xref: /illumos-gate/usr/src/uts/common/os/task.c (revision 33c72b7598992897b94815b1f47b7b8077e53808)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2016 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/atomic.h>
27 #include <sys/callb.h>
28 #include <sys/cmn_err.h>
29 #include <sys/exacct.h>
30 #include <sys/id_space.h>
31 #include <sys/kmem.h>
32 #include <sys/kstat.h>
33 #include <sys/modhash.h>
34 #include <sys/mutex.h>
35 #include <sys/proc.h>
36 #include <sys/project.h>
37 #include <sys/rctl.h>
38 #include <sys/systm.h>
39 #include <sys/task.h>
40 #include <sys/time.h>
41 #include <sys/types.h>
42 #include <sys/zone.h>
43 #include <sys/cpuvar.h>
44 #include <sys/fss.h>
45 #include <sys/class.h>
46 #include <sys/project.h>
47 
48 /*
49  * Tasks
50  *
51  *   A task is a collection of processes, associated with a common project ID
52  *   and related by a common initial parent.  The task primarily represents a
53  *   natural process sequence with known resource usage, although it can also be
54  *   viewed as a convenient grouping of processes for signal delivery, processor
55  *   binding, and administrative operations.
56  *
57  * Membership and observership
58  *   We can conceive of situations where processes outside of the task may wish
59  *   to examine the resource usage of the task.  Similarly, a number of the
60  *   administrative operations on a task can be performed by processes who are
61  *   not members of the task.  Accordingly, we must design a locking strategy
62  *   where observers of the task, who wish to examine or operate on the task,
63  *   and members of task, who can perform the mentioned operations, as well as
64  *   leave the task, see a consistent and correct representation of the task at
65  *   all times.
66  *
67  * Locking
68  *   Because the task membership is a new relation between processes, its
69  *   locking becomes an additional responsibility of the pidlock/p_lock locking
70  *   sequence; however, tasks closely resemble sessions and the session locking
71  *   model is mostly appropriate for the interaction of tasks, processes, and
72  *   procfs.
73  *
74  *   kmutex_t task_hash_lock
75  *     task_hash_lock is a global lock protecting the contents of the task
76  *     ID-to-task pointer hash.  Holders of task_hash_lock must not attempt to
77  *     acquire pidlock or p_lock.
78  *   uint_t tk_hold_count
79  *     tk_hold_count, the number of members and observers of the current task,
80  *     must be manipulated atomically.
81  *   proc_t *tk_memb_list
82  *   proc_t *p_tasknext
83  *   proc_t *p_taskprev
84  *     The task's membership list is protected by pidlock, and is therefore
85  *     always acquired before any of its members' p_lock mutexes.  The p_task
86  *     member of the proc structure is protected by pidlock or p_lock for
87  *     reading, and by both pidlock and p_lock for modification, as is done for
88  *     p_sessp.  The key point is that only the process can modify its p_task,
89  *     and not any entity on the system.  (/proc will use prlock() to prevent
90  *     the process from leaving, as opposed to pidlock.)
91  *   kmutex_t tk_usage_lock
92  *     tk_usage_lock is a per-task lock protecting the contents of the task
93  *     usage structure and tk_nlwps counter for the task.max-lwps resource
94  *     control.
95  */
96 
97 int task_hash_size = 256;
98 static kmutex_t task_hash_lock;
99 static mod_hash_t *task_hash;
100 
101 static id_space_t *taskid_space;	/* global taskid space */
102 static kmem_cache_t *task_cache;	/* kmem cache for task structures */
103 
104 rctl_hndl_t rc_task_lwps;
105 rctl_hndl_t rc_task_nprocs;
106 rctl_hndl_t rc_task_cpu_time;
107 
108 /*
109  * Resource usage is committed using task queues; if taskq_dispatch() fails
110  * due to resource constraints, the task is placed on a list for background
111  * processing by the task_commit_thread() backup thread.
112  */
113 static kmutex_t task_commit_lock;	/* protects list pointers and cv */
114 static kcondvar_t task_commit_cv;	/* wakeup task_commit_thread */
115 static task_t *task_commit_head = NULL;
116 static task_t *task_commit_tail = NULL;
117 kthread_t *task_commit_thread;
118 
119 static void task_commit();
120 static kstat_t *task_kstat_create(task_t *, zone_t *);
121 static void task_kstat_delete(task_t *);
122 
123 /*
124  * static rctl_qty_t task_usage_lwps(void *taskp)
125  *
126  * Overview
127  *   task_usage_lwps() is the usage operation for the resource control
128  *   associated with the number of LWPs in a task.
129  *
130  * Return values
131  *   The number of LWPs in the given task is returned.
132  *
133  * Caller's context
134  *   The p->p_lock must be held across the call.
135  */
136 /*ARGSUSED*/
137 static rctl_qty_t
138 task_lwps_usage(rctl_t *r, proc_t *p)
139 {
140 	task_t *t;
141 	rctl_qty_t nlwps;
142 
143 	ASSERT(MUTEX_HELD(&p->p_lock));
144 
145 	t = p->p_task;
146 	mutex_enter(&p->p_zone->zone_nlwps_lock);
147 	nlwps = t->tk_nlwps;
148 	mutex_exit(&p->p_zone->zone_nlwps_lock);
149 
150 	return (nlwps);
151 }
152 
153 /*
154  * static int task_test_lwps(void *taskp, rctl_val_t *, int64_t incr,
155  *   int flags)
156  *
157  * Overview
158  *   task_test_lwps() is the test-if-valid-increment for the resource control
159  *   for the number of processes in a task.
160  *
161  * Return values
162  *   0 if the threshold limit was not passed, 1 if the limit was passed.
163  *
164  * Caller's context
165  *   p->p_lock must be held across the call.
166  */
167 /*ARGSUSED*/
168 static int
169 task_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
170     rctl_qty_t incr,
171     uint_t flags)
172 {
173 	rctl_qty_t nlwps;
174 
175 	ASSERT(MUTEX_HELD(&p->p_lock));
176 	ASSERT(e->rcep_t == RCENTITY_TASK);
177 	if (e->rcep_p.task == NULL)
178 		return (0);
179 
180 	ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock)));
181 	nlwps = e->rcep_p.task->tk_nlwps;
182 
183 	if (nlwps + incr > rcntl->rcv_value)
184 		return (1);
185 
186 	return (0);
187 }
188 
189 /*ARGSUSED*/
190 static int
191 task_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) {
192 
193 	ASSERT(MUTEX_HELD(&p->p_lock));
194 	ASSERT(e->rcep_t == RCENTITY_TASK);
195 	if (e->rcep_p.task == NULL)
196 		return (0);
197 
198 	e->rcep_p.task->tk_nlwps_ctl = nv;
199 	return (0);
200 }
201 
202 /*ARGSUSED*/
203 static rctl_qty_t
204 task_nprocs_usage(rctl_t *r, proc_t *p)
205 {
206 	task_t *t;
207 	rctl_qty_t nprocs;
208 
209 	ASSERT(MUTEX_HELD(&p->p_lock));
210 
211 	t = p->p_task;
212 	mutex_enter(&p->p_zone->zone_nlwps_lock);
213 	nprocs = t->tk_nprocs;
214 	mutex_exit(&p->p_zone->zone_nlwps_lock);
215 
216 	return (nprocs);
217 }
218 
219 /*ARGSUSED*/
220 static int
221 task_nprocs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
222     rctl_qty_t incr, uint_t flags)
223 {
224 	rctl_qty_t nprocs;
225 
226 	ASSERT(MUTEX_HELD(&p->p_lock));
227 	ASSERT(e->rcep_t == RCENTITY_TASK);
228 	if (e->rcep_p.task == NULL)
229 		return (0);
230 
231 	ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock)));
232 	nprocs = e->rcep_p.task->tk_nprocs;
233 
234 	if (nprocs + incr > rcntl->rcv_value)
235 		return (1);
236 
237 	return (0);
238 }
239 
240 /*ARGSUSED*/
241 static int
242 task_nprocs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
243     rctl_qty_t nv) {
244 
245 	ASSERT(MUTEX_HELD(&p->p_lock));
246 	ASSERT(e->rcep_t == RCENTITY_TASK);
247 	if (e->rcep_p.task == NULL)
248 		return (0);
249 
250 	e->rcep_p.task->tk_nprocs_ctl = nv;
251 	return (0);
252 }
253 
254 /*
255  * static rctl_qty_t task_usage_cpu_secs(void *taskp)
256  *
257  * Overview
258  *   task_usage_cpu_secs() is the usage operation for the resource control
259  *   associated with the total accrued CPU seconds for a task.
260  *
261  * Return values
262  *   The number of CPU seconds consumed by the task is returned.
263  *
264  * Caller's context
265  *   The given task must be held across the call.
266  */
267 /*ARGSUSED*/
268 static rctl_qty_t
269 task_cpu_time_usage(rctl_t *r, proc_t *p)
270 {
271 	task_t *t = p->p_task;
272 
273 	ASSERT(MUTEX_HELD(&p->p_lock));
274 	return (t->tk_cpu_time);
275 }
276 
277 /*
278  * int task_cpu_time_incr(task_t *t, rctl_qty_t incr)
279  *
280  * Overview
281  *   task_cpu_time_incr() increments the amount of CPU time used
282  *   by this task.
283  *
284  * Return values
285  *   1   if a second or more time is accumulated
286  *   0   otherwise
287  *
288  * Caller's context
289  *   This is called by the clock tick accounting function to charge
290  *   CPU time to a task.
291  */
292 rctl_qty_t
293 task_cpu_time_incr(task_t *t, rctl_qty_t incr)
294 {
295 	rctl_qty_t ret = 0;
296 
297 	mutex_enter(&t->tk_cpu_time_lock);
298 	t->tk_cpu_ticks += incr;
299 	if (t->tk_cpu_ticks >= hz) {
300 		t->tk_cpu_time += t->tk_cpu_ticks / hz;
301 		t->tk_cpu_ticks = t->tk_cpu_ticks % hz;
302 		ret = t->tk_cpu_time;
303 	}
304 	mutex_exit(&t->tk_cpu_time_lock);
305 
306 	return (ret);
307 }
308 
309 /*
310  * static int task_test_cpu_secs(void *taskp, rctl_val_t *, int64_t incr,
311  *   int flags)
312  *
313  * Overview
314  *   task_test_cpu_secs() is the test-if-valid-increment for the resource
315  *   control for the total accrued CPU seconds for a task.
316  *
317  * Return values
318  *   0 if the threshold limit was not passed, 1 if the limit was passed.
319  *
320  * Caller's context
321  *   The given task must be held across the call.
322  */
323 /*ARGSUSED*/
324 static int
325 task_cpu_time_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
326     struct rctl_val *rcntl, rctl_qty_t incr, uint_t flags)
327 {
328 	ASSERT(MUTEX_HELD(&p->p_lock));
329 	ASSERT(e->rcep_t == RCENTITY_TASK);
330 	if (e->rcep_p.task == NULL)
331 		return (0);
332 
333 	if (incr >= rcntl->rcv_value)
334 		return (1);
335 
336 	return (0);
337 }
338 
339 static task_t *
340 task_find(taskid_t id, zoneid_t zoneid)
341 {
342 	task_t *tk;
343 
344 	ASSERT(MUTEX_HELD(&task_hash_lock));
345 
346 	if (mod_hash_find(task_hash, (mod_hash_key_t)(uintptr_t)id,
347 	    (mod_hash_val_t *)&tk) == MH_ERR_NOTFOUND ||
348 	    (zoneid != ALL_ZONES && zoneid != tk->tk_zone->zone_id))
349 		return (NULL);
350 
351 	return (tk);
352 }
353 
354 /*
355  * task_hold_by_id(), task_hold_by_id_zone()
356  *
357  * Overview
358  *   task_hold_by_id() is used to take a reference on a task by its task id,
359  *   supporting the various system call interfaces for obtaining resource data,
360  *   delivering signals, and so forth.
361  *
362  * Return values
363  *   Returns a pointer to the task_t with taskid_t id.  The task is returned
364  *   with its hold count incremented by one.  Returns NULL if there
365  *   is no task with the requested id.
366  *
367  * Caller's context
368  *   Caller must not be holding task_hash_lock.  No restrictions on context.
369  */
370 task_t *
371 task_hold_by_id_zone(taskid_t id, zoneid_t zoneid)
372 {
373 	task_t *tk;
374 
375 	mutex_enter(&task_hash_lock);
376 	if ((tk = task_find(id, zoneid)) != NULL)
377 		atomic_inc_32(&tk->tk_hold_count);
378 	mutex_exit(&task_hash_lock);
379 
380 	return (tk);
381 }
382 
383 task_t *
384 task_hold_by_id(taskid_t id)
385 {
386 	zoneid_t zoneid;
387 
388 	if (INGLOBALZONE(curproc))
389 		zoneid = ALL_ZONES;
390 	else
391 		zoneid = getzoneid();
392 	return (task_hold_by_id_zone(id, zoneid));
393 }
394 
395 /*
396  * void task_hold(task_t *)
397  *
398  * Overview
399  *   task_hold() is used to take an additional reference to the given task.
400  *
401  * Return values
402  *   None.
403  *
404  * Caller's context
405  *   No restriction on context.
406  */
407 void
408 task_hold(task_t *tk)
409 {
410 	atomic_inc_32(&tk->tk_hold_count);
411 }
412 
413 /*
414  * void task_rele(task_t *)
415  *
416  * Overview
417  *   task_rele() relinquishes a reference on the given task, which was acquired
418  *   via task_hold() or task_hold_by_id().  If this is the last member or
419  *   observer of the task, dispatch it for commitment via the accounting
420  *   subsystem.
421  *
422  * Return values
423  *   None.
424  *
425  * Caller's context
426  *   Caller must not be holding the task_hash_lock.
427  */
428 void
429 task_rele(task_t *tk)
430 {
431 	mutex_enter(&task_hash_lock);
432 	if (atomic_add_32_nv(&tk->tk_hold_count, -1) > 0) {
433 		mutex_exit(&task_hash_lock);
434 		return;
435 	}
436 
437 	ASSERT(tk->tk_nprocs == 0);
438 
439 	mutex_enter(&tk->tk_zone->zone_nlwps_lock);
440 	tk->tk_proj->kpj_ntasks--;
441 	mutex_exit(&tk->tk_zone->zone_nlwps_lock);
442 
443 	task_kstat_delete(tk);
444 
445 	if (mod_hash_destroy(task_hash,
446 	    (mod_hash_key_t)(uintptr_t)tk->tk_tkid) != 0)
447 		panic("unable to delete task %d", tk->tk_tkid);
448 	mutex_exit(&task_hash_lock);
449 
450 	/*
451 	 * At this point, there are no members or observers of the task, so we
452 	 * can safely send it on for commitment to the accounting subsystem.
453 	 * The task will be destroyed in task_end() subsequent to commitment.
454 	 * Since we may be called with pidlock held, taskq_dispatch() cannot
455 	 * sleep. Commitment is handled by a backup thread in case dispatching
456 	 * the task fails.
457 	 */
458 	if (taskq_dispatch(exacct_queue, exacct_commit_task, tk,
459 	    TQ_NOSLEEP | TQ_NOQUEUE) == TASKQID_INVALID) {
460 		mutex_enter(&task_commit_lock);
461 		if (task_commit_head == NULL) {
462 			task_commit_head = task_commit_tail = tk;
463 		} else {
464 			task_commit_tail->tk_commit_next = tk;
465 			task_commit_tail = tk;
466 		}
467 		cv_signal(&task_commit_cv);
468 		mutex_exit(&task_commit_lock);
469 	}
470 }
471 
472 /*
473  * task_t *task_create(projid_t, zone *)
474  *
475  * Overview
476  *   A process constructing a new task calls task_create() to construct and
477  *   preinitialize the task for the appropriate destination project.  Only one
478  *   task, the primordial task0, is not created with task_create().
479  *
480  * Return values
481  *   None.
482  *
483  * Caller's context
484  *   Caller's context should be safe for KM_SLEEP allocations.
485  *   The caller should appropriately bump the kpj_ntasks counter on the
486  *   project that contains this task.
487  */
488 task_t *
489 task_create(projid_t projid, zone_t *zone)
490 {
491 	task_t *tk = kmem_cache_alloc(task_cache, KM_SLEEP);
492 	task_t *ancestor_tk;
493 	taskid_t tkid;
494 	task_usage_t *tu = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
495 	mod_hash_hndl_t hndl;
496 	rctl_set_t *set = rctl_set_create();
497 	rctl_alloc_gp_t *gp;
498 	rctl_entity_p_t e;
499 
500 	bzero(tk, sizeof (task_t));
501 
502 	tk->tk_tkid = tkid = id_alloc(taskid_space);
503 	tk->tk_nlwps = 0;
504 	tk->tk_nlwps_ctl = INT_MAX;
505 	tk->tk_nprocs = 0;
506 	tk->tk_nprocs_ctl = INT_MAX;
507 	tk->tk_usage = tu;
508 	tk->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
509 	tk->tk_proj = project_hold_by_id(projid, zone, PROJECT_HOLD_INSERT);
510 	tk->tk_flags = TASK_NORMAL;
511 	tk->tk_commit_next = NULL;
512 
513 	/*
514 	 * Copy ancestor task's resource controls.
515 	 */
516 	zone_task_hold(zone);
517 	mutex_enter(&curproc->p_lock);
518 	ancestor_tk = curproc->p_task;
519 	task_hold(ancestor_tk);
520 	tk->tk_zone = zone;
521 	mutex_exit(&curproc->p_lock);
522 
523 	for (;;) {
524 		gp = rctl_set_dup_prealloc(ancestor_tk->tk_rctls);
525 
526 		mutex_enter(&ancestor_tk->tk_rctls->rcs_lock);
527 		if (rctl_set_dup_ready(ancestor_tk->tk_rctls, gp))
528 			break;
529 
530 		mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
531 
532 		rctl_prealloc_destroy(gp);
533 	}
534 
535 	/*
536 	 * At this point, curproc does not have the appropriate linkage
537 	 * through the task to the project. So, rctl_set_dup should only
538 	 * copy the rctls, and leave the callbacks for later.
539 	 */
540 	e.rcep_p.task = tk;
541 	e.rcep_t = RCENTITY_TASK;
542 	tk->tk_rctls = rctl_set_dup(ancestor_tk->tk_rctls, curproc, curproc, &e,
543 	    set, gp, RCD_DUP);
544 	mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
545 
546 	rctl_prealloc_destroy(gp);
547 
548 	/*
549 	 * Record the ancestor task's ID for use by extended accounting.
550 	 */
551 	tu->tu_anctaskid = ancestor_tk->tk_tkid;
552 	task_rele(ancestor_tk);
553 
554 	/*
555 	 * Put new task structure in the hash table.
556 	 */
557 	(void) mod_hash_reserve(task_hash, &hndl);
558 	mutex_enter(&task_hash_lock);
559 	ASSERT(task_find(tkid, zone->zone_id) == NULL);
560 	if (mod_hash_insert_reserve(task_hash, (mod_hash_key_t)(uintptr_t)tkid,
561 	    (mod_hash_val_t *)tk, hndl) != 0) {
562 		mod_hash_cancel(task_hash, &hndl);
563 		panic("unable to insert task %d(%p)", tkid, (void *)tk);
564 	}
565 	mutex_exit(&task_hash_lock);
566 
567 	tk->tk_nprocs_kstat = task_kstat_create(tk, zone);
568 	return (tk);
569 }
570 
571 /*
572  * void task_attach(task_t *, proc_t *)
573  *
574  * Overview
575  *   task_attach() is used to attach a process to a task; this operation is only
576  *   performed as a result of a fork() or settaskid() system call.  The proc_t's
577  *   p_tasknext and p_taskprev fields will be set such that the proc_t is a
578  *   member of the doubly-linked list of proc_t's that make up the task.
579  *
580  * Return values
581  *   None.
582  *
583  * Caller's context
584  *   pidlock and p->p_lock must be held on entry.
585  */
586 void
587 task_attach(task_t *tk, proc_t *p)
588 {
589 	proc_t *first, *prev;
590 	ASSERT(tk != NULL);
591 	ASSERT(p != NULL);
592 	ASSERT(MUTEX_HELD(&pidlock));
593 	ASSERT(MUTEX_HELD(&p->p_lock));
594 
595 	if (tk->tk_memb_list == NULL) {
596 		p->p_tasknext = p;
597 		p->p_taskprev = p;
598 	} else {
599 		first = tk->tk_memb_list;
600 		prev = first->p_taskprev;
601 		first->p_taskprev = p;
602 		p->p_tasknext = first;
603 		p->p_taskprev = prev;
604 		prev->p_tasknext = p;
605 	}
606 	tk->tk_memb_list = p;
607 	task_hold(tk);
608 	p->p_task = tk;
609 }
610 
611 /*
612  * task_begin()
613  *
614  * Overview
615  *   A process constructing a new task calls task_begin() to initialize the
616  *   task, by attaching itself as a member.
617  *
618  * Return values
619  *   None.
620  *
621  * Caller's context
622  *   pidlock and p_lock must be held across the call to task_begin().
623  */
624 void
625 task_begin(task_t *tk, proc_t *p)
626 {
627 	timestruc_t ts;
628 	task_usage_t *tu;
629 	rctl_entity_p_t e;
630 
631 	ASSERT(MUTEX_HELD(&pidlock));
632 	ASSERT(MUTEX_HELD(&p->p_lock));
633 
634 	mutex_enter(&tk->tk_usage_lock);
635 	tu = tk->tk_usage;
636 	gethrestime(&ts);
637 	tu->tu_startsec = (uint64_t)ts.tv_sec;
638 	tu->tu_startnsec = (uint64_t)ts.tv_nsec;
639 	mutex_exit(&tk->tk_usage_lock);
640 
641 	/*
642 	 * Join process to the task as a member.
643 	 */
644 	task_attach(tk, p);
645 
646 	/*
647 	 * Now that the linkage from process to task is complete, do the
648 	 * required callback for the task rctl set.
649 	 */
650 	e.rcep_p.task = tk;
651 	e.rcep_t = RCENTITY_TASK;
652 	(void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_rctls, NULL,
653 	    RCD_CALLBACK);
654 }
655 
656 /*
657  * void task_detach(proc_t *)
658  *
659  * Overview
660  *   task_detach() removes the specified process from its task.  task_detach
661  *   sets the process's task membership to NULL, in anticipation of a final exit
662  *   or of joining a new task.  Because task_rele() requires a context safe for
663  *   KM_SLEEP allocations, a task_detach() is followed by a subsequent
664  *   task_rele() once appropriate context is available.
665  *
666  *   Because task_detach() involves relinquishing the process's membership in
667  *   the project, any observational rctls the process may have had on the task
668  *   or project are destroyed.
669  *
670  * Return values
671  *   None.
672  *
673  * Caller's context
674  *   pidlock and p_lock held across task_detach().
675  */
676 void
677 task_detach(proc_t *p)
678 {
679 	task_t *tk = p->p_task;
680 
681 	ASSERT(MUTEX_HELD(&pidlock));
682 	ASSERT(MUTEX_HELD(&p->p_lock));
683 	ASSERT(p->p_task != NULL);
684 	ASSERT(tk->tk_memb_list != NULL);
685 
686 	if (tk->tk_memb_list == p)
687 		tk->tk_memb_list = p->p_tasknext;
688 	if (tk->tk_memb_list == p)
689 		tk->tk_memb_list = NULL;
690 	p->p_taskprev->p_tasknext = p->p_tasknext;
691 	p->p_tasknext->p_taskprev = p->p_taskprev;
692 
693 	rctl_set_tearoff(p->p_task->tk_rctls, p);
694 	rctl_set_tearoff(p->p_task->tk_proj->kpj_rctls, p);
695 
696 	p->p_task = NULL;
697 	p->p_tasknext = p->p_taskprev = NULL;
698 }
699 
700 /*
701  * task_change(task_t *, proc_t *)
702  *
703  * Overview
704  *   task_change() removes the specified process from its current task.  The
705  *   process is then attached to the specified task.  This routine is called
706  *   from settaskid() when process is being moved to a new task.
707  *
708  * Return values
709  *   None.
710  *
711  * Caller's context
712  *   pidlock and p_lock held across task_change()
713  */
714 void
715 task_change(task_t *newtk, proc_t *p)
716 {
717 	task_t *oldtk = p->p_task;
718 
719 	ASSERT(MUTEX_HELD(&pidlock));
720 	ASSERT(MUTEX_HELD(&p->p_lock));
721 	ASSERT(oldtk != NULL);
722 	ASSERT(oldtk->tk_memb_list != NULL);
723 
724 	mutex_enter(&oldtk->tk_zone->zone_nlwps_lock);
725 	oldtk->tk_nlwps -= p->p_lwpcnt;
726 	oldtk->tk_nprocs--;
727 	mutex_exit(&oldtk->tk_zone->zone_nlwps_lock);
728 
729 	mutex_enter(&newtk->tk_zone->zone_nlwps_lock);
730 	newtk->tk_nlwps += p->p_lwpcnt;
731 	newtk->tk_nprocs++;
732 	mutex_exit(&newtk->tk_zone->zone_nlwps_lock);
733 
734 	task_detach(p);
735 	task_begin(newtk, p);
736 	exacct_move_mstate(p, oldtk, newtk);
737 }
738 
739 /*
740  * task_end()
741  *
742  * Overview
743  *   task_end() contains the actions executed once the final member of
744  *   a task has released the task, and all actions connected with the task, such
745  *   as committing an accounting record to a file, are completed.  It is called
746  *   by the known last consumer of the task information.  Additionally,
747  *   task_end() must never refer to any process in the system.
748  *
749  * Return values
750  *   None.
751  *
752  * Caller's context
753  *   No restrictions on context, beyond that given above.
754  */
755 void
756 task_end(task_t *tk)
757 {
758 	ASSERT(tk->tk_hold_count == 0);
759 
760 	project_rele(tk->tk_proj);
761 	kmem_free(tk->tk_usage, sizeof (task_usage_t));
762 	kmem_free(tk->tk_inherited, sizeof (task_usage_t));
763 	if (tk->tk_prevusage != NULL)
764 		kmem_free(tk->tk_prevusage, sizeof (task_usage_t));
765 	if (tk->tk_zoneusage != NULL)
766 		kmem_free(tk->tk_zoneusage, sizeof (task_usage_t));
767 	rctl_set_free(tk->tk_rctls);
768 	id_free(taskid_space, tk->tk_tkid);
769 	zone_task_rele(tk->tk_zone);
770 	kmem_cache_free(task_cache, tk);
771 }
772 
773 static void
774 changeproj(proc_t *p, kproject_t *kpj, zone_t *zone, void *projbuf,
775     void *zonebuf)
776 {
777 	kproject_t *oldkpj;
778 	kthread_t *t;
779 
780 	ASSERT(MUTEX_HELD(&pidlock));
781 	ASSERT(MUTEX_HELD(&p->p_lock));
782 
783 	if ((t = p->p_tlist) != NULL) {
784 		do {
785 			(void) project_hold(kpj);
786 
787 			thread_lock(t);
788 			oldkpj = ttoproj(t);
789 
790 			/*
791 			 * Kick this thread so that it doesn't sit
792 			 * on a wrong wait queue.
793 			 */
794 			if (ISWAITING(t))
795 				setrun_locked(t);
796 
797 			/*
798 			 * The thread wants to go on the project wait queue, but
799 			 * the waitq is changing.
800 			 */
801 			if (t->t_schedflag & TS_PROJWAITQ)
802 				t->t_schedflag &= ~ TS_PROJWAITQ;
803 
804 			t->t_proj = kpj;
805 			t->t_pre_sys = 1;		/* For cred update */
806 			thread_unlock(t);
807 			fss_changeproj(t, kpj, zone, projbuf, zonebuf);
808 
809 			project_rele(oldkpj);
810 		} while ((t = t->t_forw) != p->p_tlist);
811 	}
812 }
813 
814 /*
815  * task_join()
816  *
817  * Overview
818  *   task_join() contains the actions that must be executed when the first
819  *   member (curproc) of a newly created task joins it.  It may never fail.
820  *
821  *   The caller must make sure holdlwps() is called so that all other lwps are
822  *   stopped prior to calling this function.
823  *
824  *   NB: It returns with curproc->p_lock held.
825  *
826  * Return values
827  *   Pointer to the old task.
828  *
829  * Caller's context
830  *   cpu_lock must be held entering the function.  It will acquire pidlock,
831  *   p_crlock and p_lock during execution.
832  */
833 task_t *
834 task_join(task_t *tk, uint_t flags)
835 {
836 	proc_t *p = ttoproc(curthread);
837 	task_t *prev_tk;
838 	void *projbuf, *zonebuf;
839 	zone_t *zone = tk->tk_zone;
840 	projid_t projid = tk->tk_proj->kpj_id;
841 	cred_t *oldcr;
842 
843 	/*
844 	 * We can't know for sure if holdlwps() was called, but we can check to
845 	 * ensure we're single-threaded.
846 	 */
847 	ASSERT(curthread == p->p_agenttp || p->p_lwprcnt == 1);
848 
849 	/*
850 	 * Changing the credential is always hard because we cannot
851 	 * allocate memory when holding locks but we don't know whether
852 	 * we need to change it.  We first get a reference to the current
853 	 * cred if we need to change it.  Then we create a credential
854 	 * with an updated project id.  Finally we install it, first
855 	 * releasing the reference we had on the p_cred at the time we
856 	 * acquired the lock the first time and later we release the
857 	 * reference to p_cred at the time we acquired the lock the
858 	 * second time.
859 	 */
860 	mutex_enter(&p->p_crlock);
861 	if (crgetprojid(p->p_cred) == projid)
862 		oldcr = NULL;
863 	else
864 		crhold(oldcr = p->p_cred);
865 	mutex_exit(&p->p_crlock);
866 
867 	if (oldcr != NULL) {
868 		cred_t *newcr = crdup(oldcr);
869 		crsetprojid(newcr, projid);
870 		crfree(oldcr);
871 
872 		mutex_enter(&p->p_crlock);
873 		oldcr = p->p_cred;
874 		p->p_cred = newcr;
875 		mutex_exit(&p->p_crlock);
876 		crfree(oldcr);
877 	}
878 
879 	/*
880 	 * Make sure that the number of processor sets is constant
881 	 * across this operation.
882 	 */
883 	ASSERT(MUTEX_HELD(&cpu_lock));
884 
885 	projbuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_PROJ);
886 	zonebuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_ZONE);
887 
888 	mutex_enter(&pidlock);
889 	mutex_enter(&p->p_lock);
890 
891 	prev_tk = p->p_task;
892 	task_change(tk, p);
893 
894 	/*
895 	 * Now move threads one by one to their new project.
896 	 */
897 	changeproj(p, tk->tk_proj, zone, projbuf, zonebuf);
898 	if (flags & TASK_FINAL)
899 		p->p_task->tk_flags |= TASK_FINAL;
900 
901 	mutex_exit(&pidlock);
902 
903 	fss_freebuf(zonebuf, FSS_ALLOC_ZONE);
904 	fss_freebuf(projbuf, FSS_ALLOC_PROJ);
905 	return (prev_tk);
906 }
907 
908 /*
909  * rctl ops vectors
910  */
911 static rctl_ops_t task_lwps_ops = {
912 	rcop_no_action,
913 	task_lwps_usage,
914 	task_lwps_set,
915 	task_lwps_test
916 };
917 
918 static rctl_ops_t task_procs_ops = {
919 	rcop_no_action,
920 	task_nprocs_usage,
921 	task_nprocs_set,
922 	task_nprocs_test
923 };
924 
925 static rctl_ops_t task_cpu_time_ops = {
926 	rcop_no_action,
927 	task_cpu_time_usage,
928 	rcop_no_set,
929 	task_cpu_time_test
930 };
931 
932 /*ARGSUSED*/
933 /*
934  * void task_init(void)
935  *
936  * Overview
937  *   task_init() initializes task-related hashes, caches, and the task id
938  *   space.  Additionally, task_init() establishes p0 as a member of task0.
939  *   Called by main().
940  *
941  * Return values
942  *   None.
943  *
944  * Caller's context
945  *   task_init() must be called prior to MP startup.
946  */
947 void
948 task_init(void)
949 {
950 	proc_t *p = &p0;
951 	mod_hash_hndl_t hndl;
952 	rctl_set_t *set;
953 	rctl_alloc_gp_t *gp;
954 	rctl_entity_p_t e;
955 
956 	/*
957 	 * Initialize task_cache and taskid_space.
958 	 */
959 	task_cache = kmem_cache_create("task_cache", sizeof (task_t),
960 	    0, NULL, NULL, NULL, NULL, NULL, 0);
961 	taskid_space = id_space_create("taskid_space", 0, MAX_TASKID);
962 
963 	/*
964 	 * Initialize task hash table.
965 	 */
966 	task_hash = mod_hash_create_idhash("task_hash", task_hash_size,
967 	    mod_hash_null_valdtor);
968 
969 	/*
970 	 * Initialize task-based rctls.
971 	 */
972 	rc_task_lwps = rctl_register("task.max-lwps", RCENTITY_TASK,
973 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX,
974 	    &task_lwps_ops);
975 	rc_task_nprocs = rctl_register("task.max-processes", RCENTITY_TASK,
976 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX,
977 	    &task_procs_ops);
978 	rc_task_cpu_time = rctl_register("task.max-cpu-time", RCENTITY_TASK,
979 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_DENY_NEVER |
980 	    RCTL_GLOBAL_CPU_TIME | RCTL_GLOBAL_INFINITE |
981 	    RCTL_GLOBAL_UNOBSERVABLE | RCTL_GLOBAL_SECONDS, UINT64_MAX,
982 	    UINT64_MAX, &task_cpu_time_ops);
983 
984 	/*
985 	 * Create task0 and place p0 in it as a member.
986 	 */
987 	task0p = kmem_cache_alloc(task_cache, KM_SLEEP);
988 	bzero(task0p, sizeof (task_t));
989 
990 	task0p->tk_tkid = id_alloc(taskid_space);
991 	task0p->tk_usage = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
992 	task0p->tk_inherited = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
993 	task0p->tk_proj = project_hold_by_id(0, &zone0,
994 	    PROJECT_HOLD_INSERT);
995 	task0p->tk_flags = TASK_NORMAL;
996 	task0p->tk_nlwps = p->p_lwpcnt;
997 	task0p->tk_nprocs = 1;
998 	task0p->tk_zone = global_zone;
999 	task0p->tk_commit_next = NULL;
1000 
1001 	set = rctl_set_create();
1002 	gp = rctl_set_init_prealloc(RCENTITY_TASK);
1003 	mutex_enter(&curproc->p_lock);
1004 	e.rcep_p.task = task0p;
1005 	e.rcep_t = RCENTITY_TASK;
1006 	task0p->tk_rctls = rctl_set_init(RCENTITY_TASK, curproc, &e, set, gp);
1007 	mutex_exit(&curproc->p_lock);
1008 	rctl_prealloc_destroy(gp);
1009 
1010 	(void) mod_hash_reserve(task_hash, &hndl);
1011 	mutex_enter(&task_hash_lock);
1012 	ASSERT(task_find(task0p->tk_tkid, GLOBAL_ZONEID) == NULL);
1013 	if (mod_hash_insert_reserve(task_hash,
1014 	    (mod_hash_key_t)(uintptr_t)task0p->tk_tkid,
1015 	    (mod_hash_val_t *)task0p, hndl) != 0) {
1016 		mod_hash_cancel(task_hash, &hndl);
1017 		panic("unable to insert task %d(%p)", task0p->tk_tkid,
1018 		    (void *)task0p);
1019 	}
1020 	mutex_exit(&task_hash_lock);
1021 
1022 	task0p->tk_memb_list = p;
1023 
1024 	task0p->tk_nprocs_kstat = task_kstat_create(task0p, task0p->tk_zone);
1025 
1026 	/*
1027 	 * Initialize task pointers for p0, including doubly linked list of task
1028 	 * members.
1029 	 */
1030 	p->p_task = task0p;
1031 	p->p_taskprev = p->p_tasknext = p;
1032 	task_hold(task0p);
1033 }
1034 
1035 static int
1036 task_nprocs_kstat_update(kstat_t *ksp, int rw)
1037 {
1038 	task_t *tk = ksp->ks_private;
1039 	task_kstat_t *ktk = ksp->ks_data;
1040 
1041 	if (rw == KSTAT_WRITE)
1042 		return (EACCES);
1043 
1044 	ktk->ktk_usage.value.ui64 = tk->tk_nprocs;
1045 	ktk->ktk_value.value.ui64 = tk->tk_nprocs_ctl;
1046 	return (0);
1047 }
1048 
1049 static kstat_t *
1050 task_kstat_create(task_t *tk, zone_t *zone)
1051 {
1052 	kstat_t	*ksp;
1053 	task_kstat_t *ktk;
1054 	char *zonename = zone->zone_name;
1055 
1056 	ksp = rctl_kstat_create_task(tk, "nprocs", KSTAT_TYPE_NAMED,
1057 	    sizeof (task_kstat_t) / sizeof (kstat_named_t),
1058 	    KSTAT_FLAG_VIRTUAL);
1059 
1060 	if (ksp == NULL)
1061 		return (NULL);
1062 
1063 	ktk = ksp->ks_data = kmem_alloc(sizeof (task_kstat_t), KM_SLEEP);
1064 	ksp->ks_data_size += strlen(zonename) + 1;
1065 	kstat_named_init(&ktk->ktk_zonename, "zonename", KSTAT_DATA_STRING);
1066 	kstat_named_setstr(&ktk->ktk_zonename, zonename);
1067 	kstat_named_init(&ktk->ktk_usage, "usage", KSTAT_DATA_UINT64);
1068 	kstat_named_init(&ktk->ktk_value, "value", KSTAT_DATA_UINT64);
1069 	ksp->ks_update = task_nprocs_kstat_update;
1070 	ksp->ks_private = tk;
1071 	kstat_install(ksp);
1072 
1073 	return (ksp);
1074 }
1075 
1076 static void
1077 task_kstat_delete(task_t *tk)
1078 {
1079 	void *data;
1080 
1081 	if (tk->tk_nprocs_kstat != NULL) {
1082 		data = tk->tk_nprocs_kstat->ks_data;
1083 		kstat_delete(tk->tk_nprocs_kstat);
1084 		kmem_free(data, sizeof (task_kstat_t));
1085 		tk->tk_nprocs_kstat = NULL;
1086 	}
1087 }
1088 
1089 void
1090 task_commit_thread_init()
1091 {
1092 	mutex_init(&task_commit_lock, NULL, MUTEX_DEFAULT, NULL);
1093 	cv_init(&task_commit_cv, NULL, CV_DEFAULT, NULL);
1094 	task_commit_thread = thread_create(NULL, 0, task_commit, NULL, 0,
1095 	    &p0, TS_RUN, minclsyspri);
1096 }
1097 
1098 /*
1099  * Backup thread to commit task resource usage when taskq_dispatch() fails.
1100  */
1101 static void
1102 task_commit()
1103 {
1104 	callb_cpr_t cprinfo;
1105 
1106 	CALLB_CPR_INIT(&cprinfo, &task_commit_lock, callb_generic_cpr,
1107 	    "task_commit_thread");
1108 
1109 	mutex_enter(&task_commit_lock);
1110 
1111 	for (;;) {
1112 		while (task_commit_head == NULL) {
1113 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1114 			cv_wait(&task_commit_cv, &task_commit_lock);
1115 			CALLB_CPR_SAFE_END(&cprinfo, &task_commit_lock);
1116 		}
1117 		while (task_commit_head != NULL) {
1118 			task_t *tk;
1119 
1120 			tk = task_commit_head;
1121 			task_commit_head = task_commit_head->tk_commit_next;
1122 			if (task_commit_head == NULL)
1123 				task_commit_tail = NULL;
1124 			mutex_exit(&task_commit_lock);
1125 			exacct_commit_task(tk);
1126 			mutex_enter(&task_commit_lock);
1127 		}
1128 	}
1129 }
1130