xref: /illumos-gate/usr/src/uts/common/os/vmem.c (revision c73799dd86c25c27f5183e83584212d06d1ecebc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
28  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
29  */
30 
31 /*
32  * Big Theory Statement for the virtual memory allocator.
33  *
34  * For a more complete description of the main ideas, see:
35  *
36  *	Jeff Bonwick and Jonathan Adams,
37  *
38  *	Magazines and vmem: Extending the Slab Allocator to Many CPUs and
39  *	Arbitrary Resources.
40  *
41  *	Proceedings of the 2001 Usenix Conference.
42  *	Available as http://www.usenix.org/event/usenix01/bonwick.html
43  *
44  * Section 1, below, is also the primary contents of vmem(9).  If for some
45  * reason you are updating this comment, you will also wish to update the
46  * manual.
47  *
48  * 1. General Concepts
49  * -------------------
50  *
51  * 1.1 Overview
52  * ------------
53  * We divide the kernel address space into a number of logically distinct
54  * pieces, or *arenas*: text, data, heap, stack, and so on.  Within these
55  * arenas we often subdivide further; for example, we use heap addresses
56  * not only for the kernel heap (kmem_alloc() space), but also for DVMA,
57  * bp_mapin(), /dev/kmem, and even some device mappings like the TOD chip.
58  * The kernel address space, therefore, is most accurately described as
59  * a tree of arenas in which each node of the tree *imports* some subset
60  * of its parent.  The virtual memory allocator manages these arenas and
61  * supports their natural hierarchical structure.
62  *
63  * 1.2 Arenas
64  * ----------
65  * An arena is nothing more than a set of integers.  These integers most
66  * commonly represent virtual addresses, but in fact they can represent
67  * anything at all.  For example, we could use an arena containing the
68  * integers minpid through maxpid to allocate process IDs.  vmem_create()
69  * and vmem_destroy() create and destroy vmem arenas.  In order to
70  * differentiate between arenas used for adresses and arenas used for
71  * identifiers, the VMC_IDENTIFIER flag is passed to vmem_create().  This
72  * prevents identifier exhaustion from being diagnosed as general memory
73  * failure.
74  *
75  * 1.3 Spans
76  * ---------
77  * We represent the integers in an arena as a collection of *spans*, or
78  * contiguous ranges of integers.  For example, the kernel heap consists
79  * of just one span: [kernelheap, ekernelheap).  Spans can be added to an
80  * arena in two ways: explicitly, by vmem_add(), or implicitly, by
81  * importing, as described in Section 1.5 below.
82  *
83  * 1.4 Segments
84  * ------------
85  * Spans are subdivided into *segments*, each of which is either allocated
86  * or free.  A segment, like a span, is a contiguous range of integers.
87  * Each allocated segment [addr, addr + size) represents exactly one
88  * vmem_alloc(size) that returned addr.  Free segments represent the space
89  * between allocated segments.  If two free segments are adjacent, we
90  * coalesce them into one larger segment; that is, if segments [a, b) and
91  * [b, c) are both free, we merge them into a single segment [a, c).
92  * The segments within a span are linked together in increasing-address order
93  * so we can easily determine whether coalescing is possible.
94  *
95  * Segments never cross span boundaries.  When all segments within
96  * an imported span become free, we return the span to its source.
97  *
98  * 1.5 Imported Memory
99  * -------------------
100  * As mentioned in the overview, some arenas are logical subsets of
101  * other arenas.  For example, kmem_va_arena (a virtual address cache
102  * that satisfies most kmem_slab_create() requests) is just a subset
103  * of heap_arena (the kernel heap) that provides caching for the most
104  * common slab sizes.  When kmem_va_arena runs out of virtual memory,
105  * it *imports* more from the heap; we say that heap_arena is the
106  * *vmem source* for kmem_va_arena.  vmem_create() allows you to
107  * specify any existing vmem arena as the source for your new arena.
108  * Topologically, since every arena is a child of at most one source,
109  * the set of all arenas forms a collection of trees.
110  *
111  * 1.6 Constrained Allocations
112  * ---------------------------
113  * Some vmem clients are quite picky about the kind of address they want.
114  * For example, the DVMA code may need an address that is at a particular
115  * phase with respect to some alignment (to get good cache coloring), or
116  * that lies within certain limits (the addressable range of a device),
117  * or that doesn't cross some boundary (a DMA counter restriction) --
118  * or all of the above.  vmem_xalloc() allows the client to specify any
119  * or all of these constraints.
120  *
121  * 1.7 The Vmem Quantum
122  * --------------------
123  * Every arena has a notion of 'quantum', specified at vmem_create() time,
124  * that defines the arena's minimum unit of currency.  Most commonly the
125  * quantum is either 1 or PAGESIZE, but any power of 2 is legal.
126  * All vmem allocations are guaranteed to be quantum-aligned.
127  *
128  * 1.8 Quantum Caching
129  * -------------------
130  * A vmem arena may be so hot (frequently used) that the scalability of vmem
131  * allocation is a significant concern.  We address this by allowing the most
132  * common allocation sizes to be serviced by the kernel memory allocator,
133  * which provides low-latency per-cpu caching.  The qcache_max argument to
134  * vmem_create() specifies the largest allocation size to cache.
135  *
136  * 1.9 Relationship to Kernel Memory Allocator
137  * -------------------------------------------
138  * Every kmem cache has a vmem arena as its slab supplier.  The kernel memory
139  * allocator uses vmem_alloc() and vmem_free() to create and destroy slabs.
140  *
141  *
142  * 2. Implementation
143  * -----------------
144  *
145  * 2.1 Segment lists and markers
146  * -----------------------------
147  * The segment structure (vmem_seg_t) contains two doubly-linked lists.
148  *
149  * The arena list (vs_anext/vs_aprev) links all segments in the arena.
150  * In addition to the allocated and free segments, the arena contains
151  * special marker segments at span boundaries.  Span markers simplify
152  * coalescing and importing logic by making it easy to tell both when
153  * we're at a span boundary (so we don't coalesce across it), and when
154  * a span is completely free (its neighbors will both be span markers).
155  *
156  * Imported spans will have vs_import set.
157  *
158  * The next-of-kin list (vs_knext/vs_kprev) links segments of the same type:
159  * (1) for allocated segments, vs_knext is the hash chain linkage;
160  * (2) for free segments, vs_knext is the freelist linkage;
161  * (3) for span marker segments, vs_knext is the next span marker.
162  *
163  * 2.2 Allocation hashing
164  * ----------------------
165  * We maintain a hash table of all allocated segments, hashed by address.
166  * This allows vmem_free() to discover the target segment in constant time.
167  * vmem_update() periodically resizes hash tables to keep hash chains short.
168  *
169  * 2.3 Freelist management
170  * -----------------------
171  * We maintain power-of-2 freelists for free segments, i.e. free segments
172  * of size >= 2^n reside in vmp->vm_freelist[n].  To ensure constant-time
173  * allocation, vmem_xalloc() looks not in the first freelist that *might*
174  * satisfy the allocation, but in the first freelist that *definitely*
175  * satisfies the allocation (unless VM_BESTFIT is specified, or all larger
176  * freelists are empty).  For example, a 1000-byte allocation will be
177  * satisfied not from the 512..1023-byte freelist, whose members *might*
178  * contains a 1000-byte segment, but from a 1024-byte or larger freelist,
179  * the first member of which will *definitely* satisfy the allocation.
180  * This ensures that vmem_xalloc() works in constant time.
181  *
182  * We maintain a bit map to determine quickly which freelists are non-empty.
183  * vmp->vm_freemap & (1 << n) is non-zero iff vmp->vm_freelist[n] is non-empty.
184  *
185  * The different freelists are linked together into one large freelist,
186  * with the freelist heads serving as markers.  Freelist markers simplify
187  * the maintenance of vm_freemap by making it easy to tell when we're taking
188  * the last member of a freelist (both of its neighbors will be markers).
189  *
190  * 2.4 Vmem Locking
191  * ----------------
192  * For simplicity, all arena state is protected by a per-arena lock.
193  * For very hot arenas, use quantum caching for scalability.
194  *
195  * 2.5 Vmem Population
196  * -------------------
197  * Any internal vmem routine that might need to allocate new segment
198  * structures must prepare in advance by calling vmem_populate(), which
199  * will preallocate enough vmem_seg_t's to get is through the entire
200  * operation without dropping the arena lock.
201  *
202  * 2.6 Auditing
203  * ------------
204  * If KMF_AUDIT is set in kmem_flags, we audit vmem allocations as well.
205  * Since virtual addresses cannot be scribbled on, there is no equivalent
206  * in vmem to redzone checking, deadbeef, or other kmem debugging features.
207  * Moreover, we do not audit frees because segment coalescing destroys the
208  * association between an address and its segment structure.  Auditing is
209  * thus intended primarily to keep track of who's consuming the arena.
210  * Debugging support could certainly be extended in the future if it proves
211  * necessary, but we do so much live checking via the allocation hash table
212  * that even non-DEBUG systems get quite a bit of sanity checking already.
213  */
214 
215 #include <sys/vmem_impl.h>
216 #include <sys/kmem.h>
217 #include <sys/kstat.h>
218 #include <sys/param.h>
219 #include <sys/systm.h>
220 #include <sys/atomic.h>
221 #include <sys/bitmap.h>
222 #include <sys/sysmacros.h>
223 #include <sys/cmn_err.h>
224 #include <sys/debug.h>
225 #include <sys/panic.h>
226 
227 #define	VMEM_INITIAL		10	/* early vmem arenas */
228 #define	VMEM_SEG_INITIAL	200	/* early segments */
229 
230 /*
231  * Adding a new span to an arena requires two segment structures: one to
232  * represent the span, and one to represent the free segment it contains.
233  */
234 #define	VMEM_SEGS_PER_SPAN_CREATE	2
235 
236 /*
237  * Allocating a piece of an existing segment requires 0-2 segment structures
238  * depending on how much of the segment we're allocating.
239  *
240  * To allocate the entire segment, no new segment structures are needed; we
241  * simply move the existing segment structure from the freelist to the
242  * allocation hash table.
243  *
244  * To allocate a piece from the left or right end of the segment, we must
245  * split the segment into two pieces (allocated part and remainder), so we
246  * need one new segment structure to represent the remainder.
247  *
248  * To allocate from the middle of a segment, we need two new segment strucures
249  * to represent the remainders on either side of the allocated part.
250  */
251 #define	VMEM_SEGS_PER_EXACT_ALLOC	0
252 #define	VMEM_SEGS_PER_LEFT_ALLOC	1
253 #define	VMEM_SEGS_PER_RIGHT_ALLOC	1
254 #define	VMEM_SEGS_PER_MIDDLE_ALLOC	2
255 
256 /*
257  * vmem_populate() preallocates segment structures for vmem to do its work.
258  * It must preallocate enough for the worst case, which is when we must import
259  * a new span and then allocate from the middle of it.
260  */
261 #define	VMEM_SEGS_PER_ALLOC_MAX		\
262 	(VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
263 
264 /*
265  * The segment structures themselves are allocated from vmem_seg_arena, so
266  * we have a recursion problem when vmem_seg_arena needs to populate itself.
267  * We address this by working out the maximum number of segment structures
268  * this act will require, and multiplying by the maximum number of threads
269  * that we'll allow to do it simultaneously.
270  *
271  * The worst-case segment consumption to populate vmem_seg_arena is as
272  * follows (depicted as a stack trace to indicate why events are occurring):
273  *
274  * (In order to lower the fragmentation in the heap_arena, we specify a
275  * minimum import size for the vmem_metadata_arena which is the same size
276  * as the kmem_va quantum cache allocations.  This causes the worst-case
277  * allocation from the vmem_metadata_arena to be 3 segments.)
278  *
279  * vmem_alloc(vmem_seg_arena)		-> 2 segs (span create + exact alloc)
280  *  segkmem_alloc(vmem_metadata_arena)
281  *   vmem_alloc(vmem_metadata_arena)	-> 3 segs (span create + left alloc)
282  *    vmem_alloc(heap_arena)		-> 1 seg (left alloc)
283  *   page_create()
284  *   hat_memload()
285  *    kmem_cache_alloc()
286  *     kmem_slab_create()
287  *	vmem_alloc(hat_memload_arena)	-> 2 segs (span create + exact alloc)
288  *	 segkmem_alloc(heap_arena)
289  *	  vmem_alloc(heap_arena)	-> 1 seg (left alloc)
290  *	  page_create()
291  *	  hat_memload()		-> (hat layer won't recurse further)
292  *
293  * The worst-case consumption for each arena is 3 segment structures.
294  * Of course, a 3-seg reserve could easily be blown by multiple threads.
295  * Therefore, we serialize all allocations from vmem_seg_arena (which is OK
296  * because they're rare).  We cannot allow a non-blocking allocation to get
297  * tied up behind a blocking allocation, however, so we use separate locks
298  * for VM_SLEEP and VM_NOSLEEP allocations.  Similarly, VM_PUSHPAGE allocations
299  * must not block behind ordinary VM_SLEEPs.  In addition, if the system is
300  * panicking then we must keep enough resources for panic_thread to do its
301  * work.  Thus we have at most four threads trying to allocate from
302  * vmem_seg_arena, and each thread consumes at most three segment structures,
303  * so we must maintain a 12-seg reserve.
304  */
305 #define	VMEM_POPULATE_RESERVE	12
306 
307 /*
308  * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
309  * so that it can satisfy the worst-case allocation *and* participate in
310  * worst-case allocation from vmem_seg_arena.
311  */
312 #define	VMEM_MINFREE	(VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
313 
314 static vmem_t vmem0[VMEM_INITIAL];
315 static vmem_t *vmem_populator[VMEM_INITIAL];
316 static uint32_t vmem_id;
317 static uint32_t vmem_populators;
318 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
319 static vmem_seg_t *vmem_segfree;
320 static kmutex_t vmem_list_lock;
321 static kmutex_t vmem_segfree_lock;
322 static kmutex_t vmem_sleep_lock;
323 static kmutex_t vmem_nosleep_lock;
324 static kmutex_t vmem_pushpage_lock;
325 static kmutex_t vmem_panic_lock;
326 static vmem_t *vmem_list;
327 static vmem_t *vmem_metadata_arena;
328 static vmem_t *vmem_seg_arena;
329 static vmem_t *vmem_hash_arena;
330 static vmem_t *vmem_vmem_arena;
331 static long vmem_update_interval = 15;	/* vmem_update() every 15 seconds */
332 uint32_t vmem_mtbf;		/* mean time between failures [default: off] */
333 size_t vmem_seg_size = sizeof (vmem_seg_t);
334 
335 static vmem_kstat_t vmem_kstat_template = {
336 	{ "mem_inuse",		KSTAT_DATA_UINT64 },
337 	{ "mem_import",		KSTAT_DATA_UINT64 },
338 	{ "mem_total",		KSTAT_DATA_UINT64 },
339 	{ "vmem_source",	KSTAT_DATA_UINT32 },
340 	{ "alloc",		KSTAT_DATA_UINT64 },
341 	{ "free",		KSTAT_DATA_UINT64 },
342 	{ "wait",		KSTAT_DATA_UINT64 },
343 	{ "fail",		KSTAT_DATA_UINT64 },
344 	{ "lookup",		KSTAT_DATA_UINT64 },
345 	{ "search",		KSTAT_DATA_UINT64 },
346 	{ "populate_wait",	KSTAT_DATA_UINT64 },
347 	{ "populate_fail",	KSTAT_DATA_UINT64 },
348 	{ "contains",		KSTAT_DATA_UINT64 },
349 	{ "contains_search",	KSTAT_DATA_UINT64 },
350 };
351 
352 /*
353  * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
354  */
355 #define	VMEM_INSERT(vprev, vsp, type)					\
356 {									\
357 	vmem_seg_t *vnext = (vprev)->vs_##type##next;			\
358 	(vsp)->vs_##type##next = (vnext);				\
359 	(vsp)->vs_##type##prev = (vprev);				\
360 	(vprev)->vs_##type##next = (vsp);				\
361 	(vnext)->vs_##type##prev = (vsp);				\
362 }
363 
364 #define	VMEM_DELETE(vsp, type)						\
365 {									\
366 	vmem_seg_t *vprev = (vsp)->vs_##type##prev;			\
367 	vmem_seg_t *vnext = (vsp)->vs_##type##next;			\
368 	(vprev)->vs_##type##next = (vnext);				\
369 	(vnext)->vs_##type##prev = (vprev);				\
370 }
371 
372 /*
373  * Get a vmem_seg_t from the global segfree list.
374  */
375 static vmem_seg_t *
376 vmem_getseg_global(void)
377 {
378 	vmem_seg_t *vsp;
379 
380 	mutex_enter(&vmem_segfree_lock);
381 	if ((vsp = vmem_segfree) != NULL)
382 		vmem_segfree = vsp->vs_knext;
383 	mutex_exit(&vmem_segfree_lock);
384 
385 	return (vsp);
386 }
387 
388 /*
389  * Put a vmem_seg_t on the global segfree list.
390  */
391 static void
392 vmem_putseg_global(vmem_seg_t *vsp)
393 {
394 	mutex_enter(&vmem_segfree_lock);
395 	vsp->vs_knext = vmem_segfree;
396 	vmem_segfree = vsp;
397 	mutex_exit(&vmem_segfree_lock);
398 }
399 
400 /*
401  * Get a vmem_seg_t from vmp's segfree list.
402  */
403 static vmem_seg_t *
404 vmem_getseg(vmem_t *vmp)
405 {
406 	vmem_seg_t *vsp;
407 
408 	ASSERT(vmp->vm_nsegfree > 0);
409 
410 	vsp = vmp->vm_segfree;
411 	vmp->vm_segfree = vsp->vs_knext;
412 	vmp->vm_nsegfree--;
413 
414 	return (vsp);
415 }
416 
417 /*
418  * Put a vmem_seg_t on vmp's segfree list.
419  */
420 static void
421 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
422 {
423 	vsp->vs_knext = vmp->vm_segfree;
424 	vmp->vm_segfree = vsp;
425 	vmp->vm_nsegfree++;
426 }
427 
428 /*
429  * Add vsp to the appropriate freelist.
430  */
431 static void
432 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
433 {
434 	vmem_seg_t *vprev;
435 
436 	ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
437 
438 	vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
439 	vsp->vs_type = VMEM_FREE;
440 	vmp->vm_freemap |= VS_SIZE(vprev);
441 	VMEM_INSERT(vprev, vsp, k);
442 
443 	cv_broadcast(&vmp->vm_cv);
444 }
445 
446 /*
447  * Take vsp from the freelist.
448  */
449 static void
450 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
451 {
452 	ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
453 	ASSERT(vsp->vs_type == VMEM_FREE);
454 
455 	if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
456 		/*
457 		 * The segments on both sides of 'vsp' are freelist heads,
458 		 * so taking vsp leaves the freelist at vsp->vs_kprev empty.
459 		 */
460 		ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
461 		vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
462 	}
463 	VMEM_DELETE(vsp, k);
464 }
465 
466 /*
467  * Add vsp to the allocated-segment hash table and update kstats.
468  */
469 static void
470 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
471 {
472 	vmem_seg_t **bucket;
473 
474 	vsp->vs_type = VMEM_ALLOC;
475 	bucket = VMEM_HASH(vmp, vsp->vs_start);
476 	vsp->vs_knext = *bucket;
477 	*bucket = vsp;
478 
479 	if (vmem_seg_size == sizeof (vmem_seg_t)) {
480 		vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
481 		    VMEM_STACK_DEPTH);
482 		vsp->vs_thread = curthread;
483 		vsp->vs_timestamp = gethrtime();
484 	} else {
485 		vsp->vs_depth = 0;
486 	}
487 
488 	vmp->vm_kstat.vk_alloc.value.ui64++;
489 	vmp->vm_kstat.vk_mem_inuse.value.ui64 += VS_SIZE(vsp);
490 }
491 
492 /*
493  * Remove vsp from the allocated-segment hash table and update kstats.
494  */
495 static vmem_seg_t *
496 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
497 {
498 	vmem_seg_t *vsp, **prev_vspp;
499 
500 	prev_vspp = VMEM_HASH(vmp, addr);
501 	while ((vsp = *prev_vspp) != NULL) {
502 		if (vsp->vs_start == addr) {
503 			*prev_vspp = vsp->vs_knext;
504 			break;
505 		}
506 		vmp->vm_kstat.vk_lookup.value.ui64++;
507 		prev_vspp = &vsp->vs_knext;
508 	}
509 
510 	if (vsp == NULL)
511 		panic("vmem_hash_delete(%p, %lx, %lu): bad free",
512 		    (void *)vmp, addr, size);
513 	if (VS_SIZE(vsp) != size)
514 		panic("vmem_hash_delete(%p, %lx, %lu): wrong size (expect %lu)",
515 		    (void *)vmp, addr, size, VS_SIZE(vsp));
516 
517 	vmp->vm_kstat.vk_free.value.ui64++;
518 	vmp->vm_kstat.vk_mem_inuse.value.ui64 -= size;
519 
520 	return (vsp);
521 }
522 
523 /*
524  * Create a segment spanning the range [start, end) and add it to the arena.
525  */
526 static vmem_seg_t *
527 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
528 {
529 	vmem_seg_t *newseg = vmem_getseg(vmp);
530 
531 	newseg->vs_start = start;
532 	newseg->vs_end = end;
533 	newseg->vs_type = 0;
534 	newseg->vs_import = 0;
535 
536 	VMEM_INSERT(vprev, newseg, a);
537 
538 	return (newseg);
539 }
540 
541 /*
542  * Remove segment vsp from the arena.
543  */
544 static void
545 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
546 {
547 	ASSERT(vsp->vs_type != VMEM_ROTOR);
548 	VMEM_DELETE(vsp, a);
549 
550 	vmem_putseg(vmp, vsp);
551 }
552 
553 /*
554  * Add the span [vaddr, vaddr + size) to vmp and update kstats.
555  */
556 static vmem_seg_t *
557 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
558 {
559 	vmem_seg_t *newseg, *span;
560 	uintptr_t start = (uintptr_t)vaddr;
561 	uintptr_t end = start + size;
562 
563 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
564 
565 	if ((start | end) & (vmp->vm_quantum - 1))
566 		panic("vmem_span_create(%p, %p, %lu): misaligned",
567 		    (void *)vmp, vaddr, size);
568 
569 	span = vmem_seg_create(vmp, vmp->vm_seg0.vs_aprev, start, end);
570 	span->vs_type = VMEM_SPAN;
571 	span->vs_import = import;
572 	VMEM_INSERT(vmp->vm_seg0.vs_kprev, span, k);
573 
574 	newseg = vmem_seg_create(vmp, span, start, end);
575 	vmem_freelist_insert(vmp, newseg);
576 
577 	if (import)
578 		vmp->vm_kstat.vk_mem_import.value.ui64 += size;
579 	vmp->vm_kstat.vk_mem_total.value.ui64 += size;
580 
581 	return (newseg);
582 }
583 
584 /*
585  * Remove span vsp from vmp and update kstats.
586  */
587 static void
588 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
589 {
590 	vmem_seg_t *span = vsp->vs_aprev;
591 	size_t size = VS_SIZE(vsp);
592 
593 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
594 	ASSERT(span->vs_type == VMEM_SPAN);
595 
596 	if (span->vs_import)
597 		vmp->vm_kstat.vk_mem_import.value.ui64 -= size;
598 	vmp->vm_kstat.vk_mem_total.value.ui64 -= size;
599 
600 	VMEM_DELETE(span, k);
601 
602 	vmem_seg_destroy(vmp, vsp);
603 	vmem_seg_destroy(vmp, span);
604 }
605 
606 /*
607  * Allocate the subrange [addr, addr + size) from segment vsp.
608  * If there are leftovers on either side, place them on the freelist.
609  * Returns a pointer to the segment representing [addr, addr + size).
610  */
611 static vmem_seg_t *
612 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
613 {
614 	uintptr_t vs_start = vsp->vs_start;
615 	uintptr_t vs_end = vsp->vs_end;
616 	size_t vs_size = vs_end - vs_start;
617 	size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
618 	uintptr_t addr_end = addr + realsize;
619 
620 	ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
621 	ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
622 	ASSERT(vsp->vs_type == VMEM_FREE);
623 	ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
624 	ASSERT(addr - 1 <= addr_end - 1);
625 
626 	/*
627 	 * If we're allocating from the start of the segment, and the
628 	 * remainder will be on the same freelist, we can save quite
629 	 * a bit of work.
630 	 */
631 	if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
632 		ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
633 		vsp->vs_start = addr_end;
634 		vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
635 		vmem_hash_insert(vmp, vsp);
636 		return (vsp);
637 	}
638 
639 	vmem_freelist_delete(vmp, vsp);
640 
641 	if (vs_end != addr_end)
642 		vmem_freelist_insert(vmp,
643 		    vmem_seg_create(vmp, vsp, addr_end, vs_end));
644 
645 	if (vs_start != addr)
646 		vmem_freelist_insert(vmp,
647 		    vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
648 
649 	vsp->vs_start = addr;
650 	vsp->vs_end = addr + size;
651 
652 	vmem_hash_insert(vmp, vsp);
653 	return (vsp);
654 }
655 
656 /*
657  * Returns 1 if we are populating, 0 otherwise.
658  * Call it if we want to prevent recursion from HAT.
659  */
660 int
661 vmem_is_populator()
662 {
663 	return (mutex_owner(&vmem_sleep_lock) == curthread ||
664 	    mutex_owner(&vmem_nosleep_lock) == curthread ||
665 	    mutex_owner(&vmem_pushpage_lock) == curthread ||
666 	    mutex_owner(&vmem_panic_lock) == curthread);
667 }
668 
669 /*
670  * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
671  */
672 static int
673 vmem_populate(vmem_t *vmp, int vmflag)
674 {
675 	char *p;
676 	vmem_seg_t *vsp;
677 	ssize_t nseg;
678 	size_t size;
679 	kmutex_t *lp;
680 	int i;
681 
682 	while (vmp->vm_nsegfree < VMEM_MINFREE &&
683 	    (vsp = vmem_getseg_global()) != NULL)
684 		vmem_putseg(vmp, vsp);
685 
686 	if (vmp->vm_nsegfree >= VMEM_MINFREE)
687 		return (1);
688 
689 	/*
690 	 * If we're already populating, tap the reserve.
691 	 */
692 	if (vmem_is_populator()) {
693 		ASSERT(vmp->vm_cflags & VMC_POPULATOR);
694 		return (1);
695 	}
696 
697 	mutex_exit(&vmp->vm_lock);
698 
699 	if (panic_thread == curthread)
700 		lp = &vmem_panic_lock;
701 	else if (vmflag & VM_NOSLEEP)
702 		lp = &vmem_nosleep_lock;
703 	else if (vmflag & VM_PUSHPAGE)
704 		lp = &vmem_pushpage_lock;
705 	else
706 		lp = &vmem_sleep_lock;
707 
708 	mutex_enter(lp);
709 
710 	nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
711 	size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
712 	nseg = size / vmem_seg_size;
713 
714 	/*
715 	 * The following vmem_alloc() may need to populate vmem_seg_arena
716 	 * and all the things it imports from.  When doing so, it will tap
717 	 * each arena's reserve to prevent recursion (see the block comment
718 	 * above the definition of VMEM_POPULATE_RESERVE).
719 	 */
720 	p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_KMFLAGS);
721 	if (p == NULL) {
722 		mutex_exit(lp);
723 		mutex_enter(&vmp->vm_lock);
724 		vmp->vm_kstat.vk_populate_fail.value.ui64++;
725 		return (0);
726 	}
727 
728 	/*
729 	 * Restock the arenas that may have been depleted during population.
730 	 */
731 	for (i = 0; i < vmem_populators; i++) {
732 		mutex_enter(&vmem_populator[i]->vm_lock);
733 		while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
734 			vmem_putseg(vmem_populator[i],
735 			    (vmem_seg_t *)(p + --nseg * vmem_seg_size));
736 		mutex_exit(&vmem_populator[i]->vm_lock);
737 	}
738 
739 	mutex_exit(lp);
740 	mutex_enter(&vmp->vm_lock);
741 
742 	/*
743 	 * Now take our own segments.
744 	 */
745 	ASSERT(nseg >= VMEM_MINFREE);
746 	while (vmp->vm_nsegfree < VMEM_MINFREE)
747 		vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
748 
749 	/*
750 	 * Give the remainder to charity.
751 	 */
752 	while (nseg > 0)
753 		vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
754 
755 	return (1);
756 }
757 
758 /*
759  * Advance a walker from its previous position to 'afterme'.
760  * Note: may drop and reacquire vmp->vm_lock.
761  */
762 static void
763 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
764 {
765 	vmem_seg_t *vprev = walker->vs_aprev;
766 	vmem_seg_t *vnext = walker->vs_anext;
767 	vmem_seg_t *vsp = NULL;
768 
769 	VMEM_DELETE(walker, a);
770 
771 	if (afterme != NULL)
772 		VMEM_INSERT(afterme, walker, a);
773 
774 	/*
775 	 * The walker segment's presence may have prevented its neighbors
776 	 * from coalescing.  If so, coalesce them now.
777 	 */
778 	if (vprev->vs_type == VMEM_FREE) {
779 		if (vnext->vs_type == VMEM_FREE) {
780 			ASSERT(vprev->vs_end == vnext->vs_start);
781 			vmem_freelist_delete(vmp, vnext);
782 			vmem_freelist_delete(vmp, vprev);
783 			vprev->vs_end = vnext->vs_end;
784 			vmem_freelist_insert(vmp, vprev);
785 			vmem_seg_destroy(vmp, vnext);
786 		}
787 		vsp = vprev;
788 	} else if (vnext->vs_type == VMEM_FREE) {
789 		vsp = vnext;
790 	}
791 
792 	/*
793 	 * vsp could represent a complete imported span,
794 	 * in which case we must return it to the source.
795 	 */
796 	if (vsp != NULL && vsp->vs_aprev->vs_import &&
797 	    vmp->vm_source_free != NULL &&
798 	    vsp->vs_aprev->vs_type == VMEM_SPAN &&
799 	    vsp->vs_anext->vs_type == VMEM_SPAN) {
800 		void *vaddr = (void *)vsp->vs_start;
801 		size_t size = VS_SIZE(vsp);
802 		ASSERT(size == VS_SIZE(vsp->vs_aprev));
803 		vmem_freelist_delete(vmp, vsp);
804 		vmem_span_destroy(vmp, vsp);
805 		mutex_exit(&vmp->vm_lock);
806 		vmp->vm_source_free(vmp->vm_source, vaddr, size);
807 		mutex_enter(&vmp->vm_lock);
808 	}
809 }
810 
811 /*
812  * VM_NEXTFIT allocations deliberately cycle through all virtual addresses
813  * in an arena, so that we avoid reusing addresses for as long as possible.
814  * This helps to catch used-after-freed bugs.  It's also the perfect policy
815  * for allocating things like process IDs, where we want to cycle through
816  * all values in order.
817  */
818 static void *
819 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
820 {
821 	vmem_seg_t *vsp, *rotor;
822 	uintptr_t addr;
823 	size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
824 	size_t vs_size;
825 
826 	mutex_enter(&vmp->vm_lock);
827 
828 	if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
829 		mutex_exit(&vmp->vm_lock);
830 		return (NULL);
831 	}
832 
833 	/*
834 	 * The common case is that the segment right after the rotor is free,
835 	 * and large enough that extracting 'size' bytes won't change which
836 	 * freelist it's on.  In this case we can avoid a *lot* of work.
837 	 * Instead of the normal vmem_seg_alloc(), we just advance the start
838 	 * address of the victim segment.  Instead of moving the rotor, we
839 	 * create the new segment structure *behind the rotor*, which has
840 	 * the same effect.  And finally, we know we don't have to coalesce
841 	 * the rotor's neighbors because the new segment lies between them.
842 	 */
843 	rotor = &vmp->vm_rotor;
844 	vsp = rotor->vs_anext;
845 	if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
846 	    P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
847 		ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
848 		addr = vsp->vs_start;
849 		vsp->vs_start = addr + realsize;
850 		vmem_hash_insert(vmp,
851 		    vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
852 		mutex_exit(&vmp->vm_lock);
853 		return ((void *)addr);
854 	}
855 
856 	/*
857 	 * Starting at the rotor, look for a segment large enough to
858 	 * satisfy the allocation.
859 	 */
860 	for (;;) {
861 		vmp->vm_kstat.vk_search.value.ui64++;
862 		if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
863 			break;
864 		vsp = vsp->vs_anext;
865 		if (vsp == rotor) {
866 			/*
867 			 * We've come full circle.  One possibility is that the
868 			 * there's actually enough space, but the rotor itself
869 			 * is preventing the allocation from succeeding because
870 			 * it's sitting between two free segments.  Therefore,
871 			 * we advance the rotor and see if that liberates a
872 			 * suitable segment.
873 			 */
874 			vmem_advance(vmp, rotor, rotor->vs_anext);
875 			vsp = rotor->vs_aprev;
876 			if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
877 				break;
878 			/*
879 			 * If there's a lower arena we can import from, or it's
880 			 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
881 			 * Otherwise, wait until another thread frees something.
882 			 */
883 			if (vmp->vm_source_alloc != NULL ||
884 			    (vmflag & VM_NOSLEEP)) {
885 				mutex_exit(&vmp->vm_lock);
886 				return (vmem_xalloc(vmp, size, vmp->vm_quantum,
887 				    0, 0, NULL, NULL, vmflag & VM_KMFLAGS));
888 			}
889 			vmp->vm_kstat.vk_wait.value.ui64++;
890 			cv_wait(&vmp->vm_cv, &vmp->vm_lock);
891 			vsp = rotor->vs_anext;
892 		}
893 	}
894 
895 	/*
896 	 * We found a segment.  Extract enough space to satisfy the allocation.
897 	 */
898 	addr = vsp->vs_start;
899 	vsp = vmem_seg_alloc(vmp, vsp, addr, size);
900 	ASSERT(vsp->vs_type == VMEM_ALLOC &&
901 	    vsp->vs_start == addr && vsp->vs_end == addr + size);
902 
903 	/*
904 	 * Advance the rotor to right after the newly-allocated segment.
905 	 * That's where the next VM_NEXTFIT allocation will begin searching.
906 	 */
907 	vmem_advance(vmp, rotor, vsp);
908 	mutex_exit(&vmp->vm_lock);
909 	return ((void *)addr);
910 }
911 
912 /*
913  * Checks if vmp is guaranteed to have a size-byte buffer somewhere on its
914  * freelist.  If size is not a power-of-2, it can return a false-negative.
915  *
916  * Used to decide if a newly imported span is superfluous after re-acquiring
917  * the arena lock.
918  */
919 static int
920 vmem_canalloc(vmem_t *vmp, size_t size)
921 {
922 	int hb;
923 	int flist = 0;
924 	ASSERT(MUTEX_HELD(&vmp->vm_lock));
925 
926 	if (ISP2(size))
927 		flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
928 	else if ((hb = highbit(size)) < VMEM_FREELISTS)
929 		flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
930 
931 	return (flist);
932 }
933 
934 /*
935  * Allocate size bytes at offset phase from an align boundary such that the
936  * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
937  * that does not straddle a nocross-aligned boundary.
938  */
939 void *
940 vmem_xalloc(vmem_t *vmp, size_t size, size_t align_arg, size_t phase,
941     size_t nocross, void *minaddr, void *maxaddr, int vmflag)
942 {
943 	vmem_seg_t *vsp;
944 	vmem_seg_t *vbest = NULL;
945 	uintptr_t addr, taddr, start, end;
946 	uintptr_t align = (align_arg != 0) ? align_arg : vmp->vm_quantum;
947 	void *vaddr, *xvaddr = NULL;
948 	size_t xsize;
949 	int hb, flist, resv;
950 	uint32_t mtbf;
951 
952 	if ((align | phase | nocross) & (vmp->vm_quantum - 1))
953 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
954 		    "parameters not vm_quantum aligned",
955 		    (void *)vmp, size, align_arg, phase, nocross,
956 		    minaddr, maxaddr, vmflag);
957 
958 	if (nocross != 0 &&
959 	    (align > nocross || P2ROUNDUP(phase + size, align) > nocross))
960 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
961 		    "overconstrained allocation",
962 		    (void *)vmp, size, align_arg, phase, nocross,
963 		    minaddr, maxaddr, vmflag);
964 
965 	if (phase >= align || !ISP2(align) || !ISP2(nocross))
966 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
967 		    "parameters inconsistent or invalid",
968 		    (void *)vmp, size, align_arg, phase, nocross,
969 		    minaddr, maxaddr, vmflag);
970 
971 	if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
972 	    (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
973 		return (NULL);
974 
975 	mutex_enter(&vmp->vm_lock);
976 	for (;;) {
977 		if (vmp->vm_nsegfree < VMEM_MINFREE &&
978 		    !vmem_populate(vmp, vmflag))
979 			break;
980 do_alloc:
981 		/*
982 		 * highbit() returns the highest bit + 1, which is exactly
983 		 * what we want: we want to search the first freelist whose
984 		 * members are *definitely* large enough to satisfy our
985 		 * allocation.  However, there are certain cases in which we
986 		 * want to look at the next-smallest freelist (which *might*
987 		 * be able to satisfy the allocation):
988 		 *
989 		 * (1)	The size is exactly a power of 2, in which case
990 		 *	the smaller freelist is always big enough;
991 		 *
992 		 * (2)	All other freelists are empty;
993 		 *
994 		 * (3)	We're in the highest possible freelist, which is
995 		 *	always empty (e.g. the 4GB freelist on 32-bit systems);
996 		 *
997 		 * (4)	We're doing a best-fit or first-fit allocation.
998 		 */
999 		if (ISP2(size)) {
1000 			flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
1001 		} else {
1002 			hb = highbit(size);
1003 			if ((vmp->vm_freemap >> hb) == 0 ||
1004 			    hb == VMEM_FREELISTS ||
1005 			    (vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
1006 				hb--;
1007 			flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1008 		}
1009 
1010 		for (vbest = NULL, vsp = (flist == 0) ? NULL :
1011 		    vmp->vm_freelist[flist - 1].vs_knext;
1012 		    vsp != NULL; vsp = vsp->vs_knext) {
1013 			vmp->vm_kstat.vk_search.value.ui64++;
1014 			if (vsp->vs_start == 0) {
1015 				/*
1016 				 * We're moving up to a larger freelist,
1017 				 * so if we've already found a candidate,
1018 				 * the fit can't possibly get any better.
1019 				 */
1020 				if (vbest != NULL)
1021 					break;
1022 				/*
1023 				 * Find the next non-empty freelist.
1024 				 */
1025 				flist = lowbit(P2ALIGN(vmp->vm_freemap,
1026 				    VS_SIZE(vsp)));
1027 				if (flist-- == 0)
1028 					break;
1029 				vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
1030 				ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
1031 				continue;
1032 			}
1033 			if (vsp->vs_end - 1 < (uintptr_t)minaddr)
1034 				continue;
1035 			if (vsp->vs_start > (uintptr_t)maxaddr - 1)
1036 				continue;
1037 			start = MAX(vsp->vs_start, (uintptr_t)minaddr);
1038 			end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
1039 			taddr = P2PHASEUP(start, align, phase);
1040 			if (P2BOUNDARY(taddr, size, nocross))
1041 				taddr +=
1042 				    P2ROUNDUP(P2NPHASE(taddr, nocross), align);
1043 			if ((taddr - start) + size > end - start ||
1044 			    (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
1045 				continue;
1046 			vbest = vsp;
1047 			addr = taddr;
1048 			if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
1049 				break;
1050 		}
1051 		if (vbest != NULL)
1052 			break;
1053 		ASSERT(xvaddr == NULL);
1054 		if (size == 0)
1055 			panic("vmem_xalloc(): size == 0");
1056 		if (vmp->vm_source_alloc != NULL && nocross == 0 &&
1057 		    minaddr == NULL && maxaddr == NULL) {
1058 			size_t aneeded, asize;
1059 			size_t aquantum = MAX(vmp->vm_quantum,
1060 			    vmp->vm_source->vm_quantum);
1061 			size_t aphase = phase;
1062 			if ((align > aquantum) &&
1063 			    !(vmp->vm_cflags & VMC_XALIGN)) {
1064 				aphase = (P2PHASE(phase, aquantum) != 0) ?
1065 				    align - vmp->vm_quantum : align - aquantum;
1066 				ASSERT(aphase >= phase);
1067 			}
1068 			aneeded = MAX(size + aphase, vmp->vm_min_import);
1069 			asize = P2ROUNDUP(aneeded, aquantum);
1070 
1071 			if (asize < size) {
1072 				/*
1073 				 * The rounding induced overflow; return NULL
1074 				 * if we are permitted to fail the allocation
1075 				 * (and explicitly panic if we aren't).
1076 				 */
1077 				if ((vmflag & VM_NOSLEEP) &&
1078 				    !(vmflag & VM_PANIC)) {
1079 					mutex_exit(&vmp->vm_lock);
1080 					return (NULL);
1081 				}
1082 
1083 				panic("vmem_xalloc(): size overflow");
1084 			}
1085 
1086 			/*
1087 			 * Determine how many segment structures we'll consume.
1088 			 * The calculation must be precise because if we're
1089 			 * here on behalf of vmem_populate(), we are taking
1090 			 * segments from a very limited reserve.
1091 			 */
1092 			if (size == asize && !(vmp->vm_cflags & VMC_XALLOC))
1093 				resv = VMEM_SEGS_PER_SPAN_CREATE +
1094 				    VMEM_SEGS_PER_EXACT_ALLOC;
1095 			else if (phase == 0 &&
1096 			    align <= vmp->vm_source->vm_quantum)
1097 				resv = VMEM_SEGS_PER_SPAN_CREATE +
1098 				    VMEM_SEGS_PER_LEFT_ALLOC;
1099 			else
1100 				resv = VMEM_SEGS_PER_ALLOC_MAX;
1101 
1102 			ASSERT(vmp->vm_nsegfree >= resv);
1103 			vmp->vm_nsegfree -= resv;	/* reserve our segs */
1104 			mutex_exit(&vmp->vm_lock);
1105 			if (vmp->vm_cflags & VMC_XALLOC) {
1106 				size_t oasize = asize;
1107 				vaddr = ((vmem_ximport_t *)
1108 				    vmp->vm_source_alloc)(vmp->vm_source,
1109 				    &asize, align, vmflag & VM_KMFLAGS);
1110 				ASSERT(asize >= oasize);
1111 				ASSERT(P2PHASE(asize,
1112 				    vmp->vm_source->vm_quantum) == 0);
1113 				ASSERT(!(vmp->vm_cflags & VMC_XALIGN) ||
1114 				    IS_P2ALIGNED(vaddr, align));
1115 			} else {
1116 				vaddr = vmp->vm_source_alloc(vmp->vm_source,
1117 				    asize, vmflag & VM_KMFLAGS);
1118 			}
1119 			mutex_enter(&vmp->vm_lock);
1120 			vmp->vm_nsegfree += resv;	/* claim reservation */
1121 			aneeded = size + align - vmp->vm_quantum;
1122 			aneeded = P2ROUNDUP(aneeded, vmp->vm_quantum);
1123 			if (vaddr != NULL) {
1124 				/*
1125 				 * Since we dropped the vmem lock while
1126 				 * calling the import function, other
1127 				 * threads could have imported space
1128 				 * and made our import unnecessary.  In
1129 				 * order to save space, we return
1130 				 * excess imports immediately.
1131 				 */
1132 				if (asize > aneeded &&
1133 				    vmp->vm_source_free != NULL &&
1134 				    vmem_canalloc(vmp, aneeded)) {
1135 					ASSERT(resv >=
1136 					    VMEM_SEGS_PER_MIDDLE_ALLOC);
1137 					xvaddr = vaddr;
1138 					xsize = asize;
1139 					goto do_alloc;
1140 				}
1141 				vbest = vmem_span_create(vmp, vaddr, asize, 1);
1142 				addr = P2PHASEUP(vbest->vs_start, align, phase);
1143 				break;
1144 			} else if (vmem_canalloc(vmp, aneeded)) {
1145 				/*
1146 				 * Our import failed, but another thread
1147 				 * added sufficient free memory to the arena
1148 				 * to satisfy our request.  Go back and
1149 				 * grab it.
1150 				 */
1151 				ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC);
1152 				goto do_alloc;
1153 			}
1154 		}
1155 
1156 		/*
1157 		 * If the requestor chooses to fail the allocation attempt
1158 		 * rather than reap wait and retry - get out of the loop.
1159 		 */
1160 		if (vmflag & VM_ABORT)
1161 			break;
1162 		mutex_exit(&vmp->vm_lock);
1163 		if (vmp->vm_cflags & VMC_IDENTIFIER)
1164 			kmem_reap_idspace();
1165 		else
1166 			kmem_reap();
1167 		mutex_enter(&vmp->vm_lock);
1168 		if (vmflag & VM_NOSLEEP)
1169 			break;
1170 		vmp->vm_kstat.vk_wait.value.ui64++;
1171 		cv_wait(&vmp->vm_cv, &vmp->vm_lock);
1172 	}
1173 	if (vbest != NULL) {
1174 		ASSERT(vbest->vs_type == VMEM_FREE);
1175 		ASSERT(vbest->vs_knext != vbest);
1176 		/* re-position to end of buffer */
1177 		if (vmflag & VM_ENDALLOC) {
1178 			addr += ((vbest->vs_end - (addr + size)) / align) *
1179 			    align;
1180 		}
1181 		(void) vmem_seg_alloc(vmp, vbest, addr, size);
1182 		mutex_exit(&vmp->vm_lock);
1183 		if (xvaddr)
1184 			vmp->vm_source_free(vmp->vm_source, xvaddr, xsize);
1185 		ASSERT(P2PHASE(addr, align) == phase);
1186 		ASSERT(!P2BOUNDARY(addr, size, nocross));
1187 		ASSERT(addr >= (uintptr_t)minaddr);
1188 		ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
1189 		return ((void *)addr);
1190 	}
1191 	vmp->vm_kstat.vk_fail.value.ui64++;
1192 	mutex_exit(&vmp->vm_lock);
1193 	if (vmflag & VM_PANIC)
1194 		panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
1195 		    "cannot satisfy mandatory allocation",
1196 		    (void *)vmp, size, align_arg, phase, nocross,
1197 		    minaddr, maxaddr, vmflag);
1198 	ASSERT(xvaddr == NULL);
1199 	return (NULL);
1200 }
1201 
1202 /*
1203  * Free the segment [vaddr, vaddr + size), where vaddr was a constrained
1204  * allocation.  vmem_xalloc() and vmem_xfree() must always be paired because
1205  * both routines bypass the quantum caches.
1206  */
1207 void
1208 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
1209 {
1210 	vmem_seg_t *vsp, *vnext, *vprev;
1211 
1212 	mutex_enter(&vmp->vm_lock);
1213 
1214 	vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
1215 	vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
1216 
1217 	/*
1218 	 * Attempt to coalesce with the next segment.
1219 	 */
1220 	vnext = vsp->vs_anext;
1221 	if (vnext->vs_type == VMEM_FREE) {
1222 		ASSERT(vsp->vs_end == vnext->vs_start);
1223 		vmem_freelist_delete(vmp, vnext);
1224 		vsp->vs_end = vnext->vs_end;
1225 		vmem_seg_destroy(vmp, vnext);
1226 	}
1227 
1228 	/*
1229 	 * Attempt to coalesce with the previous segment.
1230 	 */
1231 	vprev = vsp->vs_aprev;
1232 	if (vprev->vs_type == VMEM_FREE) {
1233 		ASSERT(vprev->vs_end == vsp->vs_start);
1234 		vmem_freelist_delete(vmp, vprev);
1235 		vprev->vs_end = vsp->vs_end;
1236 		vmem_seg_destroy(vmp, vsp);
1237 		vsp = vprev;
1238 	}
1239 
1240 	/*
1241 	 * If the entire span is free, return it to the source.
1242 	 */
1243 	if (vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL &&
1244 	    vsp->vs_aprev->vs_type == VMEM_SPAN &&
1245 	    vsp->vs_anext->vs_type == VMEM_SPAN) {
1246 		vaddr = (void *)vsp->vs_start;
1247 		size = VS_SIZE(vsp);
1248 		ASSERT(size == VS_SIZE(vsp->vs_aprev));
1249 		vmem_span_destroy(vmp, vsp);
1250 		mutex_exit(&vmp->vm_lock);
1251 		vmp->vm_source_free(vmp->vm_source, vaddr, size);
1252 	} else {
1253 		vmem_freelist_insert(vmp, vsp);
1254 		mutex_exit(&vmp->vm_lock);
1255 	}
1256 }
1257 
1258 /*
1259  * Allocate size bytes from arena vmp.  Returns the allocated address
1260  * on success, NULL on failure.  vmflag specifies VM_SLEEP or VM_NOSLEEP,
1261  * and may also specify best-fit, first-fit, or next-fit allocation policy
1262  * instead of the default instant-fit policy.  VM_SLEEP allocations are
1263  * guaranteed to succeed.
1264  */
1265 void *
1266 vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1267 {
1268 	vmem_seg_t *vsp;
1269 	uintptr_t addr;
1270 	int hb;
1271 	int flist = 0;
1272 	uint32_t mtbf;
1273 
1274 	if (size - 1 < vmp->vm_qcache_max)
1275 		return (kmem_cache_alloc(vmp->vm_qcache[(size - 1) >>
1276 		    vmp->vm_qshift], vmflag & VM_KMFLAGS));
1277 
1278 	if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
1279 	    (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
1280 		return (NULL);
1281 
1282 	if (vmflag & VM_NEXTFIT)
1283 		return (vmem_nextfit_alloc(vmp, size, vmflag));
1284 
1285 	if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
1286 		return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
1287 		    NULL, NULL, vmflag));
1288 
1289 	/*
1290 	 * Unconstrained instant-fit allocation from the segment list.
1291 	 */
1292 	mutex_enter(&vmp->vm_lock);
1293 
1294 	if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
1295 		if (ISP2(size))
1296 			flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
1297 		else if ((hb = highbit(size)) < VMEM_FREELISTS)
1298 			flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1299 	}
1300 
1301 	if (flist-- == 0) {
1302 		mutex_exit(&vmp->vm_lock);
1303 		return (vmem_xalloc(vmp, size, vmp->vm_quantum,
1304 		    0, 0, NULL, NULL, vmflag));
1305 	}
1306 
1307 	ASSERT(size <= (1UL << flist));
1308 	vsp = vmp->vm_freelist[flist].vs_knext;
1309 	addr = vsp->vs_start;
1310 	if (vmflag & VM_ENDALLOC) {
1311 		addr += vsp->vs_end - (addr + size);
1312 	}
1313 	(void) vmem_seg_alloc(vmp, vsp, addr, size);
1314 	mutex_exit(&vmp->vm_lock);
1315 	return ((void *)addr);
1316 }
1317 
1318 /*
1319  * Free the segment [vaddr, vaddr + size).
1320  */
1321 void
1322 vmem_free(vmem_t *vmp, void *vaddr, size_t size)
1323 {
1324 	if (size - 1 < vmp->vm_qcache_max)
1325 		kmem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
1326 		    vaddr);
1327 	else
1328 		vmem_xfree(vmp, vaddr, size);
1329 }
1330 
1331 /*
1332  * Determine whether arena vmp contains the segment [vaddr, vaddr + size).
1333  */
1334 int
1335 vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
1336 {
1337 	uintptr_t start = (uintptr_t)vaddr;
1338 	uintptr_t end = start + size;
1339 	vmem_seg_t *vsp;
1340 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1341 
1342 	mutex_enter(&vmp->vm_lock);
1343 	vmp->vm_kstat.vk_contains.value.ui64++;
1344 	for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
1345 		vmp->vm_kstat.vk_contains_search.value.ui64++;
1346 		ASSERT(vsp->vs_type == VMEM_SPAN);
1347 		if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
1348 			break;
1349 	}
1350 	mutex_exit(&vmp->vm_lock);
1351 	return (vsp != seg0);
1352 }
1353 
1354 /*
1355  * Add the span [vaddr, vaddr + size) to arena vmp.
1356  */
1357 void *
1358 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
1359 {
1360 	if (vaddr == NULL || size == 0)
1361 		panic("vmem_add(%p, %p, %lu): bad arguments",
1362 		    (void *)vmp, vaddr, size);
1363 
1364 	ASSERT(!vmem_contains(vmp, vaddr, size));
1365 
1366 	mutex_enter(&vmp->vm_lock);
1367 	if (vmem_populate(vmp, vmflag))
1368 		(void) vmem_span_create(vmp, vaddr, size, 0);
1369 	else
1370 		vaddr = NULL;
1371 	mutex_exit(&vmp->vm_lock);
1372 	return (vaddr);
1373 }
1374 
1375 /*
1376  * Walk the vmp arena, applying func to each segment matching typemask.
1377  * If VMEM_REENTRANT is specified, the arena lock is dropped across each
1378  * call to func(); otherwise, it is held for the duration of vmem_walk()
1379  * to ensure a consistent snapshot.  Note that VMEM_REENTRANT callbacks
1380  * are *not* necessarily consistent, so they may only be used when a hint
1381  * is adequate.
1382  */
1383 void
1384 vmem_walk(vmem_t *vmp, int typemask,
1385     void (*func)(void *, void *, size_t), void *arg)
1386 {
1387 	vmem_seg_t *vsp;
1388 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1389 	vmem_seg_t walker;
1390 
1391 	if (typemask & VMEM_WALKER)
1392 		return;
1393 
1394 	bzero(&walker, sizeof (walker));
1395 	walker.vs_type = VMEM_WALKER;
1396 
1397 	mutex_enter(&vmp->vm_lock);
1398 	VMEM_INSERT(seg0, &walker, a);
1399 	for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
1400 		if (vsp->vs_type & typemask) {
1401 			void *start = (void *)vsp->vs_start;
1402 			size_t size = VS_SIZE(vsp);
1403 			if (typemask & VMEM_REENTRANT) {
1404 				vmem_advance(vmp, &walker, vsp);
1405 				mutex_exit(&vmp->vm_lock);
1406 				func(arg, start, size);
1407 				mutex_enter(&vmp->vm_lock);
1408 				vsp = &walker;
1409 			} else {
1410 				func(arg, start, size);
1411 			}
1412 		}
1413 	}
1414 	vmem_advance(vmp, &walker, NULL);
1415 	mutex_exit(&vmp->vm_lock);
1416 }
1417 
1418 /*
1419  * Return the total amount of memory whose type matches typemask.  Thus:
1420  *
1421  *	typemask VMEM_ALLOC yields total memory allocated (in use).
1422  *	typemask VMEM_FREE yields total memory free (available).
1423  *	typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
1424  */
1425 size_t
1426 vmem_size(vmem_t *vmp, int typemask)
1427 {
1428 	uint64_t size = 0;
1429 
1430 	if (typemask & VMEM_ALLOC)
1431 		size += vmp->vm_kstat.vk_mem_inuse.value.ui64;
1432 	if (typemask & VMEM_FREE)
1433 		size += vmp->vm_kstat.vk_mem_total.value.ui64 -
1434 		    vmp->vm_kstat.vk_mem_inuse.value.ui64;
1435 	return ((size_t)size);
1436 }
1437 
1438 /*
1439  * Create an arena called name whose initial span is [base, base + size).
1440  * The arena's natural unit of currency is quantum, so vmem_alloc()
1441  * guarantees quantum-aligned results.  The arena may import new spans
1442  * by invoking afunc() on source, and may return those spans by invoking
1443  * ffunc() on source.  To make small allocations fast and scalable,
1444  * the arena offers high-performance caching for each integer multiple
1445  * of quantum up to qcache_max.
1446  */
1447 static vmem_t *
1448 vmem_create_common(const char *name, void *base, size_t size, size_t quantum,
1449     void *(*afunc)(vmem_t *, size_t, int),
1450     void (*ffunc)(vmem_t *, void *, size_t),
1451     vmem_t *source, size_t qcache_max, int vmflag)
1452 {
1453 	int i;
1454 	size_t nqcache;
1455 	vmem_t *vmp, *cur, **vmpp;
1456 	vmem_seg_t *vsp;
1457 	vmem_freelist_t *vfp;
1458 	uint32_t id = atomic_inc_32_nv(&vmem_id);
1459 
1460 	if (vmem_vmem_arena != NULL) {
1461 		vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
1462 		    vmflag & VM_KMFLAGS);
1463 	} else {
1464 		ASSERT(id <= VMEM_INITIAL);
1465 		vmp = &vmem0[id - 1];
1466 	}
1467 
1468 	/* An identifier arena must inherit from another identifier arena */
1469 	ASSERT(source == NULL || ((source->vm_cflags & VMC_IDENTIFIER) ==
1470 	    (vmflag & VMC_IDENTIFIER)));
1471 
1472 	if (vmp == NULL)
1473 		return (NULL);
1474 	bzero(vmp, sizeof (vmem_t));
1475 
1476 	(void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
1477 	mutex_init(&vmp->vm_lock, NULL, MUTEX_DEFAULT, NULL);
1478 	cv_init(&vmp->vm_cv, NULL, CV_DEFAULT, NULL);
1479 	vmp->vm_cflags = vmflag;
1480 	vmflag &= VM_KMFLAGS;
1481 
1482 	vmp->vm_quantum = quantum;
1483 	vmp->vm_qshift = highbit(quantum) - 1;
1484 	nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
1485 
1486 	for (i = 0; i <= VMEM_FREELISTS; i++) {
1487 		vfp = &vmp->vm_freelist[i];
1488 		vfp->vs_end = 1UL << i;
1489 		vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
1490 		vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
1491 	}
1492 
1493 	vmp->vm_freelist[0].vs_kprev = NULL;
1494 	vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
1495 	vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
1496 	vmp->vm_hash_table = vmp->vm_hash0;
1497 	vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
1498 	vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1499 
1500 	vsp = &vmp->vm_seg0;
1501 	vsp->vs_anext = vsp;
1502 	vsp->vs_aprev = vsp;
1503 	vsp->vs_knext = vsp;
1504 	vsp->vs_kprev = vsp;
1505 	vsp->vs_type = VMEM_SPAN;
1506 
1507 	vsp = &vmp->vm_rotor;
1508 	vsp->vs_type = VMEM_ROTOR;
1509 	VMEM_INSERT(&vmp->vm_seg0, vsp, a);
1510 
1511 	bcopy(&vmem_kstat_template, &vmp->vm_kstat, sizeof (vmem_kstat_t));
1512 
1513 	vmp->vm_id = id;
1514 	if (source != NULL)
1515 		vmp->vm_kstat.vk_source_id.value.ui32 = source->vm_id;
1516 	vmp->vm_source = source;
1517 	vmp->vm_source_alloc = afunc;
1518 	vmp->vm_source_free = ffunc;
1519 
1520 	/*
1521 	 * Some arenas (like vmem_metadata and kmem_metadata) cannot
1522 	 * use quantum caching to lower fragmentation.  Instead, we
1523 	 * increase their imports, giving a similar effect.
1524 	 */
1525 	if (vmp->vm_cflags & VMC_NO_QCACHE) {
1526 		vmp->vm_min_import =
1527 		    VMEM_QCACHE_SLABSIZE(nqcache << vmp->vm_qshift);
1528 		nqcache = 0;
1529 	}
1530 
1531 	if (nqcache != 0) {
1532 		ASSERT(!(vmflag & VM_NOSLEEP));
1533 		vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
1534 		for (i = 0; i < nqcache; i++) {
1535 			char buf[VMEM_NAMELEN + 21];
1536 			(void) sprintf(buf, "%s_%lu", vmp->vm_name,
1537 			    (i + 1) * quantum);
1538 			vmp->vm_qcache[i] = kmem_cache_create(buf,
1539 			    (i + 1) * quantum, quantum, NULL, NULL, NULL,
1540 			    NULL, vmp, KMC_QCACHE | KMC_NOTOUCH);
1541 		}
1542 	}
1543 
1544 	if ((vmp->vm_ksp = kstat_create("vmem", vmp->vm_id, vmp->vm_name,
1545 	    "vmem", KSTAT_TYPE_NAMED, sizeof (vmem_kstat_t) /
1546 	    sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) {
1547 		vmp->vm_ksp->ks_data = &vmp->vm_kstat;
1548 		kstat_install(vmp->vm_ksp);
1549 	}
1550 
1551 	mutex_enter(&vmem_list_lock);
1552 	vmpp = &vmem_list;
1553 	while ((cur = *vmpp) != NULL)
1554 		vmpp = &cur->vm_next;
1555 	*vmpp = vmp;
1556 	mutex_exit(&vmem_list_lock);
1557 
1558 	if (vmp->vm_cflags & VMC_POPULATOR) {
1559 		ASSERT(vmem_populators < VMEM_INITIAL);
1560 		vmem_populator[atomic_inc_32_nv(&vmem_populators) - 1] = vmp;
1561 		mutex_enter(&vmp->vm_lock);
1562 		(void) vmem_populate(vmp, vmflag | VM_PANIC);
1563 		mutex_exit(&vmp->vm_lock);
1564 	}
1565 
1566 	if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
1567 		vmem_destroy(vmp);
1568 		return (NULL);
1569 	}
1570 
1571 	return (vmp);
1572 }
1573 
1574 vmem_t *
1575 vmem_xcreate(const char *name, void *base, size_t size, size_t quantum,
1576     vmem_ximport_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1577     size_t qcache_max, int vmflag)
1578 {
1579 	ASSERT(!(vmflag & (VMC_POPULATOR | VMC_XALLOC)));
1580 	vmflag &= ~(VMC_POPULATOR | VMC_XALLOC);
1581 
1582 	return (vmem_create_common(name, base, size, quantum,
1583 	    (vmem_alloc_t *)afunc, ffunc, source, qcache_max,
1584 	    vmflag | VMC_XALLOC));
1585 }
1586 
1587 vmem_t *
1588 vmem_create(const char *name, void *base, size_t size, size_t quantum,
1589     vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1590     size_t qcache_max, int vmflag)
1591 {
1592 	ASSERT(!(vmflag & (VMC_XALLOC | VMC_XALIGN)));
1593 	vmflag &= ~(VMC_XALLOC | VMC_XALIGN);
1594 
1595 	return (vmem_create_common(name, base, size, quantum,
1596 	    afunc, ffunc, source, qcache_max, vmflag));
1597 }
1598 
1599 /*
1600  * Destroy arena vmp.
1601  */
1602 void
1603 vmem_destroy(vmem_t *vmp)
1604 {
1605 	vmem_t *cur, **vmpp;
1606 	vmem_seg_t *seg0 = &vmp->vm_seg0;
1607 	vmem_seg_t *vsp, *anext;
1608 	size_t leaked;
1609 	int i;
1610 
1611 	mutex_enter(&vmem_list_lock);
1612 	vmpp = &vmem_list;
1613 	while ((cur = *vmpp) != vmp)
1614 		vmpp = &cur->vm_next;
1615 	*vmpp = vmp->vm_next;
1616 	mutex_exit(&vmem_list_lock);
1617 
1618 	for (i = 0; i < VMEM_NQCACHE_MAX; i++)
1619 		if (vmp->vm_qcache[i])
1620 			kmem_cache_destroy(vmp->vm_qcache[i]);
1621 
1622 	leaked = vmem_size(vmp, VMEM_ALLOC);
1623 	if (leaked != 0)
1624 		cmn_err(CE_WARN, "vmem_destroy('%s'): leaked %lu %s",
1625 		    vmp->vm_name, leaked, (vmp->vm_cflags & VMC_IDENTIFIER) ?
1626 		    "identifiers" : "bytes");
1627 
1628 	if (vmp->vm_hash_table != vmp->vm_hash0)
1629 		vmem_free(vmem_hash_arena, vmp->vm_hash_table,
1630 		    (vmp->vm_hash_mask + 1) * sizeof (void *));
1631 
1632 	/*
1633 	 * Give back the segment structures for anything that's left in the
1634 	 * arena, e.g. the primary spans and their free segments.
1635 	 */
1636 	VMEM_DELETE(&vmp->vm_rotor, a);
1637 	for (vsp = seg0->vs_anext; vsp != seg0; vsp = anext) {
1638 		anext = vsp->vs_anext;
1639 		vmem_putseg_global(vsp);
1640 	}
1641 
1642 	while (vmp->vm_nsegfree > 0)
1643 		vmem_putseg_global(vmem_getseg(vmp));
1644 
1645 	kstat_delete(vmp->vm_ksp);
1646 
1647 	mutex_destroy(&vmp->vm_lock);
1648 	cv_destroy(&vmp->vm_cv);
1649 	vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
1650 }
1651 
1652 /*
1653  * Only shrink vmem hashtable if it is 1<<vmem_rescale_minshift times (8x)
1654  * larger than necessary.
1655  */
1656 int vmem_rescale_minshift = 3;
1657 
1658 /*
1659  * Resize vmp's hash table to keep the average lookup depth near 1.0.
1660  */
1661 static void
1662 vmem_hash_rescale(vmem_t *vmp)
1663 {
1664 	vmem_seg_t **old_table, **new_table, *vsp;
1665 	size_t old_size, new_size, h, nseg;
1666 
1667 	nseg = (size_t)(vmp->vm_kstat.vk_alloc.value.ui64 -
1668 	    vmp->vm_kstat.vk_free.value.ui64);
1669 
1670 	new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
1671 	old_size = vmp->vm_hash_mask + 1;
1672 
1673 	if ((old_size >> vmem_rescale_minshift) <= new_size &&
1674 	    new_size <= (old_size << 1))
1675 		return;
1676 
1677 	new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
1678 	    VM_NOSLEEP);
1679 	if (new_table == NULL)
1680 		return;
1681 	bzero(new_table, new_size * sizeof (void *));
1682 
1683 	mutex_enter(&vmp->vm_lock);
1684 
1685 	old_size = vmp->vm_hash_mask + 1;
1686 	old_table = vmp->vm_hash_table;
1687 
1688 	vmp->vm_hash_mask = new_size - 1;
1689 	vmp->vm_hash_table = new_table;
1690 	vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1691 
1692 	for (h = 0; h < old_size; h++) {
1693 		vsp = old_table[h];
1694 		while (vsp != NULL) {
1695 			uintptr_t addr = vsp->vs_start;
1696 			vmem_seg_t *next_vsp = vsp->vs_knext;
1697 			vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
1698 			vsp->vs_knext = *hash_bucket;
1699 			*hash_bucket = vsp;
1700 			vsp = next_vsp;
1701 		}
1702 	}
1703 
1704 	mutex_exit(&vmp->vm_lock);
1705 
1706 	if (old_table != vmp->vm_hash0)
1707 		vmem_free(vmem_hash_arena, old_table,
1708 		    old_size * sizeof (void *));
1709 }
1710 
1711 /*
1712  * Perform periodic maintenance on all vmem arenas.
1713  */
1714 void
1715 vmem_update(void *dummy)
1716 {
1717 	vmem_t *vmp;
1718 
1719 	mutex_enter(&vmem_list_lock);
1720 	for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
1721 		/*
1722 		 * If threads are waiting for resources, wake them up
1723 		 * periodically so they can issue another kmem_reap()
1724 		 * to reclaim resources cached by the slab allocator.
1725 		 */
1726 		cv_broadcast(&vmp->vm_cv);
1727 
1728 		/*
1729 		 * Rescale the hash table to keep the hash chains short.
1730 		 */
1731 		vmem_hash_rescale(vmp);
1732 	}
1733 	mutex_exit(&vmem_list_lock);
1734 
1735 	(void) timeout(vmem_update, dummy, vmem_update_interval * hz);
1736 }
1737 
1738 void
1739 vmem_qcache_reap(vmem_t *vmp)
1740 {
1741 	int i;
1742 
1743 	/*
1744 	 * Reap any quantum caches that may be part of this vmem.
1745 	 */
1746 	for (i = 0; i < VMEM_NQCACHE_MAX; i++)
1747 		if (vmp->vm_qcache[i])
1748 			kmem_cache_reap_now(vmp->vm_qcache[i]);
1749 }
1750 
1751 /*
1752  * Prepare vmem for use.
1753  */
1754 vmem_t *
1755 vmem_init(const char *heap_name,
1756     void *heap_start, size_t heap_size, size_t heap_quantum,
1757     void *(*heap_alloc)(vmem_t *, size_t, int),
1758     void (*heap_free)(vmem_t *, void *, size_t))
1759 {
1760 	uint32_t id;
1761 	int nseg = VMEM_SEG_INITIAL;
1762 	vmem_t *heap;
1763 
1764 	while (--nseg >= 0)
1765 		vmem_putseg_global(&vmem_seg0[nseg]);
1766 
1767 	heap = vmem_create(heap_name,
1768 	    heap_start, heap_size, heap_quantum,
1769 	    NULL, NULL, NULL, 0,
1770 	    VM_SLEEP | VMC_POPULATOR);
1771 
1772 	vmem_metadata_arena = vmem_create("vmem_metadata",
1773 	    NULL, 0, heap_quantum,
1774 	    vmem_alloc, vmem_free, heap, 8 * heap_quantum,
1775 	    VM_SLEEP | VMC_POPULATOR | VMC_NO_QCACHE);
1776 
1777 	vmem_seg_arena = vmem_create("vmem_seg",
1778 	    NULL, 0, heap_quantum,
1779 	    heap_alloc, heap_free, vmem_metadata_arena, 0,
1780 	    VM_SLEEP | VMC_POPULATOR);
1781 
1782 	vmem_hash_arena = vmem_create("vmem_hash",
1783 	    NULL, 0, 8,
1784 	    heap_alloc, heap_free, vmem_metadata_arena, 0,
1785 	    VM_SLEEP);
1786 
1787 	vmem_vmem_arena = vmem_create("vmem_vmem",
1788 	    vmem0, sizeof (vmem0), 1,
1789 	    heap_alloc, heap_free, vmem_metadata_arena, 0,
1790 	    VM_SLEEP);
1791 
1792 	for (id = 0; id < vmem_id; id++)
1793 		(void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
1794 		    1, 0, 0, &vmem0[id], &vmem0[id + 1],
1795 		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1796 
1797 	return (heap);
1798 }
1799