1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 28 * Copyright (c) 2017 by Delphix. All rights reserved. 29 */ 30 31 /* 32 * Kernel task queues: general-purpose asynchronous task scheduling. 33 * 34 * A common problem in kernel programming is the need to schedule tasks 35 * to be performed later, by another thread. There are several reasons 36 * you may want or need to do this: 37 * 38 * (1) The task isn't time-critical, but your current code path is. 39 * 40 * (2) The task may require grabbing locks that you already hold. 41 * 42 * (3) The task may need to block (e.g. to wait for memory), but you 43 * cannot block in your current context. 44 * 45 * (4) Your code path can't complete because of some condition, but you can't 46 * sleep or fail, so you queue the task for later execution when condition 47 * disappears. 48 * 49 * (5) You just want a simple way to launch multiple tasks in parallel. 50 * 51 * Task queues provide such a facility. In its simplest form (used when 52 * performance is not a critical consideration) a task queue consists of a 53 * single list of tasks, together with one or more threads to service the 54 * list. There are some cases when this simple queue is not sufficient: 55 * 56 * (1) The task queues are very hot and there is a need to avoid data and lock 57 * contention over global resources. 58 * 59 * (2) Some tasks may depend on other tasks to complete, so they can't be put in 60 * the same list managed by the same thread. 61 * 62 * (3) Some tasks may block for a long time, and this should not block other 63 * tasks in the queue. 64 * 65 * To provide useful service in such cases we define a "dynamic task queue" 66 * which has an individual thread for each of the tasks. These threads are 67 * dynamically created as they are needed and destroyed when they are not in 68 * use. The API for managing task pools is the same as for managing task queues 69 * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that 70 * dynamic task pool behavior is desired. 71 * 72 * Dynamic task queues may also place tasks in the normal queue (called "backing 73 * queue") when task pool runs out of resources. Users of task queues may 74 * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch 75 * flags. 76 * 77 * The backing task queue is also used for scheduling internal tasks needed for 78 * dynamic task queue maintenance. 79 * 80 * INTERFACES ================================================================== 81 * 82 * taskq_t *taskq_create(name, nthreads, pri, minalloc, maxalloc, flags); 83 * 84 * Create a taskq with specified properties. 85 * Possible 'flags': 86 * 87 * TASKQ_DYNAMIC: Create task pool for task management. If this flag is 88 * specified, 'nthreads' specifies the maximum number of threads in 89 * the task queue. Task execution order for dynamic task queues is 90 * not predictable. 91 * 92 * If this flag is not specified (default case) a 93 * single-list task queue is created with 'nthreads' threads 94 * servicing it. Entries in this queue are managed by 95 * taskq_ent_alloc() and taskq_ent_free() which try to keep the 96 * task population between 'minalloc' and 'maxalloc', but the 97 * latter limit is only advisory for TQ_SLEEP dispatches and the 98 * former limit is only advisory for TQ_NOALLOC dispatches. If 99 * TASKQ_PREPOPULATE is set in 'flags', the taskq will be 100 * prepopulated with 'minalloc' task structures. 101 * 102 * Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be 103 * executed in the order they are scheduled if nthreads == 1. 104 * If nthreads > 1, task execution order is not predictable. 105 * 106 * TASKQ_PREPOPULATE: Prepopulate task queue with threads. 107 * Also prepopulate the task queue with 'minalloc' task structures. 108 * 109 * TASKQ_THREADS_CPU_PCT: This flag specifies that 'nthreads' should be 110 * interpreted as a percentage of the # of online CPUs on the 111 * system. The taskq subsystem will automatically adjust the 112 * number of threads in the taskq in response to CPU online 113 * and offline events, to keep the ratio. nthreads must be in 114 * the range [0,100]. 115 * 116 * The calculation used is: 117 * 118 * MAX((ncpus_online * percentage)/100, 1) 119 * 120 * This flag is not supported for DYNAMIC task queues. 121 * This flag is not compatible with TASKQ_CPR_SAFE. 122 * 123 * TASKQ_CPR_SAFE: This flag specifies that users of the task queue will 124 * use their own protocol for handling CPR issues. This flag is not 125 * supported for DYNAMIC task queues. This flag is not compatible 126 * with TASKQ_THREADS_CPU_PCT. 127 * 128 * The 'pri' field specifies the default priority for the threads that 129 * service all scheduled tasks. 130 * 131 * taskq_t *taskq_create_instance(name, instance, nthreads, pri, minalloc, 132 * maxalloc, flags); 133 * 134 * Like taskq_create(), but takes an instance number (or -1 to indicate 135 * no instance). 136 * 137 * taskq_t *taskq_create_proc(name, nthreads, pri, minalloc, maxalloc, proc, 138 * flags); 139 * 140 * Like taskq_create(), but creates the taskq threads in the specified 141 * system process. If proc != &p0, this must be called from a thread 142 * in that process. 143 * 144 * taskq_t *taskq_create_sysdc(name, nthreads, minalloc, maxalloc, proc, 145 * dc, flags); 146 * 147 * Like taskq_create_proc(), but the taskq threads will use the 148 * System Duty Cycle (SDC) scheduling class with a duty cycle of dc. 149 * 150 * void taskq_destroy(tap): 151 * 152 * Waits for any scheduled tasks to complete, then destroys the taskq. 153 * Caller should guarantee that no new tasks are scheduled in the closing 154 * taskq. 155 * 156 * taskqid_t taskq_dispatch(tq, func, arg, flags): 157 * 158 * Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether 159 * the caller is willing to block for memory. The function returns an 160 * opaque value which is zero iff dispatch fails. If flags is TQ_NOSLEEP 161 * or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails 162 * and returns (taskqid_t)0. 163 * 164 * ASSUMES: func != NULL. 165 * 166 * Possible flags: 167 * TQ_NOSLEEP: Do not wait for resources; may fail. 168 * 169 * TQ_NOALLOC: Do not allocate memory; may fail. May only be used with 170 * non-dynamic task queues. 171 * 172 * TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to 173 * lack of available resources and fail. If this flag is not 174 * set, and the task pool is exhausted, the task may be scheduled 175 * in the backing queue. This flag may ONLY be used with dynamic 176 * task queues. 177 * 178 * NOTE: This flag should always be used when a task queue is used 179 * for tasks that may depend on each other for completion. 180 * Enqueueing dependent tasks may create deadlocks. 181 * 182 * TQ_SLEEP: May block waiting for resources. May still fail for 183 * dynamic task queues if TQ_NOQUEUE is also specified, otherwise 184 * always succeed. 185 * 186 * TQ_FRONT: Puts the new task at the front of the queue. Be careful. 187 * 188 * NOTE: Dynamic task queues are much more likely to fail in 189 * taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it 190 * is important to have backup strategies handling such failures. 191 * 192 * void taskq_dispatch_ent(tq, func, arg, flags, tqent) 193 * 194 * This is a light-weight form of taskq_dispatch(), that uses a 195 * preallocated taskq_ent_t structure for scheduling. As a 196 * result, it does not perform allocations and cannot ever fail. 197 * Note especially that it cannot be used with TASKQ_DYNAMIC 198 * taskqs. The memory for the tqent must not be modified or used 199 * until the function (func) is called. (However, func itself 200 * may safely modify or free this memory, once it is called.) 201 * Note that the taskq framework will NOT free this memory. 202 * 203 * void taskq_wait(tq): 204 * 205 * Waits for all previously scheduled tasks to complete. 206 * 207 * NOTE: It does not stop any new task dispatches. 208 * Do NOT call taskq_wait() from a task: it will cause deadlock. 209 * 210 * void taskq_suspend(tq) 211 * 212 * Suspend all task execution. Tasks already scheduled for a dynamic task 213 * queue will still be executed, but all new scheduled tasks will be 214 * suspended until taskq_resume() is called. 215 * 216 * int taskq_suspended(tq) 217 * 218 * Returns 1 if taskq is suspended and 0 otherwise. It is intended to 219 * ASSERT that the task queue is suspended. 220 * 221 * void taskq_resume(tq) 222 * 223 * Resume task queue execution. 224 * 225 * int taskq_member(tq, thread) 226 * 227 * Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The 228 * intended use is to ASSERT that a given function is called in taskq 229 * context only. 230 * 231 * system_taskq 232 * 233 * Global system-wide dynamic task queue for common uses. It may be used by 234 * any subsystem that needs to schedule tasks and does not need to manage 235 * its own task queues. It is initialized quite early during system boot. 236 * 237 * IMPLEMENTATION ============================================================== 238 * 239 * This is schematic representation of the task queue structures. 240 * 241 * taskq: 242 * +-------------+ 243 * | tq_lock | +---< taskq_ent_free() 244 * +-------------+ | 245 * |... | | tqent: tqent: 246 * +-------------+ | +------------+ +------------+ 247 * | tq_freelist |-->| tqent_next |--> ... ->| tqent_next | 248 * +-------------+ +------------+ +------------+ 249 * |... | | ... | | ... | 250 * +-------------+ +------------+ +------------+ 251 * | tq_task | | 252 * | | +-------------->taskq_ent_alloc() 253 * +--------------------------------------------------------------------------+ 254 * | | | tqent tqent | 255 * | +---------------------+ +--> +------------+ +--> +------------+ | 256 * | | ... | | | func, arg | | | func, arg | | 257 * +>+---------------------+ <---|-+ +------------+ <---|-+ +------------+ | 258 * | tq_taskq.tqent_next | ----+ | | tqent_next | --->+ | | tqent_next |--+ 259 * +---------------------+ | +------------+ ^ | +------------+ 260 * +-| tq_task.tqent_prev | +--| tqent_prev | | +--| tqent_prev | ^ 261 * | +---------------------+ +------------+ | +------------+ | 262 * | |... | | ... | | | ... | | 263 * | +---------------------+ +------------+ | +------------+ | 264 * | ^ | | 265 * | | | | 266 * +--------------------------------------+--------------+ TQ_APPEND() -+ 267 * | | | 268 * |... | taskq_thread()-----+ 269 * +-------------+ 270 * | tq_buckets |--+-------> [ NULL ] (for regular task queues) 271 * +-------------+ | 272 * | DYNAMIC TASK QUEUES: 273 * | 274 * +-> taskq_bucket[nCPU] taskq_bucket_dispatch() 275 * +-------------------+ ^ 276 * +--->| tqbucket_lock | | 277 * | +-------------------+ +--------+ +--------+ 278 * | | tqbucket_freelist |-->| tqent |-->...| tqent | ^ 279 * | +-------------------+<--+--------+<--...+--------+ | 280 * | | ... | | thread | | thread | | 281 * | +-------------------+ +--------+ +--------+ | 282 * | +-------------------+ | 283 * taskq_dispatch()--+--->| tqbucket_lock | TQ_APPEND()------+ 284 * TQ_HASH() | +-------------------+ +--------+ +--------+ 285 * | | tqbucket_freelist |-->| tqent |-->...| tqent | 286 * | +-------------------+<--+--------+<--...+--------+ 287 * | | ... | | thread | | thread | 288 * | +-------------------+ +--------+ +--------+ 289 * +---> ... 290 * 291 * 292 * Task queues use tq_task field to link new entry in the queue. The queue is a 293 * circular doubly-linked list. Entries are put in the end of the list with 294 * TQ_APPEND() and processed from the front of the list by taskq_thread() in 295 * FIFO order. Task queue entries are cached in the free list managed by 296 * taskq_ent_alloc() and taskq_ent_free() functions. 297 * 298 * All threads used by task queues mark t_taskq field of the thread to 299 * point to the task queue. 300 * 301 * Taskq Thread Management ----------------------------------------------------- 302 * 303 * Taskq's non-dynamic threads are managed with several variables and flags: 304 * 305 * * tq_nthreads - The number of threads in taskq_thread() for the 306 * taskq. 307 * 308 * * tq_active - The number of threads not waiting on a CV in 309 * taskq_thread(); includes newly created threads 310 * not yet counted in tq_nthreads. 311 * 312 * * tq_nthreads_target 313 * - The number of threads desired for the taskq. 314 * 315 * * tq_flags & TASKQ_CHANGING 316 * - Indicates that tq_nthreads != tq_nthreads_target. 317 * 318 * * tq_flags & TASKQ_THREAD_CREATED 319 * - Indicates that a thread is being created in the taskq. 320 * 321 * During creation, tq_nthreads and tq_active are set to 0, and 322 * tq_nthreads_target is set to the number of threads desired. The 323 * TASKQ_CHANGING flag is set, and taskq_thread_create() is called to 324 * create the first thread. taskq_thread_create() increments tq_active, 325 * sets TASKQ_THREAD_CREATED, and creates the new thread. 326 * 327 * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED 328 * flag, and increments tq_nthreads. It stores the new value of 329 * tq_nthreads as its "thread_id", and stores its thread pointer in the 330 * tq_threadlist at the (thread_id - 1). We keep the thread_id space 331 * densely packed by requiring that only the largest thread_id can exit during 332 * normal adjustment. The exception is during the destruction of the 333 * taskq; once tq_nthreads_target is set to zero, no new threads will be created 334 * for the taskq queue, so every thread can exit without any ordering being 335 * necessary. 336 * 337 * Threads will only process work if their thread id is <= tq_nthreads_target. 338 * 339 * When TASKQ_CHANGING is set, threads will check the current thread target 340 * whenever they wake up, and do whatever they can to apply its effects. 341 * 342 * TASKQ_THREAD_CPU_PCT -------------------------------------------------------- 343 * 344 * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested 345 * percentage in tq_threads_ncpus_pct, start them off with the correct thread 346 * target, and add them to the taskq_cpupct_list for later adjustment. 347 * 348 * We register taskq_cpu_setup() to be called whenever a CPU changes state. It 349 * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthread_target 350 * if need be, and wakes up all of the threads to process the change. 351 * 352 * Dynamic Task Queues Implementation ------------------------------------------ 353 * 354 * For a dynamic task queues there is a 1-to-1 mapping between a thread and 355 * taskq_ent_structure. Each entry is serviced by its own thread and each thread 356 * is controlled by a single entry. 357 * 358 * Entries are distributed over a set of buckets. To avoid using modulo 359 * arithmetics the number of buckets is 2^n and is determined as the nearest 360 * power of two roundown of the number of CPUs in the system. Tunable 361 * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry 362 * is attached to a bucket for its lifetime and can't migrate to other buckets. 363 * 364 * Entries that have scheduled tasks are not placed in any list. The dispatch 365 * function sets their "func" and "arg" fields and signals the corresponding 366 * thread to execute the task. Once the thread executes the task it clears the 367 * "func" field and places an entry on the bucket cache of free entries pointed 368 * by "tqbucket_freelist" field. ALL entries on the free list should have "func" 369 * field equal to NULL. The free list is a circular doubly-linked list identical 370 * in structure to the tq_task list above, but entries are taken from it in LIFO 371 * order - the last freed entry is the first to be allocated. The 372 * taskq_bucket_dispatch() function gets the most recently used entry from the 373 * free list, sets its "func" and "arg" fields and signals a worker thread. 374 * 375 * After executing each task a per-entry thread taskq_d_thread() places its 376 * entry on the bucket free list and goes to a timed sleep. If it wakes up 377 * without getting new task it removes the entry from the free list and destroys 378 * itself. The thread sleep time is controlled by a tunable variable 379 * `taskq_thread_timeout'. 380 * 381 * There are various statistics kept in the bucket which allows for later 382 * analysis of taskq usage patterns. Also, a global copy of taskq creation and 383 * death statistics is kept in the global taskq data structure. Since thread 384 * creation and death happen rarely, updating such global data does not present 385 * a performance problem. 386 * 387 * NOTE: Threads are not bound to any CPU and there is absolutely no association 388 * between the bucket and actual thread CPU, so buckets are used only to 389 * split resources and reduce resource contention. Having threads attached 390 * to the CPU denoted by a bucket may reduce number of times the job 391 * switches between CPUs. 392 * 393 * Current algorithm creates a thread whenever a bucket has no free 394 * entries. It would be nice to know how many threads are in the running 395 * state and don't create threads if all CPUs are busy with existing 396 * tasks, but it is unclear how such strategy can be implemented. 397 * 398 * Currently buckets are created statically as an array attached to task 399 * queue. On some system with nCPUs < max_ncpus it may waste system 400 * memory. One solution may be allocation of buckets when they are first 401 * touched, but it is not clear how useful it is. 402 * 403 * SUSPEND/RESUME implementation ----------------------------------------------- 404 * 405 * Before executing a task taskq_thread() (executing non-dynamic task 406 * queues) obtains taskq's thread lock as a reader. The taskq_suspend() 407 * function gets the same lock as a writer blocking all non-dynamic task 408 * execution. The taskq_resume() function releases the lock allowing 409 * taskq_thread to continue execution. 410 * 411 * For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by 412 * taskq_suspend() function. After that taskq_bucket_dispatch() always 413 * fails, so that taskq_dispatch() will either enqueue tasks for a 414 * suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch 415 * flags. 416 * 417 * NOTE: taskq_suspend() does not immediately block any tasks already 418 * scheduled for dynamic task queues. It only suspends new tasks 419 * scheduled after taskq_suspend() was called. 420 * 421 * taskq_member() function works by comparing a thread t_taskq pointer with 422 * the passed thread pointer. 423 * 424 * LOCKS and LOCK Hierarchy ---------------------------------------------------- 425 * 426 * There are three locks used in task queues: 427 * 428 * 1) The taskq_t's tq_lock, protecting global task queue state. 429 * 430 * 2) Each per-CPU bucket has a lock for bucket management. 431 * 432 * 3) The global taskq_cpupct_lock, which protects the list of 433 * TASKQ_THREADS_CPU_PCT taskqs. 434 * 435 * If both (1) and (2) are needed, tq_lock should be taken *after* the bucket 436 * lock. 437 * 438 * If both (1) and (3) are needed, tq_lock should be taken *after* 439 * taskq_cpupct_lock. 440 * 441 * DEBUG FACILITIES ------------------------------------------------------------ 442 * 443 * For DEBUG kernels it is possible to induce random failures to 444 * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of 445 * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced 446 * failures for dynamic and static task queues respectively. 447 * 448 * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics. 449 * 450 * TUNABLES -------------------------------------------------------------------- 451 * 452 * system_taskq_size - Size of the global system_taskq. 453 * This value is multiplied by nCPUs to determine 454 * actual size. 455 * Default value: 64 456 * 457 * taskq_minimum_nthreads_max 458 * - Minimum size of the thread list for a taskq. 459 * Useful for testing different thread pool 460 * sizes by overwriting tq_nthreads_target. 461 * 462 * taskq_thread_timeout - Maximum idle time for taskq_d_thread() 463 * Default value: 5 minutes 464 * 465 * taskq_maxbuckets - Maximum number of buckets in any task queue 466 * Default value: 128 467 * 468 * taskq_search_depth - Maximum # of buckets searched for a free entry 469 * Default value: 4 470 * 471 * taskq_dmtbf - Mean time between induced dispatch failures 472 * for dynamic task queues. 473 * Default value: UINT_MAX (no induced failures) 474 * 475 * taskq_smtbf - Mean time between induced dispatch failures 476 * for static task queues. 477 * Default value: UINT_MAX (no induced failures) 478 * 479 * CONDITIONAL compilation ----------------------------------------------------- 480 * 481 * TASKQ_STATISTIC - If set will enable bucket statistic (default). 482 * 483 */ 484 485 #include <sys/taskq_impl.h> 486 #include <sys/thread.h> 487 #include <sys/proc.h> 488 #include <sys/kmem.h> 489 #include <sys/vmem.h> 490 #include <sys/callb.h> 491 #include <sys/class.h> 492 #include <sys/systm.h> 493 #include <sys/cmn_err.h> 494 #include <sys/debug.h> 495 #include <sys/vmsystm.h> /* For throttlefree */ 496 #include <sys/sysmacros.h> 497 #include <sys/cpuvar.h> 498 #include <sys/cpupart.h> 499 #include <sys/sdt.h> 500 #include <sys/sysdc.h> 501 #include <sys/note.h> 502 503 static kmem_cache_t *taskq_ent_cache, *taskq_cache; 504 505 /* 506 * Pseudo instance numbers for taskqs without explicitly provided instance. 507 */ 508 static vmem_t *taskq_id_arena; 509 510 /* Global system task queue for common use */ 511 taskq_t *system_taskq; 512 513 /* 514 * Maximum number of entries in global system taskq is 515 * system_taskq_size * max_ncpus 516 */ 517 #define SYSTEM_TASKQ_SIZE 64 518 int system_taskq_size = SYSTEM_TASKQ_SIZE; 519 520 /* 521 * Minimum size for tq_nthreads_max; useful for those who want to play around 522 * with increasing a taskq's tq_nthreads_target. 523 */ 524 int taskq_minimum_nthreads_max = 1; 525 526 /* 527 * We want to ensure that when taskq_create() returns, there is at least 528 * one thread ready to handle requests. To guarantee this, we have to wait 529 * for the second thread, since the first one cannot process requests until 530 * the second thread has been created. 531 */ 532 #define TASKQ_CREATE_ACTIVE_THREADS 2 533 534 /* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */ 535 #define TASKQ_CPUPCT_MAX_PERCENT 1000 536 int taskq_cpupct_max_percent = TASKQ_CPUPCT_MAX_PERCENT; 537 538 /* 539 * Dynamic task queue threads that don't get any work within 540 * taskq_thread_timeout destroy themselves 541 */ 542 #define TASKQ_THREAD_TIMEOUT (60 * 5) 543 int taskq_thread_timeout = TASKQ_THREAD_TIMEOUT; 544 545 #define TASKQ_MAXBUCKETS 128 546 int taskq_maxbuckets = TASKQ_MAXBUCKETS; 547 548 /* 549 * When a bucket has no available entries another buckets are tried. 550 * taskq_search_depth parameter limits the amount of buckets that we search 551 * before failing. This is mostly useful in systems with many CPUs where we may 552 * spend too much time scanning busy buckets. 553 */ 554 #define TASKQ_SEARCH_DEPTH 4 555 int taskq_search_depth = TASKQ_SEARCH_DEPTH; 556 557 /* 558 * Hashing function: mix various bits of x. May be pretty much anything. 559 */ 560 #define TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27)) 561 562 /* 563 * We do not create any new threads when the system is low on memory and start 564 * throttling memory allocations. The following macro tries to estimate such 565 * condition. 566 */ 567 #define ENOUGH_MEMORY() (freemem > throttlefree) 568 569 /* 570 * Static functions. 571 */ 572 static taskq_t *taskq_create_common(const char *, int, int, pri_t, int, 573 int, proc_t *, uint_t, uint_t); 574 static void taskq_thread(void *); 575 static void taskq_d_thread(taskq_ent_t *); 576 static void taskq_bucket_extend(void *); 577 static int taskq_constructor(void *, void *, int); 578 static void taskq_destructor(void *, void *); 579 static int taskq_ent_constructor(void *, void *, int); 580 static void taskq_ent_destructor(void *, void *); 581 static taskq_ent_t *taskq_ent_alloc(taskq_t *, int); 582 static void taskq_ent_free(taskq_t *, taskq_ent_t *); 583 static int taskq_ent_exists(taskq_t *, task_func_t, void *); 584 static taskq_ent_t *taskq_bucket_dispatch(taskq_bucket_t *, task_func_t, 585 void *); 586 587 /* 588 * Task queues kstats. 589 */ 590 struct taskq_kstat { 591 kstat_named_t tq_pid; 592 kstat_named_t tq_tasks; 593 kstat_named_t tq_executed; 594 kstat_named_t tq_maxtasks; 595 kstat_named_t tq_totaltime; 596 kstat_named_t tq_nalloc; 597 kstat_named_t tq_nactive; 598 kstat_named_t tq_pri; 599 kstat_named_t tq_nthreads; 600 kstat_named_t tq_nomem; 601 } taskq_kstat = { 602 { "pid", KSTAT_DATA_UINT64 }, 603 { "tasks", KSTAT_DATA_UINT64 }, 604 { "executed", KSTAT_DATA_UINT64 }, 605 { "maxtasks", KSTAT_DATA_UINT64 }, 606 { "totaltime", KSTAT_DATA_UINT64 }, 607 { "nalloc", KSTAT_DATA_UINT64 }, 608 { "nactive", KSTAT_DATA_UINT64 }, 609 { "priority", KSTAT_DATA_UINT64 }, 610 { "threads", KSTAT_DATA_UINT64 }, 611 { "nomem", KSTAT_DATA_UINT64 }, 612 }; 613 614 struct taskq_d_kstat { 615 kstat_named_t tqd_pri; 616 kstat_named_t tqd_btasks; 617 kstat_named_t tqd_bexecuted; 618 kstat_named_t tqd_bmaxtasks; 619 kstat_named_t tqd_bnalloc; 620 kstat_named_t tqd_bnactive; 621 kstat_named_t tqd_btotaltime; 622 kstat_named_t tqd_hits; 623 kstat_named_t tqd_misses; 624 kstat_named_t tqd_overflows; 625 kstat_named_t tqd_tcreates; 626 kstat_named_t tqd_tdeaths; 627 kstat_named_t tqd_maxthreads; 628 kstat_named_t tqd_nomem; 629 kstat_named_t tqd_disptcreates; 630 kstat_named_t tqd_totaltime; 631 kstat_named_t tqd_nalloc; 632 kstat_named_t tqd_nfree; 633 } taskq_d_kstat = { 634 { "priority", KSTAT_DATA_UINT64 }, 635 { "btasks", KSTAT_DATA_UINT64 }, 636 { "bexecuted", KSTAT_DATA_UINT64 }, 637 { "bmaxtasks", KSTAT_DATA_UINT64 }, 638 { "bnalloc", KSTAT_DATA_UINT64 }, 639 { "bnactive", KSTAT_DATA_UINT64 }, 640 { "btotaltime", KSTAT_DATA_UINT64 }, 641 { "hits", KSTAT_DATA_UINT64 }, 642 { "misses", KSTAT_DATA_UINT64 }, 643 { "overflows", KSTAT_DATA_UINT64 }, 644 { "tcreates", KSTAT_DATA_UINT64 }, 645 { "tdeaths", KSTAT_DATA_UINT64 }, 646 { "maxthreads", KSTAT_DATA_UINT64 }, 647 { "nomem", KSTAT_DATA_UINT64 }, 648 { "disptcreates", KSTAT_DATA_UINT64 }, 649 { "totaltime", KSTAT_DATA_UINT64 }, 650 { "nalloc", KSTAT_DATA_UINT64 }, 651 { "nfree", KSTAT_DATA_UINT64 }, 652 }; 653 654 static kmutex_t taskq_kstat_lock; 655 static kmutex_t taskq_d_kstat_lock; 656 static int taskq_kstat_update(kstat_t *, int); 657 static int taskq_d_kstat_update(kstat_t *, int); 658 659 /* 660 * List of all TASKQ_THREADS_CPU_PCT taskqs. 661 */ 662 static list_t taskq_cpupct_list; /* protected by cpu_lock */ 663 664 /* 665 * Collect per-bucket statistic when TASKQ_STATISTIC is defined. 666 */ 667 #define TASKQ_STATISTIC 1 668 669 #if TASKQ_STATISTIC 670 #define TQ_STAT(b, x) b->tqbucket_stat.x++ 671 #else 672 #define TQ_STAT(b, x) 673 #endif 674 675 /* 676 * Random fault injection. 677 */ 678 uint_t taskq_random; 679 uint_t taskq_dmtbf = UINT_MAX; /* mean time between injected failures */ 680 uint_t taskq_smtbf = UINT_MAX; /* mean time between injected failures */ 681 682 /* 683 * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail. 684 * 685 * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because 686 * they could prepopulate the cache and make sure that they do not use more 687 * then minalloc entries. So, fault injection in this case insures that 688 * either TASKQ_PREPOPULATE is not set or there are more entries allocated 689 * than is specified by minalloc. TQ_NOALLOC dispatches are always allowed 690 * to fail, but for simplicity we treat them identically to TQ_NOSLEEP 691 * dispatches. 692 */ 693 #ifdef DEBUG 694 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag) \ 695 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\ 696 if ((flag & TQ_NOSLEEP) && \ 697 taskq_random < 1771875 / taskq_dmtbf) { \ 698 return (NULL); \ 699 } 700 701 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag) \ 702 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\ 703 if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) && \ 704 (!(tq->tq_flags & TASKQ_PREPOPULATE) || \ 705 (tq->tq_nalloc > tq->tq_minalloc)) && \ 706 (taskq_random < (1771875 / taskq_smtbf))) { \ 707 mutex_exit(&tq->tq_lock); \ 708 return (NULL); \ 709 } 710 #else 711 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag) 712 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag) 713 #endif 714 715 #define IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) && \ 716 ((l).tqent_prev == &(l))) 717 718 /* 719 * Append `tqe' in the end of the doubly-linked list denoted by l. 720 */ 721 #define TQ_APPEND(l, tqe) { \ 722 tqe->tqent_next = &l; \ 723 tqe->tqent_prev = l.tqent_prev; \ 724 tqe->tqent_next->tqent_prev = tqe; \ 725 tqe->tqent_prev->tqent_next = tqe; \ 726 } 727 /* 728 * Prepend 'tqe' to the beginning of l 729 */ 730 #define TQ_PREPEND(l, tqe) { \ 731 tqe->tqent_next = l.tqent_next; \ 732 tqe->tqent_prev = &l; \ 733 tqe->tqent_next->tqent_prev = tqe; \ 734 tqe->tqent_prev->tqent_next = tqe; \ 735 } 736 737 /* 738 * Schedule a task specified by func and arg into the task queue entry tqe. 739 */ 740 #define TQ_DO_ENQUEUE(tq, tqe, func, arg, front) { \ 741 ASSERT(MUTEX_HELD(&tq->tq_lock)); \ 742 _NOTE(CONSTCOND) \ 743 if (front) { \ 744 TQ_PREPEND(tq->tq_task, tqe); \ 745 } else { \ 746 TQ_APPEND(tq->tq_task, tqe); \ 747 } \ 748 tqe->tqent_func = (func); \ 749 tqe->tqent_arg = (arg); \ 750 tq->tq_tasks++; \ 751 if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks) \ 752 tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed; \ 753 cv_signal(&tq->tq_dispatch_cv); \ 754 DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \ 755 } 756 757 #define TQ_ENQUEUE(tq, tqe, func, arg) \ 758 TQ_DO_ENQUEUE(tq, tqe, func, arg, 0) 759 760 #define TQ_ENQUEUE_FRONT(tq, tqe, func, arg) \ 761 TQ_DO_ENQUEUE(tq, tqe, func, arg, 1) 762 763 /* 764 * Do-nothing task which may be used to prepopulate thread caches. 765 */ 766 /*ARGSUSED*/ 767 void 768 nulltask(void *unused) 769 { 770 } 771 772 /*ARGSUSED*/ 773 static int 774 taskq_constructor(void *buf, void *cdrarg, int kmflags) 775 { 776 taskq_t *tq = buf; 777 778 bzero(tq, sizeof (taskq_t)); 779 780 mutex_init(&tq->tq_lock, NULL, MUTEX_DEFAULT, NULL); 781 rw_init(&tq->tq_threadlock, NULL, RW_DEFAULT, NULL); 782 cv_init(&tq->tq_dispatch_cv, NULL, CV_DEFAULT, NULL); 783 cv_init(&tq->tq_exit_cv, NULL, CV_DEFAULT, NULL); 784 cv_init(&tq->tq_wait_cv, NULL, CV_DEFAULT, NULL); 785 cv_init(&tq->tq_maxalloc_cv, NULL, CV_DEFAULT, NULL); 786 787 tq->tq_task.tqent_next = &tq->tq_task; 788 tq->tq_task.tqent_prev = &tq->tq_task; 789 790 return (0); 791 } 792 793 /*ARGSUSED*/ 794 static void 795 taskq_destructor(void *buf, void *cdrarg) 796 { 797 taskq_t *tq = buf; 798 799 ASSERT(tq->tq_nthreads == 0); 800 ASSERT(tq->tq_buckets == NULL); 801 ASSERT(tq->tq_tcreates == 0); 802 ASSERT(tq->tq_tdeaths == 0); 803 804 mutex_destroy(&tq->tq_lock); 805 rw_destroy(&tq->tq_threadlock); 806 cv_destroy(&tq->tq_dispatch_cv); 807 cv_destroy(&tq->tq_exit_cv); 808 cv_destroy(&tq->tq_wait_cv); 809 cv_destroy(&tq->tq_maxalloc_cv); 810 } 811 812 /*ARGSUSED*/ 813 static int 814 taskq_ent_constructor(void *buf, void *cdrarg, int kmflags) 815 { 816 taskq_ent_t *tqe = buf; 817 818 tqe->tqent_thread = NULL; 819 cv_init(&tqe->tqent_cv, NULL, CV_DEFAULT, NULL); 820 821 return (0); 822 } 823 824 /*ARGSUSED*/ 825 static void 826 taskq_ent_destructor(void *buf, void *cdrarg) 827 { 828 taskq_ent_t *tqe = buf; 829 830 ASSERT(tqe->tqent_thread == NULL); 831 cv_destroy(&tqe->tqent_cv); 832 } 833 834 void 835 taskq_init(void) 836 { 837 taskq_ent_cache = kmem_cache_create("taskq_ent_cache", 838 sizeof (taskq_ent_t), 0, taskq_ent_constructor, 839 taskq_ent_destructor, NULL, NULL, NULL, 0); 840 taskq_cache = kmem_cache_create("taskq_cache", sizeof (taskq_t), 841 0, taskq_constructor, taskq_destructor, NULL, NULL, NULL, 0); 842 taskq_id_arena = vmem_create("taskq_id_arena", 843 (void *)1, INT32_MAX, 1, NULL, NULL, NULL, 0, 844 VM_SLEEP | VMC_IDENTIFIER); 845 846 list_create(&taskq_cpupct_list, sizeof (taskq_t), 847 offsetof(taskq_t, tq_cpupct_link)); 848 } 849 850 static void 851 taskq_update_nthreads(taskq_t *tq, uint_t ncpus) 852 { 853 uint_t newtarget = TASKQ_THREADS_PCT(ncpus, tq->tq_threads_ncpus_pct); 854 855 ASSERT(MUTEX_HELD(&cpu_lock)); 856 ASSERT(MUTEX_HELD(&tq->tq_lock)); 857 858 /* We must be going from non-zero to non-zero; no exiting. */ 859 ASSERT3U(tq->tq_nthreads_target, !=, 0); 860 ASSERT3U(newtarget, !=, 0); 861 862 ASSERT3U(newtarget, <=, tq->tq_nthreads_max); 863 if (newtarget != tq->tq_nthreads_target) { 864 tq->tq_flags |= TASKQ_CHANGING; 865 tq->tq_nthreads_target = newtarget; 866 cv_broadcast(&tq->tq_dispatch_cv); 867 cv_broadcast(&tq->tq_exit_cv); 868 } 869 } 870 871 /* called during task queue creation */ 872 static void 873 taskq_cpupct_install(taskq_t *tq, cpupart_t *cpup) 874 { 875 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT); 876 877 mutex_enter(&cpu_lock); 878 mutex_enter(&tq->tq_lock); 879 tq->tq_cpupart = cpup->cp_id; 880 taskq_update_nthreads(tq, cpup->cp_ncpus); 881 mutex_exit(&tq->tq_lock); 882 883 list_insert_tail(&taskq_cpupct_list, tq); 884 mutex_exit(&cpu_lock); 885 } 886 887 static void 888 taskq_cpupct_remove(taskq_t *tq) 889 { 890 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT); 891 892 mutex_enter(&cpu_lock); 893 list_remove(&taskq_cpupct_list, tq); 894 mutex_exit(&cpu_lock); 895 } 896 897 /*ARGSUSED*/ 898 static int 899 taskq_cpu_setup(cpu_setup_t what, int id, void *arg) 900 { 901 taskq_t *tq; 902 cpupart_t *cp = cpu[id]->cpu_part; 903 uint_t ncpus = cp->cp_ncpus; 904 905 ASSERT(MUTEX_HELD(&cpu_lock)); 906 ASSERT(ncpus > 0); 907 908 switch (what) { 909 case CPU_OFF: 910 case CPU_CPUPART_OUT: 911 /* offlines are called *before* the cpu is offlined. */ 912 if (ncpus > 1) 913 ncpus--; 914 break; 915 916 case CPU_ON: 917 case CPU_CPUPART_IN: 918 break; 919 920 default: 921 return (0); /* doesn't affect cpu count */ 922 } 923 924 for (tq = list_head(&taskq_cpupct_list); tq != NULL; 925 tq = list_next(&taskq_cpupct_list, tq)) { 926 927 mutex_enter(&tq->tq_lock); 928 /* 929 * If the taskq is part of the cpuset which is changing, 930 * update its nthreads_target. 931 */ 932 if (tq->tq_cpupart == cp->cp_id) { 933 taskq_update_nthreads(tq, ncpus); 934 } 935 mutex_exit(&tq->tq_lock); 936 } 937 return (0); 938 } 939 940 void 941 taskq_mp_init(void) 942 { 943 mutex_enter(&cpu_lock); 944 register_cpu_setup_func(taskq_cpu_setup, NULL); 945 /* 946 * Make sure we're up to date. At this point in boot, there is only 947 * one processor set, so we only have to update the current CPU. 948 */ 949 (void) taskq_cpu_setup(CPU_ON, CPU->cpu_id, NULL); 950 mutex_exit(&cpu_lock); 951 } 952 953 /* 954 * Create global system dynamic task queue. 955 */ 956 void 957 system_taskq_init(void) 958 { 959 system_taskq = taskq_create_common("system_taskq", 0, 960 system_taskq_size * max_ncpus, minclsyspri, 4, 512, &p0, 0, 961 TASKQ_DYNAMIC | TASKQ_PREPOPULATE); 962 } 963 964 /* 965 * taskq_ent_alloc() 966 * 967 * Allocates a new taskq_ent_t structure either from the free list or from the 968 * cache. Returns NULL if it can't be allocated. 969 * 970 * Assumes: tq->tq_lock is held. 971 */ 972 static taskq_ent_t * 973 taskq_ent_alloc(taskq_t *tq, int flags) 974 { 975 int kmflags = (flags & TQ_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 976 taskq_ent_t *tqe; 977 clock_t wait_time; 978 clock_t wait_rv; 979 980 ASSERT(MUTEX_HELD(&tq->tq_lock)); 981 982 /* 983 * TQ_NOALLOC allocations are allowed to use the freelist, even if 984 * we are below tq_minalloc. 985 */ 986 again: if ((tqe = tq->tq_freelist) != NULL && 987 ((flags & TQ_NOALLOC) || tq->tq_nalloc >= tq->tq_minalloc)) { 988 tq->tq_freelist = tqe->tqent_next; 989 } else { 990 if (flags & TQ_NOALLOC) 991 return (NULL); 992 993 if (tq->tq_nalloc >= tq->tq_maxalloc) { 994 if (kmflags & KM_NOSLEEP) 995 return (NULL); 996 997 /* 998 * We don't want to exceed tq_maxalloc, but we can't 999 * wait for other tasks to complete (and thus free up 1000 * task structures) without risking deadlock with 1001 * the caller. So, we just delay for one second 1002 * to throttle the allocation rate. If we have tasks 1003 * complete before one second timeout expires then 1004 * taskq_ent_free will signal us and we will 1005 * immediately retry the allocation (reap free). 1006 */ 1007 wait_time = ddi_get_lbolt() + hz; 1008 while (tq->tq_freelist == NULL) { 1009 tq->tq_maxalloc_wait++; 1010 wait_rv = cv_timedwait(&tq->tq_maxalloc_cv, 1011 &tq->tq_lock, wait_time); 1012 tq->tq_maxalloc_wait--; 1013 if (wait_rv == -1) 1014 break; 1015 } 1016 if (tq->tq_freelist) 1017 goto again; /* reap freelist */ 1018 1019 } 1020 mutex_exit(&tq->tq_lock); 1021 1022 tqe = kmem_cache_alloc(taskq_ent_cache, kmflags); 1023 1024 mutex_enter(&tq->tq_lock); 1025 if (tqe != NULL) 1026 tq->tq_nalloc++; 1027 } 1028 return (tqe); 1029 } 1030 1031 /* 1032 * taskq_ent_free() 1033 * 1034 * Free taskq_ent_t structure by either putting it on the free list or freeing 1035 * it to the cache. 1036 * 1037 * Assumes: tq->tq_lock is held. 1038 */ 1039 static void 1040 taskq_ent_free(taskq_t *tq, taskq_ent_t *tqe) 1041 { 1042 ASSERT(MUTEX_HELD(&tq->tq_lock)); 1043 1044 if (tq->tq_nalloc <= tq->tq_minalloc) { 1045 tqe->tqent_next = tq->tq_freelist; 1046 tq->tq_freelist = tqe; 1047 } else { 1048 tq->tq_nalloc--; 1049 mutex_exit(&tq->tq_lock); 1050 kmem_cache_free(taskq_ent_cache, tqe); 1051 mutex_enter(&tq->tq_lock); 1052 } 1053 1054 if (tq->tq_maxalloc_wait) 1055 cv_signal(&tq->tq_maxalloc_cv); 1056 } 1057 1058 /* 1059 * taskq_ent_exists() 1060 * 1061 * Return 1 if taskq already has entry for calling 'func(arg)'. 1062 * 1063 * Assumes: tq->tq_lock is held. 1064 */ 1065 static int 1066 taskq_ent_exists(taskq_t *tq, task_func_t func, void *arg) 1067 { 1068 taskq_ent_t *tqe; 1069 1070 ASSERT(MUTEX_HELD(&tq->tq_lock)); 1071 1072 for (tqe = tq->tq_task.tqent_next; tqe != &tq->tq_task; 1073 tqe = tqe->tqent_next) 1074 if ((tqe->tqent_func == func) && (tqe->tqent_arg == arg)) 1075 return (1); 1076 return (0); 1077 } 1078 1079 /* 1080 * Dispatch a task "func(arg)" to a free entry of bucket b. 1081 * 1082 * Assumes: no bucket locks is held. 1083 * 1084 * Returns: a pointer to an entry if dispatch was successful. 1085 * NULL if there are no free entries or if the bucket is suspended. 1086 */ 1087 static taskq_ent_t * 1088 taskq_bucket_dispatch(taskq_bucket_t *b, task_func_t func, void *arg) 1089 { 1090 taskq_ent_t *tqe; 1091 1092 ASSERT(MUTEX_NOT_HELD(&b->tqbucket_lock)); 1093 ASSERT(func != NULL); 1094 1095 mutex_enter(&b->tqbucket_lock); 1096 1097 ASSERT(b->tqbucket_nfree != 0 || IS_EMPTY(b->tqbucket_freelist)); 1098 ASSERT(b->tqbucket_nfree == 0 || !IS_EMPTY(b->tqbucket_freelist)); 1099 1100 /* 1101 * Get en entry from the freelist if there is one. 1102 * Schedule task into the entry. 1103 */ 1104 if ((b->tqbucket_nfree != 0) && 1105 !(b->tqbucket_flags & TQBUCKET_SUSPEND)) { 1106 tqe = b->tqbucket_freelist.tqent_prev; 1107 1108 ASSERT(tqe != &b->tqbucket_freelist); 1109 ASSERT(tqe->tqent_thread != NULL); 1110 1111 tqe->tqent_prev->tqent_next = tqe->tqent_next; 1112 tqe->tqent_next->tqent_prev = tqe->tqent_prev; 1113 b->tqbucket_nalloc++; 1114 b->tqbucket_nfree--; 1115 tqe->tqent_func = func; 1116 tqe->tqent_arg = arg; 1117 TQ_STAT(b, tqs_hits); 1118 cv_signal(&tqe->tqent_cv); 1119 DTRACE_PROBE2(taskq__d__enqueue, taskq_bucket_t *, b, 1120 taskq_ent_t *, tqe); 1121 } else { 1122 tqe = NULL; 1123 TQ_STAT(b, tqs_misses); 1124 } 1125 mutex_exit(&b->tqbucket_lock); 1126 return (tqe); 1127 } 1128 1129 /* 1130 * Dispatch a task. 1131 * 1132 * Assumes: func != NULL 1133 * 1134 * Returns: NULL if dispatch failed. 1135 * non-NULL if task dispatched successfully. 1136 * Actual return value is the pointer to taskq entry that was used to 1137 * dispatch a task. This is useful for debugging. 1138 */ 1139 taskqid_t 1140 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags) 1141 { 1142 taskq_bucket_t *bucket = NULL; /* Which bucket needs extension */ 1143 taskq_ent_t *tqe = NULL; 1144 taskq_ent_t *tqe1; 1145 uint_t bsize; 1146 1147 ASSERT(tq != NULL); 1148 ASSERT(func != NULL); 1149 1150 if (!(tq->tq_flags & TASKQ_DYNAMIC)) { 1151 /* 1152 * TQ_NOQUEUE flag can't be used with non-dynamic task queues. 1153 */ 1154 ASSERT(!(flags & TQ_NOQUEUE)); 1155 /* 1156 * Enqueue the task to the underlying queue. 1157 */ 1158 mutex_enter(&tq->tq_lock); 1159 1160 TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flags); 1161 1162 if ((tqe = taskq_ent_alloc(tq, flags)) == NULL) { 1163 tq->tq_nomem++; 1164 mutex_exit(&tq->tq_lock); 1165 return (NULL); 1166 } 1167 /* Make sure we start without any flags */ 1168 tqe->tqent_un.tqent_flags = 0; 1169 1170 if (flags & TQ_FRONT) { 1171 TQ_ENQUEUE_FRONT(tq, tqe, func, arg); 1172 } else { 1173 TQ_ENQUEUE(tq, tqe, func, arg); 1174 } 1175 mutex_exit(&tq->tq_lock); 1176 return ((taskqid_t)tqe); 1177 } 1178 1179 /* 1180 * Dynamic taskq dispatching. 1181 */ 1182 ASSERT(!(flags & (TQ_NOALLOC | TQ_FRONT))); 1183 TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flags); 1184 1185 bsize = tq->tq_nbuckets; 1186 1187 if (bsize == 1) { 1188 /* 1189 * In a single-CPU case there is only one bucket, so get 1190 * entry directly from there. 1191 */ 1192 if ((tqe = taskq_bucket_dispatch(tq->tq_buckets, func, arg)) 1193 != NULL) 1194 return ((taskqid_t)tqe); /* Fastpath */ 1195 bucket = tq->tq_buckets; 1196 } else { 1197 int loopcount; 1198 taskq_bucket_t *b; 1199 uintptr_t h = ((uintptr_t)CPU + (uintptr_t)arg) >> 3; 1200 1201 h = TQ_HASH(h); 1202 1203 /* 1204 * The 'bucket' points to the original bucket that we hit. If we 1205 * can't allocate from it, we search other buckets, but only 1206 * extend this one. 1207 */ 1208 b = &tq->tq_buckets[h & (bsize - 1)]; 1209 ASSERT(b->tqbucket_taskq == tq); /* Sanity check */ 1210 1211 /* 1212 * Do a quick check before grabbing the lock. If the bucket does 1213 * not have free entries now, chances are very small that it 1214 * will after we take the lock, so we just skip it. 1215 */ 1216 if (b->tqbucket_nfree != 0) { 1217 if ((tqe = taskq_bucket_dispatch(b, func, arg)) != NULL) 1218 return ((taskqid_t)tqe); /* Fastpath */ 1219 } else { 1220 TQ_STAT(b, tqs_misses); 1221 } 1222 1223 bucket = b; 1224 loopcount = MIN(taskq_search_depth, bsize); 1225 /* 1226 * If bucket dispatch failed, search loopcount number of buckets 1227 * before we give up and fail. 1228 */ 1229 do { 1230 b = &tq->tq_buckets[++h & (bsize - 1)]; 1231 ASSERT(b->tqbucket_taskq == tq); /* Sanity check */ 1232 loopcount--; 1233 1234 if (b->tqbucket_nfree != 0) { 1235 tqe = taskq_bucket_dispatch(b, func, arg); 1236 } else { 1237 TQ_STAT(b, tqs_misses); 1238 } 1239 } while ((tqe == NULL) && (loopcount > 0)); 1240 } 1241 1242 /* 1243 * At this point we either scheduled a task and (tqe != NULL) or failed 1244 * (tqe == NULL). Try to recover from fails. 1245 */ 1246 1247 /* 1248 * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch. 1249 */ 1250 if ((tqe == NULL) && !(flags & TQ_NOSLEEP)) { 1251 /* 1252 * taskq_bucket_extend() may fail to do anything, but this is 1253 * fine - we deal with it later. If the bucket was successfully 1254 * extended, there is a good chance that taskq_bucket_dispatch() 1255 * will get this new entry, unless someone is racing with us and 1256 * stealing the new entry from under our nose. 1257 * taskq_bucket_extend() may sleep. 1258 */ 1259 taskq_bucket_extend(bucket); 1260 TQ_STAT(bucket, tqs_disptcreates); 1261 if ((tqe = taskq_bucket_dispatch(bucket, func, arg)) != NULL) 1262 return ((taskqid_t)tqe); 1263 } 1264 1265 ASSERT(bucket != NULL); 1266 1267 /* 1268 * Since there are not enough free entries in the bucket, add a 1269 * taskq entry to extend it in the background using backing queue 1270 * (unless we already have a taskq entry to perform that extension). 1271 */ 1272 mutex_enter(&tq->tq_lock); 1273 if (!taskq_ent_exists(tq, taskq_bucket_extend, bucket)) { 1274 if ((tqe1 = taskq_ent_alloc(tq, TQ_NOSLEEP)) != NULL) { 1275 TQ_ENQUEUE_FRONT(tq, tqe1, taskq_bucket_extend, bucket); 1276 } else { 1277 tq->tq_nomem++; 1278 } 1279 } 1280 1281 /* 1282 * Dispatch failed and we can't find an entry to schedule a task. 1283 * Revert to the backing queue unless TQ_NOQUEUE was asked. 1284 */ 1285 if ((tqe == NULL) && !(flags & TQ_NOQUEUE)) { 1286 if ((tqe = taskq_ent_alloc(tq, flags)) != NULL) { 1287 TQ_ENQUEUE(tq, tqe, func, arg); 1288 } else { 1289 tq->tq_nomem++; 1290 } 1291 } 1292 mutex_exit(&tq->tq_lock); 1293 1294 return ((taskqid_t)tqe); 1295 } 1296 1297 void 1298 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags, 1299 taskq_ent_t *tqe) 1300 { 1301 ASSERT(func != NULL); 1302 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC)); 1303 1304 /* 1305 * Mark it as a prealloc'd task. This is important 1306 * to ensure that we don't free it later. 1307 */ 1308 tqe->tqent_un.tqent_flags |= TQENT_FLAG_PREALLOC; 1309 /* 1310 * Enqueue the task to the underlying queue. 1311 */ 1312 mutex_enter(&tq->tq_lock); 1313 1314 if (flags & TQ_FRONT) { 1315 TQ_ENQUEUE_FRONT(tq, tqe, func, arg); 1316 } else { 1317 TQ_ENQUEUE(tq, tqe, func, arg); 1318 } 1319 mutex_exit(&tq->tq_lock); 1320 } 1321 1322 /* 1323 * Wait for all pending tasks to complete. 1324 * Calling taskq_wait from a task will cause deadlock. 1325 */ 1326 void 1327 taskq_wait(taskq_t *tq) 1328 { 1329 ASSERT(tq != curthread->t_taskq); 1330 1331 mutex_enter(&tq->tq_lock); 1332 while (tq->tq_task.tqent_next != &tq->tq_task || tq->tq_active != 0) 1333 cv_wait(&tq->tq_wait_cv, &tq->tq_lock); 1334 mutex_exit(&tq->tq_lock); 1335 1336 if (tq->tq_flags & TASKQ_DYNAMIC) { 1337 taskq_bucket_t *b = tq->tq_buckets; 1338 int bid = 0; 1339 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 1340 mutex_enter(&b->tqbucket_lock); 1341 while (b->tqbucket_nalloc > 0) 1342 cv_wait(&b->tqbucket_cv, &b->tqbucket_lock); 1343 mutex_exit(&b->tqbucket_lock); 1344 } 1345 } 1346 } 1347 1348 /* 1349 * Suspend execution of tasks. 1350 * 1351 * Tasks in the queue part will be suspended immediately upon return from this 1352 * function. Pending tasks in the dynamic part will continue to execute, but all 1353 * new tasks will be suspended. 1354 */ 1355 void 1356 taskq_suspend(taskq_t *tq) 1357 { 1358 rw_enter(&tq->tq_threadlock, RW_WRITER); 1359 1360 if (tq->tq_flags & TASKQ_DYNAMIC) { 1361 taskq_bucket_t *b = tq->tq_buckets; 1362 int bid = 0; 1363 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 1364 mutex_enter(&b->tqbucket_lock); 1365 b->tqbucket_flags |= TQBUCKET_SUSPEND; 1366 mutex_exit(&b->tqbucket_lock); 1367 } 1368 } 1369 /* 1370 * Mark task queue as being suspended. Needed for taskq_suspended(). 1371 */ 1372 mutex_enter(&tq->tq_lock); 1373 ASSERT(!(tq->tq_flags & TASKQ_SUSPENDED)); 1374 tq->tq_flags |= TASKQ_SUSPENDED; 1375 mutex_exit(&tq->tq_lock); 1376 } 1377 1378 /* 1379 * returns: 1 if tq is suspended, 0 otherwise. 1380 */ 1381 int 1382 taskq_suspended(taskq_t *tq) 1383 { 1384 return ((tq->tq_flags & TASKQ_SUSPENDED) != 0); 1385 } 1386 1387 /* 1388 * Resume taskq execution. 1389 */ 1390 void 1391 taskq_resume(taskq_t *tq) 1392 { 1393 ASSERT(RW_WRITE_HELD(&tq->tq_threadlock)); 1394 1395 if (tq->tq_flags & TASKQ_DYNAMIC) { 1396 taskq_bucket_t *b = tq->tq_buckets; 1397 int bid = 0; 1398 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 1399 mutex_enter(&b->tqbucket_lock); 1400 b->tqbucket_flags &= ~TQBUCKET_SUSPEND; 1401 mutex_exit(&b->tqbucket_lock); 1402 } 1403 } 1404 mutex_enter(&tq->tq_lock); 1405 ASSERT(tq->tq_flags & TASKQ_SUSPENDED); 1406 tq->tq_flags &= ~TASKQ_SUSPENDED; 1407 mutex_exit(&tq->tq_lock); 1408 1409 rw_exit(&tq->tq_threadlock); 1410 } 1411 1412 int 1413 taskq_member(taskq_t *tq, kthread_t *thread) 1414 { 1415 return (thread->t_taskq == tq); 1416 } 1417 1418 /* 1419 * Creates a thread in the taskq. We only allow one outstanding create at 1420 * a time. We drop and reacquire the tq_lock in order to avoid blocking other 1421 * taskq activity while thread_create() or lwp_kernel_create() run. 1422 * 1423 * The first time we're called, we do some additional setup, and do not 1424 * return until there are enough threads to start servicing requests. 1425 */ 1426 static void 1427 taskq_thread_create(taskq_t *tq) 1428 { 1429 kthread_t *t; 1430 const boolean_t first = (tq->tq_nthreads == 0); 1431 1432 ASSERT(MUTEX_HELD(&tq->tq_lock)); 1433 ASSERT(tq->tq_flags & TASKQ_CHANGING); 1434 ASSERT(tq->tq_nthreads < tq->tq_nthreads_target); 1435 ASSERT(!(tq->tq_flags & TASKQ_THREAD_CREATED)); 1436 1437 1438 tq->tq_flags |= TASKQ_THREAD_CREATED; 1439 tq->tq_active++; 1440 mutex_exit(&tq->tq_lock); 1441 1442 /* 1443 * With TASKQ_DUTY_CYCLE the new thread must have an LWP 1444 * as explained in ../disp/sysdc.c (for the msacct data). 1445 * Otherwise simple kthreads are preferred. 1446 */ 1447 if ((tq->tq_flags & TASKQ_DUTY_CYCLE) != 0) { 1448 /* Enforced in taskq_create_common */ 1449 ASSERT3P(tq->tq_proc, !=, &p0); 1450 t = lwp_kernel_create(tq->tq_proc, taskq_thread, tq, TS_RUN, 1451 tq->tq_pri); 1452 } else { 1453 t = thread_create(NULL, 0, taskq_thread, tq, 0, tq->tq_proc, 1454 TS_RUN, tq->tq_pri); 1455 } 1456 1457 if (!first) { 1458 mutex_enter(&tq->tq_lock); 1459 return; 1460 } 1461 1462 /* 1463 * We know the thread cannot go away, since tq cannot be 1464 * destroyed until creation has completed. We can therefore 1465 * safely dereference t. 1466 */ 1467 if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) { 1468 taskq_cpupct_install(tq, t->t_cpupart); 1469 } 1470 mutex_enter(&tq->tq_lock); 1471 1472 /* Wait until we can service requests. */ 1473 while (tq->tq_nthreads != tq->tq_nthreads_target && 1474 tq->tq_nthreads < TASKQ_CREATE_ACTIVE_THREADS) { 1475 cv_wait(&tq->tq_wait_cv, &tq->tq_lock); 1476 } 1477 } 1478 1479 /* 1480 * Common "sleep taskq thread" function, which handles CPR stuff, as well 1481 * as giving a nice common point for debuggers to find inactive threads. 1482 */ 1483 static clock_t 1484 taskq_thread_wait(taskq_t *tq, kmutex_t *mx, kcondvar_t *cv, 1485 callb_cpr_t *cprinfo, clock_t timeout) 1486 { 1487 clock_t ret = 0; 1488 1489 if (!(tq->tq_flags & TASKQ_CPR_SAFE)) { 1490 CALLB_CPR_SAFE_BEGIN(cprinfo); 1491 } 1492 if (timeout < 0) 1493 cv_wait(cv, mx); 1494 else 1495 ret = cv_reltimedwait(cv, mx, timeout, TR_CLOCK_TICK); 1496 1497 if (!(tq->tq_flags & TASKQ_CPR_SAFE)) { 1498 CALLB_CPR_SAFE_END(cprinfo, mx); 1499 } 1500 1501 return (ret); 1502 } 1503 1504 /* 1505 * Worker thread for processing task queue. 1506 */ 1507 static void 1508 taskq_thread(void *arg) 1509 { 1510 int thread_id; 1511 1512 taskq_t *tq = arg; 1513 taskq_ent_t *tqe; 1514 callb_cpr_t cprinfo; 1515 hrtime_t start, end; 1516 boolean_t freeit; 1517 1518 curthread->t_taskq = tq; /* mark ourselves for taskq_member() */ 1519 1520 if (curproc != &p0 && (tq->tq_flags & TASKQ_DUTY_CYCLE)) { 1521 sysdc_thread_enter(curthread, tq->tq_DC, 1522 (tq->tq_flags & TASKQ_DC_BATCH) ? SYSDC_THREAD_BATCH : 0); 1523 } 1524 1525 if (tq->tq_flags & TASKQ_CPR_SAFE) { 1526 CALLB_CPR_INIT_SAFE(curthread, tq->tq_name); 1527 } else { 1528 CALLB_CPR_INIT(&cprinfo, &tq->tq_lock, callb_generic_cpr, 1529 tq->tq_name); 1530 } 1531 mutex_enter(&tq->tq_lock); 1532 thread_id = ++tq->tq_nthreads; 1533 ASSERT(tq->tq_flags & TASKQ_THREAD_CREATED); 1534 ASSERT(tq->tq_flags & TASKQ_CHANGING); 1535 tq->tq_flags &= ~TASKQ_THREAD_CREATED; 1536 1537 VERIFY3S(thread_id, <=, tq->tq_nthreads_max); 1538 1539 if (tq->tq_nthreads_max == 1) 1540 tq->tq_thread = curthread; 1541 else 1542 tq->tq_threadlist[thread_id - 1] = curthread; 1543 1544 /* Allow taskq_create_common()'s taskq_thread_create() to return. */ 1545 if (tq->tq_nthreads == TASKQ_CREATE_ACTIVE_THREADS) 1546 cv_broadcast(&tq->tq_wait_cv); 1547 1548 for (;;) { 1549 if (tq->tq_flags & TASKQ_CHANGING) { 1550 /* See if we're no longer needed */ 1551 if (thread_id > tq->tq_nthreads_target) { 1552 /* 1553 * To preserve the one-to-one mapping between 1554 * thread_id and thread, we must exit from 1555 * highest thread ID to least. 1556 * 1557 * However, if everyone is exiting, the order 1558 * doesn't matter, so just exit immediately. 1559 * (this is safe, since you must wait for 1560 * nthreads to reach 0 after setting 1561 * tq_nthreads_target to 0) 1562 */ 1563 if (thread_id == tq->tq_nthreads || 1564 tq->tq_nthreads_target == 0) 1565 break; 1566 1567 /* Wait for higher thread_ids to exit */ 1568 (void) taskq_thread_wait(tq, &tq->tq_lock, 1569 &tq->tq_exit_cv, &cprinfo, -1); 1570 continue; 1571 } 1572 1573 /* 1574 * If no thread is starting taskq_thread(), we can 1575 * do some bookkeeping. 1576 */ 1577 if (!(tq->tq_flags & TASKQ_THREAD_CREATED)) { 1578 /* Check if we've reached our target */ 1579 if (tq->tq_nthreads == tq->tq_nthreads_target) { 1580 tq->tq_flags &= ~TASKQ_CHANGING; 1581 cv_broadcast(&tq->tq_wait_cv); 1582 } 1583 /* Check if we need to create a thread */ 1584 if (tq->tq_nthreads < tq->tq_nthreads_target) { 1585 taskq_thread_create(tq); 1586 continue; /* tq_lock was dropped */ 1587 } 1588 } 1589 } 1590 if ((tqe = tq->tq_task.tqent_next) == &tq->tq_task) { 1591 if (--tq->tq_active == 0) 1592 cv_broadcast(&tq->tq_wait_cv); 1593 (void) taskq_thread_wait(tq, &tq->tq_lock, 1594 &tq->tq_dispatch_cv, &cprinfo, -1); 1595 tq->tq_active++; 1596 continue; 1597 } 1598 1599 tqe->tqent_prev->tqent_next = tqe->tqent_next; 1600 tqe->tqent_next->tqent_prev = tqe->tqent_prev; 1601 mutex_exit(&tq->tq_lock); 1602 1603 /* 1604 * For prealloc'd tasks, we don't free anything. We 1605 * have to check this now, because once we call the 1606 * function for a prealloc'd taskq, we can't touch the 1607 * tqent any longer (calling the function returns the 1608 * ownershp of the tqent back to caller of 1609 * taskq_dispatch.) 1610 */ 1611 if ((!(tq->tq_flags & TASKQ_DYNAMIC)) && 1612 (tqe->tqent_un.tqent_flags & TQENT_FLAG_PREALLOC)) { 1613 /* clear pointers to assist assertion checks */ 1614 tqe->tqent_next = tqe->tqent_prev = NULL; 1615 freeit = B_FALSE; 1616 } else { 1617 freeit = B_TRUE; 1618 } 1619 1620 rw_enter(&tq->tq_threadlock, RW_READER); 1621 start = gethrtime(); 1622 DTRACE_PROBE2(taskq__exec__start, taskq_t *, tq, 1623 taskq_ent_t *, tqe); 1624 tqe->tqent_func(tqe->tqent_arg); 1625 DTRACE_PROBE2(taskq__exec__end, taskq_t *, tq, 1626 taskq_ent_t *, tqe); 1627 end = gethrtime(); 1628 rw_exit(&tq->tq_threadlock); 1629 1630 mutex_enter(&tq->tq_lock); 1631 tq->tq_totaltime += end - start; 1632 tq->tq_executed++; 1633 1634 if (freeit) 1635 taskq_ent_free(tq, tqe); 1636 } 1637 1638 if (tq->tq_nthreads_max == 1) 1639 tq->tq_thread = NULL; 1640 else 1641 tq->tq_threadlist[thread_id - 1] = NULL; 1642 1643 /* We're exiting, and therefore no longer active */ 1644 ASSERT(tq->tq_active > 0); 1645 tq->tq_active--; 1646 1647 ASSERT(tq->tq_nthreads > 0); 1648 tq->tq_nthreads--; 1649 1650 /* Wake up anyone waiting for us to exit */ 1651 cv_broadcast(&tq->tq_exit_cv); 1652 if (tq->tq_nthreads == tq->tq_nthreads_target) { 1653 if (!(tq->tq_flags & TASKQ_THREAD_CREATED)) 1654 tq->tq_flags &= ~TASKQ_CHANGING; 1655 1656 cv_broadcast(&tq->tq_wait_cv); 1657 } 1658 1659 ASSERT(!(tq->tq_flags & TASKQ_CPR_SAFE)); 1660 CALLB_CPR_EXIT(&cprinfo); /* drops tq->tq_lock */ 1661 if (curthread->t_lwp != NULL) { 1662 mutex_enter(&curproc->p_lock); 1663 lwp_exit(); 1664 } else { 1665 thread_exit(); 1666 } 1667 } 1668 1669 /* 1670 * Worker per-entry thread for dynamic dispatches. 1671 */ 1672 static void 1673 taskq_d_thread(taskq_ent_t *tqe) 1674 { 1675 taskq_bucket_t *bucket = tqe->tqent_un.tqent_bucket; 1676 taskq_t *tq = bucket->tqbucket_taskq; 1677 kmutex_t *lock = &bucket->tqbucket_lock; 1678 kcondvar_t *cv = &tqe->tqent_cv; 1679 callb_cpr_t cprinfo; 1680 clock_t w; 1681 1682 CALLB_CPR_INIT(&cprinfo, lock, callb_generic_cpr, tq->tq_name); 1683 1684 mutex_enter(lock); 1685 1686 for (;;) { 1687 /* 1688 * If a task is scheduled (func != NULL), execute it, otherwise 1689 * sleep, waiting for a job. 1690 */ 1691 if (tqe->tqent_func != NULL) { 1692 hrtime_t start; 1693 hrtime_t end; 1694 1695 ASSERT(bucket->tqbucket_nalloc > 0); 1696 1697 /* 1698 * It is possible to free the entry right away before 1699 * actually executing the task so that subsequent 1700 * dispatches may immediately reuse it. But this, 1701 * effectively, creates a two-length queue in the entry 1702 * and may lead to a deadlock if the execution of the 1703 * current task depends on the execution of the next 1704 * scheduled task. So, we keep the entry busy until the 1705 * task is processed. 1706 */ 1707 1708 mutex_exit(lock); 1709 start = gethrtime(); 1710 DTRACE_PROBE3(taskq__d__exec__start, taskq_t *, tq, 1711 taskq_bucket_t *, bucket, taskq_ent_t *, tqe); 1712 tqe->tqent_func(tqe->tqent_arg); 1713 DTRACE_PROBE3(taskq__d__exec__end, taskq_t *, tq, 1714 taskq_bucket_t *, bucket, taskq_ent_t *, tqe); 1715 end = gethrtime(); 1716 mutex_enter(lock); 1717 bucket->tqbucket_totaltime += end - start; 1718 1719 /* 1720 * Return the entry to the bucket free list. 1721 */ 1722 tqe->tqent_func = NULL; 1723 TQ_APPEND(bucket->tqbucket_freelist, tqe); 1724 bucket->tqbucket_nalloc--; 1725 bucket->tqbucket_nfree++; 1726 ASSERT(!IS_EMPTY(bucket->tqbucket_freelist)); 1727 /* 1728 * taskq_wait() waits for nalloc to drop to zero on 1729 * tqbucket_cv. 1730 */ 1731 cv_signal(&bucket->tqbucket_cv); 1732 } 1733 1734 /* 1735 * At this point the entry must be in the bucket free list - 1736 * either because it was there initially or because it just 1737 * finished executing a task and put itself on the free list. 1738 */ 1739 ASSERT(bucket->tqbucket_nfree > 0); 1740 /* 1741 * Go to sleep unless we are closing. 1742 * If a thread is sleeping too long, it dies. 1743 */ 1744 if (! (bucket->tqbucket_flags & TQBUCKET_CLOSE)) { 1745 w = taskq_thread_wait(tq, lock, cv, 1746 &cprinfo, taskq_thread_timeout * hz); 1747 } 1748 1749 /* 1750 * At this point we may be in two different states: 1751 * 1752 * (1) tqent_func is set which means that a new task is 1753 * dispatched and we need to execute it. 1754 * 1755 * (2) Thread is sleeping for too long or we are closing. In 1756 * both cases destroy the thread and the entry. 1757 */ 1758 1759 /* If func is NULL we should be on the freelist. */ 1760 ASSERT((tqe->tqent_func != NULL) || 1761 (bucket->tqbucket_nfree > 0)); 1762 /* If func is non-NULL we should be allocated */ 1763 ASSERT((tqe->tqent_func == NULL) || 1764 (bucket->tqbucket_nalloc > 0)); 1765 1766 /* Check freelist consistency */ 1767 ASSERT((bucket->tqbucket_nfree > 0) || 1768 IS_EMPTY(bucket->tqbucket_freelist)); 1769 ASSERT((bucket->tqbucket_nfree == 0) || 1770 !IS_EMPTY(bucket->tqbucket_freelist)); 1771 1772 if ((tqe->tqent_func == NULL) && 1773 ((w == -1) || (bucket->tqbucket_flags & TQBUCKET_CLOSE))) { 1774 /* 1775 * This thread is sleeping for too long or we are 1776 * closing - time to die. 1777 * Thread creation/destruction happens rarely, 1778 * so grabbing the lock is not a big performance issue. 1779 * The bucket lock is dropped by CALLB_CPR_EXIT(). 1780 */ 1781 1782 /* Remove the entry from the free list. */ 1783 tqe->tqent_prev->tqent_next = tqe->tqent_next; 1784 tqe->tqent_next->tqent_prev = tqe->tqent_prev; 1785 ASSERT(bucket->tqbucket_nfree > 0); 1786 bucket->tqbucket_nfree--; 1787 1788 TQ_STAT(bucket, tqs_tdeaths); 1789 cv_signal(&bucket->tqbucket_cv); 1790 tqe->tqent_thread = NULL; 1791 mutex_enter(&tq->tq_lock); 1792 tq->tq_tdeaths++; 1793 mutex_exit(&tq->tq_lock); 1794 CALLB_CPR_EXIT(&cprinfo); 1795 kmem_cache_free(taskq_ent_cache, tqe); 1796 thread_exit(); 1797 } 1798 } 1799 } 1800 1801 1802 /* 1803 * Taskq creation. May sleep for memory. 1804 * Always use automatically generated instances to avoid kstat name space 1805 * collisions. 1806 */ 1807 1808 taskq_t * 1809 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc, 1810 int maxalloc, uint_t flags) 1811 { 1812 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1813 1814 return (taskq_create_common(name, 0, nthreads, pri, minalloc, 1815 maxalloc, &p0, 0, flags | TASKQ_NOINSTANCE)); 1816 } 1817 1818 /* 1819 * Create an instance of task queue. It is legal to create task queues with the 1820 * same name and different instances. 1821 * 1822 * taskq_create_instance is used by ddi_taskq_create() where it gets the 1823 * instance from ddi_get_instance(). In some cases the instance is not 1824 * initialized and is set to -1. This case is handled as if no instance was 1825 * passed at all. 1826 */ 1827 taskq_t * 1828 taskq_create_instance(const char *name, int instance, int nthreads, pri_t pri, 1829 int minalloc, int maxalloc, uint_t flags) 1830 { 1831 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1832 ASSERT((instance >= 0) || (instance == -1)); 1833 1834 if (instance < 0) { 1835 flags |= TASKQ_NOINSTANCE; 1836 } 1837 1838 return (taskq_create_common(name, instance, nthreads, 1839 pri, minalloc, maxalloc, &p0, 0, flags)); 1840 } 1841 1842 taskq_t * 1843 taskq_create_proc(const char *name, int nthreads, pri_t pri, int minalloc, 1844 int maxalloc, proc_t *proc, uint_t flags) 1845 { 1846 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1847 ASSERT(proc->p_flag & SSYS); 1848 1849 return (taskq_create_common(name, 0, nthreads, pri, minalloc, 1850 maxalloc, proc, 0, flags | TASKQ_NOINSTANCE)); 1851 } 1852 1853 taskq_t * 1854 taskq_create_sysdc(const char *name, int nthreads, int minalloc, 1855 int maxalloc, proc_t *proc, uint_t dc, uint_t flags) 1856 { 1857 ASSERT((flags & ~TASKQ_INTERFACE_FLAGS) == 0); 1858 ASSERT(proc->p_flag & SSYS); 1859 1860 return (taskq_create_common(name, 0, nthreads, minclsyspri, minalloc, 1861 maxalloc, proc, dc, flags | TASKQ_NOINSTANCE | TASKQ_DUTY_CYCLE)); 1862 } 1863 1864 static taskq_t * 1865 taskq_create_common(const char *name, int instance, int nthreads, pri_t pri, 1866 int minalloc, int maxalloc, proc_t *proc, uint_t dc, uint_t flags) 1867 { 1868 taskq_t *tq = kmem_cache_alloc(taskq_cache, KM_SLEEP); 1869 uint_t ncpus = ((boot_max_ncpus == -1) ? max_ncpus : boot_max_ncpus); 1870 uint_t bsize; /* # of buckets - always power of 2 */ 1871 int max_nthreads; 1872 1873 /* 1874 * TASKQ_DYNAMIC, TASKQ_CPR_SAFE and TASKQ_THREADS_CPU_PCT are all 1875 * mutually incompatible. 1876 */ 1877 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_CPR_SAFE)); 1878 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_THREADS_CPU_PCT)); 1879 IMPLY((flags & TASKQ_CPR_SAFE), !(flags & TASKQ_THREADS_CPU_PCT)); 1880 1881 /* Cannot have DYNAMIC with DUTY_CYCLE */ 1882 IMPLY((flags & TASKQ_DYNAMIC), !(flags & TASKQ_DUTY_CYCLE)); 1883 1884 /* Cannot have DUTY_CYCLE with a p0 kernel process */ 1885 IMPLY((flags & TASKQ_DUTY_CYCLE), proc != &p0); 1886 1887 /* Cannot have DC_BATCH without DUTY_CYCLE */ 1888 ASSERT((flags & (TASKQ_DUTY_CYCLE|TASKQ_DC_BATCH)) != TASKQ_DC_BATCH); 1889 1890 ASSERT(proc != NULL); 1891 1892 bsize = 1 << (highbit(ncpus) - 1); 1893 ASSERT(bsize >= 1); 1894 bsize = MIN(bsize, taskq_maxbuckets); 1895 1896 if (flags & TASKQ_DYNAMIC) { 1897 ASSERT3S(nthreads, >=, 1); 1898 tq->tq_maxsize = nthreads; 1899 1900 /* For dynamic task queues use just one backup thread */ 1901 nthreads = max_nthreads = 1; 1902 1903 } else if (flags & TASKQ_THREADS_CPU_PCT) { 1904 uint_t pct; 1905 ASSERT3S(nthreads, >=, 0); 1906 pct = nthreads; 1907 1908 if (pct > taskq_cpupct_max_percent) 1909 pct = taskq_cpupct_max_percent; 1910 1911 /* 1912 * If you're using THREADS_CPU_PCT, the process for the 1913 * taskq threads must be curproc. This allows any pset 1914 * binding to be inherited correctly. If proc is &p0, 1915 * we won't be creating LWPs, so new threads will be assigned 1916 * to the default processor set. 1917 */ 1918 ASSERT(curproc == proc || proc == &p0); 1919 tq->tq_threads_ncpus_pct = pct; 1920 nthreads = 1; /* corrected in taskq_thread_create() */ 1921 max_nthreads = TASKQ_THREADS_PCT(max_ncpus, pct); 1922 1923 } else { 1924 ASSERT3S(nthreads, >=, 1); 1925 max_nthreads = nthreads; 1926 } 1927 1928 if (max_nthreads < taskq_minimum_nthreads_max) 1929 max_nthreads = taskq_minimum_nthreads_max; 1930 1931 /* 1932 * Make sure the name is 0-terminated, and conforms to the rules for 1933 * C indentifiers 1934 */ 1935 (void) strncpy(tq->tq_name, name, TASKQ_NAMELEN + 1); 1936 strident_canon(tq->tq_name, TASKQ_NAMELEN + 1); 1937 1938 tq->tq_flags = flags | TASKQ_CHANGING; 1939 tq->tq_active = 0; 1940 tq->tq_instance = instance; 1941 tq->tq_nthreads_target = nthreads; 1942 tq->tq_nthreads_max = max_nthreads; 1943 tq->tq_minalloc = minalloc; 1944 tq->tq_maxalloc = maxalloc; 1945 tq->tq_nbuckets = bsize; 1946 tq->tq_proc = proc; 1947 tq->tq_pri = pri; 1948 tq->tq_DC = dc; 1949 list_link_init(&tq->tq_cpupct_link); 1950 1951 if (max_nthreads > 1) 1952 tq->tq_threadlist = kmem_alloc( 1953 sizeof (kthread_t *) * max_nthreads, KM_SLEEP); 1954 1955 mutex_enter(&tq->tq_lock); 1956 if (flags & TASKQ_PREPOPULATE) { 1957 while (minalloc-- > 0) 1958 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP)); 1959 } 1960 1961 /* 1962 * Before we start creating threads for this taskq, take a 1963 * zone hold so the zone can't go away before taskq_destroy 1964 * makes sure all the taskq threads are gone. This hold is 1965 * similar in purpose to those taken by zthread_create(). 1966 */ 1967 zone_hold(tq->tq_proc->p_zone); 1968 1969 /* 1970 * Create the first thread, which will create any other threads 1971 * necessary. taskq_thread_create will not return until we have 1972 * enough threads to be able to process requests. 1973 */ 1974 taskq_thread_create(tq); 1975 mutex_exit(&tq->tq_lock); 1976 1977 if (flags & TASKQ_DYNAMIC) { 1978 taskq_bucket_t *bucket = kmem_zalloc(sizeof (taskq_bucket_t) * 1979 bsize, KM_SLEEP); 1980 int b_id; 1981 1982 tq->tq_buckets = bucket; 1983 1984 /* Initialize each bucket */ 1985 for (b_id = 0; b_id < bsize; b_id++, bucket++) { 1986 mutex_init(&bucket->tqbucket_lock, NULL, MUTEX_DEFAULT, 1987 NULL); 1988 cv_init(&bucket->tqbucket_cv, NULL, CV_DEFAULT, NULL); 1989 bucket->tqbucket_taskq = tq; 1990 bucket->tqbucket_freelist.tqent_next = 1991 bucket->tqbucket_freelist.tqent_prev = 1992 &bucket->tqbucket_freelist; 1993 if (flags & TASKQ_PREPOPULATE) 1994 taskq_bucket_extend(bucket); 1995 } 1996 } 1997 1998 /* 1999 * Install kstats. 2000 * We have two cases: 2001 * 1) Instance is provided to taskq_create_instance(). In this case it 2002 * should be >= 0 and we use it. 2003 * 2004 * 2) Instance is not provided and is automatically generated 2005 */ 2006 if (flags & TASKQ_NOINSTANCE) { 2007 instance = tq->tq_instance = 2008 (int)(uintptr_t)vmem_alloc(taskq_id_arena, 1, VM_SLEEP); 2009 } 2010 2011 if (flags & TASKQ_DYNAMIC) { 2012 if ((tq->tq_kstat = kstat_create("unix", instance, 2013 tq->tq_name, "taskq_d", KSTAT_TYPE_NAMED, 2014 sizeof (taskq_d_kstat) / sizeof (kstat_named_t), 2015 KSTAT_FLAG_VIRTUAL)) != NULL) { 2016 tq->tq_kstat->ks_lock = &taskq_d_kstat_lock; 2017 tq->tq_kstat->ks_data = &taskq_d_kstat; 2018 tq->tq_kstat->ks_update = taskq_d_kstat_update; 2019 tq->tq_kstat->ks_private = tq; 2020 kstat_install(tq->tq_kstat); 2021 } 2022 } else { 2023 if ((tq->tq_kstat = kstat_create("unix", instance, tq->tq_name, 2024 "taskq", KSTAT_TYPE_NAMED, 2025 sizeof (taskq_kstat) / sizeof (kstat_named_t), 2026 KSTAT_FLAG_VIRTUAL)) != NULL) { 2027 tq->tq_kstat->ks_lock = &taskq_kstat_lock; 2028 tq->tq_kstat->ks_data = &taskq_kstat; 2029 tq->tq_kstat->ks_update = taskq_kstat_update; 2030 tq->tq_kstat->ks_private = tq; 2031 kstat_install(tq->tq_kstat); 2032 } 2033 } 2034 2035 return (tq); 2036 } 2037 2038 /* 2039 * taskq_destroy(). 2040 * 2041 * Assumes: by the time taskq_destroy is called no one will use this task queue 2042 * in any way and no one will try to dispatch entries in it. 2043 */ 2044 void 2045 taskq_destroy(taskq_t *tq) 2046 { 2047 taskq_bucket_t *b = tq->tq_buckets; 2048 int bid = 0; 2049 2050 ASSERT(! (tq->tq_flags & TASKQ_CPR_SAFE)); 2051 2052 /* 2053 * Destroy kstats. 2054 */ 2055 if (tq->tq_kstat != NULL) { 2056 kstat_delete(tq->tq_kstat); 2057 tq->tq_kstat = NULL; 2058 } 2059 2060 /* 2061 * Destroy instance if needed. 2062 */ 2063 if (tq->tq_flags & TASKQ_NOINSTANCE) { 2064 vmem_free(taskq_id_arena, (void *)(uintptr_t)(tq->tq_instance), 2065 1); 2066 tq->tq_instance = 0; 2067 } 2068 2069 /* 2070 * Unregister from the cpupct list. 2071 */ 2072 if (tq->tq_flags & TASKQ_THREADS_CPU_PCT) { 2073 taskq_cpupct_remove(tq); 2074 } 2075 2076 /* 2077 * Wait for any pending entries to complete. 2078 */ 2079 taskq_wait(tq); 2080 2081 mutex_enter(&tq->tq_lock); 2082 ASSERT((tq->tq_task.tqent_next == &tq->tq_task) && 2083 (tq->tq_active == 0)); 2084 2085 /* notify all the threads that they need to exit */ 2086 tq->tq_nthreads_target = 0; 2087 2088 tq->tq_flags |= TASKQ_CHANGING; 2089 cv_broadcast(&tq->tq_dispatch_cv); 2090 cv_broadcast(&tq->tq_exit_cv); 2091 2092 while (tq->tq_nthreads != 0) 2093 cv_wait(&tq->tq_wait_cv, &tq->tq_lock); 2094 2095 if (tq->tq_nthreads_max != 1) 2096 kmem_free(tq->tq_threadlist, sizeof (kthread_t *) * 2097 tq->tq_nthreads_max); 2098 2099 tq->tq_minalloc = 0; 2100 while (tq->tq_nalloc != 0) 2101 taskq_ent_free(tq, taskq_ent_alloc(tq, TQ_SLEEP)); 2102 2103 mutex_exit(&tq->tq_lock); 2104 2105 /* 2106 * Mark each bucket as closing and wakeup all sleeping threads. 2107 */ 2108 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 2109 taskq_ent_t *tqe; 2110 2111 mutex_enter(&b->tqbucket_lock); 2112 2113 b->tqbucket_flags |= TQBUCKET_CLOSE; 2114 /* Wakeup all sleeping threads */ 2115 2116 for (tqe = b->tqbucket_freelist.tqent_next; 2117 tqe != &b->tqbucket_freelist; tqe = tqe->tqent_next) 2118 cv_signal(&tqe->tqent_cv); 2119 2120 ASSERT(b->tqbucket_nalloc == 0); 2121 2122 /* 2123 * At this point we waited for all pending jobs to complete (in 2124 * both the task queue and the bucket and no new jobs should 2125 * arrive. Wait for all threads to die. 2126 */ 2127 while (b->tqbucket_nfree > 0) 2128 cv_wait(&b->tqbucket_cv, &b->tqbucket_lock); 2129 mutex_exit(&b->tqbucket_lock); 2130 mutex_destroy(&b->tqbucket_lock); 2131 cv_destroy(&b->tqbucket_cv); 2132 } 2133 2134 if (tq->tq_buckets != NULL) { 2135 ASSERT(tq->tq_flags & TASKQ_DYNAMIC); 2136 kmem_free(tq->tq_buckets, 2137 sizeof (taskq_bucket_t) * tq->tq_nbuckets); 2138 2139 /* Cleanup fields before returning tq to the cache */ 2140 tq->tq_buckets = NULL; 2141 tq->tq_tcreates = 0; 2142 tq->tq_tdeaths = 0; 2143 } else { 2144 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC)); 2145 } 2146 2147 /* 2148 * Now that all the taskq threads are gone, we can 2149 * drop the zone hold taken in taskq_create_common 2150 */ 2151 zone_rele(tq->tq_proc->p_zone); 2152 2153 tq->tq_threads_ncpus_pct = 0; 2154 tq->tq_totaltime = 0; 2155 tq->tq_tasks = 0; 2156 tq->tq_maxtasks = 0; 2157 tq->tq_executed = 0; 2158 kmem_cache_free(taskq_cache, tq); 2159 } 2160 2161 /* 2162 * Extend a bucket with a new entry on the free list and attach a worker thread 2163 * to it. 2164 * 2165 * Argument: pointer to the bucket. 2166 * 2167 * This function may quietly fail. It is only used by taskq_dispatch() which 2168 * handles such failures properly. 2169 */ 2170 static void 2171 taskq_bucket_extend(void *arg) 2172 { 2173 taskq_ent_t *tqe; 2174 taskq_bucket_t *b = (taskq_bucket_t *)arg; 2175 taskq_t *tq = b->tqbucket_taskq; 2176 int nthreads; 2177 2178 mutex_enter(&tq->tq_lock); 2179 2180 if (! ENOUGH_MEMORY()) { 2181 tq->tq_nomem++; 2182 mutex_exit(&tq->tq_lock); 2183 return; 2184 } 2185 2186 /* 2187 * Observe global taskq limits on the number of threads. 2188 */ 2189 if (tq->tq_tcreates++ - tq->tq_tdeaths > tq->tq_maxsize) { 2190 tq->tq_tcreates--; 2191 mutex_exit(&tq->tq_lock); 2192 return; 2193 } 2194 mutex_exit(&tq->tq_lock); 2195 2196 tqe = kmem_cache_alloc(taskq_ent_cache, KM_NOSLEEP); 2197 2198 if (tqe == NULL) { 2199 mutex_enter(&tq->tq_lock); 2200 tq->tq_nomem++; 2201 tq->tq_tcreates--; 2202 mutex_exit(&tq->tq_lock); 2203 return; 2204 } 2205 2206 ASSERT(tqe->tqent_thread == NULL); 2207 2208 tqe->tqent_un.tqent_bucket = b; 2209 2210 /* 2211 * Create a thread in a TS_STOPPED state first. If it is successfully 2212 * created, place the entry on the free list and start the thread. 2213 */ 2214 tqe->tqent_thread = thread_create(NULL, 0, taskq_d_thread, tqe, 2215 0, tq->tq_proc, TS_STOPPED, tq->tq_pri); 2216 2217 /* 2218 * Once the entry is ready, link it to the the bucket free list. 2219 */ 2220 mutex_enter(&b->tqbucket_lock); 2221 tqe->tqent_func = NULL; 2222 TQ_APPEND(b->tqbucket_freelist, tqe); 2223 b->tqbucket_nfree++; 2224 TQ_STAT(b, tqs_tcreates); 2225 2226 #if TASKQ_STATISTIC 2227 nthreads = b->tqbucket_stat.tqs_tcreates - 2228 b->tqbucket_stat.tqs_tdeaths; 2229 b->tqbucket_stat.tqs_maxthreads = MAX(nthreads, 2230 b->tqbucket_stat.tqs_maxthreads); 2231 #endif 2232 2233 mutex_exit(&b->tqbucket_lock); 2234 /* 2235 * Start the stopped thread. 2236 */ 2237 thread_lock(tqe->tqent_thread); 2238 tqe->tqent_thread->t_taskq = tq; 2239 tqe->tqent_thread->t_schedflag |= TS_ALLSTART; 2240 setrun_locked(tqe->tqent_thread); 2241 thread_unlock(tqe->tqent_thread); 2242 } 2243 2244 static int 2245 taskq_kstat_update(kstat_t *ksp, int rw) 2246 { 2247 struct taskq_kstat *tqsp = &taskq_kstat; 2248 taskq_t *tq = ksp->ks_private; 2249 2250 if (rw == KSTAT_WRITE) 2251 return (EACCES); 2252 2253 tqsp->tq_pid.value.ui64 = tq->tq_proc->p_pid; 2254 tqsp->tq_tasks.value.ui64 = tq->tq_tasks; 2255 tqsp->tq_executed.value.ui64 = tq->tq_executed; 2256 tqsp->tq_maxtasks.value.ui64 = tq->tq_maxtasks; 2257 tqsp->tq_totaltime.value.ui64 = tq->tq_totaltime; 2258 tqsp->tq_nactive.value.ui64 = tq->tq_active; 2259 tqsp->tq_nalloc.value.ui64 = tq->tq_nalloc; 2260 tqsp->tq_pri.value.ui64 = tq->tq_pri; 2261 tqsp->tq_nthreads.value.ui64 = tq->tq_nthreads; 2262 tqsp->tq_nomem.value.ui64 = tq->tq_nomem; 2263 return (0); 2264 } 2265 2266 static int 2267 taskq_d_kstat_update(kstat_t *ksp, int rw) 2268 { 2269 struct taskq_d_kstat *tqsp = &taskq_d_kstat; 2270 taskq_t *tq = ksp->ks_private; 2271 taskq_bucket_t *b = tq->tq_buckets; 2272 int bid = 0; 2273 2274 if (rw == KSTAT_WRITE) 2275 return (EACCES); 2276 2277 ASSERT(tq->tq_flags & TASKQ_DYNAMIC); 2278 2279 tqsp->tqd_btasks.value.ui64 = tq->tq_tasks; 2280 tqsp->tqd_bexecuted.value.ui64 = tq->tq_executed; 2281 tqsp->tqd_bmaxtasks.value.ui64 = tq->tq_maxtasks; 2282 tqsp->tqd_bnalloc.value.ui64 = tq->tq_nalloc; 2283 tqsp->tqd_bnactive.value.ui64 = tq->tq_active; 2284 tqsp->tqd_btotaltime.value.ui64 = tq->tq_totaltime; 2285 tqsp->tqd_pri.value.ui64 = tq->tq_pri; 2286 tqsp->tqd_nomem.value.ui64 = tq->tq_nomem; 2287 2288 tqsp->tqd_hits.value.ui64 = 0; 2289 tqsp->tqd_misses.value.ui64 = 0; 2290 tqsp->tqd_overflows.value.ui64 = 0; 2291 tqsp->tqd_tcreates.value.ui64 = 0; 2292 tqsp->tqd_tdeaths.value.ui64 = 0; 2293 tqsp->tqd_maxthreads.value.ui64 = 0; 2294 tqsp->tqd_nomem.value.ui64 = 0; 2295 tqsp->tqd_disptcreates.value.ui64 = 0; 2296 tqsp->tqd_totaltime.value.ui64 = 0; 2297 tqsp->tqd_nalloc.value.ui64 = 0; 2298 tqsp->tqd_nfree.value.ui64 = 0; 2299 2300 for (; (b != NULL) && (bid < tq->tq_nbuckets); b++, bid++) { 2301 tqsp->tqd_hits.value.ui64 += b->tqbucket_stat.tqs_hits; 2302 tqsp->tqd_misses.value.ui64 += b->tqbucket_stat.tqs_misses; 2303 tqsp->tqd_overflows.value.ui64 += b->tqbucket_stat.tqs_overflow; 2304 tqsp->tqd_tcreates.value.ui64 += b->tqbucket_stat.tqs_tcreates; 2305 tqsp->tqd_tdeaths.value.ui64 += b->tqbucket_stat.tqs_tdeaths; 2306 tqsp->tqd_maxthreads.value.ui64 += 2307 b->tqbucket_stat.tqs_maxthreads; 2308 tqsp->tqd_disptcreates.value.ui64 += 2309 b->tqbucket_stat.tqs_disptcreates; 2310 tqsp->tqd_totaltime.value.ui64 += b->tqbucket_totaltime; 2311 tqsp->tqd_nalloc.value.ui64 += b->tqbucket_nalloc; 2312 tqsp->tqd_nfree.value.ui64 += b->tqbucket_nfree; 2313 } 2314 return (0); 2315 } 2316