xref: /illumos-gate/usr/src/uts/common/os/taskq.c (revision 8c69cc8fbe729fa7b091e901c4b50508ccc6bb33)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
28  * Copyright (c) 2017 by Delphix. All rights reserved.
29  */
30 
31 /*
32  * Kernel task queues: general-purpose asynchronous task scheduling.
33  *
34  * A common problem in kernel programming is the need to schedule tasks
35  * to be performed later, by another thread. There are several reasons
36  * you may want or need to do this:
37  *
38  * (1) The task isn't time-critical, but your current code path is.
39  *
40  * (2) The task may require grabbing locks that you already hold.
41  *
42  * (3) The task may need to block (e.g. to wait for memory), but you
43  *     cannot block in your current context.
44  *
45  * (4) Your code path can't complete because of some condition, but you can't
46  *     sleep or fail, so you queue the task for later execution when condition
47  *     disappears.
48  *
49  * (5) You just want a simple way to launch multiple tasks in parallel.
50  *
51  * Task queues provide such a facility. In its simplest form (used when
52  * performance is not a critical consideration) a task queue consists of a
53  * single list of tasks, together with one or more threads to service the
54  * list. There are some cases when this simple queue is not sufficient:
55  *
56  * (1) The task queues are very hot and there is a need to avoid data and lock
57  *	contention over global resources.
58  *
59  * (2) Some tasks may depend on other tasks to complete, so they can't be put in
60  *	the same list managed by the same thread.
61  *
62  * (3) Some tasks may block for a long time, and this should not block other
63  *	tasks in the queue.
64  *
65  * To provide useful service in such cases we define a "dynamic task queue"
66  * which has an individual thread for each of the tasks. These threads are
67  * dynamically created as they are needed and destroyed when they are not in
68  * use. The API for managing task pools is the same as for managing task queues
69  * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
70  * dynamic task pool behavior is desired.
71  *
72  * Dynamic task queues may also place tasks in the normal queue (called "backing
73  * queue") when task pool runs out of resources. Users of task queues may
74  * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
75  * flags.
76  *
77  * The backing task queue is also used for scheduling internal tasks needed for
78  * dynamic task queue maintenance.
79  *
80  * INTERFACES ==================================================================
81  *
82  * taskq_t *taskq_create(name, nthreads, pri, minalloc, maxalloc, flags);
83  *
84  *	Create a taskq with specified properties.
85  *	Possible 'flags':
86  *
87  *	  TASKQ_DYNAMIC: Create task pool for task management. If this flag is
88  *		specified, 'nthreads' specifies the maximum number of threads in
89  *		the task queue. Task execution order for dynamic task queues is
90  *		not predictable.
91  *
92  *		If this flag is not specified (default case) a
93  *		single-list task queue is created with 'nthreads' threads
94  *		servicing it. Entries in this queue are managed by
95  *		taskq_ent_alloc() and taskq_ent_free() which try to keep the
96  *		task population between 'minalloc' and 'maxalloc', but the
97  *		latter limit is only advisory for TQ_SLEEP dispatches and the
98  *		former limit is only advisory for TQ_NOALLOC dispatches. If
99  *		TASKQ_PREPOPULATE is set in 'flags', the taskq will be
100  *		prepopulated with 'minalloc' task structures.
101  *
102  *		Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
103  *		executed in the order they are scheduled if nthreads == 1.
104  *		If nthreads > 1, task execution order is not predictable.
105  *
106  *	  TASKQ_PREPOPULATE: Prepopulate task queue with threads.
107  *		Also prepopulate the task queue with 'minalloc' task structures.
108  *
109  *	  TASKQ_THREADS_CPU_PCT: This flag specifies that 'nthreads' should be
110  *		interpreted as a percentage of the # of online CPUs on the
111  *		system.  The taskq subsystem will automatically adjust the
112  *		number of threads in the taskq in response to CPU online
113  *		and offline events, to keep the ratio.  nthreads must be in
114  *		the range [0,100].
115  *
116  *		The calculation used is:
117  *
118  *			MAX((ncpus_online * percentage)/100, 1)
119  *
120  *		This flag is not supported for DYNAMIC task queues.
121  *		This flag is not compatible with TASKQ_CPR_SAFE.
122  *
123  *	  TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
124  *		use their own protocol for handling CPR issues. This flag is not
125  *		supported for DYNAMIC task queues.  This flag is not compatible
126  *		with TASKQ_THREADS_CPU_PCT.
127  *
128  *	The 'pri' field specifies the default priority for the threads that
129  *	service all scheduled tasks.
130  *
131  * taskq_t *taskq_create_instance(name, instance, nthreads, pri, minalloc,
132  *    maxalloc, flags);
133  *
134  *	Like taskq_create(), but takes an instance number (or -1 to indicate
135  *	no instance).
136  *
137  * taskq_t *taskq_create_proc(name, nthreads, pri, minalloc, maxalloc, proc,
138  *    flags);
139  *
140  *	Like taskq_create(), but creates the taskq threads in the specified
141  *	system process.  If proc != &p0, this must be called from a thread
142  *	in that process.
143  *
144  * taskq_t *taskq_create_sysdc(name, nthreads, minalloc, maxalloc, proc,
145  *    dc, flags);
146  *
147  *	Like taskq_create_proc(), but the taskq threads will use the
148  *	System Duty Cycle (SDC) scheduling class with a duty cycle of dc.
149  *
150  * void taskq_destroy(tap):
151  *
152  *	Waits for any scheduled tasks to complete, then destroys the taskq.
153  *	Caller should guarantee that no new tasks are scheduled in the closing
154  *	taskq.
155  *
156  * taskqid_t taskq_dispatch(tq, func, arg, flags):
157  *
158  *	Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
159  *	the caller is willing to block for memory.  The function returns an
160  *	opaque value which is zero iff dispatch fails.  If flags is TQ_NOSLEEP
161  *	or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
162  *	and returns (taskqid_t)0.
163  *
164  *	ASSUMES: func != NULL.
165  *
166  *	Possible flags:
167  *	  TQ_NOSLEEP: Do not wait for resources; may fail.
168  *
169  *	  TQ_NOALLOC: Do not allocate memory; may fail.  May only be used with
170  *		non-dynamic task queues.
171  *
172  *	  TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
173  *		lack of available resources and fail. If this flag is not
174  *		set, and the task pool is exhausted, the task may be scheduled
175  *		in the backing queue. This flag may ONLY be used with dynamic
176  *		task queues.
177  *
178  *		NOTE: This flag should always be used when a task queue is used
179  *		for tasks that may depend on each other for completion.
180  *		Enqueueing dependent tasks may create deadlocks.
181  *
182  *	  TQ_SLEEP:   May block waiting for resources. May still fail for
183  *		dynamic task queues if TQ_NOQUEUE is also specified, otherwise
184  *		always succeed.
185  *
186  *	  TQ_FRONT:   Puts the new task at the front of the queue.  Be careful.
187  *
188  *	NOTE: Dynamic task queues are much more likely to fail in
189  *		taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
190  *		is important to have backup strategies handling such failures.
191  *
192  * void taskq_dispatch_ent(tq, func, arg, flags, tqent)
193  *
194  *	This is a light-weight form of taskq_dispatch(), that uses a
195  *	preallocated taskq_ent_t structure for scheduling.  As a
196  *	result, it does not perform allocations and cannot ever fail.
197  *	Note especially that it cannot be used with TASKQ_DYNAMIC
198  *	taskqs.  The memory for the tqent must not be modified or used
199  *	until the function (func) is called.  (However, func itself
200  *	may safely modify or free this memory, once it is called.)
201  *	Note that the taskq framework will NOT free this memory.
202  *
203  * void taskq_wait(tq):
204  *
205  *	Waits for all previously scheduled tasks to complete.
206  *
207  *	NOTE: It does not stop any new task dispatches.
208  *	      Do NOT call taskq_wait() from a task: it will cause deadlock.
209  *
210  * void taskq_suspend(tq)
211  *
212  *	Suspend all task execution. Tasks already scheduled for a dynamic task
213  *	queue will still be executed, but all new scheduled tasks will be
214  *	suspended until taskq_resume() is called.
215  *
216  * int  taskq_suspended(tq)
217  *
218  *	Returns 1 if taskq is suspended and 0 otherwise. It is intended to
219  *	ASSERT that the task queue is suspended.
220  *
221  * void taskq_resume(tq)
222  *
223  *	Resume task queue execution.
224  *
225  * int  taskq_member(tq, thread)
226  *
227  *	Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
228  *	intended use is to ASSERT that a given function is called in taskq
229  *	context only.
230  *
231  * system_taskq
232  *
233  *	Global system-wide dynamic task queue for common uses. It may be used by
234  *	any subsystem that needs to schedule tasks and does not need to manage
235  *	its own task queues. It is initialized quite early during system boot.
236  *
237  * IMPLEMENTATION ==============================================================
238  *
239  * This is schematic representation of the task queue structures.
240  *
241  *   taskq:
242  *   +-------------+
243  *   | tq_lock     | +---< taskq_ent_free()
244  *   +-------------+ |
245  *   |...          | | tqent:                  tqent:
246  *   +-------------+ | +------------+          +------------+
247  *   | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
248  *   +-------------+   +------------+          +------------+
249  *   |...          |   | ...        |          | ...        |
250  *   +-------------+   +------------+          +------------+
251  *   | tq_task     |    |
252  *   |             |    +-------------->taskq_ent_alloc()
253  * +--------------------------------------------------------------------------+
254  * | |                     |            tqent                   tqent         |
255  * | +---------------------+     +--> +------------+     +--> +------------+  |
256  * | | ...		   |     |    | func, arg  |     |    | func, arg  |  |
257  * +>+---------------------+ <---|-+  +------------+ <---|-+  +------------+  |
258  *   | tq_taskq.tqent_next | ----+ |  | tqent_next | --->+ |  | tqent_next |--+
259  *   +---------------------+	   |  +------------+     ^ |  +------------+
260  * +-| tq_task.tqent_prev  |	   +--| tqent_prev |     | +--| tqent_prev |  ^
261  * | +---------------------+	      +------------+     |    +------------+  |
262  * | |...		   |	      | ...        |     |    | ...        |  |
263  * | +---------------------+	      +------------+     |    +------------+  |
264  * |                                      ^              |                    |
265  * |                                      |              |                    |
266  * +--------------------------------------+--------------+       TQ_APPEND() -+
267  *   |             |                      |
268  *   |...          |   taskq_thread()-----+
269  *   +-------------+
270  *   | tq_buckets  |--+-------> [ NULL ] (for regular task queues)
271  *   +-------------+  |
272  *                    |   DYNAMIC TASK QUEUES:
273  *                    |
274  *                    +-> taskq_bucket[nCPU]		taskq_bucket_dispatch()
275  *                        +-------------------+                    ^
276  *                   +--->| tqbucket_lock     |                    |
277  *                   |    +-------------------+   +--------+      +--------+
278  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  | ^
279  *                   |    +-------------------+<--+--------+<--...+--------+ |
280  *                   |    | ...               |   | thread |      | thread | |
281  *                   |    +-------------------+   +--------+      +--------+ |
282  *                   |    +-------------------+                              |
283  * taskq_dispatch()--+--->| tqbucket_lock     |             TQ_APPEND()------+
284  *      TQ_HASH()    |    +-------------------+   +--------+      +--------+
285  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  |
286  *                   |    +-------------------+<--+--------+<--...+--------+
287  *                   |    | ...               |   | thread |      | thread |
288  *                   |    +-------------------+   +--------+      +--------+
289  *		     +--->	...
290  *
291  *
292  * Task queues use tq_task field to link new entry in the queue. The queue is a
293  * circular doubly-linked list. Entries are put in the end of the list with
294  * TQ_APPEND() and processed from the front of the list by taskq_thread() in
295  * FIFO order. Task queue entries are cached in the free list managed by
296  * taskq_ent_alloc() and taskq_ent_free() functions.
297  *
298  *	All threads used by task queues mark t_taskq field of the thread to
299  *	point to the task queue.
300  *
301  * Taskq Thread Management -----------------------------------------------------
302  *
303  * Taskq's non-dynamic threads are managed with several variables and flags:
304  *
305  *	* tq_nthreads	- The number of threads in taskq_thread() for the
306  *			  taskq.
307  *
308  *	* tq_active	- The number of threads not waiting on a CV in
309  *			  taskq_thread(); includes newly created threads
310  *			  not yet counted in tq_nthreads.
311  *
312  *	* tq_nthreads_target
313  *			- The number of threads desired for the taskq.
314  *
315  *	* tq_flags & TASKQ_CHANGING
316  *			- Indicates that tq_nthreads != tq_nthreads_target.
317  *
318  *	* tq_flags & TASKQ_THREAD_CREATED
319  *			- Indicates that a thread is being created in the taskq.
320  *
321  * During creation, tq_nthreads and tq_active are set to 0, and
322  * tq_nthreads_target is set to the number of threads desired.  The
323  * TASKQ_CHANGING flag is set, and taskq_thread_create() is called to
324  * create the first thread. taskq_thread_create() increments tq_active,
325  * sets TASKQ_THREAD_CREATED, and creates the new thread.
326  *
327  * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED
328  * flag, and increments tq_nthreads.  It stores the new value of
329  * tq_nthreads as its "thread_id", and stores its thread pointer in the
330  * tq_threadlist at the (thread_id - 1).  We keep the thread_id space
331  * densely packed by requiring that only the largest thread_id can exit during
332  * normal adjustment.   The exception is during the destruction of the
333  * taskq; once tq_nthreads_target is set to zero, no new threads will be created
334  * for the taskq queue, so every thread can exit without any ordering being
335  * necessary.
336  *
337  * Threads will only process work if their thread id is <= tq_nthreads_target.
338  *
339  * When TASKQ_CHANGING is set, threads will check the current thread target
340  * whenever they wake up, and do whatever they can to apply its effects.
341  *
342  * TASKQ_THREAD_CPU_PCT --------------------------------------------------------
343  *
344  * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested
345  * percentage in tq_threads_ncpus_pct, start them off with the correct thread
346  * target, and add them to the taskq_cpupct_list for later adjustment.
347  *
348  * We register taskq_cpu_setup() to be called whenever a CPU changes state.  It
349  * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthread_target
350  * if need be, and wakes up all of the threads to process the change.
351  *
352  * Dynamic Task Queues Implementation ------------------------------------------
353  *
354  * For a dynamic task queues there is a 1-to-1 mapping between a thread and
355  * taskq_ent_structure. Each entry is serviced by its own thread and each thread
356  * is controlled by a single entry.
357  *
358  * Entries are distributed over a set of buckets. To avoid using modulo
359  * arithmetics the number of buckets is 2^n and is determined as the nearest
360  * power of two roundown of the number of CPUs in the system. Tunable
361  * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry
362  * is attached to a bucket for its lifetime and can't migrate to other buckets.
363  *
364  * Entries that have scheduled tasks are not placed in any list. The dispatch
365  * function sets their "func" and "arg" fields and signals the corresponding
366  * thread to execute the task. Once the thread executes the task it clears the
367  * "func" field and places an entry on the bucket cache of free entries pointed
368  * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
369  * field equal to NULL. The free list is a circular doubly-linked list identical
370  * in structure to the tq_task list above, but entries are taken from it in LIFO
371  * order - the last freed entry is the first to be allocated. The
372  * taskq_bucket_dispatch() function gets the most recently used entry from the
373  * free list, sets its "func" and "arg" fields and signals a worker thread.
374  *
375  * After executing each task a per-entry thread taskq_d_thread() places its
376  * entry on the bucket free list and goes to a timed sleep. If it wakes up
377  * without getting new task it removes the entry from the free list and destroys
378  * itself. The thread sleep time is controlled by a tunable variable
379  * `taskq_thread_timeout'.
380  *
381  * There are various statistics kept in the bucket which allows for later
382  * analysis of taskq usage patterns. Also, a global copy of taskq creation and
383  * death statistics is kept in the global taskq data structure. Since thread
384  * creation and death happen rarely, updating such global data does not present
385  * a performance problem.
386  *
387  * NOTE: Threads are not bound to any CPU and there is absolutely no association
388  *       between the bucket and actual thread CPU, so buckets are used only to
389  *	 split resources and reduce resource contention. Having threads attached
390  *	 to the CPU denoted by a bucket may reduce number of times the job
391  *	 switches between CPUs.
392  *
393  *	 Current algorithm creates a thread whenever a bucket has no free
394  *	 entries. It would be nice to know how many threads are in the running
395  *	 state and don't create threads if all CPUs are busy with existing
396  *	 tasks, but it is unclear how such strategy can be implemented.
397  *
398  *	 Currently buckets are created statically as an array attached to task
399  *	 queue. On some system with nCPUs < max_ncpus it may waste system
400  *	 memory. One solution may be allocation of buckets when they are first
401  *	 touched, but it is not clear how useful it is.
402  *
403  * SUSPEND/RESUME implementation -----------------------------------------------
404  *
405  *	Before executing a task taskq_thread() (executing non-dynamic task
406  *	queues) obtains taskq's thread lock as a reader. The taskq_suspend()
407  *	function gets the same lock as a writer blocking all non-dynamic task
408  *	execution. The taskq_resume() function releases the lock allowing
409  *	taskq_thread to continue execution.
410  *
411  *	For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
412  *	taskq_suspend() function. After that taskq_bucket_dispatch() always
413  *	fails, so that taskq_dispatch() will either enqueue tasks for a
414  *	suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
415  *	flags.
416  *
417  *	NOTE: taskq_suspend() does not immediately block any tasks already
418  *	      scheduled for dynamic task queues. It only suspends new tasks
419  *	      scheduled after taskq_suspend() was called.
420  *
421  *	taskq_member() function works by comparing a thread t_taskq pointer with
422  *	the passed thread pointer.
423  *
424  * LOCKS and LOCK Hierarchy ----------------------------------------------------
425  *
426  *   There are three locks used in task queues:
427  *
428  *   1) The taskq_t's tq_lock, protecting global task queue state.
429  *
430  *   2) Each per-CPU bucket has a lock for bucket management.
431  *
432  *   3) The global taskq_cpupct_lock, which protects the list of
433  *      TASKQ_THREADS_CPU_PCT taskqs.
434  *
435  *   If both (1) and (2) are needed, tq_lock should be taken *after* the bucket
436  *   lock.
437  *
438  *   If both (1) and (3) are needed, tq_lock should be taken *after*
439  *   taskq_cpupct_lock.
440  *
441  * DEBUG FACILITIES ------------------------------------------------------------
442  *
443  * For DEBUG kernels it is possible to induce random failures to
444  * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
445  * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
446  * failures for dynamic and static task queues respectively.
447  *
448  * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
449  *
450  * TUNABLES --------------------------------------------------------------------
451  *
452  *	system_taskq_size	- Size of the global system_taskq.
453  *				  This value is multiplied by nCPUs to determine
454  *				  actual size.
455  *				  Default value: 64
456  *
457  *	taskq_minimum_nthreads_max
458  *				- Minimum size of the thread list for a taskq.
459  *				  Useful for testing different thread pool
460  *				  sizes by overwriting tq_nthreads_target.
461  *
462  *	taskq_thread_timeout	- Maximum idle time for taskq_d_thread()
463  *				  Default value: 5 minutes
464  *
465  *	taskq_maxbuckets	- Maximum number of buckets in any task queue
466  *				  Default value: 128
467  *
468  *	taskq_search_depth	- Maximum # of buckets searched for a free entry
469  *				  Default value: 4
470  *
471  *	taskq_dmtbf		- Mean time between induced dispatch failures
472  *				  for dynamic task queues.
473  *				  Default value: UINT_MAX (no induced failures)
474  *
475  *	taskq_smtbf		- Mean time between induced dispatch failures
476  *				  for static task queues.
477  *				  Default value: UINT_MAX (no induced failures)
478  *
479  * CONDITIONAL compilation -----------------------------------------------------
480  *
481  *    TASKQ_STATISTIC	- If set will enable bucket statistic (default).
482  *
483  */
484 
485 #include <sys/taskq_impl.h>
486 #include <sys/thread.h>
487 #include <sys/proc.h>
488 #include <sys/kmem.h>
489 #include <sys/vmem.h>
490 #include <sys/callb.h>
491 #include <sys/class.h>
492 #include <sys/systm.h>
493 #include <sys/cmn_err.h>
494 #include <sys/debug.h>
495 #include <sys/vmsystm.h>	/* For throttlefree */
496 #include <sys/sysmacros.h>
497 #include <sys/cpuvar.h>
498 #include <sys/cpupart.h>
499 #include <sys/sdt.h>
500 #include <sys/sysdc.h>
501 #include <sys/note.h>
502 
503 static kmem_cache_t *taskq_ent_cache, *taskq_cache;
504 
505 /*
506  * Pseudo instance numbers for taskqs without explicitly provided instance.
507  */
508 static vmem_t *taskq_id_arena;
509 
510 /* Global system task queue for common use */
511 taskq_t	*system_taskq;
512 
513 /*
514  * Maximum number of entries in global system taskq is
515  *	system_taskq_size * max_ncpus
516  */
517 #define	SYSTEM_TASKQ_SIZE 64
518 int system_taskq_size = SYSTEM_TASKQ_SIZE;
519 
520 /*
521  * Minimum size for tq_nthreads_max; useful for those who want to play around
522  * with increasing a taskq's tq_nthreads_target.
523  */
524 int taskq_minimum_nthreads_max = 1;
525 
526 /*
527  * We want to ensure that when taskq_create() returns, there is at least
528  * one thread ready to handle requests.  To guarantee this, we have to wait
529  * for the second thread, since the first one cannot process requests until
530  * the second thread has been created.
531  */
532 #define	TASKQ_CREATE_ACTIVE_THREADS	2
533 
534 /* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */
535 #define	TASKQ_CPUPCT_MAX_PERCENT	1000
536 int taskq_cpupct_max_percent = TASKQ_CPUPCT_MAX_PERCENT;
537 
538 /*
539  * Dynamic task queue threads that don't get any work within
540  * taskq_thread_timeout destroy themselves
541  */
542 #define	TASKQ_THREAD_TIMEOUT (60 * 5)
543 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;
544 
545 #define	TASKQ_MAXBUCKETS 128
546 int taskq_maxbuckets = TASKQ_MAXBUCKETS;
547 
548 /*
549  * When a bucket has no available entries another buckets are tried.
550  * taskq_search_depth parameter limits the amount of buckets that we search
551  * before failing. This is mostly useful in systems with many CPUs where we may
552  * spend too much time scanning busy buckets.
553  */
554 #define	TASKQ_SEARCH_DEPTH 4
555 int taskq_search_depth = TASKQ_SEARCH_DEPTH;
556 
557 /*
558  * Hashing function: mix various bits of x. May be pretty much anything.
559  */
560 #define	TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))
561 
562 /*
563  * We do not create any new threads when the system is low on memory and start
564  * throttling memory allocations. The following macro tries to estimate such
565  * condition.
566  */
567 #define	ENOUGH_MEMORY() (freemem > throttlefree)
568 
569 /*
570  * Static functions.
571  */
572 static taskq_t	*taskq_create_common(const char *, int, int, pri_t, int,
573     int, proc_t *, uint_t, uint_t);
574 static void taskq_thread(void *);
575 static void taskq_d_thread(taskq_ent_t *);
576 static void taskq_bucket_extend(void *);
577 static int  taskq_constructor(void *, void *, int);
578 static void taskq_destructor(void *, void *);
579 static int  taskq_ent_constructor(void *, void *, int);
580 static void taskq_ent_destructor(void *, void *);
581 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
582 static void taskq_ent_free(taskq_t *, taskq_ent_t *);
583 static int taskq_ent_exists(taskq_t *, task_func_t, void *);
584 static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t,
585     void *);
586 
587 /*
588  * Task queues kstats.
589  */
590 struct taskq_kstat {
591 	kstat_named_t	tq_pid;
592 	kstat_named_t	tq_tasks;
593 	kstat_named_t	tq_executed;
594 	kstat_named_t	tq_maxtasks;
595 	kstat_named_t	tq_totaltime;
596 	kstat_named_t	tq_nalloc;
597 	kstat_named_t	tq_nactive;
598 	kstat_named_t	tq_pri;
599 	kstat_named_t	tq_nthreads;
600 	kstat_named_t	tq_nomem;
601 } taskq_kstat = {
602 	{ "pid",		KSTAT_DATA_UINT64 },
603 	{ "tasks",		KSTAT_DATA_UINT64 },
604 	{ "executed",		KSTAT_DATA_UINT64 },
605 	{ "maxtasks",		KSTAT_DATA_UINT64 },
606 	{ "totaltime",		KSTAT_DATA_UINT64 },
607 	{ "nalloc",		KSTAT_DATA_UINT64 },
608 	{ "nactive",		KSTAT_DATA_UINT64 },
609 	{ "priority",		KSTAT_DATA_UINT64 },
610 	{ "threads",		KSTAT_DATA_UINT64 },
611 	{ "nomem",		KSTAT_DATA_UINT64 },
612 };
613 
614 struct taskq_d_kstat {
615 	kstat_named_t	tqd_pri;
616 	kstat_named_t	tqd_btasks;
617 	kstat_named_t	tqd_bexecuted;
618 	kstat_named_t	tqd_bmaxtasks;
619 	kstat_named_t	tqd_bnalloc;
620 	kstat_named_t	tqd_bnactive;
621 	kstat_named_t	tqd_btotaltime;
622 	kstat_named_t	tqd_hits;
623 	kstat_named_t	tqd_misses;
624 	kstat_named_t	tqd_overflows;
625 	kstat_named_t	tqd_tcreates;
626 	kstat_named_t	tqd_tdeaths;
627 	kstat_named_t	tqd_maxthreads;
628 	kstat_named_t	tqd_nomem;
629 	kstat_named_t	tqd_disptcreates;
630 	kstat_named_t	tqd_totaltime;
631 	kstat_named_t	tqd_nalloc;
632 	kstat_named_t	tqd_nfree;
633 } taskq_d_kstat = {
634 	{ "priority",		KSTAT_DATA_UINT64 },
635 	{ "btasks",		KSTAT_DATA_UINT64 },
636 	{ "bexecuted",		KSTAT_DATA_UINT64 },
637 	{ "bmaxtasks",		KSTAT_DATA_UINT64 },
638 	{ "bnalloc",		KSTAT_DATA_UINT64 },
639 	{ "bnactive",		KSTAT_DATA_UINT64 },
640 	{ "btotaltime",		KSTAT_DATA_UINT64 },
641 	{ "hits",		KSTAT_DATA_UINT64 },
642 	{ "misses",		KSTAT_DATA_UINT64 },
643 	{ "overflows",		KSTAT_DATA_UINT64 },
644 	{ "tcreates",		KSTAT_DATA_UINT64 },
645 	{ "tdeaths",		KSTAT_DATA_UINT64 },
646 	{ "maxthreads",		KSTAT_DATA_UINT64 },
647 	{ "nomem",		KSTAT_DATA_UINT64 },
648 	{ "disptcreates",	KSTAT_DATA_UINT64 },
649 	{ "totaltime",		KSTAT_DATA_UINT64 },
650 	{ "nalloc",		KSTAT_DATA_UINT64 },
651 	{ "nfree",		KSTAT_DATA_UINT64 },
652 };
653 
654 static kmutex_t taskq_kstat_lock;
655 static kmutex_t taskq_d_kstat_lock;
656 static int taskq_kstat_update(kstat_t *, int);
657 static int taskq_d_kstat_update(kstat_t *, int);
658 
659 /*
660  * List of all TASKQ_THREADS_CPU_PCT taskqs.
661  */
662 static list_t taskq_cpupct_list;	/* protected by cpu_lock */
663 
664 /*
665  * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
666  */
667 #define	TASKQ_STATISTIC 1
668 
669 #if TASKQ_STATISTIC
670 #define	TQ_STAT(b, x)	b->tqbucket_stat.x++
671 #else
672 #define	TQ_STAT(b, x)
673 #endif
674 
675 /*
676  * Random fault injection.
677  */
678 uint_t taskq_random;
679 uint_t taskq_dmtbf = UINT_MAX;    /* mean time between injected failures */
680 uint_t taskq_smtbf = UINT_MAX;    /* mean time between injected failures */
681 
682 /*
683  * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
684  *
685  * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
686  * they could prepopulate the cache and make sure that they do not use more
687  * then minalloc entries.  So, fault injection in this case insures that
688  * either TASKQ_PREPOPULATE is not set or there are more entries allocated
689  * than is specified by minalloc.  TQ_NOALLOC dispatches are always allowed
690  * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
691  * dispatches.
692  */
693 #ifdef DEBUG
694 #define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)		\
695 	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
696 	if ((flag & TQ_NOSLEEP) &&				\
697 	    taskq_random < 1771875 / taskq_dmtbf) {		\
698 		return (NULL);					\
699 	}
700 
701 #define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)		\
702 	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
703 	if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) &&		\
704 	    (!(tq->tq_flags & TASKQ_PREPOPULATE) ||		\
705 	    (tq->tq_nalloc > tq->tq_minalloc)) &&		\
706 	    (taskq_random < (1771875 / taskq_smtbf))) {		\
707 		mutex_exit(&tq->tq_lock);			\
708 		return (NULL);					\
709 	}
710 #else
711 #define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
712 #define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
713 #endif
714 
715 #define	IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) &&	\
716 	((l).tqent_prev == &(l)))
717 
718 /*
719  * Append `tqe' in the end of the doubly-linked list denoted by l.
720  */
721 #define	TQ_APPEND(l, tqe) {					\
722 	tqe->tqent_next = &l;					\
723 	tqe->tqent_prev = l.tqent_prev;				\
724 	tqe->tqent_next->tqent_prev = tqe;			\
725 	tqe->tqent_prev->tqent_next = tqe;			\
726 }
727 /*
728  * Prepend 'tqe' to the beginning of l
729  */
730 #define	TQ_PREPEND(l, tqe) {					\
731 	tqe->tqent_next = l.tqent_next;				\
732 	tqe->tqent_prev = &l;					\
733 	tqe->tqent_next->tqent_prev = tqe;			\
734 	tqe->tqent_prev->tqent_next = tqe;			\
735 }
736 
737 /*
738  * Schedule a task specified by func and arg into the task queue entry tqe.
739  */
740 #define	TQ_DO_ENQUEUE(tq, tqe, func, arg, front) {			\
741 	ASSERT(MUTEX_HELD(&tq->tq_lock));				\
742 	_NOTE(CONSTCOND)						\
743 	if (front) {							\
744 		TQ_PREPEND(tq->tq_task, tqe);				\
745 	} else {							\
746 		TQ_APPEND(tq->tq_task, tqe);				\
747 	}								\
748 	tqe->tqent_func = (func);					\
749 	tqe->tqent_arg = (arg);						\
750 	tq->tq_tasks++;							\
751 	if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks)		\
752 		tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed;	\
753 	cv_signal(&tq->tq_dispatch_cv);					\
754 	DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
755 }
756 
757 #define	TQ_ENQUEUE(tq, tqe, func, arg)					\
758 	TQ_DO_ENQUEUE(tq, tqe, func, arg, 0)
759 
760 #define	TQ_ENQUEUE_FRONT(tq, tqe, func, arg)				\
761 	TQ_DO_ENQUEUE(tq, tqe, func, arg, 1)
762 
763 /*
764  * Do-nothing task which may be used to prepopulate thread caches.
765  */
766 /*ARGSUSED*/
767 void
768 nulltask(void *unused)
769 {
770 }
771 
772 /*ARGSUSED*/
773 static int
774 taskq_constructor(void *buf, void *cdrarg, int kmflags)
775 {
776 	taskq_t *tq = buf;
777 
778 	bzero(tq, sizeof (taskq_t));
779 
780 	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
781 	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
782 	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
783 	cv_init(&tq->tq_exit_cv, NULL, CV_DEFAULT, NULL);
784 	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
785 	cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
786 
787 	tq->tq_task.tqent_next = &tq->tq_task;
788 	tq->tq_task.tqent_prev = &tq->tq_task;
789 
790 	return (0);
791 }
792 
793 /*ARGSUSED*/
794 static void
795 taskq_destructor(void *buf, void *cdrarg)
796 {
797 	taskq_t *tq = buf;
798 
799 	ASSERT(tq->tq_nthreads == 0);
800 	ASSERT(tq->tq_buckets == NULL);
801 	ASSERT(tq->tq_tcreates == 0);
802 	ASSERT(tq->tq_tdeaths == 0);
803 
804 	mutex_destroy(&tq->tq_lock);
805 	rw_destroy(&tq->tq_threadlock);
806 	cv_destroy(&tq->tq_dispatch_cv);
807 	cv_destroy(&tq->tq_exit_cv);
808 	cv_destroy(&tq->tq_wait_cv);
809 	cv_destroy(&tq->tq_maxalloc_cv);
810 }
811 
812 /*ARGSUSED*/
813 static int
814 taskq_ent_constructor(void *buf, void *cdrarg, int kmflags)
815 {
816 	taskq_ent_t *tqe = buf;
817 
818 	tqe->tqent_thread = NULL;
819 	cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL);
820 
821 	return (0);
822 }
823 
824 /*ARGSUSED*/
825 static void
826 taskq_ent_destructor(void *buf, void *cdrarg)
827 {
828 	taskq_ent_t *tqe = buf;
829 
830 	ASSERT(tqe->tqent_thread == NULL);
831 	cv_destroy(&tqe->tqent_cv);
832 }
833 
834 void
835 taskq_init(void)
836 {
837 	taskq_ent_cache = kmem_cache_create("taskq_ent_cache",
838 	    sizeof (taskq_ent_t), 0, taskq_ent_constructor,
839 	    taskq_ent_destructor, NULL, NULL, NULL, 0);
840 	taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t),
841 	    0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0);
842 	taskq_id_arena = vmem_create("taskq_id_arena",
843 	    (void *)1, INT32_MAX, 1, NULL, NULL, NULL, 0,
844 	    VM_SLEEP | VMC_IDENTIFIER);
845 
846 	list_create(&taskq_cpupct_list, sizeof (taskq_t),
847 	    offsetof(taskq_t, tq_cpupct_link));
848 }
849 
850 static void
851 taskq_update_nthreads(taskq_t *tq, uint_t ncpus)
852 {
853 	uint_t newtarget = TASKQ_THREADS_PCT(ncpus, tq->tq_threads_ncpus_pct);
854 
855 	ASSERT(MUTEX_HELD(&cpu_lock));
856 	ASSERT(MUTEX_HELD(&tq->tq_lock));
857 
858 	/* We must be going from non-zero to non-zero; no exiting. */
859 	ASSERT3U(tq->tq_nthreads_target, !=, 0);
860 	ASSERT3U(newtarget, !=, 0);
861 
862 	ASSERT3U(newtarget, <=, tq->tq_nthreads_max);
863 	if (newtarget != tq->tq_nthreads_target) {
864 		tq->tq_flags |= TASKQ_CHANGING;
865 		tq->tq_nthreads_target = newtarget;
866 		cv_broadcast(&tq->tq_dispatch_cv);
867 		cv_broadcast(&tq->tq_exit_cv);
868 	}
869 }
870 
871 /* called during task queue creation */
872 static void
873 taskq_cpupct_install(taskq_t *tq, cpupart_t *cpup)
874 {
875 	ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
876 
877 	mutex_enter(&cpu_lock);
878 	mutex_enter(&tq->tq_lock);
879 	tq->tq_cpupart = cpup->cp_id;
880 	taskq_update_nthreads(tq, cpup->cp_ncpus);
881 	mutex_exit(&tq->tq_lock);
882 
883 	list_insert_tail(&taskq_cpupct_list, tq);
884 	mutex_exit(&cpu_lock);
885 }
886 
887 static void
888 taskq_cpupct_remove(taskq_t *tq)
889 {
890 	ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
891 
892 	mutex_enter(&cpu_lock);
893 	list_remove(&taskq_cpupct_list, tq);
894 	mutex_exit(&cpu_lock);
895 }
896 
897 /*ARGSUSED*/
898 static int
899 taskq_cpu_setup(cpu_setup_t what, int id, void *arg)
900 {
901 	taskq_t *tq;
902 	cpupart_t *cp = cpu[id]->cpu_part;
903 	uint_t ncpus = cp->cp_ncpus;
904 
905 	ASSERT(MUTEX_HELD(&cpu_lock));
906 	ASSERT(ncpus > 0);
907 
908 	switch (what) {
909 	case CPU_OFF:
910 	case CPU_CPUPART_OUT:
911 		/* offlines are called *before* the cpu is offlined. */
912 		if (ncpus > 1)
913 			ncpus--;
914 		break;
915 
916 	case CPU_ON:
917 	case CPU_CPUPART_IN:
918 		break;
919 
920 	default:
921 		return (0);		/* doesn't affect cpu count */
922 	}
923 
924 	for (tq = list_head(&taskq_cpupct_list); tq != NULL;
925 	    tq = list_next(&taskq_cpupct_list, tq)) {
926 
927 		mutex_enter(&tq->tq_lock);
928 		/*
929 		 * If the taskq is part of the cpuset which is changing,
930 		 * update its nthreads_target.
931 		 */
932 		if (tq->tq_cpupart == cp->cp_id) {
933 			taskq_update_nthreads(tq, ncpus);
934 		}
935 		mutex_exit(&tq->tq_lock);
936 	}
937 	return (0);
938 }
939 
940 void
941 taskq_mp_init(void)
942 {
943 	mutex_enter(&cpu_lock);
944 	register_cpu_setup_func(taskq_cpu_setup, NULL);
945 	/*
946 	 * Make sure we're up to date.  At this point in boot, there is only
947 	 * one processor set, so we only have to update the current CPU.
948 	 */
949 	(void) taskq_cpu_setup(CPU_ON, CPU->cpu_id, NULL);
950 	mutex_exit(&cpu_lock);
951 }
952 
953 /*
954  * Create global system dynamic task queue.
955  */
956 void
957 system_taskq_init(void)
958 {
959 	system_taskq = taskq_create_common("system_taskq", 0,
960 	    system_taskq_size * max_ncpus, minclsyspri, 4, 512, &p0, 0,
961 	    TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
962 }
963 
964 /*
965  * taskq_ent_alloc()
966  *
967  * Allocates a new taskq_ent_t structure either from the free list or from the
968  * cache. Returns NULL if it can't be allocated.
969  *
970  * Assumes: tq->tq_lock is held.
971  */
972 static taskq_ent_t *
973 taskq_ent_alloc(taskq_t *tq, int flags)
974 {
975 	int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
976 	taskq_ent_t *tqe;
977 	clock_t wait_time;
978 	clock_t	wait_rv;
979 
980 	ASSERT(MUTEX_HELD(&tq->tq_lock));
981 
982 	/*
983 	 * TQ_NOALLOC allocations are allowed to use the freelist, even if
984 	 * we are below tq_minalloc.
985 	 */
986 again:	if ((tqe = tq->tq_freelist) != NULL &&
987 	    ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) {
988 		tq->tq_freelist = tqe->tqent_next;
989 	} else {
990 		if (flags & TQ_NOALLOC)
991 			return (NULL);
992 
993 		if (tq->tq_nalloc >= tq->tq_maxalloc) {
994 			if (kmflags & KM_NOSLEEP)
995 				return (NULL);
996 
997 			/*
998 			 * We don't want to exceed tq_maxalloc, but we can't
999 			 * wait for other tasks to complete (and thus free up
1000 			 * task structures) without risking deadlock with
1001 			 * the caller.  So, we just delay for one second
1002 			 * to throttle the allocation rate. If we have tasks
1003 			 * complete before one second timeout expires then
1004 			 * taskq_ent_free will signal us and we will
1005 			 * immediately retry the allocation (reap free).
1006 			 */
1007 			wait_time = ddi_get_lbolt() + hz;
1008 			while (tq->tq_freelist == NULL) {
1009 				tq->tq_maxalloc_wait++;
1010 				wait_rv = cv_timedwait(&tq->tq_maxalloc_cv,
1011 				    &tq->tq_lock, wait_time);
1012 				tq->tq_maxalloc_wait--;
1013 				if (wait_rv == -1)
1014 					break;
1015 			}
1016 			if (tq->tq_freelist)
1017 				goto again;		/* reap freelist */
1018 
1019 		}
1020 		mutex_exit(&tq->tq_lock);
1021 
1022 		tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
1023 
1024 		mutex_enter(&tq->tq_lock);
1025 		if (tqe != NULL)
1026 			tq->tq_nalloc++;
1027 	}
1028 	return (tqe);
1029 }
1030 
1031 /*
1032  * taskq_ent_free()
1033  *
1034  * Free taskq_ent_t structure by either putting it on the free list or freeing
1035  * it to the cache.
1036  *
1037  * Assumes: tq->tq_lock is held.
1038  */
1039 static void
1040 taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
1041 {
1042 	ASSERT(MUTEX_HELD(&tq->tq_lock));
1043 
1044 	if (tq->tq_nalloc <= tq->tq_minalloc) {
1045 		tqe->tqent_next = tq->tq_freelist;
1046 		tq->tq_freelist = tqe;
1047 	} else {
1048 		tq->tq_nalloc--;
1049 		mutex_exit(&tq->tq_lock);
1050 		kmem_cache_free(taskq_ent_cache, tqe);
1051 		mutex_enter(&tq->tq_lock);
1052 	}
1053 
1054 	if (tq->tq_maxalloc_wait)
1055 		cv_signal(&tq->tq_maxalloc_cv);
1056 }
1057 
1058 /*
1059  * taskq_ent_exists()
1060  *
1061  * Return 1 if taskq already has entry for calling 'func(arg)'.
1062  *
1063  * Assumes: tq->tq_lock is held.
1064  */
1065 static int
1066 taskq_ent_exists(taskq_t *tq, task_func_t func, void *arg)
1067 {
1068 	taskq_ent_t	*tqe;
1069 
1070 	ASSERT(MUTEX_HELD(&tq->tq_lock));
1071 
1072 	for (tqe = tq->tq_task.tqent_next; tqe != &tq->tq_task;
1073 	    tqe = tqe->tqent_next)
1074 		if ((tqe->tqent_func == func) && (tqe->tqent_arg == arg))
1075 			return (1);
1076 	return (0);
1077 }
1078 
1079 /*
1080  * Dispatch a task "func(arg)" to a free entry of bucket b.
1081  *
1082  * Assumes: no bucket locks is held.
1083  *
1084  * Returns: a pointer to an entry if dispatch was successful.
1085  *	    NULL if there are no free entries or if the bucket is suspended.
1086  */
1087 static taskq_ent_t *
1088 taskq_bucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg)
1089 {
1090 	taskq_ent_t *tqe;
1091 
1092 	ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock));
1093 	ASSERT(func != NULL);
1094 
1095 	mutex_enter(&b->tqbucket_lock);
1096 
1097 	ASSERT(b->tqbucket_nfree != 0 || IS_EMPTY(b->tqbucket_freelist));
1098 	ASSERT(b->tqbucket_nfree == 0 || !IS_EMPTY(b->tqbucket_freelist));
1099 
1100 	/*
1101 	 * Get en entry from the freelist if there is one.
1102 	 * Schedule task into the entry.
1103 	 */
1104 	if ((b->tqbucket_nfree != 0) &&
1105 	    !(b->tqbucket_flags & TQBUCKET_SUSPEND)) {
1106 		tqe = b->tqbucket_freelist.tqent_prev;
1107 
1108 		ASSERT(tqe != &b->tqbucket_freelist);
1109 		ASSERT(tqe->tqent_thread != NULL);
1110 
1111 		tqe->tqent_prev->tqent_next = tqe->tqent_next;
1112 		tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1113 		b->tqbucket_nalloc++;
1114 		b->tqbucket_nfree--;
1115 		tqe->tqent_func = func;
1116 		tqe->tqent_arg = arg;
1117 		TQ_STAT(b, tqs_hits);
1118 		cv_signal(&tqe->tqent_cv);
1119 		DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b,
1120 		    taskq_ent_t *, tqe);
1121 	} else {
1122 		tqe = NULL;
1123 		TQ_STAT(b, tqs_misses);
1124 	}
1125 	mutex_exit(&b->tqbucket_lock);
1126 	return (tqe);
1127 }
1128 
1129 /*
1130  * Dispatch a task.
1131  *
1132  * Assumes: func != NULL
1133  *
1134  * Returns: NULL if dispatch failed.
1135  *	    non-NULL if task dispatched successfully.
1136  *	    Actual return value is the pointer to taskq entry that was used to
1137  *	    dispatch a task. This is useful for debugging.
1138  */
1139 taskqid_t
1140 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
1141 {
1142 	taskq_bucket_t *bucket = NULL;	/* Which bucket needs extension */
1143 	taskq_ent_t *tqe = NULL;
1144 	taskq_ent_t *tqe1;
1145 	uint_t bsize;
1146 
1147 	ASSERT(tq != NULL);
1148 	ASSERT(func != NULL);
1149 
1150 	if (!(tq->tq_flags & TASKQ_DYNAMIC)) {
1151 		/*
1152 		 * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
1153 		 */
1154 		ASSERT(!(flags & TQ_NOQUEUE));
1155 		/*
1156 		 * Enqueue the task to the underlying queue.
1157 		 */
1158 		mutex_enter(&tq->tq_lock);
1159 
1160 		TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags);
1161 
1162 		if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) {
1163 			tq->tq_nomem++;
1164 			mutex_exit(&tq->tq_lock);
1165 			return (NULL);
1166 		}
1167 		/* Make sure we start without any flags */
1168 		tqe->tqent_un.tqent_flags = 0;
1169 
1170 		if (flags & TQ_FRONT) {
1171 			TQ_ENQUEUE_FRONT(tq, tqe, func, arg);
1172 		} else {
1173 			TQ_ENQUEUE(tq, tqe, func, arg);
1174 		}
1175 		mutex_exit(&tq->tq_lock);
1176 		return ((taskqid_t)tqe);
1177 	}
1178 
1179 	/*
1180 	 * Dynamic taskq dispatching.
1181 	 */
1182 	ASSERT(!(flags & (TQ_NOALLOC | TQ_FRONT)));
1183 	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flags);
1184 
1185 	bsize = tq->tq_nbuckets;
1186 
1187 	if (bsize == 1) {
1188 		/*
1189 		 * In a single-CPU case there is only one bucket, so get
1190 		 * entry directly from there.
1191 		 */
1192 		if ((tqe = taskq_bucket_dispatch(tq->tq_buckets, func, arg))
1193 		    != NULL)
1194 			return ((taskqid_t)tqe);	/* Fastpath */
1195 		bucket = tq->tq_buckets;
1196 	} else {
1197 		int loopcount;
1198 		taskq_bucket_t *b;
1199 		uintptr_t h = ((uintptr_t)CPU + (uintptr_t)arg) >> 3;
1200 
1201 		h = TQ_HASH(h);
1202 
1203 		/*
1204 		 * The 'bucket' points to the original bucket that we hit. If we
1205 		 * can't allocate from it, we search other buckets, but only
1206 		 * extend this one.
1207 		 */
1208 		b = &tq->tq_buckets[h & (bsize - 1)];
1209 		ASSERT(b->tqbucket_taskq == tq);	/* Sanity check */
1210 
1211 		/*
1212 		 * Do a quick check before grabbing the lock. If the bucket does
1213 		 * not have free entries now, chances are very small that it
1214 		 * will after we take the lock, so we just skip it.
1215 		 */
1216 		if (b->tqbucket_nfree != 0) {
1217 			if ((tqe = taskq_bucket_dispatch(b, func, arg)) != NULL)
1218 				return ((taskqid_t)tqe);	/* Fastpath */
1219 		} else {
1220 			TQ_STAT(b, tqs_misses);
1221 		}
1222 
1223 		bucket = b;
1224 		loopcount = MIN(taskq_search_depth, bsize);
1225 		/*
1226 		 * If bucket dispatch failed, search loopcount number of buckets
1227 		 * before we give up and fail.
1228 		 */
1229 		do {
1230 			b = &tq->tq_buckets[++h & (bsize - 1)];
1231 			ASSERT(b->tqbucket_taskq == tq);  /* Sanity check */
1232 			loopcount--;
1233 
1234 			if (b->tqbucket_nfree != 0) {
1235 				tqe = taskq_bucket_dispatch(b, func, arg);
1236 			} else {
1237 				TQ_STAT(b, tqs_misses);
1238 			}
1239 		} while ((tqe == NULL) && (loopcount > 0));
1240 	}
1241 
1242 	/*
1243 	 * At this point we either scheduled a task and (tqe != NULL) or failed
1244 	 * (tqe == NULL). Try to recover from fails.
1245 	 */
1246 
1247 	/*
1248 	 * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch.
1249 	 */
1250 	if ((tqe == NULL) && !(flags & TQ_NOSLEEP)) {
1251 		/*
1252 		 * taskq_bucket_extend() may fail to do anything, but this is
1253 		 * fine - we deal with it later. If the bucket was successfully
1254 		 * extended, there is a good chance that taskq_bucket_dispatch()
1255 		 * will get this new entry, unless someone is racing with us and
1256 		 * stealing the new entry from under our nose.
1257 		 * taskq_bucket_extend() may sleep.
1258 		 */
1259 		taskq_bucket_extend(bucket);
1260 		TQ_STAT(bucket, tqs_disptcreates);
1261 		if ((tqe = taskq_bucket_dispatch(bucket, func, arg)) != NULL)
1262 			return ((taskqid_t)tqe);
1263 	}
1264 
1265 	ASSERT(bucket != NULL);
1266 
1267 	/*
1268 	 * Since there are not enough free entries in the bucket, add a
1269 	 * taskq entry to extend it in the background using backing queue
1270 	 * (unless we already have a taskq entry to perform that extension).
1271 	 */
1272 	mutex_enter(&tq->tq_lock);
1273 	if (!taskq_ent_exists(tq, taskq_bucket_extend, bucket)) {
1274 		if ((tqe1 = taskq_ent_alloc(tq, TQ_NOSLEEP)) != NULL) {
1275 			TQ_ENQUEUE_FRONT(tq, tqe1, taskq_bucket_extend, bucket);
1276 		} else {
1277 			tq->tq_nomem++;
1278 		}
1279 	}
1280 
1281 	/*
1282 	 * Dispatch failed and we can't find an entry to schedule a task.
1283 	 * Revert to the backing queue unless TQ_NOQUEUE was asked.
1284 	 */
1285 	if ((tqe == NULL) && !(flags & TQ_NOQUEUE)) {
1286 		if ((tqe = taskq_ent_alloc(tq, flags)) != NULL) {
1287 			TQ_ENQUEUE(tq, tqe, func, arg);
1288 		} else {
1289 			tq->tq_nomem++;
1290 		}
1291 	}
1292 	mutex_exit(&tq->tq_lock);
1293 
1294 	return ((taskqid_t)tqe);
1295 }
1296 
1297 void
1298 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
1299     taskq_ent_t *tqe)
1300 {
1301 	ASSERT(func != NULL);
1302 	ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
1303 
1304 	/*
1305 	 * Mark it as a prealloc'd task.  This is important
1306 	 * to ensure that we don't free it later.
1307 	 */
1308 	tqe->tqent_un.tqent_flags |= TQENT_FLAG_PREALLOC;
1309 	/*
1310 	 * Enqueue the task to the underlying queue.
1311 	 */
1312 	mutex_enter(&tq->tq_lock);
1313 
1314 	if (flags & TQ_FRONT) {
1315 		TQ_ENQUEUE_FRONT(tq, tqe, func, arg);
1316 	} else {
1317 		TQ_ENQUEUE(tq, tqe, func, arg);
1318 	}
1319 	mutex_exit(&tq->tq_lock);
1320 }
1321 
1322 /*
1323  * Wait for all pending tasks to complete.
1324  * Calling taskq_wait from a task will cause deadlock.
1325  */
1326 void
1327 taskq_wait(taskq_t *tq)
1328 {
1329 	ASSERT(tq != curthread->t_taskq);
1330 
1331 	mutex_enter(&tq->tq_lock);
1332 	while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
1333 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1334 	mutex_exit(&tq->tq_lock);
1335 
1336 	if (tq->tq_flags & TASKQ_DYNAMIC) {
1337 		taskq_bucket_t *b = tq->tq_buckets;
1338 		int bid = 0;
1339 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1340 			mutex_enter(&b->tqbucket_lock);
1341 			while (b->tqbucket_nalloc > 0)
1342 				cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
1343 			mutex_exit(&b->tqbucket_lock);
1344 		}
1345 	}
1346 }
1347 
1348 /*
1349  * Suspend execution of tasks.
1350  *
1351  * Tasks in the queue part will be suspended immediately upon return from this
1352  * function. Pending tasks in the dynamic part will continue to execute, but all
1353  * new tasks will  be suspended.
1354  */
1355 void
1356 taskq_suspend(taskq_t *tq)
1357 {
1358 	rw_enter(&tq->tq_threadlock, RW_WRITER);
1359 
1360 	if (tq->tq_flags & TASKQ_DYNAMIC) {
1361 		taskq_bucket_t *b = tq->tq_buckets;
1362 		int bid = 0;
1363 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1364 			mutex_enter(&b->tqbucket_lock);
1365 			b->tqbucket_flags |= TQBUCKET_SUSPEND;
1366 			mutex_exit(&b->tqbucket_lock);
1367 		}
1368 	}
1369 	/*
1370 	 * Mark task queue as being suspended. Needed for taskq_suspended().
1371 	 */
1372 	mutex_enter(&tq->tq_lock);
1373 	ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED));
1374 	tq->tq_flags |= TASKQ_SUSPENDED;
1375 	mutex_exit(&tq->tq_lock);
1376 }
1377 
1378 /*
1379  * returns: 1 if tq is suspended, 0 otherwise.
1380  */
1381 int
1382 taskq_suspended(taskq_t *tq)
1383 {
1384 	return ((tq->tq_flags & TASKQ_SUSPENDED) != 0);
1385 }
1386 
1387 /*
1388  * Resume taskq execution.
1389  */
1390 void
1391 taskq_resume(taskq_t *tq)
1392 {
1393 	ASSERT(RW_WRITE_HELD(&tq->tq_threadlock));
1394 
1395 	if (tq->tq_flags & TASKQ_DYNAMIC) {
1396 		taskq_bucket_t *b = tq->tq_buckets;
1397 		int bid = 0;
1398 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1399 			mutex_enter(&b->tqbucket_lock);
1400 			b->tqbucket_flags &= ~TQBUCKET_SUSPEND;
1401 			mutex_exit(&b->tqbucket_lock);
1402 		}
1403 	}
1404 	mutex_enter(&tq->tq_lock);
1405 	ASSERT(tq->tq_flags & TASKQ_SUSPENDED);
1406 	tq->tq_flags &= ~TASKQ_SUSPENDED;
1407 	mutex_exit(&tq->tq_lock);
1408 
1409 	rw_exit(&tq->tq_threadlock);
1410 }
1411 
1412 int
1413 taskq_member(taskq_t *tq, kthread_t *thread)
1414 {
1415 	return (thread->t_taskq == tq);
1416 }
1417 
1418 /*
1419  * Creates a thread in the taskq.  We only allow one outstanding create at
1420  * a time.  We drop and reacquire the tq_lock in order to avoid blocking other
1421  * taskq activity while thread_create() or lwp_kernel_create() run.
1422  *
1423  * The first time we're called, we do some additional setup, and do not
1424  * return until there are enough threads to start servicing requests.
1425  */
1426 static void
1427 taskq_thread_create(taskq_t *tq)
1428 {
1429 	kthread_t	*t;
1430 	const boolean_t	first = (tq->tq_nthreads == 0);
1431 
1432 	ASSERT(MUTEX_HELD(&tq->tq_lock));
1433 	ASSERT(tq->tq_flags & TASKQ_CHANGING);
1434 	ASSERT(tq->tq_nthreads < tq->tq_nthreads_target);
1435 	ASSERT(!(tq->tq_flags & TASKQ_THREAD_CREATED));
1436 
1437 
1438 	tq->tq_flags |= TASKQ_THREAD_CREATED;
1439 	tq->tq_active++;
1440 	mutex_exit(&tq->tq_lock);
1441 
1442 	/*
1443 	 * With TASKQ_DUTY_CYCLE the new thread must have an LWP
1444 	 * as explained in ../disp/sysdc.c (for the msacct data).
1445 	 * Otherwise simple kthreads are preferred.
1446 	 */
1447 	if ((tq->tq_flags & TASKQ_DUTY_CYCLE) != 0) {
1448 		/* Enforced in taskq_create_common */
1449 		ASSERT3P(tq->tq_proc, !=, &p0);
1450 		t = lwp_kernel_create(tq->tq_proc, taskq_thread, tq, TS_RUN,
1451 		    tq->tq_pri);
1452 	} else {
1453 		t = thread_create(NULL, 0, taskq_thread, tq, 0, tq->tq_proc,
1454 		    TS_RUN, tq->tq_pri);
1455 	}
1456 
1457 	if (!first) {
1458 		mutex_enter(&tq->tq_lock);
1459 		return;
1460 	}
1461 
1462 	/*
1463 	 * We know the thread cannot go away, since tq cannot be
1464 	 * destroyed until creation has completed.  We can therefore
1465 	 * safely dereference t.
1466 	 */
1467 	if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
1468 		taskq_cpupct_install(tq, t->t_cpupart);
1469 	}
1470 	mutex_enter(&tq->tq_lock);
1471 
1472 	/* Wait until we can service requests. */
1473 	while (tq->tq_nthreads != tq->tq_nthreads_target &&
1474 	    tq->tq_nthreads < TASKQ_CREATE_ACTIVE_THREADS) {
1475 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1476 	}
1477 }
1478 
1479 /*
1480  * Common "sleep taskq thread" function, which handles CPR stuff, as well
1481  * as giving a nice common point for debuggers to find inactive threads.
1482  */
1483 static clock_t
1484 taskq_thread_wait(taskq_t *tq, kmutex_t *mx, kcondvar_t *cv,
1485     callb_cpr_t *cprinfo, clock_t timeout)
1486 {
1487 	clock_t ret = 0;
1488 
1489 	if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1490 		CALLB_CPR_SAFE_BEGIN(cprinfo);
1491 	}
1492 	if (timeout < 0)
1493 		cv_wait(cv, mx);
1494 	else
1495 		ret = cv_reltimedwait(cv, mx, timeout, TR_CLOCK_TICK);
1496 
1497 	if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1498 		CALLB_CPR_SAFE_END(cprinfo, mx);
1499 	}
1500 
1501 	return (ret);
1502 }
1503 
1504 /*
1505  * Worker thread for processing task queue.
1506  */
1507 static void
1508 taskq_thread(void *arg)
1509 {
1510 	int thread_id;
1511 
1512 	taskq_t *tq = arg;
1513 	taskq_ent_t *tqe;
1514 	callb_cpr_t cprinfo;
1515 	hrtime_t start, end;
1516 	boolean_t freeit;
1517 
1518 	curthread->t_taskq = tq;	/* mark ourselves for taskq_member() */
1519 
1520 	if (curproc != &p0 && (tq->tq_flags & TASKQ_DUTY_CYCLE)) {
1521 		sysdc_thread_enter(curthread, tq->tq_DC,
1522 		    (tq->tq_flags & TASKQ_DC_BATCH) ? SYSDC_THREAD_BATCH : 0);
1523 	}
1524 
1525 	if (tq->tq_flags & TASKQ_CPR_SAFE) {
1526 		CALLB_CPR_INIT_SAFE(curthread, tq->tq_name);
1527 	} else {
1528 		CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr,
1529 		    tq->tq_name);
1530 	}
1531 	mutex_enter(&tq->tq_lock);
1532 	thread_id = ++tq->tq_nthreads;
1533 	ASSERT(tq->tq_flags & TASKQ_THREAD_CREATED);
1534 	ASSERT(tq->tq_flags & TASKQ_CHANGING);
1535 	tq->tq_flags &= ~TASKQ_THREAD_CREATED;
1536 
1537 	VERIFY3S(thread_id, <=, tq->tq_nthreads_max);
1538 
1539 	if (tq->tq_nthreads_max == 1)
1540 		tq->tq_thread = curthread;
1541 	else
1542 		tq->tq_threadlist[thread_id - 1] = curthread;
1543 
1544 	/* Allow taskq_create_common()'s taskq_thread_create() to return. */
1545 	if (tq->tq_nthreads == TASKQ_CREATE_ACTIVE_THREADS)
1546 		cv_broadcast(&tq->tq_wait_cv);
1547 
1548 	for (;;) {
1549 		if (tq->tq_flags & TASKQ_CHANGING) {
1550 			/* See if we're no longer needed */
1551 			if (thread_id > tq->tq_nthreads_target) {
1552 				/*
1553 				 * To preserve the one-to-one mapping between
1554 				 * thread_id and thread, we must exit from
1555 				 * highest thread ID to least.
1556 				 *
1557 				 * However, if everyone is exiting, the order
1558 				 * doesn't matter, so just exit immediately.
1559 				 * (this is safe, since you must wait for
1560 				 * nthreads to reach 0 after setting
1561 				 * tq_nthreads_target to 0)
1562 				 */
1563 				if (thread_id == tq->tq_nthreads ||
1564 				    tq->tq_nthreads_target == 0)
1565 					break;
1566 
1567 				/* Wait for higher thread_ids to exit */
1568 				(void) taskq_thread_wait(tq, &tq->tq_lock,
1569 				    &tq->tq_exit_cv, &cprinfo, -1);
1570 				continue;
1571 			}
1572 
1573 			/*
1574 			 * If no thread is starting taskq_thread(), we can
1575 			 * do some bookkeeping.
1576 			 */
1577 			if (!(tq->tq_flags & TASKQ_THREAD_CREATED)) {
1578 				/* Check if we've reached our target */
1579 				if (tq->tq_nthreads == tq->tq_nthreads_target) {
1580 					tq->tq_flags &= ~TASKQ_CHANGING;
1581 					cv_broadcast(&tq->tq_wait_cv);
1582 				}
1583 				/* Check if we need to create a thread */
1584 				if (tq->tq_nthreads < tq->tq_nthreads_target) {
1585 					taskq_thread_create(tq);
1586 					continue; /* tq_lock was dropped */
1587 				}
1588 			}
1589 		}
1590 		if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) {
1591 			if (--tq->tq_active == 0)
1592 				cv_broadcast(&tq->tq_wait_cv);
1593 			(void) taskq_thread_wait(tq, &tq->tq_lock,
1594 			    &tq->tq_dispatch_cv, &cprinfo, -1);
1595 			tq->tq_active++;
1596 			continue;
1597 		}
1598 
1599 		tqe->tqent_prev->tqent_next = tqe->tqent_next;
1600 		tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1601 		mutex_exit(&tq->tq_lock);
1602 
1603 		/*
1604 		 * For prealloc'd tasks, we don't free anything.  We
1605 		 * have to check this now, because once we call the
1606 		 * function for a prealloc'd taskq, we can't touch the
1607 		 * tqent any longer (calling the function returns the
1608 		 * ownershp of the tqent back to caller of
1609 		 * taskq_dispatch.)
1610 		 */
1611 		if ((!(tq->tq_flags & TASKQ_DYNAMIC)) &&
1612 		    (tqe->tqent_un.tqent_flags & TQENT_FLAG_PREALLOC)) {
1613 			/* clear pointers to assist assertion checks */
1614 			tqe->tqent_next = tqe->tqent_prev = NULL;
1615 			freeit = B_FALSE;
1616 		} else {
1617 			freeit = B_TRUE;
1618 		}
1619 
1620 		rw_enter(&tq->tq_threadlock, RW_READER);
1621 		start = gethrtime();
1622 		DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq,
1623 		    taskq_ent_t *, tqe);
1624 		tqe->tqent_func(tqe->tqent_arg);
1625 		DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq,
1626 		    taskq_ent_t *, tqe);
1627 		end = gethrtime();
1628 		rw_exit(&tq->tq_threadlock);
1629 
1630 		mutex_enter(&tq->tq_lock);
1631 		tq->tq_totaltime += end - start;
1632 		tq->tq_executed++;
1633 
1634 		if (freeit)
1635 			taskq_ent_free(tq, tqe);
1636 	}
1637 
1638 	if (tq->tq_nthreads_max == 1)
1639 		tq->tq_thread = NULL;
1640 	else
1641 		tq->tq_threadlist[thread_id - 1] = NULL;
1642 
1643 	/* We're exiting, and therefore no longer active */
1644 	ASSERT(tq->tq_active > 0);
1645 	tq->tq_active--;
1646 
1647 	ASSERT(tq->tq_nthreads > 0);
1648 	tq->tq_nthreads--;
1649 
1650 	/* Wake up anyone waiting for us to exit */
1651 	cv_broadcast(&tq->tq_exit_cv);
1652 	if (tq->tq_nthreads == tq->tq_nthreads_target) {
1653 		if (!(tq->tq_flags & TASKQ_THREAD_CREATED))
1654 			tq->tq_flags &= ~TASKQ_CHANGING;
1655 
1656 		cv_broadcast(&tq->tq_wait_cv);
1657 	}
1658 
1659 	ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE));
1660 	CALLB_CPR_EXIT(&cprinfo);		/* drops tq->tq_lock */
1661 	if (curthread->t_lwp != NULL) {
1662 		mutex_enter(&curproc->p_lock);
1663 		lwp_exit();
1664 	} else {
1665 		thread_exit();
1666 	}
1667 }
1668 
1669 /*
1670  * Worker per-entry thread for dynamic dispatches.
1671  */
1672 static void
1673 taskq_d_thread(taskq_ent_t *tqe)
1674 {
1675 	taskq_bucket_t	*bucket = tqe->tqent_un.tqent_bucket;
1676 	taskq_t		*tq = bucket->tqbucket_taskq;
1677 	kmutex_t	*lock = &bucket->tqbucket_lock;
1678 	kcondvar_t	*cv = &tqe->tqent_cv;
1679 	callb_cpr_t	cprinfo;
1680 	clock_t		w;
1681 
1682 	CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, tq->tq_name);
1683 
1684 	mutex_enter(lock);
1685 
1686 	for (;;) {
1687 		/*
1688 		 * If a task is scheduled (func != NULL), execute it, otherwise
1689 		 * sleep, waiting for a job.
1690 		 */
1691 		if (tqe->tqent_func != NULL) {
1692 			hrtime_t	start;
1693 			hrtime_t	end;
1694 
1695 			ASSERT(bucket->tqbucket_nalloc > 0);
1696 
1697 			/*
1698 			 * It is possible to free the entry right away before
1699 			 * actually executing the task so that subsequent
1700 			 * dispatches may immediately reuse it. But this,
1701 			 * effectively, creates a two-length queue in the entry
1702 			 * and may lead to a deadlock if the execution of the
1703 			 * current task depends on the execution of the next
1704 			 * scheduled task. So, we keep the entry busy until the
1705 			 * task is processed.
1706 			 */
1707 
1708 			mutex_exit(lock);
1709 			start = gethrtime();
1710 			DTRACE_PROBE3(taskq__d__exec__start, taskq_t *, tq,
1711 			    taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1712 			tqe->tqent_func(tqe->tqent_arg);
1713 			DTRACE_PROBE3(taskq__d__exec__end, taskq_t *, tq,
1714 			    taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1715 			end = gethrtime();
1716 			mutex_enter(lock);
1717 			bucket->tqbucket_totaltime += end - start;
1718 
1719 			/*
1720 			 * Return the entry to the bucket free list.
1721 			 */
1722 			tqe->tqent_func = NULL;
1723 			TQ_APPEND(bucket->tqbucket_freelist, tqe);
1724 			bucket->tqbucket_nalloc--;
1725 			bucket->tqbucket_nfree++;
1726 			ASSERT(!IS_EMPTY(bucket->tqbucket_freelist));
1727 			/*
1728 			 * taskq_wait() waits for nalloc to drop to zero on
1729 			 * tqbucket_cv.
1730 			 */
1731 			cv_signal(&bucket->tqbucket_cv);
1732 		}
1733 
1734 		/*
1735 		 * At this point the entry must be in the bucket free list -
1736 		 * either because it was there initially or because it just
1737 		 * finished executing a task and put itself on the free list.
1738 		 */
1739 		ASSERT(bucket->tqbucket_nfree > 0);
1740 		/*
1741 		 * Go to sleep unless we are closing.
1742 		 * If a thread is sleeping too long, it dies.
1743 		 */
1744 		if (! (bucket->tqbucket_flags & TQBUCKET_CLOSE)) {
1745 			w = taskq_thread_wait(tq, lock, cv,
1746 			    &cprinfo, taskq_thread_timeout * hz);
1747 		}
1748 
1749 		/*
1750 		 * At this point we may be in two different states:
1751 		 *
1752 		 * (1) tqent_func is set which means that a new task is
1753 		 *	dispatched and we need to execute it.
1754 		 *
1755 		 * (2) Thread is sleeping for too long or we are closing. In
1756 		 *	both cases destroy the thread and the entry.
1757 		 */
1758 
1759 		/* If func is NULL we should be on the freelist. */
1760 		ASSERT((tqe->tqent_func != NULL) ||
1761 		    (bucket->tqbucket_nfree > 0));
1762 		/* If func is non-NULL we should be allocated */
1763 		ASSERT((tqe->tqent_func == NULL) ||
1764 		    (bucket->tqbucket_nalloc > 0));
1765 
1766 		/* Check freelist consistency */
1767 		ASSERT((bucket->tqbucket_nfree > 0) ||
1768 		    IS_EMPTY(bucket->tqbucket_freelist));
1769 		ASSERT((bucket->tqbucket_nfree == 0) ||
1770 		    !IS_EMPTY(bucket->tqbucket_freelist));
1771 
1772 		if ((tqe->tqent_func == NULL) &&
1773 		    ((w == -1) || (bucket->tqbucket_flags & TQBUCKET_CLOSE))) {
1774 			/*
1775 			 * This thread is sleeping for too long or we are
1776 			 * closing - time to die.
1777 			 * Thread creation/destruction happens rarely,
1778 			 * so grabbing the lock is not a big performance issue.
1779 			 * The bucket lock is dropped by CALLB_CPR_EXIT().
1780 			 */
1781 
1782 			/* Remove the entry from the free list. */
1783 			tqe->tqent_prev->tqent_next = tqe->tqent_next;
1784 			tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1785 			ASSERT(bucket->tqbucket_nfree > 0);
1786 			bucket->tqbucket_nfree--;
1787 
1788 			TQ_STAT(bucket, tqs_tdeaths);
1789 			cv_signal(&bucket->tqbucket_cv);
1790 			tqe->tqent_thread = NULL;
1791 			mutex_enter(&tq->tq_lock);
1792 			tq->tq_tdeaths++;
1793 			mutex_exit(&tq->tq_lock);
1794 			CALLB_CPR_EXIT(&cprinfo);
1795 			kmem_cache_free(taskq_ent_cache, tqe);
1796 			thread_exit();
1797 		}
1798 	}
1799 }
1800 
1801 
1802 /*
1803  * Taskq creation. May sleep for memory.
1804  * Always use automatically generated instances to avoid kstat name space
1805  * collisions.
1806  */
1807 
1808 taskq_t *
1809 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
1810     int maxalloc, uint_t flags)
1811 {
1812 	ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1813 
1814 	return (taskq_create_common(name, 0, nthreads, pri, minalloc,
1815 	    maxalloc, &p0, 0, flags | TASKQ_NOINSTANCE));
1816 }
1817 
1818 /*
1819  * Create an instance of task queue. It is legal to create task queues with the
1820  * same name and different instances.
1821  *
1822  * taskq_create_instance is used by ddi_taskq_create() where it gets the
1823  * instance from ddi_get_instance(). In some cases the instance is not
1824  * initialized and is set to -1. This case is handled as if no instance was
1825  * passed at all.
1826  */
1827 taskq_t *
1828 taskq_create_instance(const char *name, int instance, int nthreads, pri_t pri,
1829     int minalloc, int maxalloc, uint_t flags)
1830 {
1831 	ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1832 	ASSERT((instance >= 0) || (instance == -1));
1833 
1834 	if (instance < 0) {
1835 		flags |= TASKQ_NOINSTANCE;
1836 	}
1837 
1838 	return (taskq_create_common(name, instance, nthreads,
1839 	    pri, minalloc, maxalloc, &p0, 0, flags));
1840 }
1841 
1842 taskq_t *
1843 taskq_create_proc(const char *name, int nthreads, pri_t pri, int minalloc,
1844     int maxalloc, proc_t *proc, uint_t flags)
1845 {
1846 	ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1847 	ASSERT(proc->p_flag & SSYS);
1848 
1849 	return (taskq_create_common(name, 0, nthreads, pri, minalloc,
1850 	    maxalloc, proc, 0, flags | TASKQ_NOINSTANCE));
1851 }
1852 
1853 taskq_t *
1854 taskq_create_sysdc(const char *name, int nthreads, int minalloc,
1855     int maxalloc, proc_t *proc, uint_t dc, uint_t flags)
1856 {
1857 	ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1858 	ASSERT(proc->p_flag & SSYS);
1859 
1860 	return (taskq_create_common(name, 0, nthreads, minclsyspri, minalloc,
1861 	    maxalloc, proc, dc, flags | TASKQ_NOINSTANCE | TASKQ_DUTY_CYCLE));
1862 }
1863 
1864 static taskq_t *
1865 taskq_create_common(const char *name, int instance, int nthreads, pri_t pri,
1866     int minalloc, int maxalloc, proc_t *proc, uint_t dc, uint_t flags)
1867 {
1868 	taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP);
1869 	uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
1870 	uint_t bsize;	/* # of buckets - always power of 2 */
1871 	int max_nthreads;
1872 
1873 	/*
1874 	 * TASKQ_DYNAMIC, TASKQ_CPR_SAFE and TASKQ_THREADS_CPU_PCT are all
1875 	 * mutually incompatible.
1876 	 */
1877 	IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_CPR_SAFE));
1878 	IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_THREADS_CPU_PCT));
1879 	IMPLY((flags & TASKQ_CPR_SAFE), !(flags & TASKQ_THREADS_CPU_PCT));
1880 
1881 	/* Cannot have DYNAMIC with DUTY_CYCLE */
1882 	IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_DUTY_CYCLE));
1883 
1884 	/* Cannot have DUTY_CYCLE with a p0 kernel process */
1885 	IMPLY((flags & TASKQ_DUTY_CYCLE), proc != &p0);
1886 
1887 	/* Cannot have DC_BATCH without DUTY_CYCLE */
1888 	ASSERT((flags & (TASKQ_DUTY_CYCLE|TASKQ_DC_BATCH)) != TASKQ_DC_BATCH);
1889 
1890 	ASSERT(proc != NULL);
1891 
1892 	bsize = 1 << (highbit(ncpus) - 1);
1893 	ASSERT(bsize >= 1);
1894 	bsize = MIN(bsize, taskq_maxbuckets);
1895 
1896 	if (flags & TASKQ_DYNAMIC) {
1897 		ASSERT3S(nthreads, >=, 1);
1898 		tq->tq_maxsize = nthreads;
1899 
1900 		/* For dynamic task queues use just one backup thread */
1901 		nthreads = max_nthreads = 1;
1902 
1903 	} else if (flags & TASKQ_THREADS_CPU_PCT) {
1904 		uint_t pct;
1905 		ASSERT3S(nthreads, >=, 0);
1906 		pct = nthreads;
1907 
1908 		if (pct > taskq_cpupct_max_percent)
1909 			pct = taskq_cpupct_max_percent;
1910 
1911 		/*
1912 		 * If you're using THREADS_CPU_PCT, the process for the
1913 		 * taskq threads must be curproc.  This allows any pset
1914 		 * binding to be inherited correctly.  If proc is &p0,
1915 		 * we won't be creating LWPs, so new threads will be assigned
1916 		 * to the default processor set.
1917 		 */
1918 		ASSERT(curproc == proc || proc == &p0);
1919 		tq->tq_threads_ncpus_pct = pct;
1920 		nthreads = 1;		/* corrected in taskq_thread_create() */
1921 		max_nthreads = TASKQ_THREADS_PCT(max_ncpus, pct);
1922 
1923 	} else {
1924 		ASSERT3S(nthreads, >=, 1);
1925 		max_nthreads = nthreads;
1926 	}
1927 
1928 	if (max_nthreads < taskq_minimum_nthreads_max)
1929 		max_nthreads = taskq_minimum_nthreads_max;
1930 
1931 	/*
1932 	 * Make sure the name is 0-terminated, and conforms to the rules for
1933 	 * C indentifiers
1934 	 */
1935 	(void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
1936 	strident_canon(tq->tq_name, TASKQ_NAMELEN + 1);
1937 
1938 	tq->tq_flags = flags | TASKQ_CHANGING;
1939 	tq->tq_active = 0;
1940 	tq->tq_instance = instance;
1941 	tq->tq_nthreads_target = nthreads;
1942 	tq->tq_nthreads_max = max_nthreads;
1943 	tq->tq_minalloc = minalloc;
1944 	tq->tq_maxalloc = maxalloc;
1945 	tq->tq_nbuckets = bsize;
1946 	tq->tq_proc = proc;
1947 	tq->tq_pri = pri;
1948 	tq->tq_DC = dc;
1949 	list_link_init(&tq->tq_cpupct_link);
1950 
1951 	if (max_nthreads > 1)
1952 		tq->tq_threadlist = kmem_alloc(
1953 		    sizeof (kthread_t *) * max_nthreads, KM_SLEEP);
1954 
1955 	mutex_enter(&tq->tq_lock);
1956 	if (flags & TASKQ_PREPOPULATE) {
1957 		while (minalloc-- > 0)
1958 			taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
1959 	}
1960 
1961 	/*
1962 	 * Before we start creating threads for this taskq, take a
1963 	 * zone hold so the zone can't go away before taskq_destroy
1964 	 * makes sure all the taskq threads are gone.  This hold is
1965 	 * similar in purpose to those taken by zthread_create().
1966 	 */
1967 	zone_hold(tq->tq_proc->p_zone);
1968 
1969 	/*
1970 	 * Create the first thread, which will create any other threads
1971 	 * necessary.  taskq_thread_create will not return until we have
1972 	 * enough threads to be able to process requests.
1973 	 */
1974 	taskq_thread_create(tq);
1975 	mutex_exit(&tq->tq_lock);
1976 
1977 	if (flags & TASKQ_DYNAMIC) {
1978 		taskq_bucket_t *bucket = kmem_zalloc(sizeof (taskq_bucket_t) *
1979 		    bsize, KM_SLEEP);
1980 		int b_id;
1981 
1982 		tq->tq_buckets = bucket;
1983 
1984 		/* Initialize each bucket */
1985 		for (b_id = 0; b_id < bsize; b_id++, bucket++) {
1986 			mutex_init(&bucket->tqbucket_lock, NULL, MUTEX_DEFAULT,
1987 			    NULL);
1988 			cv_init(&bucket->tqbucket_cv, NULL, CV_DEFAULT, NULL);
1989 			bucket->tqbucket_taskq = tq;
1990 			bucket->tqbucket_freelist.tqent_next =
1991 			    bucket->tqbucket_freelist.tqent_prev =
1992 			    &bucket->tqbucket_freelist;
1993 			if (flags & TASKQ_PREPOPULATE)
1994 				taskq_bucket_extend(bucket);
1995 		}
1996 	}
1997 
1998 	/*
1999 	 * Install kstats.
2000 	 * We have two cases:
2001 	 *   1) Instance is provided to taskq_create_instance(). In this case it
2002 	 *	should be >= 0 and we use it.
2003 	 *
2004 	 *   2) Instance is not provided and is automatically generated
2005 	 */
2006 	if (flags & TASKQ_NOINSTANCE) {
2007 		instance = tq->tq_instance =
2008 		    (int)(uintptr_t)vmem_alloc(taskq_id_arena, 1, VM_SLEEP);
2009 	}
2010 
2011 	if (flags & TASKQ_DYNAMIC) {
2012 		if ((tq->tq_kstat = kstat_create("unix", instance,
2013 		    tq->tq_name, "taskq_d", KSTAT_TYPE_NAMED,
2014 		    sizeof (taskq_d_kstat) / sizeof (kstat_named_t),
2015 		    KSTAT_FLAG_VIRTUAL)) != NULL) {
2016 			tq->tq_kstat->ks_lock = &taskq_d_kstat_lock;
2017 			tq->tq_kstat->ks_data = &taskq_d_kstat;
2018 			tq->tq_kstat->ks_update = taskq_d_kstat_update;
2019 			tq->tq_kstat->ks_private = tq;
2020 			kstat_install(tq->tq_kstat);
2021 		}
2022 	} else {
2023 		if ((tq->tq_kstat = kstat_create("unix", instance, tq->tq_name,
2024 		    "taskq", KSTAT_TYPE_NAMED,
2025 		    sizeof (taskq_kstat) / sizeof (kstat_named_t),
2026 		    KSTAT_FLAG_VIRTUAL)) != NULL) {
2027 			tq->tq_kstat->ks_lock = &taskq_kstat_lock;
2028 			tq->tq_kstat->ks_data = &taskq_kstat;
2029 			tq->tq_kstat->ks_update = taskq_kstat_update;
2030 			tq->tq_kstat->ks_private = tq;
2031 			kstat_install(tq->tq_kstat);
2032 		}
2033 	}
2034 
2035 	return (tq);
2036 }
2037 
2038 /*
2039  * taskq_destroy().
2040  *
2041  * Assumes: by the time taskq_destroy is called no one will use this task queue
2042  * in any way and no one will try to dispatch entries in it.
2043  */
2044 void
2045 taskq_destroy(taskq_t *tq)
2046 {
2047 	taskq_bucket_t *b = tq->tq_buckets;
2048 	int bid = 0;
2049 
2050 	ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE));
2051 
2052 	/*
2053 	 * Destroy kstats.
2054 	 */
2055 	if (tq->tq_kstat != NULL) {
2056 		kstat_delete(tq->tq_kstat);
2057 		tq->tq_kstat = NULL;
2058 	}
2059 
2060 	/*
2061 	 * Destroy instance if needed.
2062 	 */
2063 	if (tq->tq_flags & TASKQ_NOINSTANCE) {
2064 		vmem_free(taskq_id_arena, (void *)(uintptr_t)(tq->tq_instance),
2065 		    1);
2066 		tq->tq_instance = 0;
2067 	}
2068 
2069 	/*
2070 	 * Unregister from the cpupct list.
2071 	 */
2072 	if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
2073 		taskq_cpupct_remove(tq);
2074 	}
2075 
2076 	/*
2077 	 * Wait for any pending entries to complete.
2078 	 */
2079 	taskq_wait(tq);
2080 
2081 	mutex_enter(&tq->tq_lock);
2082 	ASSERT((tq->tq_task.tqent_next == &tq->tq_task) &&
2083 	    (tq->tq_active == 0));
2084 
2085 	/* notify all the threads that they need to exit */
2086 	tq->tq_nthreads_target = 0;
2087 
2088 	tq->tq_flags |= TASKQ_CHANGING;
2089 	cv_broadcast(&tq->tq_dispatch_cv);
2090 	cv_broadcast(&tq->tq_exit_cv);
2091 
2092 	while (tq->tq_nthreads != 0)
2093 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
2094 
2095 	if (tq->tq_nthreads_max != 1)
2096 		kmem_free(tq->tq_threadlist, sizeof (kthread_t *) *
2097 		    tq->tq_nthreads_max);
2098 
2099 	tq->tq_minalloc = 0;
2100 	while (tq->tq_nalloc != 0)
2101 		taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
2102 
2103 	mutex_exit(&tq->tq_lock);
2104 
2105 	/*
2106 	 * Mark each bucket as closing and wakeup all sleeping threads.
2107 	 */
2108 	for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
2109 		taskq_ent_t *tqe;
2110 
2111 		mutex_enter(&b->tqbucket_lock);
2112 
2113 		b->tqbucket_flags |= TQBUCKET_CLOSE;
2114 		/* Wakeup all sleeping threads */
2115 
2116 		for (tqe = b->tqbucket_freelist.tqent_next;
2117 		    tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next)
2118 			cv_signal(&tqe->tqent_cv);
2119 
2120 		ASSERT(b->tqbucket_nalloc == 0);
2121 
2122 		/*
2123 		 * At this point we waited for all pending jobs to complete (in
2124 		 * both the task queue and the bucket and no new jobs should
2125 		 * arrive. Wait for all threads to die.
2126 		 */
2127 		while (b->tqbucket_nfree > 0)
2128 			cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
2129 		mutex_exit(&b->tqbucket_lock);
2130 		mutex_destroy(&b->tqbucket_lock);
2131 		cv_destroy(&b->tqbucket_cv);
2132 	}
2133 
2134 	if (tq->tq_buckets != NULL) {
2135 		ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
2136 		kmem_free(tq->tq_buckets,
2137 		    sizeof (taskq_bucket_t) * tq->tq_nbuckets);
2138 
2139 		/* Cleanup fields before returning tq to the cache */
2140 		tq->tq_buckets = NULL;
2141 		tq->tq_tcreates = 0;
2142 		tq->tq_tdeaths = 0;
2143 	} else {
2144 		ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
2145 	}
2146 
2147 	/*
2148 	 * Now that all the taskq threads are gone, we can
2149 	 * drop the zone hold taken in taskq_create_common
2150 	 */
2151 	zone_rele(tq->tq_proc->p_zone);
2152 
2153 	tq->tq_threads_ncpus_pct = 0;
2154 	tq->tq_totaltime = 0;
2155 	tq->tq_tasks = 0;
2156 	tq->tq_maxtasks = 0;
2157 	tq->tq_executed = 0;
2158 	kmem_cache_free(taskq_cache, tq);
2159 }
2160 
2161 /*
2162  * Extend a bucket with a new entry on the free list and attach a worker thread
2163  * to it.
2164  *
2165  * Argument: pointer to the bucket.
2166  *
2167  * This function may quietly fail. It is only used by taskq_dispatch() which
2168  * handles such failures properly.
2169  */
2170 static void
2171 taskq_bucket_extend(void *arg)
2172 {
2173 	taskq_ent_t *tqe;
2174 	taskq_bucket_t *b = (taskq_bucket_t *)arg;
2175 	taskq_t *tq = b->tqbucket_taskq;
2176 	int nthreads;
2177 
2178 	mutex_enter(&tq->tq_lock);
2179 
2180 	if (! ENOUGH_MEMORY()) {
2181 		tq->tq_nomem++;
2182 		mutex_exit(&tq->tq_lock);
2183 		return;
2184 	}
2185 
2186 	/*
2187 	 * Observe global taskq limits on the number of threads.
2188 	 */
2189 	if (tq->tq_tcreates++ - tq->tq_tdeaths > tq->tq_maxsize) {
2190 		tq->tq_tcreates--;
2191 		mutex_exit(&tq->tq_lock);
2192 		return;
2193 	}
2194 	mutex_exit(&tq->tq_lock);
2195 
2196 	tqe = kmem_cache_alloc(taskq_ent_cache, KM_NOSLEEP);
2197 
2198 	if (tqe == NULL) {
2199 		mutex_enter(&tq->tq_lock);
2200 		tq->tq_nomem++;
2201 		tq->tq_tcreates--;
2202 		mutex_exit(&tq->tq_lock);
2203 		return;
2204 	}
2205 
2206 	ASSERT(tqe->tqent_thread == NULL);
2207 
2208 	tqe->tqent_un.tqent_bucket = b;
2209 
2210 	/*
2211 	 * Create a thread in a TS_STOPPED state first. If it is successfully
2212 	 * created, place the entry on the free list and start the thread.
2213 	 */
2214 	tqe->tqent_thread = thread_create(NULL, 0, taskq_d_thread, tqe,
2215 	    0, tq->tq_proc, TS_STOPPED, tq->tq_pri);
2216 
2217 	/*
2218 	 * Once the entry is ready, link it to the the bucket free list.
2219 	 */
2220 	mutex_enter(&b->tqbucket_lock);
2221 	tqe->tqent_func = NULL;
2222 	TQ_APPEND(b->tqbucket_freelist, tqe);
2223 	b->tqbucket_nfree++;
2224 	TQ_STAT(b, tqs_tcreates);
2225 
2226 #if TASKQ_STATISTIC
2227 	nthreads = b->tqbucket_stat.tqs_tcreates -
2228 	    b->tqbucket_stat.tqs_tdeaths;
2229 	b->tqbucket_stat.tqs_maxthreads = MAX(nthreads,
2230 	    b->tqbucket_stat.tqs_maxthreads);
2231 #endif
2232 
2233 	mutex_exit(&b->tqbucket_lock);
2234 	/*
2235 	 * Start the stopped thread.
2236 	 */
2237 	thread_lock(tqe->tqent_thread);
2238 	tqe->tqent_thread->t_taskq = tq;
2239 	tqe->tqent_thread->t_schedflag |= TS_ALLSTART;
2240 	setrun_locked(tqe->tqent_thread);
2241 	thread_unlock(tqe->tqent_thread);
2242 }
2243 
2244 static int
2245 taskq_kstat_update(kstat_t *ksp, int rw)
2246 {
2247 	struct taskq_kstat *tqsp = &taskq_kstat;
2248 	taskq_t *tq = ksp->ks_private;
2249 
2250 	if (rw == KSTAT_WRITE)
2251 		return (EACCES);
2252 
2253 	tqsp->tq_pid.value.ui64 = tq->tq_proc->p_pid;
2254 	tqsp->tq_tasks.value.ui64 = tq->tq_tasks;
2255 	tqsp->tq_executed.value.ui64 = tq->tq_executed;
2256 	tqsp->tq_maxtasks.value.ui64 = tq->tq_maxtasks;
2257 	tqsp->tq_totaltime.value.ui64 = tq->tq_totaltime;
2258 	tqsp->tq_nactive.value.ui64 = tq->tq_active;
2259 	tqsp->tq_nalloc.value.ui64 = tq->tq_nalloc;
2260 	tqsp->tq_pri.value.ui64 = tq->tq_pri;
2261 	tqsp->tq_nthreads.value.ui64 = tq->tq_nthreads;
2262 	tqsp->tq_nomem.value.ui64 = tq->tq_nomem;
2263 	return (0);
2264 }
2265 
2266 static int
2267 taskq_d_kstat_update(kstat_t *ksp, int rw)
2268 {
2269 	struct taskq_d_kstat *tqsp = &taskq_d_kstat;
2270 	taskq_t *tq = ksp->ks_private;
2271 	taskq_bucket_t *b = tq->tq_buckets;
2272 	int bid = 0;
2273 
2274 	if (rw == KSTAT_WRITE)
2275 		return (EACCES);
2276 
2277 	ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
2278 
2279 	tqsp->tqd_btasks.value.ui64 = tq->tq_tasks;
2280 	tqsp->tqd_bexecuted.value.ui64 = tq->tq_executed;
2281 	tqsp->tqd_bmaxtasks.value.ui64 = tq->tq_maxtasks;
2282 	tqsp->tqd_bnalloc.value.ui64 = tq->tq_nalloc;
2283 	tqsp->tqd_bnactive.value.ui64 = tq->tq_active;
2284 	tqsp->tqd_btotaltime.value.ui64 = tq->tq_totaltime;
2285 	tqsp->tqd_pri.value.ui64 = tq->tq_pri;
2286 	tqsp->tqd_nomem.value.ui64 = tq->tq_nomem;
2287 
2288 	tqsp->tqd_hits.value.ui64 = 0;
2289 	tqsp->tqd_misses.value.ui64 = 0;
2290 	tqsp->tqd_overflows.value.ui64 = 0;
2291 	tqsp->tqd_tcreates.value.ui64 = 0;
2292 	tqsp->tqd_tdeaths.value.ui64 = 0;
2293 	tqsp->tqd_maxthreads.value.ui64 = 0;
2294 	tqsp->tqd_nomem.value.ui64 = 0;
2295 	tqsp->tqd_disptcreates.value.ui64 = 0;
2296 	tqsp->tqd_totaltime.value.ui64 = 0;
2297 	tqsp->tqd_nalloc.value.ui64 = 0;
2298 	tqsp->tqd_nfree.value.ui64 = 0;
2299 
2300 	for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
2301 		tqsp->tqd_hits.value.ui64 += b->tqbucket_stat.tqs_hits;
2302 		tqsp->tqd_misses.value.ui64 += b->tqbucket_stat.tqs_misses;
2303 		tqsp->tqd_overflows.value.ui64 += b->tqbucket_stat.tqs_overflow;
2304 		tqsp->tqd_tcreates.value.ui64 += b->tqbucket_stat.tqs_tcreates;
2305 		tqsp->tqd_tdeaths.value.ui64 += b->tqbucket_stat.tqs_tdeaths;
2306 		tqsp->tqd_maxthreads.value.ui64 +=
2307 		    b->tqbucket_stat.tqs_maxthreads;
2308 		tqsp->tqd_disptcreates.value.ui64 +=
2309 		    b->tqbucket_stat.tqs_disptcreates;
2310 		tqsp->tqd_totaltime.value.ui64 += b->tqbucket_totaltime;
2311 		tqsp->tqd_nalloc.value.ui64 += b->tqbucket_nalloc;
2312 		tqsp->tqd_nfree.value.ui64 += b->tqbucket_nfree;
2313 	}
2314 	return (0);
2315 }
2316