1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * Copyright 2016 Joyent, Inc. 26 */ 27 28 /* 29 * Copyright (c) 1982, 1986 Regents of the University of California. 30 * All rights reserved. The Berkeley software License Agreement 31 * specifies the terms and conditions for redistribution. 32 */ 33 34 #include <sys/param.h> 35 #include <sys/user.h> 36 #include <sys/vnode.h> 37 #include <sys/proc.h> 38 #include <sys/time.h> 39 #include <sys/systm.h> 40 #include <sys/kmem.h> 41 #include <sys/cmn_err.h> 42 #include <sys/cpuvar.h> 43 #include <sys/timer.h> 44 #include <sys/debug.h> 45 #include <sys/sysmacros.h> 46 #include <sys/cyclic.h> 47 48 static void realitexpire(void *); 49 static void realprofexpire(void *); 50 static void timeval_advance(struct timeval *, struct timeval *); 51 52 kmutex_t tod_lock; /* protects time-of-day stuff */ 53 54 /* 55 * Constant to define the minimum interval value of the ITIMER_REALPROF timer. 56 * Value is in microseconds; defaults to 500 usecs. Setting this value 57 * significantly lower may allow for denial-of-service attacks. 58 */ 59 int itimer_realprof_minimum = 500; 60 61 /* 62 * macro to compare a timeval to a timestruc 63 */ 64 65 #define TVTSCMP(tvp, tsp, cmp) \ 66 /* CSTYLED */ \ 67 ((tvp)->tv_sec cmp (tsp)->tv_sec || \ 68 ((tvp)->tv_sec == (tsp)->tv_sec && \ 69 /* CSTYLED */ \ 70 (tvp)->tv_usec * 1000 cmp (tsp)->tv_nsec)) 71 72 /* 73 * Time of day and interval timer support. 74 * 75 * These routines provide the kernel entry points to get and set 76 * the time-of-day and per-process interval timers. Subroutines 77 * here provide support for adding and subtracting timeval structures 78 * and decrementing interval timers, optionally reloading the interval 79 * timers when they expire. 80 */ 81 82 /* 83 * SunOS function to generate monotonically increasing time values. 84 */ 85 void 86 uniqtime(struct timeval *tv) 87 { 88 static struct timeval last; 89 static int last_timechanged; 90 timestruc_t ts; 91 time_t sec; 92 int usec, nsec; 93 94 /* 95 * protect modification of last 96 */ 97 mutex_enter(&tod_lock); 98 gethrestime(&ts); 99 100 /* 101 * Fast algorithm to convert nsec to usec -- see hrt2ts() 102 * in common/os/timers.c for a full description. 103 */ 104 nsec = ts.tv_nsec; 105 usec = nsec + (nsec >> 2); 106 usec = nsec + (usec >> 1); 107 usec = nsec + (usec >> 2); 108 usec = nsec + (usec >> 4); 109 usec = nsec - (usec >> 3); 110 usec = nsec + (usec >> 2); 111 usec = nsec + (usec >> 3); 112 usec = nsec + (usec >> 4); 113 usec = nsec + (usec >> 1); 114 usec = nsec + (usec >> 6); 115 usec = usec >> 10; 116 sec = ts.tv_sec; 117 118 /* 119 * If the system hres time has been changed since the last time 120 * we are called. then all bets are off; just update our 121 * local copy of timechanged and accept the reported time as is. 122 */ 123 if (last_timechanged != timechanged) { 124 last_timechanged = timechanged; 125 } 126 /* 127 * Try to keep timestamps unique, but don't be obsessive about 128 * it in the face of large differences. 129 */ 130 else if ((sec <= last.tv_sec) && /* same or lower seconds, and */ 131 ((sec != last.tv_sec) || /* either different second or */ 132 (usec <= last.tv_usec)) && /* lower microsecond, and */ 133 ((last.tv_sec - sec) <= 5)) { /* not way back in time */ 134 sec = last.tv_sec; 135 usec = last.tv_usec + 1; 136 if (usec >= MICROSEC) { 137 usec -= MICROSEC; 138 sec++; 139 } 140 } 141 last.tv_sec = sec; 142 last.tv_usec = usec; 143 mutex_exit(&tod_lock); 144 145 tv->tv_sec = sec; 146 tv->tv_usec = usec; 147 } 148 149 /* 150 * Timestamps are exported from the kernel in several places. 151 * Such timestamps are commonly used for either uniqueness or for 152 * sequencing - truncation to 32-bits is fine for uniqueness, 153 * but sequencing is going to take more work as we get closer to 2038! 154 */ 155 void 156 uniqtime32(struct timeval32 *tv32p) 157 { 158 struct timeval tv; 159 160 uniqtime(&tv); 161 TIMEVAL_TO_TIMEVAL32(tv32p, &tv); 162 } 163 164 int 165 gettimeofday(struct timeval *tp) 166 { 167 struct timeval atv; 168 169 if (tp) { 170 uniqtime(&atv); 171 if (get_udatamodel() == DATAMODEL_NATIVE) { 172 if (copyout(&atv, tp, sizeof (atv))) 173 return (set_errno(EFAULT)); 174 } else { 175 struct timeval32 tv32; 176 177 if (TIMEVAL_OVERFLOW(&atv)) 178 return (set_errno(EOVERFLOW)); 179 TIMEVAL_TO_TIMEVAL32(&tv32, &atv); 180 181 if (copyout(&tv32, tp, sizeof (tv32))) 182 return (set_errno(EFAULT)); 183 } 184 } 185 return (0); 186 } 187 188 int 189 getitimer(uint_t which, struct itimerval *itv) 190 { 191 int error; 192 193 if (get_udatamodel() == DATAMODEL_NATIVE) 194 error = xgetitimer(which, itv, 0); 195 else { 196 struct itimerval kitv; 197 198 if ((error = xgetitimer(which, &kitv, 1)) == 0) { 199 if (ITIMERVAL_OVERFLOW(&kitv)) { 200 error = EOVERFLOW; 201 } else { 202 struct itimerval32 itv32; 203 204 ITIMERVAL_TO_ITIMERVAL32(&itv32, &kitv); 205 if (copyout(&itv32, itv, sizeof (itv32)) != 0) 206 error = EFAULT; 207 } 208 } 209 } 210 211 return (error ? (set_errno(error)) : 0); 212 } 213 214 int 215 xgetitimer(uint_t which, struct itimerval *itv, int iskaddr) 216 { 217 struct proc *p = curproc; 218 struct timeval now; 219 struct itimerval aitv; 220 hrtime_t ts, first, interval, remain; 221 222 mutex_enter(&p->p_lock); 223 224 switch (which) { 225 case ITIMER_VIRTUAL: 226 case ITIMER_PROF: 227 aitv = ttolwp(curthread)->lwp_timer[which]; 228 break; 229 230 case ITIMER_REAL: 231 uniqtime(&now); 232 aitv = p->p_realitimer; 233 234 if (timerisset(&aitv.it_value)) { 235 /*CSTYLED*/ 236 if (timercmp(&aitv.it_value, &now, <)) { 237 timerclear(&aitv.it_value); 238 } else { 239 timevalsub(&aitv.it_value, &now); 240 } 241 } 242 break; 243 244 case ITIMER_REALPROF: 245 if (curproc->p_rprof_cyclic == CYCLIC_NONE) { 246 bzero(&aitv, sizeof (aitv)); 247 break; 248 } 249 250 aitv = curproc->p_rprof_timer; 251 252 first = tv2hrt(&aitv.it_value); 253 interval = tv2hrt(&aitv.it_interval); 254 255 if ((ts = gethrtime()) < first) { 256 /* 257 * We haven't gone off for the first time; the time 258 * remaining is simply the first time we will go 259 * off minus the current time. 260 */ 261 remain = first - ts; 262 } else { 263 if (interval == 0) { 264 /* 265 * This was set as a one-shot, and we've 266 * already gone off; there is no time 267 * remaining. 268 */ 269 remain = 0; 270 } else { 271 /* 272 * We have a non-zero interval; we need to 273 * determine how far we are into the current 274 * interval, and subtract that from the 275 * interval to determine the time remaining. 276 */ 277 remain = interval - ((ts - first) % interval); 278 } 279 } 280 281 hrt2tv(remain, &aitv.it_value); 282 break; 283 284 default: 285 mutex_exit(&p->p_lock); 286 return (EINVAL); 287 } 288 289 mutex_exit(&p->p_lock); 290 291 if (iskaddr) { 292 bcopy(&aitv, itv, sizeof (*itv)); 293 } else { 294 ASSERT(get_udatamodel() == DATAMODEL_NATIVE); 295 if (copyout(&aitv, itv, sizeof (*itv))) 296 return (EFAULT); 297 } 298 299 return (0); 300 } 301 302 303 int 304 setitimer(uint_t which, struct itimerval *itv, struct itimerval *oitv) 305 { 306 int error; 307 308 if (oitv != NULL) 309 if ((error = getitimer(which, oitv)) != 0) 310 return (error); 311 312 if (itv == NULL) 313 return (0); 314 315 if (get_udatamodel() == DATAMODEL_NATIVE) 316 error = xsetitimer(which, itv, 0); 317 else { 318 struct itimerval32 itv32; 319 struct itimerval kitv; 320 321 if (copyin(itv, &itv32, sizeof (itv32))) 322 error = EFAULT; 323 ITIMERVAL32_TO_ITIMERVAL(&kitv, &itv32); 324 error = xsetitimer(which, &kitv, 1); 325 } 326 327 return (error ? (set_errno(error)) : 0); 328 } 329 330 int 331 xsetitimer(uint_t which, struct itimerval *itv, int iskaddr) 332 { 333 struct itimerval aitv; 334 struct timeval now; 335 struct proc *p = curproc; 336 kthread_t *t; 337 timeout_id_t tmp_id; 338 cyc_handler_t hdlr; 339 cyc_time_t when; 340 cyclic_id_t cyclic; 341 hrtime_t ts; 342 int min; 343 344 if (itv == NULL) 345 return (0); 346 347 if (iskaddr) { 348 bcopy(itv, &aitv, sizeof (aitv)); 349 } else { 350 ASSERT(get_udatamodel() == DATAMODEL_NATIVE); 351 if (copyin(itv, &aitv, sizeof (aitv))) 352 return (EFAULT); 353 } 354 355 if (which == ITIMER_REALPROF) { 356 min = MAX((int)(cyclic_getres() / (NANOSEC / MICROSEC)), 357 itimer_realprof_minimum); 358 } else { 359 min = usec_per_tick; 360 } 361 362 if (itimerfix(&aitv.it_value, min) || 363 (itimerfix(&aitv.it_interval, min) && timerisset(&aitv.it_value))) 364 return (EINVAL); 365 366 mutex_enter(&p->p_lock); 367 switch (which) { 368 case ITIMER_REAL: 369 /* 370 * The SITBUSY flag prevents conflicts with multiple 371 * threads attempting to perform setitimer(ITIMER_REAL) 372 * at the same time, even when we drop p->p_lock below. 373 * Any blocked thread returns successfully because the 374 * effect is the same as if it got here first, finished, 375 * and the other thread then came through and destroyed 376 * what it did. We are just protecting the system from 377 * malfunctioning due to the race condition. 378 */ 379 if (p->p_flag & SITBUSY) { 380 mutex_exit(&p->p_lock); 381 return (0); 382 } 383 p->p_flag |= SITBUSY; 384 while ((tmp_id = p->p_itimerid) != 0) { 385 /* 386 * Avoid deadlock in callout_delete (called from 387 * untimeout) which may go to sleep (while holding 388 * p_lock). Drop p_lock and re-acquire it after 389 * untimeout returns. Need to clear p_itimerid 390 * while holding p_lock. 391 */ 392 p->p_itimerid = 0; 393 mutex_exit(&p->p_lock); 394 (void) untimeout(tmp_id); 395 mutex_enter(&p->p_lock); 396 } 397 if (timerisset(&aitv.it_value)) { 398 uniqtime(&now); 399 timevaladd(&aitv.it_value, &now); 400 p->p_itimerid = realtime_timeout(realitexpire, 401 p, hzto(&aitv.it_value)); 402 } 403 p->p_realitimer = aitv; 404 p->p_flag &= ~SITBUSY; 405 break; 406 407 case ITIMER_REALPROF: 408 cyclic = p->p_rprof_cyclic; 409 p->p_rprof_cyclic = CYCLIC_NONE; 410 411 mutex_exit(&p->p_lock); 412 413 /* 414 * We're now going to acquire cpu_lock, remove the old cyclic 415 * if necessary, and add our new cyclic. 416 */ 417 mutex_enter(&cpu_lock); 418 419 if (cyclic != CYCLIC_NONE) 420 cyclic_remove(cyclic); 421 422 if (!timerisset(&aitv.it_value)) { 423 /* 424 * If we were passed a value of 0, we're done. 425 */ 426 mutex_exit(&cpu_lock); 427 return (0); 428 } 429 430 hdlr.cyh_func = realprofexpire; 431 hdlr.cyh_arg = p; 432 hdlr.cyh_level = CY_LOW_LEVEL; 433 434 when.cyt_when = (ts = gethrtime() + tv2hrt(&aitv.it_value)); 435 when.cyt_interval = tv2hrt(&aitv.it_interval); 436 437 if (when.cyt_interval == 0) { 438 /* 439 * Using the same logic as for CLOCK_HIGHRES timers, we 440 * set the interval to be INT64_MAX - when.cyt_when to 441 * effect a one-shot; see the comment in clock_highres.c 442 * for more details on why this works. 443 */ 444 when.cyt_interval = INT64_MAX - when.cyt_when; 445 } 446 447 cyclic = cyclic_add(&hdlr, &when); 448 449 mutex_exit(&cpu_lock); 450 451 /* 452 * We have now successfully added the cyclic. Reacquire 453 * p_lock, and see if anyone has snuck in. 454 */ 455 mutex_enter(&p->p_lock); 456 457 if (p->p_rprof_cyclic != CYCLIC_NONE) { 458 /* 459 * We're racing with another thread establishing an 460 * ITIMER_REALPROF interval timer. We'll let the other 461 * thread win (this is a race at the application level, 462 * so letting the other thread win is acceptable). 463 */ 464 mutex_exit(&p->p_lock); 465 mutex_enter(&cpu_lock); 466 cyclic_remove(cyclic); 467 mutex_exit(&cpu_lock); 468 469 return (0); 470 } 471 472 /* 473 * Success. Set our tracking variables in the proc structure, 474 * cancel any outstanding ITIMER_PROF, and allocate the 475 * per-thread SIGPROF buffers, if possible. 476 */ 477 hrt2tv(ts, &aitv.it_value); 478 p->p_rprof_timer = aitv; 479 p->p_rprof_cyclic = cyclic; 480 481 t = p->p_tlist; 482 do { 483 struct itimerval *itvp; 484 485 itvp = &ttolwp(t)->lwp_timer[ITIMER_PROF]; 486 timerclear(&itvp->it_interval); 487 timerclear(&itvp->it_value); 488 489 if (t->t_rprof != NULL) 490 continue; 491 492 t->t_rprof = 493 kmem_zalloc(sizeof (struct rprof), KM_NOSLEEP); 494 aston(t); 495 } while ((t = t->t_forw) != p->p_tlist); 496 497 break; 498 499 case ITIMER_VIRTUAL: 500 ttolwp(curthread)->lwp_timer[ITIMER_VIRTUAL] = aitv; 501 break; 502 503 case ITIMER_PROF: 504 if (p->p_rprof_cyclic != CYCLIC_NONE) { 505 /* 506 * Silently ignore ITIMER_PROF if ITIMER_REALPROF 507 * is in effect. 508 */ 509 break; 510 } 511 512 ttolwp(curthread)->lwp_timer[ITIMER_PROF] = aitv; 513 break; 514 515 default: 516 mutex_exit(&p->p_lock); 517 return (EINVAL); 518 } 519 mutex_exit(&p->p_lock); 520 return (0); 521 } 522 523 /* 524 * Delete the ITIMER_REALPROF interval timer. 525 * Called only from exec_args() when exec occurs. 526 * The other ITIMER_* interval timers are specified 527 * to be inherited across exec(), so leave them alone. 528 */ 529 void 530 delete_itimer_realprof(void) 531 { 532 kthread_t *t = curthread; 533 struct proc *p = ttoproc(t); 534 klwp_t *lwp = ttolwp(t); 535 cyclic_id_t cyclic; 536 537 mutex_enter(&p->p_lock); 538 539 /* we are performing execve(); assert we are single-threaded */ 540 ASSERT(t == p->p_tlist && t == t->t_forw); 541 542 if ((cyclic = p->p_rprof_cyclic) == CYCLIC_NONE) { 543 mutex_exit(&p->p_lock); 544 } else { 545 p->p_rprof_cyclic = CYCLIC_NONE; 546 /* 547 * Delete any current instance of SIGPROF. 548 */ 549 if (lwp->lwp_cursig == SIGPROF) { 550 lwp->lwp_cursig = 0; 551 lwp->lwp_extsig = 0; 552 if (lwp->lwp_curinfo) { 553 siginfofree(lwp->lwp_curinfo); 554 lwp->lwp_curinfo = NULL; 555 } 556 } 557 /* 558 * Delete any pending instances of SIGPROF. 559 */ 560 sigdelset(&p->p_sig, SIGPROF); 561 sigdelset(&p->p_extsig, SIGPROF); 562 sigdelq(p, NULL, SIGPROF); 563 sigdelset(&t->t_sig, SIGPROF); 564 sigdelset(&t->t_extsig, SIGPROF); 565 sigdelq(p, t, SIGPROF); 566 567 mutex_exit(&p->p_lock); 568 569 /* 570 * Remove the ITIMER_REALPROF cyclic. 571 */ 572 mutex_enter(&cpu_lock); 573 cyclic_remove(cyclic); 574 mutex_exit(&cpu_lock); 575 } 576 } 577 578 /* 579 * Real interval timer expired: 580 * send process whose timer expired an alarm signal. 581 * If time is not set up to reload, then just return. 582 * Else compute next time timer should go off which is > current time. 583 * This is where delay in processing this timeout causes multiple 584 * SIGALRM calls to be compressed into one. 585 */ 586 static void 587 realitexpire(void *arg) 588 { 589 struct proc *p = arg; 590 struct timeval *valp = &p->p_realitimer.it_value; 591 struct timeval *intervalp = &p->p_realitimer.it_interval; 592 #if !defined(_LP64) 593 clock_t ticks; 594 #endif 595 596 mutex_enter(&p->p_lock); 597 #if !defined(_LP64) 598 if ((ticks = hzto(valp)) > 1) { 599 /* 600 * If we are executing before we were meant to, it must be 601 * because of an overflow in a prior hzto() calculation. 602 * In this case, we want to go to sleep for the recalculated 603 * number of ticks. For the special meaning of the value "1" 604 * see comment in timespectohz(). 605 */ 606 p->p_itimerid = realtime_timeout(realitexpire, p, ticks); 607 mutex_exit(&p->p_lock); 608 return; 609 } 610 #endif 611 sigtoproc(p, NULL, SIGALRM); 612 if (!timerisset(intervalp)) { 613 timerclear(valp); 614 p->p_itimerid = 0; 615 } else { 616 /* advance timer value past current time */ 617 timeval_advance(valp, intervalp); 618 p->p_itimerid = realtime_timeout(realitexpire, p, hzto(valp)); 619 } 620 mutex_exit(&p->p_lock); 621 } 622 623 /* 624 * Real time profiling interval timer expired: 625 * Increment microstate counters for each lwp in the process 626 * and ensure that running lwps are kicked into the kernel. 627 * If time is not set up to reload, then just return. 628 * Else compute next time timer should go off which is > current time, 629 * as above. 630 */ 631 static void 632 realprofexpire(void *arg) 633 { 634 struct proc *p = arg; 635 kthread_t *t; 636 637 mutex_enter(&p->p_lock); 638 if (p->p_rprof_cyclic == CYCLIC_NONE || 639 (t = p->p_tlist) == NULL) { 640 mutex_exit(&p->p_lock); 641 return; 642 } 643 do { 644 int mstate; 645 646 /* 647 * Attempt to allocate the SIGPROF buffer, but don't sleep. 648 */ 649 if (t->t_rprof == NULL) 650 t->t_rprof = kmem_zalloc(sizeof (struct rprof), 651 KM_NOSLEEP); 652 if (t->t_rprof == NULL) 653 continue; 654 655 thread_lock(t); 656 switch (t->t_state) { 657 case TS_SLEEP: 658 /* 659 * Don't touch the lwp is it is swapped out. 660 */ 661 if (!(t->t_schedflag & TS_LOAD)) { 662 mstate = LMS_SLEEP; 663 break; 664 } 665 switch (mstate = ttolwp(t)->lwp_mstate.ms_prev) { 666 case LMS_TFAULT: 667 case LMS_DFAULT: 668 case LMS_KFAULT: 669 case LMS_USER_LOCK: 670 break; 671 default: 672 mstate = LMS_SLEEP; 673 break; 674 } 675 break; 676 case TS_RUN: 677 case TS_WAIT: 678 mstate = LMS_WAIT_CPU; 679 break; 680 case TS_ONPROC: 681 switch (mstate = t->t_mstate) { 682 case LMS_USER: 683 case LMS_SYSTEM: 684 case LMS_TRAP: 685 break; 686 default: 687 mstate = LMS_SYSTEM; 688 break; 689 } 690 break; 691 default: 692 mstate = t->t_mstate; 693 break; 694 } 695 t->t_rprof->rp_anystate = 1; 696 t->t_rprof->rp_state[mstate]++; 697 aston(t); 698 /* 699 * force the thread into the kernel 700 * if it is not already there. 701 */ 702 if (t->t_state == TS_ONPROC && t->t_cpu != CPU) 703 poke_cpu(t->t_cpu->cpu_id); 704 thread_unlock(t); 705 } while ((t = t->t_forw) != p->p_tlist); 706 707 mutex_exit(&p->p_lock); 708 } 709 710 /* 711 * Advances timer value past the current time of day. See the detailed 712 * comment for this logic in realitsexpire(), above. 713 */ 714 static void 715 timeval_advance(struct timeval *valp, struct timeval *intervalp) 716 { 717 int cnt2nth; 718 struct timeval interval2nth; 719 720 for (;;) { 721 interval2nth = *intervalp; 722 for (cnt2nth = 0; ; cnt2nth++) { 723 timevaladd(valp, &interval2nth); 724 /*CSTYLED*/ 725 if (TVTSCMP(valp, &hrestime, >)) 726 break; 727 timevaladd(&interval2nth, &interval2nth); 728 } 729 if (cnt2nth == 0) 730 break; 731 timevalsub(valp, &interval2nth); 732 } 733 } 734 735 /* 736 * Check that a proposed value to load into the .it_value or .it_interval 737 * part of an interval timer is acceptable, and set it to at least a 738 * specified minimal value. 739 */ 740 int 741 itimerfix(struct timeval *tv, int minimum) 742 { 743 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || 744 tv->tv_usec < 0 || tv->tv_usec >= MICROSEC) 745 return (EINVAL); 746 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < minimum) 747 tv->tv_usec = minimum; 748 return (0); 749 } 750 751 /* 752 * Same as itimerfix, except a) it takes a timespec instead of a timeval and 753 * b) it doesn't truncate based on timeout granularity; consumers of this 754 * interface (e.g. timer_settime()) depend on the passed timespec not being 755 * modified implicitly. 756 */ 757 int 758 itimerspecfix(timespec_t *tv) 759 { 760 if (tv->tv_sec < 0 || tv->tv_nsec < 0 || tv->tv_nsec >= NANOSEC) 761 return (EINVAL); 762 return (0); 763 } 764 765 /* 766 * Decrement an interval timer by a specified number 767 * of microseconds, which must be less than a second, 768 * i.e. < 1000000. If the timer expires, then reload 769 * it. In this case, carry over (usec - old value) to 770 * reducint the value reloaded into the timer so that 771 * the timer does not drift. This routine assumes 772 * that it is called in a context where the timers 773 * on which it is operating cannot change in value. 774 */ 775 int 776 itimerdecr(struct itimerval *itp, int usec) 777 { 778 if (itp->it_value.tv_usec < usec) { 779 if (itp->it_value.tv_sec == 0) { 780 /* expired, and already in next interval */ 781 usec -= itp->it_value.tv_usec; 782 goto expire; 783 } 784 itp->it_value.tv_usec += MICROSEC; 785 itp->it_value.tv_sec--; 786 } 787 itp->it_value.tv_usec -= usec; 788 usec = 0; 789 if (timerisset(&itp->it_value)) 790 return (1); 791 /* expired, exactly at end of interval */ 792 expire: 793 if (timerisset(&itp->it_interval)) { 794 itp->it_value = itp->it_interval; 795 itp->it_value.tv_usec -= usec; 796 if (itp->it_value.tv_usec < 0) { 797 itp->it_value.tv_usec += MICROSEC; 798 itp->it_value.tv_sec--; 799 } 800 } else 801 itp->it_value.tv_usec = 0; /* sec is already 0 */ 802 return (0); 803 } 804 805 /* 806 * Add and subtract routines for timevals. 807 * N.B.: subtract routine doesn't deal with 808 * results which are before the beginning, 809 * it just gets very confused in this case. 810 * Caveat emptor. 811 */ 812 void 813 timevaladd(struct timeval *t1, struct timeval *t2) 814 { 815 t1->tv_sec += t2->tv_sec; 816 t1->tv_usec += t2->tv_usec; 817 timevalfix(t1); 818 } 819 820 void 821 timevalsub(struct timeval *t1, struct timeval *t2) 822 { 823 t1->tv_sec -= t2->tv_sec; 824 t1->tv_usec -= t2->tv_usec; 825 timevalfix(t1); 826 } 827 828 void 829 timevalfix(struct timeval *t1) 830 { 831 if (t1->tv_usec < 0) { 832 t1->tv_sec--; 833 t1->tv_usec += MICROSEC; 834 } 835 if (t1->tv_usec >= MICROSEC) { 836 t1->tv_sec++; 837 t1->tv_usec -= MICROSEC; 838 } 839 } 840 841 /* 842 * Same as the routines above. These routines take a timespec instead 843 * of a timeval. 844 */ 845 void 846 timespecadd(timespec_t *t1, timespec_t *t2) 847 { 848 t1->tv_sec += t2->tv_sec; 849 t1->tv_nsec += t2->tv_nsec; 850 timespecfix(t1); 851 } 852 853 void 854 timespecsub(timespec_t *t1, timespec_t *t2) 855 { 856 t1->tv_sec -= t2->tv_sec; 857 t1->tv_nsec -= t2->tv_nsec; 858 timespecfix(t1); 859 } 860 861 void 862 timespecfix(timespec_t *t1) 863 { 864 if (t1->tv_nsec < 0) { 865 t1->tv_sec--; 866 t1->tv_nsec += NANOSEC; 867 } else { 868 if (t1->tv_nsec >= NANOSEC) { 869 t1->tv_sec++; 870 t1->tv_nsec -= NANOSEC; 871 } 872 } 873 } 874 875 /* 876 * Compute number of hz until specified time. 877 * Used to compute third argument to timeout() from an absolute time. 878 */ 879 clock_t 880 hzto(struct timeval *tv) 881 { 882 timespec_t ts, now; 883 884 ts.tv_sec = tv->tv_sec; 885 ts.tv_nsec = tv->tv_usec * 1000; 886 gethrestime_lasttick(&now); 887 888 return (timespectohz(&ts, now)); 889 } 890 891 /* 892 * Compute number of hz until specified time for a given timespec value. 893 * Used to compute third argument to timeout() from an absolute time. 894 */ 895 clock_t 896 timespectohz(timespec_t *tv, timespec_t now) 897 { 898 clock_t ticks; 899 time_t sec; 900 int nsec; 901 902 /* 903 * Compute number of ticks we will see between now and 904 * the target time; returns "1" if the destination time 905 * is before the next tick, so we always get some delay, 906 * and returns LONG_MAX ticks if we would overflow. 907 */ 908 sec = tv->tv_sec - now.tv_sec; 909 nsec = tv->tv_nsec - now.tv_nsec + nsec_per_tick - 1; 910 911 if (nsec < 0) { 912 sec--; 913 nsec += NANOSEC; 914 } else if (nsec >= NANOSEC) { 915 sec++; 916 nsec -= NANOSEC; 917 } 918 919 ticks = NSEC_TO_TICK(nsec); 920 921 /* 922 * Compute ticks, accounting for negative and overflow as above. 923 * Overflow protection kicks in at about 70 weeks for hz=50 924 * and at about 35 weeks for hz=100. (Rather longer for the 64-bit 925 * kernel :-) 926 */ 927 if (sec < 0 || (sec == 0 && ticks < 1)) 928 ticks = 1; /* protect vs nonpositive */ 929 else if (sec > (LONG_MAX - ticks) / hz) 930 ticks = LONG_MAX; /* protect vs overflow */ 931 else 932 ticks += sec * hz; /* common case */ 933 934 return (ticks); 935 } 936 937 /* 938 * Compute number of hz with the timespec tv specified. 939 * The return type must be 64 bit integer. 940 */ 941 int64_t 942 timespectohz64(timespec_t *tv) 943 { 944 int64_t ticks; 945 int64_t sec; 946 int64_t nsec; 947 948 sec = tv->tv_sec; 949 nsec = tv->tv_nsec + nsec_per_tick - 1; 950 951 if (nsec < 0) { 952 sec--; 953 nsec += NANOSEC; 954 } else if (nsec >= NANOSEC) { 955 sec++; 956 nsec -= NANOSEC; 957 } 958 959 ticks = NSEC_TO_TICK(nsec); 960 961 /* 962 * Compute ticks, accounting for negative and overflow as above. 963 * Overflow protection kicks in at about 70 weeks for hz=50 964 * and at about 35 weeks for hz=100. (Rather longer for the 64-bit 965 * kernel 966 */ 967 if (sec < 0 || (sec == 0 && ticks < 1)) 968 ticks = 1; /* protect vs nonpositive */ 969 else if (sec > (((~0ULL) >> 1) - ticks) / hz) 970 ticks = (~0ULL) >> 1; /* protect vs overflow */ 971 else 972 ticks += sec * hz; /* common case */ 973 974 return (ticks); 975 } 976 977 /* 978 * hrt2ts(): convert from hrtime_t to timestruc_t. 979 * 980 * All this routine really does is: 981 * 982 * tsp->sec = hrt / NANOSEC; 983 * tsp->nsec = hrt % NANOSEC; 984 * 985 * The black magic below avoids doing a 64-bit by 32-bit integer divide, 986 * which is quite expensive. There's actually much more going on here than 987 * it might first appear -- don't try this at home. 988 * 989 * For the adventuresome, here's an explanation of how it works. 990 * 991 * Multiplication by a fixed constant is easy -- you just do the appropriate 992 * shifts and adds. For example, to multiply by 10, we observe that 993 * 994 * x * 10 = x * (8 + 2) 995 * = (x * 8) + (x * 2) 996 * = (x << 3) + (x << 1). 997 * 998 * In general, you can read the algorithm right off the bits: the number 10 999 * is 1010 in binary; bits 1 and 3 are ones, so x * 10 = (x << 1) + (x << 3). 1000 * 1001 * Sometimes you can do better. For example, 15 is 1111 binary, so the normal 1002 * shift/add computation is x * 15 = (x << 0) + (x << 1) + (x << 2) + (x << 3). 1003 * But, it's cheaper if you capitalize on the fact that you have a run of ones: 1004 * 1111 = 10000 - 1, hence x * 15 = (x << 4) - (x << 0). [You would never 1005 * actually perform the operation << 0, since it's a no-op; I'm just writing 1006 * it that way for clarity.] 1007 * 1008 * The other way you can win is if you get lucky with the prime factorization 1009 * of your constant. The number 1,000,000,000, which we have to multiply 1010 * by below, is a good example. One billion is 111011100110101100101000000000 1011 * in binary. If you apply the bit-grouping trick, it doesn't buy you very 1012 * much, because it's only a win for groups of three or more equal bits: 1013 * 1014 * 111011100110101100101000000000 = 1000000000000000000000000000000 1015 * - 000100011001010011011000000000 1016 * 1017 * Thus, instead of the 13 shift/add pairs (26 operations) implied by the LHS, 1018 * we have reduced this to 10 shift/add pairs (20 operations) on the RHS. 1019 * This is better, but not great. 1020 * 1021 * However, we can factor 1,000,000,000 = 2^9 * 5^9 = 2^9 * 125 * 125 * 125, 1022 * and multiply by each factor. Multiplication by 125 is particularly easy, 1023 * since 128 is nearby: x * 125 = (x << 7) - x - x - x, which is just four 1024 * operations. So, to multiply by 1,000,000,000, we perform three multipli- 1025 * cations by 125, then << 9, a total of only 3 * 4 + 1 = 13 operations. 1026 * This is the algorithm we actually use in both hrt2ts() and ts2hrt(). 1027 * 1028 * Division is harder; there is no equivalent of the simple shift-add algorithm 1029 * we used for multiplication. However, we can convert the division problem 1030 * into a multiplication problem by pre-computing the binary representation 1031 * of the reciprocal of the divisor. For the case of interest, we have 1032 * 1033 * 1 / 1,000,000,000 = 1.0001001011100000101111101000001B-30, 1034 * 1035 * to 32 bits of precision. (The notation B-30 means "* 2^-30", just like 1036 * E-18 means "* 10^-18".) 1037 * 1038 * So, to compute x / 1,000,000,000, we just multiply x by the 32-bit 1039 * integer 10001001011100000101111101000001, then normalize (shift) the 1040 * result. This constant has several large bits runs, so the multiply 1041 * is relatively cheap: 1042 * 1043 * 10001001011100000101111101000001 = 10001001100000000110000001000001 1044 * - 00000000000100000000000100000000 1045 * 1046 * Again, you can just read the algorithm right off the bits: 1047 * 1048 * sec = hrt; 1049 * sec += (hrt << 6); 1050 * sec -= (hrt << 8); 1051 * sec += (hrt << 13); 1052 * sec += (hrt << 14); 1053 * sec -= (hrt << 20); 1054 * sec += (hrt << 23); 1055 * sec += (hrt << 24); 1056 * sec += (hrt << 27); 1057 * sec += (hrt << 31); 1058 * sec >>= (32 + 30); 1059 * 1060 * Voila! The only problem is, since hrt is 64 bits, we need to use 96-bit 1061 * arithmetic to perform this calculation. That's a waste, because ultimately 1062 * we only need the highest 32 bits of the result. 1063 * 1064 * The first thing we do is to realize that we don't need to use all of hrt 1065 * in the calculation. The lowest 30 bits can contribute at most 1 to the 1066 * quotient (2^30 / 1,000,000,000 = 1.07...), so we'll deal with them later. 1067 * The highest 2 bits have to be zero, or hrt won't fit in a timestruc_t. 1068 * Thus, the only bits of hrt that matter for division are bits 30..61. 1069 * These 32 bits are just the lower-order word of (hrt >> 30). This brings 1070 * us down from 96-bit math to 64-bit math, and our algorithm becomes: 1071 * 1072 * tmp = (uint32_t) (hrt >> 30); 1073 * sec = tmp; 1074 * sec += (tmp << 6); 1075 * sec -= (tmp << 8); 1076 * sec += (tmp << 13); 1077 * sec += (tmp << 14); 1078 * sec -= (tmp << 20); 1079 * sec += (tmp << 23); 1080 * sec += (tmp << 24); 1081 * sec += (tmp << 27); 1082 * sec += (tmp << 31); 1083 * sec >>= 32; 1084 * 1085 * Next, we're going to reduce this 64-bit computation to a 32-bit 1086 * computation. We begin by rewriting the above algorithm to use relative 1087 * shifts instead of absolute shifts. That is, instead of computing 1088 * tmp << 6, tmp << 8, tmp << 13, etc, we'll just shift incrementally: 1089 * tmp <<= 6, tmp <<= 2 (== 8 - 6), tmp <<= 5 (== 13 - 8), etc: 1090 * 1091 * tmp = (uint32_t) (hrt >> 30); 1092 * sec = tmp; 1093 * tmp <<= 6; sec += tmp; 1094 * tmp <<= 2; sec -= tmp; 1095 * tmp <<= 5; sec += tmp; 1096 * tmp <<= 1; sec += tmp; 1097 * tmp <<= 6; sec -= tmp; 1098 * tmp <<= 3; sec += tmp; 1099 * tmp <<= 1; sec += tmp; 1100 * tmp <<= 3; sec += tmp; 1101 * tmp <<= 4; sec += tmp; 1102 * sec >>= 32; 1103 * 1104 * Now for the final step. Instead of throwing away the low 32 bits at 1105 * the end, we can throw them away as we go, only keeping the high 32 bits 1106 * of the product at each step. So, for example, where we now have 1107 * 1108 * tmp <<= 6; sec = sec + tmp; 1109 * we will instead have 1110 * tmp <<= 6; sec = (sec + tmp) >> 6; 1111 * which is equivalent to 1112 * sec = (sec >> 6) + tmp; 1113 * 1114 * The final shift ("sec >>= 32") goes away. 1115 * 1116 * All we're really doing here is long multiplication, just like we learned in 1117 * grade school, except that at each step, we only look at the leftmost 32 1118 * columns. The cumulative error is, at most, the sum of all the bits we 1119 * throw away, which is 2^-32 + 2^-31 + ... + 2^-2 + 2^-1 == 1 - 2^-32. 1120 * Thus, the final result ("sec") is correct to +/- 1. 1121 * 1122 * It turns out to be important to keep "sec" positive at each step, because 1123 * we don't want to have to explicitly extend the sign bit. Therefore, 1124 * starting with the last line of code above, each line that would have read 1125 * "sec = (sec >> n) - tmp" must be changed to "sec = tmp - (sec >> n)", and 1126 * the operators (+ or -) in all previous lines must be toggled accordingly. 1127 * Thus, we end up with: 1128 * 1129 * tmp = (uint32_t) (hrt >> 30); 1130 * sec = tmp + (sec >> 6); 1131 * sec = tmp - (tmp >> 2); 1132 * sec = tmp - (sec >> 5); 1133 * sec = tmp + (sec >> 1); 1134 * sec = tmp - (sec >> 6); 1135 * sec = tmp - (sec >> 3); 1136 * sec = tmp + (sec >> 1); 1137 * sec = tmp + (sec >> 3); 1138 * sec = tmp + (sec >> 4); 1139 * 1140 * This yields a value for sec that is accurate to +1/-1, so we have two 1141 * cases to deal with. The mysterious-looking "+ 7" in the code below biases 1142 * the rounding toward zero, so that sec is always less than or equal to 1143 * the correct value. With this modified code, sec is accurate to +0/-2, with 1144 * the -2 case being very rare in practice. With this change, we only have to 1145 * deal with one case (sec too small) in the cleanup code. 1146 * 1147 * The other modification we make is to delete the second line above 1148 * ("sec = tmp + (sec >> 6);"), since it only has an effect when bit 31 is 1149 * set, and the cleanup code can handle that rare case. This reduces the 1150 * *guaranteed* accuracy of sec to +0/-3, but speeds up the common cases. 1151 * 1152 * Finally, we compute nsec = hrt - (sec * 1,000,000,000). nsec will always 1153 * be positive (since sec is never too large), and will at most be equal to 1154 * the error in sec (times 1,000,000,000) plus the low-order 30 bits of hrt. 1155 * Thus, nsec < 3 * 1,000,000,000 + 2^30, which is less than 2^32, so we can 1156 * safely assume that nsec fits in 32 bits. Consequently, when we compute 1157 * sec * 1,000,000,000, we only need the low 32 bits, so we can just do 32-bit 1158 * arithmetic and let the high-order bits fall off the end. 1159 * 1160 * Since nsec < 3 * 1,000,000,000 + 2^30 == 4,073,741,824, the cleanup loop: 1161 * 1162 * while (nsec >= NANOSEC) { 1163 * nsec -= NANOSEC; 1164 * sec++; 1165 * } 1166 * 1167 * is guaranteed to complete in at most 4 iterations. In practice, the loop 1168 * completes in 0 or 1 iteration over 95% of the time. 1169 * 1170 * On an SS2, this implementation of hrt2ts() takes 1.7 usec, versus about 1171 * 35 usec for software division -- about 20 times faster. 1172 */ 1173 void 1174 hrt2ts(hrtime_t hrt, timestruc_t *tsp) 1175 { 1176 #if defined(__amd64) 1177 /* 1178 * The cleverness explained above is unecessary on x86_64 CPUs where 1179 * modern compilers are able to optimize down to faster operations. 1180 */ 1181 tsp->tv_sec = hrt / NANOSEC; 1182 tsp->tv_nsec = hrt % NANOSEC; 1183 #else 1184 uint32_t sec, nsec, tmp; 1185 1186 tmp = (uint32_t)(hrt >> 30); 1187 sec = tmp - (tmp >> 2); 1188 sec = tmp - (sec >> 5); 1189 sec = tmp + (sec >> 1); 1190 sec = tmp - (sec >> 6) + 7; 1191 sec = tmp - (sec >> 3); 1192 sec = tmp + (sec >> 1); 1193 sec = tmp + (sec >> 3); 1194 sec = tmp + (sec >> 4); 1195 tmp = (sec << 7) - sec - sec - sec; 1196 tmp = (tmp << 7) - tmp - tmp - tmp; 1197 tmp = (tmp << 7) - tmp - tmp - tmp; 1198 nsec = (uint32_t)hrt - (tmp << 9); 1199 while (nsec >= NANOSEC) { 1200 nsec -= NANOSEC; 1201 sec++; 1202 } 1203 tsp->tv_sec = (time_t)sec; 1204 tsp->tv_nsec = nsec; 1205 #endif /* defined(__amd64) */ 1206 } 1207 1208 /* 1209 * Convert from timestruc_t to hrtime_t. 1210 */ 1211 hrtime_t 1212 ts2hrt(const timestruc_t *tsp) 1213 { 1214 #if defined(__x86) 1215 /* 1216 * On modern x86 CPUs, the simple version is faster. 1217 */ 1218 return ((tsp->tv_sec * NANOSEC) + tsp->tv_nsec); 1219 #else 1220 /* 1221 * The code below is equivalent to: 1222 * 1223 * hrt = tsp->tv_sec * NANOSEC + tsp->tv_nsec; 1224 * 1225 * but requires no integer multiply. 1226 */ 1227 hrtime_t hrt; 1228 1229 hrt = tsp->tv_sec; 1230 hrt = (hrt << 7) - hrt - hrt - hrt; 1231 hrt = (hrt << 7) - hrt - hrt - hrt; 1232 hrt = (hrt << 7) - hrt - hrt - hrt; 1233 hrt = (hrt << 9) + tsp->tv_nsec; 1234 return (hrt); 1235 #endif /* defined(__x86) */ 1236 } 1237 1238 /* 1239 * For the various 32-bit "compatibility" paths in the system. 1240 */ 1241 void 1242 hrt2ts32(hrtime_t hrt, timestruc32_t *ts32p) 1243 { 1244 timestruc_t ts; 1245 1246 hrt2ts(hrt, &ts); 1247 TIMESPEC_TO_TIMESPEC32(ts32p, &ts); 1248 } 1249 1250 /* 1251 * If this ever becomes performance critical (ha!), we can borrow the 1252 * code from ts2hrt(), above, to multiply tv_sec by 1,000,000 and the 1253 * straightforward (x << 10) - (x << 5) + (x << 3) to multiply tv_usec by 1254 * 1,000. For now, we'll opt for readability (besides, the compiler does 1255 * a passable job of optimizing constant multiplication into shifts and adds). 1256 */ 1257 hrtime_t 1258 tv2hrt(struct timeval *tvp) 1259 { 1260 return ((hrtime_t)tvp->tv_sec * NANOSEC + 1261 (hrtime_t)tvp->tv_usec * (NANOSEC / MICROSEC)); 1262 } 1263 1264 void 1265 hrt2tv(hrtime_t hrt, struct timeval *tvp) 1266 { 1267 #if defined(__amd64) 1268 /* 1269 * Like hrt2ts, the simple version is faster on x86_64. 1270 */ 1271 tvp->tv_sec = hrt / NANOSEC; 1272 tvp->tv_usec = (hrt % NANOSEC) / (NANOSEC / MICROSEC); 1273 #else 1274 uint32_t sec, nsec, tmp; 1275 uint32_t q, r, t; 1276 1277 tmp = (uint32_t)(hrt >> 30); 1278 sec = tmp - (tmp >> 2); 1279 sec = tmp - (sec >> 5); 1280 sec = tmp + (sec >> 1); 1281 sec = tmp - (sec >> 6) + 7; 1282 sec = tmp - (sec >> 3); 1283 sec = tmp + (sec >> 1); 1284 sec = tmp + (sec >> 3); 1285 sec = tmp + (sec >> 4); 1286 tmp = (sec << 7) - sec - sec - sec; 1287 tmp = (tmp << 7) - tmp - tmp - tmp; 1288 tmp = (tmp << 7) - tmp - tmp - tmp; 1289 nsec = (uint32_t)hrt - (tmp << 9); 1290 while (nsec >= NANOSEC) { 1291 nsec -= NANOSEC; 1292 sec++; 1293 } 1294 tvp->tv_sec = (time_t)sec; 1295 /* 1296 * this routine is very similar to hr2ts, but requires microseconds 1297 * instead of nanoseconds, so an interger divide by 1000 routine 1298 * completes the conversion 1299 */ 1300 t = (nsec >> 7) + (nsec >> 8) + (nsec >> 12); 1301 q = (nsec >> 1) + t + (nsec >> 15) + (t >> 11) + (t >> 14); 1302 q = q >> 9; 1303 r = nsec - q*1000; 1304 tvp->tv_usec = q + ((r + 24) >> 10); 1305 #endif /* defined(__amd64) */ 1306 } 1307 1308 int 1309 nanosleep(timespec_t *rqtp, timespec_t *rmtp) 1310 { 1311 timespec_t rqtime; 1312 timespec_t rmtime; 1313 timespec_t now; 1314 int timecheck; 1315 int ret = 1; 1316 model_t datamodel = get_udatamodel(); 1317 1318 timecheck = timechanged; 1319 gethrestime(&now); 1320 1321 if (datamodel == DATAMODEL_NATIVE) { 1322 if (copyin(rqtp, &rqtime, sizeof (rqtime))) 1323 return (set_errno(EFAULT)); 1324 } else { 1325 timespec32_t rqtime32; 1326 1327 if (copyin(rqtp, &rqtime32, sizeof (rqtime32))) 1328 return (set_errno(EFAULT)); 1329 TIMESPEC32_TO_TIMESPEC(&rqtime, &rqtime32); 1330 } 1331 1332 if (rqtime.tv_sec < 0 || rqtime.tv_nsec < 0 || 1333 rqtime.tv_nsec >= NANOSEC) 1334 return (set_errno(EINVAL)); 1335 1336 if (timerspecisset(&rqtime)) { 1337 timespecadd(&rqtime, &now); 1338 mutex_enter(&curthread->t_delay_lock); 1339 while ((ret = cv_waituntil_sig(&curthread->t_delay_cv, 1340 &curthread->t_delay_lock, &rqtime, timecheck)) > 0) 1341 continue; 1342 mutex_exit(&curthread->t_delay_lock); 1343 } 1344 1345 if (rmtp) { 1346 /* 1347 * If cv_waituntil_sig() returned due to a signal, and 1348 * there is time remaining, then set the time remaining. 1349 * Else set time remaining to zero 1350 */ 1351 rmtime.tv_sec = rmtime.tv_nsec = 0; 1352 if (ret == 0) { 1353 timespec_t delta = rqtime; 1354 1355 gethrestime(&now); 1356 timespecsub(&delta, &now); 1357 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 1358 delta.tv_nsec > 0)) 1359 rmtime = delta; 1360 } 1361 1362 if (datamodel == DATAMODEL_NATIVE) { 1363 if (copyout(&rmtime, rmtp, sizeof (rmtime))) 1364 return (set_errno(EFAULT)); 1365 } else { 1366 timespec32_t rmtime32; 1367 1368 TIMESPEC_TO_TIMESPEC32(&rmtime32, &rmtime); 1369 if (copyout(&rmtime32, rmtp, sizeof (rmtime32))) 1370 return (set_errno(EFAULT)); 1371 } 1372 } 1373 1374 if (ret == 0) 1375 return (set_errno(EINTR)); 1376 return (0); 1377 } 1378 1379 /* 1380 * Routines to convert standard UNIX time (seconds since Jan 1, 1970) 1381 * into year/month/day/hour/minute/second format, and back again. 1382 * Note: these routines require tod_lock held to protect cached state. 1383 */ 1384 static int days_thru_month[64] = { 1385 0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366, 0, 0, 1386 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1387 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1388 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365, 0, 0, 1389 }; 1390 1391 todinfo_t saved_tod; 1392 int saved_utc = -60; 1393 1394 todinfo_t 1395 utc_to_tod(time_t utc) 1396 { 1397 long dse, day, month, year; 1398 todinfo_t tod; 1399 1400 ASSERT(MUTEX_HELD(&tod_lock)); 1401 1402 /* 1403 * Note that tod_set_prev() assumes utc will be set to zero in 1404 * the case of it being negative. Consequently, any change made 1405 * to this behavior would have to be reflected in that function 1406 * as well. 1407 */ 1408 if (utc < 0) /* should never happen */ 1409 utc = 0; 1410 1411 saved_tod.tod_sec += utc - saved_utc; 1412 saved_utc = utc; 1413 if (saved_tod.tod_sec >= 0 && saved_tod.tod_sec < 60) 1414 return (saved_tod); /* only the seconds changed */ 1415 1416 dse = utc / 86400; /* days since epoch */ 1417 1418 tod.tod_sec = utc % 60; 1419 tod.tod_min = (utc % 3600) / 60; 1420 tod.tod_hour = (utc % 86400) / 3600; 1421 tod.tod_dow = (dse + 4) % 7 + 1; /* epoch was a Thursday */ 1422 1423 year = dse / 365 + 72; /* first guess -- always a bit too large */ 1424 do { 1425 year--; 1426 day = dse - 365 * (year - 70) - ((year - 69) >> 2); 1427 } while (day < 0); 1428 1429 month = ((year & 3) << 4) + 1; 1430 while (day >= days_thru_month[month + 1]) 1431 month++; 1432 1433 tod.tod_day = day - days_thru_month[month] + 1; 1434 tod.tod_month = month & 15; 1435 tod.tod_year = year; 1436 1437 saved_tod = tod; 1438 return (tod); 1439 } 1440 1441 time_t 1442 tod_to_utc(todinfo_t tod) 1443 { 1444 time_t utc; 1445 int year = tod.tod_year; 1446 int month = tod.tod_month + ((year & 3) << 4); 1447 #ifdef DEBUG 1448 /* only warn once, not each time called */ 1449 static int year_warn = 1; 1450 static int month_warn = 1; 1451 static int day_warn = 1; 1452 static int hour_warn = 1; 1453 static int min_warn = 1; 1454 static int sec_warn = 1; 1455 int days_diff = days_thru_month[month + 1] - days_thru_month[month]; 1456 #endif 1457 1458 ASSERT(MUTEX_HELD(&tod_lock)); 1459 1460 #ifdef DEBUG 1461 if (year_warn && (year < 70 || year > 8029)) { 1462 cmn_err(CE_WARN, 1463 "The hardware real-time clock appears to have the " 1464 "wrong years value %d -- time needs to be reset\n", 1465 year); 1466 year_warn = 0; 1467 } 1468 1469 if (month_warn && (tod.tod_month < 1 || tod.tod_month > 12)) { 1470 cmn_err(CE_WARN, 1471 "The hardware real-time clock appears to have the " 1472 "wrong months value %d -- time needs to be reset\n", 1473 tod.tod_month); 1474 month_warn = 0; 1475 } 1476 1477 if (day_warn && (tod.tod_day < 1 || tod.tod_day > days_diff)) { 1478 cmn_err(CE_WARN, 1479 "The hardware real-time clock appears to have the " 1480 "wrong days value %d -- time needs to be reset\n", 1481 tod.tod_day); 1482 day_warn = 0; 1483 } 1484 1485 if (hour_warn && (tod.tod_hour < 0 || tod.tod_hour > 23)) { 1486 cmn_err(CE_WARN, 1487 "The hardware real-time clock appears to have the " 1488 "wrong hours value %d -- time needs to be reset\n", 1489 tod.tod_hour); 1490 hour_warn = 0; 1491 } 1492 1493 if (min_warn && (tod.tod_min < 0 || tod.tod_min > 59)) { 1494 cmn_err(CE_WARN, 1495 "The hardware real-time clock appears to have the " 1496 "wrong minutes value %d -- time needs to be reset\n", 1497 tod.tod_min); 1498 min_warn = 0; 1499 } 1500 1501 if (sec_warn && (tod.tod_sec < 0 || tod.tod_sec > 59)) { 1502 cmn_err(CE_WARN, 1503 "The hardware real-time clock appears to have the " 1504 "wrong seconds value %d -- time needs to be reset\n", 1505 tod.tod_sec); 1506 sec_warn = 0; 1507 } 1508 #endif 1509 1510 utc = (year - 70); /* next 3 lines: utc = 365y + y/4 */ 1511 utc += (utc << 3) + (utc << 6); 1512 utc += (utc << 2) + ((year - 69) >> 2); 1513 utc += days_thru_month[month] + tod.tod_day - 1; 1514 utc = (utc << 3) + (utc << 4) + tod.tod_hour; /* 24 * day + hour */ 1515 utc = (utc << 6) - (utc << 2) + tod.tod_min; /* 60 * hour + min */ 1516 utc = (utc << 6) - (utc << 2) + tod.tod_sec; /* 60 * min + sec */ 1517 1518 return (utc); 1519 } 1520