xref: /illumos-gate/usr/src/uts/common/os/taskq.c (revision 2e837a72011f54762249b6612c2a64f171efcd43)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
28  * Copyright (c) 2017 by Delphix. All rights reserved.
29  * Copyright 2018, Joyent, Inc.
30  */
31 
32 /*
33  * Kernel task queues: general-purpose asynchronous task scheduling.
34  *
35  * A common problem in kernel programming is the need to schedule tasks
36  * to be performed later, by another thread. There are several reasons
37  * you may want or need to do this:
38  *
39  * (1) The task isn't time-critical, but your current code path is.
40  *
41  * (2) The task may require grabbing locks that you already hold.
42  *
43  * (3) The task may need to block (e.g. to wait for memory), but you
44  *     cannot block in your current context.
45  *
46  * (4) Your code path can't complete because of some condition, but you can't
47  *     sleep or fail, so you queue the task for later execution when condition
48  *     disappears.
49  *
50  * (5) You just want a simple way to launch multiple tasks in parallel.
51  *
52  * Task queues provide such a facility. In its simplest form (used when
53  * performance is not a critical consideration) a task queue consists of a
54  * single list of tasks, together with one or more threads to service the
55  * list. There are some cases when this simple queue is not sufficient:
56  *
57  * (1) The task queues are very hot and there is a need to avoid data and lock
58  *	contention over global resources.
59  *
60  * (2) Some tasks may depend on other tasks to complete, so they can't be put in
61  *	the same list managed by the same thread.
62  *
63  * (3) Some tasks may block for a long time, and this should not block other
64  *	tasks in the queue.
65  *
66  * To provide useful service in such cases we define a "dynamic task queue"
67  * which has an individual thread for each of the tasks. These threads are
68  * dynamically created as they are needed and destroyed when they are not in
69  * use. The API for managing task pools is the same as for managing task queues
70  * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
71  * dynamic task pool behavior is desired.
72  *
73  * Dynamic task queues may also place tasks in the normal queue (called "backing
74  * queue") when task pool runs out of resources. Users of task queues may
75  * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
76  * flags.
77  *
78  * The backing task queue is also used for scheduling internal tasks needed for
79  * dynamic task queue maintenance.
80  *
81  * INTERFACES ==================================================================
82  *
83  * taskq_t *taskq_create(name, nthreads, pri, minalloc, maxalloc, flags);
84  *
85  *	Create a taskq with specified properties.
86  *	Possible 'flags':
87  *
88  *	  TASKQ_DYNAMIC: Create task pool for task management. If this flag is
89  *		specified, 'nthreads' specifies the maximum number of threads in
90  *		the task queue. Task execution order for dynamic task queues is
91  *		not predictable.
92  *
93  *		If this flag is not specified (default case) a
94  *		single-list task queue is created with 'nthreads' threads
95  *		servicing it. Entries in this queue are managed by
96  *		taskq_ent_alloc() and taskq_ent_free() which try to keep the
97  *		task population between 'minalloc' and 'maxalloc', but the
98  *		latter limit is only advisory for TQ_SLEEP dispatches and the
99  *		former limit is only advisory for TQ_NOALLOC dispatches. If
100  *		TASKQ_PREPOPULATE is set in 'flags', the taskq will be
101  *		prepopulated with 'minalloc' task structures.
102  *
103  *		Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
104  *		executed in the order they are scheduled if nthreads == 1.
105  *		If nthreads > 1, task execution order is not predictable.
106  *
107  *	  TASKQ_PREPOPULATE: Prepopulate task queue with threads.
108  *		Also prepopulate the task queue with 'minalloc' task structures.
109  *
110  *	  TASKQ_THREADS_CPU_PCT: This flag specifies that 'nthreads' should be
111  *		interpreted as a percentage of the # of online CPUs on the
112  *		system.  The taskq subsystem will automatically adjust the
113  *		number of threads in the taskq in response to CPU online
114  *		and offline events, to keep the ratio.  nthreads must be in
115  *		the range [0,100].
116  *
117  *		The calculation used is:
118  *
119  *			MAX((ncpus_online * percentage)/100, 1)
120  *
121  *		This flag is not supported for DYNAMIC task queues.
122  *		This flag is not compatible with TASKQ_CPR_SAFE.
123  *
124  *	  TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
125  *		use their own protocol for handling CPR issues. This flag is not
126  *		supported for DYNAMIC task queues.  This flag is not compatible
127  *		with TASKQ_THREADS_CPU_PCT.
128  *
129  *	The 'pri' field specifies the default priority for the threads that
130  *	service all scheduled tasks.
131  *
132  * taskq_t *taskq_create_instance(name, instance, nthreads, pri, minalloc,
133  *    maxalloc, flags);
134  *
135  *	Like taskq_create(), but takes an instance number (or -1 to indicate
136  *	no instance).
137  *
138  * taskq_t *taskq_create_proc(name, nthreads, pri, minalloc, maxalloc, proc,
139  *    flags);
140  *
141  *	Like taskq_create(), but creates the taskq threads in the specified
142  *	system process.  If proc != &p0, this must be called from a thread
143  *	in that process.
144  *
145  * taskq_t *taskq_create_sysdc(name, nthreads, minalloc, maxalloc, proc,
146  *    dc, flags);
147  *
148  *	Like taskq_create_proc(), but the taskq threads will use the
149  *	System Duty Cycle (SDC) scheduling class with a duty cycle of dc.
150  *
151  * void taskq_destroy(tap):
152  *
153  *	Waits for any scheduled tasks to complete, then destroys the taskq.
154  *	Caller should guarantee that no new tasks are scheduled in the closing
155  *	taskq.
156  *
157  * taskqid_t taskq_dispatch(tq, func, arg, flags):
158  *
159  *	Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
160  *	the caller is willing to block for memory.  The function returns an
161  *	opaque value which is zero iff dispatch fails.  If flags is TQ_NOSLEEP
162  *	or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
163  *	and returns TASKQID_INVALID.
164  *
165  *	ASSUMES: func != NULL.
166  *
167  *	Possible flags:
168  *	  TQ_NOSLEEP: Do not wait for resources; may fail.
169  *
170  *	  TQ_NOALLOC: Do not allocate memory; may fail.  May only be used with
171  *		non-dynamic task queues.
172  *
173  *	  TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
174  *		lack of available resources and fail. If this flag is not
175  *		set, and the task pool is exhausted, the task may be scheduled
176  *		in the backing queue. This flag may ONLY be used with dynamic
177  *		task queues.
178  *
179  *		NOTE: This flag should always be used when a task queue is used
180  *		for tasks that may depend on each other for completion.
181  *		Enqueueing dependent tasks may create deadlocks.
182  *
183  *	  TQ_SLEEP:   May block waiting for resources. May still fail for
184  *		dynamic task queues if TQ_NOQUEUE is also specified, otherwise
185  *		always succeed.
186  *
187  *	  TQ_FRONT:   Puts the new task at the front of the queue.  Be careful.
188  *
189  *	NOTE: Dynamic task queues are much more likely to fail in
190  *		taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
191  *		is important to have backup strategies handling such failures.
192  *
193  * void taskq_dispatch_ent(tq, func, arg, flags, tqent)
194  *
195  *	This is a light-weight form of taskq_dispatch(), that uses a
196  *	preallocated taskq_ent_t structure for scheduling.  As a
197  *	result, it does not perform allocations and cannot ever fail.
198  *	Note especially that it cannot be used with TASKQ_DYNAMIC
199  *	taskqs.  The memory for the tqent must not be modified or used
200  *	until the function (func) is called.  (However, func itself
201  *	may safely modify or free this memory, once it is called.)
202  *	Note that the taskq framework will NOT free this memory.
203  *
204  * boolean_t taskq_empty(tq)
205  *
206  *	Queries if there are tasks pending on the queue.
207  *
208  * void taskq_wait(tq):
209  *
210  *	Waits for all previously scheduled tasks to complete.
211  *
212  *	NOTE: It does not stop any new task dispatches.
213  *	      Do NOT call taskq_wait() from a task: it will cause deadlock.
214  *
215  * void taskq_suspend(tq)
216  *
217  *	Suspend all task execution. Tasks already scheduled for a dynamic task
218  *	queue will still be executed, but all new scheduled tasks will be
219  *	suspended until taskq_resume() is called.
220  *
221  * int  taskq_suspended(tq)
222  *
223  *	Returns 1 if taskq is suspended and 0 otherwise. It is intended to
224  *	ASSERT that the task queue is suspended.
225  *
226  * void taskq_resume(tq)
227  *
228  *	Resume task queue execution.
229  *
230  * int  taskq_member(tq, thread)
231  *
232  *	Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
233  *	intended use is to ASSERT that a given function is called in taskq
234  *	context only.
235  *
236  * system_taskq
237  *
238  *	Global system-wide dynamic task queue for common uses. It may be used by
239  *	any subsystem that needs to schedule tasks and does not need to manage
240  *	its own task queues. It is initialized quite early during system boot.
241  *
242  * IMPLEMENTATION ==============================================================
243  *
244  * This is schematic representation of the task queue structures.
245  *
246  *   taskq:
247  *   +-------------+
248  *   | tq_lock     | +---< taskq_ent_free()
249  *   +-------------+ |
250  *   |...          | | tqent:                  tqent:
251  *   +-------------+ | +------------+          +------------+
252  *   | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
253  *   +-------------+   +------------+          +------------+
254  *   |...          |   | ...        |          | ...        |
255  *   +-------------+   +------------+          +------------+
256  *   | tq_task     |    |
257  *   |             |    +-------------->taskq_ent_alloc()
258  * +--------------------------------------------------------------------------+
259  * | |                     |            tqent                   tqent         |
260  * | +---------------------+     +--> +------------+     +--> +------------+  |
261  * | | ...		   |     |    | func, arg  |     |    | func, arg  |  |
262  * +>+---------------------+ <---|-+  +------------+ <---|-+  +------------+  |
263  *   | tq_taskq.tqent_next | ----+ |  | tqent_next | --->+ |  | tqent_next |--+
264  *   +---------------------+	   |  +------------+     ^ |  +------------+
265  * +-| tq_task.tqent_prev  |	   +--| tqent_prev |     | +--| tqent_prev |  ^
266  * | +---------------------+	      +------------+     |    +------------+  |
267  * | |...		   |	      | ...        |     |    | ...        |  |
268  * | +---------------------+	      +------------+     |    +------------+  |
269  * |                                      ^              |                    |
270  * |                                      |              |                    |
271  * +--------------------------------------+--------------+       TQ_APPEND() -+
272  *   |             |                      |
273  *   |...          |   taskq_thread()-----+
274  *   +-------------+
275  *   | tq_buckets  |--+-------> [ NULL ] (for regular task queues)
276  *   +-------------+  |
277  *                    |   DYNAMIC TASK QUEUES:
278  *                    |
279  *                    +-> taskq_bucket[nCPU]		taskq_bucket_dispatch()
280  *                        +-------------------+                    ^
281  *                   +--->| tqbucket_lock     |                    |
282  *                   |    +-------------------+   +--------+      +--------+
283  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  | ^
284  *                   |    +-------------------+<--+--------+<--...+--------+ |
285  *                   |    | ...               |   | thread |      | thread | |
286  *                   |    +-------------------+   +--------+      +--------+ |
287  *                   |    +-------------------+                              |
288  * taskq_dispatch()--+--->| tqbucket_lock     |             TQ_APPEND()------+
289  *      TQ_HASH()    |    +-------------------+   +--------+      +--------+
290  *                   |    | tqbucket_freelist |-->| tqent  |-->...| tqent  |
291  *                   |    +-------------------+<--+--------+<--...+--------+
292  *                   |    | ...               |   | thread |      | thread |
293  *                   |    +-------------------+   +--------+      +--------+
294  *		     +--->	...
295  *
296  *
297  * Task queues use tq_task field to link new entry in the queue. The queue is a
298  * circular doubly-linked list. Entries are put in the end of the list with
299  * TQ_APPEND() and processed from the front of the list by taskq_thread() in
300  * FIFO order. Task queue entries are cached in the free list managed by
301  * taskq_ent_alloc() and taskq_ent_free() functions.
302  *
303  *	All threads used by task queues mark t_taskq field of the thread to
304  *	point to the task queue.
305  *
306  * Taskq Thread Management -----------------------------------------------------
307  *
308  * Taskq's non-dynamic threads are managed with several variables and flags:
309  *
310  *	* tq_nthreads	- The number of threads in taskq_thread() for the
311  *			  taskq.
312  *
313  *	* tq_active	- The number of threads not waiting on a CV in
314  *			  taskq_thread(); includes newly created threads
315  *			  not yet counted in tq_nthreads.
316  *
317  *	* tq_nthreads_target
318  *			- The number of threads desired for the taskq.
319  *
320  *	* tq_flags & TASKQ_CHANGING
321  *			- Indicates that tq_nthreads != tq_nthreads_target.
322  *
323  *	* tq_flags & TASKQ_THREAD_CREATED
324  *			- Indicates that a thread is being created in the taskq.
325  *
326  * During creation, tq_nthreads and tq_active are set to 0, and
327  * tq_nthreads_target is set to the number of threads desired.  The
328  * TASKQ_CHANGING flag is set, and taskq_thread_create() is called to
329  * create the first thread. taskq_thread_create() increments tq_active,
330  * sets TASKQ_THREAD_CREATED, and creates the new thread.
331  *
332  * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED
333  * flag, and increments tq_nthreads.  It stores the new value of
334  * tq_nthreads as its "thread_id", and stores its thread pointer in the
335  * tq_threadlist at the (thread_id - 1).  We keep the thread_id space
336  * densely packed by requiring that only the largest thread_id can exit during
337  * normal adjustment.   The exception is during the destruction of the
338  * taskq; once tq_nthreads_target is set to zero, no new threads will be created
339  * for the taskq queue, so every thread can exit without any ordering being
340  * necessary.
341  *
342  * Threads will only process work if their thread id is <= tq_nthreads_target.
343  *
344  * When TASKQ_CHANGING is set, threads will check the current thread target
345  * whenever they wake up, and do whatever they can to apply its effects.
346  *
347  * TASKQ_THREAD_CPU_PCT --------------------------------------------------------
348  *
349  * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested
350  * percentage in tq_threads_ncpus_pct, start them off with the correct thread
351  * target, and add them to the taskq_cpupct_list for later adjustment.
352  *
353  * We register taskq_cpu_setup() to be called whenever a CPU changes state.  It
354  * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthread_target
355  * if need be, and wakes up all of the threads to process the change.
356  *
357  * Dynamic Task Queues Implementation ------------------------------------------
358  *
359  * For a dynamic task queues there is a 1-to-1 mapping between a thread and
360  * taskq_ent_structure. Each entry is serviced by its own thread and each thread
361  * is controlled by a single entry.
362  *
363  * Entries are distributed over a set of buckets. To avoid using modulo
364  * arithmetics the number of buckets is 2^n and is determined as the nearest
365  * power of two roundown of the number of CPUs in the system. Tunable
366  * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry
367  * is attached to a bucket for its lifetime and can't migrate to other buckets.
368  *
369  * Entries that have scheduled tasks are not placed in any list. The dispatch
370  * function sets their "func" and "arg" fields and signals the corresponding
371  * thread to execute the task. Once the thread executes the task it clears the
372  * "func" field and places an entry on the bucket cache of free entries pointed
373  * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
374  * field equal to NULL. The free list is a circular doubly-linked list identical
375  * in structure to the tq_task list above, but entries are taken from it in LIFO
376  * order - the last freed entry is the first to be allocated. The
377  * taskq_bucket_dispatch() function gets the most recently used entry from the
378  * free list, sets its "func" and "arg" fields and signals a worker thread.
379  *
380  * After executing each task a per-entry thread taskq_d_thread() places its
381  * entry on the bucket free list and goes to a timed sleep. If it wakes up
382  * without getting new task it removes the entry from the free list and destroys
383  * itself. The thread sleep time is controlled by a tunable variable
384  * `taskq_thread_timeout'.
385  *
386  * There are various statistics kept in the bucket which allows for later
387  * analysis of taskq usage patterns. Also, a global copy of taskq creation and
388  * death statistics is kept in the global taskq data structure. Since thread
389  * creation and death happen rarely, updating such global data does not present
390  * a performance problem.
391  *
392  * NOTE: Threads are not bound to any CPU and there is absolutely no association
393  *       between the bucket and actual thread CPU, so buckets are used only to
394  *	 split resources and reduce resource contention. Having threads attached
395  *	 to the CPU denoted by a bucket may reduce number of times the job
396  *	 switches between CPUs.
397  *
398  *	 Current algorithm creates a thread whenever a bucket has no free
399  *	 entries. It would be nice to know how many threads are in the running
400  *	 state and don't create threads if all CPUs are busy with existing
401  *	 tasks, but it is unclear how such strategy can be implemented.
402  *
403  *	 Currently buckets are created statically as an array attached to task
404  *	 queue. On some system with nCPUs < max_ncpus it may waste system
405  *	 memory. One solution may be allocation of buckets when they are first
406  *	 touched, but it is not clear how useful it is.
407  *
408  * SUSPEND/RESUME implementation -----------------------------------------------
409  *
410  *	Before executing a task taskq_thread() (executing non-dynamic task
411  *	queues) obtains taskq's thread lock as a reader. The taskq_suspend()
412  *	function gets the same lock as a writer blocking all non-dynamic task
413  *	execution. The taskq_resume() function releases the lock allowing
414  *	taskq_thread to continue execution.
415  *
416  *	For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
417  *	taskq_suspend() function. After that taskq_bucket_dispatch() always
418  *	fails, so that taskq_dispatch() will either enqueue tasks for a
419  *	suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
420  *	flags.
421  *
422  *	NOTE: taskq_suspend() does not immediately block any tasks already
423  *	      scheduled for dynamic task queues. It only suspends new tasks
424  *	      scheduled after taskq_suspend() was called.
425  *
426  *	taskq_member() function works by comparing a thread t_taskq pointer with
427  *	the passed thread pointer.
428  *
429  * LOCKS and LOCK Hierarchy ----------------------------------------------------
430  *
431  *   There are three locks used in task queues:
432  *
433  *   1) The taskq_t's tq_lock, protecting global task queue state.
434  *
435  *   2) Each per-CPU bucket has a lock for bucket management.
436  *
437  *   3) The global taskq_cpupct_lock, which protects the list of
438  *      TASKQ_THREADS_CPU_PCT taskqs.
439  *
440  *   If both (1) and (2) are needed, tq_lock should be taken *after* the bucket
441  *   lock.
442  *
443  *   If both (1) and (3) are needed, tq_lock should be taken *after*
444  *   taskq_cpupct_lock.
445  *
446  * DEBUG FACILITIES ------------------------------------------------------------
447  *
448  * For DEBUG kernels it is possible to induce random failures to
449  * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
450  * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
451  * failures for dynamic and static task queues respectively.
452  *
453  * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
454  *
455  * TUNABLES --------------------------------------------------------------------
456  *
457  *	system_taskq_size	- Size of the global system_taskq.
458  *				  This value is multiplied by nCPUs to determine
459  *				  actual size.
460  *				  Default value: 64
461  *
462  *	taskq_minimum_nthreads_max
463  *				- Minimum size of the thread list for a taskq.
464  *				  Useful for testing different thread pool
465  *				  sizes by overwriting tq_nthreads_target.
466  *
467  *	taskq_thread_timeout	- Maximum idle time for taskq_d_thread()
468  *				  Default value: 5 minutes
469  *
470  *	taskq_maxbuckets	- Maximum number of buckets in any task queue
471  *				  Default value: 128
472  *
473  *	taskq_search_depth	- Maximum # of buckets searched for a free entry
474  *				  Default value: 4
475  *
476  *	taskq_dmtbf		- Mean time between induced dispatch failures
477  *				  for dynamic task queues.
478  *				  Default value: UINT_MAX (no induced failures)
479  *
480  *	taskq_smtbf		- Mean time between induced dispatch failures
481  *				  for static task queues.
482  *				  Default value: UINT_MAX (no induced failures)
483  *
484  * CONDITIONAL compilation -----------------------------------------------------
485  *
486  *    TASKQ_STATISTIC	- If set will enable bucket statistic (default).
487  *
488  */
489 
490 #include <sys/taskq_impl.h>
491 #include <sys/thread.h>
492 #include <sys/proc.h>
493 #include <sys/kmem.h>
494 #include <sys/vmem.h>
495 #include <sys/callb.h>
496 #include <sys/class.h>
497 #include <sys/systm.h>
498 #include <sys/cmn_err.h>
499 #include <sys/debug.h>
500 #include <sys/vmsystm.h>	/* For throttlefree */
501 #include <sys/sysmacros.h>
502 #include <sys/cpuvar.h>
503 #include <sys/cpupart.h>
504 #include <sys/sdt.h>
505 #include <sys/sysdc.h>
506 #include <sys/note.h>
507 
508 static kmem_cache_t *taskq_ent_cache, *taskq_cache;
509 
510 /*
511  * Pseudo instance numbers for taskqs without explicitly provided instance.
512  */
513 static vmem_t *taskq_id_arena;
514 
515 /* Global system task queue for common use */
516 taskq_t	*system_taskq;
517 
518 /*
519  * Maximum number of entries in global system taskq is
520  *	system_taskq_size * max_ncpus
521  */
522 #define	SYSTEM_TASKQ_SIZE 64
523 int system_taskq_size = SYSTEM_TASKQ_SIZE;
524 
525 /*
526  * Minimum size for tq_nthreads_max; useful for those who want to play around
527  * with increasing a taskq's tq_nthreads_target.
528  */
529 int taskq_minimum_nthreads_max = 1;
530 
531 /*
532  * We want to ensure that when taskq_create() returns, there is at least
533  * one thread ready to handle requests.  To guarantee this, we have to wait
534  * for the second thread, since the first one cannot process requests until
535  * the second thread has been created.
536  */
537 #define	TASKQ_CREATE_ACTIVE_THREADS	2
538 
539 /* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */
540 #define	TASKQ_CPUPCT_MAX_PERCENT	1000
541 int taskq_cpupct_max_percent = TASKQ_CPUPCT_MAX_PERCENT;
542 
543 /*
544  * Dynamic task queue threads that don't get any work within
545  * taskq_thread_timeout destroy themselves
546  */
547 #define	TASKQ_THREAD_TIMEOUT (60 * 5)
548 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT;
549 
550 #define	TASKQ_MAXBUCKETS 128
551 int taskq_maxbuckets = TASKQ_MAXBUCKETS;
552 
553 /*
554  * When a bucket has no available entries another buckets are tried.
555  * taskq_search_depth parameter limits the amount of buckets that we search
556  * before failing. This is mostly useful in systems with many CPUs where we may
557  * spend too much time scanning busy buckets.
558  */
559 #define	TASKQ_SEARCH_DEPTH 4
560 int taskq_search_depth = TASKQ_SEARCH_DEPTH;
561 
562 /*
563  * Hashing function: mix various bits of x. May be pretty much anything.
564  */
565 #define	TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))
566 
567 /*
568  * We do not create any new threads when the system is low on memory and start
569  * throttling memory allocations. The following macro tries to estimate such
570  * condition.
571  */
572 #define	ENOUGH_MEMORY() (freemem > throttlefree)
573 
574 /*
575  * Static functions.
576  */
577 static taskq_t	*taskq_create_common(const char *, int, int, pri_t, int,
578     int, proc_t *, uint_t, uint_t);
579 static void taskq_thread(void *);
580 static void taskq_d_thread(taskq_ent_t *);
581 static void taskq_bucket_extend(void *);
582 static int  taskq_constructor(void *, void *, int);
583 static void taskq_destructor(void *, void *);
584 static int  taskq_ent_constructor(void *, void *, int);
585 static void taskq_ent_destructor(void *, void *);
586 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int);
587 static void taskq_ent_free(taskq_t *, taskq_ent_t *);
588 static int taskq_ent_exists(taskq_t *, task_func_t, void *);
589 static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t,
590     void *);
591 
592 /*
593  * Task queues kstats.
594  */
595 struct taskq_kstat {
596 	kstat_named_t	tq_pid;
597 	kstat_named_t	tq_tasks;
598 	kstat_named_t	tq_executed;
599 	kstat_named_t	tq_maxtasks;
600 	kstat_named_t	tq_totaltime;
601 	kstat_named_t	tq_nalloc;
602 	kstat_named_t	tq_nactive;
603 	kstat_named_t	tq_pri;
604 	kstat_named_t	tq_nthreads;
605 	kstat_named_t	tq_nomem;
606 } taskq_kstat = {
607 	{ "pid",		KSTAT_DATA_UINT64 },
608 	{ "tasks",		KSTAT_DATA_UINT64 },
609 	{ "executed",		KSTAT_DATA_UINT64 },
610 	{ "maxtasks",		KSTAT_DATA_UINT64 },
611 	{ "totaltime",		KSTAT_DATA_UINT64 },
612 	{ "nalloc",		KSTAT_DATA_UINT64 },
613 	{ "nactive",		KSTAT_DATA_UINT64 },
614 	{ "priority",		KSTAT_DATA_UINT64 },
615 	{ "threads",		KSTAT_DATA_UINT64 },
616 	{ "nomem",		KSTAT_DATA_UINT64 },
617 };
618 
619 struct taskq_d_kstat {
620 	kstat_named_t	tqd_pri;
621 	kstat_named_t	tqd_btasks;
622 	kstat_named_t	tqd_bexecuted;
623 	kstat_named_t	tqd_bmaxtasks;
624 	kstat_named_t	tqd_bnalloc;
625 	kstat_named_t	tqd_bnactive;
626 	kstat_named_t	tqd_btotaltime;
627 	kstat_named_t	tqd_hits;
628 	kstat_named_t	tqd_misses;
629 	kstat_named_t	tqd_overflows;
630 	kstat_named_t	tqd_tcreates;
631 	kstat_named_t	tqd_tdeaths;
632 	kstat_named_t	tqd_maxthreads;
633 	kstat_named_t	tqd_nomem;
634 	kstat_named_t	tqd_disptcreates;
635 	kstat_named_t	tqd_totaltime;
636 	kstat_named_t	tqd_nalloc;
637 	kstat_named_t	tqd_nfree;
638 } taskq_d_kstat = {
639 	{ "priority",		KSTAT_DATA_UINT64 },
640 	{ "btasks",		KSTAT_DATA_UINT64 },
641 	{ "bexecuted",		KSTAT_DATA_UINT64 },
642 	{ "bmaxtasks",		KSTAT_DATA_UINT64 },
643 	{ "bnalloc",		KSTAT_DATA_UINT64 },
644 	{ "bnactive",		KSTAT_DATA_UINT64 },
645 	{ "btotaltime",		KSTAT_DATA_UINT64 },
646 	{ "hits",		KSTAT_DATA_UINT64 },
647 	{ "misses",		KSTAT_DATA_UINT64 },
648 	{ "overflows",		KSTAT_DATA_UINT64 },
649 	{ "tcreates",		KSTAT_DATA_UINT64 },
650 	{ "tdeaths",		KSTAT_DATA_UINT64 },
651 	{ "maxthreads",		KSTAT_DATA_UINT64 },
652 	{ "nomem",		KSTAT_DATA_UINT64 },
653 	{ "disptcreates",	KSTAT_DATA_UINT64 },
654 	{ "totaltime",		KSTAT_DATA_UINT64 },
655 	{ "nalloc",		KSTAT_DATA_UINT64 },
656 	{ "nfree",		KSTAT_DATA_UINT64 },
657 };
658 
659 static kmutex_t taskq_kstat_lock;
660 static kmutex_t taskq_d_kstat_lock;
661 static int taskq_kstat_update(kstat_t *, int);
662 static int taskq_d_kstat_update(kstat_t *, int);
663 
664 /*
665  * List of all TASKQ_THREADS_CPU_PCT taskqs.
666  */
667 static list_t taskq_cpupct_list;	/* protected by cpu_lock */
668 
669 /*
670  * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
671  */
672 #define	TASKQ_STATISTIC 1
673 
674 #if TASKQ_STATISTIC
675 #define	TQ_STAT(b, x)	b->tqbucket_stat.x++
676 #else
677 #define	TQ_STAT(b, x)
678 #endif
679 
680 /*
681  * Random fault injection.
682  */
683 uint_t taskq_random;
684 uint_t taskq_dmtbf = UINT_MAX;    /* mean time between injected failures */
685 uint_t taskq_smtbf = UINT_MAX;    /* mean time between injected failures */
686 
687 /*
688  * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
689  *
690  * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
691  * they could prepopulate the cache and make sure that they do not use more
692  * then minalloc entries.  So, fault injection in this case insures that
693  * either TASKQ_PREPOPULATE is not set or there are more entries allocated
694  * than is specified by minalloc.  TQ_NOALLOC dispatches are always allowed
695  * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
696  * dispatches.
697  */
698 #ifdef DEBUG
699 #define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)		\
700 	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
701 	if ((flag & TQ_NOSLEEP) &&				\
702 	    taskq_random < 1771875 / taskq_dmtbf) {		\
703 		return (TASKQID_INVALID);			\
704 	}
705 
706 #define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)		\
707 	taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
708 	if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) &&		\
709 	    (!(tq->tq_flags & TASKQ_PREPOPULATE) ||		\
710 	    (tq->tq_nalloc > tq->tq_minalloc)) &&		\
711 	    (taskq_random < (1771875 / taskq_smtbf))) {		\
712 		mutex_exit(&tq->tq_lock);			\
713 		return (TASKQID_INVALID);			\
714 	}
715 #else
716 #define	TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
717 #define	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
718 #endif
719 
720 #define	IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) &&	\
721 	((l).tqent_prev == &(l)))
722 
723 /*
724  * Append `tqe' in the end of the doubly-linked list denoted by l.
725  */
726 #define	TQ_APPEND(l, tqe) {					\
727 	tqe->tqent_next = &l;					\
728 	tqe->tqent_prev = l.tqent_prev;				\
729 	tqe->tqent_next->tqent_prev = tqe;			\
730 	tqe->tqent_prev->tqent_next = tqe;			\
731 }
732 /*
733  * Prepend 'tqe' to the beginning of l
734  */
735 #define	TQ_PREPEND(l, tqe) {					\
736 	tqe->tqent_next = l.tqent_next;				\
737 	tqe->tqent_prev = &l;					\
738 	tqe->tqent_next->tqent_prev = tqe;			\
739 	tqe->tqent_prev->tqent_next = tqe;			\
740 }
741 
742 /*
743  * Schedule a task specified by func and arg into the task queue entry tqe.
744  */
745 #define	TQ_DO_ENQUEUE(tq, tqe, func, arg, front) {			\
746 	ASSERT(MUTEX_HELD(&tq->tq_lock));				\
747 	_NOTE(CONSTCOND)						\
748 	if (front) {							\
749 		TQ_PREPEND(tq->tq_task, tqe);				\
750 	} else {							\
751 		TQ_APPEND(tq->tq_task, tqe);				\
752 	}								\
753 	tqe->tqent_func = (func);					\
754 	tqe->tqent_arg = (arg);						\
755 	tq->tq_tasks++;							\
756 	if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks)		\
757 		tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed;	\
758 	cv_signal(&tq->tq_dispatch_cv);					\
759 	DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
760 }
761 
762 #define	TQ_ENQUEUE(tq, tqe, func, arg)					\
763 	TQ_DO_ENQUEUE(tq, tqe, func, arg, 0)
764 
765 #define	TQ_ENQUEUE_FRONT(tq, tqe, func, arg)				\
766 	TQ_DO_ENQUEUE(tq, tqe, func, arg, 1)
767 
768 /*
769  * Do-nothing task which may be used to prepopulate thread caches.
770  */
771 /*ARGSUSED*/
772 void
773 nulltask(void *unused)
774 {
775 }
776 
777 /*ARGSUSED*/
778 static int
779 taskq_constructor(void *buf, void *cdrarg, int kmflags)
780 {
781 	taskq_t *tq = buf;
782 
783 	bzero(tq, sizeof (taskq_t));
784 
785 	mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL);
786 	rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL);
787 	cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL);
788 	cv_init(&tq->tq_exit_cv, NULL, CV_DEFAULT, NULL);
789 	cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL);
790 	cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL);
791 
792 	tq->tq_task.tqent_next = &tq->tq_task;
793 	tq->tq_task.tqent_prev = &tq->tq_task;
794 
795 	return (0);
796 }
797 
798 /*ARGSUSED*/
799 static void
800 taskq_destructor(void *buf, void *cdrarg)
801 {
802 	taskq_t *tq = buf;
803 
804 	ASSERT(tq->tq_nthreads == 0);
805 	ASSERT(tq->tq_buckets == NULL);
806 	ASSERT(tq->tq_tcreates == 0);
807 	ASSERT(tq->tq_tdeaths == 0);
808 
809 	mutex_destroy(&tq->tq_lock);
810 	rw_destroy(&tq->tq_threadlock);
811 	cv_destroy(&tq->tq_dispatch_cv);
812 	cv_destroy(&tq->tq_exit_cv);
813 	cv_destroy(&tq->tq_wait_cv);
814 	cv_destroy(&tq->tq_maxalloc_cv);
815 }
816 
817 /*ARGSUSED*/
818 static int
819 taskq_ent_constructor(void *buf, void *cdrarg, int kmflags)
820 {
821 	taskq_ent_t *tqe = buf;
822 
823 	tqe->tqent_thread = NULL;
824 	cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL);
825 
826 	return (0);
827 }
828 
829 /*ARGSUSED*/
830 static void
831 taskq_ent_destructor(void *buf, void *cdrarg)
832 {
833 	taskq_ent_t *tqe = buf;
834 
835 	ASSERT(tqe->tqent_thread == NULL);
836 	cv_destroy(&tqe->tqent_cv);
837 }
838 
839 void
840 taskq_init(void)
841 {
842 	taskq_ent_cache = kmem_cache_create("taskq_ent_cache",
843 	    sizeof (taskq_ent_t), 0, taskq_ent_constructor,
844 	    taskq_ent_destructor, NULL, NULL, NULL, 0);
845 	taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t),
846 	    0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0);
847 	taskq_id_arena = vmem_create("taskq_id_arena",
848 	    (void *)1, INT32_MAX, 1, NULL, NULL, NULL, 0,
849 	    VM_SLEEP | VMC_IDENTIFIER);
850 
851 	list_create(&taskq_cpupct_list, sizeof (taskq_t),
852 	    offsetof(taskq_t, tq_cpupct_link));
853 }
854 
855 static void
856 taskq_update_nthreads(taskq_t *tq, uint_t ncpus)
857 {
858 	uint_t newtarget = TASKQ_THREADS_PCT(ncpus, tq->tq_threads_ncpus_pct);
859 
860 	ASSERT(MUTEX_HELD(&cpu_lock));
861 	ASSERT(MUTEX_HELD(&tq->tq_lock));
862 
863 	/* We must be going from non-zero to non-zero; no exiting. */
864 	ASSERT3U(tq->tq_nthreads_target, !=, 0);
865 	ASSERT3U(newtarget, !=, 0);
866 
867 	ASSERT3U(newtarget, <=, tq->tq_nthreads_max);
868 	if (newtarget != tq->tq_nthreads_target) {
869 		tq->tq_flags |= TASKQ_CHANGING;
870 		tq->tq_nthreads_target = newtarget;
871 		cv_broadcast(&tq->tq_dispatch_cv);
872 		cv_broadcast(&tq->tq_exit_cv);
873 	}
874 }
875 
876 /* called during task queue creation */
877 static void
878 taskq_cpupct_install(taskq_t *tq, cpupart_t *cpup)
879 {
880 	ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
881 
882 	mutex_enter(&cpu_lock);
883 	mutex_enter(&tq->tq_lock);
884 	tq->tq_cpupart = cpup->cp_id;
885 	taskq_update_nthreads(tq, cpup->cp_ncpus);
886 	mutex_exit(&tq->tq_lock);
887 
888 	list_insert_tail(&taskq_cpupct_list, tq);
889 	mutex_exit(&cpu_lock);
890 }
891 
892 static void
893 taskq_cpupct_remove(taskq_t *tq)
894 {
895 	ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
896 
897 	mutex_enter(&cpu_lock);
898 	list_remove(&taskq_cpupct_list, tq);
899 	mutex_exit(&cpu_lock);
900 }
901 
902 /*ARGSUSED*/
903 static int
904 taskq_cpu_setup(cpu_setup_t what, int id, void *arg)
905 {
906 	taskq_t *tq;
907 	cpupart_t *cp = cpu[id]->cpu_part;
908 	uint_t ncpus = cp->cp_ncpus;
909 
910 	ASSERT(MUTEX_HELD(&cpu_lock));
911 	ASSERT(ncpus > 0);
912 
913 	switch (what) {
914 	case CPU_OFF:
915 	case CPU_CPUPART_OUT:
916 		/* offlines are called *before* the cpu is offlined. */
917 		if (ncpus > 1)
918 			ncpus--;
919 		break;
920 
921 	case CPU_ON:
922 	case CPU_CPUPART_IN:
923 		break;
924 
925 	default:
926 		return (0);		/* doesn't affect cpu count */
927 	}
928 
929 	for (tq = list_head(&taskq_cpupct_list); tq != NULL;
930 	    tq = list_next(&taskq_cpupct_list, tq)) {
931 
932 		mutex_enter(&tq->tq_lock);
933 		/*
934 		 * If the taskq is part of the cpuset which is changing,
935 		 * update its nthreads_target.
936 		 */
937 		if (tq->tq_cpupart == cp->cp_id) {
938 			taskq_update_nthreads(tq, ncpus);
939 		}
940 		mutex_exit(&tq->tq_lock);
941 	}
942 	return (0);
943 }
944 
945 void
946 taskq_mp_init(void)
947 {
948 	mutex_enter(&cpu_lock);
949 	register_cpu_setup_func(taskq_cpu_setup, NULL);
950 	/*
951 	 * Make sure we're up to date.  At this point in boot, there is only
952 	 * one processor set, so we only have to update the current CPU.
953 	 */
954 	(void) taskq_cpu_setup(CPU_ON, CPU->cpu_id, NULL);
955 	mutex_exit(&cpu_lock);
956 }
957 
958 /*
959  * Create global system dynamic task queue.
960  */
961 void
962 system_taskq_init(void)
963 {
964 	system_taskq = taskq_create_common("system_taskq", 0,
965 	    system_taskq_size * max_ncpus, minclsyspri, 4, 512, &p0, 0,
966 	    TASKQ_DYNAMIC | TASKQ_PREPOPULATE);
967 }
968 
969 /*
970  * taskq_ent_alloc()
971  *
972  * Allocates a new taskq_ent_t structure either from the free list or from the
973  * cache. Returns NULL if it can't be allocated.
974  *
975  * Assumes: tq->tq_lock is held.
976  */
977 static taskq_ent_t *
978 taskq_ent_alloc(taskq_t *tq, int flags)
979 {
980 	int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
981 	taskq_ent_t *tqe;
982 	clock_t wait_time;
983 	clock_t	wait_rv;
984 
985 	ASSERT(MUTEX_HELD(&tq->tq_lock));
986 
987 	/*
988 	 * TQ_NOALLOC allocations are allowed to use the freelist, even if
989 	 * we are below tq_minalloc.
990 	 */
991 again:	if ((tqe = tq->tq_freelist) != NULL &&
992 	    ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) {
993 		tq->tq_freelist = tqe->tqent_next;
994 	} else {
995 		if (flags & TQ_NOALLOC)
996 			return (NULL);
997 
998 		if (tq->tq_nalloc >= tq->tq_maxalloc) {
999 			if (kmflags & KM_NOSLEEP)
1000 				return (NULL);
1001 
1002 			/*
1003 			 * We don't want to exceed tq_maxalloc, but we can't
1004 			 * wait for other tasks to complete (and thus free up
1005 			 * task structures) without risking deadlock with
1006 			 * the caller.  So, we just delay for one second
1007 			 * to throttle the allocation rate. If we have tasks
1008 			 * complete before one second timeout expires then
1009 			 * taskq_ent_free will signal us and we will
1010 			 * immediately retry the allocation (reap free).
1011 			 */
1012 			wait_time = ddi_get_lbolt() + hz;
1013 			while (tq->tq_freelist == NULL) {
1014 				tq->tq_maxalloc_wait++;
1015 				wait_rv = cv_timedwait(&tq->tq_maxalloc_cv,
1016 				    &tq->tq_lock, wait_time);
1017 				tq->tq_maxalloc_wait--;
1018 				if (wait_rv == -1)
1019 					break;
1020 			}
1021 			if (tq->tq_freelist)
1022 				goto again;		/* reap freelist */
1023 
1024 		}
1025 		mutex_exit(&tq->tq_lock);
1026 
1027 		tqe = kmem_cache_alloc(taskq_ent_cache, kmflags);
1028 
1029 		mutex_enter(&tq->tq_lock);
1030 		if (tqe != NULL)
1031 			tq->tq_nalloc++;
1032 	}
1033 	return (tqe);
1034 }
1035 
1036 /*
1037  * taskq_ent_free()
1038  *
1039  * Free taskq_ent_t structure by either putting it on the free list or freeing
1040  * it to the cache.
1041  *
1042  * Assumes: tq->tq_lock is held.
1043  */
1044 static void
1045 taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe)
1046 {
1047 	ASSERT(MUTEX_HELD(&tq->tq_lock));
1048 
1049 	if (tq->tq_nalloc <= tq->tq_minalloc) {
1050 		tqe->tqent_next = tq->tq_freelist;
1051 		tq->tq_freelist = tqe;
1052 	} else {
1053 		tq->tq_nalloc--;
1054 		mutex_exit(&tq->tq_lock);
1055 		kmem_cache_free(taskq_ent_cache, tqe);
1056 		mutex_enter(&tq->tq_lock);
1057 	}
1058 
1059 	if (tq->tq_maxalloc_wait)
1060 		cv_signal(&tq->tq_maxalloc_cv);
1061 }
1062 
1063 /*
1064  * taskq_ent_exists()
1065  *
1066  * Return 1 if taskq already has entry for calling 'func(arg)'.
1067  *
1068  * Assumes: tq->tq_lock is held.
1069  */
1070 static int
1071 taskq_ent_exists(taskq_t *tq, task_func_t func, void *arg)
1072 {
1073 	taskq_ent_t	*tqe;
1074 
1075 	ASSERT(MUTEX_HELD(&tq->tq_lock));
1076 
1077 	for (tqe = tq->tq_task.tqent_next; tqe != &tq->tq_task;
1078 	    tqe = tqe->tqent_next)
1079 		if ((tqe->tqent_func == func) && (tqe->tqent_arg == arg))
1080 			return (1);
1081 	return (0);
1082 }
1083 
1084 /*
1085  * Dispatch a task "func(arg)" to a free entry of bucket b.
1086  *
1087  * Assumes: no bucket locks is held.
1088  *
1089  * Returns: a pointer to an entry if dispatch was successful.
1090  *	    NULL if there are no free entries or if the bucket is suspended.
1091  */
1092 static taskq_ent_t *
1093 taskq_bucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg)
1094 {
1095 	taskq_ent_t *tqe;
1096 
1097 	ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock));
1098 	ASSERT(func != NULL);
1099 
1100 	mutex_enter(&b->tqbucket_lock);
1101 
1102 	ASSERT(b->tqbucket_nfree != 0 || IS_EMPTY(b->tqbucket_freelist));
1103 	ASSERT(b->tqbucket_nfree == 0 || !IS_EMPTY(b->tqbucket_freelist));
1104 
1105 	/*
1106 	 * Get en entry from the freelist if there is one.
1107 	 * Schedule task into the entry.
1108 	 */
1109 	if ((b->tqbucket_nfree != 0) &&
1110 	    !(b->tqbucket_flags & TQBUCKET_SUSPEND)) {
1111 		tqe = b->tqbucket_freelist.tqent_prev;
1112 
1113 		ASSERT(tqe != &b->tqbucket_freelist);
1114 		ASSERT(tqe->tqent_thread != NULL);
1115 
1116 		tqe->tqent_prev->tqent_next = tqe->tqent_next;
1117 		tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1118 		b->tqbucket_nalloc++;
1119 		b->tqbucket_nfree--;
1120 		tqe->tqent_func = func;
1121 		tqe->tqent_arg = arg;
1122 		TQ_STAT(b, tqs_hits);
1123 		cv_signal(&tqe->tqent_cv);
1124 		DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b,
1125 		    taskq_ent_t *, tqe);
1126 	} else {
1127 		tqe = NULL;
1128 		TQ_STAT(b, tqs_misses);
1129 	}
1130 	mutex_exit(&b->tqbucket_lock);
1131 	return (tqe);
1132 }
1133 
1134 /*
1135  * Dispatch a task.
1136  *
1137  * Assumes: func != NULL
1138  *
1139  * Returns: NULL if dispatch failed.
1140  *	    non-NULL if task dispatched successfully.
1141  *	    Actual return value is the pointer to taskq entry that was used to
1142  *	    dispatch a task. This is useful for debugging.
1143  */
1144 taskqid_t
1145 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
1146 {
1147 	taskq_bucket_t *bucket = NULL;	/* Which bucket needs extension */
1148 	taskq_ent_t *tqe = NULL;
1149 	taskq_ent_t *tqe1;
1150 	uint_t bsize;
1151 
1152 	ASSERT(tq != NULL);
1153 	ASSERT(func != NULL);
1154 
1155 	if (!(tq->tq_flags & TASKQ_DYNAMIC)) {
1156 		/*
1157 		 * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
1158 		 */
1159 		ASSERT(!(flags & TQ_NOQUEUE));
1160 		/*
1161 		 * Enqueue the task to the underlying queue.
1162 		 */
1163 		mutex_enter(&tq->tq_lock);
1164 
1165 		TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags);
1166 
1167 		if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) {
1168 			tq->tq_nomem++;
1169 			mutex_exit(&tq->tq_lock);
1170 			return ((taskqid_t)tqe);
1171 		}
1172 		/* Make sure we start without any flags */
1173 		tqe->tqent_un.tqent_flags = 0;
1174 
1175 		if (flags & TQ_FRONT) {
1176 			TQ_ENQUEUE_FRONT(tq, tqe, func, arg);
1177 		} else {
1178 			TQ_ENQUEUE(tq, tqe, func, arg);
1179 		}
1180 		mutex_exit(&tq->tq_lock);
1181 		return ((taskqid_t)tqe);
1182 	}
1183 
1184 	/*
1185 	 * Dynamic taskq dispatching.
1186 	 */
1187 	ASSERT(!(flags & (TQ_NOALLOC | TQ_FRONT)));
1188 	TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flags);
1189 
1190 	bsize = tq->tq_nbuckets;
1191 
1192 	if (bsize == 1) {
1193 		/*
1194 		 * In a single-CPU case there is only one bucket, so get
1195 		 * entry directly from there.
1196 		 */
1197 		if ((tqe = taskq_bucket_dispatch(tq->tq_buckets, func, arg))
1198 		    != NULL)
1199 			return ((taskqid_t)tqe);	/* Fastpath */
1200 		bucket = tq->tq_buckets;
1201 	} else {
1202 		int loopcount;
1203 		taskq_bucket_t *b;
1204 		uintptr_t h = ((uintptr_t)CPU + (uintptr_t)arg) >> 3;
1205 
1206 		h = TQ_HASH(h);
1207 
1208 		/*
1209 		 * The 'bucket' points to the original bucket that we hit. If we
1210 		 * can't allocate from it, we search other buckets, but only
1211 		 * extend this one.
1212 		 */
1213 		b = &tq->tq_buckets[h & (bsize - 1)];
1214 		ASSERT(b->tqbucket_taskq == tq);	/* Sanity check */
1215 
1216 		/*
1217 		 * Do a quick check before grabbing the lock. If the bucket does
1218 		 * not have free entries now, chances are very small that it
1219 		 * will after we take the lock, so we just skip it.
1220 		 */
1221 		if (b->tqbucket_nfree != 0) {
1222 			if ((tqe = taskq_bucket_dispatch(b, func, arg)) != NULL)
1223 				return ((taskqid_t)tqe);	/* Fastpath */
1224 		} else {
1225 			TQ_STAT(b, tqs_misses);
1226 		}
1227 
1228 		bucket = b;
1229 		loopcount = MIN(taskq_search_depth, bsize);
1230 		/*
1231 		 * If bucket dispatch failed, search loopcount number of buckets
1232 		 * before we give up and fail.
1233 		 */
1234 		do {
1235 			b = &tq->tq_buckets[++h & (bsize - 1)];
1236 			ASSERT(b->tqbucket_taskq == tq);  /* Sanity check */
1237 			loopcount--;
1238 
1239 			if (b->tqbucket_nfree != 0) {
1240 				tqe = taskq_bucket_dispatch(b, func, arg);
1241 			} else {
1242 				TQ_STAT(b, tqs_misses);
1243 			}
1244 		} while ((tqe == NULL) && (loopcount > 0));
1245 	}
1246 
1247 	/*
1248 	 * At this point we either scheduled a task and (tqe != NULL) or failed
1249 	 * (tqe == NULL). Try to recover from fails.
1250 	 */
1251 
1252 	/*
1253 	 * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch.
1254 	 */
1255 	if ((tqe == NULL) && !(flags & TQ_NOSLEEP)) {
1256 		/*
1257 		 * taskq_bucket_extend() may fail to do anything, but this is
1258 		 * fine - we deal with it later. If the bucket was successfully
1259 		 * extended, there is a good chance that taskq_bucket_dispatch()
1260 		 * will get this new entry, unless someone is racing with us and
1261 		 * stealing the new entry from under our nose.
1262 		 * taskq_bucket_extend() may sleep.
1263 		 */
1264 		taskq_bucket_extend(bucket);
1265 		TQ_STAT(bucket, tqs_disptcreates);
1266 		if ((tqe = taskq_bucket_dispatch(bucket, func, arg)) != NULL)
1267 			return ((taskqid_t)tqe);
1268 	}
1269 
1270 	ASSERT(bucket != NULL);
1271 
1272 	/*
1273 	 * Since there are not enough free entries in the bucket, add a
1274 	 * taskq entry to extend it in the background using backing queue
1275 	 * (unless we already have a taskq entry to perform that extension).
1276 	 */
1277 	mutex_enter(&tq->tq_lock);
1278 	if (!taskq_ent_exists(tq, taskq_bucket_extend, bucket)) {
1279 		if ((tqe1 = taskq_ent_alloc(tq, TQ_NOSLEEP)) != NULL) {
1280 			TQ_ENQUEUE_FRONT(tq, tqe1, taskq_bucket_extend, bucket);
1281 		} else {
1282 			tq->tq_nomem++;
1283 		}
1284 	}
1285 
1286 	/*
1287 	 * Dispatch failed and we can't find an entry to schedule a task.
1288 	 * Revert to the backing queue unless TQ_NOQUEUE was asked.
1289 	 */
1290 	if ((tqe == NULL) && !(flags & TQ_NOQUEUE)) {
1291 		if ((tqe = taskq_ent_alloc(tq, flags)) != NULL) {
1292 			TQ_ENQUEUE(tq, tqe, func, arg);
1293 		} else {
1294 			tq->tq_nomem++;
1295 		}
1296 	}
1297 	mutex_exit(&tq->tq_lock);
1298 
1299 	return ((taskqid_t)tqe);
1300 }
1301 
1302 void
1303 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
1304     taskq_ent_t *tqe)
1305 {
1306 	ASSERT(func != NULL);
1307 	ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
1308 
1309 	/*
1310 	 * Mark it as a prealloc'd task.  This is important
1311 	 * to ensure that we don't free it later.
1312 	 */
1313 	tqe->tqent_un.tqent_flags |= TQENT_FLAG_PREALLOC;
1314 	/*
1315 	 * Enqueue the task to the underlying queue.
1316 	 */
1317 	mutex_enter(&tq->tq_lock);
1318 
1319 	if (flags & TQ_FRONT) {
1320 		TQ_ENQUEUE_FRONT(tq, tqe, func, arg);
1321 	} else {
1322 		TQ_ENQUEUE(tq, tqe, func, arg);
1323 	}
1324 	mutex_exit(&tq->tq_lock);
1325 }
1326 
1327 /*
1328  * Allow our caller to ask if there are tasks pending on the queue.
1329  */
1330 boolean_t
1331 taskq_empty(taskq_t *tq)
1332 {
1333 	boolean_t rv;
1334 
1335 	ASSERT3P(tq, !=, curthread->t_taskq);
1336 	mutex_enter(&tq->tq_lock);
1337 	rv = (tq->tq_task.tqent_next == &tq->tq_task) && (tq->tq_active == 0);
1338 	mutex_exit(&tq->tq_lock);
1339 
1340 	return (rv);
1341 }
1342 
1343 /*
1344  * Wait for all pending tasks to complete.
1345  * Calling taskq_wait from a task will cause deadlock.
1346  */
1347 void
1348 taskq_wait(taskq_t *tq)
1349 {
1350 	ASSERT(tq != curthread->t_taskq);
1351 
1352 	mutex_enter(&tq->tq_lock);
1353 	while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0)
1354 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1355 	mutex_exit(&tq->tq_lock);
1356 
1357 	if (tq->tq_flags & TASKQ_DYNAMIC) {
1358 		taskq_bucket_t *b = tq->tq_buckets;
1359 		int bid = 0;
1360 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1361 			mutex_enter(&b->tqbucket_lock);
1362 			while (b->tqbucket_nalloc > 0)
1363 				cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
1364 			mutex_exit(&b->tqbucket_lock);
1365 		}
1366 	}
1367 }
1368 
1369 void
1370 taskq_wait_id(taskq_t *tq, taskqid_t id __unused)
1371 {
1372 	taskq_wait(tq);
1373 }
1374 
1375 /*
1376  * Suspend execution of tasks.
1377  *
1378  * Tasks in the queue part will be suspended immediately upon return from this
1379  * function. Pending tasks in the dynamic part will continue to execute, but all
1380  * new tasks will  be suspended.
1381  */
1382 void
1383 taskq_suspend(taskq_t *tq)
1384 {
1385 	rw_enter(&tq->tq_threadlock, RW_WRITER);
1386 
1387 	if (tq->tq_flags & TASKQ_DYNAMIC) {
1388 		taskq_bucket_t *b = tq->tq_buckets;
1389 		int bid = 0;
1390 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1391 			mutex_enter(&b->tqbucket_lock);
1392 			b->tqbucket_flags |= TQBUCKET_SUSPEND;
1393 			mutex_exit(&b->tqbucket_lock);
1394 		}
1395 	}
1396 	/*
1397 	 * Mark task queue as being suspended. Needed for taskq_suspended().
1398 	 */
1399 	mutex_enter(&tq->tq_lock);
1400 	ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED));
1401 	tq->tq_flags |= TASKQ_SUSPENDED;
1402 	mutex_exit(&tq->tq_lock);
1403 }
1404 
1405 /*
1406  * returns: 1 if tq is suspended, 0 otherwise.
1407  */
1408 int
1409 taskq_suspended(taskq_t *tq)
1410 {
1411 	return ((tq->tq_flags & TASKQ_SUSPENDED) != 0);
1412 }
1413 
1414 /*
1415  * Resume taskq execution.
1416  */
1417 void
1418 taskq_resume(taskq_t *tq)
1419 {
1420 	ASSERT(RW_WRITE_HELD(&tq->tq_threadlock));
1421 
1422 	if (tq->tq_flags & TASKQ_DYNAMIC) {
1423 		taskq_bucket_t *b = tq->tq_buckets;
1424 		int bid = 0;
1425 		for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
1426 			mutex_enter(&b->tqbucket_lock);
1427 			b->tqbucket_flags &= ~TQBUCKET_SUSPEND;
1428 			mutex_exit(&b->tqbucket_lock);
1429 		}
1430 	}
1431 	mutex_enter(&tq->tq_lock);
1432 	ASSERT(tq->tq_flags & TASKQ_SUSPENDED);
1433 	tq->tq_flags &= ~TASKQ_SUSPENDED;
1434 	mutex_exit(&tq->tq_lock);
1435 
1436 	rw_exit(&tq->tq_threadlock);
1437 }
1438 
1439 int
1440 taskq_member(taskq_t *tq, kthread_t *thread)
1441 {
1442 	return (thread->t_taskq == tq);
1443 }
1444 
1445 /*
1446  * Creates a thread in the taskq.  We only allow one outstanding create at
1447  * a time.  We drop and reacquire the tq_lock in order to avoid blocking other
1448  * taskq activity while thread_create() or lwp_kernel_create() run.
1449  *
1450  * The first time we're called, we do some additional setup, and do not
1451  * return until there are enough threads to start servicing requests.
1452  */
1453 static void
1454 taskq_thread_create(taskq_t *tq)
1455 {
1456 	kthread_t	*t;
1457 	const boolean_t	first = (tq->tq_nthreads == 0);
1458 
1459 	ASSERT(MUTEX_HELD(&tq->tq_lock));
1460 	ASSERT(tq->tq_flags & TASKQ_CHANGING);
1461 	ASSERT(tq->tq_nthreads < tq->tq_nthreads_target);
1462 	ASSERT(!(tq->tq_flags & TASKQ_THREAD_CREATED));
1463 
1464 
1465 	tq->tq_flags |= TASKQ_THREAD_CREATED;
1466 	tq->tq_active++;
1467 	mutex_exit(&tq->tq_lock);
1468 
1469 	/*
1470 	 * With TASKQ_DUTY_CYCLE the new thread must have an LWP
1471 	 * as explained in ../disp/sysdc.c (for the msacct data).
1472 	 * Otherwise simple kthreads are preferred.
1473 	 */
1474 	if ((tq->tq_flags & TASKQ_DUTY_CYCLE) != 0) {
1475 		/* Enforced in taskq_create_common */
1476 		ASSERT3P(tq->tq_proc, !=, &p0);
1477 		t = lwp_kernel_create(tq->tq_proc, taskq_thread, tq, TS_RUN,
1478 		    tq->tq_pri);
1479 	} else {
1480 		t = thread_create(NULL, 0, taskq_thread, tq, 0, tq->tq_proc,
1481 		    TS_RUN, tq->tq_pri);
1482 	}
1483 
1484 	if (!first) {
1485 		mutex_enter(&tq->tq_lock);
1486 		return;
1487 	}
1488 
1489 	/*
1490 	 * We know the thread cannot go away, since tq cannot be
1491 	 * destroyed until creation has completed.  We can therefore
1492 	 * safely dereference t.
1493 	 */
1494 	if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
1495 		taskq_cpupct_install(tq, t->t_cpupart);
1496 	}
1497 	mutex_enter(&tq->tq_lock);
1498 
1499 	/* Wait until we can service requests. */
1500 	while (tq->tq_nthreads != tq->tq_nthreads_target &&
1501 	    tq->tq_nthreads < TASKQ_CREATE_ACTIVE_THREADS) {
1502 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
1503 	}
1504 }
1505 
1506 /*
1507  * Common "sleep taskq thread" function, which handles CPR stuff, as well
1508  * as giving a nice common point for debuggers to find inactive threads.
1509  */
1510 static clock_t
1511 taskq_thread_wait(taskq_t *tq, kmutex_t *mx, kcondvar_t *cv,
1512     callb_cpr_t *cprinfo, clock_t timeout)
1513 {
1514 	clock_t ret = 0;
1515 
1516 	if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1517 		CALLB_CPR_SAFE_BEGIN(cprinfo);
1518 	}
1519 	if (timeout < 0)
1520 		cv_wait(cv, mx);
1521 	else
1522 		ret = cv_reltimedwait(cv, mx, timeout, TR_CLOCK_TICK);
1523 
1524 	if (!(tq->tq_flags & TASKQ_CPR_SAFE)) {
1525 		CALLB_CPR_SAFE_END(cprinfo, mx);
1526 	}
1527 
1528 	return (ret);
1529 }
1530 
1531 /*
1532  * Worker thread for processing task queue.
1533  */
1534 static void
1535 taskq_thread(void *arg)
1536 {
1537 	int thread_id;
1538 
1539 	taskq_t *tq = arg;
1540 	taskq_ent_t *tqe;
1541 	callb_cpr_t cprinfo;
1542 	hrtime_t start, end;
1543 	boolean_t freeit;
1544 
1545 	curthread->t_taskq = tq;	/* mark ourselves for taskq_member() */
1546 
1547 	if (curproc != &p0 && (tq->tq_flags & TASKQ_DUTY_CYCLE)) {
1548 		sysdc_thread_enter(curthread, tq->tq_DC,
1549 		    (tq->tq_flags & TASKQ_DC_BATCH) ? SYSDC_THREAD_BATCH : 0);
1550 	}
1551 
1552 	if (tq->tq_flags & TASKQ_CPR_SAFE) {
1553 		CALLB_CPR_INIT_SAFE(curthread, tq->tq_name);
1554 	} else {
1555 		CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr,
1556 		    tq->tq_name);
1557 	}
1558 	mutex_enter(&tq->tq_lock);
1559 	thread_id = ++tq->tq_nthreads;
1560 	ASSERT(tq->tq_flags & TASKQ_THREAD_CREATED);
1561 	ASSERT(tq->tq_flags & TASKQ_CHANGING);
1562 	tq->tq_flags &= ~TASKQ_THREAD_CREATED;
1563 
1564 	VERIFY3S(thread_id, <=, tq->tq_nthreads_max);
1565 
1566 	if (tq->tq_nthreads_max == 1)
1567 		tq->tq_thread = curthread;
1568 	else
1569 		tq->tq_threadlist[thread_id - 1] = curthread;
1570 
1571 	/* Allow taskq_create_common()'s taskq_thread_create() to return. */
1572 	if (tq->tq_nthreads == TASKQ_CREATE_ACTIVE_THREADS)
1573 		cv_broadcast(&tq->tq_wait_cv);
1574 
1575 	for (;;) {
1576 		if (tq->tq_flags & TASKQ_CHANGING) {
1577 			/* See if we're no longer needed */
1578 			if (thread_id > tq->tq_nthreads_target) {
1579 				/*
1580 				 * To preserve the one-to-one mapping between
1581 				 * thread_id and thread, we must exit from
1582 				 * highest thread ID to least.
1583 				 *
1584 				 * However, if everyone is exiting, the order
1585 				 * doesn't matter, so just exit immediately.
1586 				 * (this is safe, since you must wait for
1587 				 * nthreads to reach 0 after setting
1588 				 * tq_nthreads_target to 0)
1589 				 */
1590 				if (thread_id == tq->tq_nthreads ||
1591 				    tq->tq_nthreads_target == 0)
1592 					break;
1593 
1594 				/* Wait for higher thread_ids to exit */
1595 				(void) taskq_thread_wait(tq, &tq->tq_lock,
1596 				    &tq->tq_exit_cv, &cprinfo, -1);
1597 				continue;
1598 			}
1599 
1600 			/*
1601 			 * If no thread is starting taskq_thread(), we can
1602 			 * do some bookkeeping.
1603 			 */
1604 			if (!(tq->tq_flags & TASKQ_THREAD_CREATED)) {
1605 				/* Check if we've reached our target */
1606 				if (tq->tq_nthreads == tq->tq_nthreads_target) {
1607 					tq->tq_flags &= ~TASKQ_CHANGING;
1608 					cv_broadcast(&tq->tq_wait_cv);
1609 				}
1610 				/* Check if we need to create a thread */
1611 				if (tq->tq_nthreads < tq->tq_nthreads_target) {
1612 					taskq_thread_create(tq);
1613 					continue; /* tq_lock was dropped */
1614 				}
1615 			}
1616 		}
1617 		if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) {
1618 			if (--tq->tq_active == 0)
1619 				cv_broadcast(&tq->tq_wait_cv);
1620 			(void) taskq_thread_wait(tq, &tq->tq_lock,
1621 			    &tq->tq_dispatch_cv, &cprinfo, -1);
1622 			tq->tq_active++;
1623 			continue;
1624 		}
1625 
1626 		tqe->tqent_prev->tqent_next = tqe->tqent_next;
1627 		tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1628 		mutex_exit(&tq->tq_lock);
1629 
1630 		/*
1631 		 * For prealloc'd tasks, we don't free anything.  We
1632 		 * have to check this now, because once we call the
1633 		 * function for a prealloc'd taskq, we can't touch the
1634 		 * tqent any longer (calling the function returns the
1635 		 * ownershp of the tqent back to caller of
1636 		 * taskq_dispatch.)
1637 		 */
1638 		if ((!(tq->tq_flags & TASKQ_DYNAMIC)) &&
1639 		    (tqe->tqent_un.tqent_flags & TQENT_FLAG_PREALLOC)) {
1640 			/* clear pointers to assist assertion checks */
1641 			tqe->tqent_next = tqe->tqent_prev = NULL;
1642 			freeit = B_FALSE;
1643 		} else {
1644 			freeit = B_TRUE;
1645 		}
1646 
1647 		rw_enter(&tq->tq_threadlock, RW_READER);
1648 		start = gethrtime();
1649 		DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq,
1650 		    taskq_ent_t *, tqe);
1651 		tqe->tqent_func(tqe->tqent_arg);
1652 		DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq,
1653 		    taskq_ent_t *, tqe);
1654 		end = gethrtime();
1655 		rw_exit(&tq->tq_threadlock);
1656 
1657 		mutex_enter(&tq->tq_lock);
1658 		tq->tq_totaltime += end - start;
1659 		tq->tq_executed++;
1660 
1661 		if (freeit)
1662 			taskq_ent_free(tq, tqe);
1663 	}
1664 
1665 	if (tq->tq_nthreads_max == 1)
1666 		tq->tq_thread = NULL;
1667 	else
1668 		tq->tq_threadlist[thread_id - 1] = NULL;
1669 
1670 	/* We're exiting, and therefore no longer active */
1671 	ASSERT(tq->tq_active > 0);
1672 	tq->tq_active--;
1673 
1674 	ASSERT(tq->tq_nthreads > 0);
1675 	tq->tq_nthreads--;
1676 
1677 	/* Wake up anyone waiting for us to exit */
1678 	cv_broadcast(&tq->tq_exit_cv);
1679 	if (tq->tq_nthreads == tq->tq_nthreads_target) {
1680 		if (!(tq->tq_flags & TASKQ_THREAD_CREATED))
1681 			tq->tq_flags &= ~TASKQ_CHANGING;
1682 
1683 		cv_broadcast(&tq->tq_wait_cv);
1684 	}
1685 
1686 	ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE));
1687 	CALLB_CPR_EXIT(&cprinfo);		/* drops tq->tq_lock */
1688 	if (curthread->t_lwp != NULL) {
1689 		mutex_enter(&curproc->p_lock);
1690 		lwp_exit();
1691 	} else {
1692 		thread_exit();
1693 	}
1694 }
1695 
1696 /*
1697  * Worker per-entry thread for dynamic dispatches.
1698  */
1699 static void
1700 taskq_d_thread(taskq_ent_t *tqe)
1701 {
1702 	taskq_bucket_t	*bucket = tqe->tqent_un.tqent_bucket;
1703 	taskq_t		*tq = bucket->tqbucket_taskq;
1704 	kmutex_t	*lock = &bucket->tqbucket_lock;
1705 	kcondvar_t	*cv = &tqe->tqent_cv;
1706 	callb_cpr_t	cprinfo;
1707 	clock_t		w;
1708 
1709 	CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, tq->tq_name);
1710 
1711 	mutex_enter(lock);
1712 
1713 	for (;;) {
1714 		/*
1715 		 * If a task is scheduled (func != NULL), execute it, otherwise
1716 		 * sleep, waiting for a job.
1717 		 */
1718 		if (tqe->tqent_func != NULL) {
1719 			hrtime_t	start;
1720 			hrtime_t	end;
1721 
1722 			ASSERT(bucket->tqbucket_nalloc > 0);
1723 
1724 			/*
1725 			 * It is possible to free the entry right away before
1726 			 * actually executing the task so that subsequent
1727 			 * dispatches may immediately reuse it. But this,
1728 			 * effectively, creates a two-length queue in the entry
1729 			 * and may lead to a deadlock if the execution of the
1730 			 * current task depends on the execution of the next
1731 			 * scheduled task. So, we keep the entry busy until the
1732 			 * task is processed.
1733 			 */
1734 
1735 			mutex_exit(lock);
1736 			start = gethrtime();
1737 			DTRACE_PROBE3(taskq__d__exec__start, taskq_t *, tq,
1738 			    taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1739 			tqe->tqent_func(tqe->tqent_arg);
1740 			DTRACE_PROBE3(taskq__d__exec__end, taskq_t *, tq,
1741 			    taskq_bucket_t *, bucket, taskq_ent_t *, tqe);
1742 			end = gethrtime();
1743 			mutex_enter(lock);
1744 			bucket->tqbucket_totaltime += end - start;
1745 
1746 			/*
1747 			 * Return the entry to the bucket free list.
1748 			 */
1749 			tqe->tqent_func = NULL;
1750 			TQ_APPEND(bucket->tqbucket_freelist, tqe);
1751 			bucket->tqbucket_nalloc--;
1752 			bucket->tqbucket_nfree++;
1753 			ASSERT(!IS_EMPTY(bucket->tqbucket_freelist));
1754 			/*
1755 			 * taskq_wait() waits for nalloc to drop to zero on
1756 			 * tqbucket_cv.
1757 			 */
1758 			cv_signal(&bucket->tqbucket_cv);
1759 		}
1760 
1761 		/*
1762 		 * At this point the entry must be in the bucket free list -
1763 		 * either because it was there initially or because it just
1764 		 * finished executing a task and put itself on the free list.
1765 		 */
1766 		ASSERT(bucket->tqbucket_nfree > 0);
1767 		/*
1768 		 * Go to sleep unless we are closing.
1769 		 * If a thread is sleeping too long, it dies.
1770 		 */
1771 		if (! (bucket->tqbucket_flags & TQBUCKET_CLOSE)) {
1772 			w = taskq_thread_wait(tq, lock, cv,
1773 			    &cprinfo, taskq_thread_timeout * hz);
1774 		}
1775 
1776 		/*
1777 		 * At this point we may be in two different states:
1778 		 *
1779 		 * (1) tqent_func is set which means that a new task is
1780 		 *	dispatched and we need to execute it.
1781 		 *
1782 		 * (2) Thread is sleeping for too long or we are closing. In
1783 		 *	both cases destroy the thread and the entry.
1784 		 */
1785 
1786 		/* If func is NULL we should be on the freelist. */
1787 		ASSERT((tqe->tqent_func != NULL) ||
1788 		    (bucket->tqbucket_nfree > 0));
1789 		/* If func is non-NULL we should be allocated */
1790 		ASSERT((tqe->tqent_func == NULL) ||
1791 		    (bucket->tqbucket_nalloc > 0));
1792 
1793 		/* Check freelist consistency */
1794 		ASSERT((bucket->tqbucket_nfree > 0) ||
1795 		    IS_EMPTY(bucket->tqbucket_freelist));
1796 		ASSERT((bucket->tqbucket_nfree == 0) ||
1797 		    !IS_EMPTY(bucket->tqbucket_freelist));
1798 
1799 		if ((tqe->tqent_func == NULL) &&
1800 		    ((w == -1) || (bucket->tqbucket_flags & TQBUCKET_CLOSE))) {
1801 			/*
1802 			 * This thread is sleeping for too long or we are
1803 			 * closing - time to die.
1804 			 * Thread creation/destruction happens rarely,
1805 			 * so grabbing the lock is not a big performance issue.
1806 			 * The bucket lock is dropped by CALLB_CPR_EXIT().
1807 			 */
1808 
1809 			/* Remove the entry from the free list. */
1810 			tqe->tqent_prev->tqent_next = tqe->tqent_next;
1811 			tqe->tqent_next->tqent_prev = tqe->tqent_prev;
1812 			ASSERT(bucket->tqbucket_nfree > 0);
1813 			bucket->tqbucket_nfree--;
1814 
1815 			TQ_STAT(bucket, tqs_tdeaths);
1816 			cv_signal(&bucket->tqbucket_cv);
1817 			tqe->tqent_thread = NULL;
1818 			mutex_enter(&tq->tq_lock);
1819 			tq->tq_tdeaths++;
1820 			mutex_exit(&tq->tq_lock);
1821 			CALLB_CPR_EXIT(&cprinfo);
1822 			kmem_cache_free(taskq_ent_cache, tqe);
1823 			thread_exit();
1824 		}
1825 	}
1826 }
1827 
1828 
1829 /*
1830  * Taskq creation. May sleep for memory.
1831  * Always use automatically generated instances to avoid kstat name space
1832  * collisions.
1833  */
1834 
1835 taskq_t *
1836 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
1837     int maxalloc, uint_t flags)
1838 {
1839 	ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1840 
1841 	return (taskq_create_common(name, 0, nthreads, pri, minalloc,
1842 	    maxalloc, &p0, 0, flags | TASKQ_NOINSTANCE));
1843 }
1844 
1845 /*
1846  * Create an instance of task queue. It is legal to create task queues with the
1847  * same name and different instances.
1848  *
1849  * taskq_create_instance is used by ddi_taskq_create() where it gets the
1850  * instance from ddi_get_instance(). In some cases the instance is not
1851  * initialized and is set to -1. This case is handled as if no instance was
1852  * passed at all.
1853  */
1854 taskq_t *
1855 taskq_create_instance(const char *name, int instance, int nthreads, pri_t pri,
1856     int minalloc, int maxalloc, uint_t flags)
1857 {
1858 	ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1859 	ASSERT((instance >= 0) || (instance == -1));
1860 
1861 	if (instance < 0) {
1862 		flags |= TASKQ_NOINSTANCE;
1863 	}
1864 
1865 	return (taskq_create_common(name, instance, nthreads,
1866 	    pri, minalloc, maxalloc, &p0, 0, flags));
1867 }
1868 
1869 taskq_t *
1870 taskq_create_proc(const char *name, int nthreads, pri_t pri, int minalloc,
1871     int maxalloc, proc_t *proc, uint_t flags)
1872 {
1873 	ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1874 	ASSERT(proc->p_flag & SSYS);
1875 
1876 	return (taskq_create_common(name, 0, nthreads, pri, minalloc,
1877 	    maxalloc, proc, 0, flags | TASKQ_NOINSTANCE));
1878 }
1879 
1880 taskq_t *
1881 taskq_create_sysdc(const char *name, int nthreads, int minalloc,
1882     int maxalloc, proc_t *proc, uint_t dc, uint_t flags)
1883 {
1884 	ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0);
1885 	ASSERT(proc->p_flag & SSYS);
1886 
1887 	return (taskq_create_common(name, 0, nthreads, minclsyspri, minalloc,
1888 	    maxalloc, proc, dc, flags | TASKQ_NOINSTANCE | TASKQ_DUTY_CYCLE));
1889 }
1890 
1891 static taskq_t *
1892 taskq_create_common(const char *name, int instance, int nthreads, pri_t pri,
1893     int minalloc, int maxalloc, proc_t *proc, uint_t dc, uint_t flags)
1894 {
1895 	taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP);
1896 	uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus);
1897 	uint_t bsize;	/* # of buckets - always power of 2 */
1898 	int max_nthreads;
1899 
1900 	/*
1901 	 * TASKQ_DYNAMIC, TASKQ_CPR_SAFE and TASKQ_THREADS_CPU_PCT are all
1902 	 * mutually incompatible.
1903 	 */
1904 	IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_CPR_SAFE));
1905 	IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_THREADS_CPU_PCT));
1906 	IMPLY((flags & TASKQ_CPR_SAFE), !(flags & TASKQ_THREADS_CPU_PCT));
1907 
1908 	/* Cannot have DYNAMIC with DUTY_CYCLE */
1909 	IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_DUTY_CYCLE));
1910 
1911 	/* Cannot have DUTY_CYCLE with a p0 kernel process */
1912 	IMPLY((flags & TASKQ_DUTY_CYCLE), proc != &p0);
1913 
1914 	/* Cannot have DC_BATCH without DUTY_CYCLE */
1915 	ASSERT((flags & (TASKQ_DUTY_CYCLE|TASKQ_DC_BATCH)) != TASKQ_DC_BATCH);
1916 
1917 	ASSERT(proc != NULL);
1918 
1919 	bsize = 1 << (highbit(ncpus) - 1);
1920 	ASSERT(bsize >= 1);
1921 	bsize = MIN(bsize, taskq_maxbuckets);
1922 
1923 	if (flags & TASKQ_DYNAMIC) {
1924 		ASSERT3S(nthreads, >=, 1);
1925 		tq->tq_maxsize = nthreads;
1926 
1927 		/* For dynamic task queues use just one backup thread */
1928 		nthreads = max_nthreads = 1;
1929 
1930 	} else if (flags & TASKQ_THREADS_CPU_PCT) {
1931 		uint_t pct;
1932 		ASSERT3S(nthreads, >=, 0);
1933 		pct = nthreads;
1934 
1935 		if (pct > taskq_cpupct_max_percent)
1936 			pct = taskq_cpupct_max_percent;
1937 
1938 		/*
1939 		 * If you're using THREADS_CPU_PCT, the process for the
1940 		 * taskq threads must be curproc.  This allows any pset
1941 		 * binding to be inherited correctly.  If proc is &p0,
1942 		 * we won't be creating LWPs, so new threads will be assigned
1943 		 * to the default processor set.
1944 		 */
1945 		ASSERT(curproc == proc || proc == &p0);
1946 		tq->tq_threads_ncpus_pct = pct;
1947 		nthreads = 1;		/* corrected in taskq_thread_create() */
1948 		max_nthreads = TASKQ_THREADS_PCT(max_ncpus, pct);
1949 
1950 	} else {
1951 		ASSERT3S(nthreads, >=, 1);
1952 		max_nthreads = nthreads;
1953 	}
1954 
1955 	if (max_nthreads < taskq_minimum_nthreads_max)
1956 		max_nthreads = taskq_minimum_nthreads_max;
1957 
1958 	/*
1959 	 * Make sure the name is 0-terminated, and conforms to the rules for
1960 	 * C indentifiers
1961 	 */
1962 	(void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1);
1963 	strident_canon(tq->tq_name, TASKQ_NAMELEN + 1);
1964 
1965 	tq->tq_flags = flags | TASKQ_CHANGING;
1966 	tq->tq_active = 0;
1967 	tq->tq_instance = instance;
1968 	tq->tq_nthreads_target = nthreads;
1969 	tq->tq_nthreads_max = max_nthreads;
1970 	tq->tq_minalloc = minalloc;
1971 	tq->tq_maxalloc = maxalloc;
1972 	tq->tq_nbuckets = bsize;
1973 	tq->tq_proc = proc;
1974 	tq->tq_pri = pri;
1975 	tq->tq_DC = dc;
1976 	list_link_init(&tq->tq_cpupct_link);
1977 
1978 	if (max_nthreads > 1)
1979 		tq->tq_threadlist = kmem_alloc(
1980 		    sizeof (kthread_t *) * max_nthreads, KM_SLEEP);
1981 
1982 	mutex_enter(&tq->tq_lock);
1983 	if (flags & TASKQ_PREPOPULATE) {
1984 		while (minalloc-- > 0)
1985 			taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
1986 	}
1987 
1988 	/*
1989 	 * Before we start creating threads for this taskq, take a
1990 	 * zone hold so the zone can't go away before taskq_destroy
1991 	 * makes sure all the taskq threads are gone.  This hold is
1992 	 * similar in purpose to those taken by zthread_create().
1993 	 */
1994 	zone_hold(tq->tq_proc->p_zone);
1995 
1996 	/*
1997 	 * Create the first thread, which will create any other threads
1998 	 * necessary.  taskq_thread_create will not return until we have
1999 	 * enough threads to be able to process requests.
2000 	 */
2001 	taskq_thread_create(tq);
2002 	mutex_exit(&tq->tq_lock);
2003 
2004 	if (flags & TASKQ_DYNAMIC) {
2005 		taskq_bucket_t *bucket = kmem_zalloc(sizeof (taskq_bucket_t) *
2006 		    bsize, KM_SLEEP);
2007 		int b_id;
2008 
2009 		tq->tq_buckets = bucket;
2010 
2011 		/* Initialize each bucket */
2012 		for (b_id = 0; b_id < bsize; b_id++, bucket++) {
2013 			mutex_init(&bucket->tqbucket_lock, NULL, MUTEX_DEFAULT,
2014 			    NULL);
2015 			cv_init(&bucket->tqbucket_cv, NULL, CV_DEFAULT, NULL);
2016 			bucket->tqbucket_taskq = tq;
2017 			bucket->tqbucket_freelist.tqent_next =
2018 			    bucket->tqbucket_freelist.tqent_prev =
2019 			    &bucket->tqbucket_freelist;
2020 			if (flags & TASKQ_PREPOPULATE)
2021 				taskq_bucket_extend(bucket);
2022 		}
2023 	}
2024 
2025 	/*
2026 	 * Install kstats.
2027 	 * We have two cases:
2028 	 *   1) Instance is provided to taskq_create_instance(). In this case it
2029 	 *	should be >= 0 and we use it.
2030 	 *
2031 	 *   2) Instance is not provided and is automatically generated
2032 	 */
2033 	if (flags & TASKQ_NOINSTANCE) {
2034 		instance = tq->tq_instance =
2035 		    (int)(uintptr_t)vmem_alloc(taskq_id_arena, 1, VM_SLEEP);
2036 	}
2037 
2038 	if (flags & TASKQ_DYNAMIC) {
2039 		if ((tq->tq_kstat = kstat_create("unix", instance,
2040 		    tq->tq_name, "taskq_d", KSTAT_TYPE_NAMED,
2041 		    sizeof (taskq_d_kstat) / sizeof (kstat_named_t),
2042 		    KSTAT_FLAG_VIRTUAL)) != NULL) {
2043 			tq->tq_kstat->ks_lock = &taskq_d_kstat_lock;
2044 			tq->tq_kstat->ks_data = &taskq_d_kstat;
2045 			tq->tq_kstat->ks_update = taskq_d_kstat_update;
2046 			tq->tq_kstat->ks_private = tq;
2047 			kstat_install(tq->tq_kstat);
2048 		}
2049 	} else {
2050 		if ((tq->tq_kstat = kstat_create("unix", instance, tq->tq_name,
2051 		    "taskq", KSTAT_TYPE_NAMED,
2052 		    sizeof (taskq_kstat) / sizeof (kstat_named_t),
2053 		    KSTAT_FLAG_VIRTUAL)) != NULL) {
2054 			tq->tq_kstat->ks_lock = &taskq_kstat_lock;
2055 			tq->tq_kstat->ks_data = &taskq_kstat;
2056 			tq->tq_kstat->ks_update = taskq_kstat_update;
2057 			tq->tq_kstat->ks_private = tq;
2058 			kstat_install(tq->tq_kstat);
2059 		}
2060 	}
2061 
2062 	return (tq);
2063 }
2064 
2065 /*
2066  * taskq_destroy().
2067  *
2068  * Assumes: by the time taskq_destroy is called no one will use this task queue
2069  * in any way and no one will try to dispatch entries in it.
2070  */
2071 void
2072 taskq_destroy(taskq_t *tq)
2073 {
2074 	taskq_bucket_t *b = tq->tq_buckets;
2075 	int bid = 0;
2076 
2077 	ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE));
2078 
2079 	/*
2080 	 * Destroy kstats.
2081 	 */
2082 	if (tq->tq_kstat != NULL) {
2083 		kstat_delete(tq->tq_kstat);
2084 		tq->tq_kstat = NULL;
2085 	}
2086 
2087 	/*
2088 	 * Destroy instance if needed.
2089 	 */
2090 	if (tq->tq_flags & TASKQ_NOINSTANCE) {
2091 		vmem_free(taskq_id_arena, (void *)(uintptr_t)(tq->tq_instance),
2092 		    1);
2093 		tq->tq_instance = 0;
2094 	}
2095 
2096 	/*
2097 	 * Unregister from the cpupct list.
2098 	 */
2099 	if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) {
2100 		taskq_cpupct_remove(tq);
2101 	}
2102 
2103 	/*
2104 	 * Wait for any pending entries to complete.
2105 	 */
2106 	taskq_wait(tq);
2107 
2108 	mutex_enter(&tq->tq_lock);
2109 	ASSERT((tq->tq_task.tqent_next == &tq->tq_task) &&
2110 	    (tq->tq_active == 0));
2111 
2112 	/* notify all the threads that they need to exit */
2113 	tq->tq_nthreads_target = 0;
2114 
2115 	tq->tq_flags |= TASKQ_CHANGING;
2116 	cv_broadcast(&tq->tq_dispatch_cv);
2117 	cv_broadcast(&tq->tq_exit_cv);
2118 
2119 	while (tq->tq_nthreads != 0)
2120 		cv_wait(&tq->tq_wait_cv, &tq->tq_lock);
2121 
2122 	if (tq->tq_nthreads_max != 1)
2123 		kmem_free(tq->tq_threadlist, sizeof (kthread_t *) *
2124 		    tq->tq_nthreads_max);
2125 
2126 	tq->tq_minalloc = 0;
2127 	while (tq->tq_nalloc != 0)
2128 		taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP));
2129 
2130 	mutex_exit(&tq->tq_lock);
2131 
2132 	/*
2133 	 * Mark each bucket as closing and wakeup all sleeping threads.
2134 	 */
2135 	for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
2136 		taskq_ent_t *tqe;
2137 
2138 		mutex_enter(&b->tqbucket_lock);
2139 
2140 		b->tqbucket_flags |= TQBUCKET_CLOSE;
2141 		/* Wakeup all sleeping threads */
2142 
2143 		for (tqe = b->tqbucket_freelist.tqent_next;
2144 		    tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next)
2145 			cv_signal(&tqe->tqent_cv);
2146 
2147 		ASSERT(b->tqbucket_nalloc == 0);
2148 
2149 		/*
2150 		 * At this point we waited for all pending jobs to complete (in
2151 		 * both the task queue and the bucket and no new jobs should
2152 		 * arrive. Wait for all threads to die.
2153 		 */
2154 		while (b->tqbucket_nfree > 0)
2155 			cv_wait(&b->tqbucket_cv, &b->tqbucket_lock);
2156 		mutex_exit(&b->tqbucket_lock);
2157 		mutex_destroy(&b->tqbucket_lock);
2158 		cv_destroy(&b->tqbucket_cv);
2159 	}
2160 
2161 	if (tq->tq_buckets != NULL) {
2162 		ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
2163 		kmem_free(tq->tq_buckets,
2164 		    sizeof (taskq_bucket_t) * tq->tq_nbuckets);
2165 
2166 		/* Cleanup fields before returning tq to the cache */
2167 		tq->tq_buckets = NULL;
2168 		tq->tq_tcreates = 0;
2169 		tq->tq_tdeaths = 0;
2170 	} else {
2171 		ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
2172 	}
2173 
2174 	/*
2175 	 * Now that all the taskq threads are gone, we can
2176 	 * drop the zone hold taken in taskq_create_common
2177 	 */
2178 	zone_rele(tq->tq_proc->p_zone);
2179 
2180 	tq->tq_threads_ncpus_pct = 0;
2181 	tq->tq_totaltime = 0;
2182 	tq->tq_tasks = 0;
2183 	tq->tq_maxtasks = 0;
2184 	tq->tq_executed = 0;
2185 	kmem_cache_free(taskq_cache, tq);
2186 }
2187 
2188 /*
2189  * Extend a bucket with a new entry on the free list and attach a worker thread
2190  * to it.
2191  *
2192  * Argument: pointer to the bucket.
2193  *
2194  * This function may quietly fail. It is only used by taskq_dispatch() which
2195  * handles such failures properly.
2196  */
2197 static void
2198 taskq_bucket_extend(void *arg)
2199 {
2200 	taskq_ent_t *tqe;
2201 	taskq_bucket_t *b = (taskq_bucket_t *)arg;
2202 	taskq_t *tq = b->tqbucket_taskq;
2203 	int nthreads;
2204 
2205 	mutex_enter(&tq->tq_lock);
2206 
2207 	if (! ENOUGH_MEMORY()) {
2208 		tq->tq_nomem++;
2209 		mutex_exit(&tq->tq_lock);
2210 		return;
2211 	}
2212 
2213 	/*
2214 	 * Observe global taskq limits on the number of threads.
2215 	 */
2216 	if (tq->tq_tcreates++ - tq->tq_tdeaths > tq->tq_maxsize) {
2217 		tq->tq_tcreates--;
2218 		mutex_exit(&tq->tq_lock);
2219 		return;
2220 	}
2221 	mutex_exit(&tq->tq_lock);
2222 
2223 	tqe = kmem_cache_alloc(taskq_ent_cache, KM_NOSLEEP);
2224 
2225 	if (tqe == NULL) {
2226 		mutex_enter(&tq->tq_lock);
2227 		tq->tq_nomem++;
2228 		tq->tq_tcreates--;
2229 		mutex_exit(&tq->tq_lock);
2230 		return;
2231 	}
2232 
2233 	ASSERT(tqe->tqent_thread == NULL);
2234 
2235 	tqe->tqent_un.tqent_bucket = b;
2236 
2237 	/*
2238 	 * Create a thread in a TS_STOPPED state first. If it is successfully
2239 	 * created, place the entry on the free list and start the thread.
2240 	 */
2241 	tqe->tqent_thread = thread_create(NULL, 0, taskq_d_thread, tqe,
2242 	    0, tq->tq_proc, TS_STOPPED, tq->tq_pri);
2243 
2244 	/*
2245 	 * Once the entry is ready, link it to the the bucket free list.
2246 	 */
2247 	mutex_enter(&b->tqbucket_lock);
2248 	tqe->tqent_func = NULL;
2249 	TQ_APPEND(b->tqbucket_freelist, tqe);
2250 	b->tqbucket_nfree++;
2251 	TQ_STAT(b, tqs_tcreates);
2252 
2253 #if TASKQ_STATISTIC
2254 	nthreads = b->tqbucket_stat.tqs_tcreates -
2255 	    b->tqbucket_stat.tqs_tdeaths;
2256 	b->tqbucket_stat.tqs_maxthreads = MAX(nthreads,
2257 	    b->tqbucket_stat.tqs_maxthreads);
2258 #endif
2259 
2260 	mutex_exit(&b->tqbucket_lock);
2261 	/*
2262 	 * Start the stopped thread.
2263 	 */
2264 	thread_lock(tqe->tqent_thread);
2265 	tqe->tqent_thread->t_taskq = tq;
2266 	tqe->tqent_thread->t_schedflag |= TS_ALLSTART;
2267 	setrun_locked(tqe->tqent_thread);
2268 	thread_unlock(tqe->tqent_thread);
2269 }
2270 
2271 static int
2272 taskq_kstat_update(kstat_t *ksp, int rw)
2273 {
2274 	struct taskq_kstat *tqsp = &taskq_kstat;
2275 	taskq_t *tq = ksp->ks_private;
2276 
2277 	if (rw == KSTAT_WRITE)
2278 		return (EACCES);
2279 
2280 	tqsp->tq_pid.value.ui64 = tq->tq_proc->p_pid;
2281 	tqsp->tq_tasks.value.ui64 = tq->tq_tasks;
2282 	tqsp->tq_executed.value.ui64 = tq->tq_executed;
2283 	tqsp->tq_maxtasks.value.ui64 = tq->tq_maxtasks;
2284 	tqsp->tq_totaltime.value.ui64 = tq->tq_totaltime;
2285 	tqsp->tq_nactive.value.ui64 = tq->tq_active;
2286 	tqsp->tq_nalloc.value.ui64 = tq->tq_nalloc;
2287 	tqsp->tq_pri.value.ui64 = tq->tq_pri;
2288 	tqsp->tq_nthreads.value.ui64 = tq->tq_nthreads;
2289 	tqsp->tq_nomem.value.ui64 = tq->tq_nomem;
2290 	return (0);
2291 }
2292 
2293 static int
2294 taskq_d_kstat_update(kstat_t *ksp, int rw)
2295 {
2296 	struct taskq_d_kstat *tqsp = &taskq_d_kstat;
2297 	taskq_t *tq = ksp->ks_private;
2298 	taskq_bucket_t *b = tq->tq_buckets;
2299 	int bid = 0;
2300 
2301 	if (rw == KSTAT_WRITE)
2302 		return (EACCES);
2303 
2304 	ASSERT(tq->tq_flags & TASKQ_DYNAMIC);
2305 
2306 	tqsp->tqd_btasks.value.ui64 = tq->tq_tasks;
2307 	tqsp->tqd_bexecuted.value.ui64 = tq->tq_executed;
2308 	tqsp->tqd_bmaxtasks.value.ui64 = tq->tq_maxtasks;
2309 	tqsp->tqd_bnalloc.value.ui64 = tq->tq_nalloc;
2310 	tqsp->tqd_bnactive.value.ui64 = tq->tq_active;
2311 	tqsp->tqd_btotaltime.value.ui64 = tq->tq_totaltime;
2312 	tqsp->tqd_pri.value.ui64 = tq->tq_pri;
2313 	tqsp->tqd_nomem.value.ui64 = tq->tq_nomem;
2314 
2315 	tqsp->tqd_hits.value.ui64 = 0;
2316 	tqsp->tqd_misses.value.ui64 = 0;
2317 	tqsp->tqd_overflows.value.ui64 = 0;
2318 	tqsp->tqd_tcreates.value.ui64 = 0;
2319 	tqsp->tqd_tdeaths.value.ui64 = 0;
2320 	tqsp->tqd_maxthreads.value.ui64 = 0;
2321 	tqsp->tqd_nomem.value.ui64 = 0;
2322 	tqsp->tqd_disptcreates.value.ui64 = 0;
2323 	tqsp->tqd_totaltime.value.ui64 = 0;
2324 	tqsp->tqd_nalloc.value.ui64 = 0;
2325 	tqsp->tqd_nfree.value.ui64 = 0;
2326 
2327 	for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) {
2328 		tqsp->tqd_hits.value.ui64 += b->tqbucket_stat.tqs_hits;
2329 		tqsp->tqd_misses.value.ui64 += b->tqbucket_stat.tqs_misses;
2330 		tqsp->tqd_overflows.value.ui64 += b->tqbucket_stat.tqs_overflow;
2331 		tqsp->tqd_tcreates.value.ui64 += b->tqbucket_stat.tqs_tcreates;
2332 		tqsp->tqd_tdeaths.value.ui64 += b->tqbucket_stat.tqs_tdeaths;
2333 		tqsp->tqd_maxthreads.value.ui64 +=
2334 		    b->tqbucket_stat.tqs_maxthreads;
2335 		tqsp->tqd_disptcreates.value.ui64 +=
2336 		    b->tqbucket_stat.tqs_disptcreates;
2337 		tqsp->tqd_totaltime.value.ui64 += b->tqbucket_totaltime;
2338 		tqsp->tqd_nalloc.value.ui64 += b->tqbucket_nalloc;
2339 		tqsp->tqd_nfree.value.ui64 += b->tqbucket_nfree;
2340 	}
2341 	return (0);
2342 }
2343