xref: /illumos-gate/usr/src/uts/common/os/vm_subr.c (revision a72f7ea693101cc48bafbb4db6bb437d828011c4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 /*
31  * University Copyright- Copyright (c) 1982, 1986, 1988
32  * The Regents of the University of California
33  * All Rights Reserved
34  *
35  * University Acknowledgment- Portions of this document are derived from
36  * software developed by the University of California, Berkeley, and its
37  * contributors.
38  */
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/errno.h>
46 #include <sys/debug.h>
47 #include <sys/cmn_err.h>
48 #include <sys/kmem.h>
49 #include <sys/sysmacros.h>
50 #include <sys/inline.h>
51 #include <sys/buf.h>
52 #include <sys/uio.h>
53 #include <sys/user.h>
54 #include <sys/proc.h>
55 #include <sys/systm.h>
56 #include <sys/vmsystm.h>
57 #include <sys/cpuvar.h>
58 #include <sys/mman.h>
59 #include <sys/cred.h>
60 #include <sys/vnode.h>
61 #include <sys/file.h>
62 #include <sys/vm.h>
63 
64 #include <sys/swap.h>
65 #include <sys/vtrace.h>
66 #include <sys/tnf_probe.h>
67 #include <sys/fs/snode.h>
68 #include <sys/copyops.h>
69 #include <sys/conf.h>
70 #include <sys/sdt.h>
71 
72 #include <vm/anon.h>
73 #include <vm/hat.h>
74 #include <vm/as.h>
75 #include <vm/seg.h>
76 #include <vm/page.h>
77 #include <vm/seg_vn.h>
78 #include <vm/seg_kmem.h>
79 
80 extern int maxphys;
81 
82 void
83 minphys(struct buf *bp)
84 {
85 	if (bp->b_bcount > maxphys)
86 		bp->b_bcount = maxphys;
87 }
88 
89 /*
90  * use kmem_cache_create for physio buffers. This has shown
91  * a better cache distribution compared to buffers on the
92  * stack. It also avoids semaphore construction/deconstruction
93  * per request
94  */
95 
96 static struct kmem_cache *physio_buf_cache;
97 
98 /* ARGSUSED */
99 static int
100 physio_buf_constructor(void *buf, void *cdrarg, int kmflags)
101 {
102 	bioinit((struct buf *)buf);
103 	return (0);
104 }
105 
106 /* ARGSUSED */
107 static void
108 physio_buf_destructor(void *buf, void *cdrarg)
109 {
110 	biofini((struct buf *)buf);
111 }
112 
113 void
114 physio_bufs_init(void)
115 {
116 	physio_buf_cache = kmem_cache_create("physio_buf_cache",
117 		sizeof (struct buf), 0,
118 		physio_buf_constructor, physio_buf_destructor,
119 		NULL, NULL, NULL, 0);
120 }
121 
122 
123 
124 /*
125  * initiate raw I/O request
126  *
127  * allocate buf header if necessary
128  * adjust max size of each I/O request
129  * lock down user pages and verify access protections
130  * call driver's strategy routine to submit request
131  * wait for I/O completion
132  * unlock user pages and free allocated buf header
133  */
134 
135 int
136 default_physio(int (*strat)(struct buf *), struct buf *bp, dev_t dev,
137 	int rw, void (*mincnt)(struct buf *), struct uio *uio)
138 {
139 	struct iovec *iov;
140 	struct proc *procp;
141 	struct as *asp;
142 	ssize_t c;
143 	char *a;
144 	int error = 0;
145 	page_t **pplist;
146 	int allocbuf = 0;
147 
148 	TRACE_1(TR_FAC_PHYSIO, TR_PHYSIO_START, "physio_start: bp %p", bp);
149 
150 	/* Kernel probe */
151 	TNF_PROBE_4(physio_start, "io rawio", /* CSTYLED */,
152 		tnf_device,	device,		dev,
153 		tnf_offset,	offset,		uio->uio_loffset,
154 		tnf_size,	size,		uio->uio_resid,
155 		tnf_bioflags,	rw,		rw);
156 
157 	if (rw == B_READ) {
158 		CPU_STATS_ADD_K(sys, phread, 1);
159 	} else {
160 		CPU_STATS_ADD_K(sys, phwrite, 1);
161 	}
162 
163 	TRACE_1(TR_FAC_PHYSIO, TR_PHYSIO_GETBUF_START,
164 		"getbuf_start: bp %p", bp);
165 
166 	if (bp == NULL) {
167 		bp = kmem_cache_alloc(physio_buf_cache, KM_SLEEP);
168 		bp->b_iodone = NULL;
169 		bp->b_resid = 0;
170 		allocbuf = 1;
171 	}
172 	TRACE_1(TR_FAC_PHYSIO, TR_PHYSIO_GETBUF_END, "getbuf_end: bp %p", bp);
173 
174 	if (uio->uio_segflg == UIO_USERSPACE) {
175 		procp = ttoproc(curthread);
176 		asp = procp->p_as;
177 	} else {
178 		procp = NULL;
179 		asp = &kas;
180 	}
181 	ASSERT(SEMA_HELD(&bp->b_sem));
182 
183 	/*
184 	 * We need to prepare this buffer for the io:::start probe, including
185 	 * NULL'ing out the file, clearing the offset, and filling in the
186 	 * b_dip field.
187 	 */
188 	bp->b_file = NULL;
189 	bp->b_offset = -1;
190 
191 	if (dev != NODEV) {
192 		(void) devopsp[getmajor(dev)]->devo_getinfo(NULL,
193 		    DDI_INFO_DEVT2DEVINFO, (void *)dev, (void **)&bp->b_dip);
194 	} else {
195 		bp->b_dip = NULL;
196 	}
197 
198 	while (uio->uio_iovcnt > 0) {
199 		iov = uio->uio_iov;
200 
201 		bp->b_error = 0;
202 		bp->b_proc = procp;
203 
204 		while (iov->iov_len > 0) {
205 			if (uio->uio_resid == 0)
206 				break;
207 			if (uio->uio_loffset < 0) {
208 				error = EINVAL;
209 				break;
210 			}
211 #ifdef	_ILP32
212 			/*
213 			 * For 32-bit kernels, check against SPEC_MAXOFFSET_T
214 			 * which represents the maximum size that can be
215 			 * supported by the IO subsystem.
216 			 * XXX this code assumes a D_64BIT driver.
217 			 */
218 			if (uio->uio_loffset > SPEC_MAXOFFSET_T) {
219 				error = EINVAL;
220 				break;
221 			}
222 #endif	/* _ILP32 */
223 			bp->b_flags = B_BUSY | B_PHYS | rw;
224 			bp->b_edev = dev;
225 			bp->b_lblkno = btodt(uio->uio_loffset);
226 
227 			/*
228 			 * Don't count on b_addr remaining untouched by the
229 			 * code below (it may be reset because someone does
230 			 * a bp_mapin on the buffer) -- reset from the iov
231 			 * each time through, updating the iov's base address
232 			 * instead.
233 			 */
234 			a = bp->b_un.b_addr = iov->iov_base;
235 			bp->b_bcount = MIN(iov->iov_len, uio->uio_resid);
236 			(*mincnt)(bp);
237 			c = bp->b_bcount;
238 
239 			TRACE_1(TR_FAC_PHYSIO, TR_PHYSIO_LOCK_START,
240 			    "as_pagelock_start: bp %p", bp);
241 
242 			error = as_pagelock(asp, &pplist, a,
243 			    c, rw == B_READ? S_WRITE : S_READ);
244 
245 			TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_LOCK_END,
246 			    "as_pagelock_end:");
247 
248 			if (error != 0) {
249 				bp->b_flags |= B_ERROR;
250 				bp->b_error = error;
251 				bp->b_flags &=
252 					~(B_BUSY|B_WANTED|B_PHYS);
253 				break;
254 			}
255 			bp->b_shadow = pplist;
256 			if (pplist != NULL) {
257 				bp->b_flags |= B_SHADOW;
258 			}
259 
260 			DTRACE_IO1(start, struct buf *, bp);
261 			bp->b_flags |= B_STARTED;
262 
263 			(void) (*strat)(bp);
264 			error = biowait(bp);
265 
266 			/*
267 			 * unlock the pages
268 			 */
269 			TRACE_1(TR_FAC_PHYSIO, TR_PHYSIO_UNLOCK_START,
270 				"as_pageunlock_start: bp %p", bp);
271 
272 			as_pageunlock(asp, pplist, a, c,
273 				rw == B_READ? S_WRITE : S_READ);
274 
275 			TRACE_0(TR_FAC_PHYSIO, TR_PHYSIO_UNLOCK_END,
276 				"as_pageunlock_end:");
277 
278 			c -= bp->b_resid;
279 			iov->iov_base += c;
280 			iov->iov_len -= c;
281 			uio->uio_resid -= c;
282 			uio->uio_loffset += c;
283 			/* bp->b_resid - temp kludge for tape drives */
284 			if (bp->b_resid || error)
285 				break;
286 		}
287 		bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_SHADOW);
288 		/* bp->b_resid - temp kludge for tape drives */
289 		if (bp->b_resid || error)
290 			break;
291 		uio->uio_iov++;
292 		uio->uio_iovcnt--;
293 	}
294 
295 	if (allocbuf) {
296 		kmem_cache_free(physio_buf_cache, bp);
297 	}
298 
299 	/* Kernel probe */
300 	TNF_PROBE_1(physio_end, "io rawio", /* CSTYLED */,
301 		tnf_device,	device,		dev);
302 
303 	TRACE_1(TR_FAC_PHYSIO, TR_PHYSIO_END, "physio_end: bp %p", bp);
304 
305 	return (error);
306 }
307 
308 /*
309  * Returns 0 on success, or an error on failure.
310  *
311  * This function is no longer a part of the DDI/DKI.
312  * However, for compatibility, its interface should not
313  * be changed and it should not be removed from the kernel.
314  */
315 int
316 useracc(void *addr, size_t count, int access)
317 {
318 	uint_t prot;
319 
320 	prot = PROT_USER | ((access == B_READ) ? PROT_READ : PROT_WRITE);
321 	return (as_checkprot(ttoproc(curthread)->p_as, addr, count, prot));
322 }
323 
324 #define	MAX_MAPIN_PAGES	8
325 
326 /*
327  * This function temporarily "borrows" user pages for kernel use. If
328  * "cow" is on, it also sets up copy-on-write protection (only feasible
329  * on MAP_PRIVATE segment) on the user mappings, to protect the borrowed
330  * pages from any changes by the user. The caller is responsible for
331  * unlocking and tearing down cow settings when it's done with the pages.
332  * For an example, see kcfree().
333  *
334  * Pages behind [uaddr..uaddr+*lenp] under address space "as" are locked
335  * (shared), and mapped into kernel address range [kaddr..kaddr+*lenp] if
336  * kaddr != -1. On entering this function, cached_ppp contains a list
337  * of pages that are mapped into [kaddr..kaddr+*lenp] already (from a
338  * previous call). Thus if same pages remain behind [uaddr..uaddr+*lenp],
339  * the kernel map won't need to be reloaded again.
340  *
341  * For cow == 1, if the pages are anonymous pages, it also bumps the anon
342  * reference count, and change the user-mapping to read-only. This
343  * scheme should work on all types of segment drivers. But to be safe,
344  * we check against segvn here.
345  *
346  * Since this function is used to emulate copyin() semantic, it checks
347  * to make sure the user-mappings allow "user-read".
348  *
349  * On exit "lenp" contains the number of bytes successfully locked and
350  * mapped in. For the unsuccessful ones, the caller can fall back to
351  * copyin().
352  *
353  * Error return:
354  * ENOTSUP - operation like this is not supported either on this segment
355  * type, or on this platform type.
356  */
357 int
358 cow_mapin(struct as *as, caddr_t uaddr, caddr_t kaddr, struct page **cached_ppp,
359     struct anon **app, size_t *lenp, int cow)
360 {
361 	struct		hat *hat;
362 	struct seg	*seg;
363 	caddr_t		base;
364 	page_t		*pp, *ppp[MAX_MAPIN_PAGES];
365 	long		i;
366 	int		flags;
367 	size_t		size, total = *lenp;
368 	char		first = 1;
369 	faultcode_t	res;
370 
371 	*lenp = 0;
372 	if (cow) {
373 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
374 		seg = as_findseg(as, uaddr, 0);
375 		if ((seg == NULL) || ((base = seg->s_base) > uaddr) ||
376 			(uaddr + total) > base + seg->s_size) {
377 			AS_LOCK_EXIT(as, &as->a_lock);
378 			return (EINVAL);
379 		}
380 		/*
381 		 * The COW scheme should work for all segment types.
382 		 * But to be safe, we check against segvn.
383 		 */
384 		if (seg->s_ops != &segvn_ops) {
385 			AS_LOCK_EXIT(as, &as->a_lock);
386 			return (ENOTSUP);
387 		} else if ((SEGOP_GETTYPE(seg, uaddr) & MAP_PRIVATE) == 0) {
388 			AS_LOCK_EXIT(as, &as->a_lock);
389 			return (ENOTSUP);
390 		}
391 	}
392 	hat = as->a_hat;
393 	size = total;
394 tryagain:
395 	/*
396 	 * If (cow), hat_softlock will also change the usr protection to RO.
397 	 * This is the first step toward setting up cow. Before we
398 	 * bump up an_refcnt, we can't allow any cow-fault on this
399 	 * address. Otherwise segvn_fault will change the protection back
400 	 * to RW upon seeing an_refcnt == 1.
401 	 * The solution is to hold the writer lock on "as".
402 	 */
403 	res = hat_softlock(hat, uaddr, &size, &ppp[0], cow ? HAT_COW : 0);
404 	size = total - size;
405 	*lenp += size;
406 	size = size >> PAGESHIFT;
407 	i = 0;
408 	while (i < size) {
409 		pp = ppp[i];
410 		if (cow) {
411 			kmutex_t *ahm;
412 			/*
413 			 * Another solution is to hold SE_EXCL on pp, and
414 			 * disable PROT_WRITE. This also works for MAP_SHARED
415 			 * segment. The disadvantage is that it locks the
416 			 * page from being used by anybody else.
417 			 */
418 			ahm = &anonhash_lock[
419 			    AH_LOCK(pp->p_vnode, pp->p_offset)];
420 			mutex_enter(ahm);
421 			*app = swap_anon(pp->p_vnode, pp->p_offset);
422 			/*
423 			 * Since we are holding the as lock, this avoids a
424 			 * potential race with anon_decref. (segvn_unmap and
425 			 * segvn_free needs the as writer lock to do anon_free.)
426 			 */
427 			if (*app != NULL) {
428 #if 0
429 				if ((*app)->an_refcnt == 0)
430 				/*
431 				 * Consider the following senario (unlikey
432 				 * though):
433 				 * 1. an_refcnt == 2
434 				 * 2. we solftlock the page.
435 				 * 3. cow ocurrs on this addr. So a new ap,
436 				 * page and mapping is established on addr.
437 				 * 4. an_refcnt drops to 1 (segvn_faultpage
438 				 * -> anon_decref(oldap))
439 				 * 5. the last ref to ap also drops (from
440 				 * another as). It ends up blocked inside
441 				 * anon_decref trying to get page's excl lock.
442 				 * 6. Later kcfree unlocks the page, call
443 				 * anon_decref -> oops, ap is gone already.
444 				 *
445 				 * Holding as writer lock solves all problems.
446 				 */
447 					*app = NULL;
448 				else
449 #endif
450 					(*app)->an_refcnt++;
451 			}
452 			mutex_exit(ahm);
453 		} else {
454 			*app = NULL;
455 		}
456 		if (kaddr != (caddr_t)-1) {
457 			if (pp != *cached_ppp) {
458 				if (*cached_ppp == NULL)
459 					flags = HAT_LOAD_LOCK | HAT_NOSYNC |
460 					    HAT_LOAD_NOCONSIST;
461 				else
462 					flags = HAT_LOAD_REMAP |
463 					    HAT_LOAD_NOCONSIST;
464 				/*
465 				 * In order to cache the kernel mapping after
466 				 * the user page is unlocked, we call
467 				 * hat_devload instead of hat_memload so
468 				 * that the kernel mapping we set up here is
469 				 * "invisible" to the rest of the world. This
470 				 * is not very pretty. But as long as the
471 				 * caller bears the responsibility of keeping
472 				 * cache consistency, we should be ok -
473 				 * HAT_NOCONSIST will get us a uncached
474 				 * mapping on VAC. hat_softlock will flush
475 				 * a VAC_WRITEBACK cache. Therefore the kaddr
476 				 * doesn't have to be of the same vcolor as
477 				 * uaddr.
478 				 * The alternative is - change hat_devload
479 				 * to get a cached mapping. Allocate a kaddr
480 				 * with the same vcolor as uaddr. Then
481 				 * hat_softlock won't need to flush the VAC.
482 				 */
483 				hat_devload(kas.a_hat, kaddr, PAGESIZE,
484 				    page_pptonum(pp), PROT_READ, flags);
485 				*cached_ppp = pp;
486 			}
487 			kaddr += PAGESIZE;
488 		}
489 		cached_ppp++;
490 		app++;
491 		++i;
492 	}
493 	if (cow) {
494 		AS_LOCK_EXIT(as, &as->a_lock);
495 	}
496 	if (first && res == FC_NOMAP) {
497 		/*
498 		 * If the address is not mapped yet, we call as_fault to
499 		 * fault the pages in. We could've fallen back to copy and
500 		 * let it fault in the pages. But for a mapped file, we
501 		 * normally reference each page only once. For zero-copy to
502 		 * be of any use, we'd better fall in the page now and try
503 		 * again.
504 		 */
505 		first = 0;
506 		size = size << PAGESHIFT;
507 		uaddr += size;
508 		total -= size;
509 		size = total;
510 		res = as_fault(as->a_hat, as, uaddr, size, F_INVAL, S_READ);
511 		if (cow)
512 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
513 		goto tryagain;
514 	}
515 	switch (res) {
516 	case FC_NOSUPPORT:
517 		return (ENOTSUP);
518 	case FC_PROT:	/* Pretend we don't know about it. This will be */
519 			/* caught by the caller when uiomove fails. */
520 	case FC_NOMAP:
521 	case FC_OBJERR:
522 	default:
523 		return (0);
524 	}
525 }
526