1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 28 * Copyright (c) 2018, Joyent, Inc. 29 */ 30 31 /* 32 * Big Theory Statement for the virtual memory allocator. 33 * 34 * For a more complete description of the main ideas, see: 35 * 36 * Jeff Bonwick and Jonathan Adams, 37 * 38 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and 39 * Arbitrary Resources. 40 * 41 * Proceedings of the 2001 Usenix Conference. 42 * Available as http://www.usenix.org/event/usenix01/bonwick.html 43 * 44 * Section 1, below, is also the primary contents of vmem(9). If for some 45 * reason you are updating this comment, you will also wish to update the 46 * manual. 47 * 48 * 1. General Concepts 49 * ------------------- 50 * 51 * 1.1 Overview 52 * ------------ 53 * We divide the kernel address space into a number of logically distinct 54 * pieces, or *arenas*: text, data, heap, stack, and so on. Within these 55 * arenas we often subdivide further; for example, we use heap addresses 56 * not only for the kernel heap (kmem_alloc() space), but also for DVMA, 57 * bp_mapin(), /dev/kmem, and even some device mappings like the TOD chip. 58 * The kernel address space, therefore, is most accurately described as 59 * a tree of arenas in which each node of the tree *imports* some subset 60 * of its parent. The virtual memory allocator manages these arenas and 61 * supports their natural hierarchical structure. 62 * 63 * 1.2 Arenas 64 * ---------- 65 * An arena is nothing more than a set of integers. These integers most 66 * commonly represent virtual addresses, but in fact they can represent 67 * anything at all. For example, we could use an arena containing the 68 * integers minpid through maxpid to allocate process IDs. vmem_create() 69 * and vmem_destroy() create and destroy vmem arenas. In order to 70 * differentiate between arenas used for adresses and arenas used for 71 * identifiers, the VMC_IDENTIFIER flag is passed to vmem_create(). This 72 * prevents identifier exhaustion from being diagnosed as general memory 73 * failure. 74 * 75 * 1.3 Spans 76 * --------- 77 * We represent the integers in an arena as a collection of *spans*, or 78 * contiguous ranges of integers. For example, the kernel heap consists 79 * of just one span: [kernelheap, ekernelheap). Spans can be added to an 80 * arena in two ways: explicitly, by vmem_add(), or implicitly, by 81 * importing, as described in Section 1.5 below. 82 * 83 * 1.4 Segments 84 * ------------ 85 * Spans are subdivided into *segments*, each of which is either allocated 86 * or free. A segment, like a span, is a contiguous range of integers. 87 * Each allocated segment [addr, addr + size) represents exactly one 88 * vmem_alloc(size) that returned addr. Free segments represent the space 89 * between allocated segments. If two free segments are adjacent, we 90 * coalesce them into one larger segment; that is, if segments [a, b) and 91 * [b, c) are both free, we merge them into a single segment [a, c). 92 * The segments within a span are linked together in increasing-address order 93 * so we can easily determine whether coalescing is possible. 94 * 95 * Segments never cross span boundaries. When all segments within 96 * an imported span become free, we return the span to its source. 97 * 98 * 1.5 Imported Memory 99 * ------------------- 100 * As mentioned in the overview, some arenas are logical subsets of 101 * other arenas. For example, kmem_va_arena (a virtual address cache 102 * that satisfies most kmem_slab_create() requests) is just a subset 103 * of heap_arena (the kernel heap) that provides caching for the most 104 * common slab sizes. When kmem_va_arena runs out of virtual memory, 105 * it *imports* more from the heap; we say that heap_arena is the 106 * *vmem source* for kmem_va_arena. vmem_create() allows you to 107 * specify any existing vmem arena as the source for your new arena. 108 * Topologically, since every arena is a child of at most one source, 109 * the set of all arenas forms a collection of trees. 110 * 111 * 1.6 Constrained Allocations 112 * --------------------------- 113 * Some vmem clients are quite picky about the kind of address they want. 114 * For example, the DVMA code may need an address that is at a particular 115 * phase with respect to some alignment (to get good cache coloring), or 116 * that lies within certain limits (the addressable range of a device), 117 * or that doesn't cross some boundary (a DMA counter restriction) -- 118 * or all of the above. vmem_xalloc() allows the client to specify any 119 * or all of these constraints. 120 * 121 * 1.7 The Vmem Quantum 122 * -------------------- 123 * Every arena has a notion of 'quantum', specified at vmem_create() time, 124 * that defines the arena's minimum unit of currency. Most commonly the 125 * quantum is either 1 or PAGESIZE, but any power of 2 is legal. 126 * All vmem allocations are guaranteed to be quantum-aligned. 127 * 128 * 1.8 Quantum Caching 129 * ------------------- 130 * A vmem arena may be so hot (frequently used) that the scalability of vmem 131 * allocation is a significant concern. We address this by allowing the most 132 * common allocation sizes to be serviced by the kernel memory allocator, 133 * which provides low-latency per-cpu caching. The qcache_max argument to 134 * vmem_create() specifies the largest allocation size to cache. 135 * 136 * 1.9 Relationship to Kernel Memory Allocator 137 * ------------------------------------------- 138 * Every kmem cache has a vmem arena as its slab supplier. The kernel memory 139 * allocator uses vmem_alloc() and vmem_free() to create and destroy slabs. 140 * 141 * 142 * 2. Implementation 143 * ----------------- 144 * 145 * 2.1 Segment lists and markers 146 * ----------------------------- 147 * The segment structure (vmem_seg_t) contains two doubly-linked lists. 148 * 149 * The arena list (vs_anext/vs_aprev) links all segments in the arena. 150 * In addition to the allocated and free segments, the arena contains 151 * special marker segments at span boundaries. Span markers simplify 152 * coalescing and importing logic by making it easy to tell both when 153 * we're at a span boundary (so we don't coalesce across it), and when 154 * a span is completely free (its neighbors will both be span markers). 155 * 156 * Imported spans will have vs_import set. 157 * 158 * The next-of-kin list (vs_knext/vs_kprev) links segments of the same type: 159 * (1) for allocated segments, vs_knext is the hash chain linkage; 160 * (2) for free segments, vs_knext is the freelist linkage; 161 * (3) for span marker segments, vs_knext is the next span marker. 162 * 163 * 2.2 Allocation hashing 164 * ---------------------- 165 * We maintain a hash table of all allocated segments, hashed by address. 166 * This allows vmem_free() to discover the target segment in constant time. 167 * vmem_update() periodically resizes hash tables to keep hash chains short. 168 * 169 * 2.3 Freelist management 170 * ----------------------- 171 * We maintain power-of-2 freelists for free segments, i.e. free segments 172 * of size >= 2^n reside in vmp->vm_freelist[n]. To ensure constant-time 173 * allocation, vmem_xalloc() looks not in the first freelist that *might* 174 * satisfy the allocation, but in the first freelist that *definitely* 175 * satisfies the allocation (unless VM_BESTFIT is specified, or all larger 176 * freelists are empty). For example, a 1000-byte allocation will be 177 * satisfied not from the 512..1023-byte freelist, whose members *might* 178 * contains a 1000-byte segment, but from a 1024-byte or larger freelist, 179 * the first member of which will *definitely* satisfy the allocation. 180 * This ensures that vmem_xalloc() works in constant time. 181 * 182 * We maintain a bit map to determine quickly which freelists are non-empty. 183 * vmp->vm_freemap & (1 << n) is non-zero iff vmp->vm_freelist[n] is non-empty. 184 * 185 * The different freelists are linked together into one large freelist, 186 * with the freelist heads serving as markers. Freelist markers simplify 187 * the maintenance of vm_freemap by making it easy to tell when we're taking 188 * the last member of a freelist (both of its neighbors will be markers). 189 * 190 * 2.4 Vmem Locking 191 * ---------------- 192 * For simplicity, all arena state is protected by a per-arena lock. 193 * For very hot arenas, use quantum caching for scalability. 194 * 195 * 2.5 Vmem Population 196 * ------------------- 197 * Any internal vmem routine that might need to allocate new segment 198 * structures must prepare in advance by calling vmem_populate(), which 199 * will preallocate enough vmem_seg_t's to get is through the entire 200 * operation without dropping the arena lock. 201 * 202 * 2.6 Auditing 203 * ------------ 204 * If KMF_AUDIT is set in kmem_flags, we audit vmem allocations as well. 205 * Since virtual addresses cannot be scribbled on, there is no equivalent 206 * in vmem to redzone checking, deadbeef, or other kmem debugging features. 207 * Moreover, we do not audit frees because segment coalescing destroys the 208 * association between an address and its segment structure. Auditing is 209 * thus intended primarily to keep track of who's consuming the arena. 210 * Debugging support could certainly be extended in the future if it proves 211 * necessary, but we do so much live checking via the allocation hash table 212 * that even non-DEBUG systems get quite a bit of sanity checking already. 213 */ 214 215 #include <sys/vmem_impl.h> 216 #include <sys/kmem.h> 217 #include <sys/kstat.h> 218 #include <sys/param.h> 219 #include <sys/systm.h> 220 #include <sys/atomic.h> 221 #include <sys/bitmap.h> 222 #include <sys/sysmacros.h> 223 #include <sys/cmn_err.h> 224 #include <sys/debug.h> 225 #include <sys/panic.h> 226 227 #define VMEM_INITIAL 10 /* early vmem arenas */ 228 #define VMEM_SEG_INITIAL 200 /* early segments */ 229 230 /* 231 * Adding a new span to an arena requires two segment structures: one to 232 * represent the span, and one to represent the free segment it contains. 233 */ 234 #define VMEM_SEGS_PER_SPAN_CREATE 2 235 236 /* 237 * Allocating a piece of an existing segment requires 0-2 segment structures 238 * depending on how much of the segment we're allocating. 239 * 240 * To allocate the entire segment, no new segment structures are needed; we 241 * simply move the existing segment structure from the freelist to the 242 * allocation hash table. 243 * 244 * To allocate a piece from the left or right end of the segment, we must 245 * split the segment into two pieces (allocated part and remainder), so we 246 * need one new segment structure to represent the remainder. 247 * 248 * To allocate from the middle of a segment, we need two new segment strucures 249 * to represent the remainders on either side of the allocated part. 250 */ 251 #define VMEM_SEGS_PER_EXACT_ALLOC 0 252 #define VMEM_SEGS_PER_LEFT_ALLOC 1 253 #define VMEM_SEGS_PER_RIGHT_ALLOC 1 254 #define VMEM_SEGS_PER_MIDDLE_ALLOC 2 255 256 /* 257 * vmem_populate() preallocates segment structures for vmem to do its work. 258 * It must preallocate enough for the worst case, which is when we must import 259 * a new span and then allocate from the middle of it. 260 */ 261 #define VMEM_SEGS_PER_ALLOC_MAX \ 262 (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC) 263 264 /* 265 * The segment structures themselves are allocated from vmem_seg_arena, so 266 * we have a recursion problem when vmem_seg_arena needs to populate itself. 267 * We address this by working out the maximum number of segment structures 268 * this act will require, and multiplying by the maximum number of threads 269 * that we'll allow to do it simultaneously. 270 * 271 * The worst-case segment consumption to populate vmem_seg_arena is as 272 * follows (depicted as a stack trace to indicate why events are occurring): 273 * 274 * (In order to lower the fragmentation in the heap_arena, we specify a 275 * minimum import size for the vmem_metadata_arena which is the same size 276 * as the kmem_va quantum cache allocations. This causes the worst-case 277 * allocation from the vmem_metadata_arena to be 3 segments.) 278 * 279 * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc) 280 * segkmem_alloc(vmem_metadata_arena) 281 * vmem_alloc(vmem_metadata_arena) -> 3 segs (span create + left alloc) 282 * vmem_alloc(heap_arena) -> 1 seg (left alloc) 283 * page_create() 284 * hat_memload() 285 * kmem_cache_alloc() 286 * kmem_slab_create() 287 * vmem_alloc(hat_memload_arena) -> 2 segs (span create + exact alloc) 288 * segkmem_alloc(heap_arena) 289 * vmem_alloc(heap_arena) -> 1 seg (left alloc) 290 * page_create() 291 * hat_memload() -> (hat layer won't recurse further) 292 * 293 * The worst-case consumption for each arena is 3 segment structures. 294 * Of course, a 3-seg reserve could easily be blown by multiple threads. 295 * Therefore, we serialize all allocations from vmem_seg_arena (which is OK 296 * because they're rare). We cannot allow a non-blocking allocation to get 297 * tied up behind a blocking allocation, however, so we use separate locks 298 * for VM_SLEEP and VM_NOSLEEP allocations. Similarly, VM_PUSHPAGE allocations 299 * must not block behind ordinary VM_SLEEPs. In addition, if the system is 300 * panicking then we must keep enough resources for panic_thread to do its 301 * work. Thus we have at most four threads trying to allocate from 302 * vmem_seg_arena, and each thread consumes at most three segment structures, 303 * so we must maintain a 12-seg reserve. 304 */ 305 #define VMEM_POPULATE_RESERVE 12 306 307 /* 308 * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures 309 * so that it can satisfy the worst-case allocation *and* participate in 310 * worst-case allocation from vmem_seg_arena. 311 */ 312 #define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX) 313 314 static vmem_t vmem0[VMEM_INITIAL]; 315 static vmem_t *vmem_populator[VMEM_INITIAL]; 316 static uint32_t vmem_id; 317 static uint32_t vmem_populators; 318 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL]; 319 static vmem_seg_t *vmem_segfree; 320 static kmutex_t vmem_list_lock; 321 static kmutex_t vmem_segfree_lock; 322 static kmutex_t vmem_sleep_lock; 323 static kmutex_t vmem_nosleep_lock; 324 static kmutex_t vmem_pushpage_lock; 325 static kmutex_t vmem_panic_lock; 326 static vmem_t *vmem_list; 327 static vmem_t *vmem_metadata_arena; 328 static vmem_t *vmem_seg_arena; 329 static vmem_t *vmem_hash_arena; 330 static vmem_t *vmem_vmem_arena; 331 static long vmem_update_interval = 15; /* vmem_update() every 15 seconds */ 332 uint32_t vmem_mtbf; /* mean time between failures [default: off] */ 333 size_t vmem_seg_size = sizeof (vmem_seg_t); 334 335 static vmem_kstat_t vmem_kstat_template = { 336 { "mem_inuse", KSTAT_DATA_UINT64 }, 337 { "mem_import", KSTAT_DATA_UINT64 }, 338 { "mem_total", KSTAT_DATA_UINT64 }, 339 { "vmem_source", KSTAT_DATA_UINT32 }, 340 { "alloc", KSTAT_DATA_UINT64 }, 341 { "free", KSTAT_DATA_UINT64 }, 342 { "wait", KSTAT_DATA_UINT64 }, 343 { "fail", KSTAT_DATA_UINT64 }, 344 { "lookup", KSTAT_DATA_UINT64 }, 345 { "search", KSTAT_DATA_UINT64 }, 346 { "populate_wait", KSTAT_DATA_UINT64 }, 347 { "populate_fail", KSTAT_DATA_UINT64 }, 348 { "contains", KSTAT_DATA_UINT64 }, 349 { "contains_search", KSTAT_DATA_UINT64 }, 350 }; 351 352 /* 353 * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k'). 354 */ 355 #define VMEM_INSERT(vprev, vsp, type) \ 356 { \ 357 vmem_seg_t *vnext = (vprev)->vs_##type##next; \ 358 (vsp)->vs_##type##next = (vnext); \ 359 (vsp)->vs_##type##prev = (vprev); \ 360 (vprev)->vs_##type##next = (vsp); \ 361 (vnext)->vs_##type##prev = (vsp); \ 362 } 363 364 #define VMEM_DELETE(vsp, type) \ 365 { \ 366 vmem_seg_t *vprev = (vsp)->vs_##type##prev; \ 367 vmem_seg_t *vnext = (vsp)->vs_##type##next; \ 368 (vprev)->vs_##type##next = (vnext); \ 369 (vnext)->vs_##type##prev = (vprev); \ 370 } 371 372 /* 373 * Get a vmem_seg_t from the global segfree list. 374 */ 375 static vmem_seg_t * 376 vmem_getseg_global(void) 377 { 378 vmem_seg_t *vsp; 379 380 mutex_enter(&vmem_segfree_lock); 381 if ((vsp = vmem_segfree) != NULL) 382 vmem_segfree = vsp->vs_knext; 383 mutex_exit(&vmem_segfree_lock); 384 385 return (vsp); 386 } 387 388 /* 389 * Put a vmem_seg_t on the global segfree list. 390 */ 391 static void 392 vmem_putseg_global(vmem_seg_t *vsp) 393 { 394 mutex_enter(&vmem_segfree_lock); 395 vsp->vs_knext = vmem_segfree; 396 vmem_segfree = vsp; 397 mutex_exit(&vmem_segfree_lock); 398 } 399 400 /* 401 * Get a vmem_seg_t from vmp's segfree list. 402 */ 403 static vmem_seg_t * 404 vmem_getseg(vmem_t *vmp) 405 { 406 vmem_seg_t *vsp; 407 408 ASSERT(vmp->vm_nsegfree > 0); 409 410 vsp = vmp->vm_segfree; 411 vmp->vm_segfree = vsp->vs_knext; 412 vmp->vm_nsegfree--; 413 414 return (vsp); 415 } 416 417 /* 418 * Put a vmem_seg_t on vmp's segfree list. 419 */ 420 static void 421 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp) 422 { 423 vsp->vs_knext = vmp->vm_segfree; 424 vmp->vm_segfree = vsp; 425 vmp->vm_nsegfree++; 426 } 427 428 /* 429 * Add vsp to the appropriate freelist. 430 */ 431 static void 432 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp) 433 { 434 vmem_seg_t *vprev; 435 436 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); 437 438 vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1]; 439 vsp->vs_type = VMEM_FREE; 440 vmp->vm_freemap |= VS_SIZE(vprev); 441 VMEM_INSERT(vprev, vsp, k); 442 443 cv_broadcast(&vmp->vm_cv); 444 } 445 446 /* 447 * Take vsp from the freelist. 448 */ 449 static void 450 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp) 451 { 452 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp); 453 ASSERT(vsp->vs_type == VMEM_FREE); 454 455 if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) { 456 /* 457 * The segments on both sides of 'vsp' are freelist heads, 458 * so taking vsp leaves the freelist at vsp->vs_kprev empty. 459 */ 460 ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev)); 461 vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev); 462 } 463 VMEM_DELETE(vsp, k); 464 } 465 466 /* 467 * Add vsp to the allocated-segment hash table and update kstats. 468 */ 469 static void 470 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp) 471 { 472 vmem_seg_t **bucket; 473 474 vsp->vs_type = VMEM_ALLOC; 475 bucket = VMEM_HASH(vmp, vsp->vs_start); 476 vsp->vs_knext = *bucket; 477 *bucket = vsp; 478 479 if (vmem_seg_size == sizeof (vmem_seg_t)) { 480 vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack, 481 VMEM_STACK_DEPTH); 482 vsp->vs_thread = curthread; 483 vsp->vs_timestamp = gethrtime(); 484 } else { 485 vsp->vs_depth = 0; 486 } 487 488 vmp->vm_kstat.vk_alloc.value.ui64++; 489 vmp->vm_kstat.vk_mem_inuse.value.ui64 += VS_SIZE(vsp); 490 } 491 492 /* 493 * Remove vsp from the allocated-segment hash table and update kstats. 494 */ 495 static vmem_seg_t * 496 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size) 497 { 498 vmem_seg_t *vsp, **prev_vspp; 499 500 prev_vspp = VMEM_HASH(vmp, addr); 501 while ((vsp = *prev_vspp) != NULL) { 502 if (vsp->vs_start == addr) { 503 *prev_vspp = vsp->vs_knext; 504 break; 505 } 506 vmp->vm_kstat.vk_lookup.value.ui64++; 507 prev_vspp = &vsp->vs_knext; 508 } 509 510 if (vsp == NULL) 511 panic("vmem_hash_delete(%p, %lx, %lu): bad free", 512 (void *)vmp, addr, size); 513 if (VS_SIZE(vsp) != size) 514 panic("vmem_hash_delete(%p, %lx, %lu): wrong size (expect %lu)", 515 (void *)vmp, addr, size, VS_SIZE(vsp)); 516 517 vmp->vm_kstat.vk_free.value.ui64++; 518 vmp->vm_kstat.vk_mem_inuse.value.ui64 -= size; 519 520 return (vsp); 521 } 522 523 /* 524 * Create a segment spanning the range [start, end) and add it to the arena. 525 */ 526 static vmem_seg_t * 527 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end) 528 { 529 vmem_seg_t *newseg = vmem_getseg(vmp); 530 531 newseg->vs_start = start; 532 newseg->vs_end = end; 533 newseg->vs_type = 0; 534 newseg->vs_import = 0; 535 536 VMEM_INSERT(vprev, newseg, a); 537 538 return (newseg); 539 } 540 541 /* 542 * Remove segment vsp from the arena. 543 */ 544 static void 545 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp) 546 { 547 ASSERT(vsp->vs_type != VMEM_ROTOR); 548 VMEM_DELETE(vsp, a); 549 550 vmem_putseg(vmp, vsp); 551 } 552 553 /* 554 * Add the span [vaddr, vaddr + size) to vmp and update kstats. 555 */ 556 static vmem_seg_t * 557 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import) 558 { 559 vmem_seg_t *newseg, *span; 560 uintptr_t start = (uintptr_t)vaddr; 561 uintptr_t end = start + size; 562 563 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 564 565 if ((start | end) & (vmp->vm_quantum - 1)) 566 panic("vmem_span_create(%p, %p, %lu): misaligned", 567 (void *)vmp, vaddr, size); 568 569 span = vmem_seg_create(vmp, vmp->vm_seg0.vs_aprev, start, end); 570 span->vs_type = VMEM_SPAN; 571 span->vs_import = import; 572 VMEM_INSERT(vmp->vm_seg0.vs_kprev, span, k); 573 574 newseg = vmem_seg_create(vmp, span, start, end); 575 vmem_freelist_insert(vmp, newseg); 576 577 if (import) 578 vmp->vm_kstat.vk_mem_import.value.ui64 += size; 579 vmp->vm_kstat.vk_mem_total.value.ui64 += size; 580 581 return (newseg); 582 } 583 584 /* 585 * Remove span vsp from vmp and update kstats. 586 */ 587 static void 588 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp) 589 { 590 vmem_seg_t *span = vsp->vs_aprev; 591 size_t size = VS_SIZE(vsp); 592 593 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 594 ASSERT(span->vs_type == VMEM_SPAN); 595 596 if (span->vs_import) 597 vmp->vm_kstat.vk_mem_import.value.ui64 -= size; 598 vmp->vm_kstat.vk_mem_total.value.ui64 -= size; 599 600 VMEM_DELETE(span, k); 601 602 vmem_seg_destroy(vmp, vsp); 603 vmem_seg_destroy(vmp, span); 604 } 605 606 /* 607 * Allocate the subrange [addr, addr + size) from segment vsp. 608 * If there are leftovers on either side, place them on the freelist. 609 * Returns a pointer to the segment representing [addr, addr + size). 610 */ 611 static vmem_seg_t * 612 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size) 613 { 614 uintptr_t vs_start = vsp->vs_start; 615 uintptr_t vs_end = vsp->vs_end; 616 size_t vs_size = vs_end - vs_start; 617 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); 618 uintptr_t addr_end = addr + realsize; 619 620 ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0); 621 ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0); 622 ASSERT(vsp->vs_type == VMEM_FREE); 623 ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1); 624 ASSERT(addr - 1 <= addr_end - 1); 625 626 /* 627 * If we're allocating from the start of the segment, and the 628 * remainder will be on the same freelist, we can save quite 629 * a bit of work. 630 */ 631 if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) { 632 ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); 633 vsp->vs_start = addr_end; 634 vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size); 635 vmem_hash_insert(vmp, vsp); 636 return (vsp); 637 } 638 639 vmem_freelist_delete(vmp, vsp); 640 641 if (vs_end != addr_end) 642 vmem_freelist_insert(vmp, 643 vmem_seg_create(vmp, vsp, addr_end, vs_end)); 644 645 if (vs_start != addr) 646 vmem_freelist_insert(vmp, 647 vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr)); 648 649 vsp->vs_start = addr; 650 vsp->vs_end = addr + size; 651 652 vmem_hash_insert(vmp, vsp); 653 return (vsp); 654 } 655 656 /* 657 * Returns 1 if we are populating, 0 otherwise. 658 * Call it if we want to prevent recursion from HAT. 659 */ 660 int 661 vmem_is_populator() 662 { 663 return (mutex_owner(&vmem_sleep_lock) == curthread || 664 mutex_owner(&vmem_nosleep_lock) == curthread || 665 mutex_owner(&vmem_pushpage_lock) == curthread || 666 mutex_owner(&vmem_panic_lock) == curthread); 667 } 668 669 /* 670 * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures. 671 */ 672 static int 673 vmem_populate(vmem_t *vmp, int vmflag) 674 { 675 char *p; 676 vmem_seg_t *vsp; 677 ssize_t nseg; 678 size_t size; 679 kmutex_t *lp; 680 int i; 681 682 while (vmp->vm_nsegfree < VMEM_MINFREE && 683 (vsp = vmem_getseg_global()) != NULL) 684 vmem_putseg(vmp, vsp); 685 686 if (vmp->vm_nsegfree >= VMEM_MINFREE) 687 return (1); 688 689 /* 690 * If we're already populating, tap the reserve. 691 */ 692 if (vmem_is_populator()) { 693 ASSERT(vmp->vm_cflags & VMC_POPULATOR); 694 return (1); 695 } 696 697 mutex_exit(&vmp->vm_lock); 698 699 if (panic_thread == curthread) 700 lp = &vmem_panic_lock; 701 else if (vmflag & VM_NOSLEEP) 702 lp = &vmem_nosleep_lock; 703 else if (vmflag & VM_PUSHPAGE) 704 lp = &vmem_pushpage_lock; 705 else 706 lp = &vmem_sleep_lock; 707 708 mutex_enter(lp); 709 710 nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE; 711 size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum); 712 nseg = size / vmem_seg_size; 713 714 /* 715 * The following vmem_alloc() may need to populate vmem_seg_arena 716 * and all the things it imports from. When doing so, it will tap 717 * each arena's reserve to prevent recursion (see the block comment 718 * above the definition of VMEM_POPULATE_RESERVE). 719 */ 720 p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_KMFLAGS); 721 if (p == NULL) { 722 mutex_exit(lp); 723 mutex_enter(&vmp->vm_lock); 724 vmp->vm_kstat.vk_populate_fail.value.ui64++; 725 return (0); 726 } 727 728 /* 729 * Restock the arenas that may have been depleted during population. 730 */ 731 for (i = 0; i < vmem_populators; i++) { 732 mutex_enter(&vmem_populator[i]->vm_lock); 733 while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE) 734 vmem_putseg(vmem_populator[i], 735 (vmem_seg_t *)(p + --nseg * vmem_seg_size)); 736 mutex_exit(&vmem_populator[i]->vm_lock); 737 } 738 739 mutex_exit(lp); 740 mutex_enter(&vmp->vm_lock); 741 742 /* 743 * Now take our own segments. 744 */ 745 ASSERT(nseg >= VMEM_MINFREE); 746 while (vmp->vm_nsegfree < VMEM_MINFREE) 747 vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size)); 748 749 /* 750 * Give the remainder to charity. 751 */ 752 while (nseg > 0) 753 vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size)); 754 755 return (1); 756 } 757 758 /* 759 * Advance a walker from its previous position to 'afterme'. 760 * Note: may drop and reacquire vmp->vm_lock. 761 */ 762 static void 763 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme) 764 { 765 vmem_seg_t *vprev = walker->vs_aprev; 766 vmem_seg_t *vnext = walker->vs_anext; 767 vmem_seg_t *vsp = NULL; 768 769 VMEM_DELETE(walker, a); 770 771 if (afterme != NULL) 772 VMEM_INSERT(afterme, walker, a); 773 774 /* 775 * The walker segment's presence may have prevented its neighbors 776 * from coalescing. If so, coalesce them now. 777 */ 778 if (vprev->vs_type == VMEM_FREE) { 779 if (vnext->vs_type == VMEM_FREE) { 780 ASSERT(vprev->vs_end == vnext->vs_start); 781 vmem_freelist_delete(vmp, vnext); 782 vmem_freelist_delete(vmp, vprev); 783 vprev->vs_end = vnext->vs_end; 784 vmem_freelist_insert(vmp, vprev); 785 vmem_seg_destroy(vmp, vnext); 786 } 787 vsp = vprev; 788 } else if (vnext->vs_type == VMEM_FREE) { 789 vsp = vnext; 790 } 791 792 /* 793 * vsp could represent a complete imported span, 794 * in which case we must return it to the source. 795 */ 796 if (vsp != NULL && vsp->vs_aprev->vs_import && 797 vmp->vm_source_free != NULL && 798 vsp->vs_aprev->vs_type == VMEM_SPAN && 799 vsp->vs_anext->vs_type == VMEM_SPAN) { 800 void *vaddr = (void *)vsp->vs_start; 801 size_t size = VS_SIZE(vsp); 802 ASSERT(size == VS_SIZE(vsp->vs_aprev)); 803 vmem_freelist_delete(vmp, vsp); 804 vmem_span_destroy(vmp, vsp); 805 mutex_exit(&vmp->vm_lock); 806 vmp->vm_source_free(vmp->vm_source, vaddr, size); 807 mutex_enter(&vmp->vm_lock); 808 } 809 } 810 811 /* 812 * VM_NEXTFIT allocations deliberately cycle through all virtual addresses 813 * in an arena, so that we avoid reusing addresses for as long as possible. 814 * This helps to catch used-after-freed bugs. It's also the perfect policy 815 * for allocating things like process IDs, where we want to cycle through 816 * all values in order. 817 */ 818 static void * 819 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag) 820 { 821 vmem_seg_t *vsp, *rotor; 822 uintptr_t addr; 823 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum); 824 size_t vs_size; 825 826 mutex_enter(&vmp->vm_lock); 827 828 if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) { 829 mutex_exit(&vmp->vm_lock); 830 return (NULL); 831 } 832 833 /* 834 * The common case is that the segment right after the rotor is free, 835 * and large enough that extracting 'size' bytes won't change which 836 * freelist it's on. In this case we can avoid a *lot* of work. 837 * Instead of the normal vmem_seg_alloc(), we just advance the start 838 * address of the victim segment. Instead of moving the rotor, we 839 * create the new segment structure *behind the rotor*, which has 840 * the same effect. And finally, we know we don't have to coalesce 841 * the rotor's neighbors because the new segment lies between them. 842 */ 843 rotor = &vmp->vm_rotor; 844 vsp = rotor->vs_anext; 845 if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize && 846 P2SAMEHIGHBIT(vs_size, vs_size - realsize)) { 847 ASSERT(highbit(vs_size) == highbit(vs_size - realsize)); 848 addr = vsp->vs_start; 849 vsp->vs_start = addr + realsize; 850 vmem_hash_insert(vmp, 851 vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size)); 852 mutex_exit(&vmp->vm_lock); 853 return ((void *)addr); 854 } 855 856 /* 857 * Starting at the rotor, look for a segment large enough to 858 * satisfy the allocation. 859 */ 860 for (;;) { 861 vmp->vm_kstat.vk_search.value.ui64++; 862 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) 863 break; 864 vsp = vsp->vs_anext; 865 if (vsp == rotor) { 866 /* 867 * We've come full circle. One possibility is that the 868 * there's actually enough space, but the rotor itself 869 * is preventing the allocation from succeeding because 870 * it's sitting between two free segments. Therefore, 871 * we advance the rotor and see if that liberates a 872 * suitable segment. 873 */ 874 vmem_advance(vmp, rotor, rotor->vs_anext); 875 vsp = rotor->vs_aprev; 876 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size) 877 break; 878 /* 879 * If there's a lower arena we can import from, or it's 880 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it. 881 * Otherwise, wait until another thread frees something. 882 */ 883 if (vmp->vm_source_alloc != NULL || 884 (vmflag & VM_NOSLEEP)) { 885 mutex_exit(&vmp->vm_lock); 886 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 887 0, 0, NULL, NULL, vmflag & VM_KMFLAGS)); 888 } 889 vmp->vm_kstat.vk_wait.value.ui64++; 890 cv_wait(&vmp->vm_cv, &vmp->vm_lock); 891 vsp = rotor->vs_anext; 892 } 893 } 894 895 /* 896 * We found a segment. Extract enough space to satisfy the allocation. 897 */ 898 addr = vsp->vs_start; 899 vsp = vmem_seg_alloc(vmp, vsp, addr, size); 900 ASSERT(vsp->vs_type == VMEM_ALLOC && 901 vsp->vs_start == addr && vsp->vs_end == addr + size); 902 903 /* 904 * Advance the rotor to right after the newly-allocated segment. 905 * That's where the next VM_NEXTFIT allocation will begin searching. 906 */ 907 vmem_advance(vmp, rotor, vsp); 908 mutex_exit(&vmp->vm_lock); 909 return ((void *)addr); 910 } 911 912 /* 913 * Checks if vmp is guaranteed to have a size-byte buffer somewhere on its 914 * freelist. If size is not a power-of-2, it can return a false-negative. 915 * 916 * Used to decide if a newly imported span is superfluous after re-acquiring 917 * the arena lock. 918 */ 919 static int 920 vmem_canalloc(vmem_t *vmp, size_t size) 921 { 922 int hb; 923 int flist = 0; 924 ASSERT(MUTEX_HELD(&vmp->vm_lock)); 925 926 if (ISP2(size)) 927 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 928 else if ((hb = highbit(size)) < VMEM_FREELISTS) 929 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 930 931 return (flist); 932 } 933 934 /* 935 * Allocate size bytes at offset phase from an align boundary such that the 936 * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr) 937 * that does not straddle a nocross-aligned boundary. 938 */ 939 void * 940 vmem_xalloc(vmem_t *vmp, size_t size, size_t align_arg, size_t phase, 941 size_t nocross, void *minaddr, void *maxaddr, int vmflag) 942 { 943 vmem_seg_t *vsp; 944 vmem_seg_t *vbest = NULL; 945 uintptr_t addr, taddr, start, end; 946 uintptr_t align = (align_arg != 0) ? align_arg : vmp->vm_quantum; 947 void *vaddr, *xvaddr = NULL; 948 size_t xsize; 949 int hb, flist, resv; 950 uint32_t mtbf; 951 952 if ((align | phase | nocross) & (vmp->vm_quantum - 1)) 953 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 954 "parameters not vm_quantum aligned", 955 (void *)vmp, size, align_arg, phase, nocross, 956 minaddr, maxaddr, vmflag); 957 958 if (nocross != 0 && 959 (align > nocross || P2ROUNDUP(phase + size, align) > nocross)) 960 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 961 "overconstrained allocation", 962 (void *)vmp, size, align_arg, phase, nocross, 963 minaddr, maxaddr, vmflag); 964 965 if (phase >= align || !ISP2(align) || !ISP2(nocross)) 966 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 967 "parameters inconsistent or invalid", 968 (void *)vmp, size, align_arg, phase, nocross, 969 minaddr, maxaddr, vmflag); 970 971 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && 972 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) 973 return (NULL); 974 975 mutex_enter(&vmp->vm_lock); 976 for (;;) { 977 if (vmp->vm_nsegfree < VMEM_MINFREE && 978 !vmem_populate(vmp, vmflag)) 979 break; 980 do_alloc: 981 /* 982 * highbit() returns the highest bit + 1, which is exactly 983 * what we want: we want to search the first freelist whose 984 * members are *definitely* large enough to satisfy our 985 * allocation. However, there are certain cases in which we 986 * want to look at the next-smallest freelist (which *might* 987 * be able to satisfy the allocation): 988 * 989 * (1) The size is exactly a power of 2, in which case 990 * the smaller freelist is always big enough; 991 * 992 * (2) All other freelists are empty; 993 * 994 * (3) We're in the highest possible freelist, which is 995 * always empty (e.g. the 4GB freelist on 32-bit systems); 996 * 997 * (4) We're doing a best-fit or first-fit allocation. 998 */ 999 if (ISP2(size)) { 1000 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 1001 } else { 1002 hb = highbit(size); 1003 if ((vmp->vm_freemap >> hb) == 0 || 1004 hb == VMEM_FREELISTS || 1005 (vmflag & (VM_BESTFIT | VM_FIRSTFIT))) 1006 hb--; 1007 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 1008 } 1009 1010 for (vbest = NULL, vsp = (flist == 0) ? NULL : 1011 vmp->vm_freelist[flist - 1].vs_knext; 1012 vsp != NULL; vsp = vsp->vs_knext) { 1013 vmp->vm_kstat.vk_search.value.ui64++; 1014 if (vsp->vs_start == 0) { 1015 /* 1016 * We're moving up to a larger freelist, 1017 * so if we've already found a candidate, 1018 * the fit can't possibly get any better. 1019 */ 1020 if (vbest != NULL) 1021 break; 1022 /* 1023 * Find the next non-empty freelist. 1024 */ 1025 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1026 VS_SIZE(vsp))); 1027 if (flist-- == 0) 1028 break; 1029 vsp = (vmem_seg_t *)&vmp->vm_freelist[flist]; 1030 ASSERT(vsp->vs_knext->vs_type == VMEM_FREE); 1031 continue; 1032 } 1033 if (vsp->vs_end - 1 < (uintptr_t)minaddr) 1034 continue; 1035 if (vsp->vs_start > (uintptr_t)maxaddr - 1) 1036 continue; 1037 start = MAX(vsp->vs_start, (uintptr_t)minaddr); 1038 end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1; 1039 taddr = P2PHASEUP(start, align, phase); 1040 if (P2BOUNDARY(taddr, size, nocross)) 1041 taddr += 1042 P2ROUNDUP(P2NPHASE(taddr, nocross), align); 1043 if ((taddr - start) + size > end - start || 1044 (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest))) 1045 continue; 1046 vbest = vsp; 1047 addr = taddr; 1048 if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size) 1049 break; 1050 } 1051 if (vbest != NULL) 1052 break; 1053 ASSERT(xvaddr == NULL); 1054 if (size == 0) 1055 panic("vmem_xalloc(): size == 0"); 1056 if (vmp->vm_source_alloc != NULL && nocross == 0 && 1057 minaddr == NULL && maxaddr == NULL) { 1058 size_t aneeded, asize; 1059 size_t aquantum = MAX(vmp->vm_quantum, 1060 vmp->vm_source->vm_quantum); 1061 size_t aphase = phase; 1062 if ((align > aquantum) && 1063 !(vmp->vm_cflags & VMC_XALIGN)) { 1064 aphase = (P2PHASE(phase, aquantum) != 0) ? 1065 align - vmp->vm_quantum : align - aquantum; 1066 ASSERT(aphase >= phase); 1067 } 1068 aneeded = MAX(size + aphase, vmp->vm_min_import); 1069 asize = P2ROUNDUP(aneeded, aquantum); 1070 1071 if (asize < size) { 1072 /* 1073 * The rounding induced overflow; return NULL 1074 * if we are permitted to fail the allocation 1075 * (and explicitly panic if we aren't). 1076 */ 1077 if ((vmflag & VM_NOSLEEP) && 1078 !(vmflag & VM_PANIC)) { 1079 mutex_exit(&vmp->vm_lock); 1080 return (NULL); 1081 } 1082 1083 panic("vmem_xalloc(): size overflow"); 1084 } 1085 1086 /* 1087 * Determine how many segment structures we'll consume. 1088 * The calculation must be precise because if we're 1089 * here on behalf of vmem_populate(), we are taking 1090 * segments from a very limited reserve. 1091 */ 1092 if (size == asize && !(vmp->vm_cflags & VMC_XALLOC)) 1093 resv = VMEM_SEGS_PER_SPAN_CREATE + 1094 VMEM_SEGS_PER_EXACT_ALLOC; 1095 else if (phase == 0 && 1096 align <= vmp->vm_source->vm_quantum) 1097 resv = VMEM_SEGS_PER_SPAN_CREATE + 1098 VMEM_SEGS_PER_LEFT_ALLOC; 1099 else 1100 resv = VMEM_SEGS_PER_ALLOC_MAX; 1101 1102 ASSERT(vmp->vm_nsegfree >= resv); 1103 vmp->vm_nsegfree -= resv; /* reserve our segs */ 1104 mutex_exit(&vmp->vm_lock); 1105 if (vmp->vm_cflags & VMC_XALLOC) { 1106 size_t oasize = asize; 1107 vmem_ximport_t *vmem_ximport; 1108 1109 vmem_ximport = (vmem_ximport_t *) 1110 (uintptr_t)vmp->vm_source_alloc; 1111 1112 vaddr = vmem_ximport(vmp->vm_source, 1113 &asize, align, vmflag & VM_KMFLAGS); 1114 ASSERT(asize >= oasize); 1115 ASSERT(P2PHASE(asize, 1116 vmp->vm_source->vm_quantum) == 0); 1117 ASSERT(!(vmp->vm_cflags & VMC_XALIGN) || 1118 IS_P2ALIGNED(vaddr, align)); 1119 } else { 1120 vaddr = vmp->vm_source_alloc(vmp->vm_source, 1121 asize, vmflag & VM_KMFLAGS); 1122 } 1123 mutex_enter(&vmp->vm_lock); 1124 vmp->vm_nsegfree += resv; /* claim reservation */ 1125 aneeded = size + align - vmp->vm_quantum; 1126 aneeded = P2ROUNDUP(aneeded, vmp->vm_quantum); 1127 if (vaddr != NULL) { 1128 /* 1129 * Since we dropped the vmem lock while 1130 * calling the import function, other 1131 * threads could have imported space 1132 * and made our import unnecessary. In 1133 * order to save space, we return 1134 * excess imports immediately. 1135 */ 1136 if (asize > aneeded && 1137 vmp->vm_source_free != NULL && 1138 vmem_canalloc(vmp, aneeded)) { 1139 ASSERT(resv >= 1140 VMEM_SEGS_PER_MIDDLE_ALLOC); 1141 xvaddr = vaddr; 1142 xsize = asize; 1143 goto do_alloc; 1144 } 1145 vbest = vmem_span_create(vmp, vaddr, asize, 1); 1146 addr = P2PHASEUP(vbest->vs_start, align, phase); 1147 break; 1148 } else if (vmem_canalloc(vmp, aneeded)) { 1149 /* 1150 * Our import failed, but another thread 1151 * added sufficient free memory to the arena 1152 * to satisfy our request. Go back and 1153 * grab it. 1154 */ 1155 ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC); 1156 goto do_alloc; 1157 } 1158 } 1159 1160 /* 1161 * If the requestor chooses to fail the allocation attempt 1162 * rather than reap wait and retry - get out of the loop. 1163 */ 1164 if (vmflag & VM_ABORT) 1165 break; 1166 mutex_exit(&vmp->vm_lock); 1167 if (vmp->vm_cflags & VMC_IDENTIFIER) 1168 kmem_reap_idspace(); 1169 else 1170 kmem_reap(); 1171 mutex_enter(&vmp->vm_lock); 1172 if (vmflag & VM_NOSLEEP) 1173 break; 1174 vmp->vm_kstat.vk_wait.value.ui64++; 1175 cv_wait(&vmp->vm_cv, &vmp->vm_lock); 1176 } 1177 if (vbest != NULL) { 1178 ASSERT(vbest->vs_type == VMEM_FREE); 1179 ASSERT(vbest->vs_knext != vbest); 1180 /* re-position to end of buffer */ 1181 if (vmflag & VM_ENDALLOC) { 1182 addr += ((vbest->vs_end - (addr + size)) / align) * 1183 align; 1184 } 1185 (void) vmem_seg_alloc(vmp, vbest, addr, size); 1186 mutex_exit(&vmp->vm_lock); 1187 if (xvaddr) 1188 vmp->vm_source_free(vmp->vm_source, xvaddr, xsize); 1189 ASSERT(P2PHASE(addr, align) == phase); 1190 ASSERT(!P2BOUNDARY(addr, size, nocross)); 1191 ASSERT(addr >= (uintptr_t)minaddr); 1192 ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1); 1193 return ((void *)addr); 1194 } 1195 vmp->vm_kstat.vk_fail.value.ui64++; 1196 mutex_exit(&vmp->vm_lock); 1197 if (vmflag & VM_PANIC) 1198 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): " 1199 "cannot satisfy mandatory allocation", 1200 (void *)vmp, size, align_arg, phase, nocross, 1201 minaddr, maxaddr, vmflag); 1202 ASSERT(xvaddr == NULL); 1203 return (NULL); 1204 } 1205 1206 /* 1207 * Free the segment [vaddr, vaddr + size), where vaddr was a constrained 1208 * allocation. vmem_xalloc() and vmem_xfree() must always be paired because 1209 * both routines bypass the quantum caches. 1210 */ 1211 void 1212 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size) 1213 { 1214 vmem_seg_t *vsp, *vnext, *vprev; 1215 1216 mutex_enter(&vmp->vm_lock); 1217 1218 vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size); 1219 vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum); 1220 1221 /* 1222 * Attempt to coalesce with the next segment. 1223 */ 1224 vnext = vsp->vs_anext; 1225 if (vnext->vs_type == VMEM_FREE) { 1226 ASSERT(vsp->vs_end == vnext->vs_start); 1227 vmem_freelist_delete(vmp, vnext); 1228 vsp->vs_end = vnext->vs_end; 1229 vmem_seg_destroy(vmp, vnext); 1230 } 1231 1232 /* 1233 * Attempt to coalesce with the previous segment. 1234 */ 1235 vprev = vsp->vs_aprev; 1236 if (vprev->vs_type == VMEM_FREE) { 1237 ASSERT(vprev->vs_end == vsp->vs_start); 1238 vmem_freelist_delete(vmp, vprev); 1239 vprev->vs_end = vsp->vs_end; 1240 vmem_seg_destroy(vmp, vsp); 1241 vsp = vprev; 1242 } 1243 1244 /* 1245 * If the entire span is free, return it to the source. 1246 */ 1247 if (vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL && 1248 vsp->vs_aprev->vs_type == VMEM_SPAN && 1249 vsp->vs_anext->vs_type == VMEM_SPAN) { 1250 vaddr = (void *)vsp->vs_start; 1251 size = VS_SIZE(vsp); 1252 ASSERT(size == VS_SIZE(vsp->vs_aprev)); 1253 vmem_span_destroy(vmp, vsp); 1254 mutex_exit(&vmp->vm_lock); 1255 vmp->vm_source_free(vmp->vm_source, vaddr, size); 1256 } else { 1257 vmem_freelist_insert(vmp, vsp); 1258 mutex_exit(&vmp->vm_lock); 1259 } 1260 } 1261 1262 /* 1263 * Allocate size bytes from arena vmp. Returns the allocated address 1264 * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP, 1265 * and may also specify best-fit, first-fit, or next-fit allocation policy 1266 * instead of the default instant-fit policy. VM_SLEEP allocations are 1267 * guaranteed to succeed. 1268 */ 1269 void * 1270 vmem_alloc(vmem_t *vmp, size_t size, int vmflag) 1271 { 1272 vmem_seg_t *vsp; 1273 uintptr_t addr; 1274 int hb; 1275 int flist = 0; 1276 uint32_t mtbf; 1277 1278 if (size - 1 < vmp->vm_qcache_max) 1279 return (kmem_cache_alloc(vmp->vm_qcache[(size - 1) >> 1280 vmp->vm_qshift], vmflag & VM_KMFLAGS)); 1281 1282 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 && 1283 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP) 1284 return (NULL); 1285 1286 if (vmflag & VM_NEXTFIT) 1287 return (vmem_nextfit_alloc(vmp, size, vmflag)); 1288 1289 if (vmflag & (VM_BESTFIT | VM_FIRSTFIT)) 1290 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0, 1291 NULL, NULL, vmflag)); 1292 1293 /* 1294 * Unconstrained instant-fit allocation from the segment list. 1295 */ 1296 mutex_enter(&vmp->vm_lock); 1297 1298 if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) { 1299 if (ISP2(size)) 1300 flist = lowbit(P2ALIGN(vmp->vm_freemap, size)); 1301 else if ((hb = highbit(size)) < VMEM_FREELISTS) 1302 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb)); 1303 } 1304 1305 if (flist-- == 0) { 1306 mutex_exit(&vmp->vm_lock); 1307 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 1308 0, 0, NULL, NULL, vmflag)); 1309 } 1310 1311 ASSERT(size <= (1UL << flist)); 1312 vsp = vmp->vm_freelist[flist].vs_knext; 1313 addr = vsp->vs_start; 1314 if (vmflag & VM_ENDALLOC) { 1315 addr += vsp->vs_end - (addr + size); 1316 } 1317 (void) vmem_seg_alloc(vmp, vsp, addr, size); 1318 mutex_exit(&vmp->vm_lock); 1319 return ((void *)addr); 1320 } 1321 1322 /* 1323 * Free the segment [vaddr, vaddr + size). 1324 */ 1325 void 1326 vmem_free(vmem_t *vmp, void *vaddr, size_t size) 1327 { 1328 if (size - 1 < vmp->vm_qcache_max) 1329 kmem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift], 1330 vaddr); 1331 else 1332 vmem_xfree(vmp, vaddr, size); 1333 } 1334 1335 /* 1336 * Determine whether arena vmp contains the segment [vaddr, vaddr + size). 1337 */ 1338 int 1339 vmem_contains(vmem_t *vmp, void *vaddr, size_t size) 1340 { 1341 uintptr_t start = (uintptr_t)vaddr; 1342 uintptr_t end = start + size; 1343 vmem_seg_t *vsp; 1344 vmem_seg_t *seg0 = &vmp->vm_seg0; 1345 1346 mutex_enter(&vmp->vm_lock); 1347 vmp->vm_kstat.vk_contains.value.ui64++; 1348 for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) { 1349 vmp->vm_kstat.vk_contains_search.value.ui64++; 1350 ASSERT(vsp->vs_type == VMEM_SPAN); 1351 if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1) 1352 break; 1353 } 1354 mutex_exit(&vmp->vm_lock); 1355 return (vsp != seg0); 1356 } 1357 1358 /* 1359 * Add the span [vaddr, vaddr + size) to arena vmp. 1360 */ 1361 void * 1362 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag) 1363 { 1364 if (vaddr == NULL || size == 0) 1365 panic("vmem_add(%p, %p, %lu): bad arguments", 1366 (void *)vmp, vaddr, size); 1367 1368 ASSERT(!vmem_contains(vmp, vaddr, size)); 1369 1370 mutex_enter(&vmp->vm_lock); 1371 if (vmem_populate(vmp, vmflag)) 1372 (void) vmem_span_create(vmp, vaddr, size, 0); 1373 else 1374 vaddr = NULL; 1375 mutex_exit(&vmp->vm_lock); 1376 return (vaddr); 1377 } 1378 1379 /* 1380 * Walk the vmp arena, applying func to each segment matching typemask. 1381 * If VMEM_REENTRANT is specified, the arena lock is dropped across each 1382 * call to func(); otherwise, it is held for the duration of vmem_walk() 1383 * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks 1384 * are *not* necessarily consistent, so they may only be used when a hint 1385 * is adequate. 1386 */ 1387 void 1388 vmem_walk(vmem_t *vmp, int typemask, 1389 void (*func)(void *, void *, size_t), void *arg) 1390 { 1391 vmem_seg_t *vsp; 1392 vmem_seg_t *seg0 = &vmp->vm_seg0; 1393 vmem_seg_t walker; 1394 1395 if (typemask & VMEM_WALKER) 1396 return; 1397 1398 bzero(&walker, sizeof (walker)); 1399 walker.vs_type = VMEM_WALKER; 1400 1401 mutex_enter(&vmp->vm_lock); 1402 VMEM_INSERT(seg0, &walker, a); 1403 for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) { 1404 if (vsp->vs_type & typemask) { 1405 void *start = (void *)vsp->vs_start; 1406 size_t size = VS_SIZE(vsp); 1407 if (typemask & VMEM_REENTRANT) { 1408 vmem_advance(vmp, &walker, vsp); 1409 mutex_exit(&vmp->vm_lock); 1410 func(arg, start, size); 1411 mutex_enter(&vmp->vm_lock); 1412 vsp = &walker; 1413 } else { 1414 func(arg, start, size); 1415 } 1416 } 1417 } 1418 vmem_advance(vmp, &walker, NULL); 1419 mutex_exit(&vmp->vm_lock); 1420 } 1421 1422 /* 1423 * Return the total amount of memory whose type matches typemask. Thus: 1424 * 1425 * typemask VMEM_ALLOC yields total memory allocated (in use). 1426 * typemask VMEM_FREE yields total memory free (available). 1427 * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size. 1428 */ 1429 size_t 1430 vmem_size(vmem_t *vmp, int typemask) 1431 { 1432 uint64_t size = 0; 1433 1434 if (typemask & VMEM_ALLOC) 1435 size += vmp->vm_kstat.vk_mem_inuse.value.ui64; 1436 if (typemask & VMEM_FREE) 1437 size += vmp->vm_kstat.vk_mem_total.value.ui64 - 1438 vmp->vm_kstat.vk_mem_inuse.value.ui64; 1439 return ((size_t)size); 1440 } 1441 1442 /* 1443 * Create an arena called name whose initial span is [base, base + size). 1444 * The arena's natural unit of currency is quantum, so vmem_alloc() 1445 * guarantees quantum-aligned results. The arena may import new spans 1446 * by invoking afunc() on source, and may return those spans by invoking 1447 * ffunc() on source. To make small allocations fast and scalable, 1448 * the arena offers high-performance caching for each integer multiple 1449 * of quantum up to qcache_max. 1450 */ 1451 static vmem_t * 1452 vmem_create_common(const char *name, void *base, size_t size, size_t quantum, 1453 void *(*afunc)(vmem_t *, size_t, int), 1454 void (*ffunc)(vmem_t *, void *, size_t), 1455 vmem_t *source, size_t qcache_max, int vmflag) 1456 { 1457 int i; 1458 size_t nqcache; 1459 vmem_t *vmp, *cur, **vmpp; 1460 vmem_seg_t *vsp; 1461 vmem_freelist_t *vfp; 1462 uint32_t id = atomic_inc_32_nv(&vmem_id); 1463 1464 if (vmem_vmem_arena != NULL) { 1465 vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t), 1466 vmflag & VM_KMFLAGS); 1467 } else { 1468 ASSERT(id <= VMEM_INITIAL); 1469 vmp = &vmem0[id - 1]; 1470 } 1471 1472 /* An identifier arena must inherit from another identifier arena */ 1473 ASSERT(source == NULL || ((source->vm_cflags & VMC_IDENTIFIER) == 1474 (vmflag & VMC_IDENTIFIER))); 1475 1476 if (vmp == NULL) 1477 return (NULL); 1478 bzero(vmp, sizeof (vmem_t)); 1479 1480 (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name); 1481 mutex_init(&vmp->vm_lock, NULL, MUTEX_DEFAULT, NULL); 1482 cv_init(&vmp->vm_cv, NULL, CV_DEFAULT, NULL); 1483 vmp->vm_cflags = vmflag; 1484 vmflag &= VM_KMFLAGS; 1485 1486 vmp->vm_quantum = quantum; 1487 vmp->vm_qshift = highbit(quantum) - 1; 1488 nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX); 1489 1490 for (i = 0; i <= VMEM_FREELISTS; i++) { 1491 vfp = &vmp->vm_freelist[i]; 1492 vfp->vs_end = 1UL << i; 1493 vfp->vs_knext = (vmem_seg_t *)(vfp + 1); 1494 vfp->vs_kprev = (vmem_seg_t *)(vfp - 1); 1495 } 1496 1497 vmp->vm_freelist[0].vs_kprev = NULL; 1498 vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL; 1499 vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0; 1500 vmp->vm_hash_table = vmp->vm_hash0; 1501 vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1; 1502 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); 1503 1504 vsp = &vmp->vm_seg0; 1505 vsp->vs_anext = vsp; 1506 vsp->vs_aprev = vsp; 1507 vsp->vs_knext = vsp; 1508 vsp->vs_kprev = vsp; 1509 vsp->vs_type = VMEM_SPAN; 1510 1511 vsp = &vmp->vm_rotor; 1512 vsp->vs_type = VMEM_ROTOR; 1513 VMEM_INSERT(&vmp->vm_seg0, vsp, a); 1514 1515 bcopy(&vmem_kstat_template, &vmp->vm_kstat, sizeof (vmem_kstat_t)); 1516 1517 vmp->vm_id = id; 1518 if (source != NULL) 1519 vmp->vm_kstat.vk_source_id.value.ui32 = source->vm_id; 1520 vmp->vm_source = source; 1521 vmp->vm_source_alloc = afunc; 1522 vmp->vm_source_free = ffunc; 1523 1524 /* 1525 * Some arenas (like vmem_metadata and kmem_metadata) cannot 1526 * use quantum caching to lower fragmentation. Instead, we 1527 * increase their imports, giving a similar effect. 1528 */ 1529 if (vmp->vm_cflags & VMC_NO_QCACHE) { 1530 vmp->vm_min_import = 1531 VMEM_QCACHE_SLABSIZE(nqcache << vmp->vm_qshift); 1532 nqcache = 0; 1533 } 1534 1535 if (nqcache != 0) { 1536 ASSERT(!(vmflag & VM_NOSLEEP)); 1537 vmp->vm_qcache_max = nqcache << vmp->vm_qshift; 1538 for (i = 0; i < nqcache; i++) { 1539 char buf[VMEM_NAMELEN + 21]; 1540 (void) sprintf(buf, "%s_%lu", vmp->vm_name, 1541 (i + 1) * quantum); 1542 vmp->vm_qcache[i] = kmem_cache_create(buf, 1543 (i + 1) * quantum, quantum, NULL, NULL, NULL, 1544 NULL, vmp, KMC_QCACHE | KMC_NOTOUCH); 1545 } 1546 } 1547 1548 if ((vmp->vm_ksp = kstat_create("vmem", vmp->vm_id, vmp->vm_name, 1549 "vmem", KSTAT_TYPE_NAMED, sizeof (vmem_kstat_t) / 1550 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) { 1551 vmp->vm_ksp->ks_data = &vmp->vm_kstat; 1552 kstat_install(vmp->vm_ksp); 1553 } 1554 1555 mutex_enter(&vmem_list_lock); 1556 vmpp = &vmem_list; 1557 while ((cur = *vmpp) != NULL) 1558 vmpp = &cur->vm_next; 1559 *vmpp = vmp; 1560 mutex_exit(&vmem_list_lock); 1561 1562 if (vmp->vm_cflags & VMC_POPULATOR) { 1563 ASSERT(vmem_populators < VMEM_INITIAL); 1564 vmem_populator[atomic_inc_32_nv(&vmem_populators) - 1] = vmp; 1565 mutex_enter(&vmp->vm_lock); 1566 (void) vmem_populate(vmp, vmflag | VM_PANIC); 1567 mutex_exit(&vmp->vm_lock); 1568 } 1569 1570 if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) { 1571 vmem_destroy(vmp); 1572 return (NULL); 1573 } 1574 1575 return (vmp); 1576 } 1577 1578 vmem_t * 1579 vmem_xcreate(const char *name, void *base, size_t size, size_t quantum, 1580 vmem_ximport_t *afunc, vmem_free_t *ffunc, vmem_t *source, 1581 size_t qcache_max, int vmflag) 1582 { 1583 vmem_alloc_t *af; 1584 1585 af = (vmem_alloc_t *)(uintptr_t)afunc; 1586 ASSERT(!(vmflag & (VMC_POPULATOR | VMC_XALLOC))); 1587 vmflag &= ~(VMC_POPULATOR | VMC_XALLOC); 1588 1589 return (vmem_create_common(name, base, size, quantum, 1590 af, ffunc, source, qcache_max, vmflag | VMC_XALLOC)); 1591 } 1592 1593 vmem_t * 1594 vmem_create(const char *name, void *base, size_t size, size_t quantum, 1595 vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source, 1596 size_t qcache_max, int vmflag) 1597 { 1598 ASSERT(!(vmflag & (VMC_XALLOC | VMC_XALIGN))); 1599 vmflag &= ~(VMC_XALLOC | VMC_XALIGN); 1600 1601 return (vmem_create_common(name, base, size, quantum, 1602 afunc, ffunc, source, qcache_max, vmflag)); 1603 } 1604 1605 /* 1606 * Destroy arena vmp. 1607 */ 1608 void 1609 vmem_destroy(vmem_t *vmp) 1610 { 1611 vmem_t *cur, **vmpp; 1612 vmem_seg_t *seg0 = &vmp->vm_seg0; 1613 vmem_seg_t *vsp, *anext; 1614 size_t leaked; 1615 int i; 1616 1617 mutex_enter(&vmem_list_lock); 1618 vmpp = &vmem_list; 1619 while ((cur = *vmpp) != vmp) 1620 vmpp = &cur->vm_next; 1621 *vmpp = vmp->vm_next; 1622 mutex_exit(&vmem_list_lock); 1623 1624 for (i = 0; i < VMEM_NQCACHE_MAX; i++) 1625 if (vmp->vm_qcache[i]) 1626 kmem_cache_destroy(vmp->vm_qcache[i]); 1627 1628 leaked = vmem_size(vmp, VMEM_ALLOC); 1629 if (leaked != 0) 1630 cmn_err(CE_WARN, "vmem_destroy('%s'): leaked %lu %s", 1631 vmp->vm_name, leaked, (vmp->vm_cflags & VMC_IDENTIFIER) ? 1632 "identifiers" : "bytes"); 1633 1634 if (vmp->vm_hash_table != vmp->vm_hash0) 1635 vmem_free(vmem_hash_arena, vmp->vm_hash_table, 1636 (vmp->vm_hash_mask + 1) * sizeof (void *)); 1637 1638 /* 1639 * Give back the segment structures for anything that's left in the 1640 * arena, e.g. the primary spans and their free segments. 1641 */ 1642 VMEM_DELETE(&vmp->vm_rotor, a); 1643 for (vsp = seg0->vs_anext; vsp != seg0; vsp = anext) { 1644 anext = vsp->vs_anext; 1645 vmem_putseg_global(vsp); 1646 } 1647 1648 while (vmp->vm_nsegfree > 0) 1649 vmem_putseg_global(vmem_getseg(vmp)); 1650 1651 kstat_delete(vmp->vm_ksp); 1652 1653 mutex_destroy(&vmp->vm_lock); 1654 cv_destroy(&vmp->vm_cv); 1655 vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t)); 1656 } 1657 1658 /* 1659 * Only shrink vmem hashtable if it is 1<<vmem_rescale_minshift times (8x) 1660 * larger than necessary. 1661 */ 1662 int vmem_rescale_minshift = 3; 1663 1664 /* 1665 * Resize vmp's hash table to keep the average lookup depth near 1.0. 1666 */ 1667 static void 1668 vmem_hash_rescale(vmem_t *vmp) 1669 { 1670 vmem_seg_t **old_table, **new_table, *vsp; 1671 size_t old_size, new_size, h, nseg; 1672 1673 nseg = (size_t)(vmp->vm_kstat.vk_alloc.value.ui64 - 1674 vmp->vm_kstat.vk_free.value.ui64); 1675 1676 new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2)); 1677 old_size = vmp->vm_hash_mask + 1; 1678 1679 if ((old_size >> vmem_rescale_minshift) <= new_size && 1680 new_size <= (old_size << 1)) 1681 return; 1682 1683 new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *), 1684 VM_NOSLEEP); 1685 if (new_table == NULL) 1686 return; 1687 bzero(new_table, new_size * sizeof (void *)); 1688 1689 mutex_enter(&vmp->vm_lock); 1690 1691 old_size = vmp->vm_hash_mask + 1; 1692 old_table = vmp->vm_hash_table; 1693 1694 vmp->vm_hash_mask = new_size - 1; 1695 vmp->vm_hash_table = new_table; 1696 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask); 1697 1698 for (h = 0; h < old_size; h++) { 1699 vsp = old_table[h]; 1700 while (vsp != NULL) { 1701 uintptr_t addr = vsp->vs_start; 1702 vmem_seg_t *next_vsp = vsp->vs_knext; 1703 vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr); 1704 vsp->vs_knext = *hash_bucket; 1705 *hash_bucket = vsp; 1706 vsp = next_vsp; 1707 } 1708 } 1709 1710 mutex_exit(&vmp->vm_lock); 1711 1712 if (old_table != vmp->vm_hash0) 1713 vmem_free(vmem_hash_arena, old_table, 1714 old_size * sizeof (void *)); 1715 } 1716 1717 /* 1718 * Perform periodic maintenance on all vmem arenas. 1719 */ 1720 void 1721 vmem_update(void *dummy) 1722 { 1723 vmem_t *vmp; 1724 1725 mutex_enter(&vmem_list_lock); 1726 for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) { 1727 /* 1728 * If threads are waiting for resources, wake them up 1729 * periodically so they can issue another kmem_reap() 1730 * to reclaim resources cached by the slab allocator. 1731 */ 1732 cv_broadcast(&vmp->vm_cv); 1733 1734 /* 1735 * Rescale the hash table to keep the hash chains short. 1736 */ 1737 vmem_hash_rescale(vmp); 1738 } 1739 mutex_exit(&vmem_list_lock); 1740 1741 (void) timeout(vmem_update, dummy, vmem_update_interval * hz); 1742 } 1743 1744 void 1745 vmem_qcache_reap(vmem_t *vmp) 1746 { 1747 int i; 1748 1749 /* 1750 * Reap any quantum caches that may be part of this vmem. 1751 */ 1752 for (i = 0; i < VMEM_NQCACHE_MAX; i++) 1753 if (vmp->vm_qcache[i]) 1754 kmem_cache_reap_soon(vmp->vm_qcache[i]); 1755 } 1756 1757 /* 1758 * Prepare vmem for use. 1759 */ 1760 vmem_t * 1761 vmem_init(const char *heap_name, 1762 void *heap_start, size_t heap_size, size_t heap_quantum, 1763 void *(*heap_alloc)(vmem_t *, size_t, int), 1764 void (*heap_free)(vmem_t *, void *, size_t)) 1765 { 1766 uint32_t id; 1767 int nseg = VMEM_SEG_INITIAL; 1768 vmem_t *heap; 1769 1770 while (--nseg >= 0) 1771 vmem_putseg_global(&vmem_seg0[nseg]); 1772 1773 heap = vmem_create(heap_name, 1774 heap_start, heap_size, heap_quantum, 1775 NULL, NULL, NULL, 0, 1776 VM_SLEEP | VMC_POPULATOR); 1777 1778 vmem_metadata_arena = vmem_create("vmem_metadata", 1779 NULL, 0, heap_quantum, 1780 vmem_alloc, vmem_free, heap, 8 * heap_quantum, 1781 VM_SLEEP | VMC_POPULATOR | VMC_NO_QCACHE); 1782 1783 vmem_seg_arena = vmem_create("vmem_seg", 1784 NULL, 0, heap_quantum, 1785 heap_alloc, heap_free, vmem_metadata_arena, 0, 1786 VM_SLEEP | VMC_POPULATOR); 1787 1788 vmem_hash_arena = vmem_create("vmem_hash", 1789 NULL, 0, 8, 1790 heap_alloc, heap_free, vmem_metadata_arena, 0, 1791 VM_SLEEP); 1792 1793 vmem_vmem_arena = vmem_create("vmem_vmem", 1794 vmem0, sizeof (vmem0), 1, 1795 heap_alloc, heap_free, vmem_metadata_arena, 0, 1796 VM_SLEEP); 1797 1798 for (id = 0; id < vmem_id; id++) 1799 (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t), 1800 1, 0, 0, &vmem0[id], &vmem0[id + 1], 1801 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1802 1803 return (heap); 1804 } 1805