xref: /illumos-gate/usr/src/uts/common/os/task.c (revision 24da5b34f49324ed742a340010ed5bd3d4e06625)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/atomic.h>
29 #include <sys/cmn_err.h>
30 #include <sys/exacct.h>
31 #include <sys/id_space.h>
32 #include <sys/kmem.h>
33 #include <sys/modhash.h>
34 #include <sys/mutex.h>
35 #include <sys/proc.h>
36 #include <sys/project.h>
37 #include <sys/rctl.h>
38 #include <sys/systm.h>
39 #include <sys/task.h>
40 #include <sys/time.h>
41 #include <sys/types.h>
42 #include <sys/zone.h>
43 #include <sys/cpuvar.h>
44 #include <sys/fss.h>
45 #include <sys/class.h>
46 #include <sys/project.h>
47 
48 /*
49  * Tasks
50  *
51  *   A task is a collection of processes, associated with a common project ID
52  *   and related by a common initial parent.  The task primarily represents a
53  *   natural process sequence with known resource usage, although it can also be
54  *   viewed as a convenient grouping of processes for signal delivery, processor
55  *   binding, and administrative operations.
56  *
57  * Membership and observership
58  *   We can conceive of situations where processes outside of the task may wish
59  *   to examine the resource usage of the task.  Similarly, a number of the
60  *   administrative operations on a task can be performed by processes who are
61  *   not members of the task.  Accordingly, we must design a locking strategy
62  *   where observers of the task, who wish to examine or operate on the task,
63  *   and members of task, who can perform the mentioned operations, as well as
64  *   leave the task, see a consistent and correct representation of the task at
65  *   all times.
66  *
67  * Locking
68  *   Because the task membership is a new relation between processes, its
69  *   locking becomes an additional responsibility of the pidlock/p_lock locking
70  *   sequence; however, tasks closely resemble sessions and the session locking
71  *   model is mostly appropriate for the interaction of tasks, processes, and
72  *   procfs.
73  *
74  *   kmutex_t task_hash_lock
75  *     task_hash_lock is a global lock protecting the contents of the task
76  *     ID-to-task pointer hash.  Holders of task_hash_lock must not attempt to
77  *     acquire pidlock or p_lock.
78  *   uint_t tk_hold_count
79  *     tk_hold_count, the number of members and observers of the current task,
80  *     must be manipulated atomically.
81  *   proc_t *tk_memb_list
82  *   proc_t *p_tasknext
83  *   proc_t *p_taskprev
84  *     The task's membership list is protected by pidlock, and is therefore
85  *     always acquired before any of its members' p_lock mutexes.  The p_task
86  *     member of the proc structure is protected by pidlock or p_lock for
87  *     reading, and by both pidlock and p_lock for modification, as is done for
88  *     p_sessp.  The key point is that only the process can modify its p_task,
89  *     and not any entity on the system.  (/proc will use prlock() to prevent
90  *     the process from leaving, as opposed to pidlock.)
91  *   kmutex_t tk_usage_lock
92  *     tk_usage_lock is a per-task lock protecting the contents of the task
93  *     usage structure and tk_nlwps counter for the task.max-lwps resource
94  *     control.
95  */
96 
97 int task_hash_size = 256;
98 static kmutex_t task_hash_lock;
99 static mod_hash_t *task_hash;
100 
101 static id_space_t *taskid_space;	/* global taskid space */
102 static kmem_cache_t *task_cache;	/* kmem cache for task structures */
103 
104 rctl_hndl_t rc_task_lwps;
105 rctl_hndl_t rc_task_cpu_time;
106 
107 /*
108  * static rctl_qty_t task_usage_lwps(void *taskp)
109  *
110  * Overview
111  *   task_usage_lwps() is the usage operation for the resource control
112  *   associated with the number of LWPs in a task.
113  *
114  * Return values
115  *   The number of LWPs in the given task is returned.
116  *
117  * Caller's context
118  *   The p->p_lock must be held across the call.
119  */
120 /*ARGSUSED*/
121 static rctl_qty_t
122 task_lwps_usage(rctl_t *r, proc_t *p)
123 {
124 	task_t *t;
125 	rctl_qty_t nlwps;
126 
127 	ASSERT(MUTEX_HELD(&p->p_lock));
128 
129 	t = p->p_task;
130 	mutex_enter(&p->p_zone->zone_nlwps_lock);
131 	nlwps = t->tk_nlwps;
132 	mutex_exit(&p->p_zone->zone_nlwps_lock);
133 
134 	return (nlwps);
135 }
136 
137 /*
138  * static int task_test_lwps(void *taskp, rctl_val_t *, int64_t incr,
139  *   int flags)
140  *
141  * Overview
142  *   task_test_lwps() is the test-if-valid-increment for the resource control
143  *   for the number of processes in a task.
144  *
145  * Return values
146  *   0 if the threshold limit was not passed, 1 if the limit was passed.
147  *
148  * Caller's context
149  *   p->p_lock must be held across the call.
150  */
151 /*ARGSUSED*/
152 static int
153 task_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
154     rctl_qty_t incr,
155     uint_t flags)
156 {
157 	rctl_qty_t nlwps;
158 
159 	ASSERT(MUTEX_HELD(&p->p_lock));
160 	ASSERT(e->rcep_t == RCENTITY_TASK);
161 	if (e->rcep_p.task == NULL)
162 		return (0);
163 
164 	ASSERT(MUTEX_HELD(&(e->rcep_p.task->tk_zone->zone_nlwps_lock)));
165 	nlwps = e->rcep_p.task->tk_nlwps;
166 
167 	if (nlwps + incr > rcntl->rcv_value)
168 		return (1);
169 
170 	return (0);
171 }
172 /*ARGSUSED*/
173 static int
174 task_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) {
175 
176 	ASSERT(MUTEX_HELD(&p->p_lock));
177 	ASSERT(e->rcep_t == RCENTITY_TASK);
178 	if (e->rcep_p.task == NULL)
179 		return (0);
180 
181 	e->rcep_p.task->tk_nlwps_ctl = nv;
182 	return (0);
183 }
184 
185 /*
186  * static rctl_qty_t task_usage_cpu_secs(void *taskp)
187  *
188  * Overview
189  *   task_usage_cpu_secs() is the usage operation for the resource control
190  *   associated with the total accrued CPU seconds for a task.
191  *
192  * Return values
193  *   The number of CPU seconds consumed by the task is returned.
194  *
195  * Caller's context
196  *   The given task must be held across the call.
197  */
198 /*ARGSUSED*/
199 static rctl_qty_t
200 task_cpu_time_usage(rctl_t *r, proc_t *p)
201 {
202 	task_t *t = p->p_task;
203 
204 	ASSERT(MUTEX_HELD(&p->p_lock));
205 	return (t->tk_cpu_time / hz);
206 }
207 
208 /*
209  * static int task_test_cpu_secs(void *taskp, rctl_val_t *, int64_t incr,
210  *   int flags)
211  *
212  * Overview
213  *   task_test_cpu_secs() is the test-if-valid-increment for the resource
214  *   control for the total accrued CPU seconds for a task.
215  *
216  * Return values
217  *   0 if the threshold limit was not passed, 1 if the limit was passed.
218  *
219  * Caller's context
220  *   The given task must be held across the call.
221  */
222 /*ARGSUSED*/
223 static int
224 task_cpu_time_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
225     struct rctl_val *rcntl, rctl_qty_t incr, uint_t flags)
226 {
227 	task_t *t;
228 
229 	ASSERT(MUTEX_HELD(&p->p_lock));
230 	ASSERT(e->rcep_t == RCENTITY_TASK);
231 	if (e->rcep_p.task == NULL)
232 		return (0);
233 
234 	t = e->rcep_p.task;
235 	if ((t->tk_cpu_time + incr) / hz >= rcntl->rcv_value)
236 		return (1);
237 
238 	return (0);
239 }
240 
241 static task_t *
242 task_find(taskid_t id, zoneid_t zoneid)
243 {
244 	task_t *tk;
245 
246 	ASSERT(MUTEX_HELD(&task_hash_lock));
247 
248 	if (mod_hash_find(task_hash, (mod_hash_key_t)(uintptr_t)id,
249 	    (mod_hash_val_t *)&tk) == MH_ERR_NOTFOUND ||
250 	    (zoneid != ALL_ZONES && zoneid != tk->tk_zone->zone_id))
251 		return (NULL);
252 
253 	return (tk);
254 }
255 
256 /*
257  * task_hold_by_id(), task_hold_by_id_zone()
258  *
259  * Overview
260  *   task_hold_by_id() is used to take a reference on a task by its task id,
261  *   supporting the various system call interfaces for obtaining resource data,
262  *   delivering signals, and so forth.
263  *
264  * Return values
265  *   Returns a pointer to the task_t with taskid_t id.  The task is returned
266  *   with its hold count incremented by one.  Returns NULL if there
267  *   is no task with the requested id.
268  *
269  * Caller's context
270  *   Caller must not be holding task_hash_lock.  No restrictions on context.
271  */
272 task_t *
273 task_hold_by_id_zone(taskid_t id, zoneid_t zoneid)
274 {
275 	task_t *tk;
276 
277 	mutex_enter(&task_hash_lock);
278 	if ((tk = task_find(id, zoneid)) != NULL)
279 		atomic_add_32(&tk->tk_hold_count, 1);
280 	mutex_exit(&task_hash_lock);
281 
282 	return (tk);
283 }
284 
285 task_t *
286 task_hold_by_id(taskid_t id)
287 {
288 	zoneid_t zoneid;
289 
290 	if (INGLOBALZONE(curproc))
291 		zoneid = ALL_ZONES;
292 	else
293 		zoneid = getzoneid();
294 	return (task_hold_by_id_zone(id, zoneid));
295 }
296 
297 /*
298  * void task_hold(task_t *)
299  *
300  * Overview
301  *   task_hold() is used to take an additional reference to the given task.
302  *
303  * Return values
304  *   None.
305  *
306  * Caller's context
307  *   No restriction on context.
308  */
309 void
310 task_hold(task_t *tk)
311 {
312 	atomic_add_32(&tk->tk_hold_count, 1);
313 }
314 
315 /*
316  * void task_rele(task_t *)
317  *
318  * Overview
319  *   task_rele() relinquishes a reference on the given task, which was acquired
320  *   via task_hold() or task_hold_by_id().  If this is the last member or
321  *   observer of the task, dispatch it for commitment via the accounting
322  *   subsystem.
323  *
324  * Return values
325  *   None.
326  *
327  * Caller's context
328  *   Caller must not be holding the task_hash_lock.
329  *   Caller's context must be acceptable for KM_SLEEP allocations.
330  */
331 void
332 task_rele(task_t *tk)
333 {
334 	mutex_enter(&task_hash_lock);
335 	if (atomic_add_32_nv(&tk->tk_hold_count, -1) > 0) {
336 		mutex_exit(&task_hash_lock);
337 		return;
338 	}
339 
340 	mutex_enter(&tk->tk_zone->zone_nlwps_lock);
341 	tk->tk_proj->kpj_ntasks--;
342 	mutex_exit(&tk->tk_zone->zone_nlwps_lock);
343 
344 	if (mod_hash_destroy(task_hash,
345 	    (mod_hash_key_t)(uintptr_t)tk->tk_tkid) != 0)
346 		panic("unable to delete task %d", tk->tk_tkid);
347 	mutex_exit(&task_hash_lock);
348 
349 	/*
350 	 * At this point, there are no members or observers of the task, so we
351 	 * can safely send it on for commitment to the accounting subsystem.
352 	 * The task will be destroyed in task_end() subsequent to commitment.
353 	 */
354 	(void) taskq_dispatch(exacct_queue, exacct_commit_task, tk, KM_SLEEP);
355 }
356 
357 /*
358  * task_t *task_create(projid_t, zone *)
359  *
360  * Overview
361  *   A process constructing a new task calls task_create() to construct and
362  *   preinitialize the task for the appropriate destination project.  Only one
363  *   task, the primordial task0, is not created with task_create().
364  *
365  * Return values
366  *   None.
367  *
368  * Caller's context
369  *   Caller's context should be safe for KM_SLEEP allocations.
370  *   The caller should appropriately bump the kpj_ntasks counter on the
371  *   project that contains this task.
372  */
373 task_t *
374 task_create(projid_t projid, zone_t *zone)
375 {
376 	task_t *tk = kmem_cache_alloc(task_cache, KM_SLEEP);
377 	task_t *ancestor_tk;
378 	taskid_t tkid;
379 	task_usage_t *tu = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
380 	mod_hash_hndl_t hndl;
381 	rctl_set_t *set = rctl_set_create();
382 	rctl_alloc_gp_t *gp;
383 	rctl_entity_p_t e;
384 
385 	bzero(tk, sizeof (task_t));
386 
387 	tk->tk_tkid = tkid = id_alloc(taskid_space);
388 	tk->tk_nlwps = 0;
389 	tk->tk_nlwps_ctl = INT_MAX;
390 	tk->tk_usage = tu;
391 	tk->tk_proj = project_hold_by_id(projid, zone, PROJECT_HOLD_INSERT);
392 	tk->tk_flags = TASK_NORMAL;
393 
394 	/*
395 	 * Copy ancestor task's resource controls.
396 	 */
397 	zone_task_hold(zone);
398 	mutex_enter(&curproc->p_lock);
399 	ancestor_tk = curproc->p_task;
400 	task_hold(ancestor_tk);
401 	tk->tk_zone = zone;
402 	mutex_exit(&curproc->p_lock);
403 
404 	for (;;) {
405 		gp = rctl_set_dup_prealloc(ancestor_tk->tk_rctls);
406 
407 		mutex_enter(&ancestor_tk->tk_rctls->rcs_lock);
408 		if (rctl_set_dup_ready(ancestor_tk->tk_rctls, gp))
409 			break;
410 
411 		mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
412 
413 		rctl_prealloc_destroy(gp);
414 	}
415 
416 	/*
417 	 * At this point, curproc does not have the appropriate linkage
418 	 * through the task to the project. So, rctl_set_dup should only
419 	 * copy the rctls, and leave the callbacks for later.
420 	 */
421 	e.rcep_p.task = tk;
422 	e.rcep_t = RCENTITY_TASK;
423 	tk->tk_rctls = rctl_set_dup(ancestor_tk->tk_rctls, curproc, curproc, &e,
424 	    set, gp, RCD_DUP);
425 	mutex_exit(&ancestor_tk->tk_rctls->rcs_lock);
426 
427 	rctl_prealloc_destroy(gp);
428 
429 	/*
430 	 * Record the ancestor task's ID for use by extended accounting.
431 	 */
432 	tu->tu_anctaskid = ancestor_tk->tk_tkid;
433 	task_rele(ancestor_tk);
434 
435 	/*
436 	 * Put new task structure in the hash table.
437 	 */
438 	(void) mod_hash_reserve(task_hash, &hndl);
439 	mutex_enter(&task_hash_lock);
440 	ASSERT(task_find(tkid, getzoneid()) == NULL);
441 	if (mod_hash_insert_reserve(task_hash, (mod_hash_key_t)(uintptr_t)tkid,
442 	    (mod_hash_val_t *)tk, hndl) != 0) {
443 		mod_hash_cancel(task_hash, &hndl);
444 		panic("unable to insert task %d(%p)", tkid, (void *)tk);
445 	}
446 	mutex_exit(&task_hash_lock);
447 
448 	return (tk);
449 }
450 
451 /*
452  * void task_attach(task_t *, proc_t *)
453  *
454  * Overview
455  *   task_attach() is used to attach a process to a task; this operation is only
456  *   performed as a result of a fork() or settaskid() system call.  The proc_t's
457  *   p_tasknext and p_taskprev fields will be set such that the proc_t is a
458  *   member of the doubly-linked list of proc_t's that make up the task.
459  *
460  * Return values
461  *   None.
462  *
463  * Caller's context
464  *   pidlock and p->p_lock must be held on entry.
465  */
466 void
467 task_attach(task_t *tk, proc_t *p)
468 {
469 	proc_t *first, *prev;
470 	rctl_entity_p_t e;
471 	ASSERT(tk != NULL);
472 	ASSERT(p != NULL);
473 	ASSERT(MUTEX_HELD(&pidlock));
474 	ASSERT(MUTEX_HELD(&p->p_lock));
475 
476 	if (tk->tk_memb_list == NULL) {
477 		p->p_tasknext = p;
478 		p->p_taskprev = p;
479 	} else {
480 		first = tk->tk_memb_list;
481 		prev = first->p_taskprev;
482 		first->p_taskprev = p;
483 		p->p_tasknext = first;
484 		p->p_taskprev = prev;
485 		prev->p_tasknext = p;
486 	}
487 	tk->tk_memb_list = p;
488 	task_hold(tk);
489 	p->p_task = tk;
490 
491 	/*
492 	 * Now that the linkage from process to task and project is
493 	 * complete, do the required callbacks for the task and project
494 	 * rctl sets.
495 	 */
496 	e.rcep_p.proj = tk->tk_proj;
497 	e.rcep_t = RCENTITY_PROJECT;
498 	(void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_proj->kpj_rctls, NULL,
499 	    RCD_CALLBACK);
500 
501 	e.rcep_p.task = tk;
502 	e.rcep_t = RCENTITY_TASK;
503 	(void) rctl_set_dup(NULL, NULL, p, &e, tk->tk_rctls, NULL,
504 	    RCD_CALLBACK);
505 
506 }
507 
508 /*
509  * task_begin()
510  *
511  * Overview
512  *   A process constructing a new task calls task_begin() to initialize the
513  *   task, by attaching itself as a member.
514  *
515  * Return values
516  *   None.
517  *
518  * Caller's context
519  *   pidlock and p_lock must be held across the call to task_begin().
520  */
521 void
522 task_begin(task_t *tk, proc_t *p)
523 {
524 	timestruc_t ts;
525 	task_usage_t *tu;
526 
527 	ASSERT(MUTEX_HELD(&pidlock));
528 	ASSERT(MUTEX_HELD(&p->p_lock));
529 
530 	mutex_enter(&tk->tk_usage_lock);
531 	tu = tk->tk_usage;
532 	gethrestime(&ts);
533 	tu->tu_startsec = (uint64_t)ts.tv_sec;
534 	tu->tu_startnsec = (uint64_t)ts.tv_nsec;
535 	mutex_exit(&tk->tk_usage_lock);
536 
537 	/*
538 	 * Join process to the task as a member.
539 	 */
540 	task_attach(tk, p);
541 }
542 
543 /*
544  * void task_detach(proc_t *)
545  *
546  * Overview
547  *   task_detach() removes the specified process from its task.  task_detach
548  *   sets the process's task membership to NULL, in anticipation of a final exit
549  *   or of joining a new task.  Because task_rele() requires a context safe for
550  *   KM_SLEEP allocations, a task_detach() is followed by a subsequent
551  *   task_rele() once appropriate context is available.
552  *
553  *   Because task_detach() involves relinquishing the process's membership in
554  *   the project, any observational rctls the process may have had on the task
555  *   or project are destroyed.
556  *
557  * Return values
558  *   None.
559  *
560  * Caller's context
561  *   pidlock and p_lock held across task_detach().
562  */
563 void
564 task_detach(proc_t *p)
565 {
566 	task_t *tk = p->p_task;
567 
568 	ASSERT(MUTEX_HELD(&pidlock));
569 	ASSERT(MUTEX_HELD(&p->p_lock));
570 	ASSERT(p->p_task != NULL);
571 	ASSERT(tk->tk_memb_list != NULL);
572 
573 	if (tk->tk_memb_list == p)
574 		tk->tk_memb_list = p->p_tasknext;
575 	if (tk->tk_memb_list == p)
576 		tk->tk_memb_list = NULL;
577 	p->p_taskprev->p_tasknext = p->p_tasknext;
578 	p->p_tasknext->p_taskprev = p->p_taskprev;
579 
580 	rctl_set_tearoff(p->p_task->tk_rctls, p);
581 	rctl_set_tearoff(p->p_task->tk_proj->kpj_rctls, p);
582 
583 	p->p_task = NULL;
584 	p->p_tasknext = p->p_taskprev = NULL;
585 }
586 
587 /*
588  * task_change(task_t *, proc_t *)
589  *
590  * Overview
591  *   task_change() removes the specified process from its current task.  The
592  *   process is then attached to the specified task.  This routine is called
593  *   from settaskid() when process is being moved to a new task.
594  *
595  * Return values
596  *   None.
597  *
598  * Caller's context
599  *   pidlock and p_lock held across task_change()
600  */
601 void
602 task_change(task_t *newtk, proc_t *p)
603 {
604 	task_t *oldtk = p->p_task;
605 
606 	ASSERT(MUTEX_HELD(&pidlock));
607 	ASSERT(MUTEX_HELD(&p->p_lock));
608 	ASSERT(oldtk != NULL);
609 	ASSERT(oldtk->tk_memb_list != NULL);
610 
611 	mutex_enter(&p->p_zone->zone_nlwps_lock);
612 	oldtk->tk_nlwps -= p->p_lwpcnt;
613 	mutex_exit(&p->p_zone->zone_nlwps_lock);
614 
615 	mutex_enter(&newtk->tk_zone->zone_nlwps_lock);
616 	newtk->tk_nlwps += p->p_lwpcnt;
617 	mutex_exit(&newtk->tk_zone->zone_nlwps_lock);
618 
619 	task_detach(p);
620 	task_begin(newtk, p);
621 }
622 
623 /*
624  * task_end()
625  *
626  * Overview
627  *   task_end() contains the actions executed once the final member of
628  *   a task has released the task, and all actions connected with the task, such
629  *   as committing an accounting record to a file, are completed.  It is called
630  *   by the known last consumer of the task information.  Additionally,
631  *   task_end() must never refer to any process in the system.
632  *
633  * Return values
634  *   None.
635  *
636  * Caller's context
637  *   No restrictions on context, beyond that given above.
638  */
639 void
640 task_end(task_t *tk)
641 {
642 	ASSERT(tk->tk_hold_count == 0);
643 
644 	project_rele(tk->tk_proj);
645 	kmem_free(tk->tk_usage, sizeof (task_usage_t));
646 	if (tk->tk_prevusage != NULL)
647 		kmem_free(tk->tk_prevusage, sizeof (task_usage_t));
648 	if (tk->tk_zoneusage != NULL)
649 		kmem_free(tk->tk_zoneusage, sizeof (task_usage_t));
650 	rctl_set_free(tk->tk_rctls);
651 	id_free(taskid_space, tk->tk_tkid);
652 	zone_task_rele(tk->tk_zone);
653 	kmem_cache_free(task_cache, tk);
654 }
655 
656 static void
657 changeproj(proc_t *p, kproject_t *kpj, zone_t *zone, void *projbuf,
658     void *zonebuf)
659 {
660 	kproject_t *oldkpj;
661 	kthread_t *t;
662 
663 	ASSERT(MUTEX_HELD(&pidlock));
664 	ASSERT(MUTEX_HELD(&p->p_lock));
665 
666 	if ((t = p->p_tlist) != NULL) {
667 		do {
668 			(void) project_hold(kpj);
669 
670 			thread_lock(t);
671 			oldkpj = ttoproj(t);
672 
673 			/*
674 			 * Kick this thread so that he doesn't sit
675 			 * on a wrong wait queue.
676 			 */
677 			if (ISWAITING(t))
678 				setrun_locked(t);
679 
680 			/*
681 			 * The thread wants to go on the project wait queue, but
682 			 * the waitq is changing.
683 			 */
684 			if (t->t_schedflag & TS_PROJWAITQ)
685 				t->t_schedflag &= ~ TS_PROJWAITQ;
686 
687 			t->t_proj = kpj;
688 			t->t_pre_sys = 1;		/* For cred update */
689 			thread_unlock(t);
690 			fss_changeproj(t, kpj, zone, projbuf, zonebuf);
691 
692 			project_rele(oldkpj);
693 		} while ((t = t->t_forw) != p->p_tlist);
694 	}
695 }
696 
697 /*
698  * task_join()
699  *
700  * Overview
701  *   task_join() contains the actions that must be executed when the first
702  *   member (curproc) of a newly created task joins it.  It may never fail.
703  *
704  *   The caller must make sure holdlwps() is called so that all other lwps are
705  *   stopped prior to calling this function.
706  *
707  *   NB: It returns with curproc->p_lock held.
708  *
709  * Return values
710  *   Pointer to the old task.
711  *
712  * Caller's context
713  *   cpu_lock must be held entering the function.  It will acquire pidlock,
714  *   p_crlock and p_lock during execution.
715  */
716 task_t *
717 task_join(task_t *tk, uint_t flags)
718 {
719 	proc_t *p = ttoproc(curthread);
720 	task_t *prev_tk;
721 	void *projbuf, *zonebuf;
722 	zone_t *zone = tk->tk_zone;
723 	projid_t projid = tk->tk_proj->kpj_id;
724 	cred_t *oldcr;
725 
726 	/*
727 	 * We can't know for sure if holdlwps() was called, but we can check to
728 	 * ensure we're single-threaded.
729 	 */
730 	ASSERT(curthread == p->p_agenttp || p->p_lwprcnt == 1);
731 
732 	/*
733 	 * Changing the credential is always hard because we cannot
734 	 * allocate memory when holding locks but we don't know whether
735 	 * we need to change it.  We first get a reference to the current
736 	 * cred if we need to change it.  Then we create a credential
737 	 * with an updated project id.  Finally we install it, first
738 	 * releasing the reference we had on the p_cred at the time we
739 	 * acquired the lock the first time and later we release the
740 	 * reference to p_cred at the time we acquired the lock the
741 	 * second time.
742 	 */
743 	mutex_enter(&p->p_crlock);
744 	if (crgetprojid(p->p_cred) == projid)
745 		oldcr = NULL;
746 	else
747 		crhold(oldcr = p->p_cred);
748 	mutex_exit(&p->p_crlock);
749 
750 	if (oldcr != NULL) {
751 		cred_t *newcr = crdup(oldcr);
752 		crsetprojid(newcr, projid);
753 		crfree(oldcr);
754 
755 		mutex_enter(&p->p_crlock);
756 		oldcr = p->p_cred;
757 		p->p_cred = newcr;
758 		mutex_exit(&p->p_crlock);
759 		crfree(oldcr);
760 	}
761 
762 	/*
763 	 * Make sure that the number of processor sets is constant
764 	 * across this operation.
765 	 */
766 	ASSERT(MUTEX_HELD(&cpu_lock));
767 
768 	projbuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_PROJ);
769 	zonebuf = fss_allocbuf(FSS_NPSET_BUF, FSS_ALLOC_ZONE);
770 
771 	mutex_enter(&pidlock);
772 	mutex_enter(&p->p_lock);
773 
774 	prev_tk = p->p_task;
775 	task_change(tk, p);
776 
777 	/*
778 	 * Now move threads one by one to their new project.
779 	 */
780 	changeproj(p, tk->tk_proj, zone, projbuf, zonebuf);
781 	if (flags & TASK_FINAL)
782 		p->p_task->tk_flags |= TASK_FINAL;
783 
784 	mutex_exit(&pidlock);
785 
786 	fss_freebuf(zonebuf, FSS_ALLOC_ZONE);
787 	fss_freebuf(projbuf, FSS_ALLOC_PROJ);
788 	return (prev_tk);
789 }
790 
791 /*
792  * rctl ops vectors
793  */
794 static rctl_ops_t task_lwps_ops = {
795 	rcop_no_action,
796 	task_lwps_usage,
797 	task_lwps_set,
798 	task_lwps_test
799 };
800 
801 static rctl_ops_t task_cpu_time_ops = {
802 	rcop_no_action,
803 	task_cpu_time_usage,
804 	rcop_no_set,
805 	task_cpu_time_test
806 };
807 
808 /*ARGSUSED*/
809 /*
810  * void task_init(void)
811  *
812  * Overview
813  *   task_init() initializes task-related hashes, caches, and the task id
814  *   space.  Additionally, task_init() establishes p0 as a member of task0.
815  *   Called by main().
816  *
817  * Return values
818  *   None.
819  *
820  * Caller's context
821  *   task_init() must be called prior to MP startup.
822  */
823 void
824 task_init(void)
825 {
826 	proc_t *p = &p0;
827 	mod_hash_hndl_t hndl;
828 	rctl_set_t *set;
829 	rctl_alloc_gp_t *gp;
830 	rctl_entity_p_t e;
831 	/*
832 	 * Initialize task_cache and taskid_space.
833 	 */
834 	task_cache = kmem_cache_create("task_cache", sizeof (task_t),
835 	    0, NULL, NULL, NULL, NULL, NULL, 0);
836 	taskid_space = id_space_create("taskid_space", 0, MAX_TASKID);
837 
838 	/*
839 	 * Initialize task hash table.
840 	 */
841 	task_hash = mod_hash_create_idhash("task_hash", task_hash_size,
842 	    mod_hash_null_valdtor);
843 
844 	/*
845 	 * Initialize task-based rctls.
846 	 */
847 	rc_task_lwps = rctl_register("task.max-lwps", RCENTITY_TASK,
848 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_COUNT, INT_MAX, INT_MAX,
849 	    &task_lwps_ops);
850 	rc_task_cpu_time = rctl_register("task.max-cpu-time", RCENTITY_TASK,
851 	    RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_DENY_NEVER |
852 	    RCTL_GLOBAL_CPU_TIME | RCTL_GLOBAL_INFINITE |
853 	    RCTL_GLOBAL_UNOBSERVABLE | RCTL_GLOBAL_SECONDS, UINT64_MAX,
854 	    UINT64_MAX, &task_cpu_time_ops);
855 
856 	/*
857 	 * Create task0 and place p0 in it as a member.
858 	 */
859 	task0p = kmem_cache_alloc(task_cache, KM_SLEEP);
860 	bzero(task0p, sizeof (task_t));
861 
862 	task0p->tk_tkid = id_alloc(taskid_space);
863 	task0p->tk_usage = kmem_zalloc(sizeof (task_usage_t), KM_SLEEP);
864 	task0p->tk_proj = project_hold_by_id(0, &zone0,
865 	    PROJECT_HOLD_INSERT);
866 	task0p->tk_flags = TASK_NORMAL;
867 	task0p->tk_nlwps = p->p_lwpcnt;
868 	task0p->tk_zone = global_zone;
869 
870 	set = rctl_set_create();
871 	gp = rctl_set_init_prealloc(RCENTITY_TASK);
872 	mutex_enter(&curproc->p_lock);
873 	e.rcep_p.task = task0p;
874 	e.rcep_t = RCENTITY_TASK;
875 	task0p->tk_rctls = rctl_set_init(RCENTITY_TASK, curproc, &e, set, gp);
876 	mutex_exit(&curproc->p_lock);
877 	rctl_prealloc_destroy(gp);
878 
879 	(void) mod_hash_reserve(task_hash, &hndl);
880 	mutex_enter(&task_hash_lock);
881 	ASSERT(task_find(task0p->tk_tkid, GLOBAL_ZONEID) == NULL);
882 	if (mod_hash_insert_reserve(task_hash,
883 	    (mod_hash_key_t)(uintptr_t)task0p->tk_tkid,
884 	    (mod_hash_val_t *)task0p, hndl) != 0) {
885 		mod_hash_cancel(task_hash, &hndl);
886 		panic("unable to insert task %d(%p)", task0p->tk_tkid,
887 		    (void *)task0p);
888 	}
889 	mutex_exit(&task_hash_lock);
890 
891 	task0p->tk_memb_list = p;
892 
893 	/*
894 	 * Initialize task pointers for p0, including doubly linked list of task
895 	 * members.
896 	 */
897 	p->p_task = task0p;
898 	p->p_taskprev = p->p_tasknext = p;
899 	task_hold(task0p);
900 }
901