintptr_t)arg2, arg3, (size_t)arg4));
5562 	case ZONE_ENTER:
5563 		return (zone_enter((zoneid_t)(uintptr_t)arg1));
5564 	case ZONE_LIST:
5565 		return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
5566 	case ZONE_SHUTDOWN:
5567 		return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
5568 	case ZONE_LOOKUP:
5569 		return (zone_lookup((const char *)arg1));
5570 	case ZONE_VERSION:
5571 		return (zone_version((int *)arg1));
5572 	case ZONE_ADD_DATALINK:
5573 		return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
5574 		    (datalink_id_t)(uintptr_t)arg2));
5575 	case ZONE_DEL_DATALINK:
5576 		return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
5577 		    (datalink_id_t)(uintptr_t)arg2));
5578 	case ZONE_CHECK_DATALINK: {
5579 		zoneid_t	zoneid;
5580 		boolean_t	need_copyout;
5581 
5582 		if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
5583 			return (EFAULT);
5584 		need_copyout = (zoneid == ALL_ZONES);
5585 		err = zone_check_datalink(&zoneid,
5586 		    (datalink_id_t)(uintptr_t)arg2);
5587 		if (err == 0 && need_copyout) {
5588 			if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
5589 				err = EFAULT;
5590 		}
5591 		return (err == 0 ? 0 : set_errno(err));
5592 	}
5593 	case ZONE_LIST_DATALINK:
5594 		return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
5595 		    (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
5596 	default:
5597 		return (set_errno(EINVAL));
5598 	}
5599 }
5600 
5601 struct zarg {
5602 	zone_t *zone;
5603 	zone_cmd_arg_t arg;
5604 };
5605 
5606 static int
5607 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
5608 {
5609 	char *buf;
5610 	size_t buflen;
5611 	int error;
5612 
5613 	buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
5614 	buf = kmem_alloc(buflen, KM_SLEEP);
5615 	(void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
5616 	error = door_ki_open(buf, doorp);
5617 	kmem_free(buf, buflen);
5618 	return (error);
5619 }
5620 
5621 static void
5622 zone_release_door(door_handle_t *doorp)
5623 {
5624 	door_ki_rele(*doorp);
5625 	*doorp = NULL;
5626 }
5627 
5628 static void
5629 zone_ki_call_zoneadmd(struct zarg *zargp)
5630 {
5631 	door_handle_t door = NULL;
5632 	door_arg_t darg, save_arg;
5633 	char *zone_name;
5634 	size_t zone_namelen;
5635 	zoneid_t zoneid;
5636 	zone_t *zone;
5637 	zone_cmd_arg_t arg;
5638 	uint64_t uniqid;
5639 	size_t size;
5640 	int error;
5641 	int retry;
5642 
5643 	zone = zargp->zone;
5644 	arg = zargp->arg;
5645 	kmem_free(zargp, sizeof (*zargp));
5646 
5647 	zone_namelen = strlen(zone->zone_name) + 1;
5648 	zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
5649 	bcopy(zone->zone_name, zone_name, zone_namelen);
5650 	zoneid = zone->zone_id;
5651 	uniqid = zone->zone_uniqid;
5652 	/*
5653 	 * zoneadmd may be down, but at least we can empty out the zone.
5654 	 * We can ignore the return value of zone_empty() since we're called
5655 	 * from a kernel thread and know we won't be delivered any signals.
5656 	 */
5657 	ASSERT(curproc == &p0);
5658 	(void) zone_empty(zone);
5659 	ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
5660 	zone_rele(zone);
5661 
5662 	size = sizeof (arg);
5663 	darg.rbuf = (char *)&arg;
5664 	darg.data_ptr = (char *)&arg;
5665 	darg.rsize = size;
5666 	darg.data_size = size;
5667 	darg.desc_ptr = NULL;
5668 	darg.desc_num = 0;
5669 
5670 	save_arg = darg;
5671 	/*
5672 	 * Since we're not holding a reference to the zone, any number of
5673 	 * things can go wrong, including the zone disappearing before we get a
5674 	 * chance to talk to zoneadmd.
5675 	 */
5676 	for (retry = 0; /* forever */; retry++) {
5677 		if (door == NULL &&
5678 		    (error = zone_lookup_door(zone_name, &door)) != 0) {
5679 			goto next;
5680 		}
5681 		ASSERT(door != NULL);
5682 
5683 		if ((error = door_ki_upcall_limited(door, &darg, NULL,
5684 		    SIZE_MAX, 0)) == 0) {
5685 			break;
5686 		}
5687 		switch (error) {
5688 		case EINTR:
5689 			/* FALLTHROUGH */
5690 		case EAGAIN:	/* process may be forking */
5691 			/*
5692 			 * Back off for a bit
5693 			 */
5694 			break;
5695 		case EBADF:
5696 			zone_release_door(&door);
5697 			if (zone_lookup_door(zone_name, &door) != 0) {
5698 				/*
5699 				 * zoneadmd may be dead, but it may come back to
5700 				 * life later.
5701 				 */
5702 				break;
5703 			}
5704 			break;
5705 		default:
5706 			cmn_err(CE_WARN,
5707 			    "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
5708 			    error);
5709 			goto out;
5710 		}
5711 next:
5712 		/*
5713 		 * If this isn't the same zone_t that we originally had in mind,
5714 		 * then this is the same as if two kadmin requests come in at
5715 		 * the same time: the first one wins.  This means we lose, so we
5716 		 * bail.
5717 		 */
5718 		if ((zone = zone_find_by_id(zoneid)) == NULL) {
5719 			/*
5720 			 * Problem is solved.
5721 			 */
5722 			break;
5723 		}
5724 		if (zone->zone_uniqid != uniqid) {
5725 			/*
5726 			 * zoneid recycled
5727 			 */
5728 			zone_rele(zone);
5729 			break;
5730 		}
5731 		/*
5732 		 * We could zone_status_timedwait(), but there doesn't seem to
5733 		 * be much point in doing that (plus, it would mean that
5734 		 * zone_free() isn't called until this thread exits).
5735 		 */
5736 		zone_rele(zone);
5737 		delay(hz);
5738 		darg = save_arg;
5739 	}
5740 out:
5741 	if (door != NULL) {
5742 		zone_release_door(&door);
5743 	}
5744 	kmem_free(zone_name, zone_namelen);
5745 	thread_exit();
5746 }
5747 
5748 /*
5749  * Entry point for uadmin() to tell the zone to go away or reboot.  Analog to
5750  * kadmin().  The caller is a process in the zone.
5751  *
5752  * In order to shutdown the zone, we will hand off control to zoneadmd
5753  * (running in the global zone) via a door.  We do a half-hearted job at
5754  * killing all processes in the zone, create a kernel thread to contact
5755  * zoneadmd, and make note of the "uniqid" of the zone.  The uniqid is
5756  * a form of generation number used to let zoneadmd (as well as
5757  * zone_destroy()) know exactly which zone they're re talking about.
5758  */
5759 int
5760 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
5761 {
5762 	struct zarg *zargp;
5763 	zone_cmd_t zcmd;
5764 	zone_t *zone;
5765 
5766 	zone = curproc->p_zone;
5767 	ASSERT(getzoneid() != GLOBAL_ZONEID);
5768 
5769 	switch (cmd) {
5770 	case A_SHUTDOWN:
5771 		switch (fcn) {
5772 		case AD_HALT:
5773 		case AD_POWEROFF:
5774 			zcmd = Z_HALT;
5775 			break;
5776 		case AD_BOOT:
5777 			zcmd = Z_REBOOT;
5778 			break;
5779 		case AD_IBOOT:
5780 		case AD_SBOOT:
5781 		case AD_SIBOOT:
5782 		case AD_NOSYNC:
5783 			return (ENOTSUP);
5784 		default:
5785 			return (EINVAL);
5786 		}
5787 		break;
5788 	case A_REBOOT:
5789 		zcmd = Z_REBOOT;
5790 		break;
5791 	case A_FTRACE:
5792 	case A_REMOUNT:
5793 	case A_FREEZE:
5794 	case A_DUMP:
5795 	case A_CONFIG:
5796 		return (ENOTSUP);
5797 	default:
5798 		ASSERT(cmd != A_SWAPCTL);	/* handled by uadmin() */
5799 		return (EINVAL);
5800 	}
5801 
5802 	if (secpolicy_zone_admin(credp, B_FALSE))
5803 		return (EPERM);
5804 	mutex_enter(&zone_status_lock);
5805 
5806 	/*
5807 	 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
5808 	 * is in the zone.
5809 	 */
5810 	ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
5811 	if (zone_status_get(zone) > ZONE_IS_RUNNING) {
5812 		/*
5813 		 * This zone is already on its way down.
5814 		 */
5815 		mutex_exit(&zone_status_lock);
5816 		return (0);
5817 	}
5818 	/*
5819 	 * Prevent future zone_enter()s
5820 	 */
5821 	zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
5822 	mutex_exit(&zone_status_lock);
5823 
5824 	/*
5825 	 * Kill everyone now and call zoneadmd later.
5826 	 * zone_ki_call_zoneadmd() will do a more thorough job of this
5827 	 * later.
5828 	 */
5829 	killall(zone->zone_id);
5830 	/*
5831 	 * Now, create the thread to contact zoneadmd and do the rest of the
5832 	 * work.  This thread can't be created in our zone otherwise
5833 	 * zone_destroy() would deadlock.
5834 	 */
5835 	zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
5836 	zargp->arg.cmd = zcmd;
5837 	zargp->arg.uniqid = zone->zone_uniqid;
5838 	zargp->zone = zone;
5839 	(void) strcpy(zargp->arg.locale, "C");
5840 	/* mdep was already copied in for us by uadmin */
5841 	if (mdep != NULL)
5842 		(void) strlcpy(zargp->arg.bootbuf, mdep,
5843 		    sizeof (zargp->arg.bootbuf));
5844 	zone_hold(zone);
5845 
5846 	(void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
5847 	    TS_RUN, minclsyspri);
5848 	exit(CLD_EXITED, 0);
5849 
5850 	return (EINVAL);
5851 }
5852 
5853 /*
5854  * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
5855  * status to ZONE_IS_SHUTTING_DOWN.
5856  *
5857  * This function also shuts down all running zones to ensure that they won't
5858  * fork new processes.
5859  */
5860 void
5861 zone_shutdown_global(void)
5862 {
5863 	zone_t *current_zonep;
5864 
5865 	ASSERT(INGLOBALZONE(curproc));
5866 	mutex_enter(&zonehash_lock);
5867 	mutex_enter(&zone_status_lock);
5868 
5869 	/* Modify the global zone's status first. */
5870 	ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
5871 	zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
5872 
5873 	/*
5874 	 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
5875 	 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
5876 	 * could cause assertions to fail (e.g., assertions about a zone's
5877 	 * state during initialization, readying, or booting) or produce races.
5878 	 * We'll let threads continue to initialize and ready new zones: they'll
5879 	 * fail to boot the new zones when they see that the global zone is
5880 	 * shutting down.
5881 	 */
5882 	for (current_zonep = list_head(&zone_active); current_zonep != NULL;
5883 	    current_zonep = list_next(&zone_active, current_zonep)) {
5884 		if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
5885 			zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
5886 	}
5887 	mutex_exit(&zone_status_lock);
5888 	mutex_exit(&zonehash_lock);
5889 }
5890 
5891 /*
5892  * Returns true if the named dataset is visible in the current zone.
5893  * The 'write' parameter is set to 1 if the dataset is also writable.
5894  */
5895 int
5896 zone_dataset_visible(const char *dataset, int *write)
5897 {
5898 	zone_dataset_t *zd;
5899 	size_t len;
5900 	zone_t *zone = curproc->p_zone;
5901 
5902 	if (dataset[0] == '\0')
5903 		return (0);
5904 
5905 	/*
5906 	 * Walk the list once, looking for datasets which match exactly, or
5907 	 * specify a dataset underneath an exported dataset.  If found, return
5908 	 * true and note that it is writable.
5909 	 */
5910 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
5911 	    zd = list_next(&zone->zone_datasets, zd)) {
5912 
5913 		len = strlen(zd->zd_dataset);
5914 		if (strlen(dataset) >= len &&
5915 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
5916 		    (dataset[len] == '\0' || dataset[len] == '/' ||
5917 		    dataset[len] == '@')) {
5918 			if (write)
5919 				*write = 1;
5920 			return (1);
5921 		}
5922 	}
5923 
5924 	/*
5925 	 * Walk the list a second time, searching for datasets which are parents
5926 	 * of exported datasets.  These should be visible, but read-only.
5927 	 *
5928 	 * Note that we also have to support forms such as 'pool/dataset/', with
5929 	 * a trailing slash.
5930 	 */
5931 	for (zd = list_head(&zone->zone_datasets); zd != NULL;
5932 	    zd = list_next(&zone->zone_datasets, zd)) {
5933 
5934 		len = strlen(dataset);
5935 		if (dataset[len - 1] == '/')
5936 			len--;	/* Ignore trailing slash */
5937 		if (len < strlen(zd->zd_dataset) &&
5938 		    bcmp(dataset, zd->zd_dataset, len) == 0 &&
5939 		    zd->zd_dataset[len] == '/') {
5940 			if (write)
5941 				*write = 0;
5942 			return (1);
5943 		}
5944 	}
5945 
5946 	return (0);
5947 }
5948 
5949 /*
5950  * zone_find_by_any_path() -
5951  *
5952  * kernel-private routine similar to zone_find_by_path(), but which
5953  * effectively compares against zone paths rather than zonerootpath
5954  * (i.e., the last component of zonerootpaths, which should be "root/",
5955  * are not compared.)  This is done in order to accurately identify all
5956  * paths, whether zone-visible or not, including those which are parallel
5957  * to /root/, such as /dev/, /home/, etc...
5958  *
5959  * If the specified path does not fall under any zone path then global
5960  * zone is returned.
5961  *
5962  * The treat_abs parameter indicates whether the path should be treated as
5963  * an absolute path although it does not begin with "/".  (This supports
5964  * nfs mount syntax such as host:any/path.)
5965  *
5966  * The caller is responsible for zone_rele of the returned zone.
5967  */
5968 zone_t *
5969 zone_find_by_any_path(const char *path, boolean_t treat_abs)
5970 {
5971 	zone_t *zone;
5972 	int path_offset = 0;
5973 
5974 	if (path == NULL) {
5975 		zone_hold(global_zone);
5976 		return (global_zone);
5977 	}
5978 
5979 	if (*path != '/') {
5980 		ASSERT(treat_abs);
5981 		path_offset = 1;
5982 	}
5983 
5984 	mutex_enter(&zonehash_lock);
5985 	for (zone = list_head(&zone_active); zone != NULL;
5986 	    zone = list_next(&zone_active, zone)) {
5987 		char	*c;
5988 		size_t	pathlen;
5989 		char *rootpath_start;
5990 
5991 		if (zone == global_zone)	/* skip global zone */
5992 			continue;
5993 
5994 		/* scan backwards to find start of last component */
5995 		c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
5996 		do {
5997 			c--;
5998 		} while (*c != '/');
5999 
6000 		pathlen = c - zone->zone_rootpath + 1 - path_offset;
6001 		rootpath_start = (zone->zone_rootpath + path_offset);
6002 		if (strncmp(path, rootpath_start, pathlen) == 0)
6003 			break;
6004 	}
6005 	if (zone == NULL)
6006 		zone = global_zone;
6007 	zone_hold(zone);
6008 	mutex_exit(&zonehash_lock);
6009 	return (zone);
6010 }
6011 
6012 /*
6013  * Finds a zone_dl_t with the given linkid in the given zone.  Returns the
6014  * zone_dl_t pointer if found, and NULL otherwise.
6015  */
6016 static zone_dl_t *
6017 zone_find_dl(zone_t *zone, datalink_id_t linkid)
6018 {
6019 	zone_dl_t *zdl;
6020 
6021 	ASSERT(mutex_owned(&zone->zone_lock));
6022 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6023 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6024 		if (zdl->zdl_id == linkid)
6025 			break;
6026 	}
6027 	return (zdl);
6028 }
6029 
6030 static boolean_t
6031 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
6032 {
6033 	boolean_t exists;
6034 
6035 	mutex_enter(&zone->zone_lock);
6036 	exists = (zone_find_dl(zone, linkid) != NULL);
6037 	mutex_exit(&zone->zone_lock);
6038 	return (exists);
6039 }
6040 
6041 /*
6042  * Add an data link name for the zone.
6043  */
6044 static int
6045 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
6046 {
6047 	zone_dl_t *zdl;
6048 	zone_t *zone;
6049 	zone_t *thiszone;
6050 
6051 	if ((thiszone = zone_find_by_id(zoneid)) == NULL)
6052 		return (set_errno(ENXIO));
6053 
6054 	/* Verify that the datalink ID doesn't already belong to a zone. */
6055 	mutex_enter(&zonehash_lock);
6056 	for (zone = list_head(&zone_active); zone != NULL;
6057 	    zone = list_next(&zone_active, zone)) {
6058 		if (zone_dl_exists(zone, linkid)) {
6059 			mutex_exit(&zonehash_lock);
6060 			zone_rele(thiszone);
6061 			return (set_errno((zone == thiszone) ? EEXIST : EPERM));
6062 		}
6063 	}
6064 
6065 	zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
6066 	zdl->zdl_id = linkid;
6067 	mutex_enter(&thiszone->zone_lock);
6068 	list_insert_head(&thiszone->zone_dl_list, zdl);
6069 	mutex_exit(&thiszone->zone_lock);
6070 	mutex_exit(&zonehash_lock);
6071 	zone_rele(thiszone);
6072 	return (0);
6073 }
6074 
6075 static int
6076 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
6077 {
6078 	zone_dl_t *zdl;
6079 	zone_t *zone;
6080 	int err = 0;
6081 
6082 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6083 		return (set_errno(EINVAL));
6084 
6085 	mutex_enter(&zone->zone_lock);
6086 	if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
6087 		err = ENXIO;
6088 	} else {
6089 		list_remove(&zone->zone_dl_list, zdl);
6090 		kmem_free(zdl, sizeof (zone_dl_t));
6091 	}
6092 	mutex_exit(&zone->zone_lock);
6093 	zone_rele(zone);
6094 	return (err == 0 ? 0 : set_errno(err));
6095 }
6096 
6097 /*
6098  * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
6099  * the linkid.  Otherwise we just check if the specified zoneidp has been
6100  * assigned the supplied linkid.
6101  */
6102 int
6103 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
6104 {
6105 	zone_t *zone;
6106 	int err = ENXIO;
6107 
6108 	if (*zoneidp != ALL_ZONES) {
6109 		if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
6110 			if (zone_dl_exists(zone, linkid))
6111 				err = 0;
6112 			zone_rele(zone);
6113 		}
6114 		return (err);
6115 	}
6116 
6117 	mutex_enter(&zonehash_lock);
6118 	for (zone = list_head(&zone_active); zone != NULL;
6119 	    zone = list_next(&zone_active, zone)) {
6120 		if (zone_dl_exists(zone, linkid)) {
6121 			*zoneidp = zone->zone_id;
6122 			err = 0;
6123 			break;
6124 		}
6125 	}
6126 	mutex_exit(&zonehash_lock);
6127 	return (err);
6128 }
6129 
6130 /*
6131  * Get the list of datalink IDs assigned to a zone.
6132  *
6133  * On input, *nump is the number of datalink IDs that can fit in the supplied
6134  * idarray.  Upon return, *nump is either set to the number of datalink IDs
6135  * that were placed in the array if the array was large enough, or to the
6136  * number of datalink IDs that the function needs to place in the array if the
6137  * array is too small.
6138  */
6139 static int
6140 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
6141 {
6142 	uint_t num, dlcount;
6143 	zone_t *zone;
6144 	zone_dl_t *zdl;
6145 	datalink_id_t *idptr = idarray;
6146 
6147 	if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
6148 		return (set_errno(EFAULT));
6149 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6150 		return (set_errno(ENXIO));
6151 
6152 	num = 0;
6153 	mutex_enter(&zone->zone_lock);
6154 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6155 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6156 		/*
6157 		 * If the list is bigger than what the caller supplied, just
6158 		 * count, don't do copyout.
6159 		 */
6160 		if (++num > dlcount)
6161 			continue;
6162 		if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
6163 			mutex_exit(&zone->zone_lock);
6164 			zone_rele(zone);
6165 			return (set_errno(EFAULT));
6166 		}
6167 		idptr++;
6168 	}
6169 	mutex_exit(&zone->zone_lock);
6170 	zone_rele(zone);
6171 
6172 	/* Increased or decreased, caller should be notified. */
6173 	if (num != dlcount) {
6174 		if (copyout(&num, nump, sizeof (num)) != 0)
6175 			return (set_errno(EFAULT));
6176 	}
6177 	return (0);
6178 }
6179 
6180 /*
6181  * Public interface for looking up a zone by zoneid. It's a customized version
6182  * for netstack_zone_create(). It can only be called from the zsd create
6183  * callbacks, since it doesn't have reference on the zone structure hence if
6184  * it is called elsewhere the zone could disappear after the zonehash_lock
6185  * is dropped.
6186  *
6187  * Furthermore it
6188  * 1. Doesn't check the status of the zone.
6189  * 2. It will be called even before zone_init is called, in that case the
6190  *    address of zone0 is returned directly, and netstack_zone_create()
6191  *    will only assign a value to zone0.zone_netstack, won't break anything.
6192  * 3. Returns without the zone being held.
6193  */
6194 zone_t *
6195 zone_find_by_id_nolock(zoneid_t zoneid)
6196 {
6197 	zone_t *zone;
6198 
6199 	mutex_enter(&zonehash_lock);
6200 	if (zonehashbyid == NULL)
6201 		zone = &zone0;
6202 	else
6203 		zone = zone_find_all_by_id(zoneid);
6204 	mutex_exit(&zonehash_lock);
6205 	return (zone);
6206 }
6207 
6208 /*
6209  * Walk the datalinks for a given zone
6210  */
6211 int
6212 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
6213     void *data)
6214 {
6215 	zone_t		*zone;
6216 	zone_dl_t	*zdl;
6217 	datalink_id_t	*idarray;
6218 	uint_t		idcount = 0;
6219 	int		i, ret = 0;
6220 
6221 	if ((zone = zone_find_by_id(zoneid)) == NULL)
6222 		return (ENOENT);
6223 
6224 	/*
6225 	 * We first build an array of linkid's so that we can walk these and
6226 	 * execute the callback with the zone_lock dropped.
6227 	 */
6228 	mutex_enter(&zone->zone_lock);
6229 	for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6230 	    zdl = list_next(&zone->zone_dl_list, zdl)) {
6231 		idcount++;
6232 	}
6233 
6234 	if (idcount == 0) {
6235 		mutex_exit(&zone->zone_lock);
6236 		zone_rele(zone);
6237 		return (0);
6238 	}
6239 
6240 	idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
6241 	if (idarray == NULL) {
6242 		mutex_exit(&zone->zone_lock);
6243 		zone_rele(zone);
6244 		return (ENOMEM);
6245 	}
6246 
6247 	for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
6248 	    i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
6249 		idarray[i] = zdl->zdl_id;
6250 	}
6251 
6252 	mutex_exit(&zone->zone_lock);
6253 
6254 	for (i = 0; i < idcount && ret == 0; i++) {
6255 		if ((ret = (*cb)(idarray[i], data)) != 0)
6256 			break;
6257 	}
6258 
6259 	zone_rele(zone);
6260 	kmem_free(idarray, sizeof (datalink_id_t) * idcount);
6261 	return (ret);
6262 }
6263