1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright 2010 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * sunpm.c builds sunpm.o "power management framework" 31 * kernel-resident power management code. Implements power management 32 * policy 33 * Assumes: all backwards compat. device components wake up on & 34 * the pm_info pointer in dev_info is initially NULL 35 * 36 * PM - (device) Power Management 37 * 38 * Each device may have 0 or more components. If a device has no components, 39 * then it can't be power managed. Each component has 2 or more 40 * power states. 41 * 42 * "Backwards Compatible" (bc) devices: 43 * There are two different types of devices from the point of view of this 44 * code. The original type, left over from the original PM implementation on 45 * the voyager platform are known in this code as "backwards compatible" 46 * devices (PM_ISBC(dip) returns true). 47 * They are recognized by the pm code by the lack of a pm-components property 48 * and a call made by the driver to pm_create_components(9F). 49 * For these devices, component 0 is special, and represents the power state 50 * of the device. If component 0 is to be set to power level 0 (off), then 51 * the framework must first call into the driver's detach(9E) routine with 52 * DDI_PM_SUSPEND, to get the driver to save the hardware state of the device. 53 * After setting component 0 from 0 to a non-zero power level, a call must be 54 * made into the driver's attach(9E) routine with DDI_PM_RESUME. 55 * 56 * Currently, the only way to get a bc device power managed is via a set of 57 * ioctls (PM_DIRECT_PM, PM_SET_CURRENT_POWER) issued to /dev/pm. 58 * 59 * For non-bc devices, the driver describes the components by exporting a 60 * pm-components(9P) property that tells how many components there are, 61 * tells what each component's power state values are, and provides human 62 * readable strings (currently unused) for each component name and power state. 63 * Devices which export pm-components(9P) are automatically power managed 64 * whenever autopm is enabled (via PM_START_PM ioctl issued by pmconfig(1M) 65 * after parsing power.conf(4)). The exception to this rule is that power 66 * manageable CPU devices may be automatically managed independently of autopm 67 * by either enabling or disabling (via PM_START_CPUPM and PM_STOP_CPUPM 68 * ioctls) cpupm. If the CPU devices are not managed independently, then they 69 * are managed by autopm. In either case, for automatically power managed 70 * devices, all components are considered independent of each other, and it is 71 * up to the driver to decide when a transition requires saving or restoring 72 * hardware state. 73 * 74 * Each device component also has a threshold time associated with each power 75 * transition (see power.conf(4)), and a busy/idle state maintained by the 76 * driver calling pm_idle_component(9F) and pm_busy_component(9F). 77 * Components are created idle. 78 * 79 * The PM framework provides several functions: 80 * -implement PM policy as described in power.conf(4) 81 * Policy is set by pmconfig(1M) issuing pm ioctls based on power.conf(4). 82 * Policies consist of: 83 * -set threshold values (defaults if none provided by pmconfig) 84 * -set dependencies among devices 85 * -enable/disable autopm 86 * -enable/disable cpupm 87 * -turn down idle components based on thresholds (if autopm or cpupm is 88 * enabled) (aka scanning) 89 * -maintain power states based on dependencies among devices 90 * -upon request, or when the frame buffer powers off, attempt to turn off 91 * all components that are idle or become idle over the next (10 sec) 92 * period in an attempt to get down to an EnergyStar compliant state 93 * -prevent powering off of a device which exported the 94 * pm-no-involuntary-power-cycles property without active involvement of 95 * the device's driver (so no removing power when the device driver is 96 * not attached) 97 * -provide a mechanism for a device driver to request that a device's component 98 * be brought back to the power level necessary for the use of the device 99 * -allow a process to directly control the power levels of device components 100 * (via ioctls issued to /dev/pm--see usr/src/uts/common/io/pm.c) 101 * -ensure that the console frame buffer is powered up before being referenced 102 * via prom_printf() or other prom calls that might generate console output 103 * -maintain implicit dependencies (e.g. parent must be powered up if child is) 104 * -provide "backwards compatible" behavior for devices without pm-components 105 * property 106 * 107 * Scanning: 108 * Whenever autopm or cpupm is enabled, the framework attempts to bring each 109 * component of each managed device to its lowest power based on the threshold 110 * of idleness associated with each transition and the busy/idle state of the 111 * component. 112 * 113 * The actual work of this is done by pm_scan_dev(), which cycles through each 114 * component of a device, checking its idleness against its current threshold, 115 * and calling pm_set_power() as appropriate to change the power level. 116 * This function also indicates when it would next be profitable to scan the 117 * device again, and a new scan is scheduled after that time. 118 * 119 * Dependencies: 120 * It is possible to establish a dependency between the power states of two 121 * otherwise unrelated devices. This is currently done to ensure that the 122 * cdrom is always up whenever the console framebuffer is up, so that the user 123 * can insert a cdrom and see a popup as a result. 124 * 125 * The dependency terminology used in power.conf(4) is not easy to understand, 126 * so we've adopted a different terminology in the implementation. We write 127 * of a "keeps up" and a "kept up" device. A relationship can be established 128 * where one device keeps up another. That means that if the keepsup device 129 * has any component that is at a non-zero power level, all components of the 130 * "kept up" device must be brought to full power. This relationship is 131 * asynchronous. When the keeping device is powered up, a request is queued 132 * to a worker thread to bring up the kept device. The caller does not wait. 133 * Scan will not turn down a kept up device. 134 * 135 * Direct PM: 136 * A device may be directly power managed by a process. If a device is 137 * directly pm'd, then it will not be scanned, and dependencies will not be 138 * enforced. * If a directly pm'd device's driver requests a power change (via 139 * pm_raise_power(9F)), then the request is blocked and notification is sent 140 * to the controlling process, which must issue the requested power change for 141 * the driver to proceed. 142 * 143 */ 144 145 #include <sys/types.h> 146 #include <sys/errno.h> 147 #include <sys/callb.h> /* callback registration during CPR */ 148 #include <sys/conf.h> /* driver flags and functions */ 149 #include <sys/open.h> /* OTYP_CHR definition */ 150 #include <sys/stat.h> /* S_IFCHR definition */ 151 #include <sys/pathname.h> /* name -> dev_info xlation */ 152 #include <sys/ddi_impldefs.h> /* dev_info node fields */ 153 #include <sys/kmem.h> /* memory alloc stuff */ 154 #include <sys/debug.h> 155 #include <sys/archsystm.h> 156 #include <sys/pm.h> 157 #include <sys/ddi.h> 158 #include <sys/sunddi.h> 159 #include <sys/sunndi.h> 160 #include <sys/sunpm.h> 161 #include <sys/epm.h> 162 #include <sys/vfs.h> 163 #include <sys/mode.h> 164 #include <sys/mkdev.h> 165 #include <sys/promif.h> 166 #include <sys/consdev.h> 167 #include <sys/esunddi.h> 168 #include <sys/modctl.h> 169 #include <sys/fs/ufs_fs.h> 170 #include <sys/note.h> 171 #include <sys/taskq.h> 172 #include <sys/bootconf.h> 173 #include <sys/reboot.h> 174 #include <sys/spl.h> 175 #include <sys/disp.h> 176 #include <sys/sobject.h> 177 #include <sys/sunmdi.h> 178 #include <sys/systm.h> 179 #include <sys/cpuvar.h> 180 #include <sys/cyclic.h> 181 #include <sys/uadmin.h> 182 #include <sys/srn.h> 183 184 185 /* 186 * PM LOCKING 187 * The list of locks: 188 * Global pm mutex locks. 189 * 190 * pm_scan_lock: 191 * It protects the timeout id of the scan thread, and the value 192 * of autopm_enabled and cpupm. This lock is not held 193 * concurrently with any other PM locks. 194 * 195 * pm_clone_lock: Protects the clone list and count of poll events 196 * pending for the pm driver. 197 * Lock ordering: 198 * pm_clone_lock -> pm_pscc_interest_rwlock, 199 * pm_clone_lock -> pm_pscc_direct_rwlock. 200 * 201 * pm_rsvp_lock: 202 * Used to synchronize the data structures used for processes 203 * to rendezvous with state change information when doing 204 * direct PM. 205 * Lock ordering: 206 * pm_rsvp_lock -> pm_pscc_interest_rwlock, 207 * pm_rsvp_lock -> pm_pscc_direct_rwlock, 208 * pm_rsvp_lock -> pm_clone_lock. 209 * 210 * ppm_lock: protects the list of registered ppm drivers 211 * Lock ordering: 212 * ppm_lock -> ppm driver unit_lock 213 * 214 * pm_compcnt_lock: 215 * Protects count of components that are not at their lowest 216 * power level. 217 * Lock ordering: 218 * pm_compcnt_lock -> ppm_lock. 219 * 220 * pm_dep_thread_lock: 221 * Protects work list for pm_dep_thread. Not taken concurrently 222 * with any other pm lock. 223 * 224 * pm_remdrv_lock: 225 * Serializes the operation of removing noinvol data structure 226 * entries for a branch of the tree when a driver has been 227 * removed from the system (modctl_rem_major). 228 * Lock ordering: 229 * pm_remdrv_lock -> pm_noinvol_rwlock. 230 * 231 * pm_cfb_lock: (High level spin lock) 232 * Protects the count of how many components of the console 233 * frame buffer are off (so we know if we have to bring up the 234 * console as a result of a prom_printf, etc. 235 * No other locks are taken while holding this lock. 236 * 237 * pm_loan_lock: 238 * Protects the lock_loan list. List is used to record that one 239 * thread has acquired a power lock but has launched another thread 240 * to complete its processing. An entry in the list indicates that 241 * the worker thread can borrow the lock held by the other thread, 242 * which must block on the completion of the worker. Use is 243 * specific to module loading. 244 * No other locks are taken while holding this lock. 245 * 246 * Global PM rwlocks 247 * 248 * pm_thresh_rwlock: 249 * Protects the list of thresholds recorded for future use (when 250 * devices attach). 251 * Lock ordering: 252 * pm_thresh_rwlock -> devi_pm_lock 253 * 254 * pm_noinvol_rwlock: 255 * Protects list of detached nodes that had noinvol registered. 256 * No other PM locks are taken while holding pm_noinvol_rwlock. 257 * 258 * pm_pscc_direct_rwlock: 259 * Protects the list that maps devices being directly power 260 * managed to the processes that manage them. 261 * Lock ordering: 262 * pm_pscc_direct_rwlock -> psce_lock 263 * 264 * pm_pscc_interest_rwlock; 265 * Protects the list that maps state change events to processes 266 * that want to know about them. 267 * Lock ordering: 268 * pm_pscc_interest_rwlock -> psce_lock 269 * 270 * per-dip locks: 271 * 272 * Each node has these per-dip locks, which are only used if the device is 273 * a candidate for power management (e.g. has pm components) 274 * 275 * devi_pm_lock: 276 * Protects all power management state of the node except for 277 * power level, which is protected by ndi_devi_enter(). 278 * Encapsulated in macros PM_LOCK_DIP()/PM_UNLOCK_DIP(). 279 * Lock ordering: 280 * devi_pm_lock -> pm_rsvp_lock, 281 * devi_pm_lock -> pm_dep_thread_lock, 282 * devi_pm_lock -> pm_noinvol_rwlock, 283 * devi_pm_lock -> power lock 284 * 285 * power lock (ndi_devi_enter()): 286 * Since changing power level is possibly a slow operation (30 287 * seconds to spin up a disk drive), this is locked separately. 288 * Since a call into the driver to change the power level of one 289 * component may result in a call back into the framework to change 290 * the power level of another, this lock allows re-entrancy by 291 * the same thread (ndi_devi_enter is used for this because 292 * the USB framework uses ndi_devi_enter in its power entry point, 293 * and use of any other lock would produce a deadlock. 294 * 295 * devi_pm_busy_lock: 296 * This lock protects the integrity of the busy count. It is 297 * only taken by pm_busy_component() and pm_idle_component and 298 * some code that adjust the busy time after the timer gets set 299 * up or after a CPR operation. It is per-dip to keep from 300 * single-threading all the disk drivers on a system. 301 * It could be per component instead, but most devices have 302 * only one component. 303 * No other PM locks are taken while holding this lock. 304 * 305 */ 306 307 static int stdout_is_framebuffer; 308 static kmutex_t e_pm_power_lock; 309 static kmutex_t pm_loan_lock; 310 kmutex_t pm_scan_lock; 311 callb_id_t pm_cpr_cb_id; 312 callb_id_t pm_panic_cb_id; 313 callb_id_t pm_halt_cb_id; 314 int pm_comps_notlowest; /* no. of comps not at lowest power */ 315 int pm_powering_down; /* cpr is source of DDI_SUSPEND calls */ 316 317 clock_t pm_id_ticks = 5; /* ticks to wait before scan during idle-down */ 318 clock_t pm_default_min_scan = PM_DEFAULT_MIN_SCAN; 319 clock_t pm_cpu_min_scan = PM_CPU_MIN_SCAN; 320 321 #define PM_MIN_SCAN(dip) (PM_ISCPU(dip) ? pm_cpu_min_scan : \ 322 pm_default_min_scan) 323 324 static int pm_busop_set_power(dev_info_t *, 325 void *, pm_bus_power_op_t, void *, void *); 326 static int pm_busop_match_request(dev_info_t *, void *); 327 static int pm_all_to_normal_nexus(dev_info_t *, pm_canblock_t); 328 static void e_pm_set_max_power(dev_info_t *, int, int); 329 static int e_pm_get_max_power(dev_info_t *, int); 330 331 /* 332 * Dependency Processing is done thru a seperate thread. 333 */ 334 kmutex_t pm_dep_thread_lock; 335 kcondvar_t pm_dep_thread_cv; 336 pm_dep_wk_t *pm_dep_thread_workq = NULL; 337 pm_dep_wk_t *pm_dep_thread_tail = NULL; 338 339 /* 340 * Autopm must be turned on by a PM_START_PM ioctl, so we don't end up 341 * power managing things in single user mode that have been suppressed via 342 * power.conf entries. Protected by pm_scan_lock. 343 */ 344 int autopm_enabled; 345 346 /* 347 * cpupm is turned on and off, by the PM_START_CPUPM and PM_STOP_CPUPM ioctls, 348 * to define the power management behavior of CPU devices separate from 349 * autopm. Protected by pm_scan_lock. 350 */ 351 pm_cpupm_t cpupm = PM_CPUPM_NOTSET; 352 353 /* 354 * Defines the default mode of operation for CPU power management, 355 * either the polling implementation, or the event based dispatcher driven 356 * implementation. 357 */ 358 pm_cpupm_t cpupm_default_mode = PM_CPUPM_EVENT; 359 360 /* 361 * AutoS3 depends on autopm being enabled, and must be enabled by 362 * PM_START_AUTOS3 command. 363 */ 364 int autoS3_enabled; 365 366 #if !defined(__sparc) 367 /* 368 * on sparc these live in fillsysinfo.c 369 * 370 * If this variable is non-zero, cpr should return "not supported" when 371 * it is queried even though it would normally be supported on this platform. 372 */ 373 int cpr_supported_override; 374 375 /* 376 * Some platforms may need to support CPR even in the absence of 377 * having the correct platform id information. If this 378 * variable is non-zero, cpr should proceed even in the absence 379 * of otherwise being qualified. 380 */ 381 int cpr_platform_enable = 0; 382 383 #endif 384 385 /* 386 * pm_S3_enabled indicates that we believe the platform can support S3, 387 * which we get from pmconfig(1M) 388 */ 389 int pm_S3_enabled; 390 391 /* 392 * This flag is true while processes are stopped for a checkpoint/resume. 393 * Controlling processes of direct pm'd devices are not available to 394 * participate in power level changes, so we bypass them when this is set. 395 */ 396 static int pm_processes_stopped; 397 398 #ifdef DEBUG 399 400 /* 401 * see common/sys/epm.h for PMD_* values 402 */ 403 404 uint_t pm_debug = 0; 405 406 /* 407 * If pm_divertdebug is set, then no prom_printf calls will be made by 408 * PMD(), which will prevent debug output from bringing up the console 409 * frame buffer. Clearing this variable before setting pm_debug will result 410 * in PMD output going to the console. 411 * 412 * pm_divertdebug is incremented in pm_set_power() if dip == cfb_dip to avoid 413 * deadlocks and decremented at the end of pm_set_power() 414 */ 415 uint_t pm_divertdebug = 1; 416 volatile uint_t pm_debug_to_console = 0; 417 kmutex_t pm_debug_lock; /* protects pm_divertdebug */ 418 419 void prdeps(char *); 420 #endif 421 422 /* Globals */ 423 424 /* 425 * List of recorded thresholds and dependencies 426 */ 427 pm_thresh_rec_t *pm_thresh_head; 428 krwlock_t pm_thresh_rwlock; 429 430 pm_pdr_t *pm_dep_head; 431 static int pm_unresolved_deps = 0; 432 static int pm_prop_deps = 0; 433 434 /* 435 * List of devices that exported no-involuntary-power-cycles property 436 */ 437 pm_noinvol_t *pm_noinvol_head; 438 439 /* 440 * Locks used in noinvol processing 441 */ 442 krwlock_t pm_noinvol_rwlock; 443 kmutex_t pm_remdrv_lock; 444 445 int pm_default_idle_threshold = PM_DEFAULT_SYS_IDLENESS; 446 int pm_system_idle_threshold; 447 int pm_cpu_idle_threshold; 448 449 /* 450 * By default nexus has 0 threshold, and depends on its children to keep it up 451 */ 452 int pm_default_nexus_threshold = 0; 453 454 /* 455 * Data structures shared with common/io/pm.c 456 */ 457 kmutex_t pm_clone_lock; 458 kcondvar_t pm_clones_cv[PM_MAX_CLONE]; 459 uint_t pm_poll_cnt[PM_MAX_CLONE]; /* count of events for poll */ 460 unsigned char pm_interest[PM_MAX_CLONE]; 461 struct pollhead pm_pollhead; 462 463 /* 464 * Data structures shared with common/io/srn.c 465 */ 466 kmutex_t srn_clone_lock; /* protects srn_signal, srn_inuse */ 467 void (*srn_signal)(int type, int event); 468 int srn_inuse; /* stop srn detach */ 469 470 extern int hz; 471 extern char *platform_module_list[]; 472 473 /* 474 * Wrappers for use in ddi_walk_devs 475 */ 476 477 static int pm_set_dev_thr_walk(dev_info_t *, void *); 478 static int pm_restore_direct_lvl_walk(dev_info_t *, void *); 479 static int pm_save_direct_lvl_walk(dev_info_t *, void *); 480 static int pm_discard_dep_walk(dev_info_t *, void *); 481 #ifdef DEBUG 482 static int pm_desc_pwrchk_walk(dev_info_t *, void *); 483 #endif 484 485 /* 486 * Routines for managing noinvol devices 487 */ 488 int pm_noinvol_update(int, int, int, char *, dev_info_t *); 489 void pm_noinvol_update_node(dev_info_t *, 490 pm_bp_noinvol_t *req); 491 492 kmutex_t pm_rsvp_lock; 493 kmutex_t pm_compcnt_lock; 494 krwlock_t pm_pscc_direct_rwlock; 495 krwlock_t pm_pscc_interest_rwlock; 496 497 #define PSC_INTEREST 0 /* belongs to interest psc list */ 498 #define PSC_DIRECT 1 /* belongs to direct psc list */ 499 500 pscc_t *pm_pscc_interest; 501 pscc_t *pm_pscc_direct; 502 503 #define PM_MAJOR(dip) ddi_driver_major(dip) 504 #define PM_IS_NEXUS(dip) ((PM_MAJOR(dip) == DDI_MAJOR_T_NONE) ? 0 : \ 505 NEXUS_DRV(devopsp[PM_MAJOR(dip)])) 506 #define POWERING_ON(old, new) ((old) == 0 && (new) != 0) 507 #define POWERING_OFF(old, new) ((old) != 0 && (new) == 0) 508 509 #define PM_INCR_NOTLOWEST(dip) { \ 510 mutex_enter(&pm_compcnt_lock); \ 511 if (!PM_IS_NEXUS(dip) || \ 512 (DEVI(dip)->devi_pm_flags & (PMC_DEV_THRESH|PMC_COMP_THRESH))) {\ 513 if (pm_comps_notlowest == 0) \ 514 pm_ppm_notify_all_lowest(dip, PM_NOT_ALL_LOWEST);\ 515 pm_comps_notlowest++; \ 516 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) incr notlowest->%d\n",\ 517 pmf, PM_DEVICE(dip), pm_comps_notlowest)) \ 518 } \ 519 mutex_exit(&pm_compcnt_lock); \ 520 } 521 #define PM_DECR_NOTLOWEST(dip) { \ 522 mutex_enter(&pm_compcnt_lock); \ 523 if (!PM_IS_NEXUS(dip) || \ 524 (DEVI(dip)->devi_pm_flags & (PMC_DEV_THRESH|PMC_COMP_THRESH))) {\ 525 ASSERT(pm_comps_notlowest); \ 526 pm_comps_notlowest--; \ 527 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) decr notlowest to " \ 528 "%d\n", pmf, PM_DEVICE(dip), pm_comps_notlowest))\ 529 if (pm_comps_notlowest == 0) \ 530 pm_ppm_notify_all_lowest(dip, PM_ALL_LOWEST); \ 531 } \ 532 mutex_exit(&pm_compcnt_lock); \ 533 } 534 535 /* 536 * console frame-buffer power-management is not enabled when 537 * debugging services are present. to override, set pm_cfb_override 538 * to non-zero. 539 */ 540 uint_t pm_cfb_comps_off = 0; /* PM_LEVEL_UNKNOWN is considered on */ 541 kmutex_t pm_cfb_lock; 542 int pm_cfb_enabled = 1; /* non-zero allows pm of console frame buffer */ 543 #ifdef DEBUG 544 int pm_cfb_override = 1; /* non-zero allows pm of cfb with debuggers */ 545 #else 546 int pm_cfb_override = 0; /* non-zero allows pm of cfb with debuggers */ 547 #endif 548 549 static dev_info_t *cfb_dip = 0; 550 static dev_info_t *cfb_dip_detaching = 0; 551 uint_t cfb_inuse = 0; 552 static ddi_softintr_t pm_soft_id; 553 static boolean_t pm_soft_pending; 554 int pm_scans_disabled = 0; 555 556 /* 557 * A structure to record the fact that one thread has borrowed a lock held 558 * by another thread. The context requires that the lender block on the 559 * completion of the borrower. 560 */ 561 typedef struct lock_loan { 562 struct lock_loan *pmlk_next; 563 kthread_t *pmlk_borrower; 564 kthread_t *pmlk_lender; 565 dev_info_t *pmlk_dip; 566 } lock_loan_t; 567 static lock_loan_t lock_loan_head; /* list head is a dummy element */ 568 569 #ifdef DEBUG 570 #ifdef PMDDEBUG 571 #define PMD_FUNC(func, name) char *(func) = (name); 572 #else /* !PMDDEBUG */ 573 #define PMD_FUNC(func, name) 574 #endif /* PMDDEBUG */ 575 #else /* !DEBUG */ 576 #define PMD_FUNC(func, name) 577 #endif /* DEBUG */ 578 579 580 /* 581 * Must be called before first device (including pseudo) attach 582 */ 583 void 584 pm_init_locks(void) 585 { 586 mutex_init(&pm_scan_lock, NULL, MUTEX_DRIVER, NULL); 587 mutex_init(&pm_rsvp_lock, NULL, MUTEX_DRIVER, NULL); 588 mutex_init(&pm_compcnt_lock, NULL, MUTEX_DRIVER, NULL); 589 mutex_init(&pm_dep_thread_lock, NULL, MUTEX_DRIVER, NULL); 590 mutex_init(&pm_remdrv_lock, NULL, MUTEX_DRIVER, NULL); 591 mutex_init(&pm_loan_lock, NULL, MUTEX_DRIVER, NULL); 592 rw_init(&pm_thresh_rwlock, NULL, RW_DEFAULT, NULL); 593 rw_init(&pm_noinvol_rwlock, NULL, RW_DEFAULT, NULL); 594 cv_init(&pm_dep_thread_cv, NULL, CV_DEFAULT, NULL); 595 } 596 597 static int pm_reset_timestamps(dev_info_t *, void *); 598 599 static boolean_t 600 pm_cpr_callb(void *arg, int code) 601 { 602 _NOTE(ARGUNUSED(arg)) 603 static int auto_save; 604 static pm_cpupm_t cpupm_save; 605 606 switch (code) { 607 case CB_CODE_CPR_CHKPT: 608 /* 609 * Cancel scan or wait for scan in progress to finish 610 * Other threads may be trying to restart the scan, so we 611 * have to keep at it unil it sticks 612 */ 613 mutex_enter(&pm_scan_lock); 614 ASSERT(!pm_scans_disabled); 615 pm_scans_disabled = 1; 616 auto_save = autopm_enabled; 617 autopm_enabled = 0; 618 cpupm_save = cpupm; 619 cpupm = PM_CPUPM_NOTSET; 620 mutex_exit(&pm_scan_lock); 621 ddi_walk_devs(ddi_root_node(), pm_scan_stop_walk, NULL); 622 break; 623 624 case CB_CODE_CPR_RESUME: 625 ASSERT(!autopm_enabled); 626 ASSERT(cpupm == PM_CPUPM_NOTSET); 627 ASSERT(pm_scans_disabled); 628 pm_scans_disabled = 0; 629 /* 630 * Call pm_reset_timestamps to reset timestamps of each 631 * device to the time when the system is resumed so that their 632 * idleness can be re-calculated. That's to avoid devices from 633 * being powered down right after resume if the system was in 634 * suspended mode long enough. 635 */ 636 ddi_walk_devs(ddi_root_node(), pm_reset_timestamps, NULL); 637 638 autopm_enabled = auto_save; 639 cpupm = cpupm_save; 640 /* 641 * If there is any auto-pm device, get the scanning 642 * going. Otherwise don't bother. 643 */ 644 ddi_walk_devs(ddi_root_node(), pm_rescan_walk, NULL); 645 break; 646 } 647 return (B_TRUE); 648 } 649 650 /* 651 * This callback routine is called when there is a system panic. This function 652 * exists for prototype matching. 653 */ 654 static boolean_t 655 pm_panic_callb(void *arg, int code) 656 { 657 _NOTE(ARGUNUSED(arg, code)) 658 void pm_cfb_check_and_powerup(void); 659 PMD(PMD_CFB, ("pm_panic_callb\n")) 660 pm_cfb_check_and_powerup(); 661 return (B_TRUE); 662 } 663 664 static boolean_t 665 pm_halt_callb(void *arg, int code) 666 { 667 _NOTE(ARGUNUSED(arg, code)) 668 return (B_TRUE); 669 } 670 671 static void pm_dep_thread(void); 672 673 /* 674 * This needs to be called after the root and platform drivers are loaded 675 * and be single-threaded with respect to driver attach/detach 676 */ 677 void 678 pm_init(void) 679 { 680 PMD_FUNC(pmf, "pm_init") 681 char **mod; 682 extern pri_t minclsyspri; 683 684 pm_comps_notlowest = 0; 685 pm_system_idle_threshold = pm_default_idle_threshold; 686 pm_cpu_idle_threshold = 0; 687 688 pm_cpr_cb_id = callb_add(pm_cpr_callb, (void *)NULL, 689 CB_CL_CPR_PM, "pm_cpr"); 690 pm_panic_cb_id = callb_add(pm_panic_callb, (void *)NULL, 691 CB_CL_PANIC, "pm_panic"); 692 pm_halt_cb_id = callb_add(pm_halt_callb, (void *)NULL, 693 CB_CL_HALT, "pm_halt"); 694 695 /* 696 * Create a thread to do dependency processing. 697 */ 698 (void) thread_create(NULL, 0, (void (*)())pm_dep_thread, NULL, 0, &p0, 699 TS_RUN, minclsyspri); 700 701 /* 702 * loadrootmodules already loaded these ppm drivers, now get them 703 * attached so they can claim the root drivers as they attach 704 */ 705 for (mod = platform_module_list; *mod; mod++) { 706 if (i_ddi_attach_hw_nodes(*mod) != DDI_SUCCESS) { 707 cmn_err(CE_WARN, "!cannot load platform pm driver %s\n", 708 *mod); 709 } else { 710 PMD(PMD_DHR, ("%s: %s (%s)\n", pmf, *mod, 711 ddi_major_to_name(ddi_name_to_major(*mod)))) 712 } 713 } 714 } 715 716 /* 717 * pm_scan_init - create pm scan data structure. Called (if autopm or cpupm 718 * enabled) when device becomes power managed or after a failed detach and 719 * when autopm is started via PM_START_PM or PM_START_CPUPM ioctls, and after 720 * a CPR resume to get all the devices scanning again. 721 */ 722 void 723 pm_scan_init(dev_info_t *dip) 724 { 725 PMD_FUNC(pmf, "scan_init") 726 pm_scan_t *scanp; 727 728 ASSERT(!PM_ISBC(dip)); 729 730 PM_LOCK_DIP(dip); 731 scanp = PM_GET_PM_SCAN(dip); 732 if (!scanp) { 733 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): create scan data\n", 734 pmf, PM_DEVICE(dip))) 735 scanp = kmem_zalloc(sizeof (pm_scan_t), KM_SLEEP); 736 DEVI(dip)->devi_pm_scan = scanp; 737 } else if (scanp->ps_scan_flags & PM_SCAN_STOP) { 738 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): " 739 "clear PM_SCAN_STOP flag\n", pmf, PM_DEVICE(dip))) 740 scanp->ps_scan_flags &= ~PM_SCAN_STOP; 741 } 742 PM_UNLOCK_DIP(dip); 743 } 744 745 /* 746 * pm_scan_fini - remove pm scan data structure when stopping pm on the device 747 */ 748 void 749 pm_scan_fini(dev_info_t *dip) 750 { 751 PMD_FUNC(pmf, "scan_fini") 752 pm_scan_t *scanp; 753 754 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 755 ASSERT(!PM_ISBC(dip)); 756 PM_LOCK_DIP(dip); 757 scanp = PM_GET_PM_SCAN(dip); 758 if (!scanp) { 759 PM_UNLOCK_DIP(dip); 760 return; 761 } 762 763 ASSERT(!scanp->ps_scan_id && !(scanp->ps_scan_flags & 764 (PM_SCANNING | PM_SCAN_DISPATCHED | PM_SCAN_AGAIN))); 765 766 kmem_free(scanp, sizeof (pm_scan_t)); 767 DEVI(dip)->devi_pm_scan = NULL; 768 PM_UNLOCK_DIP(dip); 769 } 770 771 /* 772 * Given a pointer to a component struct, return the current power level 773 * (struct contains index unless it is a continuous level). 774 * Located here in hopes of getting both this and dev_is_needed into the 775 * cache together 776 */ 777 static int 778 cur_power(pm_component_t *cp) 779 { 780 if (cp->pmc_cur_pwr == PM_LEVEL_UNKNOWN) 781 return (cp->pmc_cur_pwr); 782 783 return (cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr]); 784 } 785 786 static char * 787 pm_decode_direction(int direction) 788 { 789 switch (direction) { 790 case PM_LEVEL_UPONLY: 791 return ("up"); 792 793 case PM_LEVEL_EXACT: 794 return ("exact"); 795 796 case PM_LEVEL_DOWNONLY: 797 return ("down"); 798 799 default: 800 return ("INVALID DIRECTION"); 801 } 802 } 803 804 char * 805 pm_decode_op(pm_bus_power_op_t op) 806 { 807 switch (op) { 808 case BUS_POWER_CHILD_PWRCHG: 809 return ("CHILD_PWRCHG"); 810 case BUS_POWER_NEXUS_PWRUP: 811 return ("NEXUS_PWRUP"); 812 case BUS_POWER_PRE_NOTIFICATION: 813 return ("PRE_NOTIFICATION"); 814 case BUS_POWER_POST_NOTIFICATION: 815 return ("POST_NOTIFICATION"); 816 case BUS_POWER_HAS_CHANGED: 817 return ("HAS_CHANGED"); 818 case BUS_POWER_NOINVOL: 819 return ("NOINVOL"); 820 default: 821 return ("UNKNOWN OP"); 822 } 823 } 824 825 /* 826 * Returns true if level is a possible (valid) power level for component 827 */ 828 int 829 e_pm_valid_power(dev_info_t *dip, int cmpt, int level) 830 { 831 PMD_FUNC(pmf, "e_pm_valid_power") 832 pm_component_t *cp = PM_CP(dip, cmpt); 833 int i; 834 int *ip = cp->pmc_comp.pmc_lvals; 835 int limit = cp->pmc_comp.pmc_numlevels; 836 837 if (level < 0) 838 return (0); 839 for (i = 0; i < limit; i++) { 840 if (level == *ip++) 841 return (1); 842 } 843 #ifdef DEBUG 844 if (pm_debug & PMD_FAIL) { 845 ip = cp->pmc_comp.pmc_lvals; 846 847 for (i = 0; i < limit; i++) 848 PMD(PMD_FAIL, ("%s: index=%d, level=%d\n", 849 pmf, i, *ip++)) 850 } 851 #endif 852 return (0); 853 } 854 855 static int pm_start(dev_info_t *dip); 856 /* 857 * Returns true if device is pm'd (after calling pm_start if need be) 858 */ 859 int 860 e_pm_valid_info(dev_info_t *dip, pm_info_t **infop) 861 { 862 pm_info_t *info; 863 864 /* 865 * Check if the device is power managed if not. 866 * To make the common case (device is power managed already) 867 * fast, we check without the lock. If device is not already 868 * power managed, then we take the lock and the long route through 869 * go get it managed. Devices never go unmanaged until they 870 * detach. 871 */ 872 info = PM_GET_PM_INFO(dip); 873 if (!info) { 874 if (!DEVI_IS_ATTACHING(dip)) { 875 return (0); 876 } 877 if (pm_start(dip) != DDI_SUCCESS) { 878 return (0); 879 } 880 info = PM_GET_PM_INFO(dip); 881 } 882 ASSERT(info); 883 if (infop != NULL) 884 *infop = info; 885 return (1); 886 } 887 888 int 889 e_pm_valid_comp(dev_info_t *dip, int cmpt, pm_component_t **cpp) 890 { 891 if (cmpt >= 0 && cmpt < PM_NUMCMPTS(dip)) { 892 if (cpp != NULL) 893 *cpp = PM_CP(dip, cmpt); 894 return (1); 895 } else { 896 return (0); 897 } 898 } 899 900 /* 901 * Internal guts of ddi_dev_is_needed and pm_raise/lower_power 902 */ 903 static int 904 dev_is_needed(dev_info_t *dip, int cmpt, int level, int direction) 905 { 906 PMD_FUNC(pmf, "din") 907 pm_component_t *cp; 908 char *pathbuf; 909 int result; 910 911 ASSERT(direction == PM_LEVEL_UPONLY || direction == PM_LEVEL_DOWNONLY); 912 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp) || 913 !e_pm_valid_power(dip, cmpt, level)) 914 return (DDI_FAILURE); 915 916 PMD(PMD_DIN, ("%s: %s@%s(%s#%d) cmpt=%d, dir=%s, new=%d, cur=%d\n", 917 pmf, PM_DEVICE(dip), cmpt, pm_decode_direction(direction), 918 level, cur_power(cp))) 919 920 if (pm_set_power(dip, cmpt, level, direction, 921 PM_CANBLOCK_BLOCK, 0, &result) != DDI_SUCCESS) { 922 if (direction == PM_LEVEL_UPONLY) { 923 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 924 (void) ddi_pathname(dip, pathbuf); 925 cmn_err(CE_WARN, "Device %s failed to power up.", 926 pathbuf); 927 kmem_free(pathbuf, MAXPATHLEN); 928 } 929 PMD(PMD_DIN | PMD_FAIL, ("%s: %s@%s(%s#%d) [%d] %s->%d failed, " 930 "errno %d\n", pmf, PM_DEVICE(dip), cmpt, 931 pm_decode_direction(direction), level, result)) 932 return (DDI_FAILURE); 933 } 934 935 PMD(PMD_RESCAN | PMD_DIN, ("%s: pm_rescan %s@%s(%s#%d)\n", pmf, 936 PM_DEVICE(dip))) 937 pm_rescan(dip); 938 return (DDI_SUCCESS); 939 } 940 941 /* 942 * We can get multiple pm_rescan() threads, if one of them discovers 943 * that no scan is running at the moment, it kicks it into action. 944 * Otherwise, it tells the current scanning thread to scan again when 945 * it is done by asserting the PM_SCAN_AGAIN flag. The PM_SCANNING and 946 * PM_SCAN_AGAIN flags are used to regulate scan, to make sure only one 947 * thread at a time runs the pm_scan_dev() code. 948 */ 949 void 950 pm_rescan(void *arg) 951 { 952 PMD_FUNC(pmf, "rescan") 953 dev_info_t *dip = (dev_info_t *)arg; 954 pm_info_t *info; 955 pm_scan_t *scanp; 956 timeout_id_t scanid; 957 958 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 959 PM_LOCK_DIP(dip); 960 info = PM_GET_PM_INFO(dip); 961 scanp = PM_GET_PM_SCAN(dip); 962 if (pm_scans_disabled || !PM_SCANABLE(dip) || !info || !scanp || 963 (scanp->ps_scan_flags & PM_SCAN_STOP)) { 964 PM_UNLOCK_DIP(dip); 965 return; 966 } 967 if (scanp->ps_scan_flags & PM_SCANNING) { 968 scanp->ps_scan_flags |= PM_SCAN_AGAIN; 969 PM_UNLOCK_DIP(dip); 970 return; 971 } else if (scanp->ps_scan_id) { 972 scanid = scanp->ps_scan_id; 973 scanp->ps_scan_id = 0; 974 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): cancel timeout scanid %lx\n", 975 pmf, PM_DEVICE(dip), (ulong_t)scanid)) 976 PM_UNLOCK_DIP(dip); 977 (void) untimeout(scanid); 978 PM_LOCK_DIP(dip); 979 } 980 981 /* 982 * Dispatching pm_scan during attach time is risky due to the fact that 983 * attach might soon fail and dip dissolved, and panic may happen while 984 * attempting to stop scan. So schedule a pm_rescan instead. 985 * (Note that if either of the first two terms are true, taskq_dispatch 986 * will not be invoked). 987 * 988 * Multiple pm_scan dispatching is unecessary and costly to keep track 989 * of. The PM_SCAN_DISPATCHED flag is used between pm_rescan and pm_scan 990 * to regulate the dispatching. 991 * 992 * Scan is stopped before the device is detached (in pm_detaching()) 993 * but it may get re-started during the post_detach processing if the 994 * driver fails to detach. 995 */ 996 if (DEVI_IS_ATTACHING(dip) || 997 (scanp->ps_scan_flags & PM_SCAN_DISPATCHED) || 998 taskq_dispatch(system_taskq, pm_scan, (void *)dip, TQ_NOSLEEP) == 999 TASKQID_INVALID) { 1000 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): attaching, pm_scan already " 1001 "dispatched or dispatching failed\n", pmf, PM_DEVICE(dip))) 1002 if (scanp->ps_scan_id) { 1003 scanid = scanp->ps_scan_id; 1004 scanp->ps_scan_id = 0; 1005 PM_UNLOCK_DIP(dip); 1006 (void) untimeout(scanid); 1007 PM_LOCK_DIP(dip); 1008 if (scanp->ps_scan_id) { 1009 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): a competing " 1010 "thread scheduled pm_rescan, scanid %lx\n", 1011 pmf, PM_DEVICE(dip), 1012 (ulong_t)scanp->ps_scan_id)) 1013 PM_UNLOCK_DIP(dip); 1014 return; 1015 } 1016 } 1017 scanp->ps_scan_id = timeout(pm_rescan, (void *)dip, 1018 (scanp->ps_idle_down ? pm_id_ticks : 1019 (PM_MIN_SCAN(dip) * hz))); 1020 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): scheduled next pm_rescan, " 1021 "scanid %lx\n", pmf, PM_DEVICE(dip), 1022 (ulong_t)scanp->ps_scan_id)) 1023 } else { 1024 PMD(PMD_SCAN, ("%s: dispatched pm_scan for %s@%s(%s#%d)\n", 1025 pmf, PM_DEVICE(dip))) 1026 scanp->ps_scan_flags |= PM_SCAN_DISPATCHED; 1027 } 1028 PM_UNLOCK_DIP(dip); 1029 } 1030 1031 void 1032 pm_scan(void *arg) 1033 { 1034 PMD_FUNC(pmf, "scan") 1035 dev_info_t *dip = (dev_info_t *)arg; 1036 pm_scan_t *scanp; 1037 time_t nextscan; 1038 1039 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 1040 1041 PM_LOCK_DIP(dip); 1042 scanp = PM_GET_PM_SCAN(dip); 1043 ASSERT(scanp && PM_GET_PM_INFO(dip)); 1044 1045 if (pm_scans_disabled || !PM_SCANABLE(dip) || 1046 (scanp->ps_scan_flags & PM_SCAN_STOP)) { 1047 scanp->ps_scan_flags &= ~(PM_SCAN_AGAIN | PM_SCAN_DISPATCHED); 1048 PM_UNLOCK_DIP(dip); 1049 return; 1050 } 1051 1052 if (scanp->ps_idle_down) { 1053 /* 1054 * make sure we remember idledown was in affect until 1055 * we've completed the scan 1056 */ 1057 PMID_SET_SCANS(scanp->ps_idle_down) 1058 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d): idledown starts " 1059 "(pmid %x)\n", pmf, PM_DEVICE(dip), scanp->ps_idle_down)) 1060 } 1061 1062 /* possible having two threads running pm_scan() */ 1063 if (scanp->ps_scan_flags & PM_SCANNING) { 1064 scanp->ps_scan_flags |= PM_SCAN_AGAIN; 1065 PMD(PMD_SCAN, ("%s: scanning, will scan %s@%s(%s#%d) again\n", 1066 pmf, PM_DEVICE(dip))) 1067 scanp->ps_scan_flags &= ~PM_SCAN_DISPATCHED; 1068 PM_UNLOCK_DIP(dip); 1069 return; 1070 } 1071 1072 scanp->ps_scan_flags |= PM_SCANNING; 1073 scanp->ps_scan_flags &= ~PM_SCAN_DISPATCHED; 1074 do { 1075 scanp->ps_scan_flags &= ~PM_SCAN_AGAIN; 1076 PM_UNLOCK_DIP(dip); 1077 nextscan = pm_scan_dev(dip); 1078 PM_LOCK_DIP(dip); 1079 } while (scanp->ps_scan_flags & PM_SCAN_AGAIN); 1080 1081 ASSERT(scanp->ps_scan_flags & PM_SCANNING); 1082 scanp->ps_scan_flags &= ~PM_SCANNING; 1083 1084 if (scanp->ps_idle_down) { 1085 scanp->ps_idle_down &= ~PMID_SCANS; 1086 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d): idledown ends " 1087 "(pmid %x)\n", pmf, PM_DEVICE(dip), scanp->ps_idle_down)) 1088 } 1089 1090 /* schedule for next idle check */ 1091 if (nextscan != LONG_MAX) { 1092 if (nextscan > (LONG_MAX / hz)) 1093 nextscan = (LONG_MAX - 1) / hz; 1094 if (scanp->ps_scan_id) { 1095 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): while scanning " 1096 "another rescan scheduled scanid(%lx)\n", pmf, 1097 PM_DEVICE(dip), (ulong_t)scanp->ps_scan_id)) 1098 PM_UNLOCK_DIP(dip); 1099 return; 1100 } else if (!(scanp->ps_scan_flags & PM_SCAN_STOP)) { 1101 scanp->ps_scan_id = timeout(pm_rescan, (void *)dip, 1102 (clock_t)(nextscan * hz)); 1103 PMD(PMD_SCAN, ("%s: nextscan for %s@%s(%s#%d) in " 1104 "%lx sec, scanid(%lx) \n", pmf, PM_DEVICE(dip), 1105 (ulong_t)nextscan, (ulong_t)scanp->ps_scan_id)) 1106 } 1107 } 1108 PM_UNLOCK_DIP(dip); 1109 } 1110 1111 void 1112 pm_get_timestamps(dev_info_t *dip, time_t *valuep) 1113 { 1114 int components = PM_NUMCMPTS(dip); 1115 int i; 1116 1117 ASSERT(components > 0); 1118 PM_LOCK_BUSY(dip); /* so we get a consistent view */ 1119 for (i = 0; i < components; i++) { 1120 valuep[i] = PM_CP(dip, i)->pmc_timestamp; 1121 } 1122 PM_UNLOCK_BUSY(dip); 1123 } 1124 1125 /* 1126 * Returns true if device needs to be kept up because it exported the 1127 * "no-involuntary-power-cycles" property or we're pretending it did (console 1128 * fb case) or it is an ancestor of such a device and has used up the "one 1129 * free cycle" allowed when all such leaf nodes have voluntarily powered down 1130 * upon detach 1131 */ 1132 int 1133 pm_noinvol(dev_info_t *dip) 1134 { 1135 PMD_FUNC(pmf, "noinvol") 1136 1137 /* 1138 * This doesn't change over the life of a driver, so no locking needed 1139 */ 1140 if (PM_IS_CFB(dip)) { 1141 PMD(PMD_NOINVOL | PMD_CFB, ("%s: inhibits CFB %s@%s(%s#%d)\n", 1142 pmf, PM_DEVICE(dip))) 1143 return (1); 1144 } 1145 /* 1146 * Not an issue if no such kids 1147 */ 1148 if (DEVI(dip)->devi_pm_noinvolpm == 0) { 1149 #ifdef DEBUG 1150 if (DEVI(dip)->devi_pm_volpmd != 0) { 1151 dev_info_t *pdip = dip; 1152 do { 1153 PMD(PMD_NOINVOL, ("%s: %s@%s(%s#%d) noinvol %d " 1154 "volpmd %d\n", pmf, PM_DEVICE(pdip), 1155 DEVI(pdip)->devi_pm_noinvolpm, 1156 DEVI(pdip)->devi_pm_volpmd)) 1157 pdip = ddi_get_parent(pdip); 1158 } while (pdip); 1159 } 1160 #endif 1161 ASSERT(DEVI(dip)->devi_pm_volpmd == 0); 1162 return (0); 1163 } 1164 1165 /* 1166 * Since we now maintain the counts correct at every node, we no longer 1167 * need to look up the tree. An ancestor cannot use up the free cycle 1168 * without the children getting their counts adjusted. 1169 */ 1170 1171 #ifdef DEBUG 1172 if (DEVI(dip)->devi_pm_noinvolpm != DEVI(dip)->devi_pm_volpmd) 1173 PMD(PMD_NOINVOL, ("%s: (%d != %d) inhibits %s@%s(%s#%d)\n", pmf, 1174 DEVI(dip)->devi_pm_noinvolpm, DEVI(dip)->devi_pm_volpmd, 1175 PM_DEVICE(dip))) 1176 #endif 1177 return (DEVI(dip)->devi_pm_noinvolpm != DEVI(dip)->devi_pm_volpmd); 1178 } 1179 1180 static int cur_threshold(dev_info_t *, int); 1181 static int pm_next_lower_power(pm_component_t *, int); 1182 1183 /* 1184 * This function performs the actual scanning of the device. 1185 * It attempts to power off the indicated device's components if they have 1186 * been idle and other restrictions are met. 1187 * pm_scan_dev calculates and returns when the next scan should happen for 1188 * this device. 1189 */ 1190 time_t 1191 pm_scan_dev(dev_info_t *dip) 1192 { 1193 PMD_FUNC(pmf, "scan_dev") 1194 pm_scan_t *scanp; 1195 time_t *timestamp, idletime, now, thresh; 1196 time_t timeleft = 0; 1197 #ifdef PMDDEBUG 1198 int curpwr; 1199 #endif 1200 int i, nxtpwr, pwrndx, unused; 1201 size_t size; 1202 pm_component_t *cp; 1203 dev_info_t *pdip = ddi_get_parent(dip); 1204 int circ; 1205 clock_t min_scan = pm_default_min_scan; 1206 1207 /* 1208 * skip attaching device 1209 */ 1210 if (DEVI_IS_ATTACHING(dip)) { 1211 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) is attaching, timeleft(%lx)\n", 1212 pmf, PM_DEVICE(dip), min_scan)) 1213 return (min_scan); 1214 } 1215 1216 PM_LOCK_DIP(dip); 1217 scanp = PM_GET_PM_SCAN(dip); 1218 min_scan = PM_MIN_SCAN(dip); 1219 ASSERT(scanp && PM_GET_PM_INFO(dip)); 1220 1221 PMD(PMD_SCAN, ("%s: [BEGIN %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip))) 1222 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d): kuc is %d\n", pmf, PM_DEVICE(dip), 1223 PM_KUC(dip))) 1224 1225 /* no scan under the following conditions */ 1226 if (pm_scans_disabled || !PM_SCANABLE(dip) || 1227 (scanp->ps_scan_flags & PM_SCAN_STOP) || 1228 (PM_KUC(dip) != 0) || 1229 PM_ISDIRECT(dip) || pm_noinvol(dip)) { 1230 PM_UNLOCK_DIP(dip); 1231 PMD(PMD_SCAN, ("%s: [END, %s@%s(%s#%d)] no scan, " 1232 "scan_disabled(%d), apm_enabled(%d), cpupm(%d), " 1233 "kuc(%d), %s directpm, %s pm_noinvol\n", 1234 pmf, PM_DEVICE(dip), pm_scans_disabled, autopm_enabled, 1235 cpupm, PM_KUC(dip), 1236 PM_ISDIRECT(dip) ? "is" : "is not", 1237 pm_noinvol(dip) ? "is" : "is not")) 1238 return (LONG_MAX); 1239 } 1240 PM_UNLOCK_DIP(dip); 1241 1242 if (!ndi_devi_tryenter(pdip, &circ)) { 1243 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) can't hold pdip", 1244 pmf, PM_DEVICE(pdip))) 1245 return ((time_t)1); 1246 } 1247 now = gethrestime_sec(); 1248 size = PM_NUMCMPTS(dip) * sizeof (time_t); 1249 timestamp = kmem_alloc(size, KM_SLEEP); 1250 pm_get_timestamps(dip, timestamp); 1251 1252 /* 1253 * Since we removed support for backwards compatible devices, 1254 * (see big comment at top of file) 1255 * it is no longer required to deal with component 0 last. 1256 */ 1257 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 1258 /* 1259 * If already off (an optimization, perhaps) 1260 */ 1261 cp = PM_CP(dip, i); 1262 pwrndx = cp->pmc_cur_pwr; 1263 #ifdef PMDDEBUG 1264 curpwr = (pwrndx == PM_LEVEL_UNKNOWN) ? 1265 PM_LEVEL_UNKNOWN : 1266 cp->pmc_comp.pmc_lvals[pwrndx]; 1267 #endif 1268 1269 if (pwrndx == 0) { 1270 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d off or " 1271 "lowest\n", pmf, PM_DEVICE(dip), i)) 1272 /* skip device if off or at its lowest */ 1273 continue; 1274 } 1275 1276 thresh = cur_threshold(dip, i); /* comp i threshold */ 1277 if ((timestamp[i] == 0) || (cp->pmc_busycount > 0)) { 1278 /* were busy or newly became busy by another thread */ 1279 if (timeleft == 0) 1280 timeleft = max(thresh, min_scan); 1281 else 1282 timeleft = min( 1283 timeleft, max(thresh, min_scan)); 1284 continue; 1285 } 1286 1287 idletime = now - timestamp[i]; /* idle time */ 1288 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d idle time %lx\n", 1289 pmf, PM_DEVICE(dip), i, idletime)) 1290 if (idletime >= thresh || PM_IS_PID(dip)) { 1291 nxtpwr = pm_next_lower_power(cp, pwrndx); 1292 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, %d->%d\n", 1293 pmf, PM_DEVICE(dip), i, curpwr, nxtpwr)) 1294 if (pm_set_power(dip, i, nxtpwr, PM_LEVEL_DOWNONLY, 1295 PM_CANBLOCK_FAIL, 1, &unused) != DDI_SUCCESS && 1296 PM_CURPOWER(dip, i) != nxtpwr) { 1297 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, " 1298 "%d->%d Failed\n", pmf, PM_DEVICE(dip), 1299 i, curpwr, nxtpwr)) 1300 timeleft = min_scan; 1301 continue; 1302 } else { 1303 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, " 1304 "%d->%d, GOOD curpwr %d\n", pmf, 1305 PM_DEVICE(dip), i, curpwr, nxtpwr, 1306 cur_power(cp))) 1307 1308 if (nxtpwr == 0) /* component went off */ 1309 continue; 1310 1311 /* 1312 * scan to next lower level 1313 */ 1314 if (timeleft == 0) 1315 timeleft = max( 1316 1, cur_threshold(dip, i)); 1317 else 1318 timeleft = min(timeleft, 1319 max(1, cur_threshold(dip, i))); 1320 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, " 1321 "timeleft(%lx)\n", pmf, PM_DEVICE(dip), 1322 i, timeleft)) 1323 } 1324 } else { /* comp not idle long enough */ 1325 if (timeleft == 0) 1326 timeleft = thresh - idletime; 1327 else 1328 timeleft = min(timeleft, (thresh - idletime)); 1329 PMD(PMD_SCAN, ("%s: %s@%s(%s#%d) comp %d, timeleft=" 1330 "%lx\n", pmf, PM_DEVICE(dip), i, timeleft)) 1331 } 1332 } 1333 ndi_devi_exit(pdip, circ); 1334 kmem_free(timestamp, size); 1335 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)] timeleft(%lx)\n", pmf, 1336 PM_DEVICE(dip), timeleft)) 1337 1338 /* 1339 * if components are already at lowest level, timeleft is left 0 1340 */ 1341 return ((timeleft == 0) ? LONG_MAX : timeleft); 1342 } 1343 1344 /* 1345 * pm_scan_stop - cancel scheduled pm_rescan, 1346 * wait for termination of dispatched pm_scan thread 1347 * and active pm_scan_dev thread. 1348 */ 1349 void 1350 pm_scan_stop(dev_info_t *dip) 1351 { 1352 PMD_FUNC(pmf, "scan_stop") 1353 pm_scan_t *scanp; 1354 timeout_id_t scanid; 1355 1356 PMD(PMD_SCAN, ("%s: [BEGIN %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip))) 1357 PM_LOCK_DIP(dip); 1358 scanp = PM_GET_PM_SCAN(dip); 1359 if (!scanp) { 1360 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)] scan not initialized\n", 1361 pmf, PM_DEVICE(dip))) 1362 PM_UNLOCK_DIP(dip); 1363 return; 1364 } 1365 scanp->ps_scan_flags |= PM_SCAN_STOP; 1366 1367 /* cancel scheduled scan taskq */ 1368 while (scanp->ps_scan_id) { 1369 scanid = scanp->ps_scan_id; 1370 scanp->ps_scan_id = 0; 1371 PM_UNLOCK_DIP(dip); 1372 (void) untimeout(scanid); 1373 PM_LOCK_DIP(dip); 1374 } 1375 1376 while (scanp->ps_scan_flags & (PM_SCANNING | PM_SCAN_DISPATCHED)) { 1377 PM_UNLOCK_DIP(dip); 1378 delay(1); 1379 PM_LOCK_DIP(dip); 1380 } 1381 PM_UNLOCK_DIP(dip); 1382 PMD(PMD_SCAN, ("%s: [END %s@%s(%s#%d)]\n", pmf, PM_DEVICE(dip))) 1383 } 1384 1385 int 1386 pm_scan_stop_walk(dev_info_t *dip, void *arg) 1387 { 1388 _NOTE(ARGUNUSED(arg)) 1389 1390 if (!PM_GET_PM_SCAN(dip)) 1391 return (DDI_WALK_CONTINUE); 1392 ASSERT(!PM_ISBC(dip)); 1393 pm_scan_stop(dip); 1394 return (DDI_WALK_CONTINUE); 1395 } 1396 1397 /* 1398 * Converts a power level value to its index 1399 */ 1400 static int 1401 power_val_to_index(pm_component_t *cp, int val) 1402 { 1403 int limit, i, *ip; 1404 1405 ASSERT(val != PM_LEVEL_UPONLY && val != PM_LEVEL_DOWNONLY && 1406 val != PM_LEVEL_EXACT); 1407 /* convert power value into index (i) */ 1408 limit = cp->pmc_comp.pmc_numlevels; 1409 ip = cp->pmc_comp.pmc_lvals; 1410 for (i = 0; i < limit; i++) 1411 if (val == *ip++) 1412 return (i); 1413 return (-1); 1414 } 1415 1416 /* 1417 * Converts a numeric power level to a printable string 1418 */ 1419 static char * 1420 power_val_to_string(pm_component_t *cp, int val) 1421 { 1422 int index; 1423 1424 if (val == PM_LEVEL_UPONLY) 1425 return ("<UPONLY>"); 1426 1427 if (val == PM_LEVEL_UNKNOWN || 1428 (index = power_val_to_index(cp, val)) == -1) 1429 return ("<LEVEL_UNKNOWN>"); 1430 1431 return (cp->pmc_comp.pmc_lnames[index]); 1432 } 1433 1434 /* 1435 * Return true if this node has been claimed by a ppm. 1436 */ 1437 static int 1438 pm_ppm_claimed(dev_info_t *dip) 1439 { 1440 return (PPM(dip) != NULL); 1441 } 1442 1443 /* 1444 * A node which was voluntarily power managed has just used up its "free cycle" 1445 * and need is volpmd field cleared, and the same done to all its descendents 1446 */ 1447 static void 1448 pm_clear_volpm_dip(dev_info_t *dip) 1449 { 1450 PMD_FUNC(pmf, "clear_volpm_dip") 1451 1452 if (dip == NULL) 1453 return; 1454 PMD(PMD_NOINVOL, ("%s: clear volpm from %s@%s(%s#%d)\n", pmf, 1455 PM_DEVICE(dip))) 1456 DEVI(dip)->devi_pm_volpmd = 0; 1457 for (dip = ddi_get_child(dip); dip; dip = ddi_get_next_sibling(dip)) { 1458 pm_clear_volpm_dip(dip); 1459 } 1460 } 1461 1462 /* 1463 * A node which was voluntarily power managed has used up the "free cycles" 1464 * for the subtree that it is the root of. Scan through the list of detached 1465 * nodes and adjust the counts of any that are descendents of the node. 1466 */ 1467 static void 1468 pm_clear_volpm_list(dev_info_t *dip) 1469 { 1470 PMD_FUNC(pmf, "clear_volpm_list") 1471 char *pathbuf; 1472 size_t len; 1473 pm_noinvol_t *ip; 1474 1475 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1476 (void) ddi_pathname(dip, pathbuf); 1477 len = strlen(pathbuf); 1478 PMD(PMD_NOINVOL, ("%s: clear volpm list %s\n", pmf, pathbuf)) 1479 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 1480 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 1481 PMD(PMD_NOINVOL, ("%s: clear volpm: ni_path %s\n", pmf, 1482 ip->ni_path)) 1483 if (strncmp(pathbuf, ip->ni_path, len) == 0 && 1484 ip->ni_path[len] == '/') { 1485 PMD(PMD_NOINVOL, ("%s: clear volpm: %s\n", pmf, 1486 ip->ni_path)) 1487 ip->ni_volpmd = 0; 1488 ip->ni_wasvolpmd = 0; 1489 } 1490 } 1491 kmem_free(pathbuf, MAXPATHLEN); 1492 rw_exit(&pm_noinvol_rwlock); 1493 } 1494 1495 /* 1496 * Powers a device, suspending or resuming the driver if it is a backward 1497 * compatible device, calling into ppm to change power level. 1498 * Called with the component's power lock held. 1499 */ 1500 static int 1501 power_dev(dev_info_t *dip, int comp, int level, int old_level, 1502 pm_canblock_t canblock, pm_ppm_devlist_t **devlist) 1503 { 1504 PMD_FUNC(pmf, "power_dev") 1505 power_req_t power_req; 1506 int power_op_ret; /* DDI_SUCCESS or DDI_FAILURE */ 1507 int resume_needed = 0; 1508 int suspended = 0; 1509 int result; 1510 #ifdef PMDDEBUG 1511 struct pm_component *cp = PM_CP(dip, comp); 1512 #endif 1513 int bc = PM_ISBC(dip); 1514 int pm_all_components_off(dev_info_t *); 1515 int clearvolpmd = 0; 1516 char pathbuf[MAXNAMELEN]; 1517 #ifdef PMDDEBUG 1518 char *ppmname, *ppmaddr; 1519 #endif 1520 /* 1521 * If this is comp 0 of a backwards compat device and we are 1522 * going to take the power away, we need to detach it with 1523 * DDI_PM_SUSPEND command. 1524 */ 1525 if (bc && comp == 0 && POWERING_OFF(old_level, level)) { 1526 if (devi_detach(dip, DDI_PM_SUSPEND) != DDI_SUCCESS) { 1527 /* We could not suspend before turning cmpt zero off */ 1528 PMD(PMD_ERROR, ("%s: could not suspend %s@%s(%s#%d)\n", 1529 pmf, PM_DEVICE(dip))) 1530 return (DDI_FAILURE); 1531 } else { 1532 DEVI(dip)->devi_pm_flags |= PMC_SUSPENDED; 1533 suspended++; 1534 } 1535 } 1536 power_req.request_type = PMR_PPM_SET_POWER; 1537 power_req.req.ppm_set_power_req.who = dip; 1538 power_req.req.ppm_set_power_req.cmpt = comp; 1539 power_req.req.ppm_set_power_req.old_level = old_level; 1540 power_req.req.ppm_set_power_req.new_level = level; 1541 power_req.req.ppm_set_power_req.canblock = canblock; 1542 power_req.req.ppm_set_power_req.cookie = NULL; 1543 #ifdef PMDDEBUG 1544 if (pm_ppm_claimed(dip)) { 1545 ppmname = PM_NAME(PPM(dip)); 1546 ppmaddr = PM_ADDR(PPM(dip)); 1547 1548 } else { 1549 ppmname = "noppm"; 1550 ppmaddr = "0"; 1551 } 1552 PMD(PMD_PPM, ("%s: %s@%s(%s#%d):%s[%d] %s (%d) -> %s (%d) via %s@%s\n", 1553 pmf, PM_DEVICE(dip), cp->pmc_comp.pmc_name, comp, 1554 power_val_to_string(cp, old_level), old_level, 1555 power_val_to_string(cp, level), level, ppmname, ppmaddr)) 1556 #endif 1557 /* 1558 * If non-bc noinvolpm device is turning first comp on, or noinvolpm 1559 * bc device comp 0 is powering on, then we count it as a power cycle 1560 * against its voluntary count. 1561 */ 1562 if (DEVI(dip)->devi_pm_volpmd && 1563 (!bc && pm_all_components_off(dip) && level != 0) || 1564 (bc && comp == 0 && POWERING_ON(old_level, level))) 1565 clearvolpmd = 1; 1566 if ((power_op_ret = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 1567 &power_req, &result)) == DDI_SUCCESS) { 1568 /* 1569 * Now do involuntary pm accounting; If we've just cycled power 1570 * on a voluntarily pm'd node, and by inference on its entire 1571 * subtree, we need to set the subtree (including those nodes 1572 * already detached) volpmd counts to 0, and subtract out the 1573 * value of the current node's volpmd count from the ancestors 1574 */ 1575 if (clearvolpmd) { 1576 int volpmd = DEVI(dip)->devi_pm_volpmd; 1577 pm_clear_volpm_dip(dip); 1578 pm_clear_volpm_list(dip); 1579 if (volpmd) { 1580 (void) ddi_pathname(dip, pathbuf); 1581 (void) pm_noinvol_update(PM_BP_NOINVOL_POWER, 1582 volpmd, 0, pathbuf, dip); 1583 } 1584 } 1585 } else { 1586 PMD(PMD_FAIL, ("%s: can't set comp %d (%s) of %s@%s(%s#%d) " 1587 "to level %d (%s)\n", pmf, comp, cp->pmc_comp.pmc_name, 1588 PM_DEVICE(dip), level, power_val_to_string(cp, level))) 1589 } 1590 /* 1591 * If some other devices were also powered up (e.g. other cpus in 1592 * the same domain) return a pointer to that list 1593 */ 1594 if (devlist) { 1595 *devlist = (pm_ppm_devlist_t *) 1596 power_req.req.ppm_set_power_req.cookie; 1597 } 1598 /* 1599 * We will have to resume the device if the device is backwards compat 1600 * device and either of the following is true: 1601 * -This is comp 0 and we have successfully powered it up 1602 * -This is comp 0 and we have failed to power it down. Resume is 1603 * needed because we have suspended it above 1604 */ 1605 1606 if (bc && comp == 0) { 1607 ASSERT(PM_ISDIRECT(dip) || DEVI_IS_DETACHING(dip)); 1608 if (power_op_ret == DDI_SUCCESS) { 1609 if (POWERING_ON(old_level, level)) { 1610 /* 1611 * It must be either suspended or resumed 1612 * via pm_power_has_changed path 1613 */ 1614 ASSERT((DEVI(dip)->devi_pm_flags & 1615 PMC_SUSPENDED) || 1616 (PM_CP(dip, comp)->pmc_flags & 1617 PM_PHC_WHILE_SET_POWER)); 1618 1619 resume_needed = suspended; 1620 } 1621 } else { 1622 if (POWERING_OFF(old_level, level)) { 1623 /* 1624 * It must be either suspended or resumed 1625 * via pm_power_has_changed path 1626 */ 1627 ASSERT((DEVI(dip)->devi_pm_flags & 1628 PMC_SUSPENDED) || 1629 (PM_CP(dip, comp)->pmc_flags & 1630 PM_PHC_WHILE_SET_POWER)); 1631 1632 resume_needed = suspended; 1633 } 1634 } 1635 } 1636 if (resume_needed) { 1637 ASSERT(DEVI(dip)->devi_pm_flags & PMC_SUSPENDED); 1638 /* ppm is not interested in DDI_PM_RESUME */ 1639 if ((power_op_ret = devi_attach(dip, DDI_PM_RESUME)) == 1640 DDI_SUCCESS) { 1641 DEVI(dip)->devi_pm_flags &= ~PMC_SUSPENDED; 1642 } else 1643 cmn_err(CE_WARN, "!pm: Can't resume %s@%s(%s#%d)", 1644 PM_DEVICE(dip)); 1645 } 1646 return (power_op_ret); 1647 } 1648 1649 /* 1650 * Return true if we are the owner or a borrower of the devi lock. See 1651 * pm_lock_power_single() about borrowing the lock. 1652 */ 1653 static int 1654 pm_devi_lock_held(dev_info_t *dip) 1655 { 1656 lock_loan_t *cur; 1657 1658 if (DEVI_BUSY_OWNED(dip)) 1659 return (1); 1660 1661 /* return false if no locks borrowed */ 1662 if (lock_loan_head.pmlk_next == NULL) 1663 return (0); 1664 1665 mutex_enter(&pm_loan_lock); 1666 /* see if our thread is registered as a lock borrower. */ 1667 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next) 1668 if (cur->pmlk_borrower == curthread) 1669 break; 1670 mutex_exit(&pm_loan_lock); 1671 1672 return (cur != NULL && cur->pmlk_lender == DEVI(dip)->devi_busy_thread); 1673 } 1674 1675 /* 1676 * pm_set_power: adjusts power level of device. Assumes device is power 1677 * manageable & component exists. 1678 * 1679 * Cases which require us to bring up devices we keep up ("wekeepups") for 1680 * backwards compatible devices: 1681 * component 0 is off and we're bringing it up from 0 1682 * bring up wekeepup first 1683 * and recursively when component 0 is off and we bring some other 1684 * component up from 0 1685 * For devices which are not backward compatible, our dependency notion is much 1686 * simpler. Unless all components are off, then wekeeps must be on. 1687 * We don't treat component 0 differently. 1688 * Canblock tells how to deal with a direct pm'd device. 1689 * Scan arg tells us if we were called from scan, in which case we don't need 1690 * to go back to the root node and walk down to change power. 1691 */ 1692 int 1693 pm_set_power(dev_info_t *dip, int comp, int level, int direction, 1694 pm_canblock_t canblock, int scan, int *retp) 1695 { 1696 PMD_FUNC(pmf, "set_power") 1697 char *pathbuf; 1698 pm_bp_child_pwrchg_t bpc; 1699 pm_sp_misc_t pspm; 1700 int ret = DDI_SUCCESS; 1701 int unused = DDI_SUCCESS; 1702 dev_info_t *pdip = ddi_get_parent(dip); 1703 1704 #ifdef DEBUG 1705 int diverted = 0; 1706 1707 /* 1708 * This prevents operations on the console from calling prom_printf and 1709 * either deadlocking or bringing up the console because of debug 1710 * output 1711 */ 1712 if (dip == cfb_dip) { 1713 diverted++; 1714 mutex_enter(&pm_debug_lock); 1715 pm_divertdebug++; 1716 mutex_exit(&pm_debug_lock); 1717 } 1718 #endif 1719 ASSERT(direction == PM_LEVEL_UPONLY || direction == PM_LEVEL_DOWNONLY || 1720 direction == PM_LEVEL_EXACT); 1721 PMD(PMD_SET, ("%s: %s@%s(%s#%d), comp=%d, dir=%s, new=%d\n", 1722 pmf, PM_DEVICE(dip), comp, pm_decode_direction(direction), level)) 1723 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1724 (void) ddi_pathname(dip, pathbuf); 1725 bpc.bpc_dip = dip; 1726 bpc.bpc_path = pathbuf; 1727 bpc.bpc_comp = comp; 1728 bpc.bpc_olevel = PM_CURPOWER(dip, comp); 1729 bpc.bpc_nlevel = level; 1730 pspm.pspm_direction = direction; 1731 pspm.pspm_errnop = retp; 1732 pspm.pspm_canblock = canblock; 1733 pspm.pspm_scan = scan; 1734 bpc.bpc_private = &pspm; 1735 1736 /* 1737 * If a config operation is being done (we've locked the parent) or 1738 * we already hold the power lock (we've locked the node) 1739 * then we can operate directly on the node because we have already 1740 * brought up all the ancestors, otherwise, we have to go back to the 1741 * top of the tree. 1742 */ 1743 if (pm_devi_lock_held(pdip) || pm_devi_lock_held(dip)) 1744 ret = pm_busop_set_power(dip, NULL, BUS_POWER_CHILD_PWRCHG, 1745 (void *)&bpc, (void *)&unused); 1746 else 1747 ret = pm_busop_bus_power(ddi_root_node(), NULL, 1748 BUS_POWER_CHILD_PWRCHG, (void *)&bpc, (void *)&unused); 1749 #ifdef DEBUG 1750 if (ret != DDI_SUCCESS || *retp != DDI_SUCCESS) { 1751 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) can't change power, ret=%d, " 1752 "errno=%d\n", pmf, PM_DEVICE(dip), ret, *retp)) 1753 } 1754 if (diverted) { 1755 mutex_enter(&pm_debug_lock); 1756 pm_divertdebug--; 1757 mutex_exit(&pm_debug_lock); 1758 } 1759 #endif 1760 kmem_free(pathbuf, MAXPATHLEN); 1761 return (ret); 1762 } 1763 1764 /* 1765 * If holddip is set, then if a dip is found we return with the node held. 1766 * 1767 * This code uses the same locking scheme as e_ddi_hold_devi_by_path 1768 * (resolve_pathname), but it does not drive attach. 1769 */ 1770 dev_info_t * 1771 pm_name_to_dip(char *pathname, int holddip) 1772 { 1773 struct pathname pn; 1774 char *component; 1775 dev_info_t *parent, *child; 1776 int circ; 1777 1778 if ((pathname == NULL) || (*pathname != '/')) 1779 return (NULL); 1780 1781 /* setup pathname and allocate component */ 1782 if (pn_get(pathname, UIO_SYSSPACE, &pn)) 1783 return (NULL); 1784 component = kmem_alloc(MAXNAMELEN, KM_SLEEP); 1785 1786 /* start at top, process '/' component */ 1787 parent = child = ddi_root_node(); 1788 ndi_hold_devi(parent); 1789 pn_skipslash(&pn); 1790 ASSERT(i_ddi_devi_attached(parent)); 1791 1792 /* process components of pathname */ 1793 while (pn_pathleft(&pn)) { 1794 (void) pn_getcomponent(&pn, component); 1795 1796 /* enter parent and search for component child */ 1797 ndi_devi_enter(parent, &circ); 1798 child = ndi_devi_findchild(parent, component); 1799 if ((child == NULL) || !i_ddi_devi_attached(child)) { 1800 child = NULL; 1801 ndi_devi_exit(parent, circ); 1802 ndi_rele_devi(parent); 1803 goto out; 1804 } 1805 1806 /* attached child found, hold child and release parent */ 1807 ndi_hold_devi(child); 1808 ndi_devi_exit(parent, circ); 1809 ndi_rele_devi(parent); 1810 1811 /* child becomes parent, and process next component */ 1812 parent = child; 1813 pn_skipslash(&pn); 1814 1815 /* loop with active ndi_devi_hold of child->parent */ 1816 } 1817 1818 out: 1819 pn_free(&pn); 1820 kmem_free(component, MAXNAMELEN); 1821 1822 /* if we are not asked to return with hold, drop current hold */ 1823 if (child && !holddip) 1824 ndi_rele_devi(child); 1825 return (child); 1826 } 1827 1828 /* 1829 * Search for a dependency and mark it unsatisfied 1830 */ 1831 static void 1832 pm_unsatisfy(char *keeper, char *kept) 1833 { 1834 PMD_FUNC(pmf, "unsatisfy") 1835 pm_pdr_t *dp; 1836 1837 PMD(PMD_KEEPS, ("%s: keeper=%s, kept=%s\n", pmf, keeper, kept)) 1838 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 1839 if (!dp->pdr_isprop) { 1840 if (strcmp(dp->pdr_keeper, keeper) == 0 && 1841 (dp->pdr_kept_count > 0) && 1842 strcmp(dp->pdr_kept_paths[0], kept) == 0) { 1843 if (dp->pdr_satisfied) { 1844 dp->pdr_satisfied = 0; 1845 pm_unresolved_deps++; 1846 PMD(PMD_KEEPS, ("%s: clear satisfied, " 1847 "pm_unresolved_deps now %d\n", pmf, 1848 pm_unresolved_deps)) 1849 } 1850 } 1851 } 1852 } 1853 } 1854 1855 /* 1856 * Device dip is being un power managed, it keeps up count other devices. 1857 * We need to release any hold we have on the kept devices, and also 1858 * mark the dependency no longer satisfied. 1859 */ 1860 static void 1861 pm_unkeeps(int count, char *keeper, char **keptpaths, int pwr) 1862 { 1863 PMD_FUNC(pmf, "unkeeps") 1864 int i, j; 1865 dev_info_t *kept; 1866 dev_info_t *dip; 1867 struct pm_component *cp; 1868 int keeper_on = 0, circ; 1869 1870 PMD(PMD_KEEPS, ("%s: count=%d, keeper=%s, keptpaths=%p\n", pmf, count, 1871 keeper, (void *)keptpaths)) 1872 /* 1873 * Try to grab keeper. Keeper may have gone away by now, 1874 * in this case, used the passed in value pwr 1875 */ 1876 dip = pm_name_to_dip(keeper, 1); 1877 for (i = 0; i < count; i++) { 1878 /* Release power hold */ 1879 kept = pm_name_to_dip(keptpaths[i], 1); 1880 if (kept) { 1881 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d)[%d]\n", pmf, 1882 PM_DEVICE(kept), i)) 1883 /* 1884 * We need to check if we skipped a bringup here 1885 * because we could have failed the bringup 1886 * (ie DIRECT PM device) and have 1887 * not increment the count. 1888 */ 1889 if ((dip != NULL) && (PM_GET_PM_INFO(dip) != NULL)) { 1890 keeper_on = 0; 1891 PM_LOCK_POWER(dip, &circ); 1892 for (j = 0; j < PM_NUMCMPTS(dip); j++) { 1893 cp = &DEVI(dip)->devi_pm_components[j]; 1894 if (cur_power(cp)) { 1895 keeper_on++; 1896 break; 1897 } 1898 } 1899 if (keeper_on && (PM_SKBU(kept) == 0)) { 1900 pm_rele_power(kept); 1901 DEVI(kept)->devi_pm_flags 1902 &= ~PMC_SKIP_BRINGUP; 1903 } 1904 PM_UNLOCK_POWER(dip, circ); 1905 } else if (pwr) { 1906 if (PM_SKBU(kept) == 0) { 1907 pm_rele_power(kept); 1908 DEVI(kept)->devi_pm_flags 1909 &= ~PMC_SKIP_BRINGUP; 1910 } 1911 } 1912 ddi_release_devi(kept); 1913 } 1914 /* 1915 * mark this dependency not satisfied 1916 */ 1917 pm_unsatisfy(keeper, keptpaths[i]); 1918 } 1919 if (dip) 1920 ddi_release_devi(dip); 1921 } 1922 1923 /* 1924 * Device kept is being un power managed, it is kept up by keeper. 1925 * We need to mark the dependency no longer satisfied. 1926 */ 1927 static void 1928 pm_unkepts(char *kept, char *keeper) 1929 { 1930 PMD_FUNC(pmf, "unkepts") 1931 PMD(PMD_KEEPS, ("%s: kept=%s, keeper=%s\n", pmf, kept, keeper)) 1932 ASSERT(keeper != NULL); 1933 /* 1934 * mark this dependency not satisfied 1935 */ 1936 pm_unsatisfy(keeper, kept); 1937 } 1938 1939 /* 1940 * Removes dependency information and hold on the kepts, if the path is a 1941 * path of a keeper. 1942 */ 1943 static void 1944 pm_free_keeper(char *path, int pwr) 1945 { 1946 pm_pdr_t *dp; 1947 int i; 1948 size_t length; 1949 1950 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 1951 if (strcmp(dp->pdr_keeper, path) != 0) 1952 continue; 1953 /* 1954 * Remove all our kept holds and the dependency records, 1955 * then free up the kept lists. 1956 */ 1957 pm_unkeeps(dp->pdr_kept_count, path, dp->pdr_kept_paths, pwr); 1958 if (dp->pdr_kept_count) { 1959 for (i = 0; i < dp->pdr_kept_count; i++) { 1960 length = strlen(dp->pdr_kept_paths[i]); 1961 kmem_free(dp->pdr_kept_paths[i], length + 1); 1962 } 1963 kmem_free(dp->pdr_kept_paths, 1964 dp->pdr_kept_count * sizeof (char **)); 1965 dp->pdr_kept_paths = NULL; 1966 dp->pdr_kept_count = 0; 1967 } 1968 } 1969 } 1970 1971 /* 1972 * Removes the device represented by path from the list of kepts, if the 1973 * path is a path of a kept 1974 */ 1975 static void 1976 pm_free_kept(char *path) 1977 { 1978 pm_pdr_t *dp; 1979 int i; 1980 int j, count; 1981 size_t length; 1982 char **paths; 1983 1984 paths = NULL; 1985 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 1986 if (dp->pdr_kept_count == 0) 1987 continue; 1988 count = dp->pdr_kept_count; 1989 /* Remove this device from the kept path lists */ 1990 for (i = 0; i < count; i++) { 1991 if (strcmp(dp->pdr_kept_paths[i], path) == 0) { 1992 pm_unkepts(path, dp->pdr_keeper); 1993 length = strlen(dp->pdr_kept_paths[i]) + 1; 1994 kmem_free(dp->pdr_kept_paths[i], length); 1995 dp->pdr_kept_paths[i] = NULL; 1996 dp->pdr_kept_count--; 1997 } 1998 } 1999 /* Compact the kept paths array */ 2000 if (dp->pdr_kept_count) { 2001 length = dp->pdr_kept_count * sizeof (char **); 2002 paths = kmem_zalloc(length, KM_SLEEP); 2003 j = 0; 2004 for (i = 0; i < count; i++) { 2005 if (dp->pdr_kept_paths[i] != NULL) { 2006 paths[j] = dp->pdr_kept_paths[i]; 2007 j++; 2008 } 2009 } 2010 ASSERT(j == dp->pdr_kept_count); 2011 } 2012 /* Now free the old array and point to the new one */ 2013 kmem_free(dp->pdr_kept_paths, count * sizeof (char **)); 2014 dp->pdr_kept_paths = paths; 2015 } 2016 } 2017 2018 /* 2019 * Free the dependency information for a device. 2020 */ 2021 void 2022 pm_free_keeps(char *path, int pwr) 2023 { 2024 PMD_FUNC(pmf, "free_keeps") 2025 2026 #ifdef DEBUG 2027 int doprdeps = 0; 2028 void prdeps(char *); 2029 2030 PMD(PMD_KEEPS, ("%s: %s\n", pmf, path)) 2031 if (pm_debug & PMD_KEEPS) { 2032 doprdeps = 1; 2033 prdeps("pm_free_keeps before"); 2034 } 2035 #endif 2036 /* 2037 * First assume we are a keeper and remove all our kepts. 2038 */ 2039 pm_free_keeper(path, pwr); 2040 /* 2041 * Now assume we a kept device, and remove all our records. 2042 */ 2043 pm_free_kept(path); 2044 #ifdef DEBUG 2045 if (doprdeps) { 2046 prdeps("pm_free_keeps after"); 2047 } 2048 #endif 2049 } 2050 2051 static int 2052 pm_is_kept(char *path) 2053 { 2054 pm_pdr_t *dp; 2055 int i; 2056 2057 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 2058 if (dp->pdr_kept_count == 0) 2059 continue; 2060 for (i = 0; i < dp->pdr_kept_count; i++) { 2061 if (strcmp(dp->pdr_kept_paths[i], path) == 0) 2062 return (1); 2063 } 2064 } 2065 return (0); 2066 } 2067 2068 static void 2069 e_pm_hold_rele_power(dev_info_t *dip, int cnt) 2070 { 2071 PMD_FUNC(pmf, "hold_rele_power") 2072 int circ; 2073 2074 if ((dip == NULL) || 2075 (PM_GET_PM_INFO(dip) == NULL) || PM_ISBC(dip)) 2076 return; 2077 2078 PM_LOCK_POWER(dip, &circ); 2079 ASSERT(cnt >= 0 && PM_KUC(dip) >= 0 || cnt < 0 && PM_KUC(dip) > 0); 2080 PMD(PMD_KIDSUP, ("%s: kidsupcnt for %s@%s(%s#%d) %d->%d\n", pmf, 2081 PM_DEVICE(dip), PM_KUC(dip), (PM_KUC(dip) + cnt))) 2082 2083 PM_KUC(dip) += cnt; 2084 2085 ASSERT(PM_KUC(dip) >= 0); 2086 PM_UNLOCK_POWER(dip, circ); 2087 2088 if (cnt < 0 && PM_KUC(dip) == 0) 2089 pm_rescan(dip); 2090 } 2091 2092 #define MAX_PPM_HANDLERS 4 2093 2094 kmutex_t ppm_lock; /* in case we ever do multi-threaded startup */ 2095 2096 struct ppm_callbacks { 2097 int (*ppmc_func)(dev_info_t *); 2098 dev_info_t *ppmc_dip; 2099 } ppm_callbacks[MAX_PPM_HANDLERS + 1]; 2100 2101 2102 /* 2103 * This routine calls into all the registered ppms to notify them 2104 * that either all components of power-managed devices are at their 2105 * lowest levels or no longer all are at their lowest levels. 2106 */ 2107 static void 2108 pm_ppm_notify_all_lowest(dev_info_t *dip, int mode) 2109 { 2110 struct ppm_callbacks *ppmcp; 2111 power_req_t power_req; 2112 int result = 0; 2113 2114 power_req.request_type = PMR_PPM_ALL_LOWEST; 2115 power_req.req.ppm_all_lowest_req.mode = mode; 2116 mutex_enter(&ppm_lock); 2117 for (ppmcp = ppm_callbacks; ppmcp->ppmc_func; ppmcp++) 2118 (void) pm_ctlops((dev_info_t *)ppmcp->ppmc_dip, dip, 2119 DDI_CTLOPS_POWER, &power_req, &result); 2120 mutex_exit(&ppm_lock); 2121 if (mode == PM_ALL_LOWEST) { 2122 if (autoS3_enabled) { 2123 PMD(PMD_SX, ("pm_ppm_notify_all_lowest triggering " 2124 "autos3\n")) 2125 mutex_enter(&srn_clone_lock); 2126 if (srn_signal) { 2127 srn_inuse++; 2128 PMD(PMD_SX, ("(*srn_signal)(AUTOSX, 3)\n")) 2129 (*srn_signal)(SRN_TYPE_AUTOSX, 3); 2130 srn_inuse--; 2131 } else { 2132 PMD(PMD_SX, ("srn_signal NULL\n")) 2133 } 2134 mutex_exit(&srn_clone_lock); 2135 } else { 2136 PMD(PMD_SX, ("pm_ppm_notify_all_lowest autos3 " 2137 "disabled\n")); 2138 } 2139 } 2140 } 2141 2142 static void 2143 pm_set_pm_info(dev_info_t *dip, void *value) 2144 { 2145 DEVI(dip)->devi_pm_info = value; 2146 } 2147 2148 pm_rsvp_t *pm_blocked_list; 2149 2150 /* 2151 * Look up an entry in the blocked list by dip and component 2152 */ 2153 static pm_rsvp_t * 2154 pm_rsvp_lookup(dev_info_t *dip, int comp) 2155 { 2156 pm_rsvp_t *p; 2157 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 2158 for (p = pm_blocked_list; p; p = p->pr_next) 2159 if (p->pr_dip == dip && p->pr_comp == comp) { 2160 return (p); 2161 } 2162 return (NULL); 2163 } 2164 2165 /* 2166 * Called when a device which is direct power managed (or the parent or 2167 * dependent of such a device) changes power, or when a pm clone is closed 2168 * that was direct power managing a device. This call results in pm_blocked() 2169 * (below) returning. 2170 */ 2171 void 2172 pm_proceed(dev_info_t *dip, int cmd, int comp, int newlevel) 2173 { 2174 PMD_FUNC(pmf, "proceed") 2175 pm_rsvp_t *found = NULL; 2176 pm_rsvp_t *p; 2177 2178 mutex_enter(&pm_rsvp_lock); 2179 switch (cmd) { 2180 /* 2181 * we're giving up control, let any pending op continue 2182 */ 2183 case PMP_RELEASE: 2184 for (p = pm_blocked_list; p; p = p->pr_next) { 2185 if (dip == p->pr_dip) { 2186 p->pr_retval = PMP_RELEASE; 2187 PMD(PMD_DPM, ("%s: RELEASE %s@%s(%s#%d)\n", 2188 pmf, PM_DEVICE(dip))) 2189 cv_signal(&p->pr_cv); 2190 } 2191 } 2192 break; 2193 2194 /* 2195 * process has done PM_SET_CURRENT_POWER; let a matching request 2196 * succeed and a non-matching request for the same device fail 2197 */ 2198 case PMP_SETPOWER: 2199 found = pm_rsvp_lookup(dip, comp); 2200 if (!found) /* if driver not waiting */ 2201 break; 2202 /* 2203 * This cannot be pm_lower_power, since that can only happen 2204 * during detach or probe 2205 */ 2206 if (found->pr_newlevel <= newlevel) { 2207 found->pr_retval = PMP_SUCCEED; 2208 PMD(PMD_DPM, ("%s: SUCCEED %s@%s(%s#%d)\n", pmf, 2209 PM_DEVICE(dip))) 2210 } else { 2211 found->pr_retval = PMP_FAIL; 2212 PMD(PMD_DPM, ("%s: FAIL %s@%s(%s#%d)\n", pmf, 2213 PM_DEVICE(dip))) 2214 } 2215 cv_signal(&found->pr_cv); 2216 break; 2217 2218 default: 2219 panic("pm_proceed unknown cmd %d", cmd); 2220 } 2221 mutex_exit(&pm_rsvp_lock); 2222 } 2223 2224 /* 2225 * This routine dispatches new work to the dependency thread. Caller must 2226 * be prepared to block for memory if necessary. 2227 */ 2228 void 2229 pm_dispatch_to_dep_thread(int cmd, char *keeper, char *kept, int wait, 2230 int *res, int cached_pwr) 2231 { 2232 pm_dep_wk_t *new_work; 2233 2234 new_work = kmem_zalloc(sizeof (pm_dep_wk_t), KM_SLEEP); 2235 new_work->pdw_type = cmd; 2236 new_work->pdw_wait = wait; 2237 new_work->pdw_done = 0; 2238 new_work->pdw_ret = 0; 2239 new_work->pdw_pwr = cached_pwr; 2240 cv_init(&new_work->pdw_cv, NULL, CV_DEFAULT, NULL); 2241 if (keeper != NULL) { 2242 new_work->pdw_keeper = kmem_zalloc(strlen(keeper) + 1, 2243 KM_SLEEP); 2244 (void) strcpy(new_work->pdw_keeper, keeper); 2245 } 2246 if (kept != NULL) { 2247 new_work->pdw_kept = kmem_zalloc(strlen(kept) + 1, KM_SLEEP); 2248 (void) strcpy(new_work->pdw_kept, kept); 2249 } 2250 mutex_enter(&pm_dep_thread_lock); 2251 if (pm_dep_thread_workq == NULL) { 2252 pm_dep_thread_workq = new_work; 2253 pm_dep_thread_tail = new_work; 2254 new_work->pdw_next = NULL; 2255 } else { 2256 pm_dep_thread_tail->pdw_next = new_work; 2257 pm_dep_thread_tail = new_work; 2258 new_work->pdw_next = NULL; 2259 } 2260 cv_signal(&pm_dep_thread_cv); 2261 /* If caller asked for it, wait till it is done. */ 2262 if (wait) { 2263 while (!new_work->pdw_done) 2264 cv_wait(&new_work->pdw_cv, &pm_dep_thread_lock); 2265 /* 2266 * Pass return status, if any, back. 2267 */ 2268 if (res != NULL) 2269 *res = new_work->pdw_ret; 2270 /* 2271 * If we asked to wait, it is our job to free the request 2272 * structure. 2273 */ 2274 if (new_work->pdw_keeper) 2275 kmem_free(new_work->pdw_keeper, 2276 strlen(new_work->pdw_keeper) + 1); 2277 if (new_work->pdw_kept) 2278 kmem_free(new_work->pdw_kept, 2279 strlen(new_work->pdw_kept) + 1); 2280 kmem_free(new_work, sizeof (pm_dep_wk_t)); 2281 } 2282 mutex_exit(&pm_dep_thread_lock); 2283 } 2284 2285 /* 2286 * Release the pm resource for this device. 2287 */ 2288 void 2289 pm_rem_info(dev_info_t *dip) 2290 { 2291 PMD_FUNC(pmf, "rem_info") 2292 int i, count = 0; 2293 pm_info_t *info = PM_GET_PM_INFO(dip); 2294 dev_info_t *pdip = ddi_get_parent(dip); 2295 char *pathbuf; 2296 int work_type = PM_DEP_WK_DETACH; 2297 2298 ASSERT(info); 2299 2300 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 2301 if (PM_ISDIRECT(dip)) { 2302 info->pmi_dev_pm_state &= ~PM_DIRECT; 2303 ASSERT(info->pmi_clone); 2304 info->pmi_clone = 0; 2305 pm_proceed(dip, PMP_RELEASE, -1, -1); 2306 } 2307 ASSERT(!PM_GET_PM_SCAN(dip)); 2308 2309 /* 2310 * Now adjust parent's kidsupcnt. BC nodes we check only comp 0, 2311 * Others we check all components. BC node that has already 2312 * called pm_destroy_components() has zero component count. 2313 * Parents that get notification are not adjusted because their 2314 * kidsupcnt is always 0 (or 1 during configuration). 2315 */ 2316 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d) has %d components\n", pmf, 2317 PM_DEVICE(dip), PM_NUMCMPTS(dip))) 2318 2319 /* node is detached, so we can examine power without locking */ 2320 if (PM_ISBC(dip)) { 2321 count = (PM_CURPOWER(dip, 0) != 0); 2322 } else { 2323 for (i = 0; i < PM_NUMCMPTS(dip); i++) 2324 count += (PM_CURPOWER(dip, i) != 0); 2325 } 2326 2327 if (PM_NUMCMPTS(dip) && pdip && !PM_WANTS_NOTIFICATION(pdip)) 2328 e_pm_hold_rele_power(pdip, -count); 2329 2330 /* Schedule a request to clean up dependency records */ 2331 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 2332 (void) ddi_pathname(dip, pathbuf); 2333 pm_dispatch_to_dep_thread(work_type, pathbuf, pathbuf, 2334 PM_DEP_NOWAIT, NULL, (count > 0)); 2335 kmem_free(pathbuf, MAXPATHLEN); 2336 2337 /* 2338 * Adjust the pm_comps_notlowest count since this device is 2339 * not being power-managed anymore. 2340 */ 2341 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 2342 pm_component_t *cp = PM_CP(dip, i); 2343 if (cp->pmc_cur_pwr != 0) 2344 PM_DECR_NOTLOWEST(dip) 2345 } 2346 /* 2347 * Once we clear the info pointer, it looks like it is not power 2348 * managed to everybody else. 2349 */ 2350 pm_set_pm_info(dip, NULL); 2351 kmem_free(info, sizeof (pm_info_t)); 2352 } 2353 2354 int 2355 pm_get_norm_pwrs(dev_info_t *dip, int **valuep, size_t *length) 2356 { 2357 int components = PM_NUMCMPTS(dip); 2358 int *bufp; 2359 size_t size; 2360 int i; 2361 2362 if (components <= 0) { 2363 cmn_err(CE_NOTE, "!pm: %s@%s(%s#%d) has no components, " 2364 "can't get normal power values\n", PM_DEVICE(dip)); 2365 return (DDI_FAILURE); 2366 } else { 2367 size = components * sizeof (int); 2368 bufp = kmem_alloc(size, KM_SLEEP); 2369 for (i = 0; i < components; i++) { 2370 bufp[i] = pm_get_normal_power(dip, i); 2371 } 2372 } 2373 *length = size; 2374 *valuep = bufp; 2375 return (DDI_SUCCESS); 2376 } 2377 2378 static int 2379 pm_reset_timestamps(dev_info_t *dip, void *arg) 2380 { 2381 _NOTE(ARGUNUSED(arg)) 2382 2383 int components; 2384 int i; 2385 2386 if (!PM_GET_PM_INFO(dip)) 2387 return (DDI_WALK_CONTINUE); 2388 components = PM_NUMCMPTS(dip); 2389 ASSERT(components > 0); 2390 PM_LOCK_BUSY(dip); 2391 for (i = 0; i < components; i++) { 2392 struct pm_component *cp; 2393 /* 2394 * If the component was not marked as busy, 2395 * reset its timestamp to now. 2396 */ 2397 cp = PM_CP(dip, i); 2398 if (cp->pmc_timestamp) 2399 cp->pmc_timestamp = gethrestime_sec(); 2400 } 2401 PM_UNLOCK_BUSY(dip); 2402 return (DDI_WALK_CONTINUE); 2403 } 2404 2405 /* 2406 * Convert a power level to an index into the levels array (or 2407 * just PM_LEVEL_UNKNOWN in that special case). 2408 */ 2409 static int 2410 pm_level_to_index(dev_info_t *dip, pm_component_t *cp, int level) 2411 { 2412 PMD_FUNC(pmf, "level_to_index") 2413 int i; 2414 int limit = cp->pmc_comp.pmc_numlevels; 2415 int *ip = cp->pmc_comp.pmc_lvals; 2416 2417 if (level == PM_LEVEL_UNKNOWN) 2418 return (level); 2419 2420 for (i = 0; i < limit; i++) { 2421 if (level == *ip++) { 2422 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d)[%d] to %x\n", 2423 pmf, PM_DEVICE(dip), 2424 (int)(cp - DEVI(dip)->devi_pm_components), level)) 2425 return (i); 2426 } 2427 } 2428 panic("pm_level_to_index: level %d not found for device " 2429 "%s@%s(%s#%d)", level, PM_DEVICE(dip)); 2430 /*NOTREACHED*/ 2431 } 2432 2433 /* 2434 * Internal function to set current power level 2435 */ 2436 static void 2437 e_pm_set_cur_pwr(dev_info_t *dip, pm_component_t *cp, int level) 2438 { 2439 PMD_FUNC(pmf, "set_cur_pwr") 2440 int curpwr = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ? 2441 cp->pmc_phc_pwr : cp->pmc_cur_pwr); 2442 2443 /* 2444 * Nothing to adjust if current & new levels are the same. 2445 */ 2446 if (curpwr != PM_LEVEL_UNKNOWN && 2447 level == cp->pmc_comp.pmc_lvals[curpwr]) 2448 return; 2449 2450 /* 2451 * Keep the count for comps doing transition to/from lowest 2452 * level. 2453 */ 2454 if (curpwr == 0) { 2455 PM_INCR_NOTLOWEST(dip); 2456 } else if (level == cp->pmc_comp.pmc_lvals[0]) { 2457 PM_DECR_NOTLOWEST(dip); 2458 } 2459 cp->pmc_phc_pwr = PM_LEVEL_UNKNOWN; 2460 cp->pmc_cur_pwr = pm_level_to_index(dip, cp, level); 2461 } 2462 2463 static int pm_phc_impl(dev_info_t *, int, int, int); 2464 2465 /* 2466 * This is the default method of setting the power of a device if no ppm 2467 * driver has claimed it. 2468 */ 2469 int 2470 pm_power(dev_info_t *dip, int comp, int level) 2471 { 2472 PMD_FUNC(pmf, "power") 2473 struct dev_ops *ops; 2474 int (*fn)(dev_info_t *, int, int); 2475 struct pm_component *cp = PM_CP(dip, comp); 2476 int retval; 2477 pm_info_t *info = PM_GET_PM_INFO(dip); 2478 2479 PMD(PMD_KIDSUP, ("%s: %s@%s(%s#%d), comp=%d, level=%d\n", pmf, 2480 PM_DEVICE(dip), comp, level)) 2481 if (!(ops = ddi_get_driver(dip))) { 2482 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) has no ops\n", pmf, 2483 PM_DEVICE(dip))) 2484 return (DDI_FAILURE); 2485 } 2486 if ((ops->devo_rev < 2) || !(fn = ops->devo_power)) { 2487 PMD(PMD_FAIL, ("%s: %s%s\n", pmf, 2488 (ops->devo_rev < 2 ? " wrong devo_rev" : ""), 2489 (!fn ? " devo_power NULL" : ""))) 2490 return (DDI_FAILURE); 2491 } 2492 cp->pmc_flags |= PM_POWER_OP; 2493 retval = (*fn)(dip, comp, level); 2494 cp->pmc_flags &= ~PM_POWER_OP; 2495 if (retval == DDI_SUCCESS) { 2496 e_pm_set_cur_pwr(dip, PM_CP(dip, comp), level); 2497 return (DDI_SUCCESS); 2498 } 2499 2500 /* 2501 * If pm_power_has_changed() detected a deadlock with pm_power() it 2502 * updated only the power level of the component. If our attempt to 2503 * set the device new to a power level above has failed we sync the 2504 * total power state via phc code now. 2505 */ 2506 if (cp->pmc_flags & PM_PHC_WHILE_SET_POWER) { 2507 int phc_lvl = 2508 cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr]; 2509 2510 ASSERT(info); 2511 (void) pm_phc_impl(dip, comp, phc_lvl, 0); 2512 PMD(PMD_PHC, ("%s: phc %s@%s(%s#%d) comp=%d level=%d\n", 2513 pmf, PM_DEVICE(dip), comp, phc_lvl)) 2514 } 2515 2516 PMD(PMD_FAIL, ("%s: can't set comp=%d (%s) of %s@%s(%s#%d) to " 2517 "level=%d (%s)\n", pmf, comp, cp->pmc_comp.pmc_name, PM_DEVICE(dip), 2518 level, power_val_to_string(cp, level))); 2519 return (DDI_FAILURE); 2520 } 2521 2522 int 2523 pm_unmanage(dev_info_t *dip) 2524 { 2525 PMD_FUNC(pmf, "unmanage") 2526 power_req_t power_req; 2527 int result, retval = 0; 2528 2529 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 2530 PMD(PMD_REMDEV | PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf, 2531 PM_DEVICE(dip))) 2532 power_req.request_type = PMR_PPM_UNMANAGE; 2533 power_req.req.ppm_config_req.who = dip; 2534 if (pm_ppm_claimed(dip)) 2535 retval = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 2536 &power_req, &result); 2537 #ifdef DEBUG 2538 else 2539 retval = pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 2540 &power_req, &result); 2541 #endif 2542 ASSERT(retval == DDI_SUCCESS); 2543 pm_rem_info(dip); 2544 return (retval); 2545 } 2546 2547 int 2548 pm_raise_power(dev_info_t *dip, int comp, int level) 2549 { 2550 if (level < 0) 2551 return (DDI_FAILURE); 2552 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) || 2553 !e_pm_valid_power(dip, comp, level)) 2554 return (DDI_FAILURE); 2555 2556 return (dev_is_needed(dip, comp, level, PM_LEVEL_UPONLY)); 2557 } 2558 2559 int 2560 pm_lower_power(dev_info_t *dip, int comp, int level) 2561 { 2562 PMD_FUNC(pmf, "pm_lower_power") 2563 2564 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) || 2565 !e_pm_valid_power(dip, comp, level)) { 2566 PMD(PMD_FAIL, ("%s: validation checks failed for %s@%s(%s#%d) " 2567 "comp=%d level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 2568 return (DDI_FAILURE); 2569 } 2570 2571 if (!DEVI_IS_DETACHING(dip)) { 2572 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) not detaching\n", 2573 pmf, PM_DEVICE(dip))) 2574 return (DDI_FAILURE); 2575 } 2576 2577 /* 2578 * If we don't care about saving power, or we're treating this node 2579 * specially, then this is a no-op 2580 */ 2581 if (!PM_SCANABLE(dip) || pm_noinvol(dip)) { 2582 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) %s%s%s%s\n", 2583 pmf, PM_DEVICE(dip), 2584 !autopm_enabled ? "!autopm_enabled " : "", 2585 !PM_POLLING_CPUPM ? "!cpupm_polling " : "", 2586 PM_CPUPM_DISABLED ? "cpupm_disabled " : "", 2587 pm_noinvol(dip) ? "pm_noinvol()" : "")) 2588 return (DDI_SUCCESS); 2589 } 2590 2591 if (dev_is_needed(dip, comp, level, PM_LEVEL_DOWNONLY) != DDI_SUCCESS) { 2592 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) dev_is_needed failed\n", pmf, 2593 PM_DEVICE(dip))) 2594 return (DDI_FAILURE); 2595 } 2596 return (DDI_SUCCESS); 2597 } 2598 2599 /* 2600 * Find the entries struct for a given dip in the blocked list, return it locked 2601 */ 2602 static psce_t * 2603 pm_psc_dip_to_direct(dev_info_t *dip, pscc_t **psccp) 2604 { 2605 pscc_t *p; 2606 psce_t *psce; 2607 2608 rw_enter(&pm_pscc_direct_rwlock, RW_READER); 2609 for (p = pm_pscc_direct; p; p = p->pscc_next) { 2610 if (p->pscc_dip == dip) { 2611 *psccp = p; 2612 psce = p->pscc_entries; 2613 mutex_enter(&psce->psce_lock); 2614 ASSERT(psce); 2615 rw_exit(&pm_pscc_direct_rwlock); 2616 return (psce); 2617 } 2618 } 2619 rw_exit(&pm_pscc_direct_rwlock); 2620 panic("sunpm: no entry for dip %p in direct list", (void *)dip); 2621 /*NOTREACHED*/ 2622 } 2623 2624 /* 2625 * Write an entry indicating a power level change (to be passed to a process 2626 * later) in the given psce. 2627 * If we were called in the path that brings up the console fb in the 2628 * case of entering the prom, we don't want to sleep. If the alloc fails, then 2629 * we create a record that has a size of -1, a physaddr of NULL, and that 2630 * has the overflow flag set. 2631 */ 2632 static int 2633 psc_entry(ushort_t event, psce_t *psce, dev_info_t *dip, int comp, int new, 2634 int old, int which, pm_canblock_t canblock) 2635 { 2636 char buf[MAXNAMELEN]; 2637 pm_state_change_t *p; 2638 size_t size; 2639 caddr_t physpath = NULL; 2640 int overrun = 0; 2641 2642 ASSERT(MUTEX_HELD(&psce->psce_lock)); 2643 (void) ddi_pathname(dip, buf); 2644 size = strlen(buf) + 1; 2645 p = psce->psce_in; 2646 if (canblock == PM_CANBLOCK_BYPASS) { 2647 physpath = kmem_alloc(size, KM_NOSLEEP); 2648 if (physpath == NULL) { 2649 /* 2650 * mark current entry as overrun 2651 */ 2652 p->flags |= PSC_EVENT_LOST; 2653 size = (size_t)-1; 2654 } 2655 } else 2656 physpath = kmem_alloc(size, KM_SLEEP); 2657 if (p->size) { /* overflow; mark the next entry */ 2658 if (p->size != (size_t)-1) 2659 kmem_free(p->physpath, p->size); 2660 ASSERT(psce->psce_out == p); 2661 if (p == psce->psce_last) { 2662 psce->psce_first->flags |= PSC_EVENT_LOST; 2663 psce->psce_out = psce->psce_first; 2664 } else { 2665 (p + 1)->flags |= PSC_EVENT_LOST; 2666 psce->psce_out = (p + 1); 2667 } 2668 overrun++; 2669 } else if (physpath == NULL) { /* alloc failed, mark this entry */ 2670 p->flags |= PSC_EVENT_LOST; 2671 p->size = 0; 2672 p->physpath = NULL; 2673 } 2674 if (which == PSC_INTEREST) { 2675 mutex_enter(&pm_compcnt_lock); 2676 if (pm_comps_notlowest == 0) 2677 p->flags |= PSC_ALL_LOWEST; 2678 else 2679 p->flags &= ~PSC_ALL_LOWEST; 2680 mutex_exit(&pm_compcnt_lock); 2681 } 2682 p->event = event; 2683 p->timestamp = gethrestime_sec(); 2684 p->component = comp; 2685 p->old_level = old; 2686 p->new_level = new; 2687 p->physpath = physpath; 2688 p->size = size; 2689 if (physpath != NULL) 2690 (void) strcpy(p->physpath, buf); 2691 if (p == psce->psce_last) 2692 psce->psce_in = psce->psce_first; 2693 else 2694 psce->psce_in = ++p; 2695 mutex_exit(&psce->psce_lock); 2696 return (overrun); 2697 } 2698 2699 /* 2700 * Find the next entry on the interest list. We keep a pointer to the item we 2701 * last returned in the user's cooke. Returns a locked entries struct. 2702 */ 2703 static psce_t * 2704 psc_interest(void **cookie, pscc_t **psccp) 2705 { 2706 pscc_t *pscc; 2707 pscc_t **cookiep = (pscc_t **)cookie; 2708 2709 if (*cookiep == NULL) 2710 pscc = pm_pscc_interest; 2711 else 2712 pscc = (*cookiep)->pscc_next; 2713 if (pscc) { 2714 *cookiep = pscc; 2715 *psccp = pscc; 2716 mutex_enter(&pscc->pscc_entries->psce_lock); 2717 return (pscc->pscc_entries); 2718 } else { 2719 return (NULL); 2720 } 2721 } 2722 2723 /* 2724 * Create an entry for a process to pick up indicating a power level change. 2725 */ 2726 static void 2727 pm_enqueue_notify(ushort_t cmd, dev_info_t *dip, int comp, 2728 int newlevel, int oldlevel, pm_canblock_t canblock) 2729 { 2730 PMD_FUNC(pmf, "enqueue_notify") 2731 pscc_t *pscc; 2732 psce_t *psce; 2733 void *cookie = NULL; 2734 int overrun; 2735 2736 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 2737 switch (cmd) { 2738 case PSC_PENDING_CHANGE: /* only for controlling process */ 2739 PMD(PMD_DPM, ("%s: PENDING %s@%s(%s#%d), comp %d, %d -> %d\n", 2740 pmf, PM_DEVICE(dip), comp, oldlevel, newlevel)) 2741 psce = pm_psc_dip_to_direct(dip, &pscc); 2742 ASSERT(psce); 2743 PMD(PMD_IOCTL, ("%s: PENDING: %s@%s(%s#%d) pm_poll_cnt[%d] " 2744 "%d\n", pmf, PM_DEVICE(dip), pscc->pscc_clone, 2745 pm_poll_cnt[pscc->pscc_clone])) 2746 overrun = psc_entry(cmd, psce, dip, comp, newlevel, oldlevel, 2747 PSC_DIRECT, canblock); 2748 PMD(PMD_DPM, ("%s: sig %d\n", pmf, pscc->pscc_clone)) 2749 mutex_enter(&pm_clone_lock); 2750 if (!overrun) 2751 pm_poll_cnt[pscc->pscc_clone]++; 2752 cv_signal(&pm_clones_cv[pscc->pscc_clone]); 2753 pollwakeup(&pm_pollhead, (POLLRDNORM | POLLIN)); 2754 mutex_exit(&pm_clone_lock); 2755 break; 2756 case PSC_HAS_CHANGED: 2757 PMD(PMD_DPM, ("%s: HAS %s@%s(%s#%d), comp %d, %d -> %d\n", 2758 pmf, PM_DEVICE(dip), comp, oldlevel, newlevel)) 2759 if (PM_ISDIRECT(dip) && canblock != PM_CANBLOCK_BYPASS) { 2760 psce = pm_psc_dip_to_direct(dip, &pscc); 2761 PMD(PMD_IOCTL, ("%s: HAS: %s@%s(%s#%d) pm_poll_cnt[%d] " 2762 "%d\n", pmf, PM_DEVICE(dip), pscc->pscc_clone, 2763 pm_poll_cnt[pscc->pscc_clone])) 2764 overrun = psc_entry(cmd, psce, dip, comp, newlevel, 2765 oldlevel, PSC_DIRECT, canblock); 2766 PMD(PMD_DPM, ("%s: sig %d\n", pmf, pscc->pscc_clone)) 2767 mutex_enter(&pm_clone_lock); 2768 if (!overrun) 2769 pm_poll_cnt[pscc->pscc_clone]++; 2770 cv_signal(&pm_clones_cv[pscc->pscc_clone]); 2771 pollwakeup(&pm_pollhead, (POLLRDNORM | POLLIN)); 2772 mutex_exit(&pm_clone_lock); 2773 } 2774 mutex_enter(&pm_clone_lock); 2775 rw_enter(&pm_pscc_interest_rwlock, RW_READER); 2776 while ((psce = psc_interest(&cookie, &pscc)) != NULL) { 2777 (void) psc_entry(cmd, psce, dip, comp, newlevel, 2778 oldlevel, PSC_INTEREST, canblock); 2779 cv_signal(&pm_clones_cv[pscc->pscc_clone]); 2780 } 2781 rw_exit(&pm_pscc_interest_rwlock); 2782 mutex_exit(&pm_clone_lock); 2783 break; 2784 #ifdef DEBUG 2785 default: 2786 ASSERT(0); 2787 #endif 2788 } 2789 } 2790 2791 static void 2792 pm_enqueue_notify_others(pm_ppm_devlist_t **listp, pm_canblock_t canblock) 2793 { 2794 if (listp) { 2795 pm_ppm_devlist_t *p, *next = NULL; 2796 2797 for (p = *listp; p; p = next) { 2798 next = p->ppd_next; 2799 pm_enqueue_notify(PSC_HAS_CHANGED, p->ppd_who, 2800 p->ppd_cmpt, p->ppd_new_level, p->ppd_old_level, 2801 canblock); 2802 kmem_free(p, sizeof (pm_ppm_devlist_t)); 2803 } 2804 *listp = NULL; 2805 } 2806 } 2807 2808 /* 2809 * Try to get the power locks of the parent node and target (child) 2810 * node. Return true if successful (with both locks held) or false 2811 * (with no locks held). 2812 */ 2813 static int 2814 pm_try_parent_child_locks(dev_info_t *pdip, 2815 dev_info_t *dip, int *pcircp, int *circp) 2816 { 2817 if (ndi_devi_tryenter(pdip, pcircp)) 2818 if (PM_TRY_LOCK_POWER(dip, circp)) { 2819 return (1); 2820 } else { 2821 ndi_devi_exit(pdip, *pcircp); 2822 } 2823 return (0); 2824 } 2825 2826 /* 2827 * Determine if the power lock owner is blocked by current thread. 2828 * returns : 2829 * 1 - If the thread owning the effective power lock (the first lock on 2830 * which a thread blocks when it does PM_LOCK_POWER) is blocked by 2831 * a mutex held by the current thread. 2832 * 2833 * 0 - otherwise 2834 * 2835 * Note : This function is called by pm_power_has_changed to determine whether 2836 * it is executing in parallel with pm_set_power. 2837 */ 2838 static int 2839 pm_blocked_by_us(dev_info_t *dip) 2840 { 2841 power_req_t power_req; 2842 kthread_t *owner; 2843 int result; 2844 kmutex_t *mp; 2845 dev_info_t *ppm = (dev_info_t *)DEVI(dip)->devi_pm_ppm; 2846 2847 power_req.request_type = PMR_PPM_POWER_LOCK_OWNER; 2848 power_req.req.ppm_power_lock_owner_req.who = dip; 2849 if (pm_ctlops(ppm, dip, DDI_CTLOPS_POWER, &power_req, &result) != 2850 DDI_SUCCESS) { 2851 /* 2852 * It is assumed that if the device is claimed by ppm, ppm 2853 * will always implement this request type and it'll always 2854 * return success. We panic here, if it fails. 2855 */ 2856 panic("pm: Can't determine power lock owner of %s@%s(%s#%d)\n", 2857 PM_DEVICE(dip)); 2858 /*NOTREACHED*/ 2859 } 2860 2861 if ((owner = power_req.req.ppm_power_lock_owner_req.owner) != NULL && 2862 owner->t_state == TS_SLEEP && 2863 owner->t_sobj_ops && 2864 SOBJ_TYPE(owner->t_sobj_ops) == SOBJ_MUTEX && 2865 (mp = (kmutex_t *)owner->t_wchan) && 2866 mutex_owner(mp) == curthread) 2867 return (1); 2868 2869 return (0); 2870 } 2871 2872 /* 2873 * Notify parent which wants to hear about a child's power changes. 2874 */ 2875 static void 2876 pm_notify_parent(dev_info_t *dip, 2877 dev_info_t *pdip, int comp, int old_level, int level) 2878 { 2879 pm_bp_has_changed_t bphc; 2880 pm_sp_misc_t pspm; 2881 char *pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2882 int result = DDI_SUCCESS; 2883 2884 bphc.bphc_dip = dip; 2885 bphc.bphc_path = ddi_pathname(dip, pathbuf); 2886 bphc.bphc_comp = comp; 2887 bphc.bphc_olevel = old_level; 2888 bphc.bphc_nlevel = level; 2889 pspm.pspm_canblock = PM_CANBLOCK_BLOCK; 2890 pspm.pspm_scan = 0; 2891 bphc.bphc_private = &pspm; 2892 (void) (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL, 2893 BUS_POWER_HAS_CHANGED, (void *)&bphc, (void *)&result); 2894 kmem_free(pathbuf, MAXPATHLEN); 2895 } 2896 2897 /* 2898 * Check if we need to resume a BC device, and make the attach call as required. 2899 */ 2900 static int 2901 pm_check_and_resume(dev_info_t *dip, int comp, int old_level, int level) 2902 { 2903 int ret = DDI_SUCCESS; 2904 2905 if (PM_ISBC(dip) && comp == 0 && old_level == 0 && level != 0) { 2906 ASSERT(DEVI(dip)->devi_pm_flags & PMC_SUSPENDED); 2907 /* ppm is not interested in DDI_PM_RESUME */ 2908 if ((ret = devi_attach(dip, DDI_PM_RESUME)) != DDI_SUCCESS) 2909 /* XXX Should we mark it resumed, */ 2910 /* even though it failed? */ 2911 cmn_err(CE_WARN, "!pm: Can't resume %s@%s", 2912 PM_NAME(dip), PM_ADDR(dip)); 2913 DEVI(dip)->devi_pm_flags &= ~PMC_SUSPENDED; 2914 } 2915 2916 return (ret); 2917 } 2918 2919 /* 2920 * Tests outside the lock to see if we should bother to enqueue an entry 2921 * for any watching process. If yes, then caller will take the lock and 2922 * do the full protocol 2923 */ 2924 static int 2925 pm_watchers() 2926 { 2927 if (pm_processes_stopped) 2928 return (0); 2929 return (pm_pscc_direct || pm_pscc_interest); 2930 } 2931 2932 static int pm_phc_impl(dev_info_t *, int, int, int); 2933 2934 /* 2935 * A driver is reporting that the power of one of its device's components 2936 * has changed. Update the power state accordingly. 2937 */ 2938 int 2939 pm_power_has_changed(dev_info_t *dip, int comp, int level) 2940 { 2941 PMD_FUNC(pmf, "pm_power_has_changed") 2942 int ret; 2943 dev_info_t *pdip = ddi_get_parent(dip); 2944 struct pm_component *cp; 2945 int blocked, circ, pcirc, old_level; 2946 2947 if (level < 0) { 2948 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d): bad level=%d\n", pmf, 2949 PM_DEVICE(dip), level)) 2950 return (DDI_FAILURE); 2951 } 2952 2953 PMD(PMD_KIDSUP | PMD_DEP, ("%s: %s@%s(%s#%d), comp=%d, level=%d\n", pmf, 2954 PM_DEVICE(dip), comp, level)) 2955 2956 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, &cp) || 2957 !e_pm_valid_power(dip, comp, level)) 2958 return (DDI_FAILURE); 2959 2960 /* 2961 * A driver thread calling pm_power_has_changed and another thread 2962 * calling pm_set_power can deadlock. The problem is not resolvable 2963 * by changing lock order, so we use pm_blocked_by_us() to detect 2964 * this specific deadlock. If we can't get the lock immediately 2965 * and we are deadlocked, just update the component's level, do 2966 * notifications, and return. We intend to update the total power 2967 * state later (if the other thread fails to set power to the 2968 * desired level). If we were called because of a power change on a 2969 * component that isn't involved in a set_power op, update all state 2970 * immediately. 2971 */ 2972 cp = PM_CP(dip, comp); 2973 while (!pm_try_parent_child_locks(pdip, dip, &pcirc, &circ)) { 2974 if (((blocked = pm_blocked_by_us(dip)) != 0) && 2975 (cp->pmc_flags & PM_POWER_OP)) { 2976 if (pm_watchers()) { 2977 mutex_enter(&pm_rsvp_lock); 2978 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, 2979 level, cur_power(cp), PM_CANBLOCK_BLOCK); 2980 mutex_exit(&pm_rsvp_lock); 2981 } 2982 if (pdip && PM_WANTS_NOTIFICATION(pdip)) 2983 pm_notify_parent(dip, 2984 pdip, comp, cur_power(cp), level); 2985 (void) pm_check_and_resume(dip, 2986 comp, cur_power(cp), level); 2987 2988 /* 2989 * Stash the old power index, update curpwr, and flag 2990 * that the total power state needs to be synched. 2991 */ 2992 cp->pmc_flags |= PM_PHC_WHILE_SET_POWER; 2993 /* 2994 * Several pm_power_has_changed calls could arrive 2995 * while the set power path remains blocked. Keep the 2996 * oldest old power and the newest new power of any 2997 * sequence of phc calls which arrive during deadlock. 2998 */ 2999 if (cp->pmc_phc_pwr == PM_LEVEL_UNKNOWN) 3000 cp->pmc_phc_pwr = cp->pmc_cur_pwr; 3001 cp->pmc_cur_pwr = 3002 pm_level_to_index(dip, cp, level); 3003 PMD(PMD_PHC, ("%s: deadlock for %s@%s(%s#%d), comp=%d, " 3004 "level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 3005 return (DDI_SUCCESS); 3006 } else 3007 if (blocked) { /* blocked, but different cmpt? */ 3008 if (!ndi_devi_tryenter(pdip, &pcirc)) { 3009 cmn_err(CE_NOTE, 3010 "!pm: parent kuc not updated due " 3011 "to possible deadlock.\n"); 3012 return (pm_phc_impl(dip, 3013 comp, level, 1)); 3014 } 3015 old_level = cur_power(cp); 3016 if (pdip && !PM_WANTS_NOTIFICATION(pdip) && 3017 (!PM_ISBC(dip) || comp == 0) && 3018 POWERING_ON(old_level, level)) 3019 pm_hold_power(pdip); 3020 ret = pm_phc_impl(dip, comp, level, 1); 3021 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 3022 if ((!PM_ISBC(dip) || 3023 comp == 0) && level == 0 && 3024 old_level != PM_LEVEL_UNKNOWN) 3025 pm_rele_power(pdip); 3026 } 3027 ndi_devi_exit(pdip, pcirc); 3028 /* child lock not held: deadlock */ 3029 return (ret); 3030 } 3031 delay(1); 3032 PMD(PMD_PHC, ("%s: try lock again\n", pmf)) 3033 } 3034 3035 /* non-deadlock case */ 3036 old_level = cur_power(cp); 3037 if (pdip && !PM_WANTS_NOTIFICATION(pdip) && 3038 (!PM_ISBC(dip) || comp == 0) && POWERING_ON(old_level, level)) 3039 pm_hold_power(pdip); 3040 ret = pm_phc_impl(dip, comp, level, 1); 3041 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 3042 if ((!PM_ISBC(dip) || comp == 0) && level == 0 && 3043 old_level != PM_LEVEL_UNKNOWN) 3044 pm_rele_power(pdip); 3045 } 3046 PM_UNLOCK_POWER(dip, circ); 3047 ndi_devi_exit(pdip, pcirc); 3048 return (ret); 3049 } 3050 3051 /* 3052 * Account for power changes to a component of the the console frame buffer. 3053 * If lowering power from full (or "unkown", which is treatd as full) 3054 * we will increment the "components off" count of the fb device. 3055 * Subsequent lowering of the same component doesn't affect the count. If 3056 * raising a component back to full power, we will decrement the count. 3057 * 3058 * Return: the increment value for pm_cfb_comps_off (-1, 0, or 1) 3059 */ 3060 static int 3061 calc_cfb_comps_incr(dev_info_t *dip, int cmpt, int old, int new) 3062 { 3063 struct pm_component *cp = PM_CP(dip, cmpt); 3064 int on = (old == PM_LEVEL_UNKNOWN || old == cp->pmc_norm_pwr); 3065 int want_normal = (new == cp->pmc_norm_pwr); 3066 int incr = 0; 3067 3068 if (on && !want_normal) 3069 incr = 1; 3070 else if (!on && want_normal) 3071 incr = -1; 3072 return (incr); 3073 } 3074 3075 /* 3076 * Adjust the count of console frame buffer components < full power. 3077 */ 3078 static void 3079 update_comps_off(int incr, dev_info_t *dip) 3080 { 3081 mutex_enter(&pm_cfb_lock); 3082 pm_cfb_comps_off += incr; 3083 ASSERT(pm_cfb_comps_off <= PM_NUMCMPTS(dip)); 3084 mutex_exit(&pm_cfb_lock); 3085 } 3086 3087 /* 3088 * Update the power state in the framework (via the ppm). The 'notify' 3089 * argument tells whether to notify watchers. Power lock is already held. 3090 */ 3091 static int 3092 pm_phc_impl(dev_info_t *dip, int comp, int level, int notify) 3093 { 3094 PMD_FUNC(pmf, "phc_impl") 3095 power_req_t power_req; 3096 int i, dodeps = 0; 3097 dev_info_t *pdip = ddi_get_parent(dip); 3098 int result; 3099 int old_level; 3100 struct pm_component *cp; 3101 int incr = 0; 3102 dev_info_t *ppm = (dev_info_t *)DEVI(dip)->devi_pm_ppm; 3103 int work_type = 0; 3104 char *pathbuf; 3105 3106 /* Must use "official" power level for this test. */ 3107 cp = PM_CP(dip, comp); 3108 old_level = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ? 3109 cp->pmc_phc_pwr : cp->pmc_cur_pwr); 3110 if (old_level != PM_LEVEL_UNKNOWN) 3111 old_level = cp->pmc_comp.pmc_lvals[old_level]; 3112 3113 if (level == old_level) { 3114 PMD(PMD_SET, ("%s: %s@%s(%s#%d), comp=%d is already at " 3115 "level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 3116 return (DDI_SUCCESS); 3117 } 3118 3119 /* 3120 * Tell ppm about this. 3121 */ 3122 power_req.request_type = PMR_PPM_POWER_CHANGE_NOTIFY; 3123 power_req.req.ppm_notify_level_req.who = dip; 3124 power_req.req.ppm_notify_level_req.cmpt = comp; 3125 power_req.req.ppm_notify_level_req.new_level = level; 3126 power_req.req.ppm_notify_level_req.old_level = old_level; 3127 if (pm_ctlops(ppm, dip, DDI_CTLOPS_POWER, &power_req, 3128 &result) == DDI_FAILURE) { 3129 PMD(PMD_FAIL, ("%s: pm_ctlops %s@%s(%s#%d) to %d failed\n", 3130 pmf, PM_DEVICE(dip), level)) 3131 return (DDI_FAILURE); 3132 } 3133 3134 if (PM_IS_CFB(dip)) { 3135 incr = calc_cfb_comps_incr(dip, comp, old_level, level); 3136 3137 if (incr) { 3138 update_comps_off(incr, dip); 3139 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) comp=%d %d->%d " 3140 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip), 3141 comp, old_level, level, pm_cfb_comps_off)) 3142 } 3143 } 3144 e_pm_set_cur_pwr(dip, PM_CP(dip, comp), level); 3145 result = DDI_SUCCESS; 3146 3147 if (notify) { 3148 if (pdip && PM_WANTS_NOTIFICATION(pdip)) 3149 pm_notify_parent(dip, pdip, comp, old_level, level); 3150 (void) pm_check_and_resume(dip, comp, old_level, level); 3151 } 3152 3153 /* 3154 * Decrement the dependency kidsup count if we turn a device 3155 * off. 3156 */ 3157 if (POWERING_OFF(old_level, level)) { 3158 dodeps = 1; 3159 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3160 cp = PM_CP(dip, i); 3161 if (cur_power(cp)) { 3162 dodeps = 0; 3163 break; 3164 } 3165 } 3166 if (dodeps) 3167 work_type = PM_DEP_WK_POWER_OFF; 3168 } 3169 3170 /* 3171 * Increment if we turn it on. Check to see 3172 * if other comps are already on, if so, 3173 * dont increment. 3174 */ 3175 if (POWERING_ON(old_level, level)) { 3176 dodeps = 1; 3177 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3178 cp = PM_CP(dip, i); 3179 if (comp == i) 3180 continue; 3181 /* -1 also treated as 0 in this case */ 3182 if (cur_power(cp) > 0) { 3183 dodeps = 0; 3184 break; 3185 } 3186 } 3187 if (dodeps) 3188 work_type = PM_DEP_WK_POWER_ON; 3189 } 3190 3191 if (dodeps) { 3192 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 3193 (void) ddi_pathname(dip, pathbuf); 3194 pm_dispatch_to_dep_thread(work_type, pathbuf, NULL, 3195 PM_DEP_NOWAIT, NULL, 0); 3196 kmem_free(pathbuf, MAXPATHLEN); 3197 } 3198 3199 if (notify && (level != old_level) && pm_watchers()) { 3200 mutex_enter(&pm_rsvp_lock); 3201 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, level, old_level, 3202 PM_CANBLOCK_BLOCK); 3203 mutex_exit(&pm_rsvp_lock); 3204 } 3205 3206 PMD(PMD_RESCAN, ("%s: %s@%s(%s#%d): pm_rescan\n", pmf, PM_DEVICE(dip))) 3207 pm_rescan(dip); 3208 return (DDI_SUCCESS); 3209 } 3210 3211 /* 3212 * This function is called at startup time to notify pm of the existence 3213 * of any platform power managers for this platform. As a result of 3214 * this registration, each function provided will be called each time 3215 * a device node is attached, until one returns true, and it must claim the 3216 * device node (by returning non-zero) if it wants to be involved in the 3217 * node's power management. If it does claim the node, then it will 3218 * subsequently be notified of attach and detach events. 3219 * 3220 */ 3221 3222 int 3223 pm_register_ppm(int (*func)(dev_info_t *), dev_info_t *dip) 3224 { 3225 PMD_FUNC(pmf, "register_ppm") 3226 struct ppm_callbacks *ppmcp; 3227 pm_component_t *cp; 3228 int i, pwr, result, circ; 3229 power_req_t power_req; 3230 struct ppm_notify_level_req *p = &power_req.req.ppm_notify_level_req; 3231 void pm_ppm_claim(dev_info_t *); 3232 3233 mutex_enter(&ppm_lock); 3234 ppmcp = ppm_callbacks; 3235 for (i = 0; i < MAX_PPM_HANDLERS; i++, ppmcp++) { 3236 if (ppmcp->ppmc_func == NULL) { 3237 ppmcp->ppmc_func = func; 3238 ppmcp->ppmc_dip = dip; 3239 break; 3240 } 3241 } 3242 mutex_exit(&ppm_lock); 3243 3244 if (i >= MAX_PPM_HANDLERS) 3245 return (DDI_FAILURE); 3246 while ((dip = ddi_get_parent(dip)) != NULL) { 3247 if (dip != ddi_root_node() && PM_GET_PM_INFO(dip) == NULL) 3248 continue; 3249 pm_ppm_claim(dip); 3250 /* don't bother with the not power-manageable nodes */ 3251 if (pm_ppm_claimed(dip) && PM_GET_PM_INFO(dip)) { 3252 /* 3253 * Tell ppm about this. 3254 */ 3255 power_req.request_type = PMR_PPM_POWER_CHANGE_NOTIFY; 3256 p->old_level = PM_LEVEL_UNKNOWN; 3257 p->who = dip; 3258 PM_LOCK_POWER(dip, &circ); 3259 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3260 cp = PM_CP(dip, i); 3261 pwr = cp->pmc_cur_pwr; 3262 if (pwr != PM_LEVEL_UNKNOWN) { 3263 p->cmpt = i; 3264 p->new_level = cur_power(cp); 3265 p->old_level = PM_LEVEL_UNKNOWN; 3266 if (pm_ctlops(PPM(dip), dip, 3267 DDI_CTLOPS_POWER, &power_req, 3268 &result) == DDI_FAILURE) { 3269 PMD(PMD_FAIL, ("%s: pc " 3270 "%s@%s(%s#%d) to %d " 3271 "fails\n", pmf, 3272 PM_DEVICE(dip), pwr)) 3273 } 3274 } 3275 } 3276 PM_UNLOCK_POWER(dip, circ); 3277 } 3278 } 3279 return (DDI_SUCCESS); 3280 } 3281 3282 /* 3283 * Call the ppm's that have registered and adjust the devinfo struct as 3284 * appropriate. First one to claim it gets it. The sets of devices claimed 3285 * by each ppm are assumed to be disjoint. 3286 */ 3287 void 3288 pm_ppm_claim(dev_info_t *dip) 3289 { 3290 struct ppm_callbacks *ppmcp; 3291 3292 if (PPM(dip)) { 3293 return; 3294 } 3295 mutex_enter(&ppm_lock); 3296 for (ppmcp = ppm_callbacks; ppmcp->ppmc_func; ppmcp++) { 3297 if ((*ppmcp->ppmc_func)(dip)) { 3298 DEVI(dip)->devi_pm_ppm = 3299 (struct dev_info *)ppmcp->ppmc_dip; 3300 mutex_exit(&ppm_lock); 3301 return; 3302 } 3303 } 3304 mutex_exit(&ppm_lock); 3305 } 3306 3307 /* 3308 * Node is being detached so stop autopm until we see if it succeeds, in which 3309 * case pm_stop will be called. For backwards compatible devices we bring the 3310 * device up to full power on the assumption the detach will succeed. 3311 */ 3312 void 3313 pm_detaching(dev_info_t *dip) 3314 { 3315 PMD_FUNC(pmf, "detaching") 3316 pm_info_t *info = PM_GET_PM_INFO(dip); 3317 int iscons; 3318 3319 PMD(PMD_REMDEV, ("%s: %s@%s(%s#%d), %d comps\n", pmf, PM_DEVICE(dip), 3320 PM_NUMCMPTS(dip))) 3321 if (info == NULL) 3322 return; 3323 ASSERT(DEVI_IS_DETACHING(dip)); 3324 PM_LOCK_DIP(dip); 3325 info->pmi_dev_pm_state |= PM_DETACHING; 3326 PM_UNLOCK_DIP(dip); 3327 if (!PM_ISBC(dip)) 3328 pm_scan_stop(dip); 3329 3330 /* 3331 * console and old-style devices get brought up when detaching. 3332 */ 3333 iscons = PM_IS_CFB(dip); 3334 if (iscons || PM_ISBC(dip)) { 3335 (void) pm_all_to_normal(dip, PM_CANBLOCK_BYPASS); 3336 if (iscons) { 3337 mutex_enter(&pm_cfb_lock); 3338 while (cfb_inuse) { 3339 mutex_exit(&pm_cfb_lock); 3340 PMD(PMD_CFB, ("%s: delay; cfb_inuse\n", pmf)) 3341 delay(1); 3342 mutex_enter(&pm_cfb_lock); 3343 } 3344 ASSERT(cfb_dip_detaching == NULL); 3345 ASSERT(cfb_dip); 3346 cfb_dip_detaching = cfb_dip; /* case detach fails */ 3347 cfb_dip = NULL; 3348 mutex_exit(&pm_cfb_lock); 3349 } 3350 } 3351 } 3352 3353 /* 3354 * Node failed to detach. If it used to be autopm'd, make it so again. 3355 */ 3356 void 3357 pm_detach_failed(dev_info_t *dip) 3358 { 3359 PMD_FUNC(pmf, "detach_failed") 3360 pm_info_t *info = PM_GET_PM_INFO(dip); 3361 int pm_all_at_normal(dev_info_t *); 3362 3363 if (info == NULL) 3364 return; 3365 ASSERT(DEVI_IS_DETACHING(dip)); 3366 if (info->pmi_dev_pm_state & PM_DETACHING) { 3367 info->pmi_dev_pm_state &= ~PM_DETACHING; 3368 if (info->pmi_dev_pm_state & PM_ALLNORM_DEFERRED) { 3369 /* Make sure the operation is still needed */ 3370 if (!pm_all_at_normal(dip)) { 3371 if (pm_all_to_normal(dip, 3372 PM_CANBLOCK_FAIL) != DDI_SUCCESS) { 3373 PMD(PMD_ERROR, ("%s: could not bring " 3374 "%s@%s(%s#%d) to normal\n", pmf, 3375 PM_DEVICE(dip))) 3376 } 3377 } 3378 info->pmi_dev_pm_state &= ~PM_ALLNORM_DEFERRED; 3379 } 3380 } 3381 if (!PM_ISBC(dip)) { 3382 mutex_enter(&pm_scan_lock); 3383 if (PM_SCANABLE(dip)) 3384 pm_scan_init(dip); 3385 mutex_exit(&pm_scan_lock); 3386 pm_rescan(dip); 3387 } 3388 } 3389 3390 /* generic Backwards Compatible component */ 3391 static char *bc_names[] = {"off", "on"}; 3392 3393 static pm_comp_t bc_comp = {"unknown", 2, NULL, NULL, &bc_names[0]}; 3394 3395 static void 3396 e_pm_default_levels(dev_info_t *dip, pm_component_t *cp, int norm) 3397 { 3398 pm_comp_t *pmc; 3399 pmc = &cp->pmc_comp; 3400 pmc->pmc_numlevels = 2; 3401 pmc->pmc_lvals[0] = 0; 3402 pmc->pmc_lvals[1] = norm; 3403 e_pm_set_cur_pwr(dip, cp, norm); 3404 } 3405 3406 static void 3407 e_pm_default_components(dev_info_t *dip, int cmpts) 3408 { 3409 int i; 3410 pm_component_t *p = DEVI(dip)->devi_pm_components; 3411 3412 p = DEVI(dip)->devi_pm_components; 3413 for (i = 0; i < cmpts; i++, p++) { 3414 p->pmc_comp = bc_comp; /* struct assignment */ 3415 p->pmc_comp.pmc_lvals = kmem_zalloc(2 * sizeof (int), 3416 KM_SLEEP); 3417 p->pmc_comp.pmc_thresh = kmem_alloc(2 * sizeof (int), 3418 KM_SLEEP); 3419 p->pmc_comp.pmc_numlevels = 2; 3420 p->pmc_comp.pmc_thresh[0] = INT_MAX; 3421 p->pmc_comp.pmc_thresh[1] = INT_MAX; 3422 } 3423 } 3424 3425 /* 3426 * Called from functions that require components to exist already to allow 3427 * for their creation by parsing the pm-components property. 3428 * Device will not be power managed as a result of this call 3429 * No locking needed because we're single threaded by the ndi_devi_enter 3430 * done while attaching, and the device isn't visible until after it has 3431 * attached 3432 */ 3433 int 3434 pm_premanage(dev_info_t *dip, int style) 3435 { 3436 PMD_FUNC(pmf, "premanage") 3437 pm_comp_t *pcp, *compp; 3438 int cmpts, i, norm, error; 3439 pm_component_t *p = DEVI(dip)->devi_pm_components; 3440 pm_comp_t *pm_autoconfig(dev_info_t *, int *); 3441 3442 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 3443 /* 3444 * If this dip has already been processed, don't mess with it 3445 */ 3446 if (DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_DONE) 3447 return (DDI_SUCCESS); 3448 if (DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_FAILED) { 3449 return (DDI_FAILURE); 3450 } 3451 /* 3452 * Look up pm-components property and create components accordingly 3453 * If that fails, fall back to backwards compatibility 3454 */ 3455 if ((compp = pm_autoconfig(dip, &error)) == NULL) { 3456 /* 3457 * If error is set, the property existed but was not well formed 3458 */ 3459 if (error || (style == PM_STYLE_NEW)) { 3460 DEVI(dip)->devi_pm_flags |= PMC_COMPONENTS_FAILED; 3461 return (DDI_FAILURE); 3462 } 3463 /* 3464 * If they don't have the pm-components property, then we 3465 * want the old "no pm until PM_SET_DEVICE_THRESHOLDS ioctl" 3466 * behavior driver must have called pm_create_components, and 3467 * we need to flesh out dummy components 3468 */ 3469 if ((cmpts = PM_NUMCMPTS(dip)) == 0) { 3470 /* 3471 * Not really failure, but we don't want the 3472 * caller to treat it as success 3473 */ 3474 return (DDI_FAILURE); 3475 } 3476 DEVI(dip)->devi_pm_flags |= PMC_BC; 3477 e_pm_default_components(dip, cmpts); 3478 for (i = 0; i < cmpts; i++) { 3479 /* 3480 * if normal power not set yet, we don't really know 3481 * what *ANY* of the power values are. If normal 3482 * power is set, then we assume for this backwards 3483 * compatible case that the values are 0, normal power. 3484 */ 3485 norm = pm_get_normal_power(dip, i); 3486 if (norm == (uint_t)-1) { 3487 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d)[%d]\n", pmf, 3488 PM_DEVICE(dip), i)) 3489 return (DDI_FAILURE); 3490 } 3491 /* 3492 * Components of BC devices start at their normal power, 3493 * so count them to be not at their lowest power. 3494 */ 3495 PM_INCR_NOTLOWEST(dip); 3496 e_pm_default_levels(dip, PM_CP(dip, i), norm); 3497 } 3498 } else { 3499 /* 3500 * e_pm_create_components was called from pm_autoconfig(), it 3501 * creates components with no descriptions (or known levels) 3502 */ 3503 cmpts = PM_NUMCMPTS(dip); 3504 ASSERT(cmpts != 0); 3505 pcp = compp; 3506 p = DEVI(dip)->devi_pm_components; 3507 for (i = 0; i < cmpts; i++, p++) { 3508 p->pmc_comp = *pcp++; /* struct assignment */ 3509 ASSERT(PM_CP(dip, i)->pmc_cur_pwr == 0); 3510 e_pm_set_cur_pwr(dip, PM_CP(dip, i), PM_LEVEL_UNKNOWN); 3511 } 3512 if (DEVI(dip)->devi_pm_flags & PMC_CPU_THRESH) 3513 pm_set_device_threshold(dip, pm_cpu_idle_threshold, 3514 PMC_CPU_THRESH); 3515 else 3516 pm_set_device_threshold(dip, pm_system_idle_threshold, 3517 PMC_DEF_THRESH); 3518 kmem_free(compp, cmpts * sizeof (pm_comp_t)); 3519 } 3520 return (DDI_SUCCESS); 3521 } 3522 3523 /* 3524 * Called from during or after the device's attach to let us know it is ready 3525 * to play autopm. Look up the pm model and manage the device accordingly. 3526 * Returns system call errno value. 3527 * If DDI_ATTACH and DDI_DETACH were in same namespace, this would be 3528 * a little cleaner 3529 * 3530 * Called with dip lock held, return with dip lock unheld. 3531 */ 3532 3533 int 3534 e_pm_manage(dev_info_t *dip, int style) 3535 { 3536 PMD_FUNC(pmf, "e_manage") 3537 pm_info_t *info; 3538 dev_info_t *pdip = ddi_get_parent(dip); 3539 int pm_thresh_specd(dev_info_t *); 3540 int count; 3541 char *pathbuf; 3542 3543 if (pm_premanage(dip, style) != DDI_SUCCESS) { 3544 return (DDI_FAILURE); 3545 } 3546 PMD(PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3547 ASSERT(PM_GET_PM_INFO(dip) == NULL); 3548 info = kmem_zalloc(sizeof (pm_info_t), KM_SLEEP); 3549 3550 /* 3551 * Now set up parent's kidsupcnt. BC nodes are assumed to start 3552 * out at their normal power, so they are "up", others start out 3553 * unknown, which is effectively "up". Parent which want notification 3554 * get kidsupcnt of 0 always. 3555 */ 3556 count = (PM_ISBC(dip)) ? 1 : PM_NUMCMPTS(dip); 3557 if (count && pdip && !PM_WANTS_NOTIFICATION(pdip)) 3558 e_pm_hold_rele_power(pdip, count); 3559 3560 pm_set_pm_info(dip, info); 3561 /* 3562 * Apply any recorded thresholds 3563 */ 3564 (void) pm_thresh_specd(dip); 3565 3566 /* 3567 * Do dependency processing. 3568 */ 3569 pathbuf = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 3570 (void) ddi_pathname(dip, pathbuf); 3571 pm_dispatch_to_dep_thread(PM_DEP_WK_ATTACH, pathbuf, pathbuf, 3572 PM_DEP_NOWAIT, NULL, 0); 3573 kmem_free(pathbuf, MAXPATHLEN); 3574 3575 if (!PM_ISBC(dip)) { 3576 mutex_enter(&pm_scan_lock); 3577 if (PM_SCANABLE(dip)) { 3578 pm_scan_init(dip); 3579 mutex_exit(&pm_scan_lock); 3580 pm_rescan(dip); 3581 } else { 3582 mutex_exit(&pm_scan_lock); 3583 } 3584 } 3585 return (0); 3586 } 3587 3588 /* 3589 * This is the obsolete exported interface for a driver to find out its 3590 * "normal" (max) power. 3591 * We only get components destroyed while no power management is 3592 * going on (and the device is detached), so we don't need a mutex here 3593 */ 3594 int 3595 pm_get_normal_power(dev_info_t *dip, int comp) 3596 { 3597 3598 if (comp >= 0 && comp < PM_NUMCMPTS(dip)) { 3599 return (PM_CP(dip, comp)->pmc_norm_pwr); 3600 } 3601 return (DDI_FAILURE); 3602 } 3603 3604 /* 3605 * Fetches the current power level. Return DDI_SUCCESS or DDI_FAILURE. 3606 */ 3607 int 3608 pm_get_current_power(dev_info_t *dip, int comp, int *levelp) 3609 { 3610 if (comp >= 0 && comp < PM_NUMCMPTS(dip)) { 3611 *levelp = PM_CURPOWER(dip, comp); 3612 return (DDI_SUCCESS); 3613 } 3614 return (DDI_FAILURE); 3615 } 3616 3617 /* 3618 * Returns current threshold of indicated component 3619 */ 3620 static int 3621 cur_threshold(dev_info_t *dip, int comp) 3622 { 3623 pm_component_t *cp = PM_CP(dip, comp); 3624 int pwr; 3625 3626 if (PM_ISBC(dip)) { 3627 /* 3628 * backwards compatible nodes only have one threshold 3629 */ 3630 return (cp->pmc_comp.pmc_thresh[1]); 3631 } 3632 pwr = cp->pmc_cur_pwr; 3633 if (pwr == PM_LEVEL_UNKNOWN) { 3634 int thresh; 3635 if (DEVI(dip)->devi_pm_flags & PMC_NEXDEF_THRESH) 3636 thresh = pm_default_nexus_threshold; 3637 else if (DEVI(dip)->devi_pm_flags & PMC_CPU_THRESH) 3638 thresh = pm_cpu_idle_threshold; 3639 else 3640 thresh = pm_system_idle_threshold; 3641 return (thresh); 3642 } 3643 ASSERT(cp->pmc_comp.pmc_thresh); 3644 return (cp->pmc_comp.pmc_thresh[pwr]); 3645 } 3646 3647 /* 3648 * Compute next lower component power level given power index. 3649 */ 3650 static int 3651 pm_next_lower_power(pm_component_t *cp, int pwrndx) 3652 { 3653 int nxt_pwr; 3654 3655 if (pwrndx == PM_LEVEL_UNKNOWN) { 3656 nxt_pwr = cp->pmc_comp.pmc_lvals[0]; 3657 } else { 3658 pwrndx--; 3659 ASSERT(pwrndx >= 0); 3660 nxt_pwr = cp->pmc_comp.pmc_lvals[pwrndx]; 3661 } 3662 return (nxt_pwr); 3663 } 3664 3665 /* 3666 * Update the maxpower (normal) power of a component. Note that the 3667 * component's power level is only changed if it's current power level 3668 * is higher than the new max power. 3669 */ 3670 int 3671 pm_update_maxpower(dev_info_t *dip, int comp, int level) 3672 { 3673 PMD_FUNC(pmf, "update_maxpower") 3674 int old; 3675 int result; 3676 3677 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, comp, NULL) || 3678 !e_pm_valid_power(dip, comp, level)) { 3679 PMD(PMD_FAIL, ("%s: validation checks failed for %s@%s(%s#%d) " 3680 "comp=%d level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 3681 return (DDI_FAILURE); 3682 } 3683 old = e_pm_get_max_power(dip, comp); 3684 e_pm_set_max_power(dip, comp, level); 3685 3686 if (pm_set_power(dip, comp, level, PM_LEVEL_DOWNONLY, 3687 PM_CANBLOCK_BLOCK, 0, &result) != DDI_SUCCESS) { 3688 e_pm_set_max_power(dip, comp, old); 3689 PMD(PMD_FAIL, ("%s: %s@%s(%s#%d) pm_set_power failed\n", pmf, 3690 PM_DEVICE(dip))) 3691 return (DDI_FAILURE); 3692 } 3693 return (DDI_SUCCESS); 3694 } 3695 3696 /* 3697 * Bring all components of device to normal power 3698 */ 3699 int 3700 pm_all_to_normal(dev_info_t *dip, pm_canblock_t canblock) 3701 { 3702 PMD_FUNC(pmf, "all_to_normal") 3703 int *normal; 3704 int i, ncomps, result; 3705 size_t size; 3706 int changefailed = 0; 3707 3708 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3709 ASSERT(PM_GET_PM_INFO(dip)); 3710 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) { 3711 PMD(PMD_ALLNORM, ("%s: can't get norm pwrs for " 3712 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3713 return (DDI_FAILURE); 3714 } 3715 ncomps = PM_NUMCMPTS(dip); 3716 for (i = 0; i < ncomps; i++) { 3717 if (pm_set_power(dip, i, normal[i], 3718 PM_LEVEL_UPONLY, canblock, 0, &result) != DDI_SUCCESS) { 3719 changefailed++; 3720 PMD(PMD_ALLNORM | PMD_FAIL, ("%s: failed to set " 3721 "%s@%s(%s#%d)[%d] to %d, errno %d\n", pmf, 3722 PM_DEVICE(dip), i, normal[i], result)) 3723 } 3724 } 3725 kmem_free(normal, size); 3726 if (changefailed) { 3727 PMD(PMD_FAIL, ("%s: failed to set %d comps %s@%s(%s#%d) " 3728 "to full power\n", pmf, changefailed, PM_DEVICE(dip))) 3729 return (DDI_FAILURE); 3730 } 3731 return (DDI_SUCCESS); 3732 } 3733 3734 /* 3735 * Returns true if all components of device are at normal power 3736 */ 3737 int 3738 pm_all_at_normal(dev_info_t *dip) 3739 { 3740 PMD_FUNC(pmf, "all_at_normal") 3741 int *normal; 3742 int i; 3743 size_t size; 3744 3745 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 3746 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) { 3747 PMD(PMD_ALLNORM, ("%s: can't get normal power\n", pmf)) 3748 return (DDI_FAILURE); 3749 } 3750 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 3751 int current = PM_CURPOWER(dip, i); 3752 if (normal[i] > current) { 3753 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d) comp=%d, " 3754 "norm=%d, cur=%d\n", pmf, PM_DEVICE(dip), i, 3755 normal[i], current)) 3756 break; 3757 } 3758 } 3759 kmem_free(normal, size); 3760 if (i != PM_NUMCMPTS(dip)) { 3761 return (0); 3762 } 3763 return (1); 3764 } 3765 3766 static void bring_pmdep_up(dev_info_t *, int); 3767 3768 static void 3769 bring_wekeeps_up(char *keeper) 3770 { 3771 PMD_FUNC(pmf, "bring_wekeeps_up") 3772 int i; 3773 pm_pdr_t *dp; 3774 pm_info_t *wku_info; 3775 char *kept_path; 3776 dev_info_t *kept; 3777 3778 if (panicstr) { 3779 return; 3780 } 3781 /* 3782 * We process the request even if the keeper detaches because 3783 * detach processing expects this to increment kidsupcnt of kept. 3784 */ 3785 PMD(PMD_BRING, ("%s: keeper= %s\n", pmf, keeper)) 3786 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 3787 if (strcmp(dp->pdr_keeper, keeper) != 0) 3788 continue; 3789 for (i = 0; i < dp->pdr_kept_count; i++) { 3790 kept_path = dp->pdr_kept_paths[i]; 3791 if (kept_path == NULL) 3792 continue; 3793 ASSERT(kept_path[0] != '\0'); 3794 if ((kept = pm_name_to_dip(kept_path, 1)) == NULL) 3795 continue; 3796 wku_info = PM_GET_PM_INFO(kept); 3797 if (wku_info == NULL) { 3798 if (kept) 3799 ddi_release_devi(kept); 3800 continue; 3801 } 3802 /* 3803 * Don't mess with it if it is being detached, it isn't 3804 * safe to call its power entry point 3805 */ 3806 if (wku_info->pmi_dev_pm_state & PM_DETACHING) { 3807 if (kept) 3808 ddi_release_devi(kept); 3809 continue; 3810 } 3811 bring_pmdep_up(kept, 1); 3812 ddi_release_devi(kept); 3813 } 3814 } 3815 } 3816 3817 /* 3818 * Bring up the 'kept' device passed as argument 3819 */ 3820 static void 3821 bring_pmdep_up(dev_info_t *kept_dip, int hold) 3822 { 3823 PMD_FUNC(pmf, "bring_pmdep_up") 3824 int is_all_at_normal = 0; 3825 3826 /* 3827 * If the kept device has been unmanaged, do nothing. 3828 */ 3829 if (!PM_GET_PM_INFO(kept_dip)) 3830 return; 3831 3832 /* Just ignore DIRECT PM device till they are released. */ 3833 if (!pm_processes_stopped && PM_ISDIRECT(kept_dip) && 3834 !(is_all_at_normal = pm_all_at_normal(kept_dip))) { 3835 PMD(PMD_BRING, ("%s: can't bring up PM_DIRECT %s@%s(%s#%d) " 3836 "controlling process did something else\n", pmf, 3837 PM_DEVICE(kept_dip))) 3838 DEVI(kept_dip)->devi_pm_flags |= PMC_SKIP_BRINGUP; 3839 return; 3840 } 3841 /* if we got here the keeper had a transition from OFF->ON */ 3842 if (hold) 3843 pm_hold_power(kept_dip); 3844 3845 if (!is_all_at_normal) 3846 (void) pm_all_to_normal(kept_dip, PM_CANBLOCK_FAIL); 3847 } 3848 3849 /* 3850 * A bunch of stuff that belongs only to the next routine (or two) 3851 */ 3852 3853 static const char namestr[] = "NAME="; 3854 static const int nameln = sizeof (namestr) - 1; 3855 static const char pmcompstr[] = "pm-components"; 3856 3857 struct pm_comp_pkg { 3858 pm_comp_t *comp; 3859 struct pm_comp_pkg *next; 3860 }; 3861 3862 #define isdigit(ch) ((ch) >= '0' && (ch) <= '9') 3863 3864 #define isxdigit(ch) (isdigit(ch) || ((ch) >= 'a' && (ch) <= 'f') || \ 3865 ((ch) >= 'A' && (ch) <= 'F')) 3866 3867 /* 3868 * Rather than duplicate this code ... 3869 * (this code excerpted from the function that follows it) 3870 */ 3871 #define FINISH_COMP { \ 3872 ASSERT(compp); \ 3873 compp->pmc_lnames_sz = size; \ 3874 tp = compp->pmc_lname_buf = kmem_alloc(size, KM_SLEEP); \ 3875 compp->pmc_numlevels = level; \ 3876 compp->pmc_lnames = kmem_alloc(level * sizeof (char *), KM_SLEEP); \ 3877 compp->pmc_lvals = kmem_alloc(level * sizeof (int), KM_SLEEP); \ 3878 compp->pmc_thresh = kmem_alloc(level * sizeof (int), KM_SLEEP); \ 3879 /* copy string out of prop array into buffer */ \ 3880 for (j = 0; j < level; j++) { \ 3881 compp->pmc_thresh[j] = INT_MAX; /* only [0] sticks */ \ 3882 compp->pmc_lvals[j] = lvals[j]; \ 3883 (void) strcpy(tp, lnames[j]); \ 3884 compp->pmc_lnames[j] = tp; \ 3885 tp += lszs[j]; \ 3886 } \ 3887 ASSERT(tp > compp->pmc_lname_buf && tp <= \ 3888 compp->pmc_lname_buf + compp->pmc_lnames_sz); \ 3889 } 3890 3891 /* 3892 * Create (empty) component data structures. 3893 */ 3894 static void 3895 e_pm_create_components(dev_info_t *dip, int num_components) 3896 { 3897 struct pm_component *compp, *ocompp; 3898 int i, size = 0; 3899 3900 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 3901 ASSERT(!DEVI(dip)->devi_pm_components); 3902 ASSERT(!(DEVI(dip)->devi_pm_flags & PMC_COMPONENTS_DONE)); 3903 size = sizeof (struct pm_component) * num_components; 3904 3905 compp = kmem_zalloc(size, KM_SLEEP); 3906 ocompp = compp; 3907 DEVI(dip)->devi_pm_comp_size = size; 3908 DEVI(dip)->devi_pm_num_components = num_components; 3909 PM_LOCK_BUSY(dip); 3910 for (i = 0; i < num_components; i++) { 3911 compp->pmc_timestamp = gethrestime_sec(); 3912 compp->pmc_norm_pwr = (uint_t)-1; 3913 compp++; 3914 } 3915 PM_UNLOCK_BUSY(dip); 3916 DEVI(dip)->devi_pm_components = ocompp; 3917 DEVI(dip)->devi_pm_flags |= PMC_COMPONENTS_DONE; 3918 } 3919 3920 /* 3921 * Parse hex or decimal value from char string 3922 */ 3923 static char * 3924 pm_parsenum(char *cp, int *valp) 3925 { 3926 int ch, offset; 3927 char numbuf[256]; 3928 char *np = numbuf; 3929 int value = 0; 3930 3931 ch = *cp++; 3932 if (isdigit(ch)) { 3933 if (ch == '0') { 3934 if ((ch = *cp++) == 'x' || ch == 'X') { 3935 ch = *cp++; 3936 while (isxdigit(ch)) { 3937 *np++ = (char)ch; 3938 ch = *cp++; 3939 } 3940 *np = 0; 3941 cp--; 3942 goto hexval; 3943 } else { 3944 goto digit; 3945 } 3946 } else { 3947 digit: 3948 while (isdigit(ch)) { 3949 *np++ = (char)ch; 3950 ch = *cp++; 3951 } 3952 *np = 0; 3953 cp--; 3954 goto decval; 3955 } 3956 } else 3957 return (NULL); 3958 3959 hexval: 3960 offset = 0; 3961 for (np = numbuf; *np; np++) { 3962 if (*np >= 'a' && *np <= 'f') 3963 offset = 'a' - 10; 3964 else if (*np >= 'A' && *np <= 'F') 3965 offset = 'A' - 10; 3966 else if (*np >= '0' && *np <= '9') 3967 offset = '0'; 3968 value *= 16; 3969 value += *np - offset; 3970 } 3971 *valp = value; 3972 return (cp); 3973 3974 decval: 3975 offset = '0'; 3976 for (np = numbuf; *np; np++) { 3977 value *= 10; 3978 value += *np - offset; 3979 } 3980 *valp = value; 3981 return (cp); 3982 } 3983 3984 /* 3985 * Set max (previously documented as "normal") power. 3986 */ 3987 static void 3988 e_pm_set_max_power(dev_info_t *dip, int component_number, int level) 3989 { 3990 PM_CP(dip, component_number)->pmc_norm_pwr = level; 3991 } 3992 3993 /* 3994 * Get max (previously documented as "normal") power. 3995 */ 3996 static int 3997 e_pm_get_max_power(dev_info_t *dip, int component_number) 3998 { 3999 return (PM_CP(dip, component_number)->pmc_norm_pwr); 4000 } 4001 4002 /* 4003 * Internal routine for destroying components 4004 * It is called even when there might not be any, so it must be forgiving. 4005 */ 4006 static void 4007 e_pm_destroy_components(dev_info_t *dip) 4008 { 4009 int i; 4010 struct pm_component *cp; 4011 4012 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4013 if (PM_NUMCMPTS(dip) == 0) 4014 return; 4015 cp = DEVI(dip)->devi_pm_components; 4016 ASSERT(cp); 4017 for (i = 0; i < PM_NUMCMPTS(dip); i++, cp++) { 4018 int nlevels = cp->pmc_comp.pmc_numlevels; 4019 kmem_free(cp->pmc_comp.pmc_lvals, nlevels * sizeof (int)); 4020 kmem_free(cp->pmc_comp.pmc_thresh, nlevels * sizeof (int)); 4021 /* 4022 * For BC nodes, the rest is static in bc_comp, so skip it 4023 */ 4024 if (PM_ISBC(dip)) 4025 continue; 4026 kmem_free(cp->pmc_comp.pmc_name, cp->pmc_comp.pmc_name_sz); 4027 kmem_free(cp->pmc_comp.pmc_lnames, nlevels * sizeof (char *)); 4028 kmem_free(cp->pmc_comp.pmc_lname_buf, 4029 cp->pmc_comp.pmc_lnames_sz); 4030 } 4031 kmem_free(DEVI(dip)->devi_pm_components, DEVI(dip)->devi_pm_comp_size); 4032 DEVI(dip)->devi_pm_components = NULL; 4033 DEVI(dip)->devi_pm_num_components = 0; 4034 DEVI(dip)->devi_pm_flags &= 4035 ~(PMC_COMPONENTS_DONE | PMC_COMPONENTS_FAILED); 4036 } 4037 4038 /* 4039 * Read the pm-components property (if there is one) and use it to set up 4040 * components. Returns a pointer to an array of component structures if 4041 * pm-components found and successfully parsed, else returns NULL. 4042 * Sets error return *errp to true to indicate a failure (as opposed to no 4043 * property being present). 4044 */ 4045 pm_comp_t * 4046 pm_autoconfig(dev_info_t *dip, int *errp) 4047 { 4048 PMD_FUNC(pmf, "autoconfig") 4049 uint_t nelems; 4050 char **pp; 4051 pm_comp_t *compp = NULL; 4052 int i, j, level, components = 0; 4053 size_t size = 0; 4054 struct pm_comp_pkg *p, *ptail; 4055 struct pm_comp_pkg *phead = NULL; 4056 int *lvals = NULL; 4057 int *lszs = NULL; 4058 int *np = NULL; 4059 int npi = 0; 4060 char **lnames = NULL; 4061 char *cp, *tp; 4062 pm_comp_t *ret = NULL; 4063 4064 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4065 *errp = 0; /* assume success */ 4066 if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 4067 (char *)pmcompstr, &pp, &nelems) != DDI_PROP_SUCCESS) { 4068 return (NULL); 4069 } 4070 4071 if (nelems < 3) { /* need at least one name and two levels */ 4072 goto errout; 4073 } 4074 4075 /* 4076 * pm_create_components is no longer allowed 4077 */ 4078 if (PM_NUMCMPTS(dip) != 0) { 4079 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) has %d comps\n", 4080 pmf, PM_DEVICE(dip), PM_NUMCMPTS(dip))) 4081 goto errout; 4082 } 4083 4084 lvals = kmem_alloc(nelems * sizeof (int), KM_SLEEP); 4085 lszs = kmem_alloc(nelems * sizeof (int), KM_SLEEP); 4086 lnames = kmem_alloc(nelems * sizeof (char *), KM_SLEEP); 4087 np = kmem_alloc(nelems * sizeof (int), KM_SLEEP); 4088 4089 level = 0; 4090 phead = NULL; 4091 for (i = 0; i < nelems; i++) { 4092 cp = pp[i]; 4093 if (!isdigit(*cp)) { /* must be name */ 4094 if (strncmp(cp, namestr, nameln) != 0) { 4095 goto errout; 4096 } 4097 if (i != 0) { 4098 if (level == 0) { /* no level spec'd */ 4099 PMD(PMD_ERROR, ("%s: no level spec'd\n", 4100 pmf)) 4101 goto errout; 4102 } 4103 np[npi++] = lvals[level - 1]; 4104 /* finish up previous component levels */ 4105 FINISH_COMP; 4106 } 4107 cp += nameln; 4108 if (!*cp) { 4109 PMD(PMD_ERROR, ("%s: nsa\n", pmf)) 4110 goto errout; 4111 } 4112 p = kmem_zalloc(sizeof (*phead), KM_SLEEP); 4113 if (phead == NULL) { 4114 phead = ptail = p; 4115 } else { 4116 ptail->next = p; 4117 ptail = p; 4118 } 4119 compp = p->comp = kmem_zalloc(sizeof (pm_comp_t), 4120 KM_SLEEP); 4121 compp->pmc_name_sz = strlen(cp) + 1; 4122 compp->pmc_name = kmem_zalloc(compp->pmc_name_sz, 4123 KM_SLEEP); 4124 (void) strncpy(compp->pmc_name, cp, compp->pmc_name_sz); 4125 components++; 4126 level = 0; 4127 } else { /* better be power level <num>=<name> */ 4128 #ifdef DEBUG 4129 tp = cp; 4130 #endif 4131 if (i == 0 || 4132 (cp = pm_parsenum(cp, &lvals[level])) == NULL) { 4133 PMD(PMD_ERROR, ("%s: parsenum(%s)\n", pmf, tp)) 4134 goto errout; 4135 } 4136 #ifdef DEBUG 4137 tp = cp; 4138 #endif 4139 if (*cp++ != '=' || !*cp) { 4140 PMD(PMD_ERROR, ("%s: ex =, got %s\n", pmf, tp)) 4141 goto errout; 4142 } 4143 4144 lszs[level] = strlen(cp) + 1; 4145 size += lszs[level]; 4146 lnames[level] = cp; /* points into prop string */ 4147 level++; 4148 } 4149 } 4150 np[npi++] = lvals[level - 1]; 4151 if (level == 0) { /* ended with a name */ 4152 PMD(PMD_ERROR, ("%s: ewn\n", pmf)) 4153 goto errout; 4154 } 4155 FINISH_COMP; 4156 4157 4158 /* 4159 * Now we have a list of components--we have to return instead an 4160 * array of them, but we can just copy the top level and leave 4161 * the rest as is 4162 */ 4163 (void) e_pm_create_components(dip, components); 4164 for (i = 0; i < components; i++) 4165 e_pm_set_max_power(dip, i, np[i]); 4166 4167 ret = kmem_zalloc(components * sizeof (pm_comp_t), KM_SLEEP); 4168 for (i = 0, p = phead; i < components; i++) { 4169 ASSERT(p); 4170 /* 4171 * Now sanity-check values: levels must be monotonically 4172 * increasing 4173 */ 4174 if (p->comp->pmc_numlevels < 2) { 4175 PMD(PMD_ERROR, ("%s: comp %s of %s@%s(%s#%d) only %d " 4176 "levels\n", pmf, 4177 p->comp->pmc_name, PM_DEVICE(dip), 4178 p->comp->pmc_numlevels)) 4179 goto errout; 4180 } 4181 for (j = 0; j < p->comp->pmc_numlevels; j++) { 4182 if ((p->comp->pmc_lvals[j] < 0) || ((j > 0) && 4183 (p->comp->pmc_lvals[j] <= 4184 p->comp->pmc_lvals[j - 1]))) { 4185 PMD(PMD_ERROR, ("%s: comp %s of %s@%s(%s#%d) " 4186 "not mono. incr, %d follows %d\n", pmf, 4187 p->comp->pmc_name, PM_DEVICE(dip), 4188 p->comp->pmc_lvals[j], 4189 p->comp->pmc_lvals[j - 1])) 4190 goto errout; 4191 } 4192 } 4193 ret[i] = *p->comp; /* struct assignment */ 4194 for (j = 0; j < i; j++) { 4195 /* 4196 * Test for unique component names 4197 */ 4198 if (strcmp(ret[j].pmc_name, ret[i].pmc_name) == 0) { 4199 PMD(PMD_ERROR, ("%s: %s of %s@%s(%s#%d) not " 4200 "unique\n", pmf, ret[j].pmc_name, 4201 PM_DEVICE(dip))) 4202 goto errout; 4203 } 4204 } 4205 ptail = p; 4206 p = p->next; 4207 phead = p; /* errout depends on phead making sense */ 4208 kmem_free(ptail->comp, sizeof (*ptail->comp)); 4209 kmem_free(ptail, sizeof (*ptail)); 4210 } 4211 out: 4212 ddi_prop_free(pp); 4213 if (lvals) 4214 kmem_free(lvals, nelems * sizeof (int)); 4215 if (lszs) 4216 kmem_free(lszs, nelems * sizeof (int)); 4217 if (lnames) 4218 kmem_free(lnames, nelems * sizeof (char *)); 4219 if (np) 4220 kmem_free(np, nelems * sizeof (int)); 4221 return (ret); 4222 4223 errout: 4224 e_pm_destroy_components(dip); 4225 *errp = 1; /* signal failure */ 4226 cmn_err(CE_CONT, "!pm: %s property ", pmcompstr); 4227 for (i = 0; i < nelems - 1; i++) 4228 cmn_err(CE_CONT, "!'%s', ", pp[i]); 4229 if (nelems != 0) 4230 cmn_err(CE_CONT, "!'%s'", pp[nelems - 1]); 4231 cmn_err(CE_CONT, "! for %s@%s(%s#%d) is ill-formed.\n", PM_DEVICE(dip)); 4232 for (p = phead; p; ) { 4233 pm_comp_t *pp; 4234 int n; 4235 4236 ptail = p; 4237 /* 4238 * Free component data structures 4239 */ 4240 pp = p->comp; 4241 n = pp->pmc_numlevels; 4242 if (pp->pmc_name_sz) { 4243 kmem_free(pp->pmc_name, pp->pmc_name_sz); 4244 } 4245 if (pp->pmc_lnames_sz) { 4246 kmem_free(pp->pmc_lname_buf, pp->pmc_lnames_sz); 4247 } 4248 if (pp->pmc_lnames) { 4249 kmem_free(pp->pmc_lnames, n * (sizeof (char *))); 4250 } 4251 if (pp->pmc_thresh) { 4252 kmem_free(pp->pmc_thresh, n * (sizeof (int))); 4253 } 4254 if (pp->pmc_lvals) { 4255 kmem_free(pp->pmc_lvals, n * (sizeof (int))); 4256 } 4257 p = ptail->next; 4258 kmem_free(ptail, sizeof (*ptail)); 4259 } 4260 if (ret != NULL) 4261 kmem_free(ret, components * sizeof (pm_comp_t)); 4262 ret = NULL; 4263 goto out; 4264 } 4265 4266 /* 4267 * Set threshold values for a devices components by dividing the target 4268 * threshold (base) by the number of transitions and assign each transition 4269 * that threshold. This will get the entire device down in the target time if 4270 * all components are idle and even if there are dependencies among components. 4271 * 4272 * Devices may well get powered all the way down before the target time, but 4273 * at least the EPA will be happy. 4274 */ 4275 void 4276 pm_set_device_threshold(dev_info_t *dip, int base, int flag) 4277 { 4278 PMD_FUNC(pmf, "set_device_threshold") 4279 int target_threshold = (base * 95) / 100; 4280 int level, comp; /* loop counters */ 4281 int transitions = 0; 4282 int ncomp = PM_NUMCMPTS(dip); 4283 int thresh; 4284 int remainder; 4285 pm_comp_t *pmc; 4286 int i, circ; 4287 4288 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4289 PM_LOCK_DIP(dip); 4290 /* 4291 * First we handle the easy one. If we're setting the default 4292 * threshold for a node with children, then we set it to the 4293 * default nexus threshold (currently 0) and mark it as default 4294 * nexus threshold instead 4295 */ 4296 if (PM_IS_NEXUS(dip)) { 4297 if (flag == PMC_DEF_THRESH) { 4298 PMD(PMD_THRESH, ("%s: [%s@%s(%s#%d) NEXDEF]\n", pmf, 4299 PM_DEVICE(dip))) 4300 thresh = pm_default_nexus_threshold; 4301 for (comp = 0; comp < ncomp; comp++) { 4302 pmc = &PM_CP(dip, comp)->pmc_comp; 4303 for (level = 1; level < pmc->pmc_numlevels; 4304 level++) { 4305 pmc->pmc_thresh[level] = thresh; 4306 } 4307 } 4308 DEVI(dip)->devi_pm_dev_thresh = 4309 pm_default_nexus_threshold; 4310 /* 4311 * If the nexus node is being reconfigured back to 4312 * the default threshold, adjust the notlowest count. 4313 */ 4314 if (DEVI(dip)->devi_pm_flags & 4315 (PMC_DEV_THRESH|PMC_COMP_THRESH)) { 4316 PM_LOCK_POWER(dip, &circ); 4317 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 4318 if (PM_CURPOWER(dip, i) == 0) 4319 continue; 4320 mutex_enter(&pm_compcnt_lock); 4321 ASSERT(pm_comps_notlowest); 4322 pm_comps_notlowest--; 4323 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) decr " 4324 "notlowest to %d\n", pmf, 4325 PM_DEVICE(dip), pm_comps_notlowest)) 4326 if (pm_comps_notlowest == 0) 4327 pm_ppm_notify_all_lowest(dip, 4328 PM_ALL_LOWEST); 4329 mutex_exit(&pm_compcnt_lock); 4330 } 4331 PM_UNLOCK_POWER(dip, circ); 4332 } 4333 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE; 4334 DEVI(dip)->devi_pm_flags |= PMC_NEXDEF_THRESH; 4335 PM_UNLOCK_DIP(dip); 4336 return; 4337 } else if (DEVI(dip)->devi_pm_flags & PMC_NEXDEF_THRESH) { 4338 /* 4339 * If the nexus node is being configured for a 4340 * non-default threshold, include that node in 4341 * the notlowest accounting. 4342 */ 4343 PM_LOCK_POWER(dip, &circ); 4344 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 4345 if (PM_CURPOWER(dip, i) == 0) 4346 continue; 4347 mutex_enter(&pm_compcnt_lock); 4348 if (pm_comps_notlowest == 0) 4349 pm_ppm_notify_all_lowest(dip, 4350 PM_NOT_ALL_LOWEST); 4351 pm_comps_notlowest++; 4352 PMD(PMD_LEVEL, ("%s: %s@%s(%s#%d) incr " 4353 "notlowest to %d\n", pmf, 4354 PM_DEVICE(dip), pm_comps_notlowest)) 4355 mutex_exit(&pm_compcnt_lock); 4356 } 4357 PM_UNLOCK_POWER(dip, circ); 4358 } 4359 } 4360 /* 4361 * Compute the total number of transitions for all components 4362 * of the device. Distribute the threshold evenly over them 4363 */ 4364 for (comp = 0; comp < ncomp; comp++) { 4365 pmc = &PM_CP(dip, comp)->pmc_comp; 4366 ASSERT(pmc->pmc_numlevels > 1); 4367 transitions += pmc->pmc_numlevels - 1; 4368 } 4369 ASSERT(transitions); 4370 thresh = target_threshold / transitions; 4371 4372 for (comp = 0; comp < ncomp; comp++) { 4373 pmc = &PM_CP(dip, comp)->pmc_comp; 4374 for (level = 1; level < pmc->pmc_numlevels; level++) { 4375 pmc->pmc_thresh[level] = thresh; 4376 } 4377 } 4378 4379 #ifdef DEBUG 4380 for (comp = 0; comp < ncomp; comp++) { 4381 pmc = &PM_CP(dip, comp)->pmc_comp; 4382 for (level = 1; level < pmc->pmc_numlevels; level++) { 4383 PMD(PMD_THRESH, ("%s: thresh before %s@%s(%s#%d) " 4384 "comp=%d, level=%d, %d\n", pmf, PM_DEVICE(dip), 4385 comp, level, pmc->pmc_thresh[level])) 4386 } 4387 } 4388 #endif 4389 /* 4390 * Distribute any remainder till they are all gone 4391 */ 4392 remainder = target_threshold - thresh * transitions; 4393 level = 1; 4394 #ifdef DEBUG 4395 PMD(PMD_THRESH, ("%s: remainder=%d target_threshold=%d thresh=%d " 4396 "trans=%d\n", pmf, remainder, target_threshold, thresh, 4397 transitions)) 4398 #endif 4399 while (remainder > 0) { 4400 comp = 0; 4401 while (remainder && (comp < ncomp)) { 4402 pmc = &PM_CP(dip, comp)->pmc_comp; 4403 if (level < pmc->pmc_numlevels) { 4404 pmc->pmc_thresh[level] += 1; 4405 remainder--; 4406 } 4407 comp++; 4408 } 4409 level++; 4410 } 4411 #ifdef DEBUG 4412 for (comp = 0; comp < ncomp; comp++) { 4413 pmc = &PM_CP(dip, comp)->pmc_comp; 4414 for (level = 1; level < pmc->pmc_numlevels; level++) { 4415 PMD(PMD_THRESH, ("%s: thresh after %s@%s(%s#%d) " 4416 "comp=%d level=%d, %d\n", pmf, PM_DEVICE(dip), 4417 comp, level, pmc->pmc_thresh[level])) 4418 } 4419 } 4420 #endif 4421 ASSERT(PM_IAM_LOCKING_DIP(dip)); 4422 DEVI(dip)->devi_pm_dev_thresh = base; 4423 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE; 4424 DEVI(dip)->devi_pm_flags |= flag; 4425 PM_UNLOCK_DIP(dip); 4426 } 4427 4428 /* 4429 * Called when there is no old-style platform power management driver 4430 */ 4431 static int 4432 ddi_no_platform_power(power_req_t *req) 4433 { 4434 _NOTE(ARGUNUSED(req)) 4435 return (DDI_FAILURE); 4436 } 4437 4438 /* 4439 * This function calls the entry point supplied by the platform-specific 4440 * pm driver to bring the device component 'pm_cmpt' to power level 'pm_level'. 4441 * The use of global for getting the function name from platform-specific 4442 * pm driver is not ideal, but it is simple and efficient. 4443 * The previous property lookup was being done in the idle loop on swift 4444 * systems without pmc chips and hurt deskbench performance as well as 4445 * violating scheduler locking rules 4446 */ 4447 int (*pm_platform_power)(power_req_t *) = ddi_no_platform_power; 4448 4449 /* 4450 * Old obsolete interface for a device to request a power change (but only 4451 * an increase in power) 4452 */ 4453 int 4454 ddi_dev_is_needed(dev_info_t *dip, int cmpt, int level) 4455 { 4456 return (pm_raise_power(dip, cmpt, level)); 4457 } 4458 4459 /* 4460 * The old obsolete interface to platform power management. Only used by 4461 * Gypsy platform and APM on X86. 4462 */ 4463 int 4464 ddi_power(dev_info_t *dip, int pm_cmpt, int pm_level) 4465 { 4466 power_req_t request; 4467 4468 request.request_type = PMR_SET_POWER; 4469 request.req.set_power_req.who = dip; 4470 request.req.set_power_req.cmpt = pm_cmpt; 4471 request.req.set_power_req.level = pm_level; 4472 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL)); 4473 } 4474 4475 /* 4476 * A driver can invoke this from its detach routine when DDI_SUSPEND is 4477 * passed. Returns true if subsequent processing could result in power being 4478 * removed from the device. The arg is not currently used because it is 4479 * implicit in the operation of cpr/DR. 4480 */ 4481 int 4482 ddi_removing_power(dev_info_t *dip) 4483 { 4484 _NOTE(ARGUNUSED(dip)) 4485 return (pm_powering_down); 4486 } 4487 4488 /* 4489 * Returns true if a device indicates that its parent handles suspend/resume 4490 * processing for it. 4491 */ 4492 int 4493 e_ddi_parental_suspend_resume(dev_info_t *dip) 4494 { 4495 return (DEVI(dip)->devi_pm_flags & PMC_PARENTAL_SR); 4496 } 4497 4498 /* 4499 * Called for devices which indicate that their parent does suspend/resume 4500 * handling for them 4501 */ 4502 int 4503 e_ddi_suspend(dev_info_t *dip, ddi_detach_cmd_t cmd) 4504 { 4505 power_req_t request; 4506 request.request_type = PMR_SUSPEND; 4507 request.req.suspend_req.who = dip; 4508 request.req.suspend_req.cmd = cmd; 4509 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL)); 4510 } 4511 4512 /* 4513 * Called for devices which indicate that their parent does suspend/resume 4514 * handling for them 4515 */ 4516 int 4517 e_ddi_resume(dev_info_t *dip, ddi_attach_cmd_t cmd) 4518 { 4519 power_req_t request; 4520 request.request_type = PMR_RESUME; 4521 request.req.resume_req.who = dip; 4522 request.req.resume_req.cmd = cmd; 4523 return (ddi_ctlops(dip, dip, DDI_CTLOPS_POWER, &request, NULL)); 4524 } 4525 4526 /* 4527 * Old obsolete exported interface for drivers to create components. 4528 * This is now handled by exporting the pm-components property. 4529 */ 4530 int 4531 pm_create_components(dev_info_t *dip, int num_components) 4532 { 4533 PMD_FUNC(pmf, "pm_create_components") 4534 4535 if (num_components < 1) 4536 return (DDI_FAILURE); 4537 4538 if (!DEVI_IS_ATTACHING(dip)) { 4539 return (DDI_FAILURE); 4540 } 4541 4542 /* don't need to lock dip because attach is single threaded */ 4543 if (DEVI(dip)->devi_pm_components) { 4544 PMD(PMD_ERROR, ("%s: %s@%s(%s#%d) already has %d\n", pmf, 4545 PM_DEVICE(dip), PM_NUMCMPTS(dip))) 4546 return (DDI_FAILURE); 4547 } 4548 e_pm_create_components(dip, num_components); 4549 DEVI(dip)->devi_pm_flags |= PMC_BC; 4550 e_pm_default_components(dip, num_components); 4551 return (DDI_SUCCESS); 4552 } 4553 4554 /* 4555 * Obsolete interface previously called by drivers to destroy their components 4556 * at detach time. This is now done automatically. However, we need to keep 4557 * this for the old drivers. 4558 */ 4559 void 4560 pm_destroy_components(dev_info_t *dip) 4561 { 4562 PMD_FUNC(pmf, "pm_destroy_components") 4563 dev_info_t *pdip = ddi_get_parent(dip); 4564 4565 PMD(PMD_REMDEV | PMD_KIDSUP, ("%s: %s@%s(%s#%d)\n", pmf, 4566 PM_DEVICE(dip))) 4567 ASSERT(DEVI_IS_DETACHING(dip)); 4568 #ifdef DEBUG 4569 if (!PM_ISBC(dip)) 4570 cmn_err(CE_WARN, "!driver exporting pm-components property " 4571 "(%s@%s) calls pm_destroy_components", PM_NAME(dip), 4572 PM_ADDR(dip)); 4573 #endif 4574 /* 4575 * We ignore this unless this is an old-style driver, except for 4576 * printing the message above 4577 */ 4578 if (PM_NUMCMPTS(dip) == 0 || !PM_ISBC(dip)) { 4579 PMD(PMD_REMDEV, ("%s: ignore %s@%s(%s#%d)\n", pmf, 4580 PM_DEVICE(dip))) 4581 return; 4582 } 4583 ASSERT(PM_GET_PM_INFO(dip)); 4584 4585 /* 4586 * pm_unmanage will clear info pointer later, after dealing with 4587 * dependencies 4588 */ 4589 ASSERT(!PM_GET_PM_SCAN(dip)); /* better be gone already */ 4590 /* 4591 * Now adjust parent's kidsupcnt. We check only comp 0. 4592 * Parents that get notification are not adjusted because their 4593 * kidsupcnt is always 0 (or 1 during probe and attach). 4594 */ 4595 if ((PM_CURPOWER(dip, 0) != 0) && pdip && !PM_WANTS_NOTIFICATION(pdip)) 4596 pm_rele_power(pdip); 4597 #ifdef DEBUG 4598 else { 4599 PMD(PMD_KIDSUP, ("%s: kuc stays %s@%s(%s#%d) comps gone\n", 4600 pmf, PM_DEVICE(dip))) 4601 } 4602 #endif 4603 e_pm_destroy_components(dip); 4604 /* 4605 * Forget we ever knew anything about the components of this device 4606 */ 4607 DEVI(dip)->devi_pm_flags &= 4608 ~(PMC_BC | PMC_COMPONENTS_DONE | PMC_COMPONENTS_FAILED); 4609 } 4610 4611 /* 4612 * Exported interface for a driver to set a component busy. 4613 */ 4614 int 4615 pm_busy_component(dev_info_t *dip, int cmpt) 4616 { 4617 struct pm_component *cp; 4618 4619 ASSERT(dip != NULL); 4620 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp)) 4621 return (DDI_FAILURE); 4622 PM_LOCK_BUSY(dip); 4623 cp->pmc_busycount++; 4624 cp->pmc_timestamp = 0; 4625 PM_UNLOCK_BUSY(dip); 4626 return (DDI_SUCCESS); 4627 } 4628 4629 /* 4630 * Exported interface for a driver to set a component idle. 4631 */ 4632 int 4633 pm_idle_component(dev_info_t *dip, int cmpt) 4634 { 4635 PMD_FUNC(pmf, "pm_idle_component") 4636 struct pm_component *cp; 4637 pm_scan_t *scanp = PM_GET_PM_SCAN(dip); 4638 4639 if (!e_pm_valid_info(dip, NULL) || !e_pm_valid_comp(dip, cmpt, &cp)) 4640 return (DDI_FAILURE); 4641 4642 PM_LOCK_BUSY(dip); 4643 if (cp->pmc_busycount) { 4644 if (--(cp->pmc_busycount) == 0) 4645 cp->pmc_timestamp = gethrestime_sec(); 4646 } else { 4647 cp->pmc_timestamp = gethrestime_sec(); 4648 } 4649 4650 PM_UNLOCK_BUSY(dip); 4651 4652 /* 4653 * if device becomes idle during idle down period, try scan it down 4654 */ 4655 if (scanp && PM_IS_PID(dip)) { 4656 PMD(PMD_IDLEDOWN, ("%s: %s@%s(%s#%d) idle.\n", pmf, 4657 PM_DEVICE(dip))) 4658 pm_rescan(dip); 4659 return (DDI_SUCCESS); 4660 } 4661 4662 /* 4663 * handle scan not running with nexus threshold == 0 4664 */ 4665 4666 if (PM_IS_NEXUS(dip) && (cp->pmc_busycount == 0)) { 4667 pm_rescan(dip); 4668 } 4669 4670 return (DDI_SUCCESS); 4671 } 4672 4673 /* 4674 * This is the old obsolete interface called by drivers to set their normal 4675 * power. Thus we can't fix its behavior or return a value. 4676 * This functionality is replaced by the pm-component property. 4677 * We'll only get components destroyed while no power management is 4678 * going on (and the device is detached), so we don't need a mutex here 4679 */ 4680 void 4681 pm_set_normal_power(dev_info_t *dip, int comp, int level) 4682 { 4683 PMD_FUNC(pmf, "set_normal_power") 4684 #ifdef DEBUG 4685 if (!PM_ISBC(dip)) 4686 cmn_err(CE_WARN, "!call to pm_set_normal_power() by %s@%s " 4687 "(driver exporting pm-components property) ignored", 4688 PM_NAME(dip), PM_ADDR(dip)); 4689 #endif 4690 if (PM_ISBC(dip)) { 4691 PMD(PMD_NORM, ("%s: %s@%s(%s#%d) set normal power comp=%d, " 4692 "level=%d\n", pmf, PM_DEVICE(dip), comp, level)) 4693 e_pm_set_max_power(dip, comp, level); 4694 e_pm_default_levels(dip, PM_CP(dip, comp), level); 4695 } 4696 } 4697 4698 /* 4699 * Called on a successfully detached driver to free pm resources 4700 */ 4701 static void 4702 pm_stop(dev_info_t *dip) 4703 { 4704 PMD_FUNC(pmf, "stop") 4705 dev_info_t *pdip = ddi_get_parent(dip); 4706 4707 ASSERT(!PM_IAM_LOCKING_DIP(dip)); 4708 /* stopping scan, destroy scan data structure */ 4709 if (!PM_ISBC(dip)) { 4710 pm_scan_stop(dip); 4711 pm_scan_fini(dip); 4712 } 4713 4714 if (PM_GET_PM_INFO(dip) != NULL) { 4715 if (pm_unmanage(dip) == DDI_SUCCESS) { 4716 /* 4717 * Old style driver may have called 4718 * pm_destroy_components already, but just in case ... 4719 */ 4720 e_pm_destroy_components(dip); 4721 } else { 4722 PMD(PMD_FAIL, ("%s: can't pm_unmanage %s@%s(%s#%d)\n", 4723 pmf, PM_DEVICE(dip))) 4724 } 4725 } else { 4726 if (PM_NUMCMPTS(dip)) 4727 e_pm_destroy_components(dip); 4728 else { 4729 if (DEVI(dip)->devi_pm_flags & PMC_NOPMKID) { 4730 DEVI(dip)->devi_pm_flags &= ~PMC_NOPMKID; 4731 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 4732 pm_rele_power(pdip); 4733 } else if (pdip && 4734 MDI_VHCI(pdip) && MDI_CLIENT(dip)) { 4735 (void) mdi_power(pdip, 4736 MDI_PM_RELE_POWER, 4737 (void *)dip, NULL, 0); 4738 } 4739 } 4740 } 4741 } 4742 } 4743 4744 /* 4745 * The node is the subject of a reparse pm props ioctl. Throw away the old 4746 * info and start over. 4747 */ 4748 int 4749 e_new_pm_props(dev_info_t *dip) 4750 { 4751 if (PM_GET_PM_INFO(dip) != NULL) { 4752 pm_stop(dip); 4753 4754 if (e_pm_manage(dip, PM_STYLE_NEW) != DDI_SUCCESS) { 4755 return (DDI_FAILURE); 4756 } 4757 } 4758 e_pm_props(dip); 4759 return (DDI_SUCCESS); 4760 } 4761 4762 /* 4763 * Device has been attached, so process its pm properties 4764 */ 4765 void 4766 e_pm_props(dev_info_t *dip) 4767 { 4768 char *pp; 4769 int len; 4770 int flags = 0; 4771 int propflag = DDI_PROP_DONTPASS|DDI_PROP_CANSLEEP; 4772 4773 /* 4774 * It doesn't matter if we do this more than once, we should always 4775 * get the same answers, and if not, then the last one in is the 4776 * best one. 4777 */ 4778 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, propflag, "pm-hardware-state", 4779 (caddr_t)&pp, &len) == DDI_PROP_SUCCESS) { 4780 if (strcmp(pp, "needs-suspend-resume") == 0) { 4781 flags = PMC_NEEDS_SR; 4782 } else if (strcmp(pp, "no-suspend-resume") == 0) { 4783 flags = PMC_NO_SR; 4784 } else if (strcmp(pp, "parental-suspend-resume") == 0) { 4785 flags = PMC_PARENTAL_SR; 4786 } else { 4787 cmn_err(CE_NOTE, "!device %s@%s has unrecognized " 4788 "%s property value '%s'", PM_NAME(dip), 4789 PM_ADDR(dip), "pm-hardware-state", pp); 4790 } 4791 kmem_free(pp, len); 4792 } 4793 /* 4794 * This next segment (PMC_WANTS_NOTIFY) is in 4795 * support of nexus drivers which will want to be involved in 4796 * (or at least notified of) their child node's power level transitions. 4797 * "pm-want-child-notification?" is defined by the parent. 4798 */ 4799 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, propflag, 4800 "pm-want-child-notification?") && PM_HAS_BUS_POWER(dip)) 4801 flags |= PMC_WANTS_NOTIFY; 4802 ASSERT(PM_HAS_BUS_POWER(dip) || !ddi_prop_exists(DDI_DEV_T_ANY, 4803 dip, propflag, "pm-want-child-notification?")); 4804 if (ddi_prop_exists(DDI_DEV_T_ANY, dip, propflag, 4805 "no-involuntary-power-cycles")) 4806 flags |= PMC_NO_INVOL; 4807 /* 4808 * Is the device a CPU device? 4809 */ 4810 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, propflag, "pm-class", 4811 (caddr_t)&pp, &len) == DDI_PROP_SUCCESS) { 4812 if (strcmp(pp, "CPU") == 0) { 4813 flags |= PMC_CPU_DEVICE; 4814 } else { 4815 cmn_err(CE_NOTE, "!device %s@%s has unrecognized " 4816 "%s property value '%s'", PM_NAME(dip), 4817 PM_ADDR(dip), "pm-class", pp); 4818 } 4819 kmem_free(pp, len); 4820 } 4821 /* devfs single threads us */ 4822 DEVI(dip)->devi_pm_flags |= flags; 4823 } 4824 4825 /* 4826 * This is the DDI_CTLOPS_POWER handler that is used when there is no ppm 4827 * driver which has claimed a node. 4828 * Sets old_power in arg struct. 4829 */ 4830 static int 4831 pm_default_ctlops(dev_info_t *dip, dev_info_t *rdip, 4832 ddi_ctl_enum_t ctlop, void *arg, void *result) 4833 { 4834 _NOTE(ARGUNUSED(dip)) 4835 PMD_FUNC(pmf, "ctlops") 4836 power_req_t *reqp = (power_req_t *)arg; 4837 int retval; 4838 dev_info_t *target_dip; 4839 int new_level, old_level, cmpt; 4840 #ifdef PMDDEBUG 4841 char *format; 4842 #endif 4843 4844 /* 4845 * The interface for doing the actual power level changes is now 4846 * through the DDI_CTLOPS_POWER bus_ctl, so that we can plug in 4847 * different platform-specific power control drivers. 4848 * 4849 * This driver implements the "default" version of this interface. 4850 * If no ppm driver has been installed then this interface is called 4851 * instead. 4852 */ 4853 ASSERT(dip == NULL); 4854 switch (ctlop) { 4855 case DDI_CTLOPS_POWER: 4856 switch (reqp->request_type) { 4857 case PMR_PPM_SET_POWER: 4858 { 4859 target_dip = reqp->req.ppm_set_power_req.who; 4860 ASSERT(target_dip == rdip); 4861 new_level = reqp->req.ppm_set_power_req.new_level; 4862 cmpt = reqp->req.ppm_set_power_req.cmpt; 4863 /* pass back old power for the PM_LEVEL_UNKNOWN case */ 4864 old_level = PM_CURPOWER(target_dip, cmpt); 4865 reqp->req.ppm_set_power_req.old_level = old_level; 4866 retval = pm_power(target_dip, cmpt, new_level); 4867 PMD(PMD_PPM, ("%s: PPM_SET_POWER %s@%s(%s#%d)[%d] %d->" 4868 "%d %s\n", pmf, PM_DEVICE(target_dip), cmpt, 4869 old_level, new_level, (retval == DDI_SUCCESS ? 4870 "chd" : "no chg"))) 4871 return (retval); 4872 } 4873 4874 case PMR_PPM_PRE_DETACH: 4875 case PMR_PPM_POST_DETACH: 4876 case PMR_PPM_PRE_ATTACH: 4877 case PMR_PPM_POST_ATTACH: 4878 case PMR_PPM_PRE_PROBE: 4879 case PMR_PPM_POST_PROBE: 4880 case PMR_PPM_PRE_RESUME: 4881 case PMR_PPM_INIT_CHILD: 4882 case PMR_PPM_UNINIT_CHILD: 4883 #ifdef PMDDEBUG 4884 switch (reqp->request_type) { 4885 case PMR_PPM_PRE_DETACH: 4886 format = "%s: PMR_PPM_PRE_DETACH " 4887 "%s@%s(%s#%d)\n"; 4888 break; 4889 case PMR_PPM_POST_DETACH: 4890 format = "%s: PMR_PPM_POST_DETACH " 4891 "%s@%s(%s#%d) rets %d\n"; 4892 break; 4893 case PMR_PPM_PRE_ATTACH: 4894 format = "%s: PMR_PPM_PRE_ATTACH " 4895 "%s@%s(%s#%d)\n"; 4896 break; 4897 case PMR_PPM_POST_ATTACH: 4898 format = "%s: PMR_PPM_POST_ATTACH " 4899 "%s@%s(%s#%d) rets %d\n"; 4900 break; 4901 case PMR_PPM_PRE_PROBE: 4902 format = "%s: PMR_PPM_PRE_PROBE " 4903 "%s@%s(%s#%d)\n"; 4904 break; 4905 case PMR_PPM_POST_PROBE: 4906 format = "%s: PMR_PPM_POST_PROBE " 4907 "%s@%s(%s#%d) rets %d\n"; 4908 break; 4909 case PMR_PPM_PRE_RESUME: 4910 format = "%s: PMR_PPM_PRE_RESUME " 4911 "%s@%s(%s#%d) rets %d\n"; 4912 break; 4913 case PMR_PPM_INIT_CHILD: 4914 format = "%s: PMR_PPM_INIT_CHILD " 4915 "%s@%s(%s#%d)\n"; 4916 break; 4917 case PMR_PPM_UNINIT_CHILD: 4918 format = "%s: PMR_PPM_UNINIT_CHILD " 4919 "%s@%s(%s#%d)\n"; 4920 break; 4921 default: 4922 break; 4923 } 4924 PMD(PMD_PPM, (format, pmf, PM_DEVICE(rdip), 4925 reqp->req.ppm_config_req.result)) 4926 #endif 4927 return (DDI_SUCCESS); 4928 4929 case PMR_PPM_POWER_CHANGE_NOTIFY: 4930 /* 4931 * Nothing for us to do 4932 */ 4933 ASSERT(reqp->req.ppm_notify_level_req.who == rdip); 4934 PMD(PMD_PPM, ("%s: PMR_PPM_POWER_CHANGE_NOTIFY " 4935 "%s@%s(%s#%d)[%d] %d->%d\n", pmf, 4936 PM_DEVICE(reqp->req.ppm_notify_level_req.who), 4937 reqp->req.ppm_notify_level_req.cmpt, 4938 PM_CURPOWER(reqp->req.ppm_notify_level_req.who, 4939 reqp->req.ppm_notify_level_req.cmpt), 4940 reqp->req.ppm_notify_level_req.new_level)) 4941 return (DDI_SUCCESS); 4942 4943 case PMR_PPM_UNMANAGE: 4944 PMD(PMD_PPM, ("%s: PMR_PPM_UNMANAGE %s@%s(%s#%d)\n", 4945 pmf, PM_DEVICE(rdip))) 4946 return (DDI_SUCCESS); 4947 4948 case PMR_PPM_LOCK_POWER: 4949 pm_lock_power_single(reqp->req.ppm_lock_power_req.who, 4950 reqp->req.ppm_lock_power_req.circp); 4951 return (DDI_SUCCESS); 4952 4953 case PMR_PPM_UNLOCK_POWER: 4954 pm_unlock_power_single( 4955 reqp->req.ppm_unlock_power_req.who, 4956 reqp->req.ppm_unlock_power_req.circ); 4957 return (DDI_SUCCESS); 4958 4959 case PMR_PPM_TRY_LOCK_POWER: 4960 *(int *)result = pm_try_locking_power_single( 4961 reqp->req.ppm_lock_power_req.who, 4962 reqp->req.ppm_lock_power_req.circp); 4963 return (DDI_SUCCESS); 4964 4965 case PMR_PPM_POWER_LOCK_OWNER: 4966 target_dip = reqp->req.ppm_power_lock_owner_req.who; 4967 ASSERT(target_dip == rdip); 4968 reqp->req.ppm_power_lock_owner_req.owner = 4969 DEVI(rdip)->devi_busy_thread; 4970 return (DDI_SUCCESS); 4971 default: 4972 PMD(PMD_ERROR, ("%s: default!\n", pmf)) 4973 return (DDI_FAILURE); 4974 } 4975 4976 default: 4977 PMD(PMD_ERROR, ("%s: unknown\n", pmf)) 4978 return (DDI_FAILURE); 4979 } 4980 } 4981 4982 /* 4983 * We overload the bus_ctl ops here--perhaps we ought to have a distinct 4984 * power_ops struct for this functionality instead? 4985 * However, we only ever do this on a ppm driver. 4986 */ 4987 int 4988 pm_ctlops(dev_info_t *d, dev_info_t *r, ddi_ctl_enum_t op, void *a, void *v) 4989 { 4990 int (*fp)(); 4991 4992 /* if no ppm handler, call the default routine */ 4993 if (d == NULL) { 4994 return (pm_default_ctlops(d, r, op, a, v)); 4995 } 4996 if (!d || !r) 4997 return (DDI_FAILURE); 4998 ASSERT(DEVI(d)->devi_ops && DEVI(d)->devi_ops->devo_bus_ops && 4999 DEVI(d)->devi_ops->devo_bus_ops->bus_ctl); 5000 5001 fp = DEVI(d)->devi_ops->devo_bus_ops->bus_ctl; 5002 return ((*fp)(d, r, op, a, v)); 5003 } 5004 5005 /* 5006 * Called on a node when attach completes or the driver makes its first pm 5007 * call (whichever comes first). 5008 * In the attach case, device may not be power manageable at all. 5009 * Don't need to lock the dip because we're single threaded by the devfs code 5010 */ 5011 static int 5012 pm_start(dev_info_t *dip) 5013 { 5014 PMD_FUNC(pmf, "start") 5015 int ret; 5016 dev_info_t *pdip = ddi_get_parent(dip); 5017 int e_pm_manage(dev_info_t *, int); 5018 void pm_noinvol_specd(dev_info_t *dip); 5019 5020 e_pm_props(dip); 5021 pm_noinvol_specd(dip); 5022 /* 5023 * If this dip has already been processed, don't mess with it 5024 * (but decrement the speculative count we did above, as whatever 5025 * code put it under pm already will have dealt with it) 5026 */ 5027 if (PM_GET_PM_INFO(dip)) { 5028 PMD(PMD_KIDSUP, ("%s: pm already done for %s@%s(%s#%d)\n", 5029 pmf, PM_DEVICE(dip))) 5030 return (0); 5031 } 5032 ret = e_pm_manage(dip, PM_STYLE_UNKNOWN); 5033 5034 if (PM_GET_PM_INFO(dip) == NULL) { 5035 /* 5036 * keep the kidsupcount increment as is 5037 */ 5038 DEVI(dip)->devi_pm_flags |= PMC_NOPMKID; 5039 if (pdip && !PM_WANTS_NOTIFICATION(pdip)) { 5040 pm_hold_power(pdip); 5041 } else if (pdip && MDI_VHCI(pdip) && MDI_CLIENT(dip)) { 5042 (void) mdi_power(pdip, MDI_PM_HOLD_POWER, 5043 (void *)dip, NULL, 0); 5044 } 5045 5046 PMD(PMD_KIDSUP, ("%s: pm of %s@%s(%s#%d) failed, parent " 5047 "left up\n", pmf, PM_DEVICE(dip))) 5048 } 5049 5050 return (ret); 5051 } 5052 5053 /* 5054 * Keep a list of recorded thresholds. For now we just keep a list and 5055 * search it linearly. We don't expect too many entries. Can always hash it 5056 * later if we need to. 5057 */ 5058 void 5059 pm_record_thresh(pm_thresh_rec_t *rp) 5060 { 5061 pm_thresh_rec_t *pptr, *ptr; 5062 5063 ASSERT(*rp->ptr_physpath); 5064 rw_enter(&pm_thresh_rwlock, RW_WRITER); 5065 for (pptr = NULL, ptr = pm_thresh_head; 5066 ptr; pptr = ptr, ptr = ptr->ptr_next) { 5067 if (strcmp(rp->ptr_physpath, ptr->ptr_physpath) == 0) { 5068 /* replace this one */ 5069 rp->ptr_next = ptr->ptr_next; 5070 if (pptr) { 5071 pptr->ptr_next = rp; 5072 } else { 5073 pm_thresh_head = rp; 5074 } 5075 rw_exit(&pm_thresh_rwlock); 5076 kmem_free(ptr, ptr->ptr_size); 5077 return; 5078 } 5079 continue; 5080 } 5081 /* 5082 * There was not a match in the list, insert this one in front 5083 */ 5084 if (pm_thresh_head) { 5085 rp->ptr_next = pm_thresh_head; 5086 pm_thresh_head = rp; 5087 } else { 5088 rp->ptr_next = NULL; 5089 pm_thresh_head = rp; 5090 } 5091 rw_exit(&pm_thresh_rwlock); 5092 } 5093 5094 /* 5095 * Create a new dependency record and hang a new dependency entry off of it 5096 */ 5097 pm_pdr_t * 5098 newpdr(char *kept, char *keeps, int isprop) 5099 { 5100 size_t size = strlen(kept) + strlen(keeps) + 2 + sizeof (pm_pdr_t); 5101 pm_pdr_t *p = kmem_zalloc(size, KM_SLEEP); 5102 p->pdr_size = size; 5103 p->pdr_isprop = isprop; 5104 p->pdr_kept_paths = NULL; 5105 p->pdr_kept_count = 0; 5106 p->pdr_kept = (char *)((intptr_t)p + sizeof (pm_pdr_t)); 5107 (void) strcpy(p->pdr_kept, kept); 5108 p->pdr_keeper = (char *)((intptr_t)p->pdr_kept + strlen(kept) + 1); 5109 (void) strcpy(p->pdr_keeper, keeps); 5110 ASSERT((intptr_t)p->pdr_keeper + strlen(p->pdr_keeper) + 1 <= 5111 (intptr_t)p + size); 5112 ASSERT((intptr_t)p->pdr_kept + strlen(p->pdr_kept) + 1 <= 5113 (intptr_t)p + size); 5114 return (p); 5115 } 5116 5117 /* 5118 * Keep a list of recorded dependencies. We only keep the 5119 * keeper -> kept list for simplification. At this point We do not 5120 * care about whether the devices are attached or not yet, 5121 * this would be done in pm_keeper() and pm_kept(). 5122 * If a PM_RESET_PM happens, then we tear down and forget the dependencies, 5123 * and it is up to the user to issue the ioctl again if they want it 5124 * (e.g. pmconfig) 5125 * Returns true if dependency already exists in the list. 5126 */ 5127 int 5128 pm_record_keeper(char *kept, char *keeper, int isprop) 5129 { 5130 PMD_FUNC(pmf, "record_keeper") 5131 pm_pdr_t *npdr, *ppdr, *pdr; 5132 5133 PMD(PMD_KEEPS, ("%s: %s, %s\n", pmf, kept, keeper)) 5134 ASSERT(kept && keeper); 5135 #ifdef DEBUG 5136 if (pm_debug & PMD_KEEPS) 5137 prdeps("pm_record_keeper entry"); 5138 #endif 5139 for (ppdr = NULL, pdr = pm_dep_head; pdr; 5140 ppdr = pdr, pdr = pdr->pdr_next) { 5141 PMD(PMD_KEEPS, ("%s: check %s, %s\n", pmf, pdr->pdr_kept, 5142 pdr->pdr_keeper)) 5143 if (strcmp(kept, pdr->pdr_kept) == 0 && 5144 strcmp(keeper, pdr->pdr_keeper) == 0) { 5145 PMD(PMD_KEEPS, ("%s: match\n", pmf)) 5146 return (1); 5147 } 5148 } 5149 /* 5150 * We did not find any match, so we have to make an entry 5151 */ 5152 npdr = newpdr(kept, keeper, isprop); 5153 if (ppdr) { 5154 ASSERT(ppdr->pdr_next == NULL); 5155 ppdr->pdr_next = npdr; 5156 } else { 5157 ASSERT(pm_dep_head == NULL); 5158 pm_dep_head = npdr; 5159 } 5160 #ifdef DEBUG 5161 if (pm_debug & PMD_KEEPS) 5162 prdeps("pm_record_keeper after new record"); 5163 #endif 5164 if (!isprop) 5165 pm_unresolved_deps++; 5166 else 5167 pm_prop_deps++; 5168 return (0); 5169 } 5170 5171 /* 5172 * Look up this device in the set of devices we've seen ioctls for 5173 * to see if we are holding a threshold spec for it. If so, make it so. 5174 * At ioctl time, we were given the physical path of the device. 5175 */ 5176 int 5177 pm_thresh_specd(dev_info_t *dip) 5178 { 5179 void pm_apply_recorded_thresh(dev_info_t *, pm_thresh_rec_t *); 5180 char *path = 0; 5181 char pathbuf[MAXNAMELEN]; 5182 pm_thresh_rec_t *rp; 5183 5184 path = ddi_pathname(dip, pathbuf); 5185 5186 rw_enter(&pm_thresh_rwlock, RW_READER); 5187 for (rp = pm_thresh_head; rp; rp = rp->ptr_next) { 5188 if (strcmp(rp->ptr_physpath, path) != 0) 5189 continue; 5190 pm_apply_recorded_thresh(dip, rp); 5191 rw_exit(&pm_thresh_rwlock); 5192 return (1); 5193 } 5194 rw_exit(&pm_thresh_rwlock); 5195 return (0); 5196 } 5197 5198 static int 5199 pm_set_keeping(dev_info_t *keeper, dev_info_t *kept) 5200 { 5201 PMD_FUNC(pmf, "set_keeping") 5202 int j, up = 0, circ; 5203 void prdeps(char *); 5204 5205 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d), kept=%s@%s(%s#%d)\n", pmf, 5206 PM_DEVICE(keeper), PM_DEVICE(kept))) 5207 #ifdef DEBUG 5208 if (pm_debug & PMD_KEEPS) 5209 prdeps("Before PAD\n"); 5210 #endif 5211 ASSERT(keeper != kept); 5212 if (PM_GET_PM_INFO(keeper) == NULL) { 5213 cmn_err(CE_CONT, "!device %s@%s(%s#%d) keeps up device " 5214 "%s@%s(%s#%d), but the former is not power managed", 5215 PM_DEVICE(keeper), PM_DEVICE(kept)); 5216 PMD((PMD_FAIL | PMD_KEEPS), ("%s: keeper %s@%s(%s#%d) is not" 5217 "power managed\n", pmf, PM_DEVICE(keeper))) 5218 return (0); 5219 } 5220 if (PM_GET_PM_INFO(kept) == NULL) { 5221 cmn_err(CE_CONT, "!device %s@%s(%s#%d) keeps up device " 5222 "%s@%s(%s#%d), but the latter is not power managed", 5223 PM_DEVICE(keeper), PM_DEVICE(kept)); 5224 PMD((PMD_FAIL | PMD_KEEPS), ("%s: kept %s@%s(%s#%d) is not" 5225 "power managed\n", pmf, PM_DEVICE(kept))) 5226 return (0); 5227 } 5228 5229 PM_LOCK_POWER(keeper, &circ); 5230 for (j = 0; j < PM_NUMCMPTS(keeper); j++) { 5231 if (PM_CURPOWER(keeper, j)) { 5232 up++; 5233 break; 5234 } 5235 } 5236 if (up) { 5237 /* Bringup and maintain a hold on the kept */ 5238 PMD(PMD_KEEPS, ("%s: place a hold on kept %s@%s(%s#%d)\n", pmf, 5239 PM_DEVICE(kept))) 5240 bring_pmdep_up(kept, 1); 5241 } 5242 PM_UNLOCK_POWER(keeper, circ); 5243 #ifdef DEBUG 5244 if (pm_debug & PMD_KEEPS) 5245 prdeps("After PAD\n"); 5246 #endif 5247 return (1); 5248 } 5249 5250 /* 5251 * Should this device keep up another device? 5252 * Look up this device in the set of devices we've seen ioctls for 5253 * to see if we are holding a dependency spec for it. If so, make it so. 5254 * Because we require the kept device to be attached already in order to 5255 * make the list entry (and hold it), we only need to look for keepers. 5256 * At ioctl time, we were given the physical path of the device. 5257 */ 5258 int 5259 pm_keeper(char *keeper) 5260 { 5261 PMD_FUNC(pmf, "keeper") 5262 int pm_apply_recorded_dep(dev_info_t *, pm_pdr_t *); 5263 dev_info_t *dip; 5264 pm_pdr_t *dp; 5265 dev_info_t *kept = NULL; 5266 int ret = 0; 5267 int i; 5268 5269 if (!pm_unresolved_deps && !pm_prop_deps) 5270 return (0); 5271 ASSERT(keeper != NULL); 5272 dip = pm_name_to_dip(keeper, 1); 5273 if (dip == NULL) 5274 return (0); 5275 PMD(PMD_KEEPS, ("%s: keeper=%s\n", pmf, keeper)) 5276 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 5277 if (!dp->pdr_isprop) { 5278 if (!pm_unresolved_deps) 5279 continue; 5280 PMD(PMD_KEEPS, ("%s: keeper %s\n", pmf, dp->pdr_keeper)) 5281 if (dp->pdr_satisfied) { 5282 PMD(PMD_KEEPS, ("%s: satisfied\n", pmf)) 5283 continue; 5284 } 5285 if (strcmp(dp->pdr_keeper, keeper) == 0) { 5286 ret += pm_apply_recorded_dep(dip, dp); 5287 } 5288 } else { 5289 if (strcmp(dp->pdr_keeper, keeper) != 0) 5290 continue; 5291 for (i = 0; i < dp->pdr_kept_count; i++) { 5292 if (dp->pdr_kept_paths[i] == NULL) 5293 continue; 5294 kept = pm_name_to_dip(dp->pdr_kept_paths[i], 1); 5295 if (kept == NULL) 5296 continue; 5297 ASSERT(ddi_prop_exists(DDI_DEV_T_ANY, kept, 5298 DDI_PROP_DONTPASS, dp->pdr_kept)); 5299 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d), " 5300 "kept=%s@%s(%s#%d) keptcnt=%d\n", 5301 pmf, PM_DEVICE(dip), PM_DEVICE(kept), 5302 dp->pdr_kept_count)) 5303 if (kept != dip) { 5304 ret += pm_set_keeping(dip, kept); 5305 } 5306 ddi_release_devi(kept); 5307 } 5308 5309 } 5310 } 5311 ddi_release_devi(dip); 5312 return (ret); 5313 } 5314 5315 /* 5316 * Should this device be kept up by another device? 5317 * Look up all dependency recorded from PM_ADD_DEPENDENT and 5318 * PM_ADD_DEPENDENT_PROPERTY ioctls. Record down on the keeper's 5319 * kept device lists. 5320 */ 5321 static int 5322 pm_kept(char *keptp) 5323 { 5324 PMD_FUNC(pmf, "kept") 5325 pm_pdr_t *dp; 5326 int found = 0; 5327 int ret = 0; 5328 dev_info_t *keeper; 5329 dev_info_t *kept; 5330 size_t length; 5331 int i; 5332 char **paths; 5333 char *path; 5334 5335 ASSERT(keptp != NULL); 5336 kept = pm_name_to_dip(keptp, 1); 5337 if (kept == NULL) 5338 return (0); 5339 PMD(PMD_KEEPS, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(kept))) 5340 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 5341 if (dp->pdr_isprop) { 5342 PMD(PMD_KEEPS, ("%s: property %s\n", pmf, dp->pdr_kept)) 5343 if (ddi_prop_exists(DDI_DEV_T_ANY, kept, 5344 DDI_PROP_DONTPASS, dp->pdr_kept)) { 5345 /* 5346 * Dont allow self dependency. 5347 */ 5348 if (strcmp(dp->pdr_keeper, keptp) == 0) 5349 continue; 5350 keeper = pm_name_to_dip(dp->pdr_keeper, 1); 5351 if (keeper == NULL) 5352 continue; 5353 PMD(PMD_KEEPS, ("%s: adding to kepts path list " 5354 "%p\n", pmf, (void *)kept)) 5355 #ifdef DEBUG 5356 if (pm_debug & PMD_DEP) 5357 prdeps("Before Adding from pm_kept\n"); 5358 #endif 5359 /* 5360 * Add ourselves to the dip list. 5361 */ 5362 if (dp->pdr_kept_count == 0) { 5363 length = strlen(keptp) + 1; 5364 path = 5365 kmem_alloc(length, KM_SLEEP); 5366 paths = kmem_alloc(sizeof (char **), 5367 KM_SLEEP); 5368 (void) strcpy(path, keptp); 5369 paths[0] = path; 5370 dp->pdr_kept_paths = paths; 5371 dp->pdr_kept_count++; 5372 } else { 5373 /* Check to see if already on list */ 5374 for (i = 0; i < dp->pdr_kept_count; 5375 i++) { 5376 if (strcmp(keptp, 5377 dp->pdr_kept_paths[i]) 5378 == 0) { 5379 found++; 5380 break; 5381 } 5382 } 5383 if (found) { 5384 ddi_release_devi(keeper); 5385 continue; 5386 } 5387 length = dp->pdr_kept_count * 5388 sizeof (char **); 5389 paths = kmem_alloc( 5390 length + sizeof (char **), 5391 KM_SLEEP); 5392 if (dp->pdr_kept_count) { 5393 bcopy(dp->pdr_kept_paths, 5394 paths, length); 5395 kmem_free(dp->pdr_kept_paths, 5396 length); 5397 } 5398 dp->pdr_kept_paths = paths; 5399 length = strlen(keptp) + 1; 5400 path = 5401 kmem_alloc(length, KM_SLEEP); 5402 (void) strcpy(path, keptp); 5403 dp->pdr_kept_paths[i] = path; 5404 dp->pdr_kept_count++; 5405 } 5406 #ifdef DEBUG 5407 if (pm_debug & PMD_DEP) 5408 prdeps("After from pm_kept\n"); 5409 #endif 5410 if (keeper) { 5411 ret += pm_set_keeping(keeper, kept); 5412 ddi_release_devi(keeper); 5413 } 5414 } 5415 } else { 5416 /* 5417 * pm_keeper would be called later to do 5418 * the actual pm_set_keeping. 5419 */ 5420 PMD(PMD_KEEPS, ("%s: adding to kepts path list %p\n", 5421 pmf, (void *)kept)) 5422 #ifdef DEBUG 5423 if (pm_debug & PMD_DEP) 5424 prdeps("Before Adding from pm_kept\n"); 5425 #endif 5426 if (strcmp(keptp, dp->pdr_kept) == 0) { 5427 if (dp->pdr_kept_paths == NULL) { 5428 length = strlen(keptp) + 1; 5429 path = 5430 kmem_alloc(length, KM_SLEEP); 5431 paths = kmem_alloc(sizeof (char **), 5432 KM_SLEEP); 5433 (void) strcpy(path, keptp); 5434 paths[0] = path; 5435 dp->pdr_kept_paths = paths; 5436 dp->pdr_kept_count++; 5437 } 5438 } 5439 #ifdef DEBUG 5440 if (pm_debug & PMD_DEP) 5441 prdeps("After from pm_kept\n"); 5442 #endif 5443 } 5444 } 5445 ddi_release_devi(kept); 5446 return (ret); 5447 } 5448 5449 /* 5450 * Apply a recorded dependency. dp specifies the dependency, and 5451 * keeper is already known to be the device that keeps up the other (kept) one. 5452 * We have to the whole tree for the "kept" device, then apply 5453 * the dependency (which may already be applied). 5454 */ 5455 int 5456 pm_apply_recorded_dep(dev_info_t *keeper, pm_pdr_t *dp) 5457 { 5458 PMD_FUNC(pmf, "apply_recorded_dep") 5459 dev_info_t *kept = NULL; 5460 int ret = 0; 5461 char *keptp = NULL; 5462 5463 /* 5464 * Device to Device dependency can only be 1 to 1. 5465 */ 5466 if (dp->pdr_kept_paths == NULL) 5467 return (0); 5468 keptp = dp->pdr_kept_paths[0]; 5469 if (keptp == NULL) 5470 return (0); 5471 ASSERT(*keptp != '\0'); 5472 kept = pm_name_to_dip(keptp, 1); 5473 if (kept == NULL) 5474 return (0); 5475 if (kept) { 5476 PMD(PMD_KEEPS, ("%s: keeper=%s, kept=%s\n", pmf, 5477 dp->pdr_keeper, keptp)) 5478 if (pm_set_keeping(keeper, kept)) { 5479 ASSERT(dp->pdr_satisfied == 0); 5480 dp->pdr_satisfied = 1; 5481 ASSERT(pm_unresolved_deps); 5482 pm_unresolved_deps--; 5483 ret++; 5484 } 5485 } 5486 ddi_release_devi(kept); 5487 5488 return (ret); 5489 } 5490 5491 /* 5492 * Called from common/io/pm.c 5493 */ 5494 int 5495 pm_cur_power(pm_component_t *cp) 5496 { 5497 return (cur_power(cp)); 5498 } 5499 5500 /* 5501 * External interface to sanity-check a power level. 5502 */ 5503 int 5504 pm_valid_power(dev_info_t *dip, int comp, int level) 5505 { 5506 PMD_FUNC(pmf, "valid_power") 5507 5508 if (comp >= 0 && comp < PM_NUMCMPTS(dip) && level >= 0) 5509 return (e_pm_valid_power(dip, comp, level)); 5510 else { 5511 PMD(PMD_FAIL, ("%s: comp=%d, ncomp=%d, level=%d\n", 5512 pmf, comp, PM_NUMCMPTS(dip), level)) 5513 return (0); 5514 } 5515 } 5516 5517 /* 5518 * Called when a device that is direct power managed needs to change state. 5519 * This routine arranges to block the request until the process managing 5520 * the device makes the change (or some other incompatible change) or 5521 * the process closes /dev/pm. 5522 */ 5523 static int 5524 pm_block(dev_info_t *dip, int comp, int newpower, int oldpower) 5525 { 5526 pm_rsvp_t *new = kmem_zalloc(sizeof (*new), KM_SLEEP); 5527 int ret = 0; 5528 void pm_dequeue_blocked(pm_rsvp_t *); 5529 void pm_enqueue_blocked(pm_rsvp_t *); 5530 5531 ASSERT(!pm_processes_stopped); 5532 ASSERT(PM_IAM_LOCKING_DIP(dip)); 5533 new->pr_dip = dip; 5534 new->pr_comp = comp; 5535 new->pr_newlevel = newpower; 5536 new->pr_oldlevel = oldpower; 5537 cv_init(&new->pr_cv, NULL, CV_DEFAULT, NULL); 5538 mutex_enter(&pm_rsvp_lock); 5539 pm_enqueue_blocked(new); 5540 pm_enqueue_notify(PSC_PENDING_CHANGE, dip, comp, newpower, oldpower, 5541 PM_CANBLOCK_BLOCK); 5542 PM_UNLOCK_DIP(dip); 5543 /* 5544 * truss may make the cv_wait_sig return prematurely 5545 */ 5546 while (ret == 0) { 5547 /* 5548 * Normally there will be no user context involved, but if 5549 * there is (e.g. we are here via an ioctl call to a driver) 5550 * then we should allow the process to abort the request, 5551 * or we get an unkillable process if the same thread does 5552 * PM_DIRECT_PM and pm_raise_power 5553 */ 5554 if (cv_wait_sig(&new->pr_cv, &pm_rsvp_lock) == 0) { 5555 ret = PMP_FAIL; 5556 } else { 5557 ret = new->pr_retval; 5558 } 5559 } 5560 pm_dequeue_blocked(new); 5561 mutex_exit(&pm_rsvp_lock); 5562 cv_destroy(&new->pr_cv); 5563 kmem_free(new, sizeof (*new)); 5564 return (ret); 5565 } 5566 5567 /* 5568 * Returns true if the process is interested in power level changes (has issued 5569 * PM_GET_STATE_CHANGE ioctl). 5570 */ 5571 int 5572 pm_interest_registered(int clone) 5573 { 5574 ASSERT(clone >= 0 && clone < PM_MAX_CLONE - 1); 5575 return (pm_interest[clone]); 5576 } 5577 5578 static void pm_enqueue_pscc(pscc_t *, pscc_t **); 5579 5580 /* 5581 * Process with clone has just done PM_DIRECT_PM on dip, or has asked to 5582 * watch all state transitions (dip == NULL). Set up data 5583 * structs to communicate with process about state changes. 5584 */ 5585 void 5586 pm_register_watcher(int clone, dev_info_t *dip) 5587 { 5588 pscc_t *p; 5589 psce_t *psce; 5590 5591 /* 5592 * We definitely need a control struct, then we have to search to see 5593 * there is already an entries struct (in the dip != NULL case). 5594 */ 5595 pscc_t *pscc = kmem_zalloc(sizeof (*pscc), KM_SLEEP); 5596 pscc->pscc_clone = clone; 5597 pscc->pscc_dip = dip; 5598 5599 if (dip) { 5600 int found = 0; 5601 rw_enter(&pm_pscc_direct_rwlock, RW_WRITER); 5602 for (p = pm_pscc_direct; p; p = p->pscc_next) { 5603 /* 5604 * Already an entry for this clone, so just use it 5605 * for the new one (for the case where a single 5606 * process is watching multiple devices) 5607 */ 5608 if (p->pscc_clone == clone) { 5609 pscc->pscc_entries = p->pscc_entries; 5610 pscc->pscc_entries->psce_references++; 5611 found++; 5612 break; 5613 } 5614 } 5615 if (!found) { /* create a new one */ 5616 psce = kmem_zalloc(sizeof (psce_t), KM_SLEEP); 5617 mutex_init(&psce->psce_lock, NULL, MUTEX_DEFAULT, NULL); 5618 psce->psce_first = 5619 kmem_zalloc(sizeof (pm_state_change_t) * PSCCOUNT, 5620 KM_SLEEP); 5621 psce->psce_in = psce->psce_out = psce->psce_first; 5622 psce->psce_last = &psce->psce_first[PSCCOUNT - 1]; 5623 psce->psce_references = 1; 5624 pscc->pscc_entries = psce; 5625 } 5626 pm_enqueue_pscc(pscc, &pm_pscc_direct); 5627 rw_exit(&pm_pscc_direct_rwlock); 5628 } else { 5629 ASSERT(!pm_interest_registered(clone)); 5630 rw_enter(&pm_pscc_interest_rwlock, RW_WRITER); 5631 #ifdef DEBUG 5632 for (p = pm_pscc_interest; p; p = p->pscc_next) { 5633 /* 5634 * Should not be an entry for this clone! 5635 */ 5636 ASSERT(p->pscc_clone != clone); 5637 } 5638 #endif 5639 psce = kmem_zalloc(sizeof (psce_t), KM_SLEEP); 5640 psce->psce_first = kmem_zalloc(sizeof (pm_state_change_t) * 5641 PSCCOUNT, KM_SLEEP); 5642 psce->psce_in = psce->psce_out = psce->psce_first; 5643 psce->psce_last = &psce->psce_first[PSCCOUNT - 1]; 5644 psce->psce_references = 1; 5645 pscc->pscc_entries = psce; 5646 pm_enqueue_pscc(pscc, &pm_pscc_interest); 5647 pm_interest[clone] = 1; 5648 rw_exit(&pm_pscc_interest_rwlock); 5649 } 5650 } 5651 5652 /* 5653 * Remove the given entry from the blocked list 5654 */ 5655 void 5656 pm_dequeue_blocked(pm_rsvp_t *p) 5657 { 5658 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 5659 if (pm_blocked_list == p) { 5660 ASSERT(p->pr_prev == NULL); 5661 if (p->pr_next != NULL) 5662 p->pr_next->pr_prev = NULL; 5663 pm_blocked_list = p->pr_next; 5664 } else { 5665 ASSERT(p->pr_prev != NULL); 5666 p->pr_prev->pr_next = p->pr_next; 5667 if (p->pr_next != NULL) 5668 p->pr_next->pr_prev = p->pr_prev; 5669 } 5670 } 5671 5672 /* 5673 * Remove the given control struct from the given list 5674 */ 5675 static void 5676 pm_dequeue_pscc(pscc_t *p, pscc_t **list) 5677 { 5678 if (*list == p) { 5679 ASSERT(p->pscc_prev == NULL); 5680 if (p->pscc_next != NULL) 5681 p->pscc_next->pscc_prev = NULL; 5682 *list = p->pscc_next; 5683 } else { 5684 ASSERT(p->pscc_prev != NULL); 5685 p->pscc_prev->pscc_next = p->pscc_next; 5686 if (p->pscc_next != NULL) 5687 p->pscc_next->pscc_prev = p->pscc_prev; 5688 } 5689 } 5690 5691 /* 5692 * Stick the control struct specified on the front of the list 5693 */ 5694 static void 5695 pm_enqueue_pscc(pscc_t *p, pscc_t **list) 5696 { 5697 pscc_t *h; /* entry at head of list */ 5698 if ((h = *list) == NULL) { 5699 *list = p; 5700 ASSERT(p->pscc_next == NULL); 5701 ASSERT(p->pscc_prev == NULL); 5702 } else { 5703 p->pscc_next = h; 5704 ASSERT(h->pscc_prev == NULL); 5705 h->pscc_prev = p; 5706 ASSERT(p->pscc_prev == NULL); 5707 *list = p; 5708 } 5709 } 5710 5711 /* 5712 * If dip is NULL, process is closing "clone" clean up all its registrations. 5713 * Otherwise only clean up those for dip because process is just giving up 5714 * control of a direct device. 5715 */ 5716 void 5717 pm_deregister_watcher(int clone, dev_info_t *dip) 5718 { 5719 pscc_t *p, *pn; 5720 psce_t *psce; 5721 int found = 0; 5722 5723 if (dip == NULL) { 5724 rw_enter(&pm_pscc_interest_rwlock, RW_WRITER); 5725 for (p = pm_pscc_interest; p; p = pn) { 5726 pn = p->pscc_next; 5727 if (p->pscc_clone == clone) { 5728 pm_dequeue_pscc(p, &pm_pscc_interest); 5729 psce = p->pscc_entries; 5730 ASSERT(psce->psce_references == 1); 5731 mutex_destroy(&psce->psce_lock); 5732 kmem_free(psce->psce_first, 5733 sizeof (pm_state_change_t) * PSCCOUNT); 5734 kmem_free(psce, sizeof (*psce)); 5735 kmem_free(p, sizeof (*p)); 5736 } 5737 } 5738 pm_interest[clone] = 0; 5739 rw_exit(&pm_pscc_interest_rwlock); 5740 } 5741 found = 0; 5742 rw_enter(&pm_pscc_direct_rwlock, RW_WRITER); 5743 for (p = pm_pscc_direct; p; p = pn) { 5744 pn = p->pscc_next; 5745 if ((dip && p->pscc_dip == dip) || 5746 (dip == NULL && clone == p->pscc_clone)) { 5747 ASSERT(clone == p->pscc_clone); 5748 found++; 5749 /* 5750 * Remove from control list 5751 */ 5752 pm_dequeue_pscc(p, &pm_pscc_direct); 5753 /* 5754 * If we're the last reference, free the 5755 * entries struct. 5756 */ 5757 psce = p->pscc_entries; 5758 ASSERT(psce); 5759 if (psce->psce_references == 1) { 5760 kmem_free(psce->psce_first, 5761 PSCCOUNT * sizeof (pm_state_change_t)); 5762 kmem_free(psce, sizeof (*psce)); 5763 } else { 5764 psce->psce_references--; 5765 } 5766 kmem_free(p, sizeof (*p)); 5767 } 5768 } 5769 ASSERT(dip == NULL || found); 5770 rw_exit(&pm_pscc_direct_rwlock); 5771 } 5772 5773 /* 5774 * Search the indicated list for an entry that matches clone, and return a 5775 * pointer to it. To be interesting, the entry must have something ready to 5776 * be passed up to the controlling process. 5777 * The returned entry will be locked upon return from this call. 5778 */ 5779 static psce_t * 5780 pm_psc_find_clone(int clone, pscc_t **list, krwlock_t *lock) 5781 { 5782 pscc_t *p; 5783 psce_t *psce; 5784 rw_enter(lock, RW_READER); 5785 for (p = *list; p; p = p->pscc_next) { 5786 if (clone == p->pscc_clone) { 5787 psce = p->pscc_entries; 5788 mutex_enter(&psce->psce_lock); 5789 if (psce->psce_out->size) { 5790 rw_exit(lock); 5791 return (psce); 5792 } else { 5793 mutex_exit(&psce->psce_lock); 5794 } 5795 } 5796 } 5797 rw_exit(lock); 5798 return (NULL); 5799 } 5800 5801 static psce_t *pm_psc_find_clone(int, pscc_t **, krwlock_t *); 5802 /* 5803 * Find an entry for a particular clone in the direct list. 5804 */ 5805 psce_t * 5806 pm_psc_clone_to_direct(int clone) 5807 { 5808 return (pm_psc_find_clone(clone, &pm_pscc_direct, 5809 &pm_pscc_direct_rwlock)); 5810 } 5811 5812 /* 5813 * Find an entry for a particular clone in the interest list. 5814 */ 5815 psce_t * 5816 pm_psc_clone_to_interest(int clone) 5817 { 5818 return (pm_psc_find_clone(clone, &pm_pscc_interest, 5819 &pm_pscc_interest_rwlock)); 5820 } 5821 5822 /* 5823 * Put the given entry at the head of the blocked list 5824 */ 5825 void 5826 pm_enqueue_blocked(pm_rsvp_t *p) 5827 { 5828 ASSERT(MUTEX_HELD(&pm_rsvp_lock)); 5829 ASSERT(p->pr_next == NULL); 5830 ASSERT(p->pr_prev == NULL); 5831 if (pm_blocked_list != NULL) { 5832 p->pr_next = pm_blocked_list; 5833 ASSERT(pm_blocked_list->pr_prev == NULL); 5834 pm_blocked_list->pr_prev = p; 5835 pm_blocked_list = p; 5836 } else { 5837 pm_blocked_list = p; 5838 } 5839 } 5840 5841 /* 5842 * Sets every power managed device back to its default threshold 5843 */ 5844 void 5845 pm_all_to_default_thresholds(void) 5846 { 5847 ddi_walk_devs(ddi_root_node(), pm_set_dev_thr_walk, 5848 (void *) &pm_system_idle_threshold); 5849 } 5850 5851 static int 5852 pm_set_dev_thr_walk(dev_info_t *dip, void *arg) 5853 { 5854 int thr = (int)(*(int *)arg); 5855 5856 if (!PM_GET_PM_INFO(dip)) 5857 return (DDI_WALK_CONTINUE); 5858 pm_set_device_threshold(dip, thr, PMC_DEF_THRESH); 5859 return (DDI_WALK_CONTINUE); 5860 } 5861 5862 /* 5863 * Returns the current threshold value (in seconds) for the indicated component 5864 */ 5865 int 5866 pm_current_threshold(dev_info_t *dip, int comp, int *threshp) 5867 { 5868 if (comp < 0 || comp >= PM_NUMCMPTS(dip)) { 5869 return (DDI_FAILURE); 5870 } else { 5871 *threshp = cur_threshold(dip, comp); 5872 return (DDI_SUCCESS); 5873 } 5874 } 5875 5876 /* 5877 * To be called when changing the power level of a component of a device. 5878 * On some platforms, changing power on one device may require that power 5879 * be changed on other, related devices in the same transaction. Thus, we 5880 * always pass this request to the platform power manager so that all the 5881 * affected devices will be locked. 5882 */ 5883 void 5884 pm_lock_power(dev_info_t *dip, int *circp) 5885 { 5886 power_req_t power_req; 5887 int result; 5888 5889 power_req.request_type = PMR_PPM_LOCK_POWER; 5890 power_req.req.ppm_lock_power_req.who = dip; 5891 power_req.req.ppm_lock_power_req.circp = circp; 5892 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result); 5893 } 5894 5895 /* 5896 * Release the lock (or locks) acquired to change the power of a device. 5897 * See comments for pm_lock_power. 5898 */ 5899 void 5900 pm_unlock_power(dev_info_t *dip, int circ) 5901 { 5902 power_req_t power_req; 5903 int result; 5904 5905 power_req.request_type = PMR_PPM_UNLOCK_POWER; 5906 power_req.req.ppm_unlock_power_req.who = dip; 5907 power_req.req.ppm_unlock_power_req.circ = circ; 5908 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result); 5909 } 5910 5911 5912 /* 5913 * Attempt (without blocking) to acquire the lock(s) needed to change the 5914 * power of a component of a device. See comments for pm_lock_power. 5915 * 5916 * Return: 1 if lock(s) acquired, 0 if not. 5917 */ 5918 int 5919 pm_try_locking_power(dev_info_t *dip, int *circp) 5920 { 5921 power_req_t power_req; 5922 int result; 5923 5924 power_req.request_type = PMR_PPM_TRY_LOCK_POWER; 5925 power_req.req.ppm_lock_power_req.who = dip; 5926 power_req.req.ppm_lock_power_req.circp = circp; 5927 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, &result); 5928 return (result); 5929 } 5930 5931 5932 /* 5933 * Lock power state of a device. 5934 * 5935 * The implementation handles a special case where another thread may have 5936 * acquired the lock and created/launched this thread to do the work. If 5937 * the lock cannot be acquired immediately, we check to see if this thread 5938 * is registered as a borrower of the lock. If so, we may proceed without 5939 * the lock. This assumes that the lending thread blocks on the completion 5940 * of this thread. 5941 * 5942 * Note 1: for use by ppm only. 5943 * 5944 * Note 2: On failing to get the lock immediately, we search lock_loan list 5945 * for curthread (as borrower of the lock). On a hit, we check that the 5946 * lending thread already owns the lock we want. It is safe to compare 5947 * devi_busy_thread and thread id of the lender because in the == case (the 5948 * only one we care about) we know that the owner is blocked. Similarly, 5949 * If we find that curthread isn't registered as a lock borrower, it is safe 5950 * to use the blocking call (ndi_devi_enter) because we know that if we 5951 * weren't already listed as a borrower (upstream on the call stack) we won't 5952 * become one. 5953 */ 5954 void 5955 pm_lock_power_single(dev_info_t *dip, int *circp) 5956 { 5957 lock_loan_t *cur; 5958 5959 /* if the lock is available, we are done. */ 5960 if (ndi_devi_tryenter(dip, circp)) 5961 return; 5962 5963 mutex_enter(&pm_loan_lock); 5964 /* see if our thread is registered as a lock borrower. */ 5965 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next) 5966 if (cur->pmlk_borrower == curthread) 5967 break; 5968 mutex_exit(&pm_loan_lock); 5969 5970 /* if this thread not already registered, it is safe to block */ 5971 if (cur == NULL) 5972 ndi_devi_enter(dip, circp); 5973 else { 5974 /* registered: does lender own the lock we want? */ 5975 if (cur->pmlk_lender == DEVI(dip)->devi_busy_thread) { 5976 ASSERT(cur->pmlk_dip == NULL || cur->pmlk_dip == dip); 5977 cur->pmlk_dip = dip; 5978 } else /* no: just block for it */ 5979 ndi_devi_enter(dip, circp); 5980 5981 } 5982 } 5983 5984 /* 5985 * Drop the lock on the device's power state. See comment for 5986 * pm_lock_power_single() for special implementation considerations. 5987 * 5988 * Note: for use by ppm only. 5989 */ 5990 void 5991 pm_unlock_power_single(dev_info_t *dip, int circ) 5992 { 5993 lock_loan_t *cur; 5994 5995 /* optimization: mutex not needed to check empty list */ 5996 if (lock_loan_head.pmlk_next == NULL) { 5997 ndi_devi_exit(dip, circ); 5998 return; 5999 } 6000 6001 mutex_enter(&pm_loan_lock); 6002 /* see if our thread is registered as a lock borrower. */ 6003 for (cur = lock_loan_head.pmlk_next; cur; cur = cur->pmlk_next) 6004 if (cur->pmlk_borrower == curthread) 6005 break; 6006 mutex_exit(&pm_loan_lock); 6007 6008 if (cur == NULL || cur->pmlk_dip != dip) 6009 /* we acquired the lock directly, so return it */ 6010 ndi_devi_exit(dip, circ); 6011 } 6012 6013 /* 6014 * Try to take the lock for changing the power level of a component. 6015 * 6016 * Note: for use by ppm only. 6017 */ 6018 int 6019 pm_try_locking_power_single(dev_info_t *dip, int *circp) 6020 { 6021 return (ndi_devi_tryenter(dip, circp)); 6022 } 6023 6024 #ifdef DEBUG 6025 /* 6026 * The following are used only to print out data structures for debugging 6027 */ 6028 void 6029 prdeps(char *msg) 6030 { 6031 6032 pm_pdr_t *rp; 6033 int i; 6034 6035 pm_log("pm_dep_head %s %p\n", msg, (void *)pm_dep_head); 6036 for (rp = pm_dep_head; rp; rp = rp->pdr_next) { 6037 pm_log("%p: %s keeper %s, kept %s, kept count %d, next %p\n", 6038 (void *)rp, (rp->pdr_isprop ? "property" : "device"), 6039 rp->pdr_keeper, rp->pdr_kept, rp->pdr_kept_count, 6040 (void *)rp->pdr_next); 6041 if (rp->pdr_kept_count != 0) { 6042 pm_log("kept list = "); 6043 i = 0; 6044 while (i < rp->pdr_kept_count) { 6045 pm_log("%s ", rp->pdr_kept_paths[i]); 6046 i++; 6047 } 6048 pm_log("\n"); 6049 } 6050 } 6051 } 6052 6053 void 6054 pr_noinvol(char *hdr) 6055 { 6056 pm_noinvol_t *ip; 6057 6058 pm_log("%s\n", hdr); 6059 rw_enter(&pm_noinvol_rwlock, RW_READER); 6060 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) 6061 pm_log("\tmaj %d, flags %x, noinvolpm %d %s\n", 6062 ip->ni_major, ip->ni_flags, ip->ni_noinvolpm, ip->ni_path); 6063 rw_exit(&pm_noinvol_rwlock); 6064 } 6065 #endif 6066 6067 /* 6068 * Attempt to apply the thresholds indicated by rp to the node specified by 6069 * dip. 6070 */ 6071 void 6072 pm_apply_recorded_thresh(dev_info_t *dip, pm_thresh_rec_t *rp) 6073 { 6074 PMD_FUNC(pmf, "apply_recorded_thresh") 6075 int i, j; 6076 int comps = PM_NUMCMPTS(dip); 6077 struct pm_component *cp; 6078 pm_pte_t *ep; 6079 int pm_valid_thresh(dev_info_t *, pm_thresh_rec_t *); 6080 6081 PMD(PMD_THRESH, ("%s: part: %s@%s(%s#%d), rp %p, %s\n", pmf, 6082 PM_DEVICE(dip), (void *)rp, rp->ptr_physpath)) 6083 PM_LOCK_DIP(dip); 6084 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip) || !pm_valid_thresh(dip, rp)) { 6085 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) PM_GET_PM_INFO %p\n", 6086 pmf, PM_DEVICE(dip), (void*)PM_GET_PM_INFO(dip))) 6087 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) PM_ISBC %d\n", 6088 pmf, PM_DEVICE(dip), PM_ISBC(dip))) 6089 PMD(PMD_FAIL, ("%s: part: %s@%s(%s#%d) pm_valid_thresh %d\n", 6090 pmf, PM_DEVICE(dip), pm_valid_thresh(dip, rp))) 6091 PM_UNLOCK_DIP(dip); 6092 return; 6093 } 6094 6095 ep = rp->ptr_entries; 6096 /* 6097 * Here we do the special case of a device threshold 6098 */ 6099 if (rp->ptr_numcomps == 0) { /* PM_SET_DEVICE_THRESHOLD product */ 6100 ASSERT(ep && ep->pte_numthresh == 1); 6101 PMD(PMD_THRESH, ("%s: set dev thr %s@%s(%s#%d) to 0x%x\n", 6102 pmf, PM_DEVICE(dip), ep->pte_thresh[0])) 6103 PM_UNLOCK_DIP(dip); 6104 pm_set_device_threshold(dip, ep->pte_thresh[0], PMC_DEV_THRESH); 6105 if (PM_SCANABLE(dip)) 6106 pm_rescan(dip); 6107 return; 6108 } 6109 for (i = 0; i < comps; i++) { 6110 cp = PM_CP(dip, i); 6111 for (j = 0; j < ep->pte_numthresh; j++) { 6112 PMD(PMD_THRESH, ("%s: set thr %d for %s@%s(%s#%d)[%d] " 6113 "to %x\n", pmf, j, PM_DEVICE(dip), 6114 i, ep->pte_thresh[j])) 6115 cp->pmc_comp.pmc_thresh[j + 1] = ep->pte_thresh[j]; 6116 } 6117 ep++; 6118 } 6119 DEVI(dip)->devi_pm_flags &= PMC_THRESH_NONE; 6120 DEVI(dip)->devi_pm_flags |= PMC_COMP_THRESH; 6121 PM_UNLOCK_DIP(dip); 6122 6123 if (PM_SCANABLE(dip)) 6124 pm_rescan(dip); 6125 } 6126 6127 /* 6128 * Returns true if the threshold specified by rp could be applied to dip 6129 * (that is, the number of components and transitions are the same) 6130 */ 6131 int 6132 pm_valid_thresh(dev_info_t *dip, pm_thresh_rec_t *rp) 6133 { 6134 PMD_FUNC(pmf, "valid_thresh") 6135 int comps, i; 6136 pm_component_t *cp; 6137 pm_pte_t *ep; 6138 6139 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip)) { 6140 PMD(PMD_ERROR, ("%s: %s: no pm_info or BC\n", pmf, 6141 rp->ptr_physpath)) 6142 return (0); 6143 } 6144 /* 6145 * Special case: we represent the PM_SET_DEVICE_THRESHOLD case by 6146 * an entry with numcomps == 0, (since we don't know how many 6147 * components there are in advance). This is always a valid 6148 * spec. 6149 */ 6150 if (rp->ptr_numcomps == 0) { 6151 ASSERT(rp->ptr_entries && rp->ptr_entries->pte_numthresh == 1); 6152 return (1); 6153 } 6154 if (rp->ptr_numcomps != (comps = PM_NUMCMPTS(dip))) { 6155 PMD(PMD_ERROR, ("%s: comp # mm (dip %d cmd %d) for %s\n", 6156 pmf, PM_NUMCMPTS(dip), rp->ptr_numcomps, rp->ptr_physpath)) 6157 return (0); 6158 } 6159 ep = rp->ptr_entries; 6160 for (i = 0; i < comps; i++) { 6161 cp = PM_CP(dip, i); 6162 if ((ep + i)->pte_numthresh != 6163 cp->pmc_comp.pmc_numlevels - 1) { 6164 PMD(PMD_ERROR, ("%s: %s[%d]: thresh=%d, record=%d\n", 6165 pmf, rp->ptr_physpath, i, 6166 cp->pmc_comp.pmc_numlevels - 1, 6167 (ep + i)->pte_numthresh)) 6168 return (0); 6169 } 6170 } 6171 return (1); 6172 } 6173 6174 /* 6175 * Remove any recorded threshold for device physpath 6176 * We know there will be at most one. 6177 */ 6178 void 6179 pm_unrecord_threshold(char *physpath) 6180 { 6181 pm_thresh_rec_t *pptr, *ptr; 6182 6183 rw_enter(&pm_thresh_rwlock, RW_WRITER); 6184 for (pptr = NULL, ptr = pm_thresh_head; ptr; ptr = ptr->ptr_next) { 6185 if (strcmp(physpath, ptr->ptr_physpath) == 0) { 6186 if (pptr) { 6187 pptr->ptr_next = ptr->ptr_next; 6188 } else { 6189 ASSERT(pm_thresh_head == ptr); 6190 pm_thresh_head = ptr->ptr_next; 6191 } 6192 kmem_free(ptr, ptr->ptr_size); 6193 break; 6194 } 6195 pptr = ptr; 6196 } 6197 rw_exit(&pm_thresh_rwlock); 6198 } 6199 6200 /* 6201 * Discard all recorded thresholds. We are returning to the default pm state. 6202 */ 6203 void 6204 pm_discard_thresholds(void) 6205 { 6206 pm_thresh_rec_t *rp; 6207 rw_enter(&pm_thresh_rwlock, RW_WRITER); 6208 while (pm_thresh_head) { 6209 rp = pm_thresh_head; 6210 pm_thresh_head = rp->ptr_next; 6211 kmem_free(rp, rp->ptr_size); 6212 } 6213 rw_exit(&pm_thresh_rwlock); 6214 } 6215 6216 /* 6217 * Discard all recorded dependencies. We are returning to the default pm state. 6218 */ 6219 void 6220 pm_discard_dependencies(void) 6221 { 6222 pm_pdr_t *rp; 6223 int i; 6224 size_t length; 6225 6226 #ifdef DEBUG 6227 if (pm_debug & PMD_DEP) 6228 prdeps("Before discard\n"); 6229 #endif 6230 ddi_walk_devs(ddi_root_node(), pm_discard_dep_walk, NULL); 6231 6232 #ifdef DEBUG 6233 if (pm_debug & PMD_DEP) 6234 prdeps("After discard\n"); 6235 #endif 6236 while (pm_dep_head) { 6237 rp = pm_dep_head; 6238 if (!rp->pdr_isprop) { 6239 ASSERT(rp->pdr_satisfied == 0); 6240 ASSERT(pm_unresolved_deps); 6241 pm_unresolved_deps--; 6242 } else { 6243 ASSERT(pm_prop_deps); 6244 pm_prop_deps--; 6245 } 6246 pm_dep_head = rp->pdr_next; 6247 if (rp->pdr_kept_count) { 6248 for (i = 0; i < rp->pdr_kept_count; i++) { 6249 length = strlen(rp->pdr_kept_paths[i]) + 1; 6250 kmem_free(rp->pdr_kept_paths[i], length); 6251 } 6252 kmem_free(rp->pdr_kept_paths, 6253 rp->pdr_kept_count * sizeof (char **)); 6254 } 6255 kmem_free(rp, rp->pdr_size); 6256 } 6257 } 6258 6259 6260 static int 6261 pm_discard_dep_walk(dev_info_t *dip, void *arg) 6262 { 6263 _NOTE(ARGUNUSED(arg)) 6264 char *pathbuf; 6265 6266 if (PM_GET_PM_INFO(dip) == NULL) 6267 return (DDI_WALK_CONTINUE); 6268 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6269 (void) ddi_pathname(dip, pathbuf); 6270 pm_free_keeper(pathbuf, 0); 6271 kmem_free(pathbuf, MAXPATHLEN); 6272 return (DDI_WALK_CONTINUE); 6273 } 6274 6275 static int 6276 pm_kept_walk(dev_info_t *dip, void *arg) 6277 { 6278 _NOTE(ARGUNUSED(arg)) 6279 char *pathbuf; 6280 6281 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6282 (void) ddi_pathname(dip, pathbuf); 6283 (void) pm_kept(pathbuf); 6284 kmem_free(pathbuf, MAXPATHLEN); 6285 6286 return (DDI_WALK_CONTINUE); 6287 } 6288 6289 static int 6290 pm_keeper_walk(dev_info_t *dip, void *arg) 6291 { 6292 _NOTE(ARGUNUSED(arg)) 6293 char *pathbuf; 6294 6295 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6296 (void) ddi_pathname(dip, pathbuf); 6297 (void) pm_keeper(pathbuf); 6298 kmem_free(pathbuf, MAXPATHLEN); 6299 6300 return (DDI_WALK_CONTINUE); 6301 } 6302 6303 static char * 6304 pdw_type_decode(int type) 6305 { 6306 switch (type) { 6307 case PM_DEP_WK_POWER_ON: 6308 return ("power on"); 6309 case PM_DEP_WK_POWER_OFF: 6310 return ("power off"); 6311 case PM_DEP_WK_DETACH: 6312 return ("detach"); 6313 case PM_DEP_WK_REMOVE_DEP: 6314 return ("remove dep"); 6315 case PM_DEP_WK_BRINGUP_SELF: 6316 return ("bringup self"); 6317 case PM_DEP_WK_RECORD_KEEPER: 6318 return ("add dependent"); 6319 case PM_DEP_WK_RECORD_KEEPER_PROP: 6320 return ("add dependent property"); 6321 case PM_DEP_WK_KEPT: 6322 return ("kept"); 6323 case PM_DEP_WK_KEEPER: 6324 return ("keeper"); 6325 case PM_DEP_WK_ATTACH: 6326 return ("attach"); 6327 case PM_DEP_WK_CHECK_KEPT: 6328 return ("check kept"); 6329 case PM_DEP_WK_CPR_SUSPEND: 6330 return ("suspend"); 6331 case PM_DEP_WK_CPR_RESUME: 6332 return ("resume"); 6333 default: 6334 return ("unknown"); 6335 } 6336 6337 } 6338 6339 static void 6340 pm_rele_dep(char *keeper) 6341 { 6342 PMD_FUNC(pmf, "rele_dep") 6343 pm_pdr_t *dp; 6344 char *kept_path = NULL; 6345 dev_info_t *kept = NULL; 6346 int count = 0; 6347 6348 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 6349 if (strcmp(dp->pdr_keeper, keeper) != 0) 6350 continue; 6351 for (count = 0; count < dp->pdr_kept_count; count++) { 6352 kept_path = dp->pdr_kept_paths[count]; 6353 if (kept_path == NULL) 6354 continue; 6355 kept = pm_name_to_dip(kept_path, 1); 6356 if (kept) { 6357 PMD(PMD_KEEPS, ("%s: release kept=%s@%s(%s#%d) " 6358 "of keeper=%s\n", pmf, PM_DEVICE(kept), 6359 keeper)) 6360 ASSERT(DEVI(kept)->devi_pm_kidsupcnt > 0); 6361 pm_rele_power(kept); 6362 ddi_release_devi(kept); 6363 } 6364 } 6365 } 6366 } 6367 6368 /* 6369 * Called when we are just released from direct PM. Bring ourself up 6370 * if our keeper is up since dependency is not honored while a kept 6371 * device is under direct PM. 6372 */ 6373 static void 6374 pm_bring_self_up(char *keptpath) 6375 { 6376 PMD_FUNC(pmf, "bring_self_up") 6377 dev_info_t *kept; 6378 dev_info_t *keeper; 6379 pm_pdr_t *dp; 6380 int i, j; 6381 int up = 0, circ; 6382 6383 kept = pm_name_to_dip(keptpath, 1); 6384 if (kept == NULL) 6385 return; 6386 PMD(PMD_KEEPS, ("%s: kept=%s@%s(%s#%d)\n", pmf, PM_DEVICE(kept))) 6387 for (dp = pm_dep_head; dp; dp = dp->pdr_next) { 6388 if (dp->pdr_kept_count == 0) 6389 continue; 6390 for (i = 0; i < dp->pdr_kept_count; i++) { 6391 if (strcmp(dp->pdr_kept_paths[i], keptpath) != 0) 6392 continue; 6393 keeper = pm_name_to_dip(dp->pdr_keeper, 1); 6394 if (keeper) { 6395 PMD(PMD_KEEPS, ("%s: keeper=%s@%s(%s#%d)\n", 6396 pmf, PM_DEVICE(keeper))) 6397 PM_LOCK_POWER(keeper, &circ); 6398 for (j = 0; j < PM_NUMCMPTS(keeper); 6399 j++) { 6400 if (PM_CURPOWER(keeper, j)) { 6401 PMD(PMD_KEEPS, ("%s: comp=" 6402 "%d is up\n", pmf, j)) 6403 up++; 6404 } 6405 } 6406 if (up) { 6407 if (PM_SKBU(kept)) 6408 DEVI(kept)->devi_pm_flags &= 6409 ~PMC_SKIP_BRINGUP; 6410 bring_pmdep_up(kept, 1); 6411 } 6412 PM_UNLOCK_POWER(keeper, circ); 6413 ddi_release_devi(keeper); 6414 } 6415 } 6416 } 6417 ddi_release_devi(kept); 6418 } 6419 6420 static void 6421 pm_process_dep_request(pm_dep_wk_t *work) 6422 { 6423 PMD_FUNC(pmf, "dep_req") 6424 int ret; 6425 6426 PMD(PMD_DEP, ("%s: work=%s\n", pmf, 6427 pdw_type_decode(work->pdw_type))) 6428 PMD(PMD_DEP, ("%s: keeper=%s, kept=%s\n", pmf, 6429 (work->pdw_keeper ? work->pdw_keeper : "NULL"), 6430 (work->pdw_kept ? work->pdw_kept : "NULL"))) 6431 6432 ret = 0; 6433 switch (work->pdw_type) { 6434 case PM_DEP_WK_POWER_ON: 6435 /* Bring up the kept devices and put a hold on them */ 6436 bring_wekeeps_up(work->pdw_keeper); 6437 break; 6438 case PM_DEP_WK_POWER_OFF: 6439 /* Release the kept devices */ 6440 pm_rele_dep(work->pdw_keeper); 6441 break; 6442 case PM_DEP_WK_DETACH: 6443 pm_free_keeps(work->pdw_keeper, work->pdw_pwr); 6444 break; 6445 case PM_DEP_WK_REMOVE_DEP: 6446 pm_discard_dependencies(); 6447 break; 6448 case PM_DEP_WK_BRINGUP_SELF: 6449 /* 6450 * We deferred satisfying our dependency till now, so satisfy 6451 * it again and bring ourselves up. 6452 */ 6453 pm_bring_self_up(work->pdw_kept); 6454 break; 6455 case PM_DEP_WK_RECORD_KEEPER: 6456 (void) pm_record_keeper(work->pdw_kept, work->pdw_keeper, 0); 6457 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL); 6458 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL); 6459 break; 6460 case PM_DEP_WK_RECORD_KEEPER_PROP: 6461 (void) pm_record_keeper(work->pdw_kept, work->pdw_keeper, 1); 6462 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL); 6463 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL); 6464 break; 6465 case PM_DEP_WK_KEPT: 6466 ret = pm_kept(work->pdw_kept); 6467 PMD(PMD_DEP, ("%s: PM_DEP_WK_KEPT: pm_kept returns %d\n", pmf, 6468 ret)) 6469 break; 6470 case PM_DEP_WK_KEEPER: 6471 ret = pm_keeper(work->pdw_keeper); 6472 PMD(PMD_DEP, ("%s: PM_DEP_WK_KEEPER: pm_keeper returns %d\n", 6473 pmf, ret)) 6474 break; 6475 case PM_DEP_WK_ATTACH: 6476 ret = pm_keeper(work->pdw_keeper); 6477 PMD(PMD_DEP, ("%s: PM_DEP_WK_ATTACH: pm_keeper returns %d\n", 6478 pmf, ret)) 6479 ret = pm_kept(work->pdw_kept); 6480 PMD(PMD_DEP, ("%s: PM_DEP_WK_ATTACH: pm_kept returns %d\n", 6481 pmf, ret)) 6482 break; 6483 case PM_DEP_WK_CHECK_KEPT: 6484 ret = pm_is_kept(work->pdw_kept); 6485 PMD(PMD_DEP, ("%s: PM_DEP_WK_CHECK_KEPT: kept=%s, ret=%d\n", 6486 pmf, work->pdw_kept, ret)) 6487 break; 6488 case PM_DEP_WK_CPR_SUSPEND: 6489 pm_discard_dependencies(); 6490 break; 6491 case PM_DEP_WK_CPR_RESUME: 6492 ddi_walk_devs(ddi_root_node(), pm_kept_walk, NULL); 6493 ddi_walk_devs(ddi_root_node(), pm_keeper_walk, NULL); 6494 break; 6495 default: 6496 ASSERT(0); 6497 break; 6498 } 6499 /* 6500 * Free the work structure if the requester is not waiting 6501 * Otherwise it is the requester's responsiblity to free it. 6502 */ 6503 if (!work->pdw_wait) { 6504 if (work->pdw_keeper) 6505 kmem_free(work->pdw_keeper, 6506 strlen(work->pdw_keeper) + 1); 6507 if (work->pdw_kept) 6508 kmem_free(work->pdw_kept, strlen(work->pdw_kept) + 1); 6509 kmem_free(work, sizeof (pm_dep_wk_t)); 6510 } else { 6511 /* 6512 * Notify requester if it is waiting for it. 6513 */ 6514 work->pdw_ret = ret; 6515 work->pdw_done = 1; 6516 cv_signal(&work->pdw_cv); 6517 } 6518 } 6519 6520 /* 6521 * Process PM dependency requests. 6522 */ 6523 static void 6524 pm_dep_thread(void) 6525 { 6526 pm_dep_wk_t *work; 6527 callb_cpr_t cprinfo; 6528 6529 CALLB_CPR_INIT(&cprinfo, &pm_dep_thread_lock, callb_generic_cpr, 6530 "pm_dep_thread"); 6531 for (;;) { 6532 mutex_enter(&pm_dep_thread_lock); 6533 if (pm_dep_thread_workq == NULL) { 6534 CALLB_CPR_SAFE_BEGIN(&cprinfo); 6535 cv_wait(&pm_dep_thread_cv, &pm_dep_thread_lock); 6536 CALLB_CPR_SAFE_END(&cprinfo, &pm_dep_thread_lock); 6537 } 6538 work = pm_dep_thread_workq; 6539 pm_dep_thread_workq = work->pdw_next; 6540 if (pm_dep_thread_tail == work) 6541 pm_dep_thread_tail = work->pdw_next; 6542 mutex_exit(&pm_dep_thread_lock); 6543 pm_process_dep_request(work); 6544 6545 } 6546 /*NOTREACHED*/ 6547 } 6548 6549 /* 6550 * Set the power level of the indicated device to unknown (if it is not a 6551 * backwards compatible device), as it has just been resumed, and it won't 6552 * know if the power was removed or not. Adjust parent's kidsupcnt if necessary. 6553 */ 6554 void 6555 pm_forget_power_level(dev_info_t *dip) 6556 { 6557 dev_info_t *pdip = ddi_get_parent(dip); 6558 int i, count = 0; 6559 6560 if (!PM_ISBC(dip)) { 6561 for (i = 0; i < PM_NUMCMPTS(dip); i++) 6562 count += (PM_CURPOWER(dip, i) == 0); 6563 6564 if (count && pdip && !PM_WANTS_NOTIFICATION(pdip)) 6565 e_pm_hold_rele_power(pdip, count); 6566 6567 /* 6568 * Count this as a power cycle if we care 6569 */ 6570 if (DEVI(dip)->devi_pm_volpmd && 6571 PM_CP(dip, 0)->pmc_cur_pwr == 0) 6572 DEVI(dip)->devi_pm_volpmd = 0; 6573 for (i = 0; i < PM_NUMCMPTS(dip); i++) 6574 e_pm_set_cur_pwr(dip, PM_CP(dip, i), PM_LEVEL_UNKNOWN); 6575 } 6576 } 6577 6578 /* 6579 * This function advises the caller whether it should make a power-off 6580 * transition at this time or not. If the transition is not advised 6581 * at this time, the time that the next power-off transition can 6582 * be made from now is returned through "intervalp" pointer. 6583 * This function returns: 6584 * 6585 * 1 power-off advised 6586 * 0 power-off not advised, intervalp will point to seconds from 6587 * now that a power-off is advised. If it is passed the number 6588 * of years that policy specifies the device should last, 6589 * a large number is returned as the time interval. 6590 * -1 error 6591 */ 6592 int 6593 pm_trans_check(struct pm_trans_data *datap, time_t *intervalp) 6594 { 6595 PMD_FUNC(pmf, "pm_trans_check") 6596 char dbuf[DC_SCSI_MFR_LEN]; 6597 struct pm_scsi_cycles *scp; 6598 int service_years, service_weeks, full_years; 6599 time_t now, service_seconds, tdiff; 6600 time_t within_year, when_allowed; 6601 char *ptr; 6602 int lower_bound_cycles, upper_bound_cycles, cycles_allowed; 6603 int cycles_diff, cycles_over; 6604 struct pm_smart_count *smart_p; 6605 6606 if (datap == NULL) { 6607 PMD(PMD_TCHECK, ("%s: NULL data pointer!\n", pmf)) 6608 return (-1); 6609 } 6610 6611 if (datap->format == DC_SCSI_FORMAT) { 6612 /* 6613 * Power cycles of the scsi drives are distributed 6614 * over 5 years with the following percentage ratio: 6615 * 6616 * 30%, 25%, 20%, 15%, and 10% 6617 * 6618 * The power cycle quota for each year is distributed 6619 * linearly through out the year. The equation for 6620 * determining the expected cycles is: 6621 * 6622 * e = a * (n / y) 6623 * 6624 * e = expected cycles 6625 * a = allocated cycles for this year 6626 * n = number of seconds since beginning of this year 6627 * y = number of seconds in a year 6628 * 6629 * Note that beginning of the year starts the day that 6630 * the drive has been put on service. 6631 * 6632 * If the drive has passed its expected cycles, we 6633 * can determine when it can start to power cycle 6634 * again to keep it on track to meet the 5-year 6635 * life expectancy. The equation for determining 6636 * when to power cycle is: 6637 * 6638 * w = y * (c / a) 6639 * 6640 * w = when it can power cycle again 6641 * y = number of seconds in a year 6642 * c = current number of cycles 6643 * a = allocated cycles for the year 6644 * 6645 */ 6646 char pcnt[DC_SCSI_NPY] = { 30, 55, 75, 90, 100 }; 6647 6648 scp = &datap->un.scsi_cycles; 6649 PMD(PMD_TCHECK, ("%s: format=%d, lifemax=%d, ncycles=%d, " 6650 "svc_date=%s, svc_flag=%d\n", pmf, datap->format, 6651 scp->lifemax, scp->ncycles, scp->svc_date, scp->flag)) 6652 if (scp->ncycles < 0 || scp->flag != 0) { 6653 PMD(PMD_TCHECK, ("%s: ncycles < 0 || flag != 0\n", pmf)) 6654 return (-1); 6655 } 6656 6657 if (scp->ncycles > scp->lifemax) { 6658 *intervalp = (LONG_MAX / hz); 6659 return (0); 6660 } 6661 6662 /* 6663 * convert service date to time_t 6664 */ 6665 bcopy(scp->svc_date, dbuf, DC_SCSI_YEAR_LEN); 6666 dbuf[DC_SCSI_YEAR_LEN] = '\0'; 6667 ptr = dbuf; 6668 service_years = stoi(&ptr) - EPOCH_YEAR; 6669 bcopy(&scp->svc_date[DC_SCSI_YEAR_LEN], dbuf, 6670 DC_SCSI_WEEK_LEN); 6671 dbuf[DC_SCSI_WEEK_LEN] = '\0'; 6672 6673 /* 6674 * scsi standard does not specify WW data, 6675 * could be (00-51) or (01-52) 6676 */ 6677 ptr = dbuf; 6678 service_weeks = stoi(&ptr); 6679 if (service_years < 0 || 6680 service_weeks < 0 || service_weeks > 52) { 6681 PMD(PMD_TCHECK, ("%s: service year %d and week %d\n", 6682 pmf, service_years, service_weeks)) 6683 return (-1); 6684 } 6685 6686 /* 6687 * calculate service date in seconds-since-epoch, 6688 * adding one day for each leap-year. 6689 * 6690 * (years-since-epoch + 2) fixes integer truncation, 6691 * example: (8) leap-years during [1972, 2000] 6692 * (2000 - 1970) = 30; and (30 + 2) / 4 = 8; 6693 */ 6694 service_seconds = (service_years * DC_SPY) + 6695 (service_weeks * DC_SPW) + 6696 (((service_years + 2) / 4) * DC_SPD); 6697 6698 now = gethrestime_sec(); 6699 /* 6700 * since the granularity of 'svc_date' is day not second, 6701 * 'now' should be rounded up to full day. 6702 */ 6703 now = ((now + DC_SPD -1) / DC_SPD) * DC_SPD; 6704 if (service_seconds > now) { 6705 PMD(PMD_TCHECK, ("%s: service date (%ld) later " 6706 "than now (%ld)!\n", pmf, service_seconds, now)) 6707 return (-1); 6708 } 6709 6710 tdiff = now - service_seconds; 6711 PMD(PMD_TCHECK, ("%s: age is %ld sec\n", pmf, tdiff)) 6712 6713 /* 6714 * NOTE - Leap years are not considered in the calculations 6715 * below. 6716 */ 6717 full_years = (tdiff / DC_SPY); 6718 if ((full_years >= DC_SCSI_NPY) && 6719 (scp->ncycles <= scp->lifemax)) 6720 return (1); 6721 6722 /* 6723 * Determine what is the normal cycle usage for the 6724 * device at the beginning and the end of this year. 6725 */ 6726 lower_bound_cycles = (!full_years) ? 0 : 6727 ((scp->lifemax * pcnt[full_years - 1]) / 100); 6728 upper_bound_cycles = (scp->lifemax * pcnt[full_years]) / 100; 6729 6730 if (scp->ncycles <= lower_bound_cycles) 6731 return (1); 6732 6733 /* 6734 * The linear slope that determines how many cycles 6735 * are allowed this year is number of seconds 6736 * passed this year over total number of seconds in a year. 6737 */ 6738 cycles_diff = (upper_bound_cycles - lower_bound_cycles); 6739 within_year = (tdiff % DC_SPY); 6740 cycles_allowed = lower_bound_cycles + 6741 (((uint64_t)cycles_diff * (uint64_t)within_year) / DC_SPY); 6742 PMD(PMD_TCHECK, ("%s: lived %d yrs and %ld secs\n", pmf, 6743 full_years, within_year)) 6744 PMD(PMD_TCHECK, ("%s: # of cycles allowed %d\n", pmf, 6745 cycles_allowed)) 6746 6747 if (scp->ncycles <= cycles_allowed) 6748 return (1); 6749 6750 /* 6751 * The transition is not advised now but we can 6752 * determine when the next transition can be made. 6753 * 6754 * Depending on how many cycles the device has been 6755 * over-used, we may need to skip years with 6756 * different percentage quota in order to determine 6757 * when the next transition can be made. 6758 */ 6759 cycles_over = (scp->ncycles - lower_bound_cycles); 6760 while (cycles_over > cycles_diff) { 6761 full_years++; 6762 if (full_years >= DC_SCSI_NPY) { 6763 *intervalp = (LONG_MAX / hz); 6764 return (0); 6765 } 6766 cycles_over -= cycles_diff; 6767 lower_bound_cycles = upper_bound_cycles; 6768 upper_bound_cycles = 6769 (scp->lifemax * pcnt[full_years]) / 100; 6770 cycles_diff = (upper_bound_cycles - lower_bound_cycles); 6771 } 6772 6773 /* 6774 * The linear slope that determines when the next transition 6775 * can be made is the relative position of used cycles within a 6776 * year over total number of cycles within that year. 6777 */ 6778 when_allowed = service_seconds + (full_years * DC_SPY) + 6779 (((uint64_t)DC_SPY * (uint64_t)cycles_over) / cycles_diff); 6780 *intervalp = (when_allowed - now); 6781 if (*intervalp > (LONG_MAX / hz)) 6782 *intervalp = (LONG_MAX / hz); 6783 PMD(PMD_TCHECK, ("%s: no cycle is allowed in %ld secs\n", pmf, 6784 *intervalp)) 6785 return (0); 6786 } else if (datap->format == DC_SMART_FORMAT) { 6787 /* 6788 * power cycles of SATA disks are reported from SMART 6789 * attributes. 6790 */ 6791 smart_p = &datap->un.smart_count; 6792 if (smart_p->consumed >= smart_p->allowed) { 6793 *intervalp = (LONG_MAX / hz); 6794 PMD(PMD_TCHECK, ("%s: exceeded lifemax cycles.\n", pmf)) 6795 return (0); 6796 } else 6797 return (1); 6798 } 6799 6800 PMD(PMD_TCHECK, ("%s: unknown format!\n", pmf)) 6801 return (-1); 6802 } 6803 6804 /* 6805 * Nexus drivers call into pm framework to indicate which child driver is about 6806 * to be installed. In some platforms, ppm may need to configure the hardware 6807 * for successful installation of a driver. 6808 */ 6809 int 6810 pm_init_child(dev_info_t *dip) 6811 { 6812 power_req_t power_req; 6813 6814 ASSERT(ddi_binding_name(dip)); 6815 ASSERT(ddi_get_name_addr(dip)); 6816 pm_ppm_claim(dip); 6817 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */ 6818 power_req.request_type = PMR_PPM_INIT_CHILD; 6819 power_req.req.ppm_config_req.who = dip; 6820 ASSERT(PPM(dip) != NULL); 6821 return (pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, 6822 NULL)); 6823 } else { 6824 #ifdef DEBUG 6825 /* pass it to the default handler so we can debug things */ 6826 power_req.request_type = PMR_PPM_INIT_CHILD; 6827 power_req.req.ppm_config_req.who = dip; 6828 (void) pm_ctlops(NULL, dip, 6829 DDI_CTLOPS_POWER, &power_req, NULL); 6830 #endif 6831 } 6832 return (DDI_SUCCESS); 6833 } 6834 6835 /* 6836 * Bring parent of a node that is about to be probed up to full power, and 6837 * arrange for it to stay up until pm_post_probe() or pm_post_attach() decide 6838 * it is time to let it go down again 6839 */ 6840 void 6841 pm_pre_probe(dev_info_t *dip, pm_ppm_cookie_t *cp) 6842 { 6843 int result; 6844 power_req_t power_req; 6845 6846 bzero(cp, sizeof (*cp)); 6847 cp->ppc_dip = dip; 6848 6849 pm_ppm_claim(dip); 6850 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */ 6851 power_req.request_type = PMR_PPM_PRE_PROBE; 6852 power_req.req.ppm_config_req.who = dip; 6853 ASSERT(PPM(dip) != NULL); 6854 (void) pm_ctlops(PPM(dip), dip, 6855 DDI_CTLOPS_POWER, &power_req, &result); 6856 cp->ppc_ppm = PPM(dip); 6857 } else { 6858 #ifdef DEBUG 6859 /* pass it to the default handler so we can debug things */ 6860 power_req.request_type = PMR_PPM_PRE_PROBE; 6861 power_req.req.ppm_config_req.who = dip; 6862 (void) pm_ctlops(NULL, dip, 6863 DDI_CTLOPS_POWER, &power_req, &result); 6864 #endif 6865 cp->ppc_ppm = NULL; 6866 } 6867 } 6868 6869 int 6870 pm_pre_config(dev_info_t *dip, char *devnm) 6871 { 6872 PMD_FUNC(pmf, "pre_config") 6873 int ret; 6874 6875 if (MDI_VHCI(dip)) { 6876 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 6877 ret = mdi_power(dip, MDI_PM_PRE_CONFIG, NULL, devnm, 0); 6878 return (ret == MDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE); 6879 } else if (!PM_GET_PM_INFO(dip)) 6880 return (DDI_SUCCESS); 6881 6882 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 6883 pm_hold_power(dip); 6884 ret = pm_all_to_normal(dip, PM_CANBLOCK_BLOCK); 6885 if (ret != DDI_SUCCESS) 6886 pm_rele_power(dip); 6887 return (ret); 6888 } 6889 6890 /* 6891 * This routine is called by devfs during its walk to unconfigue a node. 6892 * If the call is due to auto mod_unloads and the dip is not at its 6893 * full power, we return DDI_FAILURE to terminate the walk, otherwise 6894 * return DDI_SUCCESS. 6895 */ 6896 int 6897 pm_pre_unconfig(dev_info_t *dip, int flags, int *held, char *devnm) 6898 { 6899 PMD_FUNC(pmf, "pre_unconfig") 6900 int ret; 6901 6902 if (MDI_VHCI(dip)) { 6903 PMD(PMD_SET, ("%s: %s@%s(%s#%d), flags=%x\n", pmf, 6904 PM_DEVICE(dip), flags)) 6905 ret = mdi_power(dip, MDI_PM_PRE_UNCONFIG, held, devnm, flags); 6906 return (ret == MDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE); 6907 } else if (!PM_GET_PM_INFO(dip)) 6908 return (DDI_SUCCESS); 6909 6910 PMD(PMD_SET, ("%s: %s@%s(%s#%d), flags=%x\n", pmf, PM_DEVICE(dip), 6911 flags)) 6912 *held = 0; 6913 6914 /* 6915 * If the dip is a leaf node, don't power it up. 6916 */ 6917 if (!ddi_get_child(dip)) 6918 return (DDI_SUCCESS); 6919 6920 /* 6921 * Do not power up the node if it is called due to auto-modunload. 6922 */ 6923 if ((flags & NDI_AUTODETACH) && !pm_all_at_normal(dip)) 6924 return (DDI_FAILURE); 6925 6926 pm_hold_power(dip); 6927 *held = 1; 6928 ret = pm_all_to_normal(dip, PM_CANBLOCK_BLOCK); 6929 if (ret != DDI_SUCCESS) { 6930 pm_rele_power(dip); 6931 *held = 0; 6932 } 6933 return (ret); 6934 } 6935 6936 /* 6937 * Notify ppm of attach action. Parent is already held at full power by 6938 * probe action. 6939 */ 6940 void 6941 pm_pre_attach(dev_info_t *dip, pm_ppm_cookie_t *cp, ddi_attach_cmd_t cmd) 6942 { 6943 static char *me = "pm_pre_attach"; 6944 power_req_t power_req; 6945 int result; 6946 6947 /* 6948 * Initialize and fill in the PPM cookie 6949 */ 6950 bzero(cp, sizeof (*cp)); 6951 cp->ppc_cmd = (int)cmd; 6952 cp->ppc_ppm = PPM(dip); 6953 cp->ppc_dip = dip; 6954 6955 /* 6956 * DDI_ATTACH and DDI_RESUME cmds need to call platform specific 6957 * Power Management stuff. DDI_RESUME also has to purge it's 6958 * powerlevel information. 6959 */ 6960 switch (cmd) { 6961 case DDI_ATTACH: 6962 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 6963 power_req.request_type = PMR_PPM_PRE_ATTACH; 6964 power_req.req.ppm_config_req.who = dip; 6965 ASSERT(PPM(dip)); 6966 (void) pm_ctlops(cp->ppc_ppm, dip, DDI_CTLOPS_POWER, 6967 &power_req, &result); 6968 } 6969 #ifdef DEBUG 6970 else { 6971 power_req.request_type = PMR_PPM_PRE_ATTACH; 6972 power_req.req.ppm_config_req.who = dip; 6973 (void) pm_ctlops(NULL, dip, 6974 DDI_CTLOPS_POWER, &power_req, &result); 6975 } 6976 #endif 6977 break; 6978 case DDI_RESUME: 6979 pm_forget_power_level(dip); 6980 6981 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 6982 power_req.request_type = PMR_PPM_PRE_RESUME; 6983 power_req.req.resume_req.who = cp->ppc_dip; 6984 power_req.req.resume_req.cmd = 6985 (ddi_attach_cmd_t)cp->ppc_cmd; 6986 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 6987 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, 6988 DDI_CTLOPS_POWER, &power_req, &result); 6989 } 6990 #ifdef DEBUG 6991 else { 6992 power_req.request_type = PMR_PPM_PRE_RESUME; 6993 power_req.req.resume_req.who = cp->ppc_dip; 6994 power_req.req.resume_req.cmd = 6995 (ddi_attach_cmd_t)cp->ppc_cmd; 6996 (void) pm_ctlops(NULL, cp->ppc_dip, 6997 DDI_CTLOPS_POWER, &power_req, &result); 6998 } 6999 #endif 7000 break; 7001 7002 case DDI_PM_RESUME: 7003 break; 7004 7005 default: 7006 panic(me); 7007 } 7008 } 7009 7010 /* 7011 * Nexus drivers call into pm framework to indicate which child driver is 7012 * being uninstalled. In some platforms, ppm may need to reconfigure the 7013 * hardware since the device driver is no longer installed. 7014 */ 7015 int 7016 pm_uninit_child(dev_info_t *dip) 7017 { 7018 power_req_t power_req; 7019 7020 ASSERT(ddi_binding_name(dip)); 7021 ASSERT(ddi_get_name_addr(dip)); 7022 pm_ppm_claim(dip); 7023 if (pm_ppm_claimed(dip)) { /* if ppm driver claims the node */ 7024 power_req.request_type = PMR_PPM_UNINIT_CHILD; 7025 power_req.req.ppm_config_req.who = dip; 7026 ASSERT(PPM(dip)); 7027 return (pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, &power_req, 7028 NULL)); 7029 } else { 7030 #ifdef DEBUG 7031 /* pass it to the default handler so we can debug things */ 7032 power_req.request_type = PMR_PPM_UNINIT_CHILD; 7033 power_req.req.ppm_config_req.who = dip; 7034 (void) pm_ctlops(NULL, dip, DDI_CTLOPS_POWER, &power_req, NULL); 7035 #endif 7036 } 7037 return (DDI_SUCCESS); 7038 } 7039 /* 7040 * Decrement kidsupcnt so scan can turn the parent back off if it is idle 7041 * Also notify ppm of result of probe if there is a ppm that cares 7042 */ 7043 void 7044 pm_post_probe(pm_ppm_cookie_t *cp, int ret, int probe_failed) 7045 { 7046 _NOTE(ARGUNUSED(probe_failed)) 7047 int result; 7048 power_req_t power_req; 7049 7050 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 7051 power_req.request_type = PMR_PPM_POST_PROBE; 7052 power_req.req.ppm_config_req.who = cp->ppc_dip; 7053 power_req.req.ppm_config_req.result = ret; 7054 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 7055 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, DDI_CTLOPS_POWER, 7056 &power_req, &result); 7057 } 7058 #ifdef DEBUG 7059 else { 7060 power_req.request_type = PMR_PPM_POST_PROBE; 7061 power_req.req.ppm_config_req.who = cp->ppc_dip; 7062 power_req.req.ppm_config_req.result = ret; 7063 (void) pm_ctlops(NULL, cp->ppc_dip, DDI_CTLOPS_POWER, 7064 &power_req, &result); 7065 } 7066 #endif 7067 } 7068 7069 void 7070 pm_post_config(dev_info_t *dip, char *devnm) 7071 { 7072 PMD_FUNC(pmf, "post_config") 7073 7074 if (MDI_VHCI(dip)) { 7075 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 7076 (void) mdi_power(dip, MDI_PM_POST_CONFIG, NULL, devnm, 0); 7077 return; 7078 } else if (!PM_GET_PM_INFO(dip)) 7079 return; 7080 7081 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 7082 pm_rele_power(dip); 7083 } 7084 7085 void 7086 pm_post_unconfig(dev_info_t *dip, int held, char *devnm) 7087 { 7088 PMD_FUNC(pmf, "post_unconfig") 7089 7090 if (MDI_VHCI(dip)) { 7091 PMD(PMD_SET, ("%s: %s@%s(%s#%d), held = %d\n", pmf, 7092 PM_DEVICE(dip), held)) 7093 (void) mdi_power(dip, MDI_PM_POST_UNCONFIG, &held, devnm, 0); 7094 return; 7095 } else if (!PM_GET_PM_INFO(dip)) 7096 return; 7097 7098 PMD(PMD_SET, ("%s: %s@%s(%s#%d), held = %d\n", pmf, PM_DEVICE(dip), 7099 held)) 7100 if (!held) 7101 return; 7102 /* 7103 * We have held power in pre_unconfig, release it here. 7104 */ 7105 pm_rele_power(dip); 7106 } 7107 7108 /* 7109 * Notify ppm of result of attach if there is a ppm that cares 7110 */ 7111 void 7112 pm_post_attach(pm_ppm_cookie_t *cp, int ret) 7113 { 7114 int result; 7115 power_req_t power_req; 7116 dev_info_t *dip; 7117 7118 if (cp->ppc_cmd != DDI_ATTACH) 7119 return; 7120 7121 dip = cp->ppc_dip; 7122 7123 if (ret == DDI_SUCCESS) { 7124 /* 7125 * Attach succeeded, so proceed to doing post-attach pm tasks 7126 */ 7127 if (PM_GET_PM_INFO(dip) == NULL) 7128 (void) pm_start(dip); 7129 } else { 7130 /* 7131 * Attach may have got pm started before failing 7132 */ 7133 pm_stop(dip); 7134 } 7135 7136 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 7137 power_req.request_type = PMR_PPM_POST_ATTACH; 7138 power_req.req.ppm_config_req.who = cp->ppc_dip; 7139 power_req.req.ppm_config_req.result = ret; 7140 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 7141 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, 7142 DDI_CTLOPS_POWER, &power_req, &result); 7143 } 7144 #ifdef DEBUG 7145 else { 7146 power_req.request_type = PMR_PPM_POST_ATTACH; 7147 power_req.req.ppm_config_req.who = cp->ppc_dip; 7148 power_req.req.ppm_config_req.result = ret; 7149 (void) pm_ctlops(NULL, cp->ppc_dip, 7150 DDI_CTLOPS_POWER, &power_req, &result); 7151 } 7152 #endif 7153 } 7154 7155 /* 7156 * Notify ppm of attach action. Parent is already held at full power by 7157 * probe action. 7158 */ 7159 void 7160 pm_pre_detach(dev_info_t *dip, ddi_detach_cmd_t cmd, pm_ppm_cookie_t *cp) 7161 { 7162 int result; 7163 power_req_t power_req; 7164 7165 bzero(cp, sizeof (*cp)); 7166 cp->ppc_dip = dip; 7167 cp->ppc_cmd = (int)cmd; 7168 7169 switch (cmd) { 7170 case DDI_DETACH: 7171 pm_detaching(dip); /* suspend pm while detaching */ 7172 if (pm_ppm_claimed(dip)) { /* if ppm driver claims node */ 7173 power_req.request_type = PMR_PPM_PRE_DETACH; 7174 power_req.req.ppm_config_req.who = dip; 7175 ASSERT(PPM(dip)); 7176 (void) pm_ctlops(PPM(dip), dip, DDI_CTLOPS_POWER, 7177 &power_req, &result); 7178 cp->ppc_ppm = PPM(dip); 7179 } else { 7180 #ifdef DEBUG 7181 /* pass to the default handler so we can debug things */ 7182 power_req.request_type = PMR_PPM_PRE_DETACH; 7183 power_req.req.ppm_config_req.who = dip; 7184 (void) pm_ctlops(NULL, dip, 7185 DDI_CTLOPS_POWER, &power_req, &result); 7186 #endif 7187 cp->ppc_ppm = NULL; 7188 } 7189 break; 7190 7191 default: 7192 break; 7193 } 7194 } 7195 7196 /* 7197 * Dip is either a leaf node that exported "no-involuntary-power-cycles" prop., 7198 * (if devi_pm_noinvol count is 0) or an ancestor of such a node. We need to 7199 * make an entry to record the details, which includes certain flag settings. 7200 */ 7201 static void 7202 pm_record_invol_path(char *path, int flags, int noinvolpm, int volpmd, 7203 int wasvolpmd, major_t major) 7204 { 7205 PMD_FUNC(pmf, "record_invol_path") 7206 major_t pm_path_to_major(char *); 7207 size_t plen; 7208 pm_noinvol_t *ip, *np, *pp; 7209 pp = NULL; 7210 7211 plen = strlen(path) + 1; 7212 np = kmem_zalloc(sizeof (*np), KM_SLEEP); 7213 np->ni_size = plen; 7214 np->ni_path = kmem_alloc(plen, KM_SLEEP); 7215 np->ni_noinvolpm = noinvolpm; 7216 np->ni_volpmd = volpmd; 7217 np->ni_wasvolpmd = wasvolpmd; 7218 np->ni_flags = flags; 7219 (void) strcpy(np->ni_path, path); 7220 /* 7221 * If we haven't actually seen the node attached, it is hard to figure 7222 * out its major. If we could hold the node by path, we would be much 7223 * happier here. 7224 */ 7225 if (major == DDI_MAJOR_T_NONE) { 7226 np->ni_major = pm_path_to_major(path); 7227 } else { 7228 np->ni_major = major; 7229 } 7230 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 7231 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 7232 int comp = strcmp(path, ip->ni_path); 7233 if (comp < 0) { 7234 PMD(PMD_NOINVOL, ("%s: %s insert before %s\n", 7235 pmf, path, ip->ni_path)) 7236 /* insert before current entry */ 7237 np->ni_next = ip; 7238 if (pp) { 7239 pp->ni_next = np; 7240 } else { 7241 pm_noinvol_head = np; 7242 } 7243 rw_exit(&pm_noinvol_rwlock); 7244 #ifdef DEBUG 7245 if (pm_debug & PMD_NOINVOL) 7246 pr_noinvol("record_invol_path exit0"); 7247 #endif 7248 return; 7249 } else if (comp == 0) { 7250 panic("%s already in pm_noinvol list", path); 7251 } 7252 } 7253 /* 7254 * If we did not find an entry in the list that this should go before, 7255 * then it must go at the end 7256 */ 7257 if (pp) { 7258 PMD(PMD_NOINVOL, ("%s: %s append after %s\n", pmf, path, 7259 pp->ni_path)) 7260 ASSERT(pp->ni_next == 0); 7261 pp->ni_next = np; 7262 } else { 7263 PMD(PMD_NOINVOL, ("%s: %s added to end-of-list\n", pmf, path)) 7264 ASSERT(!pm_noinvol_head); 7265 pm_noinvol_head = np; 7266 } 7267 rw_exit(&pm_noinvol_rwlock); 7268 #ifdef DEBUG 7269 if (pm_debug & PMD_NOINVOL) 7270 pr_noinvol("record_invol_path exit"); 7271 #endif 7272 } 7273 7274 void 7275 pm_record_invol(dev_info_t *dip) 7276 { 7277 char *pathbuf; 7278 int pm_all_components_off(dev_info_t *); 7279 int volpmd = (PM_NUMCMPTS(dip) > 0) && pm_all_components_off(dip); 7280 7281 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 7282 (void) ddi_pathname(dip, pathbuf); 7283 7284 pm_record_invol_path(pathbuf, (DEVI(dip)->devi_pm_flags & 7285 (PMC_NO_INVOL | PMC_CONSOLE_FB)), DEVI(dip)->devi_pm_noinvolpm, 7286 DEVI(dip)->devi_pm_volpmd, volpmd, PM_MAJOR(dip)); 7287 7288 /* 7289 * If this child's detach will be holding up its ancestors, then we 7290 * allow for an exception to that if all children of this type have 7291 * gone down voluntarily. 7292 * Now walk down the tree incrementing devi_pm_noinvolpm 7293 */ 7294 (void) pm_noinvol_update(PM_BP_NOINVOL_DETACH, 0, volpmd, pathbuf, 7295 dip); 7296 kmem_free(pathbuf, MAXPATHLEN); 7297 } 7298 7299 void 7300 pm_post_detach(pm_ppm_cookie_t *cp, int ret) 7301 { 7302 dev_info_t *dip = cp->ppc_dip; 7303 int result; 7304 power_req_t power_req; 7305 7306 switch (cp->ppc_cmd) { 7307 case DDI_DETACH: 7308 if (cp->ppc_ppm) { /* if ppm driver claims the node */ 7309 power_req.request_type = PMR_PPM_POST_DETACH; 7310 power_req.req.ppm_config_req.who = cp->ppc_dip; 7311 power_req.req.ppm_config_req.result = ret; 7312 ASSERT(PPM(cp->ppc_dip) == cp->ppc_ppm); 7313 (void) pm_ctlops(cp->ppc_ppm, cp->ppc_dip, 7314 DDI_CTLOPS_POWER, &power_req, &result); 7315 } 7316 #ifdef DEBUG 7317 else { 7318 power_req.request_type = PMR_PPM_POST_DETACH; 7319 power_req.req.ppm_config_req.who = cp->ppc_dip; 7320 power_req.req.ppm_config_req.result = ret; 7321 (void) pm_ctlops(NULL, cp->ppc_dip, 7322 DDI_CTLOPS_POWER, &power_req, &result); 7323 } 7324 #endif 7325 if (ret == DDI_SUCCESS) { 7326 /* 7327 * For hotplug detach we assume it is *really* gone 7328 */ 7329 if (cp->ppc_cmd == DDI_DETACH && 7330 ((DEVI(dip)->devi_pm_flags & 7331 (PMC_NO_INVOL | PMC_CONSOLE_FB)) || 7332 DEVI(dip)->devi_pm_noinvolpm)) 7333 pm_record_invol(dip); 7334 DEVI(dip)->devi_pm_flags &= 7335 ~(PMC_NO_INVOL | PMC_NOINVOL_DONE); 7336 7337 /* 7338 * If console fb is detaching, then we don't need to 7339 * worry any more about it going off (pm_detaching has 7340 * brought up all components) 7341 */ 7342 if (PM_IS_CFB(dip)) { 7343 mutex_enter(&pm_cfb_lock); 7344 ASSERT(cfb_dip_detaching); 7345 ASSERT(cfb_dip == NULL); 7346 ASSERT(pm_cfb_comps_off == 0); 7347 cfb_dip_detaching = NULL; 7348 mutex_exit(&pm_cfb_lock); 7349 } 7350 pm_stop(dip); /* make it permanent */ 7351 } else { 7352 if (PM_IS_CFB(dip)) { 7353 mutex_enter(&pm_cfb_lock); 7354 ASSERT(cfb_dip_detaching); 7355 ASSERT(cfb_dip == NULL); 7356 ASSERT(pm_cfb_comps_off == 0); 7357 cfb_dip = cfb_dip_detaching; 7358 cfb_dip_detaching = NULL; 7359 mutex_exit(&pm_cfb_lock); 7360 } 7361 pm_detach_failed(dip); /* resume power management */ 7362 } 7363 break; 7364 case DDI_PM_SUSPEND: 7365 break; 7366 case DDI_SUSPEND: 7367 break; /* legal, but nothing to do */ 7368 default: 7369 #ifdef DEBUG 7370 panic("pm_post_detach: unrecognized cmd %d for detach", 7371 cp->ppc_cmd); 7372 /*NOTREACHED*/ 7373 #else 7374 break; 7375 #endif 7376 } 7377 } 7378 7379 /* 7380 * Called after vfs_mountroot has got the clock started to fix up timestamps 7381 * that were set when root bush drivers attached. hresttime was 0 then, so the 7382 * devices look busy but have a 0 busycnt 7383 */ 7384 int 7385 pm_adjust_timestamps(dev_info_t *dip, void *arg) 7386 { 7387 _NOTE(ARGUNUSED(arg)) 7388 7389 pm_info_t *info = PM_GET_PM_INFO(dip); 7390 struct pm_component *cp; 7391 int i; 7392 7393 if (!info) 7394 return (DDI_WALK_CONTINUE); 7395 PM_LOCK_BUSY(dip); 7396 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 7397 cp = PM_CP(dip, i); 7398 if (cp->pmc_timestamp == 0 && cp->pmc_busycount == 0) 7399 cp->pmc_timestamp = gethrestime_sec(); 7400 } 7401 PM_UNLOCK_BUSY(dip); 7402 return (DDI_WALK_CONTINUE); 7403 } 7404 7405 /* 7406 * Called at attach time to see if the device being attached has a record in 7407 * the no involuntary power cycles list. If so, we do some bookkeeping on the 7408 * parents and set a flag in the dip 7409 */ 7410 void 7411 pm_noinvol_specd(dev_info_t *dip) 7412 { 7413 PMD_FUNC(pmf, "noinvol_specd") 7414 char *pathbuf; 7415 pm_noinvol_t *ip, *pp = NULL; 7416 int wasvolpmd; 7417 int found = 0; 7418 7419 if (DEVI(dip)->devi_pm_flags & PMC_NOINVOL_DONE) 7420 return; 7421 DEVI(dip)->devi_pm_flags |= PMC_NOINVOL_DONE; 7422 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 7423 (void) ddi_pathname(dip, pathbuf); 7424 7425 PM_LOCK_DIP(dip); 7426 DEVI(dip)->devi_pm_volpmd = 0; 7427 DEVI(dip)->devi_pm_noinvolpm = 0; 7428 rw_enter(&pm_noinvol_rwlock, RW_READER); 7429 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 7430 PMD(PMD_NOINVOL, ("%s: comparing '%s' to '%s'\n", 7431 pmf, pathbuf, ip->ni_path)) 7432 if (strcmp(pathbuf, ip->ni_path) == 0) { 7433 found++; 7434 break; 7435 } 7436 } 7437 rw_exit(&pm_noinvol_rwlock); 7438 if (!found) { 7439 PM_UNLOCK_DIP(dip); 7440 kmem_free(pathbuf, MAXPATHLEN); 7441 return; 7442 } 7443 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 7444 pp = NULL; 7445 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 7446 PMD(PMD_NOINVOL, ("%s: comparing '%s' to '%s'\n", 7447 pmf, pathbuf, ip->ni_path)) 7448 if (strcmp(pathbuf, ip->ni_path) == 0) { 7449 ip->ni_flags &= ~PMC_DRIVER_REMOVED; 7450 DEVI(dip)->devi_pm_flags |= ip->ni_flags; 7451 /* 7452 * Handle special case of console fb 7453 */ 7454 if (PM_IS_CFB(dip)) { 7455 mutex_enter(&pm_cfb_lock); 7456 cfb_dip = dip; 7457 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) setting " 7458 "cfb_dip\n", pmf, PM_DEVICE(dip))) 7459 mutex_exit(&pm_cfb_lock); 7460 } 7461 DEVI(dip)->devi_pm_noinvolpm = ip->ni_noinvolpm; 7462 ASSERT((DEVI(dip)->devi_pm_flags & 7463 (PMC_NO_INVOL | PMC_CONSOLE_FB)) || 7464 DEVI(dip)->devi_pm_noinvolpm); 7465 DEVI(dip)->devi_pm_volpmd = ip->ni_volpmd; 7466 PMD(PMD_NOINVOL, ("%s: noinvol=%d, volpmd=%d, " 7467 "wasvolpmd=%d, flags=%x, path=%s\n", pmf, 7468 ip->ni_noinvolpm, ip->ni_volpmd, 7469 ip->ni_wasvolpmd, ip->ni_flags, ip->ni_path)) 7470 /* 7471 * free the entry in hopes the list will now be empty 7472 * and we won't have to search it any more until the 7473 * device detaches 7474 */ 7475 if (pp) { 7476 PMD(PMD_NOINVOL, ("%s: free %s, prev %s\n", 7477 pmf, ip->ni_path, pp->ni_path)) 7478 pp->ni_next = ip->ni_next; 7479 } else { 7480 PMD(PMD_NOINVOL, ("%s: free %s head\n", 7481 pmf, ip->ni_path)) 7482 ASSERT(pm_noinvol_head == ip); 7483 pm_noinvol_head = ip->ni_next; 7484 } 7485 PM_UNLOCK_DIP(dip); 7486 wasvolpmd = ip->ni_wasvolpmd; 7487 rw_exit(&pm_noinvol_rwlock); 7488 kmem_free(ip->ni_path, ip->ni_size); 7489 kmem_free(ip, sizeof (*ip)); 7490 /* 7491 * Now walk up the tree decrementing devi_pm_noinvolpm 7492 * (and volpmd if appropriate) 7493 */ 7494 (void) pm_noinvol_update(PM_BP_NOINVOL_ATTACH, 0, 7495 wasvolpmd, pathbuf, dip); 7496 #ifdef DEBUG 7497 if (pm_debug & PMD_NOINVOL) 7498 pr_noinvol("noinvol_specd exit"); 7499 #endif 7500 kmem_free(pathbuf, MAXPATHLEN); 7501 return; 7502 } 7503 } 7504 kmem_free(pathbuf, MAXPATHLEN); 7505 rw_exit(&pm_noinvol_rwlock); 7506 PM_UNLOCK_DIP(dip); 7507 } 7508 7509 int 7510 pm_all_components_off(dev_info_t *dip) 7511 { 7512 int i; 7513 pm_component_t *cp; 7514 7515 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 7516 cp = PM_CP(dip, i); 7517 if (cp->pmc_cur_pwr == PM_LEVEL_UNKNOWN || 7518 cp->pmc_comp.pmc_lvals[cp->pmc_cur_pwr]) 7519 return (0); 7520 } 7521 return (1); /* all off */ 7522 } 7523 7524 /* 7525 * Make sure that all "no involuntary power cycles" devices are attached. 7526 * Called before doing a cpr suspend to make sure the driver has a say about 7527 * the power cycle 7528 */ 7529 int 7530 pm_reattach_noinvol(void) 7531 { 7532 PMD_FUNC(pmf, "reattach_noinvol") 7533 pm_noinvol_t *ip; 7534 char *path; 7535 dev_info_t *dip; 7536 7537 /* 7538 * Prevent the modunload thread from unloading any modules until we 7539 * have completely stopped all kernel threads. 7540 */ 7541 modunload_disable(); 7542 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 7543 /* 7544 * Forget we'v ever seen any entry 7545 */ 7546 ip->ni_persistent = 0; 7547 } 7548 restart: 7549 rw_enter(&pm_noinvol_rwlock, RW_READER); 7550 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 7551 #ifdef PMDDEBUG 7552 major_t maj; 7553 maj = ip->ni_major; 7554 #endif 7555 path = ip->ni_path; 7556 if (path != NULL && !(ip->ni_flags & PMC_DRIVER_REMOVED)) { 7557 if (ip->ni_persistent) { 7558 /* 7559 * If we weren't able to make this entry 7560 * go away, then we give up, as 7561 * holding/attaching the driver ought to have 7562 * resulted in this entry being deleted 7563 */ 7564 PMD(PMD_NOINVOL, ("%s: can't reattach %s " 7565 "(%s|%d)\n", pmf, ip->ni_path, 7566 ddi_major_to_name(maj), (int)maj)) 7567 cmn_err(CE_WARN, "cpr: unable to reattach %s ", 7568 ip->ni_path); 7569 modunload_enable(); 7570 rw_exit(&pm_noinvol_rwlock); 7571 return (0); 7572 } 7573 ip->ni_persistent++; 7574 rw_exit(&pm_noinvol_rwlock); 7575 PMD(PMD_NOINVOL, ("%s: holding %s\n", pmf, path)) 7576 dip = e_ddi_hold_devi_by_path(path, 0); 7577 if (dip == NULL) { 7578 PMD(PMD_NOINVOL, ("%s: can't hold (%s|%d)\n", 7579 pmf, path, (int)maj)) 7580 cmn_err(CE_WARN, "cpr: unable to hold %s " 7581 "driver", path); 7582 modunload_enable(); 7583 return (0); 7584 } else { 7585 PMD(PMD_DHR, ("%s: release %s\n", pmf, path)) 7586 /* 7587 * Since the modunload thread is stopped, we 7588 * don't have to keep the driver held, which 7589 * saves a ton of bookkeeping 7590 */ 7591 ddi_release_devi(dip); 7592 goto restart; 7593 } 7594 } else { 7595 PMD(PMD_NOINVOL, ("%s: skip %s; unknown major\n", 7596 pmf, ip->ni_path)) 7597 continue; 7598 } 7599 } 7600 rw_exit(&pm_noinvol_rwlock); 7601 return (1); 7602 } 7603 7604 void 7605 pm_reattach_noinvol_fini(void) 7606 { 7607 modunload_enable(); 7608 } 7609 7610 /* 7611 * Display pm support code 7612 */ 7613 7614 7615 /* 7616 * console frame-buffer power-mgmt gets enabled when debugging 7617 * services are not present or console fbpm override is set 7618 */ 7619 void 7620 pm_cfb_setup(const char *stdout_path) 7621 { 7622 PMD_FUNC(pmf, "cfb_setup") 7623 extern int obpdebug; 7624 char *devname; 7625 dev_info_t *dip; 7626 int devname_len; 7627 extern dev_info_t *fbdip; 7628 7629 /* 7630 * By virtue of this function being called (from consconfig), 7631 * we know stdout is a framebuffer. 7632 */ 7633 stdout_is_framebuffer = 1; 7634 7635 if (obpdebug || (boothowto & RB_DEBUG)) { 7636 if (pm_cfb_override == 0) { 7637 /* 7638 * Console is frame buffer, but we want to suppress 7639 * pm on it because of debugging setup 7640 */ 7641 pm_cfb_enabled = 0; 7642 cmn_err(CE_NOTE, "Kernel debugger present: disabling " 7643 "console power management."); 7644 /* 7645 * however, we still need to know which is the console 7646 * fb in order to suppress pm on it 7647 */ 7648 } else { 7649 cmn_err(CE_WARN, "Kernel debugger present: see " 7650 "kmdb(1M) for interaction with power management."); 7651 } 7652 } 7653 #ifdef DEBUG 7654 /* 7655 * IF console is fb and is power managed, don't do prom_printfs from 7656 * pm debug macro 7657 */ 7658 if (pm_cfb_enabled && !pm_debug_to_console) { 7659 if (pm_debug) 7660 prom_printf("pm debug output will be to log only\n"); 7661 pm_divertdebug++; 7662 } 7663 #endif 7664 devname = i_ddi_strdup((char *)stdout_path, KM_SLEEP); 7665 devname_len = strlen(devname) + 1; 7666 PMD(PMD_CFB, ("%s: stripped %s\n", pmf, devname)) 7667 /* if the driver is attached */ 7668 if ((dip = fbdip) != NULL) { 7669 PMD(PMD_CFB, ("%s: attached: %s@%s(%s#%d)\n", pmf, 7670 PM_DEVICE(dip))) 7671 /* 7672 * We set up here as if the driver were power manageable in case 7673 * we get a later attach of a pm'able driver (which would result 7674 * in a panic later) 7675 */ 7676 cfb_dip = dip; 7677 DEVI(dip)->devi_pm_flags |= (PMC_CONSOLE_FB | PMC_NO_INVOL); 7678 PMD(PMD_CFB, ("%s: cfb_dip -> %s@%s(%s#%d)\n", pmf, 7679 PM_DEVICE(dip))) 7680 #ifdef DEBUG 7681 if (!(PM_GET_PM_INFO(dip) != NULL && PM_NUMCMPTS(dip))) { 7682 PMD(PMD_CFB, ("%s: %s@%s(%s#%d) not power-managed\n", 7683 pmf, PM_DEVICE(dip))) 7684 } 7685 #endif 7686 } else { 7687 char *ep; 7688 PMD(PMD_CFB, ("%s: pntd %s failed\n", pmf, devname)) 7689 pm_record_invol_path(devname, 7690 (PMC_CONSOLE_FB | PMC_NO_INVOL), 1, 0, 0, 7691 DDI_MAJOR_T_NONE); 7692 for (ep = strrchr(devname, '/'); ep != devname; 7693 ep = strrchr(devname, '/')) { 7694 PMD(PMD_CFB, ("%s: devname %s\n", pmf, devname)) 7695 *ep = '\0'; 7696 dip = pm_name_to_dip(devname, 0); 7697 if (dip != NULL) { 7698 /* 7699 * Walk up the tree incrementing 7700 * devi_pm_noinvolpm 7701 */ 7702 (void) pm_noinvol_update(PM_BP_NOINVOL_CFB, 7703 0, 0, devname, dip); 7704 break; 7705 } else { 7706 pm_record_invol_path(devname, 7707 PMC_NO_INVOL, 1, 0, 0, DDI_MAJOR_T_NONE); 7708 } 7709 } 7710 } 7711 kmem_free(devname, devname_len); 7712 } 7713 7714 void 7715 pm_cfb_rele(void) 7716 { 7717 mutex_enter(&pm_cfb_lock); 7718 /* 7719 * this call isn't using the console any more, it is ok to take it 7720 * down if the count goes to 0 7721 */ 7722 cfb_inuse--; 7723 mutex_exit(&pm_cfb_lock); 7724 } 7725 7726 /* 7727 * software interrupt handler for fbpm; this function exists because we can't 7728 * bring up the frame buffer power from above lock level. So if we need to, 7729 * we instead schedule a softint that runs this routine and takes us into 7730 * debug_enter (a bit delayed from the original request, but avoiding a panic). 7731 */ 7732 static uint_t 7733 pm_cfb_softint(caddr_t int_handler_arg) 7734 { 7735 _NOTE(ARGUNUSED(int_handler_arg)) 7736 int rval = DDI_INTR_UNCLAIMED; 7737 7738 mutex_enter(&pm_cfb_lock); 7739 if (pm_soft_pending) { 7740 mutex_exit(&pm_cfb_lock); 7741 debug_enter((char *)NULL); 7742 /* acquired in debug_enter before calling pm_cfb_trigger */ 7743 pm_cfb_rele(); 7744 mutex_enter(&pm_cfb_lock); 7745 pm_soft_pending = B_FALSE; 7746 mutex_exit(&pm_cfb_lock); 7747 rval = DDI_INTR_CLAIMED; 7748 } else 7749 mutex_exit(&pm_cfb_lock); 7750 7751 return (rval); 7752 } 7753 7754 void 7755 pm_cfb_setup_intr(void) 7756 { 7757 PMD_FUNC(pmf, "cfb_setup_intr") 7758 extern void prom_set_outfuncs(void (*)(void), void (*)(void)); 7759 void pm_cfb_check_and_powerup(void); 7760 7761 mutex_init(&pm_cfb_lock, NULL, MUTEX_SPIN, (void *)ipltospl(SPL8)); 7762 #ifdef PMDDEBUG 7763 mutex_init(&pm_debug_lock, NULL, MUTEX_SPIN, (void *)ipltospl(SPL8)); 7764 #endif 7765 7766 if (!stdout_is_framebuffer) { 7767 PMD(PMD_CFB, ("%s: console not fb\n", pmf)) 7768 return; 7769 } 7770 7771 /* 7772 * setup software interrupt handler 7773 */ 7774 if (ddi_add_softintr(ddi_root_node(), DDI_SOFTINT_HIGH, &pm_soft_id, 7775 NULL, NULL, pm_cfb_softint, NULL) != DDI_SUCCESS) 7776 panic("pm: unable to register soft intr."); 7777 7778 prom_set_outfuncs(pm_cfb_check_and_powerup, pm_cfb_rele); 7779 } 7780 7781 /* 7782 * Checks to see if it is safe to write to the console wrt power management 7783 * (i.e. if the console is a framebuffer, then it must be at full power) 7784 * returns 1 when power is off (power-up is needed) 7785 * returns 0 when power is on (power-up not needed) 7786 */ 7787 int 7788 pm_cfb_check_and_hold(void) 7789 { 7790 /* 7791 * cfb_dip is set iff console is a power manageable frame buffer 7792 * device 7793 */ 7794 extern int modrootloaded; 7795 7796 mutex_enter(&pm_cfb_lock); 7797 cfb_inuse++; 7798 ASSERT(cfb_inuse); /* wrap? */ 7799 if (modrootloaded && cfb_dip) { 7800 /* 7801 * don't power down the frame buffer, the prom is using it 7802 */ 7803 if (pm_cfb_comps_off) { 7804 mutex_exit(&pm_cfb_lock); 7805 return (1); 7806 } 7807 } 7808 mutex_exit(&pm_cfb_lock); 7809 return (0); 7810 } 7811 7812 /* 7813 * turn on cfb power (which is known to be off). 7814 * Must be called below lock level! 7815 */ 7816 void 7817 pm_cfb_powerup(void) 7818 { 7819 pm_info_t *info; 7820 int norm; 7821 int ccount, ci; 7822 int unused; 7823 #ifdef DEBUG 7824 /* 7825 * Can't reenter prom_prekern, so suppress pm debug messages 7826 * (still go to circular buffer). 7827 */ 7828 mutex_enter(&pm_debug_lock); 7829 pm_divertdebug++; 7830 mutex_exit(&pm_debug_lock); 7831 #endif 7832 info = PM_GET_PM_INFO(cfb_dip); 7833 ASSERT(info); 7834 7835 ccount = PM_NUMCMPTS(cfb_dip); 7836 for (ci = 0; ci < ccount; ci++) { 7837 norm = pm_get_normal_power(cfb_dip, ci); 7838 (void) pm_set_power(cfb_dip, ci, norm, PM_LEVEL_UPONLY, 7839 PM_CANBLOCK_BYPASS, 0, &unused); 7840 } 7841 #ifdef DEBUG 7842 mutex_enter(&pm_debug_lock); 7843 pm_divertdebug--; 7844 mutex_exit(&pm_debug_lock); 7845 #endif 7846 } 7847 7848 /* 7849 * Check if the console framebuffer is powered up. If not power it up. 7850 * Note: Calling pm_cfb_check_and_hold has put a hold on the power state which 7851 * must be released by calling pm_cfb_rele when the console fb operation 7852 * is completed. 7853 */ 7854 void 7855 pm_cfb_check_and_powerup(void) 7856 { 7857 if (pm_cfb_check_and_hold()) 7858 pm_cfb_powerup(); 7859 } 7860 7861 /* 7862 * Trigger a low level interrupt to power up console frame buffer. 7863 */ 7864 void 7865 pm_cfb_trigger(void) 7866 { 7867 if (cfb_dip == NULL) 7868 return; 7869 7870 mutex_enter(&pm_cfb_lock); 7871 /* 7872 * If the machine appears to be hung, pulling the keyboard connector of 7873 * the console will cause a high level interrupt and go to debug_enter. 7874 * But, if the fb is powered down, this routine will be called to bring 7875 * it up (by generating a softint to do the work). If a second attempt 7876 * at triggering this softint happens before the first one completes, 7877 * we panic as softints are most likely not being handled. 7878 */ 7879 if (pm_soft_pending) { 7880 panicstr = "pm_cfb_trigger: failed to enter the debugger"; 7881 panic(panicstr); /* does a power up at any intr level */ 7882 /* NOTREACHED */ 7883 } 7884 pm_soft_pending = B_TRUE; 7885 mutex_exit(&pm_cfb_lock); 7886 ddi_trigger_softintr(pm_soft_id); 7887 } 7888 7889 static major_t i_path_to_major(char *, char *); 7890 7891 major_t 7892 pm_path_to_major(char *path) 7893 { 7894 PMD_FUNC(pmf, "path_to_major") 7895 char *np, *ap, *bp; 7896 major_t ret; 7897 size_t len; 7898 7899 PMD(PMD_NOINVOL, ("%s: %s\n", pmf, path)) 7900 7901 np = strrchr(path, '/'); 7902 if (np != NULL) 7903 np++; 7904 else 7905 np = path; 7906 len = strlen(np) + 1; 7907 bp = kmem_alloc(len, KM_SLEEP); 7908 (void) strcpy(bp, np); 7909 if ((ap = strchr(bp, '@')) != NULL) { 7910 *ap = '\0'; 7911 } 7912 PMD(PMD_NOINVOL, ("%s: %d\n", pmf, ddi_name_to_major(np))) 7913 ret = i_path_to_major(path, np); 7914 kmem_free(bp, len); 7915 return (ret); 7916 } 7917 7918 #ifdef DEBUG 7919 #ifndef sparc 7920 clock_t pt_sleep = 1; 7921 #endif 7922 7923 char *pm_msgp; 7924 char *pm_bufend; 7925 char *pm_msgbuf = NULL; 7926 int pm_logpages = 0x100; 7927 #include <sys/sunldi.h> 7928 #include <sys/uio.h> 7929 clock_t pm_log_sleep = 1000; 7930 int pm_extra_cr = 1; 7931 volatile int pm_tty = 1; 7932 7933 #define PMLOGPGS pm_logpages 7934 7935 #if defined(__x86) 7936 void pm_printf(char *s); 7937 #endif 7938 7939 /*PRINTFLIKE1*/ 7940 void 7941 pm_log(const char *fmt, ...) 7942 { 7943 va_list adx; 7944 size_t size; 7945 7946 mutex_enter(&pm_debug_lock); 7947 if (pm_msgbuf == NULL) { 7948 pm_msgbuf = kmem_zalloc(mmu_ptob(PMLOGPGS), KM_SLEEP); 7949 pm_bufend = pm_msgbuf + mmu_ptob(PMLOGPGS) - 1; 7950 pm_msgp = pm_msgbuf; 7951 } 7952 va_start(adx, fmt); 7953 size = vsnprintf(NULL, 0, fmt, adx) + 1; 7954 va_end(adx); 7955 va_start(adx, fmt); 7956 if (size > (pm_bufend - pm_msgp)) { /* wraps */ 7957 bzero(pm_msgp, pm_bufend - pm_msgp); 7958 (void) vsnprintf(pm_msgbuf, size, fmt, adx); 7959 if (!pm_divertdebug) 7960 prom_printf("%s", pm_msgp); 7961 #if defined(__x86) 7962 if (pm_tty) { 7963 pm_printf(pm_msgp); 7964 if (pm_extra_cr) 7965 pm_printf("\r"); 7966 } 7967 #endif 7968 pm_msgp = pm_msgbuf + size; 7969 } else { 7970 (void) vsnprintf(pm_msgp, size, fmt, adx); 7971 #if defined(__x86) 7972 if (pm_tty) { 7973 pm_printf(pm_msgp); 7974 if (pm_extra_cr) 7975 pm_printf("\r"); 7976 } 7977 #endif 7978 if (!pm_divertdebug) 7979 prom_printf("%s", pm_msgp); 7980 pm_msgp += size; 7981 } 7982 va_end(adx); 7983 mutex_exit(&pm_debug_lock); 7984 drv_usecwait((clock_t)pm_log_sleep); 7985 } 7986 #endif /* DEBUG */ 7987 7988 /* 7989 * We want to save the state of any directly pm'd devices over the suspend/ 7990 * resume process so that we can put them back the way the controlling 7991 * process left them. 7992 */ 7993 void 7994 pm_save_direct_levels(void) 7995 { 7996 pm_processes_stopped = 1; 7997 ddi_walk_devs(ddi_root_node(), pm_save_direct_lvl_walk, 0); 7998 } 7999 8000 static int 8001 pm_save_direct_lvl_walk(dev_info_t *dip, void *arg) 8002 { 8003 _NOTE(ARGUNUSED(arg)) 8004 int i; 8005 int *ip; 8006 pm_info_t *info = PM_GET_PM_INFO(dip); 8007 8008 if (!info) 8009 return (DDI_WALK_CONTINUE); 8010 8011 if (PM_ISDIRECT(dip) && !PM_ISBC(dip)) { 8012 if (PM_NUMCMPTS(dip) > 2) { 8013 info->pmi_lp = kmem_alloc(PM_NUMCMPTS(dip) * 8014 sizeof (int), KM_SLEEP); 8015 ip = info->pmi_lp; 8016 } else { 8017 ip = info->pmi_levels; 8018 } 8019 /* autopm and processes are stopped, ok not to lock power */ 8020 for (i = 0; i < PM_NUMCMPTS(dip); i++) 8021 *ip++ = PM_CURPOWER(dip, i); 8022 /* 8023 * There is a small window between stopping the 8024 * processes and setting pm_processes_stopped where 8025 * a driver could get hung up in a pm_raise_power() 8026 * call. Free any such driver now. 8027 */ 8028 pm_proceed(dip, PMP_RELEASE, -1, -1); 8029 } 8030 8031 return (DDI_WALK_CONTINUE); 8032 } 8033 8034 void 8035 pm_restore_direct_levels(void) 8036 { 8037 /* 8038 * If cpr didn't call pm_save_direct_levels, (because stopping user 8039 * threads failed) then we don't want to try to restore them 8040 */ 8041 if (!pm_processes_stopped) 8042 return; 8043 8044 ddi_walk_devs(ddi_root_node(), pm_restore_direct_lvl_walk, 0); 8045 pm_processes_stopped = 0; 8046 } 8047 8048 static int 8049 pm_restore_direct_lvl_walk(dev_info_t *dip, void *arg) 8050 { 8051 _NOTE(ARGUNUSED(arg)) 8052 PMD_FUNC(pmf, "restore_direct_lvl_walk") 8053 int i, nc, result; 8054 int *ip; 8055 8056 pm_info_t *info = PM_GET_PM_INFO(dip); 8057 if (!info) 8058 return (DDI_WALK_CONTINUE); 8059 8060 if (PM_ISDIRECT(dip) && !PM_ISBC(dip)) { 8061 if ((nc = PM_NUMCMPTS(dip)) > 2) { 8062 ip = &info->pmi_lp[nc - 1]; 8063 } else { 8064 ip = &info->pmi_levels[nc - 1]; 8065 } 8066 /* 8067 * Because fb drivers fail attempts to turn off the 8068 * fb when the monitor is on, but treat a request to 8069 * turn on the monitor as a request to turn on the 8070 * fb too, we process components in descending order 8071 * Because autopm is disabled and processes aren't 8072 * running, it is ok to examine current power outside 8073 * of the power lock 8074 */ 8075 for (i = nc - 1; i >= 0; i--, ip--) { 8076 if (PM_CURPOWER(dip, i) == *ip) 8077 continue; 8078 if (pm_set_power(dip, i, *ip, PM_LEVEL_EXACT, 8079 PM_CANBLOCK_BYPASS, 0, &result) != DDI_SUCCESS) { 8080 cmn_err(CE_WARN, "cpr: unable " 8081 "to restore power level of " 8082 "component %d of directly " 8083 "power manged device %s@%s" 8084 " to %d", 8085 i, PM_NAME(dip), 8086 PM_ADDR(dip), *ip); 8087 PMD(PMD_FAIL, ("%s: failed to restore " 8088 "%s@%s(%s#%d)[%d] exact(%d)->%d, " 8089 "errno %d\n", pmf, PM_DEVICE(dip), i, 8090 PM_CURPOWER(dip, i), *ip, result)) 8091 } 8092 } 8093 if (nc > 2) { 8094 kmem_free(info->pmi_lp, nc * sizeof (int)); 8095 info->pmi_lp = NULL; 8096 } 8097 } 8098 return (DDI_WALK_CONTINUE); 8099 } 8100 8101 /* 8102 * Stolen from the bootdev module 8103 * attempt to convert a path to a major number 8104 */ 8105 static major_t 8106 i_path_to_major(char *path, char *leaf_name) 8107 { 8108 extern major_t path_to_major(char *pathname); 8109 major_t maj; 8110 8111 if ((maj = path_to_major(path)) == DDI_MAJOR_T_NONE) { 8112 maj = ddi_name_to_major(leaf_name); 8113 } 8114 8115 return (maj); 8116 } 8117 8118 static void i_pm_driver_removed(major_t major); 8119 8120 /* 8121 * When user calls rem_drv, we need to forget no-involuntary-power-cycles state 8122 * An entry in the list means that the device is detached, so we need to 8123 * adjust its ancestors as if they had just seen this attach, and any detached 8124 * ancestors need to have their list entries adjusted. 8125 */ 8126 void 8127 pm_driver_removed(major_t major) 8128 { 8129 8130 /* 8131 * Serialize removal of drivers. This is to keep ancestors of 8132 * a node that is being deleted from getting deleted and added back 8133 * with different counters. 8134 */ 8135 mutex_enter(&pm_remdrv_lock); 8136 i_pm_driver_removed(major); 8137 mutex_exit(&pm_remdrv_lock); 8138 } 8139 8140 static void adjust_ancestors(char *, int); 8141 static int pm_is_noinvol_ancestor(pm_noinvol_t *); 8142 static void pm_noinvol_process_ancestors(char *); 8143 8144 /* 8145 * This routine is called recursively by pm_noinvol_process_ancestors() 8146 */ 8147 static void 8148 i_pm_driver_removed(major_t major) 8149 { 8150 PMD_FUNC(pmf, "driver_removed") 8151 pm_noinvol_t *ip, *pp = NULL; 8152 int wasvolpmd; 8153 ASSERT(major != DDI_MAJOR_T_NONE); 8154 PMD(PMD_NOINVOL, ("%s: %s\n", pmf, ddi_major_to_name(major))) 8155 again: 8156 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 8157 for (ip = pm_noinvol_head; ip; pp = ip, ip = ip->ni_next) { 8158 if (major != ip->ni_major) 8159 continue; 8160 /* 8161 * If it is an ancestor of no-invol node, which is 8162 * not removed, skip it. This is to cover the case of 8163 * ancestor removed without removing its descendants. 8164 */ 8165 if (pm_is_noinvol_ancestor(ip)) { 8166 ip->ni_flags |= PMC_DRIVER_REMOVED; 8167 continue; 8168 } 8169 wasvolpmd = ip->ni_wasvolpmd; 8170 /* 8171 * remove the entry from the list 8172 */ 8173 if (pp) { 8174 PMD(PMD_NOINVOL, ("%s: freeing %s, prev is %s\n", 8175 pmf, ip->ni_path, pp->ni_path)) 8176 pp->ni_next = ip->ni_next; 8177 } else { 8178 PMD(PMD_NOINVOL, ("%s: free %s head\n", pmf, 8179 ip->ni_path)) 8180 ASSERT(pm_noinvol_head == ip); 8181 pm_noinvol_head = ip->ni_next; 8182 } 8183 rw_exit(&pm_noinvol_rwlock); 8184 adjust_ancestors(ip->ni_path, wasvolpmd); 8185 /* 8186 * Had an ancestor been removed before this node, it would have 8187 * been skipped. Adjust the no-invol counters for such skipped 8188 * ancestors. 8189 */ 8190 pm_noinvol_process_ancestors(ip->ni_path); 8191 kmem_free(ip->ni_path, ip->ni_size); 8192 kmem_free(ip, sizeof (*ip)); 8193 goto again; 8194 } 8195 rw_exit(&pm_noinvol_rwlock); 8196 } 8197 8198 /* 8199 * returns 1, if *aip is a ancestor of a no-invol node 8200 * 0, otherwise 8201 */ 8202 static int 8203 pm_is_noinvol_ancestor(pm_noinvol_t *aip) 8204 { 8205 pm_noinvol_t *ip; 8206 8207 ASSERT(strlen(aip->ni_path) != 0); 8208 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 8209 if (ip == aip) 8210 continue; 8211 /* 8212 * To be an ancestor, the path must be an initial substring of 8213 * the descendent, and end just before a '/' in the 8214 * descendent's path. 8215 */ 8216 if ((strstr(ip->ni_path, aip->ni_path) == ip->ni_path) && 8217 (ip->ni_path[strlen(aip->ni_path)] == '/')) 8218 return (1); 8219 } 8220 return (0); 8221 } 8222 8223 /* 8224 * scan through the pm_noinvolpm list adjusting ancestors of the current 8225 * node; Modifies string *path. 8226 */ 8227 static void 8228 adjust_ancestors(char *path, int wasvolpmd) 8229 { 8230 PMD_FUNC(pmf, "adjust_ancestors") 8231 char *cp; 8232 pm_noinvol_t *lp; 8233 pm_noinvol_t *pp = NULL; 8234 major_t locked = DDI_MAJOR_T_NONE; 8235 dev_info_t *dip; 8236 char *pathbuf; 8237 size_t pathbuflen = strlen(path) + 1; 8238 8239 /* 8240 * First we look up the ancestor's dip. If we find it, then we 8241 * adjust counts up the tree 8242 */ 8243 PMD(PMD_NOINVOL, ("%s: %s wasvolpmd %d\n", pmf, path, wasvolpmd)) 8244 pathbuf = kmem_alloc(pathbuflen, KM_SLEEP); 8245 (void) strcpy(pathbuf, path); 8246 cp = strrchr(pathbuf, '/'); 8247 if (cp == NULL) { 8248 /* if no ancestors, then nothing to do */ 8249 kmem_free(pathbuf, pathbuflen); 8250 return; 8251 } 8252 *cp = '\0'; 8253 dip = pm_name_to_dip(pathbuf, 1); 8254 if (dip != NULL) { 8255 locked = PM_MAJOR(dip); 8256 8257 (void) pm_noinvol_update(PM_BP_NOINVOL_REMDRV, 0, wasvolpmd, 8258 path, dip); 8259 8260 if (locked != DDI_MAJOR_T_NONE) 8261 ddi_release_devi(dip); 8262 } else { 8263 char *apath; 8264 size_t len = strlen(pathbuf) + 1; 8265 int lock_held = 1; 8266 8267 /* 8268 * Now check for ancestors that exist only in the list 8269 */ 8270 apath = kmem_alloc(len, KM_SLEEP); 8271 (void) strcpy(apath, pathbuf); 8272 rw_enter(&pm_noinvol_rwlock, RW_WRITER); 8273 for (lp = pm_noinvol_head; lp; pp = lp, lp = lp->ni_next) { 8274 /* 8275 * This can only happen once. Since we have to drop 8276 * the lock, we need to extract the relevant info. 8277 */ 8278 if (strcmp(pathbuf, lp->ni_path) == 0) { 8279 PMD(PMD_NOINVOL, ("%s: %s no %d -> %d\n", pmf, 8280 lp->ni_path, lp->ni_noinvolpm, 8281 lp->ni_noinvolpm - 1)) 8282 lp->ni_noinvolpm--; 8283 if (wasvolpmd && lp->ni_volpmd) { 8284 PMD(PMD_NOINVOL, ("%s: %s vol %d -> " 8285 "%d\n", pmf, lp->ni_path, 8286 lp->ni_volpmd, lp->ni_volpmd - 1)) 8287 lp->ni_volpmd--; 8288 } 8289 /* 8290 * remove the entry from the list, if there 8291 * are no more no-invol descendants and node 8292 * itself is not a no-invol node. 8293 */ 8294 if (!(lp->ni_noinvolpm || 8295 (lp->ni_flags & PMC_NO_INVOL))) { 8296 ASSERT(lp->ni_volpmd == 0); 8297 if (pp) { 8298 PMD(PMD_NOINVOL, ("%s: freeing " 8299 "%s, prev is %s\n", pmf, 8300 lp->ni_path, pp->ni_path)) 8301 pp->ni_next = lp->ni_next; 8302 } else { 8303 PMD(PMD_NOINVOL, ("%s: free %s " 8304 "head\n", pmf, lp->ni_path)) 8305 ASSERT(pm_noinvol_head == lp); 8306 pm_noinvol_head = lp->ni_next; 8307 } 8308 lock_held = 0; 8309 rw_exit(&pm_noinvol_rwlock); 8310 adjust_ancestors(apath, wasvolpmd); 8311 /* restore apath */ 8312 (void) strcpy(apath, pathbuf); 8313 kmem_free(lp->ni_path, lp->ni_size); 8314 kmem_free(lp, sizeof (*lp)); 8315 } 8316 break; 8317 } 8318 } 8319 if (lock_held) 8320 rw_exit(&pm_noinvol_rwlock); 8321 adjust_ancestors(apath, wasvolpmd); 8322 kmem_free(apath, len); 8323 } 8324 kmem_free(pathbuf, pathbuflen); 8325 } 8326 8327 /* 8328 * Do no-invol processing for any ancestors i.e. adjust counters of ancestors, 8329 * which were skipped even though their drivers were removed. 8330 */ 8331 static void 8332 pm_noinvol_process_ancestors(char *path) 8333 { 8334 pm_noinvol_t *lp; 8335 8336 rw_enter(&pm_noinvol_rwlock, RW_READER); 8337 for (lp = pm_noinvol_head; lp; lp = lp->ni_next) { 8338 if (strstr(path, lp->ni_path) && 8339 (lp->ni_flags & PMC_DRIVER_REMOVED)) { 8340 rw_exit(&pm_noinvol_rwlock); 8341 i_pm_driver_removed(lp->ni_major); 8342 return; 8343 } 8344 } 8345 rw_exit(&pm_noinvol_rwlock); 8346 } 8347 8348 /* 8349 * Returns true if (detached) device needs to be kept up because it exported the 8350 * "no-involuntary-power-cycles" property or we're pretending it did (console 8351 * fb case) or it is an ancestor of such a device and has used up the "one 8352 * free cycle" allowed when all such leaf nodes have voluntarily powered down 8353 * upon detach. In any event, we need an exact hit on the path or we return 8354 * false. 8355 */ 8356 int 8357 pm_noinvol_detached(char *path) 8358 { 8359 PMD_FUNC(pmf, "noinvol_detached") 8360 pm_noinvol_t *ip; 8361 int ret = 0; 8362 8363 rw_enter(&pm_noinvol_rwlock, RW_READER); 8364 for (ip = pm_noinvol_head; ip; ip = ip->ni_next) { 8365 if (strcmp(path, ip->ni_path) == 0) { 8366 if (ip->ni_flags & PMC_CONSOLE_FB) { 8367 PMD(PMD_NOINVOL | PMD_CFB, ("%s: inhibits CFB " 8368 "%s\n", pmf, path)) 8369 ret = 1; 8370 break; 8371 } 8372 #ifdef DEBUG 8373 if (ip->ni_noinvolpm != ip->ni_volpmd) 8374 PMD(PMD_NOINVOL, ("%s: (%d != %d) inhibits %s" 8375 "\n", pmf, ip->ni_noinvolpm, ip->ni_volpmd, 8376 path)) 8377 #endif 8378 ret = (ip->ni_noinvolpm != ip->ni_volpmd); 8379 break; 8380 } 8381 } 8382 rw_exit(&pm_noinvol_rwlock); 8383 return (ret); 8384 } 8385 8386 int 8387 pm_is_cfb(dev_info_t *dip) 8388 { 8389 return (dip == cfb_dip); 8390 } 8391 8392 #ifdef DEBUG 8393 /* 8394 * Return true if all components of the console frame buffer are at 8395 * "normal" power, i.e., fully on. For the case where the console is not 8396 * a framebuffer, we also return true 8397 */ 8398 int 8399 pm_cfb_is_up(void) 8400 { 8401 return (pm_cfb_comps_off == 0); 8402 } 8403 #endif 8404 8405 /* 8406 * Preventing scan from powering down the node by incrementing the 8407 * kidsupcnt. 8408 */ 8409 void 8410 pm_hold_power(dev_info_t *dip) 8411 { 8412 e_pm_hold_rele_power(dip, 1); 8413 } 8414 8415 /* 8416 * Releasing the hold by decrementing the kidsupcnt allowing scan 8417 * to power down the node if all conditions are met. 8418 */ 8419 void 8420 pm_rele_power(dev_info_t *dip) 8421 { 8422 e_pm_hold_rele_power(dip, -1); 8423 } 8424 8425 /* 8426 * A wrapper of pm_all_to_normal() to power up a dip 8427 * to its normal level 8428 */ 8429 int 8430 pm_powerup(dev_info_t *dip) 8431 { 8432 PMD_FUNC(pmf, "pm_powerup") 8433 8434 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 8435 ASSERT(!(servicing_interrupt())); 8436 8437 /* 8438 * in case this node is not already participating pm 8439 */ 8440 if (!PM_GET_PM_INFO(dip)) { 8441 if (!DEVI_IS_ATTACHING(dip)) 8442 return (DDI_SUCCESS); 8443 if (pm_start(dip) != DDI_SUCCESS) 8444 return (DDI_FAILURE); 8445 if (!PM_GET_PM_INFO(dip)) 8446 return (DDI_SUCCESS); 8447 } 8448 8449 return (pm_all_to_normal(dip, PM_CANBLOCK_BLOCK)); 8450 } 8451 8452 int 8453 pm_rescan_walk(dev_info_t *dip, void *arg) 8454 { 8455 _NOTE(ARGUNUSED(arg)) 8456 8457 if (!PM_GET_PM_INFO(dip) || PM_ISBC(dip)) 8458 return (DDI_WALK_CONTINUE); 8459 8460 /* 8461 * Currently pm_cpr_callb/resume code is the only caller 8462 * and it needs to make sure that stopped scan get 8463 * reactivated. Otherwise, rescan walk needn't reactive 8464 * stopped scan. 8465 */ 8466 pm_scan_init(dip); 8467 8468 (void) pm_rescan(dip); 8469 return (DDI_WALK_CONTINUE); 8470 } 8471 8472 static dev_info_t * 8473 pm_get_next_descendent(dev_info_t *dip, dev_info_t *tdip) 8474 { 8475 dev_info_t *wdip, *pdip; 8476 8477 for (wdip = tdip; wdip != dip; wdip = pdip) { 8478 pdip = ddi_get_parent(wdip); 8479 if (pdip == dip) 8480 return (wdip); 8481 } 8482 return (NULL); 8483 } 8484 8485 int 8486 pm_busop_bus_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op, 8487 void *arg, void *result) 8488 { 8489 PMD_FUNC(pmf, "bp_bus_power") 8490 dev_info_t *cdip; 8491 pm_info_t *cinfo; 8492 pm_bp_child_pwrchg_t *bpc; 8493 pm_sp_misc_t *pspm; 8494 pm_bp_nexus_pwrup_t *bpn; 8495 pm_bp_child_pwrchg_t new_bpc; 8496 pm_bp_noinvol_t *bpi; 8497 dev_info_t *tdip; 8498 char *pathbuf; 8499 int ret = DDI_SUCCESS; 8500 int errno = 0; 8501 pm_component_t *cp; 8502 8503 PMD(PMD_SET, ("%s: %s@%s(%s#%d) %s\n", pmf, PM_DEVICE(dip), 8504 pm_decode_op(op))) 8505 switch (op) { 8506 case BUS_POWER_CHILD_PWRCHG: 8507 bpc = (pm_bp_child_pwrchg_t *)arg; 8508 pspm = (pm_sp_misc_t *)bpc->bpc_private; 8509 tdip = bpc->bpc_dip; 8510 cdip = pm_get_next_descendent(dip, tdip); 8511 cinfo = PM_GET_PM_INFO(cdip); 8512 if (cdip != tdip) { 8513 /* 8514 * If the node is an involved parent, it needs to 8515 * power up the node as it is needed. There is nothing 8516 * else the framework can do here. 8517 */ 8518 if (PM_WANTS_NOTIFICATION(cdip)) { 8519 PMD(PMD_SET, ("%s: call bus_power for " 8520 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(cdip))) 8521 return ((*PM_BUS_POWER_FUNC(cdip))(cdip, 8522 impl_arg, op, arg, result)); 8523 } 8524 ASSERT(pspm->pspm_direction == PM_LEVEL_UPONLY || 8525 pspm->pspm_direction == PM_LEVEL_DOWNONLY || 8526 pspm->pspm_direction == PM_LEVEL_EXACT); 8527 /* 8528 * we presume that the parent needs to be up in 8529 * order for the child to change state (either 8530 * because it must already be on if the child is on 8531 * (and the pm_all_to_normal_nexus() will be a nop) 8532 * or because it will need to be on for the child 8533 * to come on; so we make the call regardless 8534 */ 8535 pm_hold_power(cdip); 8536 if (cinfo) { 8537 pm_canblock_t canblock = pspm->pspm_canblock; 8538 ret = pm_all_to_normal_nexus(cdip, canblock); 8539 if (ret != DDI_SUCCESS) { 8540 pm_rele_power(cdip); 8541 return (ret); 8542 } 8543 } 8544 PMD(PMD_SET, ("%s: walk down to %s@%s(%s#%d)\n", pmf, 8545 PM_DEVICE(cdip))) 8546 ret = pm_busop_bus_power(cdip, impl_arg, op, arg, 8547 result); 8548 pm_rele_power(cdip); 8549 } else { 8550 ret = pm_busop_set_power(cdip, impl_arg, op, arg, 8551 result); 8552 } 8553 return (ret); 8554 8555 case BUS_POWER_NEXUS_PWRUP: 8556 bpn = (pm_bp_nexus_pwrup_t *)arg; 8557 pspm = (pm_sp_misc_t *)bpn->bpn_private; 8558 8559 if (!e_pm_valid_info(dip, NULL) || 8560 !e_pm_valid_comp(dip, bpn->bpn_comp, &cp) || 8561 !e_pm_valid_power(dip, bpn->bpn_comp, bpn->bpn_level)) { 8562 PMD(PMD_SET, ("%s: %s@%s(%s#%d) has no pm info; EIO\n", 8563 pmf, PM_DEVICE(dip))) 8564 *pspm->pspm_errnop = EIO; 8565 *(int *)result = DDI_FAILURE; 8566 return (DDI_FAILURE); 8567 } 8568 8569 ASSERT(bpn->bpn_dip == dip); 8570 PMD(PMD_SET, ("%s: nexus powerup for %s@%s(%s#%d)\n", pmf, 8571 PM_DEVICE(dip))) 8572 new_bpc.bpc_dip = dip; 8573 pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8574 new_bpc.bpc_path = ddi_pathname(dip, pathbuf); 8575 new_bpc.bpc_comp = bpn->bpn_comp; 8576 new_bpc.bpc_olevel = PM_CURPOWER(dip, bpn->bpn_comp); 8577 new_bpc.bpc_nlevel = bpn->bpn_level; 8578 new_bpc.bpc_private = bpn->bpn_private; 8579 ((pm_sp_misc_t *)(new_bpc.bpc_private))->pspm_direction = 8580 PM_LEVEL_UPONLY; 8581 ((pm_sp_misc_t *)(new_bpc.bpc_private))->pspm_errnop = 8582 &errno; 8583 ret = pm_busop_set_power(dip, impl_arg, BUS_POWER_CHILD_PWRCHG, 8584 (void *)&new_bpc, result); 8585 kmem_free(pathbuf, MAXPATHLEN); 8586 return (ret); 8587 8588 case BUS_POWER_NOINVOL: 8589 bpi = (pm_bp_noinvol_t *)arg; 8590 tdip = bpi->bpni_dip; 8591 cdip = pm_get_next_descendent(dip, tdip); 8592 8593 /* In case of rem_drv, the leaf node has been removed */ 8594 if (cdip == NULL) 8595 return (DDI_SUCCESS); 8596 8597 cinfo = PM_GET_PM_INFO(cdip); 8598 if (cdip != tdip) { 8599 if (PM_WANTS_NOTIFICATION(cdip)) { 8600 PMD(PMD_NOINVOL, 8601 ("%s: call bus_power for %s@%s(%s#%d)\n", 8602 pmf, PM_DEVICE(cdip))) 8603 ret = (*PM_BUS_POWER_FUNC(cdip)) 8604 (cdip, NULL, op, arg, result); 8605 if ((cinfo) && (ret == DDI_SUCCESS)) 8606 (void) pm_noinvol_update_node(cdip, 8607 bpi); 8608 return (ret); 8609 } else { 8610 PMD(PMD_NOINVOL, 8611 ("%s: walk down to %s@%s(%s#%d)\n", pmf, 8612 PM_DEVICE(cdip))) 8613 ret = pm_busop_bus_power(cdip, NULL, op, 8614 arg, result); 8615 /* 8616 * Update the current node. 8617 */ 8618 if ((cinfo) && (ret == DDI_SUCCESS)) 8619 (void) pm_noinvol_update_node(cdip, 8620 bpi); 8621 return (ret); 8622 } 8623 } else { 8624 /* 8625 * For attach, detach, power up: 8626 * Do nothing for leaf node since its 8627 * counts are already updated. 8628 * For CFB and driver removal, since the 8629 * path and the target dip passed in is up to and incl. 8630 * the immediate ancestor, need to do the update. 8631 */ 8632 PMD(PMD_NOINVOL, ("%s: target %s@%s(%s#%d) is " 8633 "reached\n", pmf, PM_DEVICE(cdip))) 8634 if (cinfo && ((bpi->bpni_cmd == PM_BP_NOINVOL_REMDRV) || 8635 (bpi->bpni_cmd == PM_BP_NOINVOL_CFB))) 8636 (void) pm_noinvol_update_node(cdip, bpi); 8637 return (DDI_SUCCESS); 8638 } 8639 8640 default: 8641 PMD(PMD_SET, ("%s: operation %d is not supported!\n", pmf, op)) 8642 return (DDI_FAILURE); 8643 } 8644 } 8645 8646 static int 8647 pm_busop_set_power(dev_info_t *dip, void *impl_arg, pm_bus_power_op_t op, 8648 void *arg, void *resultp) 8649 { 8650 _NOTE(ARGUNUSED(impl_arg)) 8651 PMD_FUNC(pmf, "bp_set_power") 8652 pm_ppm_devlist_t *devl = NULL; 8653 int clevel, circ; 8654 #ifdef DEBUG 8655 int circ_db, ccirc_db; 8656 #endif 8657 int ret = DDI_SUCCESS; 8658 dev_info_t *cdip; 8659 pm_bp_child_pwrchg_t *bpc = (pm_bp_child_pwrchg_t *)arg; 8660 pm_sp_misc_t *pspm = (pm_sp_misc_t *)bpc->bpc_private; 8661 pm_canblock_t canblock = pspm->pspm_canblock; 8662 int scan = pspm->pspm_scan; 8663 int comp = bpc->bpc_comp; 8664 int olevel = bpc->bpc_olevel; 8665 int nlevel = bpc->bpc_nlevel; 8666 int comps_off_incr = 0; 8667 dev_info_t *pdip = ddi_get_parent(dip); 8668 int dodeps; 8669 int direction = pspm->pspm_direction; 8670 int *errnop = pspm->pspm_errnop; 8671 #ifdef PMDDEBUG 8672 char *dir = pm_decode_direction(direction); 8673 #endif 8674 int *iresp = (int *)resultp; 8675 time_t idletime, thresh; 8676 pm_component_t *cp = PM_CP(dip, comp); 8677 int work_type; 8678 8679 *iresp = DDI_SUCCESS; 8680 *errnop = 0; 8681 ASSERT(op == BUS_POWER_CHILD_PWRCHG); 8682 PMD(PMD_SET, ("%s: %s@%s(%s#%d) %s\n", pmf, PM_DEVICE(dip), 8683 pm_decode_op(op))) 8684 8685 /* 8686 * The following set of conditions indicate we are here to handle a 8687 * driver's pm_[raise|lower]_power request, but the device is being 8688 * power managed (PM_DIRECT_PM) by a user process. For that case 8689 * we want to pm_block and pass a status back to the caller based 8690 * on whether the controlling process's next activity on the device 8691 * matches the current request or not. This distinction tells 8692 * downstream functions to avoid calling into a driver or changing 8693 * the framework's power state. To actually block, we need: 8694 * 8695 * PM_ISDIRECT(dip) 8696 * no reason to block unless a process is directly controlling dev 8697 * direction != PM_LEVEL_EXACT 8698 * EXACT is used by controlling proc's PM_SET_CURRENT_POWER ioctl 8699 * !pm_processes_stopped 8700 * don't block if controlling proc already be stopped for cpr 8701 * canblock != PM_CANBLOCK_BYPASS 8702 * our caller must not have explicitly prevented blocking 8703 */ 8704 if (direction != PM_LEVEL_EXACT && canblock != PM_CANBLOCK_BYPASS) { 8705 PM_LOCK_DIP(dip); 8706 while (PM_ISDIRECT(dip) && !pm_processes_stopped) { 8707 /* releases dip lock */ 8708 ret = pm_busop_match_request(dip, bpc); 8709 if (ret == EAGAIN) { 8710 PM_LOCK_DIP(dip); 8711 continue; 8712 } 8713 return (*iresp = ret); 8714 } 8715 PM_UNLOCK_DIP(dip); 8716 } 8717 /* BC device is never scanned, so power will stick until we are done */ 8718 if (PM_ISBC(dip) && comp != 0 && nlevel != 0 && 8719 direction != PM_LEVEL_DOWNONLY) { 8720 int nrmpwr0 = pm_get_normal_power(dip, 0); 8721 if (pm_set_power(dip, 0, nrmpwr0, direction, 8722 canblock, 0, resultp) != DDI_SUCCESS) { 8723 /* *resultp set by pm_set_power */ 8724 return (DDI_FAILURE); 8725 } 8726 } 8727 if (PM_WANTS_NOTIFICATION(pdip)) { 8728 PMD(PMD_SET, ("%s: pre_notify %s@%s(%s#%d) for child " 8729 "%s@%s(%s#%d)\n", pmf, PM_DEVICE(pdip), PM_DEVICE(dip))) 8730 ret = (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL, 8731 BUS_POWER_PRE_NOTIFICATION, bpc, resultp); 8732 if (ret != DDI_SUCCESS) { 8733 PMD(PMD_SET, ("%s: failed to pre_notify %s@%s(%s#%d)\n", 8734 pmf, PM_DEVICE(pdip))) 8735 return (DDI_FAILURE); 8736 } 8737 } else { 8738 /* 8739 * Since we don't know what the actual power level is, 8740 * we place a power hold on the parent no matter what 8741 * component and level is changing. 8742 */ 8743 pm_hold_power(pdip); 8744 } 8745 PM_LOCK_POWER(dip, &circ); 8746 clevel = PM_CURPOWER(dip, comp); 8747 /* 8748 * It's possible that a call was made to pm_update_maxpower() 8749 * on another thread before we took the lock above. So, we need to 8750 * make sure that this request isn't processed after the 8751 * change of power executed on behalf of pm_update_maxpower(). 8752 */ 8753 if (nlevel > pm_get_normal_power(dip, comp)) { 8754 PMD(PMD_SET, ("%s: requested level is higher than normal.\n", 8755 pmf)) 8756 ret = DDI_FAILURE; 8757 *iresp = DDI_FAILURE; 8758 goto post_notify; 8759 } 8760 PMD(PMD_SET, ("%s: %s@%s(%s#%d), cmp=%d, olvl=%d, nlvl=%d, clvl=%d, " 8761 "dir=%s\n", pmf, PM_DEVICE(dip), comp, bpc->bpc_olevel, nlevel, 8762 clevel, dir)) 8763 switch (direction) { 8764 case PM_LEVEL_UPONLY: 8765 /* Powering up */ 8766 if (clevel >= nlevel) { 8767 PMD(PMD_SET, ("%s: current level is already " 8768 "at or above the requested level.\n", pmf)) 8769 *iresp = DDI_SUCCESS; 8770 ret = DDI_SUCCESS; 8771 goto post_notify; 8772 } 8773 break; 8774 case PM_LEVEL_EXACT: 8775 /* specific level request */ 8776 if (clevel == nlevel && !PM_ISBC(dip)) { 8777 PMD(PMD_SET, ("%s: current level is already " 8778 "at the requested level.\n", pmf)) 8779 *iresp = DDI_SUCCESS; 8780 ret = DDI_SUCCESS; 8781 goto post_notify; 8782 } else if (PM_IS_CFB(dip) && (nlevel < clevel)) { 8783 PMD(PMD_CFB, ("%s: powerdown of console\n", pmf)) 8784 if (!pm_cfb_enabled) { 8785 PMD(PMD_ERROR | PMD_CFB, 8786 ("%s: !pm_cfb_enabled, fails\n", pmf)) 8787 *errnop = EINVAL; 8788 *iresp = DDI_FAILURE; 8789 ret = DDI_FAILURE; 8790 goto post_notify; 8791 } 8792 mutex_enter(&pm_cfb_lock); 8793 while (cfb_inuse) { 8794 mutex_exit(&pm_cfb_lock); 8795 if (delay_sig(1) == EINTR) { 8796 ret = DDI_FAILURE; 8797 *iresp = DDI_FAILURE; 8798 *errnop = EINTR; 8799 goto post_notify; 8800 } 8801 mutex_enter(&pm_cfb_lock); 8802 } 8803 mutex_exit(&pm_cfb_lock); 8804 } 8805 break; 8806 case PM_LEVEL_DOWNONLY: 8807 /* Powering down */ 8808 thresh = cur_threshold(dip, comp); 8809 idletime = gethrestime_sec() - cp->pmc_timestamp; 8810 if (scan && ((PM_KUC(dip) != 0) || 8811 (cp->pmc_busycount > 0) || 8812 ((idletime < thresh) && !PM_IS_PID(dip)))) { 8813 #ifdef DEBUG 8814 if (DEVI(dip)->devi_pm_kidsupcnt != 0) 8815 PMD(PMD_SET, ("%s: scan failed: " 8816 "kidsupcnt != 0\n", pmf)) 8817 if (cp->pmc_busycount > 0) 8818 PMD(PMD_SET, ("%s: scan failed: " 8819 "device become busy\n", pmf)) 8820 if (idletime < thresh) 8821 PMD(PMD_SET, ("%s: scan failed: device " 8822 "hasn't been idle long enough\n", pmf)) 8823 #endif 8824 *iresp = DDI_FAILURE; 8825 *errnop = EBUSY; 8826 ret = DDI_FAILURE; 8827 goto post_notify; 8828 } else if (clevel != PM_LEVEL_UNKNOWN && clevel <= nlevel) { 8829 PMD(PMD_SET, ("%s: current level is already at " 8830 "or below the requested level.\n", pmf)) 8831 *iresp = DDI_SUCCESS; 8832 ret = DDI_SUCCESS; 8833 goto post_notify; 8834 } 8835 break; 8836 } 8837 8838 if (PM_IS_CFB(dip) && (comps_off_incr = 8839 calc_cfb_comps_incr(dip, comp, clevel, nlevel)) > 0) { 8840 /* 8841 * Pre-adjust pm_cfb_comps_off if lowering a console fb 8842 * component from full power. Remember that we tried to 8843 * lower power in case it fails and we need to back out 8844 * the adjustment. 8845 */ 8846 update_comps_off(comps_off_incr, dip); 8847 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d cfb_comps_off->%d\n", 8848 pmf, PM_DEVICE(dip), comp, clevel, nlevel, 8849 pm_cfb_comps_off)) 8850 } 8851 8852 if ((*iresp = power_dev(dip, 8853 comp, nlevel, clevel, canblock, &devl)) == DDI_SUCCESS) { 8854 #ifdef DEBUG 8855 /* 8856 * All descendents of this node should already be powered off. 8857 */ 8858 if (PM_CURPOWER(dip, comp) == 0) { 8859 pm_desc_pwrchk_t pdpchk; 8860 pdpchk.pdpc_dip = dip; 8861 pdpchk.pdpc_par_involved = PM_WANTS_NOTIFICATION(dip); 8862 ndi_devi_enter(dip, &circ_db); 8863 for (cdip = ddi_get_child(dip); cdip != NULL; 8864 cdip = ddi_get_next_sibling(cdip)) { 8865 ndi_devi_enter(cdip, &ccirc_db); 8866 ddi_walk_devs(cdip, pm_desc_pwrchk_walk, 8867 (void *)&pdpchk); 8868 ndi_devi_exit(cdip, ccirc_db); 8869 } 8870 ndi_devi_exit(dip, circ_db); 8871 } 8872 #endif 8873 /* 8874 * Post-adjust pm_cfb_comps_off if we brought an fb component 8875 * back up to full power. 8876 */ 8877 if (PM_IS_CFB(dip) && comps_off_incr < 0) { 8878 update_comps_off(comps_off_incr, dip); 8879 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d " 8880 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip), 8881 comp, clevel, nlevel, pm_cfb_comps_off)) 8882 } 8883 dodeps = 0; 8884 if (POWERING_OFF(clevel, nlevel)) { 8885 if (PM_ISBC(dip)) { 8886 dodeps = (comp == 0); 8887 } else { 8888 int i; 8889 dodeps = 1; 8890 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 8891 /* if some component still on */ 8892 if (PM_CURPOWER(dip, i)) { 8893 dodeps = 0; 8894 break; 8895 } 8896 } 8897 } 8898 if (dodeps) 8899 work_type = PM_DEP_WK_POWER_OFF; 8900 } else if (POWERING_ON(clevel, nlevel)) { 8901 if (PM_ISBC(dip)) { 8902 dodeps = (comp == 0); 8903 } else { 8904 int i; 8905 dodeps = 1; 8906 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 8907 if (i == comp) 8908 continue; 8909 if (PM_CURPOWER(dip, i) > 0) { 8910 dodeps = 0; 8911 break; 8912 } 8913 } 8914 } 8915 if (dodeps) 8916 work_type = PM_DEP_WK_POWER_ON; 8917 } 8918 8919 if (dodeps) { 8920 char *pathbuf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 8921 8922 (void) ddi_pathname(dip, pathbuf); 8923 pm_dispatch_to_dep_thread(work_type, pathbuf, NULL, 8924 PM_DEP_NOWAIT, NULL, 0); 8925 kmem_free(pathbuf, MAXPATHLEN); 8926 } 8927 if ((PM_CURPOWER(dip, comp) == nlevel) && pm_watchers()) { 8928 int old; 8929 8930 /* If old power cached during deadlock, use it. */ 8931 old = (cp->pmc_flags & PM_PHC_WHILE_SET_POWER ? 8932 cp->pmc_phc_pwr : olevel); 8933 mutex_enter(&pm_rsvp_lock); 8934 pm_enqueue_notify(PSC_HAS_CHANGED, dip, comp, nlevel, 8935 old, canblock); 8936 pm_enqueue_notify_others(&devl, canblock); 8937 mutex_exit(&pm_rsvp_lock); 8938 } else { 8939 pm_ppm_devlist_t *p; 8940 pm_ppm_devlist_t *next; 8941 for (p = devl; p != NULL; p = next) { 8942 next = p->ppd_next; 8943 kmem_free(p, sizeof (pm_ppm_devlist_t)); 8944 } 8945 devl = NULL; 8946 } 8947 8948 /* 8949 * If we are coming from a scan, don't do it again, 8950 * else we can have infinite loops. 8951 */ 8952 if (!scan) 8953 pm_rescan(dip); 8954 } else { 8955 /* if we incremented pm_comps_off_count, but failed */ 8956 if (comps_off_incr > 0) { 8957 update_comps_off(-comps_off_incr, dip); 8958 PMD(PMD_CFB, ("%s: %s@%s(%s#%d)[%d] %d->%d " 8959 "cfb_comps_off->%d\n", pmf, PM_DEVICE(dip), 8960 comp, clevel, nlevel, pm_cfb_comps_off)) 8961 } 8962 *errnop = EIO; 8963 } 8964 8965 post_notify: 8966 /* 8967 * This thread may have been in deadlock with pm_power_has_changed. 8968 * Before releasing power lock, clear the flag which marks this 8969 * condition. 8970 */ 8971 cp->pmc_flags &= ~PM_PHC_WHILE_SET_POWER; 8972 8973 /* 8974 * Update the old power level in the bus power structure with the 8975 * actual power level before the transition was made to the new level. 8976 * Some involved parents depend on this information to keep track of 8977 * their children's power transition. 8978 */ 8979 if (*iresp != DDI_FAILURE) 8980 bpc->bpc_olevel = clevel; 8981 8982 if (PM_WANTS_NOTIFICATION(pdip)) { 8983 ret = (*PM_BUS_POWER_FUNC(pdip))(pdip, NULL, 8984 BUS_POWER_POST_NOTIFICATION, bpc, resultp); 8985 PM_UNLOCK_POWER(dip, circ); 8986 PMD(PMD_SET, ("%s: post_notify %s@%s(%s#%d) for " 8987 "child %s@%s(%s#%d), ret=%d\n", pmf, PM_DEVICE(pdip), 8988 PM_DEVICE(dip), ret)) 8989 } else { 8990 nlevel = cur_power(cp); /* in case phc deadlock updated pwr */ 8991 PM_UNLOCK_POWER(dip, circ); 8992 /* 8993 * Now that we know what power transition has occurred 8994 * (if any), release the power hold. Leave the hold 8995 * in effect in the case of OFF->ON transition. 8996 */ 8997 if (!(clevel == 0 && nlevel > 0 && 8998 (!PM_ISBC(dip) || comp == 0))) 8999 pm_rele_power(pdip); 9000 /* 9001 * If the power transition was an ON->OFF transition, 9002 * remove the power hold from the parent. 9003 */ 9004 if ((clevel > 0 || clevel == PM_LEVEL_UNKNOWN) && 9005 nlevel == 0 && (!PM_ISBC(dip) || comp == 0)) 9006 pm_rele_power(pdip); 9007 } 9008 if (*iresp != DDI_SUCCESS || ret != DDI_SUCCESS) 9009 return (DDI_FAILURE); 9010 else 9011 return (DDI_SUCCESS); 9012 } 9013 9014 /* 9015 * If an app (SunVTS or Xsun) has taken control, then block until it 9016 * gives it up or makes the requested power level change, unless 9017 * we have other instructions about blocking. Returns DDI_SUCCESS, 9018 * DDI_FAILURE or EAGAIN (owner released device from directpm). 9019 */ 9020 static int 9021 pm_busop_match_request(dev_info_t *dip, void *arg) 9022 { 9023 PMD_FUNC(pmf, "bp_match_request") 9024 pm_bp_child_pwrchg_t *bpc = (pm_bp_child_pwrchg_t *)arg; 9025 pm_sp_misc_t *pspm = (pm_sp_misc_t *)bpc->bpc_private; 9026 int comp = bpc->bpc_comp; 9027 int nlevel = bpc->bpc_nlevel; 9028 pm_canblock_t canblock = pspm->pspm_canblock; 9029 int direction = pspm->pspm_direction; 9030 int clevel, circ; 9031 9032 ASSERT(PM_IAM_LOCKING_DIP(dip)); 9033 PM_LOCK_POWER(dip, &circ); 9034 clevel = PM_CURPOWER(dip, comp); 9035 PMD(PMD_SET, ("%s: %s@%s(%s#%d), cmp=%d, nlvl=%d, clvl=%d\n", 9036 pmf, PM_DEVICE(dip), comp, nlevel, clevel)) 9037 if (direction == PM_LEVEL_UPONLY) { 9038 if (clevel >= nlevel) { 9039 PM_UNLOCK_POWER(dip, circ); 9040 PM_UNLOCK_DIP(dip); 9041 return (DDI_SUCCESS); 9042 } 9043 } else if (clevel == nlevel) { 9044 PM_UNLOCK_POWER(dip, circ); 9045 PM_UNLOCK_DIP(dip); 9046 return (DDI_SUCCESS); 9047 } 9048 if (canblock == PM_CANBLOCK_FAIL) { 9049 PM_UNLOCK_POWER(dip, circ); 9050 PM_UNLOCK_DIP(dip); 9051 return (DDI_FAILURE); 9052 } 9053 if (canblock == PM_CANBLOCK_BLOCK) { 9054 /* 9055 * To avoid a deadlock, we must not hold the 9056 * power lock when we pm_block. 9057 */ 9058 PM_UNLOCK_POWER(dip, circ); 9059 PMD(PMD_SET, ("%s: blocking\n", pmf)) 9060 /* pm_block releases dip lock */ 9061 switch (pm_block(dip, comp, nlevel, clevel)) { 9062 case PMP_RELEASE: 9063 return (EAGAIN); 9064 case PMP_SUCCEED: 9065 return (DDI_SUCCESS); 9066 case PMP_FAIL: 9067 return (DDI_FAILURE); 9068 } 9069 } else { 9070 ASSERT(0); 9071 } 9072 _NOTE(NOTREACHED); 9073 return (DDI_FAILURE); /* keep gcc happy */ 9074 } 9075 9076 static int 9077 pm_all_to_normal_nexus(dev_info_t *dip, pm_canblock_t canblock) 9078 { 9079 PMD_FUNC(pmf, "all_to_normal_nexus") 9080 int *normal; 9081 int i, ncomps; 9082 size_t size; 9083 int changefailed = 0; 9084 int ret, result = DDI_SUCCESS; 9085 pm_bp_nexus_pwrup_t bpn; 9086 pm_sp_misc_t pspm; 9087 9088 ASSERT(PM_GET_PM_INFO(dip)); 9089 PMD(PMD_ALLNORM, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 9090 if (pm_get_norm_pwrs(dip, &normal, &size) != DDI_SUCCESS) { 9091 PMD(PMD_ALLNORM, ("%s: can't get norm pwrs\n", pmf)) 9092 return (DDI_FAILURE); 9093 } 9094 ncomps = PM_NUMCMPTS(dip); 9095 for (i = 0; i < ncomps; i++) { 9096 bpn.bpn_dip = dip; 9097 bpn.bpn_comp = i; 9098 bpn.bpn_level = normal[i]; 9099 pspm.pspm_canblock = canblock; 9100 pspm.pspm_scan = 0; 9101 bpn.bpn_private = &pspm; 9102 ret = pm_busop_bus_power(dip, NULL, BUS_POWER_NEXUS_PWRUP, 9103 (void *)&bpn, (void *)&result); 9104 if (ret != DDI_SUCCESS || result != DDI_SUCCESS) { 9105 PMD(PMD_FAIL | PMD_ALLNORM, ("%s: %s@%s(%s#%d)[%d] " 9106 "->%d failure result %d\n", pmf, PM_DEVICE(dip), 9107 i, normal[i], result)) 9108 changefailed++; 9109 } 9110 } 9111 kmem_free(normal, size); 9112 if (changefailed) { 9113 PMD(PMD_FAIL, ("%s: failed to set %d comps %s@%s(%s#%d) " 9114 "full power\n", pmf, changefailed, PM_DEVICE(dip))) 9115 return (DDI_FAILURE); 9116 } 9117 return (DDI_SUCCESS); 9118 } 9119 9120 int 9121 pm_noinvol_update(int subcmd, int volpmd, int wasvolpmd, char *path, 9122 dev_info_t *tdip) 9123 { 9124 PMD_FUNC(pmf, "noinvol_update") 9125 pm_bp_noinvol_t args; 9126 int ret; 9127 int result = DDI_SUCCESS; 9128 9129 args.bpni_path = path; 9130 args.bpni_dip = tdip; 9131 args.bpni_cmd = subcmd; 9132 args.bpni_wasvolpmd = wasvolpmd; 9133 args.bpni_volpmd = volpmd; 9134 PMD(PMD_NOINVOL, ("%s: update for path %s tdip %p subcmd %d " 9135 "volpmd %d wasvolpmd %d\n", pmf, 9136 path, (void *)tdip, subcmd, wasvolpmd, volpmd)) 9137 ret = pm_busop_bus_power(ddi_root_node(), NULL, BUS_POWER_NOINVOL, 9138 &args, &result); 9139 return (ret); 9140 } 9141 9142 void 9143 pm_noinvol_update_node(dev_info_t *dip, pm_bp_noinvol_t *req) 9144 { 9145 PMD_FUNC(pmf, "noinvol_update_node") 9146 9147 PMD(PMD_NOINVOL, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 9148 switch (req->bpni_cmd) { 9149 case PM_BP_NOINVOL_ATTACH: 9150 PMD(PMD_NOINVOL, ("%s: PM_PB_NOINVOL_ATTACH %s@%s(%s#%d) " 9151 "noinvol %d->%d\n", pmf, PM_DEVICE(dip), 9152 DEVI(dip)->devi_pm_noinvolpm, 9153 DEVI(dip)->devi_pm_noinvolpm - 1)) 9154 ASSERT(DEVI(dip)->devi_pm_noinvolpm); 9155 PM_LOCK_DIP(dip); 9156 DEVI(dip)->devi_pm_noinvolpm--; 9157 if (req->bpni_wasvolpmd) { 9158 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_ATTACH " 9159 "%s@%s(%s#%d) volpmd %d->%d\n", pmf, 9160 PM_DEVICE(dip), DEVI(dip)->devi_pm_volpmd, 9161 DEVI(dip)->devi_pm_volpmd - 1)) 9162 if (DEVI(dip)->devi_pm_volpmd) 9163 DEVI(dip)->devi_pm_volpmd--; 9164 } 9165 PM_UNLOCK_DIP(dip); 9166 break; 9167 9168 case PM_BP_NOINVOL_DETACH: 9169 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_DETACH %s@%s(%s#%d) " 9170 "noinvolpm %d->%d\n", pmf, PM_DEVICE(dip), 9171 DEVI(dip)->devi_pm_noinvolpm, 9172 DEVI(dip)->devi_pm_noinvolpm + 1)) 9173 PM_LOCK_DIP(dip); 9174 DEVI(dip)->devi_pm_noinvolpm++; 9175 if (req->bpni_wasvolpmd) { 9176 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_DETACH " 9177 "%s@%s(%s#%d) volpmd %d->%d\n", pmf, 9178 PM_DEVICE(dip), DEVI(dip)->devi_pm_volpmd, 9179 DEVI(dip)->devi_pm_volpmd + 1)) 9180 DEVI(dip)->devi_pm_volpmd++; 9181 } 9182 PM_UNLOCK_DIP(dip); 9183 break; 9184 9185 case PM_BP_NOINVOL_REMDRV: 9186 PMD(PMD_NOINVOL, ("%s: PM_BP_NOINVOL_REMDRV %s@%s(%s#%d) " 9187 "noinvol %d->%d\n", pmf, PM_DEVICE(dip), 9188 DEVI(dip)->devi_pm_noinvolpm, 9189 DEVI(dip)->devi_pm_noinvolpm - 1)) 9190 ASSERT(DEVI(dip)->devi_pm_noinvolpm); 9191 PM_LOCK_DIP(dip); 9192 DEVI(dip)->devi_pm_noinvolpm--; 9193 if (req->bpni_wasvolpmd) { 9194 PMD(PMD_NOINVOL, 9195 ("%s: PM_BP_NOINVOL_REMDRV %s@%s(%s#%d) " 9196 "volpmd %d->%d\n", pmf, PM_DEVICE(dip), 9197 DEVI(dip)->devi_pm_volpmd, 9198 DEVI(dip)->devi_pm_volpmd - 1)) 9199 /* 9200 * A power up could come in between and 9201 * clear the volpmd, if that's the case, 9202 * volpmd would be clear. 9203 */ 9204 if (DEVI(dip)->devi_pm_volpmd) 9205 DEVI(dip)->devi_pm_volpmd--; 9206 } 9207 PM_UNLOCK_DIP(dip); 9208 break; 9209 9210 case PM_BP_NOINVOL_CFB: 9211 PMD(PMD_NOINVOL, 9212 ("%s: PM_BP_NOIVOL_CFB %s@%s(%s#%d) noinvol %d->%d\n", 9213 pmf, PM_DEVICE(dip), DEVI(dip)->devi_pm_noinvolpm, 9214 DEVI(dip)->devi_pm_noinvolpm + 1)) 9215 PM_LOCK_DIP(dip); 9216 DEVI(dip)->devi_pm_noinvolpm++; 9217 PM_UNLOCK_DIP(dip); 9218 break; 9219 9220 case PM_BP_NOINVOL_POWER: 9221 PMD(PMD_NOINVOL, 9222 ("%s: PM_BP_NOIVOL_PWR %s@%s(%s#%d) volpmd %d->%d\n", 9223 pmf, PM_DEVICE(dip), 9224 DEVI(dip)->devi_pm_volpmd, DEVI(dip)->devi_pm_volpmd - 9225 req->bpni_volpmd)) 9226 PM_LOCK_DIP(dip); 9227 DEVI(dip)->devi_pm_volpmd -= req->bpni_volpmd; 9228 PM_UNLOCK_DIP(dip); 9229 break; 9230 9231 default: 9232 break; 9233 } 9234 9235 } 9236 9237 #ifdef DEBUG 9238 static int 9239 pm_desc_pwrchk_walk(dev_info_t *dip, void *arg) 9240 { 9241 PMD_FUNC(pmf, "desc_pwrchk") 9242 pm_desc_pwrchk_t *pdpchk = (pm_desc_pwrchk_t *)arg; 9243 pm_info_t *info = PM_GET_PM_INFO(dip); 9244 int i; 9245 /* LINTED */ 9246 int curpwr, ce_level; 9247 9248 if (!info) 9249 return (DDI_WALK_CONTINUE); 9250 9251 PMD(PMD_SET, ("%s: %s@%s(%s#%d)\n", pmf, PM_DEVICE(dip))) 9252 for (i = 0; i < PM_NUMCMPTS(dip); i++) { 9253 /* LINTED */ 9254 if ((curpwr = PM_CURPOWER(dip, i)) == 0) 9255 continue; 9256 /* E_FUNC_SET_NOT_USED */ 9257 ce_level = (pdpchk->pdpc_par_involved == 0) ? CE_PANIC : 9258 CE_WARN; 9259 PMD(PMD_SET, ("%s: %s@%s(%s#%d) is powered off while desc " 9260 "%s@%s(%s#%d)[%d] is at %d\n", pmf, 9261 PM_DEVICE(pdpchk->pdpc_dip), PM_DEVICE(dip), i, curpwr)) 9262 cmn_err(ce_level, "!device %s@%s(%s#%d) is powered on, " 9263 "while its ancestor, %s@%s(%s#%d), is powering off!", 9264 PM_DEVICE(dip), PM_DEVICE(pdpchk->pdpc_dip)); 9265 } 9266 return (DDI_WALK_CONTINUE); 9267 } 9268 #endif 9269 9270 /* 9271 * Record the fact that one thread is borrowing the lock on a device node. 9272 * Use is restricted to the case where the lending thread will block until 9273 * the borrowing thread (always curthread) completes. 9274 */ 9275 void 9276 pm_borrow_lock(kthread_t *lender) 9277 { 9278 lock_loan_t *prev = &lock_loan_head; 9279 lock_loan_t *cur = (lock_loan_t *)kmem_zalloc(sizeof (*cur), KM_SLEEP); 9280 9281 cur->pmlk_borrower = curthread; 9282 cur->pmlk_lender = lender; 9283 mutex_enter(&pm_loan_lock); 9284 cur->pmlk_next = prev->pmlk_next; 9285 prev->pmlk_next = cur; 9286 mutex_exit(&pm_loan_lock); 9287 } 9288 9289 /* 9290 * Return the borrowed lock. A thread can borrow only one. 9291 */ 9292 void 9293 pm_return_lock(void) 9294 { 9295 lock_loan_t *cur; 9296 lock_loan_t *prev = &lock_loan_head; 9297 9298 mutex_enter(&pm_loan_lock); 9299 ASSERT(prev->pmlk_next != NULL); 9300 for (cur = prev->pmlk_next; cur; prev = cur, cur = cur->pmlk_next) 9301 if (cur->pmlk_borrower == curthread) 9302 break; 9303 9304 ASSERT(cur != NULL); 9305 prev->pmlk_next = cur->pmlk_next; 9306 mutex_exit(&pm_loan_lock); 9307 kmem_free(cur, sizeof (*cur)); 9308 } 9309 9310 #if defined(__x86) 9311 9312 #define CPR_RXR 0x1 9313 #define CPR_TXR 0x20 9314 #define CPR_DATAREG 0x3f8 9315 #define CPR_LSTAT 0x3fd 9316 #define CPR_INTRCTL 0x3f9 9317 9318 char 9319 pm_getchar(void) 9320 { 9321 while ((inb(CPR_LSTAT) & CPR_RXR) != CPR_RXR) 9322 drv_usecwait(10); 9323 9324 return (inb(CPR_DATAREG)); 9325 9326 } 9327 9328 void 9329 pm_putchar(char c) 9330 { 9331 while ((inb(CPR_LSTAT) & CPR_TXR) == 0) 9332 drv_usecwait(10); 9333 9334 outb(CPR_DATAREG, c); 9335 } 9336 9337 void 9338 pm_printf(char *s) 9339 { 9340 while (*s) { 9341 pm_putchar(*s++); 9342 } 9343 } 9344 9345 #endif 9346 9347 int 9348 pm_ppm_searchlist(pm_searchargs_t *sp) 9349 { 9350 power_req_t power_req; 9351 int result = 0; 9352 /* LINTED */ 9353 int ret; 9354 9355 power_req.request_type = PMR_PPM_SEARCH_LIST; 9356 power_req.req.ppm_search_list_req.searchlist = sp; 9357 ASSERT(DEVI(ddi_root_node())->devi_pm_ppm); 9358 ret = pm_ctlops((dev_info_t *)DEVI(ddi_root_node())->devi_pm_ppm, 9359 ddi_root_node(), DDI_CTLOPS_POWER, &power_req, &result); 9360 PMD(PMD_SX, ("pm_ppm_searchlist returns %d, result %d\n", 9361 ret, result)) 9362 return (result); 9363 } 9364